10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public review):

      In this manuscript, the authors recorded cerebellar unipolar brush cells (UBCs) in acute brain slices. They confirmed that mossy fiber (MF) inputs generate a continuum of UBC responses. Using systematic and physiological trains of MF electrical stimulation, they demonstrated that MF inputs either increased or decreased UBC firing rates (UBC ON vs. OFF) or induced complex, long-lasting modulation of their discharges. The MF influence on UBC firing was directly associated with a specific combination of metabotropic glutamate receptors, mGluR2/3 (inhibitory) and mGluR1 (excitatory). Ultimately, the amount and ratio of these two receptors controlled the time course of the effect, yielding specific temporal transformations such as phase shifts. The experiments are well-executed and properly analyzed.

      Strengths:

      (1) A wide range of MF stimulation based on activity patterns observed in vivo was explored, including burst duration and frequency dependency, which could serve as a valuable foundation for explicit modeling of temporal transformations in the granule cell layer.<br /> (2) The pharmacological blockade of mGluR2/3, mGluR1, AMPA, and NMDA receptors helped identify the specific roles of these glutamate receptors.<br /> (3) The experiments convincingly demonstrate the key role of mGluR1 receptors in temporal information processing by UBCs.

      Weaknesses:

      (1) This study is a follow up of previous work (Guo et al., Nat. Commun., 2021).<br /> (2) The MF activity used to mimic natural stimulation was previously collected from primates, whereas the recordings were conducted in mice.

      Comments on revisions:

      The authors included a discussion about inhibition, but I still disagree with their claim that it was not possible to study the MF-UBC connection with inhibition unblocked. This group has already conducted experiments on Golgi cell inhibition in slices.

    2. Reviewer #2 (Public review):

      This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.

      Comments on revisions:

      The authors have adequately addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

      Strengths:

      Host blood meal source, temperature, and photoperiod were all examined together.

      Weaknesses:

      The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      Comments on the revision:

      Overall, the manuscript is much improved. However, the introduction and parts of the discussion that talk about addressing the question of seasonal shift in host use pattern of Cx. quin are still way too strong and must be toned down. There is no strong evidence to show this host shift in Argentinian mosquito populations. Therefore, it is just misleading. I suggest removing all this and sticking to discussing only the effects of blood meal source and seasonality on the reproductive outcomes of Cx. quin.

    2. Reviewer #2 (Public review):

      Summary:

      Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness on birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used generalized linear mixed models to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity, fertility, and hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite from that hypothesized. The authors have done a very good job of addressing many of the reviewer's concerns, especially by adding two additional replicates. Several minor concerns remain, especially regarding unclear statements in the discussion.

      Strengths:

      (1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.<br /> (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.

      Weaknesses:

      (1) The methods would be improved by some additional details. For example, clarifying the number of generations for which mosquitoes were maintained in colony (which was changed from 20 to several) and whether replicates were conducted at different time points.<br /> (2) The statistical analysis requires some additional explanation. For example, you suggest that the power analysis was conducted a priori, but this was not mentioned in your first two drafts, so I wonder if it was actually conducted after the first replicate. It would be helpful to include further detail, such as how the parameters were estimated. Also, it would be helpful to clarify why replicate was included as a random effect for fecundity and fertility but as a fixed effect for hatchability. This might explain why there were no significant differences for hatchability given that you were estimating for more parameters.<br /> (3) A number of statements in the discussion are not clear. For example, what do you mean by a mixed perspective in the first paragraph? Also, why is the expectation mentioned in the second paragraph different from the hypothesis you described in your introduction?<br /> (4) According to eLife policy, data must be made freely available (not just upon request).

    1. Reviewer #1 (Public review):

      The aim of this paper is to describe a novel method for genetic labelling of animals or cell populations, using a system of DNA/RNA barcodes.

      Strengths:

      • The author's attempt at providing a straightforward method for multiplexing Drosophila samples prior to scRNA-seq is commendable. The perspective of being able to load multiple samples on a 10X Chromium without antibody labelling is appealing.<br /> • The authors are generally honest about potential issues in their method, and areas that would benefit from future improvement.<br /> • The article reads well. Graphs and figures are clear and easy to understand.

      Weaknesses:

      • The usefulness of TaG-EM for phototaxis, egg laying or fecundity experiments is questionable. The behaviours presented here are all easily quantifiable, either manually or using automated image-based quantification, even when they include a relatively large number of groups and replicates. Despite their claims (e.g., L311-313), the authors do not present any real evidence about the cost- or time-effectiveness of their method in comparison to existing quantification methods.<br /> • Behavioural assays presented in this article have clear outcomes, with large effect sizes, and therefore do not really challenge the efficiency of TaG-EM. By showing a T-maze in Fig 1B, the authors suggest that their method could be used to quantify more complex behaviours. Not exploring this possibility in this manuscript seems like a missed opportunity.<br /> • Experiments in Figs S3 and S6 suggest that some tags have a detrimental effect on certain behaviours or on GFP expression. Whereas the authors rightly acknowledge these issues, they do not investigate their causes. Unfortunately, this question the overall suitability of TaG-EM, as other barcodes may also affect certain aspects of the animal's physiology or behaviour. Revising barcode design will be crucial to make sure that sequences with potential regulatory function are excluded.<br /> • For their single-cell experiments, the authors have used the 10X Genomics method, which relies on sequencing just a short segment of each transcript (usually 50-250bp - unknown for this study as read length information was not provided) to enable its identification, with the matching paired-end read providing cell barcode and UMI information (Macosko et al., 2015). With average fragment length after tagmentation usually ranging from 300-700bp, a large number of GFP reads will likely not include the 14bp TaG-EM barcode. When a given cell barcode is not associated with any TaG-EM barcode, then demultiplexing is impossible. This is a major problem, which is particularly visible in Figs 5 and S13. In 5F, BC4 is only detected in a couple of dozen cells, even though the Jon99Ciii marker of enterocytes is present in a much larger population (Fig 5C). Therefore, in this particular case, TaG-EM fails to detect most of the GFP-expressing cells. Similarly, in S13, most cells should express one of the four barcodes, however many of them (maybe up to half - this should be quantified) do not. Therefore, the claim (L277-278) that "the pan-midgut driver were broadly distributed across the cell clusters" is misleading. Moreover, the hypothesis that "low expressing driver lines may result in particularly sparse labelling" (L331-333) is at least partially wrong, as Fig S13 shows that the same Gal4 driver can lead to very different levels of barcode coverage.<br /> • Comparisons between TaG-EM and other, simpler methods for labelling individual cell populations are missing. For example, how would TaG-EM compare with expression of different fluorescent reporters, or a strategy based on the brainbow/flybow principle?<br /> • FACS data is missing throughout the paper. The authors should include data from their comparative flow cytometry experiment of TaG-EM cells with or without additional hexameric GFP, as well as FSC/SSC and fluorescence scatter plots for the FACS steps that they performed prior to scRNA-seq, at least in supplementary figures.<br /> • The authors should show the whole data described in L229, including the cluster that they chose to delete. At least, they should provide more information about how many cells were removed. In any case, the fact that their data still contains a large number of debris and dead cells despite sorting out PI negative cells with FACS and filtering low abundance barcodes with Cellranger is concerning.

      Overall, although a method for genetic tagging cell populations prior to multiplexing in single-cell experiments would be extremely useful, the method presented here is inadequate. However, despite all the weaknesses listed above, the idea of barcodes expressed specifically in cells of interest deserves more consideration. If the authors manage to improve their design to resolve the major issues and demonstrate the benefits of their method more clearly, then TaG-EM could become an interesting option for certain applications.

      Comments on revisions:

      The authors have addressed many important points, providing reassurances about the initial weaknesses of their work. Although the TaG-EM is unlikely to have a significant influence on the field due to its limited benefits, the results are now sound and provide the reader with an unbiased view of the possibilities and limitations of the method.

    2. Reviewer #2 (Public review):

      The authors developed the TaG-EM system to address challenges in multiplexing Drosophila samples for behavioral and transcriptomic studies. This system integrates DNA barcodes upstream of the polyadenylation site in a UAS-GFP construct, enabling pooled behavioral measurements and cell type tracking in scRNA-seq experiments. The revised manuscript expands on the utility of TaG-EM by demonstrating its application to complex assays, such as larval gut motility, and provides a refined analysis of its limitations and cost-effectiveness.

      Strengths

      (1) Novelty and Scope: The study demonstrates the potential for TaG-EM to streamline multiplexing in both behavioral and transcriptomic contexts. The additional application to labor-intensive larval gut motility assays highlights its scalability and practical utility.

      (2) Data Quality and Clarity: Figures and supplemental data are mostly clear and significantly enhanced in the revised manuscript. The addition of Supplemental Figures 18-21 addresses initial concerns about scRNA-seq data and driver characterization.

      (3) Cost-Effectiveness Analysis: New analyses of labor and cost savings (e.g., Supplemental Figure 8) provide a practical perspective.

      (4) Improvements in Barcode Detection and Analysis: Enhanced enrichment protocols (Supplemental Figures 18-19) demonstrate progress in addressing limitations of barcode detection and increase the detection rate of labeled cells.

      Weaknesses

      (1) Barcode Detection Efficiency: While improvements are noted, the low barcode detection rate (~37% in optimized conditions) limits the method's scalability in some applications, such as single-cell sequencing experiments with complex cell populations.

      (2) Sparse Labeling: Sparse labeling of cell populations, particularly in scRNA-seq assays, remains a concern. Variability in driver strength and regional expression introduces inconsistencies in labeling density.

      (3) Behavioral Applications: The utility of TaG-EM in quantifying more complex behaviors remains underexplored, limiting the generalizability of the method beyond simpler assays like phototaxis and oviposition.

      (4) Driver Line Characterization: While improvements in driver line characterization were made, variability in expression patterns and sparse labeling emphasize the need for further refinement of constructs and systematic backcrossing to standardize the genetic background.

    1. Reviewer #1 (Public review):

      Summary:

      BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The Authors use SMA-3 and SMA-9 ChIP-Seq data and RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up- or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. In case of such opposing effects, the SMA-9 appears to act epistatically to SMA-3. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the Authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation.

      Strengths:

      Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans.

      Weaknesses:

      (1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure.

      (2) The Authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs likely act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which still has to be experimentally substantiated. In the revised version of the manuscript, the authors acknowledge this.

      (3) The second part of the results (the collagen story) is loosely connected the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9.

      Comments on revisions:

      In comparison to the first version of the manuscript, the authors have significantly improved the "readability" of the paper, made the Discussion much better, and toned down some of the less supported arguments.

    1. Reviewer #1 (Public review):

      Summary:

      The study aims to create a comprehensive repository about the changes in protein abundance and their modification during oocyte maturation in Xenopus laevis.

      Strengths:

      The results contribute meaningfully to the field.

      Weaknesses:

      The manuscript could have benefitted from more comprehensive analyses and clearer writing. Nonetheless, the key findings are robust and offer a valuable resource for the scientific community.

    2. Reviewer #2 (Public review):

      Summary:

      The authors analyzed Xenopus oocytes at different stages of meiosis using quantitative phosphoproteomics. Their advanced methods and analyses revealed changes in protein abundances and phosphorylation states to an unprecedented depth and quantitative detail. In the manuscript they provide an excellent interpretation of these findings putting them in the context of past literature in Xenopus as well as in other model systems.

      Strengths:

      High quality data, careful and detailed analysis, outstanding interpretation in the context of the large body of the literature.

      Weaknesses:

      Merely a resource, none of the findings are tested in functional experiments.

      I am very impressed by the quality of the data and the careful and detailed interpretation of the findings. In this form the manuscript will be an excellent resource to the cell division community in general, and it presents a very large number of hypotheses that can be tested in future experiments.

      Xenopus has been and still is a popular and powerful model system that led to critical discoveries around countless cellular processes, including the spindle, nuclear envelope, translational regulation, just to name a few. This also includes a huge body of literature on the cell cycle describing its phosphoregulation. It is indeed somewhat frustrating to see that these earlier studies using phospho-mutants and phospho-antibodies were just scratching the surface. The phosphoproteomics analysis presented here reveals much more extensive and much more dynamic changes in phosphorylation states. Thereby, in my opinion, this manuscript opens a completely new chapter in this line of research, setting the stage for more systematic future studies.

    3. Reviewer #3 (Public review):

      Summary:

      The authors performed time-resolved proteomics and phospho-proteomics in Xenopus oocytes from prophase I through the MII arrest of the unfertilized egg. The data contains protein abundance and phosphorylation sites of a large number set of proteins at different stages of oocyte maturation. The large sets of the data are of high quality. In addition, the authors discussed several key pathways critical for the maturation. The data is very useful for the researchers not only researchers in Xenopus oocytes but also those in oocyte biology in other organisms.

      Strengths:

      The data of proteomics and phospho-proteomics in Xenopus oocyte maturation is very useful for future studies to understand molecular networks in oocyte maturation.

      Weaknesses:

      Although the authors offered molecular pathways of the phosphorylation in the translation, protein degradation, cell cycle regulation, and chromosome segregation. The author did not check the validity of the molecular pathways based ontheir proteomic data by the experimentation.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.

      Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.

      Strengths:

      - Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.<br /> - A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.

      Weaknesses:

      - Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.

      - While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.

      - So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.

      - Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)

    2. Reviewer #2 (Public review):

      The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.

      The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:

      Major points:

      It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.

      In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.

      Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.

      What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.

      The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.

      The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.

      The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?

    3. Reviewer #1 (Public review):

      Summary:

      In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.

      Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.

      Strengths:

      - Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.<br /> - A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.

      Weaknesses:

      - Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.

      - While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.

      - So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.

      - Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)

    4. Reviewer #2 (Public review):

      The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.

      The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:

      Major points:

      It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.

      In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.

      Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.

      What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.

      The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.

      The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.

      The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?

    1. Reviewer #1 (Public review):

      Summary:<br /> The authors set out to explore the role of upstream open reading frames (uORFs) in stabilizing protein levels during Drosophila development and evolution. By utilizing a modified ICIER model for ribosome translation simulations and conducting experimental validations in Drosophila species, the study investigates how uORFs buffer translational variability of downstream coding sequences. The findings reveal that uORFs significantly reduce translational variability, which contributes to gene expression stability across different biological contexts and evolutionary timeframes.

      Strengths:<br /> (1) The study introduces a sophisticated adaptation of the ICIER model, enabling detailed simulation of ribosomal traffic and its implications for translation efficiency.<br /> (2) The integration of computational predictions with empirical data through knockout experiments and translatome analysis in Drosophila provides a compelling validation of the model's predictions.<br /> (3) By demonstrating the evolutionary conservation of uORFs' buffering effects, the study provides insights that are likely applicable to a wide range of eukaryotes.

      Weaknesses:<br /> (1) Although the study is technically sound, it does not clearly articulate the mechanisms through which uORFs buffer translational variability. A clearer hypothesis detailing the potential molecular interactions or regulatory pathways by which uORFs influence translational stability would enhance the comprehension and impact of the findings.<br /> (2) The study could be further improved by a discussion regarding the evolutionary selection of uORFs. Specifically, it would be beneficial to explore whether uORFs are favored evolutionarily primarily for their role in reducing translation efficiency or for their capability to stabilize translation variability. Such a discussion would provide deeper insights into the evolutionary dynamics and functional significance of uORFs in genetic regulation.

    2. Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.

      The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.

      (1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.

      (2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.

      (3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.

      (4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.

      (5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions. According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.

    1. Reviewer #1 (Public review):

      Summary:

      Olfaction is fundamental to the survival and reproduction of animals, as they rely on olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) to detect volatile chemical cues in their environment. Most mature OSNs adhere to the 'one neuron one receptor' rule, wherein each neuron selects a single receptor for expression from a large repertoire of olfactory receptor genes. The precise regulation of olfactory receptor expression is critical for accurate odorant recognition. Since the seminal discovery of olfactory receptors by Linda Buck and Richard Axel in 1991, substantial efforts have been made to elucidate the mechanisms underlying OSN differentiation and receptor expression. However, these processes remain incompletely understood. The development of in vitro olfactory epithelium organoids offers a promising platform to address these fundamental questions. The in vivo OE is composed of a complex array of cell types, which has posed a significant challenge for recapitulating its structure and function in vitro. Previous attempts to generate olfactory organoids from adult human or mouse OE cells yielded tissue containing OSNs, but these constructs were structurally distinct from the in vivo OE and lacked the characteristic pseudostratified epithelium.

      In this study, Kazuya et al. successfully established olfactory epithelium organoids from E13.5 mouse embryonic OE stem cells, which developed into a pseudostratified structure closely resembling the native OE. They further examined the influence of different cultural conditions on OE differentiation, confirming the pivotal role of niche factors in promoting OSN development. Through immunofluorescence staining and single-cell RNA sequencing, they demonstrated that the organoids encompass a diverse range of cell types analogous to those present in the in vivo OE. Notably, calcium imaging revealed that the organoids were functionally responsive to odorants, and single-cell transcriptomic analysis showed that the majority of mature OSNs conformed to the 'one neuron one receptor' rule. Using these organoids, the authors performed a preliminary investigation into the developmental trajectories of OSNs, developed a tool to predict subpopulations of mature OSNs, and identified novel markers associated with OSN maturation. Collectively, the data provide compelling evidence for the reliability and utility of this olfactory organoid model. Further in-depth analyses may enable readers to better assess and utilize this tool to advance the study of olfactory biology.

      Strengths:

      The authors developed and established olfactory epithelium organoids, with immunofluorescence imaging confirming the presence of a pseudostratified structure similar to that of the in vivo olfactory epithelium, representing a significant advancement. Single-cell sequencing and calcium imaging further demonstrated the utility of these organoids, as they contain multiple cell types analogous to the in vivo olfactory epithelium. Importantly, they are physiologically functional, capable of responding to odor stimuli.

      Weakness:

      Although the authors have made significant progress in the technique, there are some gaps in understanding its underlying principles. First, it remains unclear what specific characteristics of E13.5 embryonic olfactory stem cells enable them to generate organoids in vitro that more closely resemble the in vivo olfactory epithelium, compared to adult mouse olfactory stem cells. Second, it is not clearly defined which specific cell type(s) from the embryonic olfactory epithelium give rise to these organoids, and the efficiency of organoid formation from the isolated cells also warrants further clarification.

    2. Reviewer #2 (Public review):

      Summary:

      Suzuki and colleagues aim to develop an in vitro organoid system to recapitulate the developmental process of the olfactory epithelium. The authors have succeeded in using a combination of niche factors to induce organoid development, which gives rise to multiple cell types including those with characteristics of mature olfactory sensory neurons. By comparing different cultural media in inducing lineage specification in the organoids, the authors show that the niche factors play an important role in the neuronal lineage whereas serum promotes the development of the respiratory epithelium. The authors further utilized single-cell RNASeq and trajectory analysis to demonstrate that the organoids recapitulate the developmental process of the olfactory epithelium and that some of the factory sensory neurons express only one receptor type per cell. Using these analyses, the authors proposed that a specific set of guidance modules are associated with individual receptor types to enable the formation of the factory map.

      Strengths:

      The strength of the paper is that the authors have demonstrated that olfactory epithelium organoids can develop from dissociated cells from embryonic or tissue. This provides a valuable tool for studying the development of processes of the factory epithelium in vitro. Defining various factors in the media that influence the development trajectories of various cell types also provides valuable information to guide further development of the method. Single-cell RNA-Seq experiments provide information about the developmental processes of the olfactory system.

      Weaknesses:

      The manuscript is also marked by a number of weaknesses. The premise of the studies is not well argued. The authors set out to use organoid culture to study the developmental process in order to unravel the mechanisms of single receptor choice, and its role in setting up the factory map. However, the paper has mostly focused on characterizing the organization rather than providing insights into the problem. The statement that the organoids can develop from single cells is misleading, because it's mostly likely that organoids develop after the dissociated cells form aggregates before developing into organoids. It is not known whether coarsely separated tissue chunks can develop into organoids with the same characteristics. Re-aggregation of the cells to form organoids is in and of itself is interesting. Unfortunately, the heterogeneity of the cells and how they contribute to the development of overnight is not explored. There is also a missed opportunity to compare single-cell RNASeq data from this study with existing ones. The in vitro system is likely to be different from embryonic development. It is critical to compare and determine how much the organoid is recapitulating the development of the OSNs in vivo. There are a number of comprehensive datasets from the OE in addition to that presented in the Fletcher paper. Finally, the quality of the functional assay (calcium imaging) of factory sensory neurons is poor. Experiments are of high quality are needed to verify the results.

      Major points:

      (1) Adding FBS in organoid culture medium has been shown to negatively affect the organoid formation and growth. Previous OE organoids culture method did not use FBS. Also, day 10 is an odd choice to compare the two conditions after showing day 20 of NF+ culture shows a better differentiation state. It is not known whether and how the differentiation may be different on day 20. Moreover, comparing Figure 2R to 2S, FBS treatment alone appears to have not only more Foxj1+ cells but also more Tuj1+ cells than NFs/FBS. This is inconsistent with the model. The authors should provide statistics for Tuj1+ cells as well.

      (2) As opposed to the statement in the manuscript, Plxnb2 had been shown to be expressed by the OSNs (Mclntyre et al. 2010; JNR), specifically in immature OSNs. It would be important to mention that Plxnb2 is expressed in OMP+ OSNs in the OE organoid system and its potential reasons to better guide the readers of the system mimicking the in vivo OSNs. Similarly, OSN expression of Cdh2 has been shown by Akins and colleagues. As Plxnb2 showed an expression pattern (immunofluorescence) with an anterior-posterior axis while Cdh2 expression level was not, it would be informative to show the odorant receptor types regarding the expression pattern of Plxnb2 (versus that of Cdh2) using single cell RNAseq data4.

      (3) There is no real layering of the organoids, although some cells show biases toward one side or the other in some regions of the organoid. The authors should not make a sweeping claim that the organoids establish layered structures.

      (4) Figure 2P, it is clear whether OMP is present in the cell bodies. The signal is not very convincing. Even the DAPI signal does not seem to be on a comparable scale compared to Figures 2N and 2O.

      (5) Annotation of the cell types in different single-cell RNA-Seq analysis. The iOSN is only marked in Figure 3A. In the marker expression panel, it appears that those marked as mOSN have high GAP43, which are an iOSN marker. These discrepancies are not detailed nor discussed.

      (6) The authors should merge the single-cell datasets from day 10 organoids cultured in NF-medium and FBS-medium to compare their differences.

      (7) The quality of the calcium imaging experiment is poor. Labeling and experimental details are not provided. The concentration of IVA, the manner of its delivery, and delivery duration are not provided. How many ROIs have been imaged, and what percentage of them responded to IVA? Do they respond to more than one odor? Do they respond to repeated delivery? There is no control for solution osmolarity. Cell body response was not recorded. Given that only a small number of cells express a receptor, it seems extraordinary that these axons respond to IVA receptors. The authors should also determine whether IVA receptor genes are found in their dataset.

    3. Reviewer #3 (Public review):

      Summary:

      The present work by Suzuki et al seeks to develop a new embryonic olfactory epithelium organoid culture model, to study OR gene expression and mechanisms involved in epithelium-to-bulb targeting. They characterize an organoid culture derived from E13 mouse olfactory tissue, using RT-qPCR, immunostaining, limited calcium imaging, and single-cell RNA-seq. Main findings show that the cultures produce major olfactory cell types; many olfactory neurons express a single OR; scSeq analysis identifies transcriptional programs associated with specific OR class expressions that may help define mechanisms involved in projection to specific bulb sites (glomeruli).

      Strengths:

      The organoid model is generally well-characterized and may be a useful approach for studying this question and other problems, such as basal cell lineage choice or damage and repair mechanisms. Overall, the paper is well-written, and the figures are of high quality.

      The cultures, produced from E13 mice, appear to produce HBCs, GBCs, neurons, and non-neural cells, providing an important tool. I think a really interesting question is: when do HBCs first appear in these cultures? Developmentally, in rodents, HBCs do not arise until near the end of gestation, and the OE cell populations are instead made from a more GBC-like cell (keratin negative, p63 negative) that proliferates as an apical or basal progenitor. The cell type and architectural descriptions used here repeatedly are really descriptions of the adult OE, yet the cultures are made from E13 mouse olfactory epithelium. Perhaps an important question could be addressed by this model - how this specific adult reserve epithelial stem cell (the HBC) is generated remains unclear. HBCs are a reserve multipotential cell that reconstitutes the entire olfactory epithelium in adults following severe injury, yet is not present during embryonic development until after the epithelium has been largely generated.

      Weaknesses:

      The paper should discuss the transcriptional programs identified here that correlate with OR class expression in the context of findings from Tsukahara et al, Cell 2021. Tsukahara identified from in vivo olfactory neuron scSeq fixed gene expression programs defining olfactory neuron position in AP or DV axes correlating highly with OR expression.

      While the current findings do define the expression of putative targeting, guidance or adhesion molecules in specific OR-expressing neurons in culture, the current results do not provide any experimental evidence that glomerulus targeting is actually mediated by these factors. Further discussion of this limitation may be helpful, along with a discussion of additional approaches to explore these questions.

      Calcium imaging: it is not clear why isovaleric acid was chosen as a stimulus for Ca imaging. Is it's known receptor expressed widely in these cultures? Why not use a cocktail of odorants, to activate a broader range of ORs, as has been widely used in in vitro calcium imaging studies of olfactory neurons? Can you show positive control activation (i.e. high potassium)?

      How many unique ORs are identified as expressed in the cultures? Figure 5 indicates only 78 genes. Since mice express about 1200 ORs, is this a limitation? How many replicates (individual cells) are found to express each of the ORs? Again, Figure 5 suggests only 202 cells are OR+? Is this enough to define the gene expression programs reliably associated with a given OR or OR class? More detail on this analysis would be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      van der Linden et al. report on the development of a new green-fluorescent sensor for calcium, following a novel rational design strategy based on the modification of the cyan-emissive sensor mTq2-CaFLITS. Through a mutational strategy similar to the one used to convert EGFP into EYFP, coupled with optimization of strategic amino acids located in proximity of the chromophore, they identify a novel sensor, G-CaFLITS. Through a careful characterization of the photophysical properties in vitro and the expression level in cell cultures, the authors demonstrate that G-CaFLITS combines a large lifetime response with a good brightness in both the bound and unbound states. This relative independence of the brightness on calcium binding, compared with existing sensors that often feature at least one very dim form, is an interesting feature of this new type of sensors, which allows for a more robust usage in fluorescence lifetime imaging. Furthermore, the authors evaluate the performance of G-CaFLITS in different subcellular compartments and under two-photon excitation in Drosophila. While the data appears robust and the characterization thorough, the interpretation of the results in some cases appears less solid, and alternative explanations cannot be excluded.

      Strengths:

      - The approach is innovative and extends the excellent photophysical properties of the mTq2-based to more red-shifted variants. While the spectral shift might appear relatively minor, as the authors correctly point out, it has interesting practical implications, such as the possibility to perform FLIM imaging of calcium using widely available laser wavelengths, or to reduce background autofluorescence, which can be a significant problem in FLIM.<br /> - The screening was simple and rationally guided, demonstrating that, at least for this class of sensors, a careful choice of screening positions is an excellent strategy to obtain variants with large FLIM responses without the need of high-throughput screening.<br /> - The description of the methodologies is very complete and accurate, greatly facilitating the reproduction of the results by others, or the adoption of similar methods. This is particularly true for the description of the experimental conditions for optimal screening of sensor variants in lysed bacterial cultures.<br /> - The photophysical characterization is very thorough and complete, and the vast amount of data reported in the supporting information is a valuable reference for other researchers willing to attempt a similar sensor development strategy. Particularly well done is the characterization of the brightness in cells, and the comparison on multiple parameters with existing sensors.<br /> - Overall, G-CaFLITS displays excellent properties for a FLIM sensor: very large lifetime change, bright emission in both forms and independence from pH in the physiological range.

      Weaknesses:

      - The paper demonstrates the application of G-CaFLITS in various cellular sub-compartments without providing direct evidence that the sensor's response is not affected by the targeting. Showing at least that the lifetime values in the saturated state are similar in all compartments would improve the robustness of the claims.<br /> - In some cases, the interpretation of the results is not fully convincing, leaving alternative hypotheses as a possibility. This is particularly the case for the claim of the origin of the strongly reduced brightness of G-CaFLITS in Drosophila. The explanation of the intensity changes of G-CaFLITS also shows some inconsistency with the basic photophysical characterization.<br /> - While the claims generally appear robust, in some cases they are conveyed with a lack of precision. Several sentences in the introduction and discussion could be improved in this regard. Furthermore, the use of the signal-to-noise ratio as a means of comparison between sensors appears to be imprecise, since it is dependent on experimental conditions.

    2. Reviewer #2 (Public review):

      Summary:

      Van der Linden et al. describe the addition of the T203Y mutation to their previously described fluorescence lifetime calcium sensor Tq-Ca-FLITS to shift the fluorescence to green emission. This mutation was previously described to similarly red-shift the emission of green and cyan FPs. Tq-Ca-FLITS_T203Y behaves as a green calcium sensor with opposite polarity compared with the original (lifetime goes down upon calcium binding instead of up). They then screen a library of variants at two linker positions and identify a variant with slightly improved lifetime contrast (Tq-Ca-FLITS_T203Y_V27A_N271D, named G-Ca-FLITS). The authors then characterize the performance of G-Ca-FLITS relative to Tq-Ca-FLITS in purified protein samples, in cultured cells, and in the brains of fruit flies.

      Strengths:

      This work is interesting as it extends their prior work generating a calcium indicator scaffold for fluorescent protein-based lifetime sensors with large contrast at a single wavelength, which is already being adopted by the community for production of other FLIM biosensors. This work effectively extends that from cyan to green fluorescence. While the cyan and green sensors are not spectrally distinct enough (~20-30nm shift) to easily multiplex together, it at least shifts the spectra to wavelengths that are more commonly available on commercial microscopes.

      The observations of organellar calcium concentrations were interesting and could potentially lead to new biological insight if followed up.

      Weaknesses:

      The new G-Ca-FLITS sensor doesn't appear to be significantly improved in performance over the original Tq-Ca-FLITS, no specific benefits are demonstrated.

      Although it was admirable to attempt in vivo demonstration in Drosophila with these sensors, depolarizing the whole brain with high potassium is not a terribly interesting or physiological stimulus and doesn't really highlight any advantages of their sensors; G-Ca-FLITS appears to be quite dim in the flies.

    3. Reviewer #3 (Public review):

      Summary:

      The authours present a variant of a previously described fluorescence lifetime sensor for calcium. Much of the manuscript describes the process of developing appropriate assays for screening sensor variants, and thorough characterization of those variants (inherent fluorescence characteristics, response to calcium and pH, comparisons to other calcium sensors). The final two figures show how the sensor performs in cultured cells and in vivo drosophila brains.

      Strengths:

      The work is presented clearly and the conclusion (this is a new calcium sensor that could be useful in some circumstances) is supported by the data.

      Weaknesses:

      There are probably few circumstances where this sensor would facilitate experiments (calcium measurements) that other sensors would prove insufficient.

    1. Joint Public Review:

      Summary of the work:

      This manuscript defines the differential stress response signaling induced by nuclear and cytoplasmic protein misfolding. To accomplish this, the authors used superfolder GFP fused to a destabilized FKBP protein-bearing targeting signal for cytosolic or nuclear localization. When cells were grown in the presence of the ligand Shield-1, this protein was stable, allowing fluorescence of the GFP protein. Upon removal of Shield-1, the FKBP protein is unfolded targeting the entire fusion protein to proteasomal degradation. Using this approach, they performed RNAseq to probe similarities and differences in transcriptional responses to the accumulation of unfolded proteins in the cytosol or nucleus. As expected, many of the pathways upregulated in both datasets involved protein homeostasis pathways such as the proteasome and cytosolic chaperones. The increase in proteasome subunits correlated with the stabilization of Nrf1 under these conditions, suggesting that protein misfolding might induce proteasome subunits through an Nrf1-dependent mechanism, but this was not explicitly tested. In contrast, the authors report that the p53-dependent transcriptional response was selectively induced by protein misfolding stress in the nucleus, but not the cytosol. Deletion of p53 blocked this increase, indicating that this response is attributable to p53 stabilization. The increased p53 transcriptional activity corresponded with the stabilization of p53 and its target p21 in cells subjected to nuclear but not cytosolic protein misfolding stress. Using a reporter of nuclear proteasome activity, they show that nuclear proteasome activity is reduced in cells following protein misfolding stress in the nucleus, indicating that the stabilization of p53 (and other transcription factors such as NRF1) might be attributed to reduced proteasomal degradation. Additionally, the authors showed that nuclear misfolding stress also induces cell cycle arrest. However, this effect was not dependent on p53 deletion, indicating that this is mediated by other unknown mechanisms.

      Major strengths and weaknesses of the methods and results:

      The findings reported here define specific transcriptional outputs induced by targeted protein misfolding stress in the nucleus and cytosol, revealing new insights into the organelle-specific stress signaling. The approach is interesting and effective at revealing cellular responses induced by compartment-specific protein misfolding stress.

      One major weakness of the study is the lack of mechanistic follow-up for the transcriptional study. For example, what is the mechanistic basis for p53 stabilization by nuclear-destabilized domain (Nuc DD)? Is this entirely caused by diminished nuclear degradation activity as shown in Figure 6 or are there additional factors to be considered? If limited proteasome degradation capacity is the main reason for p53 upregulation, wouldn't the authors also see stabilization of other short-lived transcription factors? The fact that Nrf1 and Nrf2 are also stabilized by Nuc DD is consistent with the authors' hypothesis. On the other hand, if Nuc DD also affects other short-lived transcription factors such as c-fos or c-myc via proteasome inhibition, why did the gene expression analysis only pick up the p53 pathway as the one differentially regulated by Nuc DD? Would this imply that only p53 is specifically targeted by the nuclear proteasome, whereas other short-lived transcription factors are degraded either by the cytosolic proteasome or by both nuclear and cytosolic proteasome like Nrf1? Is there any evidence in the literature that supports this speculation? Additionally, how does Nuc DD affect the UPS system in the nucleus? Does it clog the proteasome directly or affect other assisting factors like chaperones or ubiquitinating enzymes? Lastly, it isn't clear what the functional implications of p53 stabilization would be for cells subjected to nuclear protein misfolding stress, particularly as the small effect on cell cycle arrest is not dependent on p53. In the end, the lack of mechanistic and/or functional follow-up reduces the overall importance of this manuscript. While the reviewers do not expect the authors to answer all these questions by experiments, additional work/clarifications/discussions along these lines would significantly improve the paper (see the recommendations).

      Another major weakness is the lack of statistical analysis (SA) to better support their conclusions. In fact, no SA was provided for many figures even though the authors tried to make many comparisons.

      The failure of the DD reporter to mount a significant heat shock response was puzzling. The presence of non-native proteins is the primary trigger for the heat shock response, but the authors acknowledge that inducible chaperones such as Hspa1a/b and Hsp90aa1 were not significantly changed in their system (page 8). Could this suggest a problem with the approach? What exactly is the nature of the stress mounted by Nuc DD?

      The cell cycle data presented in Figure 5 is less robust, particularly as the p53 data in panels C and D was collected only once.

      The Western blot data shown in Figure 6 does not have quantification to show how representative the blot is and how robust the changes in protein levels are over time. Western blots are known to be variable with different replicates and therefore the authors need to mention the number of biological repeats represented by the blot.

    1. Reviewer #1 (Public review):

      This manuscript discusses from a theory point of view he mechanisms underlying the formation of specialized or mixed factories. To investigate this, a chromatin polymer model was developed to mimic the chromatin binding-unbinding dynamics of various complexes of transcription factors (TFs).

      The model revealed that both specialized (i.e., demixed) and mixed clusters can emerge spontaneously, with the type of cluster formed primarily determined by cluster size. Non-specific interactions between chromatin and proteins were identified as the main factor promoting mixing, with these interactions becoming increasingly significant as clusters grow larger.

      These findings, observed in both simple polymer models and more realistic representations of human chromosomes, reconcile previously conflicting experimental results. Additionally, the introduction of different types of TFs was shown to strongly influence the emergence of transcriptional networks, offering a framework to study transcriptional changes resulting from gene editing or naturally occurring mutations.

      Overall I think this is an interesting paper discussing a valuable model of how chromosome 3D organisation is linked to transcription. I would only advise the authors to polish and shorten their text to better highlight their key findings and make it more accessible to the reader.

    2. Reviewer #2 (Public review):

      Summary:

      With this report, I suggest what are in my opinion crucial additions to the otherwise very interesting and credible research manuscript "Cluster size determines morphology of transcription factories in human cells".

      Strengths:

      The manuscript in itself is technically sound, the chosen simulation methods are completely appropriate the figures are well-prepared, the text is mostly well-written spare a few typos. The conclusions are valid and would represent a valuable conceptual contribution to the field of clustering, 3D genome organization and gene regulation related to transcription factories, which continues to be an area of most active investigation.

      Weaknesses:

      However, I find that the connection to concrete biological data is weak. This holds especially given that the data that are needed to critically assess the applicability of the derived cross-over with factory size is, in fact, available for analysis, and the suggested experiments in the Discussion section are actually done and their results can be exploited. In my judgement, unless these additional analysis are added to a level that crucial predictions on TF demixing and transcriptional bursting upon TU clustering can be tested, the paper is more fitted for a theoretical biophysics venue than for a biology journal.

      Major points

      (1) My first point concerns terminology. The Merriam-Webster dictionary describes morphology as the study of structure and form. In my understanding, none of the analyses carried out in this study actually address the form or spatial structuring of transcription factories. I see no aspects of shape, only size. Unless the authors want to assess actual shapes of clusters, I would recommend to instead talk about only their size/extent. The title is, by the same argument, in my opinion misleading as to the content of this study.

      (2) Another major conceptual point is the choice of how a single TF:pol particle in the model relates to actual macromolecules that undergo clustering in the cell. What about the fact that even single TF factories still contain numerous canonical transcription factors, many of which are also known to undergo phase separation? Mediator, CDK9, Pol II just to name a few. This alone already represents phase separation under the involvement of different species, which must undergo mixing. This is conceptually blurred with the concept of gene-specific transcription factors that are recruited into clusters/condensates due to sequence-specific or chromatin-epigenetic-specific affinities. Also, the fact that even in a canonical gene with a "small" transcription factory there are numerous clustering factors takes even the smallest factories into a regime of several tens of clustering macromolecules. It is unclear to me how this reality of clustering and factory formation in the biological cell relates to the cross-over that occurs at approximately n=10 particles in the simulations presented in this paper.

      (3) The paper falls critically short in referencing and exploiting for analysis existing literature and published data both on 3D genome organization as well as the process of cluster formation in relation to genomic elements. In terms of relevant literature, most of the relevant body of work from the following areas has not been included:

      (i) mechanisms of how the clustering of Pol II, canonical TFs, and specific TFs is aided by sequence elements and specific chromatin states

      (ii) mechanisms of TF selectivity for specific condensates and target genomic elements

      (iii) most crucially, existing highly relevant datasets that connect 3D multi-point contacts with transcription factor identity and transcriptional activity, which would allow the authors to directly test their hypotheses by analysis of existing data

      Here, especially the data under point iii are essential. The SPRITE method (cited but not further exploited by the authors), even in its initial form of publication, would have offered a data set to critically test the mixing vs. demixing hypothesis put forward by the authors. Specifically, the SPRITE method offers ordered data on k-mers of associated genomic elements. These can be mapped against the main TFs that associate with these genomic elements, thereby giving an account of the mixed / demixed state of these k-mer associations. Even a simple analysis sorting these associations by the number of associated genomic elements might reveal a demixing transition with increasing association size k. However, a newer version of the SPRITE method already exists, which combines the k-mer association of genomic elements with the whole transcriptome assessment of RNAs associated with a particular DNA k-mer association. This can even directly test the hypotheses the authors put forward regarding cluster size, transcriptional activation, correlation between different transcription units' activation etc.

      To continue, the Genome Architecture Mapping (GAM) method from Ana Pombo's group has also yielded data sets that connect the long-range contacts between gene-regulatory elements to the TF motifs involved in these motifs, and even provides ready-made analyses that assess how mixed or demixed the TF composition at different interaction hubs is. I do not see why this work and data set is not even acknowledged? I also strongly suggest to analyze, or if they are already sufficiently analyzed, discuss these data in the light of 3D interaction hub size (number of interacting elements) and TF motif composition of the involved genomic elements.

      Further, a preprint from the Alistair Boettiger and Kevin Wang labs from May 2024 also provides direct, single-cell imaging data of all super-enhancers, combined with transcription detection, assessing even directly the role of number of super-enhancers in spatial proximity as a determinant of transcriptional state. This data set and findings should be discussed, not in vague terms but in detailed terms of what parts of the authors' predictions match or do not match these data.

      For these data sets, an analysis in terms of the authors' key predictions must be carried out (unless the underlying papers already provide such final analysis results). In answering this comment, what matters to me is not that the authors follow my suggestions to the letter. Rather, I would want to see that the wealth of available biological data and knowledge that connects to their predictions is used to their full potential in terms of rejecting, confirming, refining, or putting into real biological context the model predictions made in this study.

      References for point (iii):

      RNA promotes the formation of spatial compartments in the nucleus<br /> https://www.cell.com/cell/fulltext/S0092-8674(21)01230-7?dgcid=raven_jbs_etoc_email

      Complex multi-enhancer contacts captured by genome architecture mapping<br /> https://www.nature.com/articles/nature21411

      Cell-type specialization is encoded by specific chromatin topologies<br /> https://www.nature.com/articles/s41586-021-04081-2

      Super-enhancer interactomes from single cells link clustering and transcription<br /> https://www.biorxiv.org/content/10.1101/2024.05.08.593251v1.full

      For point (i) and point (ii), the authors should go through the relevant literature on Pol II and TF clustering, how this connects to genomic features that support the cluster formation, and also the recent literature on TF specificity. On the last point, TF specificity, especially the groups of Ben Sabari and Mustafa Mir have presented astonishing results, that seem highly relevant to the Discussion of this manuscript.

      (4) Another conceptual point that is a critical omission is the clarification that there are, in fact, known large vs. small transcription factories, or transcriptional clusters, which are specific to stem cells and "stressed cells". This distinction was initially established by Ibrahim Cisse's lab (Science 2018) in mouse Embryonic Stem Cells, and also is seen in two other cases in differentiated cells in response to serum stimulus and in early embryonic development:

      Mediator and RNA polymerase II clusters associate in transcription-dependent condensates<br /> https://www.science.org/doi/10.1126/science.aar4199

      Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering<br /> https://www.science.org/doi/10.1126/sciadv.aay6515

      RNA polymerase II clusters form in line with surface condensation on regulatory chromatin<br /> https://www.embopress.org/doi/full/10.15252/msb.202110272

      If "morphology" should indeed be discussed, the last paper is a good starting point, especially in combination with this additional paper:

      Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin<br /> https://www.science.org/doi/10.1126/science.ade5308

      (5) The statement "scripts are available upon request" is insufficient by current FAIR standards and seems to be non-compliant with eLife requirements. At a minimum, all, and I mean all, scripts that are needed to produce the simulation outcomes and figures in the paper, must be deposited as a publicly accessible Supplement with the article. Better would be if they would be structured and sufficiently documented and then deposited in external repositories that are appropriate for the sharing of such program code and models.

    3. Reviewer #3 (Public review):

      Summary:<br /> In this work, the authors present a chromatin polymer model with some specific pattern of transcription units (TUs) and diffusing TFs; they simulate the model and study TFclustering, mixing, gene expression activity, and their correlations. First, the authors designed a toy polymer with colored beads of a random type, placed periodically (every 30 beads, or 90kb). These colored beads are considered a transcription unit (TU). Same-colored TUs attract with each other mediated by similarly colored diffusing beads considered as TFs. This led to clustering (condensation of beads) and correlated (or anti-correlation) "gene expression" patterns. Beyond the toy model, when authors introduce TUs in a specific pattern, it leads to emergence of specialized and mixed cluster of different TFs. Human chromatin models with realistic distribution of TUs also lead to the mixing of TFs when cluster size is large.

      Strengths:<br /> This is a valuable polymer model for chromatin with a specific pattern of TUs and diffusing TF-like beads. Simulation of the model tests many interesting ideas. The simulation study is convincing and the results provide solid evidence showing the emergence of mixed and demixed TF clusters within the assumptions of the model.

      Weaknesses:<br /> Weakness of the work: The model has many assumptions. Some of the assumptions are a bit too simplistic. Concerns about the work are detailed below:

      The authors assume that when the diffusing beads (TFs) are near a TU, the gene expression starts. However, mammalian gene expression requires activation by enhancer-promoter looping and other related events. It is not a simple diffusion-limited event. Since many of the conclusions are derived from expression activity, will the results be affected by the lack of looping details?

      Authors neglect protein-protein interactions. Without protein-protein interactions, condensate formation in natural systems is unlikely to happen.

      What is described in this paper is a generic phenomenon; many kinds of multivalent chromatin-binding proteins can form condensates/clusters as described here. For example, if we replace different color TUs with different histone modifications and different TFs with Hp1, PRC1/2, etc, the results would remain the same, wouldn't they? What is specific about transcription factor or transcription here in this model?<br /> What is the logic of considering 3kb chromatin as having a size of 30 nm? See Kadam et al. (Nature Communications 2023). Also, DNA paint experimental measurement of 5kb chromatin is greater than 100 nm (see work by Boettiger et al.).

    1. Reviewer #1 (Public review):

      Summary:

      This study has preliminarily revealed the role of ACVR2A in trophoblast cell function, including its effects on migration, invasion, proliferation, and clonal formation, as well as its downstream signaling pathways.

      Strengths:

      The use of multiple experimental techniques, such as CRISPR/Cas9-mediated gene knockout, RNA-seq, and functional assays (e.g., Transwell, colony formation, and scratch assays), is commendable and demonstrates the authors' effort to elucidate the molecular mechanisms underlying ACVR2A's regulation of trophoblast function. The RNA-seq analysis and subsequent GSEA findings offer valuable insights into the pathways affected by ACVR2A knockout, particularly the Wnt and TCF7/c-JUN signaling pathways.

      Weaknesses:

      The molecular mechanisms underlying this study require further exploration through additional experiments. While the current findings provide valuable insights into the role of ACVR2A in trophoblast cell function and its involvement in the regulation of migration, invasion, and proliferation, further validation in both in vitro and in vivo models is needed. Additionally, more experiments are required to establish the functional relevance of the TCF7/c-JUN pathway and its clinical significance, particularly in relation to pre-eclampsia. Additional techniques, such as animal models and more advanced clinical sample analyses, would help strengthen the conclusions and provide a more comprehensive understanding of the molecular pathways involved.

    2. Reviewer #2 (Public review):

      Summary:

      ACVR2A is one of a handful of genes for which significant correlations between associated SNPs and the incidences of preeclampsia have been found in multiple populations. It is one of the TGFB family receptors, and multiple ligands of ACVR2A, as well as its coreceptors and related inhibitors, have been implicated in placental development, trophoblast invasion, and embryo implantation. This useful study builds on this knowledge by showing that ACVR2A knockout in trophoblast-related cell lines reduces trophoblast invasion, which could tie together many of these observations. Support for this finding is incomplete, as reduced proliferation may be influencing the invasion results. The implication of cross-talk between the WNT and ACRV2A/SMAD2 pathways is an important contribution to the understanding of the regulation of trophoblast function.

      Strengths:

      (1) ACVR2A is one of very few genes implicated in preeclampsia in multiple human populations, yet its role in pathogenesis is not very well studied and this study begins to address that hole in our knowledge.

      (2) ACVR2A is also indirectly implicated in trophoblast invasion and trophoblast development via its connections to many ligands, inhibitors, and coreceptors, suggesting its potential importance.

      (3) The authors have used multiple cell lines to verify their most important observations.

      Weaknesses:

      (1) There are a number of claims made in the introduction without attribution. For example, there are no citations for the claims that family history is a significant risk factor for PE, that inadequate trophoblast invasion of spiral arteries is a key factor, and that immune responses, and renin-angiotensin activity are involved.

      (2) The introduction states "As a receptor for activin A, ACVR2A..." It's important to acknowledge that ACVR2A is also the receptor for other TGFB family members, with varying affinities and coreceptors. Several TGFB family members are known to regulate trophoblast differentiation and invasion. For example, BMP2 likely stimulates trophoblast invasion at least in part via ACVR2A (PMID 29846546).

      (3) An alternative hypothesis for the potential role of ACVR2A in preeclampsia is its functions in the endometrium. In the mouse ACVR2A knockout in the uterus (and other progesterone receptor-expressing cells) leads to embryo implantation failure.

      (4) In the description of the patient population for placental sample collections, preeclampsia is defined only by hypertension, and this is described as being in accordance with ACOG guidelines. ACOG requires a finding of hypertension in combination with either proteinuria or one of the following: thrombocytopenia, elevated creatinine, elevated liver enzymes, pulmonary, edema, and new onset unresponsive headache.

      (5) I believe that Figures 1a and 1b are data from a previously published RNAseq dataset, though it is not entirely clear in the text. The methods section does not include a description of the analysis of these data undertaken here. It would be helpful to include at least a brief description of the study these data are taken from - how many samples, how were the PE/control groups defined, gestational age range, where is it from, etc. For the heatmap presented in B, what is the significance of the other genes/ why are they being shown? If the purpose of these two panels is to show differential expression specifically of ACVR2A in this dataset, that could be shown more directly.

      (6) More information is needed in the methods section to understand how the immunohistochemistry was quantified. "Quantitation was performed" is all that is provided. Was staining quantified across the whole image or only in anchoring villous areas? How were HRP & hematoxylin signals distinguished in ImageJ? How was the overall level of HRP/DAB development kept constant between the NC and PE groups?

      (7) In Figure 1E it is not immediately obvious to many readers where the EVT are. It is probably worth circling or putting an arrow to the little region of ACVR2A+ EVT that is shown in the higher magnification image in Figure 1E. These are actually easier to see in the pictures provided in the supplement Figure 1. Of note, the STB is also staining positive. This is worth pointing out in the results text.

      (8) It is not possible to judge whether the IF images in 1F actually depict anchoring villi. The DAPI is really faint, and it's high magnification, so there isn't a lot of context. Would it be possible to include a lower magnification image that shows where these cells are located within a placental section? It is also somewhat surprising that this receptor is expressed in the cytoplasm rather than at the cell surface. How do the authors explain this?

      (9) The results text makes it sound like the data in Figure 2A are from NCBI & Protein atlas, but the legend says it is qPCR from this lab. The methods do not detail how these various cell lines were grown; only HTR-SVNeo cell culture is described. Similarly, JAR cells are used for several experiments and their culture is not described.

      (10) Under RT-qPCR methods, the phrase "cDNA reverse transcription cell RNA was isolated..." does not make any sense.

      (11) The paragraph beginning "Consequently, a potential association..." is quite confusing. It mentions analyzing ACVR2A expression in placentas, but then doesn't point to any results of this kind and repeats describing the results in Figure 2a, from various cell lines.

      (12) The authors should acknowledge that the effect of the ACVR2A knockout on proliferation makes it difficult to draw any conclusions from the trophoblast invasion assays. That is, there might be fewer migrating or invading cells in the knockout lines because there are fewer cells, not because the cells that are there are less invasive. Since this is a central conclusion of the study, it is a major drawback.

      (13) The legend and the methods section do not agree on how many fields were selected for counting in the transwell invasion assays in Figure 3C. The methods section and the graph do not match the number of replicate experiments in Figure 3D (the number of replicate experiments isn't described for 3C).

      (14) Discussion says "Transcriptome sequencing analysis revealed low ACVR2A expression in placental samples from PE patients, consistent with GWAS results across diverse populations." The authors should explain this briefly. Why would SNPs in ACVR2A necessarily affect levels of the transcript?

      (15) "The expression levels of ACVR2A mRNA were comparable to those of tumor cells such as A549. This discovery suggested a potential pivotal role of ACVR2A in the biological functions of trophoblast cells, especially in the nurturing layer." Alternatively, ACVR2A expression resembles that of tumors because the cell lines used here are tumor cells (JAR) or immortalized cells (HTR8). These lines are widely used to study trophoblast properties, but the discussion should at least acknowledge the possibility that the behavior of these cells does not always resemble normal trophoblasts.

      (16) The authors should discuss some of what is known about the relationship between the TCF7/c-JUN pathway and the major signaling pathway activated by ACVR2A, Smad 2/3/4. The Wnt and TGFB family cross-talk is quite complex and it has been studied in other systems.

    1. Reviewer #1 (Public review):

      Summary:

      Meissner-Bernard et al present a biologically constrained model of telencephalic area of adult zebrafish, a homologous area to the piriform cortex, and argue for the role of precisely balanced memory networks in olfactory processing.

      This is interesting as it can add to recent evidence on the presence of functional subnetworks in multiple sensory cortices. It is also important in deviating from traditional accounts of memory systems as attractor networks. Evidence for attractor networks has been found in some systems, like in the head direction circuits in the flies. However, the presence of attractor dynamics in other modalities, like sensory systems, and their role in computation has been more contentious. This work contributes to this active line of research in experimental and computational neuroscience by suggesting that, rather than being represented in attractor networks and persistent activity, olfactory memories might be coded by balanced excitation-inhibitory subnetworks.

      Strengths:

      The main strength of the work is in: (1) direct link to biological parameters and measurements, (2) good controls and quantification of the results, and (3) comparison across multiple models.

      (1) The authors have done a good job of gathering the current experimental information to inform a biological-constrained spiking model of the telencephalic area of adult zebrafish. The results are compared to previous experimental measurements to choose the right regimes of operation.<br /> (2) Multiple quantification metrics and controls are used to support the main conclusions, and to ensure that the key parameters are controlled for - e.g. when comparing across multiple models.<br /> (3) Four specific models (random, scaled I / attractor, and two variant of specific E-I networks - tuned I and tuned E+I) are compared with different metrics, helping to pinpoint which features emerge in which model.

      In the revised manuscript, the authors have also:<br /> (a) made a good effort to provide a mechanistic explanation of their results (especially on the mechanism underlying medium amplification in specific E/I network models);<br /> (b) performed a systematic analysis of the parameter space by changing different parameters of E and I neurons (specifically showing that different time constants of E and I neurons do not change the results and therefore the main effects result from connectivity);<br /> (c) added further analysis and discussion on the potential functional and computational significance of balanced specific E-I subnetworks.

      These additions substantially strengthen the study, presenting compelling evidence for how networks with specific E-I structure can underpin olfactory processing and memory representations. The findings have potential implications that extend beyond the olfactory system and may be applicable to other neural systems and species.

    2. Reviewer #2 (Public review):

      Summary:

      The authors conducted a comparative analysis of four networks, varying in the presence of excitatory assemblies and the architecture of inhibitory cell assembly connectivity. They found that co-tuned E-I assemblies provide network stability and a continuous representation of input patterns (on locally constrained manifolds), contrasting with networks with global inhibition that result in attractor networks.

      Strengths:

      The findings presented in this paper are very interesting and cutting-edge. The manuscript effectively conveys the message and presents a creative way to represent high-dimensional inputs and network responses. Particularly, the result regarding the projection of input patterns onto local manifolds and continuous representation of input/memory is very Intriguing and novel. Both computational and experimental neuroscientists would find value in reading the paper.

      Weaknesses:

      Intuitively, classification (decodability) in discrete attractor networks is much better than in networks with continuous representations. This could also be shown in Figure 5B, along with the performance of the random and tuned E-I networks. The latter networks have the advantage of providing network stability compared to the Scaled I network, but at the cost of reduced network salience and, therefore, reduced input decodability. Thus, tuned E-I networks cannot always perform better than any other network.

    3. Reviewer #3 (Public review):

      Summary:

      This work investigates computational consequences of assemblies containing both excitatory and inhibitory neurons (E/I assembly) in a model with parameters constrained by experimental data from the telencephalic area Dp of zebrafish. The authors show how this precise E/I balance shapes the geometry of neuronal dynamics in comparison to unstructured networks and networks with more global inhibitory balance. Specifically, E/I assemblies lead to the activity being locally restricted onto manifolds - a dynamical structure in-between high-dimensional representations in unstructured networks and discrete attractors in networks with global inhibitory balance. Furthermore, E/I assemblies lead to smoother representations of mixtures of stimuli while those stimuli can still be reliably classified, and allows for more robust learning of additional stimuli.

      Strengths:

      Since experimental studies do suggest that E/I balance is very precise and E/I assemblies exist, it is important to study the consequences of those connectivity structures on network dynamics. The authors convincingly show that E/I assemblies lead to different geometries of stimulus representation compared to unstructured networks and networks with global inhibition. This finding might open the door for future studies for exploring the functional advantage of these locally defined manifolds, and how other network properties allow to shape those manifolds.

      The authors also make sure that their spiking model is well-constrained by experimental data from the zebrafish pDp. Both, spontaneous and odor stimulus triggered spiking activity is within the range of experimental measurements. But the model is also general enough to be potentially applied to findings in other animal models and brain regions.

      Weaknesses:

      All my previous points have been addressed.

    1. Reviewer #1 (Public review):

      Summary:

      It is evident that studying leukocyte extravasation in vitro is a challenge. One needs to include physiological flow, culture cells and isolate primary immune cells. Timing is of utmost importance and a reproducible setup is essential. Extra challenges are met when extravasation kinetics in different vascular beds is required, e.g., across the blood-brain barrier. In this study, the authors describe a reliable and reproducible method to analyze leukocyte TEM under physiological flow conditions, including this analysis. That the software can also detect reverse TEM is a plus.

      Strengths:

      It is quite a challenge to get this assay reproducible and stable, in particular as there is flow included. Also for the analysis, there is currently no clear software analysis program, and many labs have their own methods. This paper gives the opportunity to unify the data and results obtained with this assay under label-free conditions. This should eventually lead to more solid and reproducible results.

      Also, the comparison between manual and software analysis is appreciated.

    2. Reviewer #2 (Public review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      The algorithm is almost as accurate as manual tracking and importantly saves time for researchers. The authors have discussed how their tool compares to other tracking methods.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. However, the authors have addressed this point in their manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shibata describes a method to assess rapidly fluctuating CpG sites (fCpGs) from single-cell methylation sequencing (sc-MeSeq) data. Assuming that fCpGs are largely consistent over time with changes induced by inheritable events during replication, the author infers lineage relationships in available brain-derived sc-MeSeq. Supplementing current lineage tracing through genomic and mitochondrial mosaic variants is an interesting concept that could supplement current work or allow additional lineage analysis in existing data.

      However, the author failed to convincingly show the power of fCpG analysis to determine lineages in the human brain. While the correlation with cellular division and distinction of cell types appears plausible and strong, the application to detect specific lineages is less convincing. Aspects of this might be due to a lack of clarity in presentation and erroneous use of developmental concepts. However, without addressing these problems it is challenging for a reader to come to the same conclusions as the author.

      On the flip side, this novel application of fCpGs will allow the re-use of existing sc-MeSeq to infer additional features that were previously unavailable, once the biological relevance has been further elucidated.

      Strengths:

      • Novel re-analysis application of methylation data to infer the status of fCpGs and the use as a lineage marker<br /> • Application of this method to an innovative existing data set to benchmark this framework against existing developmental knowledge

      Weaknesses:

      • Inconsistent or erroneous use of neurodevelopmental concepts which hinders appropriate interpretation of the results.<br /> • Somewhat confusing presentation at times which makes it hard to judge the value of this novel approach.

    2. Reviewer #3 (Public review):

      Summary:

      Cell lineage tracing necessitates continuous visible tracking or permanent molecular markers that daughter cells inherit from their progenitors. To successfully trace cell lineages, it is essential to generate and detect sufficient new markers during each cell division. Thus, molecular cell lineages have been predominantly studied with stably inherited genetic markers in animal models and somatic DNA mutations in the human brain. DNA methylation is unstable across cell divisions and differentiation, and is hardly called barcodes. The use of "Human Brain Barcodes" in the title and across the whole paper lacks convincing evidence - it is questionable that CpG methylation is always stably inherited by daughter cells.

      Strengths:

      Analysis of DNA methylation.

      Weaknesses:

      The unstable nature of CpG methylation would introduce significant problems in inferring the true cell lineage. To establish DNA methylation as a means for lineage tracing, it is necessary to test whether the DNA methylation patterns can faithfully track cell lineages with in vitro differentiated & visibly tracked cell lineages.

      The unreliable CpG methylation status also raises the question of what the "Barcodes" refer to in the title and across this study. Barcodes should be stable in principle and not dynamic across cell generations, as defined in the Reference #1. The CRISPR/Cas9 mutable barcodes or the somatic mutations may be considered barcodes, but the reviewer is not convinced that the "dynamic" CpG methylation fits the "barcodes" terminology. This problem is even more concerning in the last section of the results, where CpG status fluctuates in post-mitotic cells.

      The manuscript frequently states assumptions in a tone of conclusions and interprets results without rejecting alternative hypotheses. For example, the title "Human Brain Barcodes" should be backed with solid supporting evidence. For another example, the author assumed that the early-formed brain stem would resemble progenitors better and have a higher average methylation level than the forebrain - however, this difference in DNA methylation status could well reflect cell-type-specific gene expression instead of cell lineage progression.

      Other points:

      (1) The conclusion that excitatory neurons undergo tangential migration is unclear - how far away did the author mean for the tangential direction? Lateral dispersion is known, but it is hard to believe that the excitatory neurons travel across different brain regions. More importantly, how would the author interpret shared or divergent methylation for the same cell type across different brain regions?

      (2) The sparsity and resolution of the single-cell DNA methylation data. The methylation status is detected in only a small fraction (~500/31,000 = 1.6%) of fCpGs per cell, with only 48 common sites identified between cell pairs. Given that the human genome contains over 28 million CpG sites, it is important to evaluate whether these fCpGs are truly representative.

      (3) While focusing on the X-chromosome may simplify the identification of polymorphic fCpGs, the confidence in determining its methylation status (0 or 1) is questionable when a CpG site is covered by only one read.

    1. Reviewer #1 (Public review):

      Summary:

      The authors intended to investigate the earliest mechanisms enabling self-prioritization, especially in the attention. Combining a temporal order judgement task with computational modelling based on the Theory of Visual Attention (TVA), the authors suggested that the shapes associated with the self can fundamentally alter the attentional selection of sensory information into awareness. This self-prioritization in attentional selection occurs automatically at early perceptual stages. Furthermore, the processing benefits obtained from attentional selection via self-relatedness and physical salience were separated from each other.

      Strengths:

      The manuscript is written in a way that is easy to follow. The methods of the paper are very clear and appropriate.

      Comments on revisions:

      The authors clearly showed the relationship between attention and self-prioritization.

    2. Reviewer #2 (Public review):

      Summary:

      The main aim of this research was to explore whether and how self-associations (as opposed to other-associations) bias early attentional selection, and whether this can explain well-known self-prioritization phenomena, such as the self-advantage in perceptual matching tasks. The authors adopted the Visual Attention Theory (VAT) by estimating VAT parameters using a hierarchical Bayesian model from the field of attention and applied it to investigate the mechanisms underlying self-prioritization. They also discussed the constraints on the self-prioritization effect in attentional selection. The key conclusions reported were: (1) self-association enhances both attentional weights and processing capacity, (2) self-prioritization in attentional selection occurs automatically but diminishes when active social decoding is required, and (3) social and perceptual salience capture attention through distinct mechanisms.

      Strengths:

      Transferring the Theory of Visual Attention parameters estimated by a hierarchical Bayesian model to investigate self-prioritization in attentional selection was a smart approach. This method provides a valuable tool for accessing the very early stages of self-processing, i.e., the attention selection. The authors conclude that self-associations can bias visual attention by enhancing both attentional weights and processing capacity, and that this process occurs automatically. These findings offer new insights into the self-prioritization from the perspective of early stage of attentional selection.

      Weaknesses:

      The results are still not convincing enough to definitively support their conclusions. The generalization of the findings needs further examination. Whether this attentional selection mechanism of self-prioritization can be generalized to other stimuli, such as self-name, self-face, or other domains of self-association advantages, remains to be tested. More empirical data are needed.

    1. Reviewer #1 (Public review):

      Summary:

      Aicardi-Goutières Syndrome (AGS) is a genetic disorder that primarily affects the brain and immune system through excessive interferon production. The authors sought to investigate the role of microglia in AGS by first developing bone-marrow-derived progenitors in vitro that carry the estrogen-regulated (ER) Hoxb8 cassette, allowing them to expand indefinitely in the presence of estrogen and differentiate into macrophages when estrogen is removed. When injected into the brains of Csf1r-/- mice, which lack microglia, these cells engraft and resemble wild-type (WT) microglia in transcriptional and morphological characteristics, although they lack Sall1 expression. The authors then generated CRISPR-Cas9 Adar1 knockout (KO) ER-Hoxb8 macrophages, which exhibited increased production of inflammatory cytokines and upregulation of interferon-related genes. This phenotype could be rescued using a Jak-Stat inhibitor or by concurrently mutating Ifih1 (Mda5). However, these Adar1-KO macrophages fail to successfully engraft in the brain of both Csf1r-/- and Cx3cr1-creERT2:Csf1rfl/fl mice. To overcome this, the authors used a mouse model with a patient-specific Adar1 mutation (Adar1 D1113H) to derive ER-Hoxb8 bone marrow progenitors and macrophages. They discovered that Adar1 D1113H ER-Hoxb8 macrophages successfully engraft the brain, although at lower levels than WT-derived ER-Hoxb8 macrophages, leading to increased production of Isg15 by neighboring cells. These findings shed new light on the role of microglia in AGS pathology.

      Strengths:

      The authors convincingly demonstrate that ER-Hoxb8 differentiated macrophages are transcriptionally and morphologically similar to bone marrow-derived macrophages. They also show evidence that when engrafted in vivo, ER-Hoxb8 microglia are transcriptomically similar to WT microglia. Furthermore, ER-Hoxb8 macrophages engraft the Csf1r-/- brain with high efficiency and rapidly (2 weeks), showing a homogenous distribution. The authors also effectively use CRISPR-Cas9 to knock out TLR4 in these cells with little to no effect on their engraftment in vivo, confirming their potential as a model for genetic manipulation and in vivo microglia replacement.

      Weaknesses:

      The robust data showing the quality of this model at the transcriptomic level can be strengthened with confirmation at protein and functional levels. The authors were unable to investigate the effects of Adar1-KO using ER-Hoxb8 cells and instead had to rely on a mouse model with a patient-specific Adar1 mutation (Adar1 D1113H). Additionally, ER-Hoxb8-derived microglia do not express Sall1, a key marker of microglia, which limits their fidelity as a full microglial replacement, as has been rightfully pointed out in the discussion.

      Overall, this paper demonstrates an innovative approach to manipulating microglia using ER-Hoxb8 cells as surrogates. The authors present convincing evidence of the model's efficacy and potential for broader application in microglial research, given its ease of production and rapid brain engraftment potential in microglia-deficient mice. While Adar1-KO macrophages do not engraft well, the success of TLR4-KO line highlights the model's potential for investigating other genes. Using mouse-derived cells for transplantation reduces complications that can come with the use of human cell lines, highlighting the utility of this system for research in mouse models.

    2. Reviewer #2 (Public review):

      Summary:

      Microglia have been implicated in brain development, homeostasis, and diseases. "Microglia replacement" has gained traction in recent years, using primary microglia, bone marrow or blood-derived myeloid cells, or human iPSC-induced microglia. Here, the authors extended their previous work in the area and provided evidence to support: (1) Estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages from bone marrow can serve as stable, genetically manipulated cell lines. These cells are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells (MLCs). Taking advantage of this model system, the authors created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to the Aicardi-Goutières Syndrome (AGS) disease mechanism.

      Strengths:

      The studies are carefully designed and well-conducted. The imaging data and gene expression analysis are carried out at a high level of technical competence and the studies provide strong evidence that ER-Hoxb8 immortalized macrophages from bone marrow are a reasonable source for "microglia replacement" exercise. The findings are clearly presented, and the main message will be of general interest to the neuroscience and microglia communities.

    1. Joint Public Review:

      Summary:

      Microfossils from the Paleoarchean Eon represent the oldest evidence of life, but their nature has been strongly debated among scientists. To resolve this, the authors reconstructed the lifecycles of Archaean organisms by transforming a Gram-positive bacterium into a primitive lipid vesicle-like state and simulating early Earth conditions. They successfully replicated all morphologies and life cycles of Archaean microfossils and studied cell degradation processes over several years, finding that encrustation with minerals like salt preserved these cells as fossilized organic carbon. Their findings suggest that microfossils from 3.8 to 2.5 billion years ago were likely liposome-like protocells with energy conservation pathways but without regulated morphology.

      Strengths:

      The authors have crafted a compelling narrative about the morphological similarities between microfossils from various sites and proliferating wall-deficient bacterial cells, providing detailed comparisons that have never been demonstrated in this detail before. The extensive number of supporting figures is impressive, highlighting numerous similarities. While conclusively proving that these microfossils are proliferating protocells morphologically akin to those studied here is challenging, we applaud this effort as the first detailed comparison between microfossils and morphologically primitive cells.

      Summary of reviewer comments on this revision:

      Each of the original reviewers evaluated the revised manuscript and were complimentary about how the authors addressed their original concerns. One reviewer added: "It is a thought-provoking manuscript that will be well received." We encourage readers of this version of the paper to consider the original reviewer comments and the authors' responses: https://elifesciences.org/reviewed-preprints/98637/reviews

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, the authors provide compelling evidence that stimulus-frequency otoacoustic emission (SFOAE) phase-gradient delays predict the sharpness (quality factors) of auditory-nerve-fiber (ANF) frequency tuning curves in budgerigars. In contrast with mammals, neither SFOAE- nor ANF-based measures of cochlear tuning match the frequency dependence of behavioral tuning in this species of parakeet. Although the reason for the discrepant behavioral results (taken from previous studies) remains unexplained, the present data provide significant and important support for the utility of otoacoustic estimates of cochlear tuning, a methodology previously explored only in mammals.

      Strengths:

      * The OAE and ANF data appear solid and believable. (The behavioral data are taken from previous studies.)

      * No other study in birds (and only a single previous study in mammals) has combined behavioral, auditory-nerve, and otoacoustic estimates of cochlear tuning in a single species.

      * SFOAE-based estimates of cochlear tuning now avoid possible circularity and were are obtained by assuming that the tuning ratio estimated in chicken applies also to the budgerigar.

      Weaknesses:

      * In mammals, accurate prediction of neural Q_ERB from otoacoustic N_SFOAE involves the application of species-invariance of the tuning ratio combined with an attempt to compensate for possible species differences in the location of the so-called apical-basal transition (for a review, see Shera & Charaziak, Cochlear frequency tuning and otoacoustic emissions. Cold Spring Harb Perspect Med 2019; 9:pii a033498. doi: 10.1101/cshperspect.a033498; in particular, the text near Eq. 2 and the value of CFa|b).

      Despite this history, the manuscript makes no mention of the apical-basal transition, its possible role in birds, or why it was ignored in the present analysis. As but one result, the comparative discussion of the tuning ratio (paragraph beginning on lines 383) is incomplete and potentially misleading. Although the paragraph highlights differences in the tuning ratio across groups, perhaps these differences simply reflect differences in the value of CFa|b. For example, if the cochlea of the budgerigar is assumed to be entirely "apical" in character (so that CFa|b is around 7-8 kHz), then the budgerigar tuning ratios appear to align remarkably well with those previously obtained in mammals (see Shera et al 2010, Fig 9).

      * For the most part, the authors take previous behavioral results in budgerigar at face value, attributing the discrepant behavioral results to hypothesized "central specializations for the processing of masked signals". But before going down this easy road, the manuscript would be stronger if the authors discussed potential issues that might affect the reliability of the previous behavioral literature. For example, the ANF data show that thresholds rise rapidly above about 5 kHz. Might the apparent broadening of the behavioral filters arise as<br /> a consequence of off-frequency listening due to the need to increase signal levels at these frequencies? Or perhaps there are other issues. Inquiring readers would appreciate an informed discussion.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript describes two new sets of data involving budgerigar hearing: 1) auditory-nerve tuning curves (ANTCs), which are considered the 'gold standard' measure of cochlear tuning, and 2) stimulus-frequency otoacoustic emissions (SFOAEs), which are a more indirect measure (requiring some assumptions and transformations to infer cochlear tuning) but which are non-invasive, making them easier to obtain and suitable for use in all species, including humans. By using a tuning ratio (relating ANTC bandwidths and SFOAE delay) derived from another bird species (chicken), the authors show that the tuning estimates from the two methods are in reasonable agreement with each other over the range of hearing tested (280 Hz to 5.65 kHz for the ANTCs), and both show a slow monotonic increase in cochlear tuning quality over that range, as expected. These new results are then compared with (much) older existing behavioral estimates of frequency selectivity in the same species.

      Strengths:

      This topic is of interest, because there are some indications from the older behavioral literature that budgerigars have a region of best tuning, which the current authors refer to as an 'acoustic fovea', at around 4 kHz, but that beyond 5 kHz the tuning degrades. Earlier work has speculated that the source could be cochlear or higher (e.g., Okanoya and Dooling, 1987). The current study appears to rule out a cochlear source to this phenomenon.

      Weaknesses:

      The conclusions are rendered questionable by two major problems.

      The first problem is that the study does not provide new behavioral data, but instead relies on decades-old estimates that used techniques dating back to the 1970s, which have been found to be flawed in various ways. The behavioral techniques that have been developed more recently in the human psychophysical literature have avoided these well-documented confounds, such as nonlinear suppression effects (e.g., Houtgast, https://doi.org/10.1121/1.1913048; Shannon, https://doi.org/10.1121/1.381007; Moore, https://doi.org/10.1121/1.381752), perceptual confusion between pure-tone maskers and targets (e.g., Neff, https://doi.org/10.1121/1.393678), beats and distortion products produced by interactions between simultaneous maskers and targets (e.g., Patterson, https://doi.org/10.1121/1.380914), unjustified assumptions and empirical difficulties associated with critical band and critical ratio measures (Patterson, https://doi.org/10.1121/1.380914), and 'off-frequency listening' phenomena (O'Loughlin and Moore, https://doi.org/10.1121/1.385691). More recent studies, tailored to mimic to the extent possible the techniques used in ANTCs, have provided reasonably accurate estimates of cochlear tuning, as measured with ANTCs and SFOAEs (Shera et al., 2003, 2010; Sumner et al., 2010). No such measures yet exist in budgerigars, and this study does not provide any. So the study fails to provide valid behavioral data to support the claims made.

      The second, and more critical, problem can be observed by considering the frequencies at which the old behavioral data indicate a worsening of tuning. From the summary shown in the present Fig. 2, the conclusion that behavioral frequency selectivity worsens again at higher frequencies is based on four data points, all with probe frequencies between 5 and 6 kHz. Comparing this frequency range with the absolute thresholds shown in Fig. 3 (as well as from older budgerigar data) shows it to be on the steep upper edge of the hearing range. Thus, we are dealing not so much with a fovea as the point where hearing starts to end. The point that anomalous tuning measures are found at the edge of hearing in the budgerigar has been made before: Saunders et al. (1978) state in the last sentence of their paper that "the size of the CB rapidly increases above 4.0 kHz and this may be related to the fact that the behavioral audibility curve, above 4.0 kHz, loses sensitivity at the rate of 55 dB per octave."

      Hearing abilities are hard to measure accurately on the upper frequency edge of the hearing range, in humans as well as in other species. The few attempts to measure human frequency selectivity at that upper edge have resulted in quite messy data and unclear conclusions (e.g., Buus et al., 1986, https://doi.org/10.1007/978-1-4613-2247-4_37). Indeed, the only study to my knowledge to have systematically tested human frequency selectivity in the extended high frequency range (> 12 kHz) seems to suggest a substantial broadening, relative to the earlier estimates at lower frequencies, by as much as a factor of 2 in some individuals (Yasin and Plack, 2005; https://doi.org/10.1121/1.2035594) - in other words by a similar amount as suggested by the budgerigar data. The possible divergence of different measures at the extreme end of hearing could be due to any number of factors that are hard to control and calibrate, given the steep rate of threshold change, leading to uncontrolled off-frequency listening potential, the higher sound levels needed to exceed threshold, as well as contributions from middle-ear filtering. As a side note, in the original ANTC data presented in this study, there are actually very few tuning curves at or above 5 kHz, which are the ones critical to the argument being forwarded here. To my eye, all the estimates above 5 kHz in Fig. 3 fall below the trend line, potentially also in line with poorer selectivity going along with poorer sensitivity as hearing disappears beyond 6 kHz.

      The basic question posed in the current study title and abstract seems a little convoluted (why would you expect a behavioral measure to reflect cochlear mechanics more accurately than a cochlear-based emissions measure?). A more intuitive (and likely more interesting) way of framing the question would be "What is the neural/mechanical source of a behaviorally observed acoustic fovea?" Unfortunately, this question does not lend itself to being answered in the budgerigar, as that 'fovea' turns out to be just the turning point at the end of the hearing range. There is probably a reason why no other study has referred to this as an acoustic fovea in the budgerigar.

      Overall, a safe interpretation of the data is that hearing starts to change (and becomes harder to measure) at the very upper frequency edge, and not just in budgerigars. Thus, it is difficult to draw any clear conclusions from the current work, other than that the relations between ANTC and SFOAEs estimates of tuning are consistent in budgerigar, as they are in most (all?) other species that have been tested so far.

    1. Reviewer #1 (Public review):

      Tu, Wen, et al. investigated the activity of mPFC putative glutamatergic neurons during a probabilistic threat discrimination and avoidance learning task using miniaturized GRIN lens implantation and single-photon calcium imaging in freely moving mice. In conjunction with this cellular recording, they employed channelrhodopsin-mediated optogenetic excitation of terminals from basal forebrain cholinergic projection neurons coupled to the delivery of an air puff on either of two maze paths with differential threat probability. The authors found that the optogenetic manipulation altered mPFC encoding of outcomes and disrupted animals' behavioral adaptation. Over the course of multiple learning sessions, optogenetically stimulated mice lagged behind control animals in resolving the differential threat probabilities on the two paths and making adaptive choices. In particular, the animals with optogenetic stimulation of cholinergic terminals were significantly more likely to switch to the path with higher threat probability after having just gotten a rare air puff on the generally "safer" path. Combined with data from a deterministic version of the task showing that optogenetically stimulated mice could behaviorally discriminate between the paths appropriately under such circumstances, these results suggest an impairment in the experimental animals' ability to make use of threat history over multiple trials. This comparison of probabilistic and deterministic versions of the same task is a highlight of this paper, representing a thoughtfulness about what information can be gleaned from such variations in the design of behavioral experiments that is all too often lacking. These data are timely in contributing to an ongoing discussion in the field about the role of phasic cholinergic signaling to the cortex, about which relatively little is known.

      While the ensemble recording of mPFC neurons during the task appears to be reliable and well-designed and the behavioral effects of the optogenetic stimulation are convincing, some major weaknesses of the paper limit its usefulness to others in the field:

      (1) Optogenetic excitation of presynaptic terminals can lead to antidromic action potentials that alter the firing properties of the target cell (see the excellent review on challenges of and strategies for presynaptic optogenetic experiments Rost et al., Nat Neurosci 2022). To their credit, the authors explicitly acknowledge this fact, but they believe that the only alternative possibility is that their intervention could lead to increased acetylcholine release at collateral projections in other prefrontal subregions. In fact, we do not know that the mechanism mediating the behavioral changes observed involves acetylcholine at all, as many ChAT+ basal forebrain neurons co-transmit using GABA (Saunders et al., Nature, 2015; Saunders et al., eLife, 2015; Granger et al., Neuropharmacology, 2016). A very useful internal control, which is recommended by Rost et al. for such presynaptic excitation experiments, would be to locally infuse nicotinic or muscarinic cholinergic antagonists into the mPFC in an attempt to reverse the optogenetically induced deficit; this would resolve whether the effect is indeed mediated by cholinergic neurotransmission and if it is specific to the mPFC.

      (2) In a similar vein, the fact that LED illumination in the no-opsin control group appears to increase activity in prefrontal neurons (Figure 2C) and, moreover, has a functional effect in disrupting location-selective cellular activity to a similar extent as in the ChrimsonR group (Figure S3) is inadequately explained and cause for concern. Although the authors argue that the degree or "robustness" of puff-evoked activity was significantly greater in the ChrimsonR group as compared to fluorophore-only controls, their statistical test for demonstrating this is the Kolmogorov-Smirnov test (Figure 2D), thus showing that the two samples likely are drawn from different distributions but little else.

      (3) Throughout the paper, the authors rely heavily on the Kolmogorov-Smirnov and binomial tests (Figures 2D, 3, 4D, S3, S4) to compare distributions in this manner, but it is unclear to me why these would be the most appropriate statistical tests for what they seek to demonstrate. Given the holistic nature of these tests in comparing the shape and spread of distributions, I am concerned that they might be inflating the significance of the differences between groups. Even if the authors were seeking a nonparametric statistical test, which most likely would be quite appropriate, there are nonparametric versions of ANOVA that they could use (e.g. Kruskal-Wallis, Friedman). Indeed, in much of this data set a repeated measures statistical analysis would seem to be called for, whereas the Kolmogorov-Smirnov test assumes that the two samples must be independent of each other. The most notable example of this premise being violated is in Figure 3, where data from the same cell populations in the same animals are being compared between experimental days and across various trial types.

    2. Reviewer #2 (Public review):

      Summary:

      The authors tested:

      (1) Whether mice learn that they are more/less likely to receive an aversive air puff outcome at different corners of a square-shaped open field apparatus, under 75%/25% probabilistic contingencies;

      (2) Whether stimulating basal forebrain cholinergic neurons and terminals in the prefrontal cortex affects learning in this context; and

      (3) Whether stimulating cholinergic neurons affects prefrontal cortical single neuron calcium signaling about outcome expectations during learning and contingency changes. They found that mice that received cholinergic stimulation approached high and low aversive outcome probability sites at similar velocities, while control mice approached high probability sites slower, suggesting that cholinergic stimulation impaired learning. Cholinergic stimulation reduced cortical neuron calcium activity during trials on the high-probability corner when the outcome was not delivered. The authors provide additional characterization of cellular responses during delivery/omission trials in high/low probability corners, using running speed as a proxy for low versus high expectations. The study will likely be of interest to those who are interested in prediction and error signaling in the cortex; however, the task and analyses do not permit very easy or clear dissociation of prediction versus prediction error signaling and place field versus place field-expectation multiplexing. The study has several strengths but some weaknesses, which are discussed below.

      Strengths:

      It is clear the authors were very careful and did a great job with their image processing and segmentation procedures. The details in the methods are appreciated, as are the supplemental descriptive statistics on cell counts.

      There are careful experimental controls - for example, the authors showed that the effects of cholinergic stimulation with air puff present are greater than without it, thus ruling out effects of stimulation on cellular physiology that were independent of learning or the task.

      The addition of a channelrhodopsin stimulation group is helpful to show that the effects are robust and not wavelength/opsin-specific.

      The prefrontal cortex cholinergic terminal stimulation experiment is a great addition. It shows that the behavioral effects of cell body stimulation, which was used in the imaging experiments, are similar to cortical terminal stimulation, where the imaging was performed.

      Weaknesses:

      The analyses were a bit difficult to follow and therefore it is difficult to determine whether the cells are signaling predictions versus prediction errors - a very important distinction.

      The task does not fully dissociate place field coding, since learning about the different probabilities necessarily took place at different areas in the apparatus. Some additional analyses could help address this.

    3. Reviewer #3 (Public review):

      Summary:

      Using a combination of optogenetic tools and single-photon calcium imaging, the authors collected a set of high-quality data and conducted thorough analyses to demonstrate the importance of cholinergic input to the prelimbic cortex in probabilistic spatial learning, particularly pertaining to threat.

      Strengths:

      Given the importance of the findings, this paper will appeal to a broad audience in the systems, behavioural, and cognitive neuroscience community.

      Weaknesses:

      I have only a few concerns that I consider need to be addressed.

      (1) Can the authors describe the basic effect of cholinergic stimulation on PL neurons' activity, during pretraining, probabilistic, and random stages? From the plot, it seems that some neurons had an increase and others had a decrease in activity. What are the percentages for significant changes in activities, given the intensity of stimulation? Were these changes correlated with the neurons' selectivity for the location? If they happen to have the data, a dose-response plot would be very helpful too.

      (2) Figure 2B: The current sorting does not show the effects of puff and LED well. Perhaps it's best to sort based on the 'puff with no stim' condition in the middle, by the total activity in 2s following the puff, and then by the timing in the rise/drop of activity (from early to late). This way perhaps the optogenetic stimulation would appear more striking. Figure 3Aa and Ba have the same issue: by the current sorting, the effects are not very visible at all. Perhaps they want to consider not showing the cells that did not show the effect of puff and/or LED.

      Also, I would recommend that the authors use ABCD to refer to figure panels, instead of Aa, Ab, etc. This is very hard to follow.

      (3) The authors mentioned the laminar distribution of ACh receptors in discussion. Can they show the presence/absence of topographic distribution of neurons responding to puff and/or LED?

      (4) Figure 2C seems to show only neurons with increased activity to an air puff. It's also important to know how neurons with an inhibitory response to air-puff behaved, especially given that in tdTomato animals, the proportion of these neurons was the same as excitatory responders.

      (5) Page 5, lines 107 and 110: Following 2-way ANOVA, the authors used a 'follow-up 1-way rmANOVA' and 'follow-up t-test' instead of post hoc tests (e.g. Tukey's). This doesn't seem right. Please use post hoc tests instead to avoid the problem of multiple comparisons.

      (6) Figure 1H: in the running speed analysis, were all trials included, both LED+ and LED-? This doesn't affect the previous panels in Figure 1 but it could affect 1H. Did stimulation affect how the running speed recovers?

      On a related note, does a surprising puff/omission affect the running speed on the subsequent trial?

      (7) On Page 7, line 143, it says "In the absence of LED stimulation, the magnitude of their puff-evoked activity was reduced in ChrimsonR-expressing mice...", but then on line 147 it says "This group difference was not detected without the LED stimulation". I don't follow what is meant by the latter statement, it seems to be conflicting with line 143. The red curves in the left vs right panels do not seem different. The effect of air puff seems to differ, but is this due to a higher gray curve ('no puff' condition) in the ChrimsonR group?

      (8) Did the neural activity correlate with running speed? Since the main finding was the absence of difference in running speed modulation by probability in ChrimsonR mice, one would expect to see PL cells showing parallel differences.

    1. Reviewer #1 (Public review):

      This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.

      In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated. However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated. The results presented in this manuscript support this interpretation. Strong stimulation, such as axotomy of all synaptic branches, caused robust DLK activation, as indicated by puc-lacZ expression. In contrast, weak stimulation, such as axotomy of some synaptic branches, resulted in weaker DLK activation, which did not induce the puc-lacZ reporter. This suggests that the strength of DLK activation depends on the severity of the injury rather than the presence of intact synapses. Given that this is a central conclusion of the study, it may be worthwhile to confirm this further. Alternatively, the authors may consider refining their conclusion to better align with the evidence presented.

      As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.

    2. Reviewer #2 (Public review):

      Summary:

      The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.

      Strengths:

      (1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.

      (2) Suggests a new mode of Wnd regulation, independent of Hiw.

      Weaknesses:

      (1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study

      (2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNK-cJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.

      Overall, this is a thorough and well-performed investigation of the mechanism of spared-branch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.

      Strengths:

      The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably originates from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).

      Weaknesses:

      The weakest data presented by this manuscript is the study of the actual amounts of Wallenda protein in the axon. The authors argue that increased Wnd protein is being anterogradely delivered from the soma, but no support for this is given. Whether this change is due to transcription/translation, protein stability, transport, or other means is not investigated in this work. However, because this point is not central to the arguments in the paper, it is only a minor critique.

      As far as the scope of impact: because the conclusions of the paper are focused on a single (albeit well-validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling in all contexts (for example, sensory axons or interneurons). Is the nerve-muscle connection the rule or the exception in terms of regeneration program activation?

      Because changes in puc-lacZ intensity are the major readout, it would be helpful to better explain the significance of the amount of puc-lacZ in the nucleus with respect to the activation of regeneration. Is it known that scaling up the amount of puc-lacZ transcription scales functional responses (regeneration or others)? The alternative would be that only a small amount of puc-lacZ is sufficient to efficiently induce relevant pathways (threshold response).

    1. Reviewer #1 (Public review):

      This study identifies two behavioral processes that underlie learned pathogen avoidance behavior in C. elegans: exiting and re-entry of pathogenic bacterial lawns. Long-term behavioral tracking indicates that animals increase the prevalence of both behaviors over long-term exposure to the pathogen Pseudomonas aeruginosa. Using an optogenetic silencing screen, the authors identify groups of neurons, whose activity regulates lawn occupancy. Surprisingly, they find that optogenetic inhibition of neurons during only the first two hours of pathogen exposure can establish subsequent long-term changes in pathogen aversion. By leveraging a compressed sensing approach, the authors define a set of neurons involved in either lawn exit or lawn re-entry behavior using a constrained set of transgenic lines that drive Arch-3 expression in overlapping groups of neurons. They then measure the calcium activity of the candidate neurons involved in lawn re-entry in freely moving animals using GCaMP, and observe a reduction in their neural activity after exposure to pathogen. Optogenetic inhibition of AIY and SIA neurons during acute pathogen exposure in naïve animals delays lawn entry whereas activating these neurons in animals previously exposed to pathogen enhances lawn entry, albeit transiently.

      This work is missing experiments and analyses that are necessary to substantiate their claims. Although the authors convincingly show that neuronal inhibition experiments during pathogen exposure reveal separable groups of neurons controlling pathogenic lawn exiting and re-entry, their methods to validate these results at single neuron cell-type resolution lack rigor.

      In Figure 4, the authors claim that the reduction in calcium activity in cells of interest following pathogen exposure encodes pathogen experience. However, they make no effort to correlate the observed decreased activity with concomitant shifts in increased immobility (decreased forward locomotion) or the increased age of the worms since pathogen exposure began (24 hours have elapsed), either of which could easily explain these results. A better comparison would be between age-matched naive animals and animals exposed to pathogen. More to the point, we are interested in the involvement of these neurons' activity patterns with the behavioral motifs associated with lawn exits and re-entries, so examining these activity patterns in the absence of any pathogen before or after long-term pathogen exposure yields little insight into their relevant signaling roles. To substantiate the authors' claims, a better experiment would measure these neurons' calcium activity during lawn exits and re-entries in naive and post-exposed age-matched worms.

      In Figure 5, the authors attempt to show that manipulating AIY and SIA/SIB neuronal activity controls pathogenic lawn re-entry behavior. Although they show that inhibiting these neurons in naive animals increases latency to enter pathogenic lawns, they never test the effect of neuronal inhibition in post-exposed animals. Instead they activate these neurons using channelrhodopsin, whereby they observe an increase in lawn entry and exit behavior, indicative of high forward locomotion speed. Although suggestive, neither of these experiments prove these neurons' involvement in pathogenic lawn re-entry behavior following pathogen exposure. To rigorously test the hypothesis that AIY and SIA/SIB neurons are required to sustain higher latency to lawn re-entry following pathogen exposure, the authors should perform neuronal inhibition experiments in post-pathogen-exposed animals as well and compare the results. The interpretation of this figure is further complicated by the fact that Npr-4::ChR2 animals express ChR2 in AIY in addition to SIA/SIB neurons: experiments that calculated lawn re-entry rates in Npr-4::ChR2 activation in post-exposed animals may include the known effect of stimulating AIY alone (Fig. 5J) since no discernible attempt at structured illumination to limit excitation to SIA/SIB neurons was made in these animals (Fig. 5 K, L).

      This work raises the interesting possibility that different sets of neurons control lawn exit and lawn re-entry behaviors following pathogen exposure. However, the authors never directly test this claim. To rigorously show this, the authors would need to show that lawn-exit promoting neurons (CEPs, HSNs, RIAs, RIDs, SIAs) are dispensable for lawn re-entry behavior and that lawn re-entry promoting neurons (AVK, SIA, AIY, MI) are dispensable for lawn exit behavior in pathogen-exposed animals. The authors identify AVK neurons as important for modulating lawn re-entry behavior by brief inhibition at the start of pathogen exposure but fail to find that these neurons are required for increased latency to re-entry in naïve animals (Fig. 5D). Recent work from Marquina-Solis et al (2024) shows that chronic silencing of these neurons delays pathogen lawn leaving, due to impaired release of flp-1 neuropeptide. Authors may wish to connect their work more closely with the existing literature by investigating the behavioral process by which AVK contributes to lawn evacuation.

    2. Reviewer #2 (Public review):

      In this manuscript, Hallacy et al. used a compressed sensing-based optogenetic screening method to investigate the crucial neurons that regulate pathogenic avoidance behavior in C. elegans. They further substantiate their findings using complementary optogenetic activation and imaging techniques to confirm the roles of the key neurons identified through extensive screening efforts. Notably, they identified AIY and SIA as pivotal neurons in the dynamic process of pathogenic avoidance. Their significant discovery is the delayed or stalled reentry process, which drives avoidance behavior; to my knowledge, this dynamic has not been previously documented. Additionally, the successful integration of quantitative optogenetic tools and compressed sensing algorithms is noteworthy, demonstrating the potential for obtaining highly quantitative data from the C. elegans nervous system. This approach is quite rare in this field, yet it represents a promising direction for studying this simple nervous system.

      However, the paper's main weakness lies in its lack of a detailed mechanism explaining how the delayed reentry process directly influences the actual locomotor output that results in avoidance. The term 'delayed reentry' is used as a dynamic metric for quantifying the screening, yet the causal link between this metric and the mechanistic output remains unclear. Despite this, the study is well-structured, with comprehensive control experiments, and is very well constructed.

      Comments on revisions:

      The authors have addressed all my concerns and suggestions. They particularly further clarified the AIY's role in navigation by providing a new figure. They also provided supplementary videos representing the re-entry process.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript by Lopez-Blanch and colleagues, 21 microexons are selected for a deep analysis of their impacts on behavior, development, and gene expression. The authors begin with a systematic analysis of microexon inclusion and conservation in zebrafish and use these data to select 21 microexons for further study. The behavioral, transcriptomic, and morphological data presented are for the most part convincing. Furthermore, the discussion of the potential explanations for the subtle impacts of individual microexon deletions versus loss-of-function in srrm3 and/or srrm4 is quite comprehensive and thoughtful. One major weakness: data presentation, methods, and jargon at times affect readability / might lead to overstated conclusions. However, overall this manuscript is well-written, easy to follow, and the results are of broad interest.

      Strengths:

      (1) The study uses a wide variety of techniques to assess the impacts of microexon deletion, ranging from assays of protein function to regulation of behavior and development.

      (2) The authors provide comprehensive analyses of the molecular impact of their microexon deletions, including examining how host-gene and paralog expression is affected.

      Weaknesses / Major Points:

      (1) According to the methods, it seems that srrm3 social behavior is tested by pairing a 3mpf srrm3 mutant with a 30dpf srrm3 het. Is this correct? The methods seem to indicate that this decision was made to account for a slower growth rate of homozygous srrm3 mutant fish. However, the difference in age is potentially a major confound that could impact the way that srrm3 mutants interact with hets and the way that srrm3 mutants interact with one another (lower spread for the ratio of neighbour in front value, higher distance to neighbour value). This reviewer suggests testing het-het behavior at 3 months to provide age-matched comparisons for del-del, testing age-matched rather than size-matched het-del behavior, and also suggests mentioning this in the main text / within the figure itself so that readers are aware of the potential confound.

      (2) Referring to srrm3+/+; srrm4-/- controls for double mutant behavior as "WT for simplicity" is somewhat misleading. Why do the authors not refer to these as srrm4 single mutants?

      (3) It's not completely clear how "neurally regulated" microexons are defined / how they are different from "neural microexons"? Are these terms interchangeable?

      (4) Overexpression experiments driving srrm3 / srrm4 in HEK293 cells are not described in the methods.

      (4) Suggest including more information on how neurite length was calculated. In representative images, it appears difficult to determine which neurites arise from which soma, as they cross extensively. How was this addressed in the quantification?

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript explores in zebrafish the impact of genetic manipulation of individual microexons and two regulators of microexon inclusion (Srrm3 and Srrm4). The authors compare molecular, anatomical, and behavioral phenotypes in larvae and juvenile fish. The authors test the hypothesis that phenotypes resulting from Srrm3 and 4 mutations might in part be attributable to individual microexon deletions in target genes.

      The authors uncover substantial alterations in in vitro neurite growth, locomotion, and social behavior in Srrm mutants but not any of the individual microexon deletion mutants. The individual mutations are accompanied by broader transcript level changes which may resemble compensatory changes. Ultimately, the authors conclude that the severe Srrm3/4 phenotypes result from additive and/or synergistic effects due to the de-regulation of multiple microexons.

      Strengths:

      The work is carefully planned, well-described, and beautifully displayed in clear, intuitive figures. The overall scope is extensive with a large number of individual mutant strains examined. The analysis bridges from molecular to anatomical and behavioral read-outs. Analysis appears rigorous and most conclusions are well-supported by the data.

      Overall, addressing the function of microexons in an in vivo system is an important and timely question.

      Weaknesses:

      The main weakness of the work is the interpretation of the social behavior phenotypes in the Srrm mutants. It is difficult to conclude that the mutations indeed impact social behavior rather than sensory processing and/or vision which precipitates apparent social alterations as a secondary consequence. Interpreting the phenotypes as "autism-like" is not supported by the data presented.

    3. Reviewer #3 (Public review):

      Summary:

      Microexons are highly conserved alternative splice variants, the individual functions of which have thus far remained mostly elusive. The inclusion of microexons in mature mRNAs increases during development, specifically in neural tissues, and is regulated by SRRM proteins. Investigation of individual microexon function is a vital avenue of research since microexon inclusion is disrupted in diseases like autism. This study provides one of the first rigorous screens (using zebrafish larvae) of the functions of individual microexons in neurodevelopment and behavioural control. The authors precisely excise 21 microexons from the genome of zebrafish using CRISPR-Cas9 and assay the downstream impacts on neurite outgrowth, larvae motility, and sociality. A small number of mild phenotypes were observed, which contrasts with the more dramatic phenotypes observed when microexon master regulators SRRM3/4 are disrupted. Importantly, this study attempts to address the reasons why mild/few phenotypes are observed and identify transcriptomic changes in microexon mutants that suggest potential compensatory gene regulatory mechanisms.

      Strengths:

      (1) The manuscript is well written with excellent presentation of the data in the figures.

      (2) The experimental design is rigorous and explained in sufficient detail.

      (3) The identification of a potential microexon compensatory mechanism by transcriptional alterations represents a valued attempt to begin to explain complex genetic interactions.

      (4) Overall this is a study with a robust experimental design that addresses a gap in knowledge of the role of microexons in neurodevelopment.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place-cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving force behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      Despite the impressive dataset, there are several methodological and interpretational concerns that limit the impact of the findings. Firstly, the virtual environment appears to be poorly enriched, relying mainly on wall patterns for visual cues, which raises questions about the generalizability of the results to more enriched environments. Prior studies have shown that environmental enrichment can significantly influence spatial coding, and it would be important to determine how a more immersive VR environment might alter the observed PFF dynamics. Secondly, the study relies on deconvolution methods in some cases to infer spiking activity from calcium signals without in vivo ground truth validation. This introduces potential inaccuracies, as deconvolution is an estimate rather than a direct measure of spiking, and any conclusions drawn from these inferred signals should be interpreted with caution. Thirdly, the figures would benefit from clearer statistical annotations and visual enhancements. For example, several plots lack indicators of statistical significance, making it difficult for readers to assess the robustness of the findings. Furthermore, the use of bar plots without displaying underlying data distributions obscures variability, which could be better visualized with violin plots or individual data points. The manuscript would also benefit from a more explicit breakdown of the proportion of place fields categorized as BTSP-like versus non-BTSP-like, along with clearer references to figures throughout the results section. Lastly, the authors' interpretation of their data, particularly regarding the sufficiency of large calcium transients for PFF induction, needs to be more cautious. Without direct confirmation that these transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      A new method to use calcium imaging to separate BTSP and non-BTSP place field formation. This work offers new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      There are some issues about data and statistics that need to be addressed before these research findings can be considered as rigorous conclusions.

      While the authors mentioned 3 features of PF generated by BTSP during calcium imaging in the Introduction, the classification method used features 1 and 2. The confirmation by feature 3 in its current form is important but not strong enough.

      Some key data is missing such as the excluded PFs, the BTSP/non-BTSP of each animal, etc

      Impact:

      This work is likely to provide a new method to classify BTSP and non-BTSP place field formation using calsium image to the field.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study the spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well-written, well-powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves the weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out-of-field firing, etc for those that arise due to BTSP vs non-BTSP.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preferences (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, it directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2, which examined the vicarious inequality aversion in conditions where feedback was never provided, is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION<br /> (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulting directly from their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. The intro and set are heavily around vicarious learning, and later the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020

      EXPERIMENTAL DESIGN<br /> (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder what this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participant, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the learning phase can largely impact the preference learning of the participants.

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING<br /> (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, the blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, the participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the change between the baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model. This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      (7) I quite liked Study 2 which tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote, "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assume the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference update (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study 2 will be very helpful for the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments demonstrate that individuals can learn to reject such offers through vicarious learning - by observing and acting in line with a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles a critical topic relevant to social norms, morality, and justice. The findings, which show that individuals can adopt just and fair norms even at a personal cost, are promising. The study is well-situated in the literature, with clever experimental design and a computational approach that may offer insights into latent cognitive processes. Findings have potential implications for policymakers.

      Weaknesses:

      Note: in the text below, the "teacher" will refer to the agent from which a participant presumably receives feedback during the learning phase.

      (1) Focus on Disadvantageous Inequity (DI): A significant portion of the paper focuses on responses to Disadvantageous Inequitable (DI) offers, which is confusing given the study's primary aim is to examine learning in response to Advantageous Inequitable (AI) offers. The inclusion of DI offers is not well-justified and distracts from the main focus. Furthermore, the experimental design seems, in principle, inadequate to test for the learning effects of DI offers. Because both teaching regimes considered were identical for DI offers the paradigm lacks a control condition to test for learning effects related to these offers. I can't see how an increase in rejection of DI offers (e.g., between baseline and generalization) can be interpreted as speaking to learning. There are various other potential reasons for an increase in rejection of DI offers even if individuals learn nothing from learning (e.g. if envy builds up during the experiment as one encounters more instances of disadvantageous fairness).

      (2) Statistical Analysis: The analysis of the learning effects of AI offers is not fully convincing. The authors analyse changes in rejection rates within each learning condition rather than directly comparing the two. Finding a significant effect in one condition but not the other does not demonstrate that the learning regime is driving the effect. A direct comparison between conditions is necessary for establishing that there is a causal role for the learning regime.

      (3) Correlation Between Learning and Contagion Effects:<br /> The authors argue that correlations between learning effects (changes in rejection rates during the learning phase) and contagion effects (changes between the generalization and baseline phases) support the idea that individuals who are better aligning their preferences with the teacher also give more consideration to the teacher's preferences later during generalization phase. This interpretation is not convincing. Such correlations could emerge even in the absence of learning, driven by temporal trends like increasing guilt or envy (or even by slow temporal fluctuations in these processes) on behalf of self or others. The reason is that the baseline phase is temporally closer to the beginning of the learning phase whereas the generalization phase is temporally closer to the end of the learning phase. Additionally, the interpretation of these effects seems flawed, as changes in rejection rates do not necessarily indicate closer alignment with the teacher's preferences. For example, if the teacher rejects an offer 75% of the time then a positive 5% learning effect may imply better matching the teacher if it reflects an increase in rejection rate from 65% to 70%, but it implies divergence from the teacher if it reflects an increase from 85% to 90%. For similar reasons, it is not clear that the contagion effects reflect how much a teacher's preferences are taken into account during generalization.

      (4) Modeling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided, and fits for the losing models are not shown, leaving readers in the dark about where these models fail. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related (for example, the feedback that the teacher would have rejected an offer provides feedback that rejection is "correct" but also that acceptance is "an error", and the later is not incorporated into the modelling). It is unclear if and to what extent this limits current RL formulations. There are also potentially important missing details about the models. Can the authors justify/explain the reasoning behind including these variants they consider? What are the initial Q-values? If these are not free parameters what are their values?

      (5) Conceptual Leap in Modeling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models learning occurs independently for each offer (hence to cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner learns a functional form that allows to predict the teacher's feedback based on said offer features (e.g., linear or quadratic form). Because feedback for an offer modulates the parameters of this function (feature weights) generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even show superiority over the preference learning model, casting doubt on the authors' conclusions. Of note: even the behaviourists knew that as Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean little Alfred had a sophisticated model of animals he used to infer how they behave.

      (6) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g. Figure 3A, AI+DI blue group). This is puzzling.

      Thinking about this I realized the model makes quite strong unintuitive predictions that are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then overleaning the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact the teacher rejects 75% of the offers. In other words, as learning continues learners will diverge from the teacher. On the other hand, if a participant begins learning to tend to accept this offer (guilt < 1.5) then during learning they can increase their rejection rate but never above 50%. Thus one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

    1. Reviewer #1 (Public review):

      Summary:

      Optical blur is characterized by contrast losses and phase shifts that alter the local relationship between the component spatial frequencies in the image. The eye experiences optical blur on several occasions - for instance, physiologically, when the focus state of the eye does not match the optical vergence demand and, in cases of pathologies like keratoconus where the cornea gets progressively distorted leading to degraded retinal image quality. Recalibration of the visual system to suprathreshold contrast losses arising from the optical blur and the mechanisms that may underlie such a recalibration have been well-researched. This study by Barbot et al presents convincing evidence that the visual system could also recalibrate itself to the phase distortions experienced with optical blur. This was demonstrated, in principle, on a small number of participants with normal vision but with induced blur (?? experienced psychophysical observers) and in a few keratoconic patients using their state-of-the-art adaptive optics apparatus. In the former cohort, known magnitudes of radially asymmetric blur from a vertical coma were induced while participants judged the position of a compound grating target that shifted in predictable ways with the induction of blur. Immediate exposure to images blurred with such higher-order aberrations resulted in position shifts that were consistent with optical theory, but prolonged exposure to such blur resulted in the position shift returning to veridical perception (albeit, not completely). When the blur was removed after the adaptation phase, after effects of the position offset were noticed. In the keratoconic cohort, such position offsets were observed even when the eye was completely corrected for optical degradation. These results are discussed in the context of the perception of real-world targets, the underlying neurophysiology, and what it means to space perception in disease conditions like keratoconus.

      Strengths:

      A clear hypothesis, a parameterized experimental space, rigor of optical correction and psychophysical judgements, and clarity in the explanation of results are the major strengths of the paper. Additional strengths include the control experiments to address confounders and the additional analyses shown in the supplementary section to rule out analytical inconsistencies in explaining the results.

      Weaknesses:

      The small sample size (especially in the keratoconic cohort) may be a limitation of the study. While the experiments conducted in this study are meant to demonstrate a basic visual phenomenon, that only 6 keratoconic patients were included in the study precludes the results from being extrapolated to the heterogeneity of disease presentation. It must, however, be noted that these are difficult experiments to conduct, and getting multiple participants to agree to such an experiment is not an easy task.

      Second, the analysis shown in Figure 6C relating the magnitude of habitual higher-order RMS to the absolute PSE shift is not convincing. The PSE's were both positive and negative in the KC patients. The direction of the phase shift experienced by the patient (i.e., positive or negative shift in the PSE) should also be determined by the pattern of HOA's in their eyes. Simply comparing the absolute magnitudes does not make sense. Would it be possible to convolve the compound grating with the PSF obtained from each patient and predict which direction should the PSE shift? This prediction can then be compared with the observed shift in the PSE's.

      A third weakness of the study may be the assumption that the phase recalibration in keratoconic cohort may be eye-specific. That is, if the participant has dissimilar severities of keratoconus, the probed eye's aberration profile may determine the phase profile that the eye is calibrated to. I am not sure to what extent this assumption is valid. Further, under natural viewing, the pupil size will change with light intensity and accommodative state and this will, in turn, determine the optical quality of the eye. Given this, it is not clear what will the visual system recalibrate itself to, when the phase shifts in the retinal image may keep changing from the underlying blur profile in the retina. Also, if the disease is progressive in nature (in their cohort, the authors indicate that the disease did not progress), the calibration state should also constantly change. What is the time scale of such a calibration and could there be multiple states of such adaptation remains to be explored. This, of course, is not a weakness of the present study, but an open question for the future.

      Finally, one additional experiment could have been performed (this is good to have information and certainly not a necessity). What is the wavefront profile of a few keratoconic patients that participated in the study, used as the adaptation profile in the 2nd experiment (as opposed to a fixed level of coma)? Would a 60-min paradigm result in adapted states that will result in phase shifts matching what is experienced by keratoconic eyes (see Marella et al., Vis Res, 2024 for a similar induced experiment for studying the impact of phase shifts on visual and stereoacuities)?

    2. Reviewer #2 (Public review):

      Summary:

      The authors examine the ability of the human visual system to adapt to optically induced phase shifts. The study shows clear adaptation to the relative phase created by exposure to vertical coma. The study assesses the impact of adaptation to the coma on the perceived relative phase of f and 3f compound gratings. It is observed that during the first couple of minutes of a 1-hour exposure to induced vertical coma, the apparent relative locations of the f and 3f shifted in the opposite direction to that induced by the coma, a classic adaptation effect. This result highlights a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.

      Strengths:

      Sophisticated and rigorous optical and psychophysical methods, and a clear research question. The manuscript is well-written and the data quality is very high. The authors are to be congratulated on this challenging and complex optics and psychophysics study.

      Weaknesses:

      Some more details on the phase and amplitude consequences of the induced coma would add value to the reader.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses information from the UK Biobank and aims to investigate the role of BMI on various health outcomes, with a focus on differences by sex. They confirm the relevance of many of the well-known associations between BMI and health outcomes for males and females and suggest that associations for some endpoints may differ by sex. Overall their conclusions appear supported by the data. The significance of the observed sex variations will require confirmation and further assessment.

      Strengths:

      This is one of the first systematic evaluations of sex differences between BMI and health outcomes.

      The hypothesis that BMI may be associated with health differentially based on sex is relevant and even expected. As muscle is heavier than adipose tissue, and as men typically have more muscle than women, as a body composition measure BMI is sometimes prone to classifying even normal weight/muscular men as obese, while this measure is more lenient when used in women.

      Confirmation of the many well-known associations is as expected and attests to the validity of their approach.

      Demonstration of the possible sex differences is interesting, with this work raising the need for further study.

      Weaknesses:

      Many of the statistical decisions appeared to target power at the expense of quality/accuracy. For example, they chose to use self-reported information rather than doctor diagnoses for disease outcomes for which both types of data were available.

      Despite known problems and bias arising from the use of one sample approach, they chose to use instruments from the UK Biobank instead of those available from the independent GIANT GWAS, despite the difference in sample size being only marginally greater for UKB for the context. With the way the data is presented, it is difficult to assess the extent to which results are compatible across approaches.

      The approach to multiple testing correction appears very lenient, although the lack of accuracy in the reporting makes it difficult to know what was done exactly. The way it reads, FDR correction was done separately for men, and then for women (assuming that the duplication in tests following stratification does not affect the number of tests). In the second stage, they compared differences by sex using Z-test, apparently without accounting for multiple testing.

      Presentation lacks accuracy in a few places, hence assessment of the accuracy of the statements made by the authors is difficult.

      Conclusion "These findings highlight the importance of retaining a healthy BMI" is rather uninformative, especially as they claim that for some attributes the effects of BMI may be opposite depending on sex/gender.

    2. Reviewer #2 (Public review):

      Summary:

      In this present Mendelian randomization-phenome-wide association study, the authors found BMI to be positively associated with many health-related conditions, such as heart disease, heart failure, and hypertensive heart disease. They also found sex differences in some traits such as cancer, psychological disorders, and ApoB.

      Strengths:

      The use of the UK-biobank study with detailed phenotype and genotype information.

      Weaknesses:

      Previous studies have performed this analysis using the same cohort, with in-depth analysis. See this paper: Searching for the causal effects of body mass index in over 300,000 participants in UK Biobank, using Mendelian randomization. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007951

      I believe that the authors' claim, "To our knowledge, no sex-specific PheWAS has investigated the effects of BMI on health outcomes," is not well supported. They have not cited a relevant paper that conducted both overall and sex-stratified PheWAS using UK Biobank data with a detailed analysis. Given the prior study linked above, I am uncertain about the additional contributions of the present research.

    1. Reviewer #1 (Public review):

      Summary:

      The authors study the effect of the addition of synthetic amphiphile on the gating mechanisms of the mechano-sensitive channel MscL. They observe that the amphiphile reduces the membrane stretching and bending modulii, and increases the channel activation pressure. They then conclude that gating is sensitive to these two membrane parameters. This is explained by the effect of the amphiphile on the so-called membrane interfacial tension.

      Strengths:

      The major strength is that the authors found a way to tune the membrane's mechanical properties in a controlled manner, and find a progressive change of the suction pressure at which MscL gates. If analysed thoroughly, these results could give valuable information.

      Weaknesses:

      The weakness is the analysis and the discussion. I would like to have answers to some basic questions.

      (1) The explanation of the phenomenon involves a difference between interfacial tension and tension, without the difference between these being precisely defined. In the caption of Figure 4, one can read "Under tension, the PEO groups adsorb to the bilayer, suggesting adsorption is a thermodynamically favorable process that lowers the interfacial tension." What does this mean? Under what tension is the interfacial tension lowered? The fact that the system's free energy could be lowered by putting it under mechanical tension would result in a thermodynamic unstable situation. Is this what the authors mean?

      (2) From what I understand, a channel would feel the tension exerted by the membrane at its periphery, which is what I would call membrane tension. The fact that polymers may reorganise under membrane stretch to lower the system's free energy would certainly affect the membrane stretching modulus (as measured Figure 2E), but what the channel cares about is the tension (I would say). If the membrane is softer, a larger pipette pressure is required to reach the same level of tension, so it is not surprising that a given channel requires a larger activation pressure in softer membranes. To me, this doesn't mean that the channel feels the membrane stiffness, but rather that a given pressure leads to different tensions (which is what the channel feels) for different stiffnesses.

      (3) In order to support the authors' claim, the micropipette suction pressure should be appropriately translated into a membrane tension. One would then see whether the gating tension is affected by the presence of amphiphiles. In the micropipette setup used here, one can derive a relationship between pressure and tension, that involves the shape of the membrane. This relationship is simple (tension=pressure difference times pipette radius divided by 2) only in the limit where the membrane tongue inside the pipette ends with a hemisphere of constant radius independent of the pressure, and the pipette radius is much smaller than the GUV radius. None of these conditions seem to hold in Figure 2C. On the other hand, the authors do report absolute values of tension in the y-axis of Figure 2D. It seems quite straightforward to plot the activation tension (rather than pressure) as a function of the amphiphile volume fraction in Figure 2B. This is what needs to be shown.

      (4) The discussion needs to be improved. I could not find a convincing explanation of the role of interfacial tension in the discussion. The equation (p.14) distinguishes three contributions, which I understand to be (i) an elastic membrane deformation such as hydrophobic mismatch or other short-range effects, (ii) the protein conformation energy, and (iii) the work done by membrane tension. Apparently, the latter is where the effect is (which I agree with), but how this consideration leads to a gating energy difference (between lipid only and modified membrane) proportional to the interfacial tension is completely obscure (if not wrong).

      (5) I am rather surprised at the very small values of stretching and bending modulii found under high-volume fraction. These quantities are obtained by fitting the stress-strain relationship (Figure 2D). Such a plot should be shown for all amphiphile volume fraction, so one can assess the quality of the fits.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript describes how synthetic polymers, primarily poloxamers of different sizes, influence bacterial mechanosensitive channel MscL gating by modifying the interfacial tension of the membrane. The authors expressed MscL in U2OS cells and chemically blebbed the cells to derive giant plasma membrane vesicles (GPMVs) containing MscL G22S. They applied micropipette aspiration on GPMVs to obtain bending rigidity (kc) and area expansion modulus (kA) and used patch clamping to obtain activation pressure. They found a negative correlation between kc and kA with activation pressure and attributed the changes to activation pressure to the lowering of the interfacial tension in the presence of polymers. They carried out coarse-grain molecular dynamics simulations and showed that under tension the hydrophilic PEO group adsorbs to the bilayer more, thereby lowering the interfacial tension. Besides MscL, they showed similar results with TREK-1 activation. The conclusion that differences in interfacial tension are what drive the changes in activation pressure is based on using a thermodynamic model.

      Strengths:

      (1) Reveals that synthetic polymer that lowers bending rigidity and area expansion modulus increases activation pressure of mechanosensitive channel by lowering interfacial tension - this is an important finding.

      (2) General data quality is high with detailed and thorough analysis. The use of both micropipette aspiration and patch clamp in the same study is noteworthy.

      (3) Discussion on nanoplastics and their effect on membrane properties and therefore their impact on mechanosensitivity is interesting.

      Weaknesses:

      Interfacial tension is not experimentally measured. Given the main argument of this paper is that synthetic polymers reduce interfacial tension, which increases MS channel activation pressure, it would be prudent to show experimental measurements to bolster their analysis.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors set out to test the "force from lipids" mechanism of mechanosensitive channel gating, which posits that mechanical properties of the membrane are directly responsible for converting membrane tension into useful energy for channel gating. They employ amphiphilic polymers called poloxamers to alter membrane mechanical properties and relate those to the threshold of mechanical activation of the MscL channel of E.coli.

      The authors heterologously express the channel, perform electrical recordings, and assess the mechanical properties of vesicles derived from the same membranes. This allows them to directly compare derived mechanical parameters to channel gating in the same environment.

      They further repeat experiments in an eukaryotic mechano-channel and show that the same principles apply to gating in this very different protein, providing support for the force from lipids hypothesis.

      Strengths:

      In this work, characterization of the mechanical properties of the plasma membrane and electrical recordings of channel activity are carried out in membranes derived from the same cells. This is a nice contribution to these experiments since usually these two properties are measured in separate membranes with differing compositions. The experiments are of high quality and the data analysis and interpretation are careful.

      Weaknesses:

      It is not clear to this reviewer what the relationship is between the mechanical properties the authors measure, the membrane area expansion modulus, and bending rigidity, to what they call "interfacial tension".

    1. Reviewer #1 (Public review):

      Summary:

      This study highlights the strengths of using predictive computational models to inform C. elegans screening studies of compounds' effects on aging and lifespan. The authors primarily focus on all-trans retinoic acid (atRA), one of the 5 compounds (out of 16 tested) that extended C. elegans lifespan in their experiments. They show that atRA has positive effects on C. elegans lifespan and age-related health, while it has more modest and inconsistent effects (i.e., some detrimental impacts) for C. briggsae and C. tropicalis. In genetic experiments designed to evaluate contributing mediators of lifespan extension with atRA exposure, it was found that 150 µM of atRA did not significantly extend lifespan in akt-1 or akt-2 loss-of-function mutants, nor in animals with loss of function of aak-2, or skn-1 (in which atRA had toxic effects); these genes appear to be required for atRA-mediated lifespan extension. hsf-1 and daf-16 loss-of-function mutants both had a modest but statistically significant lifespan extension with 150 µM of atRA, suggesting that these transcription factors may contribute towards mediating atRA lifespan extension, but that they are not individually required for some lifespan extension. RNAseq assessment of transcriptional changes in day 4 atRA-treated adult wild-type worms revealed some interesting observations. Consistent with the study's genetic mutant lifespan observations, many of the atRA-regulated genes with the greatest fold-change differences are known regulated targets of daf-2 and/or skn-1 signaling pathways in C. elegans. hsf-1 loss-of-function mutants show a shifted atRA transcriptional response, revealing a dependence on hsf-1 for ~60% of the atRA-downregulated genes. On the other hand, RNAseq analysis in aak-2 loss-of-function mutants revealed that aak-2 is only required for less than a quarter of the atRA transcriptional response. All together, this study is proof of the concept that computational models can help optimize C. elegans screening approaches that test compounds' effects on lifespan, and provide comprehensive transcriptomic and genetic insights into the lifespan-extending effects of all-trans retinoic acid (atRA).

      Strengths:

      (1) A clearly described and well-justified account describes the approach used to prioritize and select compounds for screening, based on using the top candidates from a published list of computationally ranked compounds (Fuentealba et al., 2019) that were cross-referenced with other bioinformatics publications to predict anti-aging compounds, after de-selecting compounds previously evaluated in C. elegans as per the DrugAge database. 16 compounds were tested at 4-5 different concentrations to evaluate effects on C. elegans lifespan.

      (2) Robust experimental design was undertaken evaluating the lifespan effects of atRA, as it was tested on three strains each of C. elegans, C. briggsae, and C. tropicalis, with trial replication performed at three distinct laboratories. These observations extended beyond lifespan to include evaluations of health metrics related to swimming performance.

      (3) In-depth analyses of the RNAseq data of whole-worm transcriptional responses to atRA revealed interesting insights into regulator pathways and novel groups of genes that may be involved in mediating lifespan-extension effects (e.g., atRA-induced upregulation of sphingolipid metabolism genes, atRA-upregulation of genes in a poorly-characterized family of C. elegans paralogs predicted to have kinase-like activity, and disproportionate downregulation of collagen genes with atRA).

      Weaknesses:

      (1) The authors' computational-based compound screening approach led to a ~30% prediction success rate for compounds that could extend the median lifespan of C. elegans. However, follow-up experiments on the top compounds highlighted the fact that some of these observed "successes" could be driven by indirect, confounding effects of these compounds on the bacterial food source, rather than direct beneficial effects on C. elegans physiology and lifespan. For instance, this appeared to be the case for the "top" hit of propranolol; other compounds were not tested with metabolically inert or killed bacteria. In addition, there are no comparative metrics provided to compare this study's ~30% success rate to screening approaches that do not use computational predictions.

      (2) Transcriptomic analyses of atRA effects were extensive in this study, but evaluations and discussions of non-transcriptional effects of key proposed regulators (such as AMPK) were limited. For instance, non-transcriptional effects of aak-2/AMPK might account for its requirement for mediating lifespan extension effects, since aak-2 was not required for a major proportion of atRA transcriptional responses.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Banse et al. experimentally validate the power of computational approaches that predict anti-aging molecules using the multi-species approach of the Caenorhabditis Intervention Testing Program (CITP). Filtering candidate molecules based on transcriptional profiles, ML models, literature searches, and the DrugAge database, they selected 16 compounds for testing. Of those, eight did not affect C.elegan's lifespan, three shortened it, and five extended C.elegan's lifespan, resulting in a hit rate of over 30%. Of those five, they then focused on all-trans-retinoic acid (atRA), a compound that has previously resulted in contradictory effects. The lifespan-extending effect of atRA was consistent in all C. elegans strains tested, was absent in C. briggsae, and a small effect was observed in some C. tropicalis strains. Similar results were obtained for measures of healthspan. The authors then investigated the mechanism of action of atRA and showed that it was only partially dependent on daf-16 but required akt-1, akt-2, skn-1, hsf-1, and, to some degree, pmk-1. The authors further investigate the downstream effects of atRA exposure by conducting RNAseq experiments in both wild-type and mutant animals to show that some, but surprisingly few, of the gene expression changes that are observed in wild-type animals are lost in the hsf-1 and aak-2 mutants.

      Strengths:

      Overall, this study is well conceived and executed as it investigates the effect of atRA across different concentrations, strains, and species, including life and health span. Revealing the variability between sites, assays, and the method used is a powerful aspect of this study. It will do a lot to dispel the nonsensical illusion that we can determine a percent increase in lifespan to the precision of two floating point numbers.

      An interesting and potentially important implication arises from this study. The computational selection of compounds was agnostic regarding strain or species differences and was predominantly based on observations made in mammalian systems. The hit rate calculated is based on the results of C. elegans and not on the molecules' effectiveness in Briggsae or Tropicalis. If it were, the hit rate would be much lower. How is that? It would suggest that ML models and transcriptional data obtained from mammals have a higher predictive value for C. elegans than for the other two species. This selectivity for C.elegans over C.tropicalis and C.Briggsae seems both puzzling and unexpected. The predictions for longevity were based on the transcriptional data in cell lines. Would it be feasible to compare the mammalian data to the transcriptional data in Figure 5 and see how well they match? While this is clear beyond the focus of this study, an implied prediction is that running RNAseqs for all these strains exposed to atRA would reveal that the transcriptional changes observed in the strains where it extends lifespan the most should match the mammalian data best. Otherwise, how could the mammalian datasets be used to predict the effects of C.elegans over C.Briggsae or C.Tropicalis have more predictive for one species than the other? There are a lot of IFs in this prediction, but such an experiment would reconsider and validate the basis on which the original predictions were made.

      Weaknesses:

      Many of the most upregulated genes, such as cyps and pgps are xenobiotic response genes upregulated in many transcriptional datasets from C.elegans drug studies. Their expression might be necessary to deal with atRA breakdown metabolites to prevent toxicity rather than confer longevity. Because atRA is very light sensitive and has toxicity of breakdown, metabolites may explain some of the differences observed with the lifespan of machine effects compared to standard assay practices.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Banse et al., demonstrate that combining computer prediction with genetic analysis in distinct Caenorhabditis species can streamline the discovery of aging interventions by taking advantage of the diverse pool of compounds that are currently available. They demonstrate that through careful prioritization of candidate compounds, they are able to accomplish a 30% positive hit rate for interventions that produce significant lifespan extensions. Within the positive hits, they focus on all-trans retinoic acid (atRA) and discover that it modulates lifespan through conserved longevity pathways such as AKT-1 and AKT-2 (and other conserved Akt-targets such as Nrf2/SKN-1 and HSF1/HSF-1) as well as through AAK-2, a conserved catalytic subunit of AMPK. To better understand the genetic mechanisms behind lifespan extension upon atRA treatment, the authors perform RNAseq experiments using a variety of genetic backgrounds for cross-comparison and validation. Using this current state-of-the-art approach for studying gene expression, the authors determine that atRA treatment produces gene expression changes across a broad set of stress-response and longevity-related pathways. Overall, this study is important since it highlights the potential of combining traditional genetic analysis in the genetically tractable organism C. elegans with computational methods that will become even more powerful with the swift advancements being made in artificial intelligence. The study possesses both theoretical and practical implications not only in the field of aging but also in related fields such as health and disease. Most of the claims in this study are supported by solid evidence, but the conclusions can be refined with a small set of additional experiments or re-analysis of data.

      Strengths:

      (1) The criteria for prioritizing compounds for screening are well-defined and easy to replicate (Figure 1), even for scientists with limited experience in computational biology. The approach is also adaptable to other systems or model organisms.

      (2) I commend the researchers for doing follow-up experiments with the compound propranolol to verify its effect on lifespan (Figure 2 Supplement 2), given the observation that it affected the growth of OP50. To prevent false hits in the future, the reviewer recommends the use of inactivated OP50 for future experiments to remove this confounding variable.

      (3) The sources of variation (Figure 3, Figure Supplement 2) are taken into account and demonstrate the need for advancing our understanding of the lifespan phenotype due to inter-individual variation.

      (4) The addition of the C. elegans swim test in addition to the lifespan assays provides further evidence of atRA-induced improvement in longevity.

      (5) The RNAseq approach was performed in a variety of genetic backgrounds, which allowed the authors to determine the relationship between AAK-2 and HSF-1 regulation of the retinoic acid pathway in C. elegans, specifically, that the former functions downstream of the latter.

      Weaknesses:

      (1) The filtering of compounds for testing using the DrugAge database requires that the database is consistently updated. In this particular case, even though atRA does not appear in the database, the authors themselves cite literature that has already demonstrated atRA-induced lifespan extension, which should have precluded this compound from the analysis in the first place.

      (2) The threshold for determining positive hits is arbitrary, and in this case, a 30% positive hit rate was observed when the threshold is set to a lifespan extension of around 5% based on Figure 1B (the authors fail to explicitly state the cut-off for what is considered a positive hit).

      (3) The authors demonstrate that atRA extends lifespan in a species-specific manner (Figure 3). Specifically, this extension only occurs in the species C. elegans yet, the title implies that atRA-induced lifespan extension occurs in different Caenorhabditis species when it is clearly not the case. While the authors state that failure to observe phenotypes in C. briggsae and C. tropicalis is a common feature of CITP tests, they do not speculate as to why this phenomenon occurs.

      (4) There are discrepancies between the lifespan curves by hand (Figure 3 Figure Supplement 1) and using the automated lifespan machine (Figure 3 Supplement 3). Specifically, in the automated lifespan assays, there are drastic changes in the slope of the survival curve which do not occur in the manual assays. This may be due to improper filtering of non-worm objects, improper annotation of death times, or improper distribution of plates in each scanner.

      (5) The authors miss an opportunity to determine whether the lifespan extension phenotype attributed to the retinoic acid pathway is mostly transcriptional in nature or whether some of it is post-transcriptional. The authors even state "that while aak-2 is absolutely required for the longevity effects of atRA, aak-2 is required only for a small proportion (~1/4) of the transcriptional response", suggesting that some of the effects are post-transcriptional. Further information could have been obtained had the authors also performed RNAseq analysis on the tol-1 mutant which exhibited an enhanced response to atRA compared to wild-type animals, and comparing the magnitude of gene expression changes between the tol-1 mutant and all other genetic backgrounds for which RNAseq was performed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate that female Spodoptera littoralis moths prefer to oviposit on well-watered tomato plants and avoid drought-stressed plants. The study then recorded the sounds produced by drought-stressed plants and found that they produce 30 ultrasonic clicks per minute. Thereafter, the authors tested the response of female S. littoralis moths to clicks with a frequency of 60 clicks per minute in an arena with and without plants and in an arena setting with two healthy plants of which one was associated with 60 clicks per minute. These experiments revealed that in the absence of a plant, the moths preferred to lay eggs on the side of the area in which the clicks could be heard, while in the presence of a plant the S. littoralis females preferred to oviposit on the plant where the clicks were not audible. In addition, the authors also tested the response of S. littoralis females in which the tympanic membrane had been pierced making the moths unable to detect the click sounds. As hypothesised, these females placed their eggs equally on both sites of the area. Finally, the authors explored whether the female oviposition choice might be influenced by the courtship calls of S. littoralis males which emit clicks in a range similar to a drought-stressed tomato plant. However, no effect was found of the clicks from ten males on the oviposition behaviour of the female moths, indicating that the females can distinguish between the two types of clicks. Besides these different experiments, the authors also investigated the distribution of egg clusters within a longer arena without a plant, but with a sugar-water feeder. Here it was found that the egg clusters were mostly aggregated around the feeder and the speaker producing 60 clicks per minute. Lastly, video tracking was used to observe the behaviour of the area without a plant, which demonstrated that the moths gradually spent more time at the arena side with the click sounds.

      Strengths:

      This manuscript is very interesting to read and the possibility that female moths might use sound as an additional sensory modality during host-searching is exciting and very relevant to the field of insect-plant interactions.

      Weaknesses:

      The study addresses a very interesting question by asking whether female moths incorporate plant acoustic signals into their oviposition choice, unfortunately, I find it very difficult to judge how big the influence of the sound on the female choice really is as the manuscript does not provide any graphs showing the real numbers of eggs laid on the different plants, but instead only provides graphs with the Bayesian model fittings for each of the experiments. In addition, the numbers given in the text seem to be relatively similar with large variations e.g. Figure 1B3: 1.8 {plus minus} 1.6 vs. 1.1 {plus minus} 1.0. Furthermore, the authors do not provide access to any of the raw data or scripts of this study, which also makes it difficult to assess the potential impact of this study. Hence, I would very much like to encourage the authors to provide figures showing the measured values as boxplots including the individual data points, especially in Figure 1, and to provide access to all the raw data underlying the figures.

      Regarding the analysis of the results, I am also not entirely convinced that each night can be taken as an independent egg-laying event, as the amount of eggs and the place were the eggs are laid by a female moth surely depends on the previous oviposition events. While I must admit that I am not a statistician, I would suggest, from a biological point of view, that each group of moths should be treated as a replicate and not each night. I would therefore also suggest to rather analyse the sum of eggs laid over the different consecutive nights than taking the eggs laid in each night as an independent data point.

      Furthermore, it did not become entirely clear to me why a click frequency of 60 clicks per minute was used for most experiments, while the plants only produce clicks at a range of 30 clicks per minute. Independent of the ecological relevance of these sound signals, it would be nice if the authors could provide a reason for using this frequency range. Besides this, I was also wondering about the argument that groups of plants might still produce clicks in the range of 60 clicks per minute and that the authors' tests might therefore still be reasonable. I would agree with this, but only in the case that a group of plants with these sounds would be tested. Offering the choice between two single plants while providing the sound from a group of plants is in my view not the most ecologically reasonable choice. It would be great if the authors could modify the argument in the discussion section accordingly and further explore the relevance of different frequencies and dB-levels.

      Finally, I was wondering how transferable the findings are towards insects and Lepidopterans in general. Not all insects possess a tympanic organ and might therefore not be able to detect the plant clicks that were recorded. Moreover, I would imagine that generalist herbivorous like Spodoptera might be more inclined to use these clicks than specialists, which very much rely on certain chemical cues to find their host plants. It would be great if the authors would point more to the fact that your study only investigated a single moth species and that the results might therefore only hold true for S. littoralis and closely related species, but not necessary for other moth species such as Sphingidae or even butterflies.

    2. Reviewer #2 (Public review):

      This paper presents an interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process.

      Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants. 

      The results are intriguing, and I think the experiments are very well designed. However, if female moths use the sounds emitted by dehydrated plants as cues to decide where to oviposit, the hypothesis would predict that they would avoid such sounds. The discussion mentions the possibility of a multi-modal moth decision-making process to explain these contradictory results, and I also believe this is a strong possibility. However, since this remains speculative, careful consideration is needed regarding how to interpret the findings based solely on the direct results presented in the results section.

      Additionally, the final results describing differences in olfactory responses to drying and hydrated plants are included, but the corresponding figures are placed in the supplementary materials. Given this, I would suggest reconsidering how to best present the hypotheses and clarify the overarching message of the results. This might involve reordering the results or re-evaluating which data should appear in the main text versus the supplementary materials.

      There were also areas where more detailed explanations of the experimental methods would be beneficial.

    1. Reviewer #1 (Public review):

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.

      The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.

      The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.

      This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

    2. Reviewer #2 (Public review):

      This manuscript proposes that primary hepatocytes can replicate their DNA without the six-subunit ORC. This follows previous studies that examined mice that did not express ORC1 in the liver. In this study, the authors suppressed expression of ORC2 or ORC1 plus ORC2 in the liver.

      Comments:

      (1) I find the conclusion of the authors somewhat hard to accept. Biochemically, ORC without the ORC1 or ORC2 subunits cannot load the MCM helicase on DNA. The question arises whether the deletion in the ORC1 and ORC2 genes by Cre is not very tight, allowing some cells to replicate their DNA and allow the liver to develop, or whether the replication of DNA proceeds via non-canonical mechanisms, such as break-induced replication. The increase in the number of polyploid cells in the mice expressing Cre supports the first mechanism, because it is consistent with few cells retaining the capacity to replicate their DNA, at least for some time during development.

      (2) Fig 1H shows that 5 days post infection, there is no visible expression of ORC2 in MEFs with the ORC2 flox allele. However, at 15 days post infection, some ORC2 is visible. The authors suggest that a small number of cells that retained expression of ORC2 were selected over the cells not expressing ORC2. Could a similar scenario also happen in vivo?

      (3) Figs 2E-G shows decreased body weight, decreased liver weight and decreased liver to body weight in mice with recombination of the ORC2 flox allele. This means that DNA replication is compromised in the ALB-ORC2f/f mice.

      (4) Figs 2I-K do not report the number of hepatocytes, but the percent of hepatocytes with different nuclear sizes. I suspect that the number of hepatocytes is lower in the ALB-ORC2f/f mice than in the ORC2f/f mice. Can the authors report the actual numbers?

      (5) Figs 3B-G do not report the number of nuclei, but percentages, which are plotted separately for the ORC2-f/f and ALB-ORC2-f/f mice. Can the authors report the actual numbers?

      (6) Fig 5 shows the response of ORC2f/f and ALB-ORC2f/f mice after partial hepatectomy. The percent of EdU+ nuclei in the ORC2-f/f (aka ALB-CRE-/-) mice in Fig 5H seems low. Based on other publications in the field it should be about 20-30%. Why is it so low here? The very low nuclear density in the ALB-ORC2-f/f mice (Fig 5F) and the large nuclei (Fig 5I) could indicate that cells fire too few origins, proceed through S phase very slowly and fail to divide.

      (7) Fig 6F shows that ALB-ORC1f/f-ORC2f/f mice have very severe phenotypes in terms of body weight and liver weight (about on third of wild-type!!). Fig 6H and 6I, the actual numbers should be presented, not percentages. The fact that there are EYFP negative cells, implies that CRE was not expressed in all hepatocytes.

      (8) Comparing the EdU+ cells in Fig 7G versus 5G shows very different number of EdU+ cells in the control animals. This means that one of these images is not representative. The higher fraction of EdU+ cells in the double-knockout could mean that the hepatocytes in the double-knockout take longer to complete DNA replication than the control hepatocytes. The control hepatocytes may have already completed DNA replication, which can explain why the fraction of EdU+ cells is so low in the controls. The authors may need to study mice at earlier time points after partial hepatectomy, i.e. sacrifice the mice at 30-32 hours, instead of 40-52 hours.

      (9) Regarding the calculation of the number of cell divisions during development: the authors assume that all the hepatocytes in the adult liver are derived from hepatoblasts that express Alb. Is it possible to exclude the possibility that pre-hepatoblast cells that do not express Alb give rise to hepatocytes? For example the cells that give rise to hepatoblasts may proliferate more times than normal giving rise to a higher number of hepatoblasts than in wild-type mice.

      (10) My interpretation of the data is that not all hepatocytes have the ORC1 and ORC2 genes deleted (eg EYFP-negative cells) and that these cells allow some proliferation in the livers of these mice.

    3. Reviewer #3 (Public review):

      Summary:

      The authors address the role of ORC in DNA replication and that this protein complex is not essential for DNA replication in hepatocytes. They provide evidence that ORC subunit levels are substantially reduced in cells that have been induced to delete multiple exons of the corresponding ORC gene(s) in hepatocytes. They evaluate replication both in purified isolated hepatocytes and in mice after hepatectomy. In both cases, there is clear evidence that DNA replication does not decrease at a level that corresponds with the decrease in detectable ORC subunit and that endoreduplication is the primary type of replication observed. It remains possible that small amounts of residual ORC are responsible for the replication observed, although the authors provide arguments against this possibility. The mechanisms responsible for DNA replication in the absence of ORC are not examined.

      Strengths:

      The authors clearly show that there are dramatic reductions in the amount of the targeted ORC subunits in the cells that have been targeted for deletion. They also provide clear evidence that there is replication in a subset of these cells and that it is likely due to endoreduplication. Although there is no replication in MEFs derived from cells with the deletion, there is clearly DNA replication occurring in hepatocytes (both isolated in culture and in the context of the liver). Interestingly, the cells undergoing replication exhibit enlarged cell sizes and elevated ploidy indicating endoreduplication of the genome. These findings raise the interesting possibility that endoreduplication does not require ORC while normal replication does.

      Weaknesses:

      There are two significant weaknesses in this manuscript. The first is that although there is clearly robust reduction of the targeted ORC subunit, the authors cannot confirm that it is deleted in all cells. For example, the analysis in Fig. 4B would suggest that a substantial number of cells have not lost the targeted region of ORC2. Although the western blots show stronger effects, this type of analysis is notorious for non-linear response curves and no standards are provided. The second weakness is that there is no evaluation of the molecular nature of the replication observed. Are there changes in the amount of location of Mcm2-7 loading that is usually mediated by ORC? Does an associated change in Mcm2-7 loading lead to the endoreduplication observed? After numerous papers from this lab and others claiming that ORC is not required for eukaryotic DNA replication in a subset of cells, we still have no information about an alternative pathway that could explain this observation.

      The authors frequently use the presence of a Cre-dependent eYFP expression as evidence that the ORC1 or ORC2 genes have been deleted. Although likely the best visual marker for this, it is not demonstrated that the presence of eYFP ensures that ORC2 has been targeted by Cre. For example, based on the data in Fig. 4B, there seems to be a substantial percentage of ORC2 genes that have not been targeted while the authors report that 100% of the cells express eYFP.

    1. Reviewer #1 (Public review):

      Summary:

      The authors in this manuscript performed scRNA-seq on a cohort of 15 early-stage cervical cancer patients with a mixture of adeno- and squamous cell carcinoma, HPV status, and several samples that were upstaged at the time of surgery. From their analyses they identified differential cell populations in both immune and tumour subsets related to stage, HPV status, and whether a sample was adenocarcinoma or squamous cell. Putative microenvironmental signaling was explored as a potential explanation for their differential cell populations. Through these analyses the authors also identified SLC26A3 as a potential biomarker for later stage/lymph node metastasis which was verified by IHC and IF. The dataset is likely useful for the community. The accuracy and clarity have been improved from the previous version, and additional immunofluorescence supporting the existence of their proposed cluster is now present. That said, there remain some issues with the strength of some claims (particularly in the abstract and results sections) and some of the cell type definitions.

      Strengths

      The dataset could be useful for the community<br /> SLC26A3 could potentially be a useful marker to predict lymph node metastasis with further study

      Weaknesses

      Casual language is used in the abstract around immunosuppressive microenvironment and signal cross-talk between Epi_10_CYSTM1 cluster and Tregs. The data show localization that supports a possible interaction and probable cytokines, but functional experiments would be needed to establish causality.

      In the description of the single cell data processing there is no mention of batch effect correction. Given that many patients were analyzed, and no mention was made of pooling or deconvolution, it must be assumed these were run separately which invariably leads to batch effects. Given the good overlays across patients some batch correction must have been performed. How was batch effect correction performed?

      While statistics were added to the clinical correlates, it would appear that single variables are being assessed one at a time by chi-squared analysis. This ignores the higher order structure of the data and the correlations between some variables resulting in potentially spurious findings. This is compounded as some categories had below 5 observations violating the assumptions of a chi-squared test.

      The description of all analytical steps remains quite truncated. While the inclusion of annotated code is useful, a full description of which tools were used, with which settings, and why each were chosen, is a minimum needed to properly interpret the results. This is as important in a mainly analytical paper as the experimental parameters.

      Validation of the clustering results remains a problem. The only details provided are that FindClusters was used. This depends on a manual choice of multiple parameters including the k-nearest neighbours included, whether Louvain or Leiden clustering is used, the resolution parameter, and others (how many variable genes/PCs etc...). Why were these parameters selected, how do you know that you're not over or under-clustering.

      The cluster Epi_10_CYSTM1 remains somewhat problematic. None of the additional data supports its existence outside of the single patient who has cells from that population. Additionally, it falls well outside of any of the other Epithelial cells to the point that drawing it as part of a differentiation order doesn't even make sense. Indeed, most of the upregulated pathways in this cluster appear to be related to class II antigen presentation which would fit better with a dendritic cell/macrophage than an epithelial cell. While the IF at the end does support the existence of the cluster, numbers are still very limited, and this doesn't have data on the antigen presenting function. At the least a strong disclaimer should be included in the text that this population is essentially exclusive to one sample in the scRNA data.

      The linkage between the cluster types and IHC for prediction of lymph node metastasis is tenuous. Most of the strongly cluster associated markers were not predictive despite their clusters being theoretically enriched. This inability to recognize the clusters in additional samples using alternative methods does not give confidence that these clusters are robust. SLC26A3 being associated with upstaging may very well be a useful marker, however, given the lack of association of the other markers, it may be premature to say this is due to the same Epi_10_CYSTM1 cluster.

      There are multiple issues in the classification of T cells and neutrophils. In the analysis of T cell subset, all CD4+ T cells are currently scored as Tregs, what happened to the T-helper cells? Additionally, Activated T and Cytotoxic T both seem to contain CD8+ cells, but all their populations have equivalent expression of the activation marker CD69. Moreover, the "Cytotoxic" ones also express TIGIT, HAVCR2 and LAG3 which are generally exhaustion markers. For neutrophils, several obviously different clusters have been grouped together (Neu_1 containing two diametrically opposite cell clouds being an obvious example).

      Again in the CellChat section of the results causal language is being repeatedly used. These are just possible interactions, not validated ones. While the co-localization in the provided IF images certainly supports the co-localization, this still is only correlative and doesn't prove causality.

      Minor Issues<br /> The sentence "However, due to the low morbidity of ADC, in-depth investigations are insufficient" could be misinterpreted. Morbidity generally refers to the severity or health burden rather than the frequency of cases, though it's true in some studies prevalence is used for the overall impact of the disease on a population and referred to as morbidity. In this instance though, "incidence" or "prevalence" would be clearer word choices.

      The previous rebuttal states that clusters/cell type calls were refined to eliminate issues such as epithelial cells creeping into the T cell cluster, however, the cell %s have not been altered according to the change tracking. Shouldn't all the %s have been altered even if only slightly?

    2. Reviewer #2 (Public review):

      Summary:

      Peng et al. present a study using scRNA-seq to examine phenotypic properties of cervical cancer, contrasting features of both adenocarcinomas (ADC) and squamous cell carcinoma (SCC), and HPV-positive and negative tumours. They propose several key findings: unique malignant phenotypes in ADC with elevated stemness and aggressive features, interactions of these populations with immune cells to promote an immunosuppressive TME, and SLC26A3 as a biomarker for metastatic (>=Stage III ) tumours.

      Strengths:

      This study provides a valuable resource of scRNA-seq data from a well-curated collection of patient samples. The analysis provides a high-level view of the cellular composition of cervical cancers. The authors introduce some mechanistic explanations of immunosuppression and the involvement of regulatory T cells that is intriguing.

      Weaknesses:

      I believe many of the proposed conclusions are over-interpretations or unwarranted generalizations of the single-cell analysis. I believe there may also be some artifacts in the data that may not reflect true biology--eg. The presentation of KRT+ neutrophils, which may reflect doublets with cancer cells. In some cases there is mention of quality control steps to remove contaminant cell clusters, but there is no method or supplemental figure to describe and/or justify these steps.

      The key limitation is related to the "ADC-specific" Epi_10_CYSTM1 cluster, which is a central focus of the paper. This population only contains cells from one of the 11 ADC samples and represents only a small fraction of the malignant cells from that sample. Yet, this population is used to derive SLC26A3 as a potential biomarker. SLC26A3 transcripts are only detected in this small population of cells (none of the other ADC samples), which makes me question the specificity of the IHC staining on the validation cohort. The manuscript does not address why this marker is so rare in the scRNA-seq data, but abundant in the IHC.

      While I understand it may be out of the scope of this individual study, many of the conclusions are inferred from the data analysis with little follow-up in experimental models or orthogonal assays.

    1. Joint Public Review:

      Reviewers thought that the authors addressed some, but not all the concerns raised in the previous round of a review.

      Strengths: The authors employed a battery of next-generation sequencing and crosslinking techniques (e.g., Quick-irCLIP, APA-Seq, and Ribo-Seq) to describe a previously unappreciated binding of eIF3 to the 3'UTRs of the mRNAs. It is also shown that eIF3:3'UTR binding occurs in the vicinity of poly(A) tail of mRNAs that are actively translated in neuronal progenitor cells derived from human pluripotent stem cells. Collectively, these findings provide evidence for the role of eIF3 in regulating translation from the 3'UTR end of the mRNA.

      Weaknesses: In addition to these clear strengths of the article, some weaknesses were observed pertinent to the lack of mechanistic data. It was therefore thought that the experiments aiming to dissect the mechanisms of eIF3 binding to 3'UTRs and their impact on translation warrant future studies. Finally, establishing the impact of the proposed eIF3:3'UTR binding mechanism of translational regulation on cellular fate is required to further support the biological importance of the observed phenomena. It was found that this should also be addressed in the follow up studies.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors performed two-sample MR combined with sensitivity analyses and colocalization to test the effect of PUFA on cerebral aneurysms. They found that genetically predicted omega-3 and DHA decreased the risk for intracranial aneurysm (IA) and subarachnoid haemorrhage (SAH) but not for unruptured IA (uIA).

      Strengths:

      PUFA on the risk of cerebral aneurysms is of clinical importance; the authors performed multiple sensitivity analyses to ensure MR fulfils its assumptions.

    2. Reviewer #2 (Public Review):

      Summary:

      In the manuscript, Yu et al reported a two-sample Mendelian randomization study to evaluate the causation between polyunsaturated fatty acids (PUFA) and cerebral aneurysm, based on summary statistics from published genome-wide association studies. The authors identified that omega-3 fatty acids and Docosahexaenoic acid decreased the risk for intracranial aneurysm (IA) and aneurysmal subarachnoid haemorrhage (aSAH). COLOC analysis suggested that the acids and IA, aSAH likely share causal variants in gene fatty acid desaturase 2.

      Strengths:

      The methodology is sound, with appropriate sensitivity analysis.

      Weaknesses:

      The results did not provide significant novel findings.

    1. Reviewer #1 (Public review):

      The findings of Ziolkowska and colleagues show that a specific projection from the nucleus reuniens of the thalamus (RE) to dorsal CA1 of the hippocampus plays an important role in fear extinction learning in male and female mice. In and of itself, this is not a new finding. Yet, the potential novelty and excitement comes from the authors' identification of structural alterations from RE projecting neurons to the specific stratum lacunosum moleculare subregion of CA1 after learning. The authors use a range of anatomical and functional approaches to demonstrate structural synaptic changes in dorsal CA1 that parallel the necessary role of RE inputs in modulating extinction learning. The significance of these findings was previously hampered by several technical shortcomings in the experimental design and interpretation. The authors adequately addressed some of the design concerns raised in the previous round, along with the interpretive critique that they couldn't localize the timing of effects to consolidation as originally claimed. Nevertheless, the authors provided an inadequate response to the concern regarding their misapplication of Ns and missing controls in one experiment.

      In the previous review, a major methodological weakness in the experimental design involved the widespread misapplication of Ns used for the statistical analyses. Much of the anatomical analyses of structural synaptic changes in the RE-CA1 pathway used N = number of axons (Figs. 1, 2), N = number of dendrites (Figs. 3, 4), and N = number of sections (Fig. 7). In each instance it was recommended that N = animal number should be used. Reasons for this are as follows: this is standard practice in neuroanatomical research; using N = branch/ dendrite/ bouton/ spine number artificially inflates the statistical power and this incorrectly assumes independence of observations; using N = number of sections, etc., doesn't account for imbalances in the number of observations that vary from animal to animal that may skew group results.

      In the authors' response, they generally concurred, but then they followed up with the defense that the number of items was too few in some cases, or absent in others, to permit using N = animal number. While they changed some of their data to N = animal numbers, other aspects of their data remained as-is. The description of the statistics in the figure legend is also dense and difficult to follow in places. Ns should be checked in the legend and figure to make sure they're correct, as at least one error was noted (e.g., see Fig. 2C). Overall, the authors' response falls short of the standard of rigor that helps to reinforce scientific findings from reliability and reproducibility concerns when generating more data to increase Ns (i.e., the number of animals) would have been the better choice.

      Another persistent concern from the previous review is that, in the electron microscopic analyses of dendritic spines (Fig. 5), the authors only compared fear acquisition versus extinction training. One critique was that the lack of inclusion of a naïve control group made it difficult to understand how these structural synaptic changes are occurring relative to baseline. It was also noted that the authors appropriately included naïve controls in other experiments in the paper. In the revised submission the authors simply added in naïve control data to their previous histogram. It is not considered good practice to collect, process, or analyze data one group at a time, as this would be prone to cohort effects or experimental bias. These data should be discarded and the experiment should be run correctly with randomized cases in each group, or instead these data should be eliminated from the report since there is a key control group missing. Again, the nature of the authors' response perpetuates the aforementioned concern that data collection and analysis in this report may fall short of an acceptable standard of rigor.

    2. Reviewer #2 (Public review):

      Summary:

      Ziółkowska et al. characterize the synaptic mechanisms at the basis of the RE-dCA1 contribution to the consolidation of fear memory extinction. In particular, they describe a layer specific modulation of RE-dCA1 excitatory synapses modulation associated to contextual fear extinction which is impaired by transient chemogenetic inhibition of this pathway. These results indicate that RE activity-mediated modulation of synaptic morphology contributes to contextual fear extinction

      Strengths:

      The manuscript is well conceived, the statistical analysis is solid and methodology appropriate. The strength of this work is that it nicely builds up on existing literature and provides new molecular insight on a thalamo-hippocampal circuit previously known for its role in fear extinction. In addition, the quantification of pre- and post-synapses is particularly thorough.

      Weaknesses:

      The results illustrated in this manuscript show nice incremental evidence about the neural mechanisms contributing to the RE-CA1 modulation of fear extinction. The novelty of this manuscript is therefore not exceptional, but still highly relevant for the field.

    1. Reviewer #1 (Public review):

      Summary:

      The authors are trying to develop a microscopy system that generates data output exceeding the previous systems based on huge objectives.

      Strengths:

      They have accomplished building such a system, with a field of view of 1.5x1.0 cm2 and a resolution of up to 1.2 um. They have also demonstrated their system performance on samples such as organoids, brain sections, and embryos.

      Weaknesses:

      To be used as a volumetric imaging technique, the authors only showcase the implementation of multi-focal confocal sectioning. On the other hand, most of the real biological samples were acquired under the wide-field illumination, and processed with so-called computational sectioning. Despite the claim that it improves the contrast, sometimes I felt that the images were oversharpened and the quantitative nature of these fluorescence images may be perturbed.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript introduced a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide 3D tissues and embryos. In term of technique, this paper is just a minor improvement of the authors' previous work, which is a fluorescence imaging system working at visible wavelength region (https://www.nature.com/articles/s41598-021-95930-7).

      Strengths:

      In this study, the authors enhanced the system's resolution and sensitivity by increasing the numerical aperture (NA) of the lens. Furthermore, they achieved volumetric imaging by integrating optical sectioning and computational sectioning. This study encompasses a broad range of biological applications, including imaging and analysis on organoids, mouse brains, and quail embryos, respectively. Overall, this method is useful and versatile.

      Weaknesses:

      What is the unique application that only can be done by this high-throughput system remains vague. Meanwhile, there are also several outstanding issues in this paper, such as the lack of technical advances, unclear method details and non-standardized figures.

      Comments on revisions:

      The revised manuscript has significantly improved in response to the initial review comments, particularly with the detailed additions regarding the objective lens and confocal imaging modes, which enhance the clarity and comprehensibility of the paper. While the structure and arguments are much clearer overall, there are still key issues that need to be addressed, specifically regarding algorithm validation, computational sectioning presentation, and volume imaging rate.

      Algorithm Validation:<br /> The validation of the algorithm's accuracy is not sufficiently robust. Reviewer 1's comment is entirely reasonable, and the authors should validate the algorithm's accuracy using well-established methods as ground truth. In the revised version, the authors attempt to demonstrate the fidelity of the algorithm by employing deep learning methods for high-accuracy cell recognition. However, this validation relies solely on comparisons between deep learning results and manual annotation results. The problem lies in the fact that both manual annotations and deep learning outcomes are derived from algorithm-processed data, which fails to prove the authenticity or validity of the data itself. To strengthen the validation, the authors should incorporate independent, gold-standard methods for comparison.

      Computational Sectioning:<br /> In the revised manuscript, the authors effectively demonstrate the ability of optical sectioning to improve axial resolution using fluorescent beads, as shown in Fig. S3, which is a strong point. However, the manuscript lacks a direct comparison for computational sectioning and does not provide a clear evaluation of axial resolution before and after applying computational sectioning. While some related information is included in Figs. 5.C and D, the details are insufficient, and intensity profiles are absent. I recommend that the authors include more direct visual demonstrations of computational sectioning, along with comparisons of axial resolution before and after applying computational sectioning. This would better showcase the method's effectiveness.

      Volume Imaging Rate:<br /> The manuscript currently omits critical details about the method's volume imaging rate. In the description of the quail embryo imaging experiment, key parameters such as exposure time and imaging speed are missing. Additionally, the manuscript does not discuss the maximum imaging rate supported by the system in confocal mode. The volume imaging rate is an essential factor for biological researchers to evaluate the applicability of the technique. Therefore, this information should be included, ideally in the abstract and introduction. Furthermore, the authors could describe how the volume imaging rate performs under different conditions and discuss its potential applications across various biological research contexts. Including such details would significantly enhance the paper's utility and appeal to the broader research community.

      These adjustments will further strengthen the manuscript and address the reviewers' concerns effectively.

    1. Reviewer #1 (Public review):

      Summary:

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

      Strengths:

      The three experiments are well designed and the various conditions are well controlled. The rationale of the study is clear, and the manuscript is pleasant to read. The analysis choices are easy to follow, and mostly appropriate.

      Weaknesses:

      There is a concern of double-dipping in one of the tests (Experiment 2, Figure 3: interaction of Upright/Inverted X Congruent/Incongruent). I raised this concern on the original submission, and it has not been resolved properly. The follow-up statistical test (after channel selection using the interaction contrast permutation test) still is geared towards that same contrast, even though the latter is now being tested differently. (Perhaps not explicitly testing the interaction, but in essence still testing the same.) A very simple solution would be to remove the post-hoc statistical tests and simply acknowledge that you're comparing simple means, while the statistical assessment was already taken care of using the permutation test. (In other words: the data appear compelling because of the cluster test, but NOT because of the subsequent t-tests.)

    2. Reviewer #2 (Public review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      Weaknesses:

      In the revised version of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. Still, it is my view that the findings of the study are basic neural correlate results that do not provide insights into neural mechanisms or the causal relevance of neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion, and it is possible that such neural correlates relate to behaviorally relevant neural mechanisms, but based on the current task and associated analyses this has not been shown.

    1. Reviewer #2 (Public review):

      Summary:

      Griesius et al. investigate the dendritic integration properties of two types of inhibitory interneurons in the hippocampus: those that express NDNF+ and those that express somatostatin. They found that both neurons showed supralinear synaptic integration in the dendrites, blocked by NMDA receptor blockers but not by blockers of Na+ channels. These experiments are critically overdue and very important because knowing how inhibitory neurons are engaged by excitatory synaptic input has important implications for all theories involving these inhibitory neurons.

      Comments on revisions:

      The authors have addressed the reviewers' comments, but haven't resolved most of the key issues.

      Specifically, performing only a single uncaging experiment at a single dendritic location per cell prevents a detailed biophysical analysis of NDNF and OLM cell integration properties. A more extended exploration would have potentially addressed several of the reviewers' questions. It is particularly worrying that the authors cite cell health, dendritic blebbing, and changes in input resistance as the reason for terminating experiments after a single uncaging event. This suggests that the uncaging laser may be damaging the dendrite, potentially affecting the membrane potential directly, and overall cell health, beyond simply uncaging glutamate.

      While the authors' qualitative conclusions about supra-linear integration and NMDA receptor dependency seem plausible, the limited data and potential methodological issues weaken any quantitative interpretations and comparisons between the two cell types.

      Similarly, the absence of dendritic Na-spikes remains unexplained, despite reports of strong dendritic Na-currents in these cells.

    2. Reviewer #3 (Public review):

      Summary:

      The authors study temporal summation of caged EPSPs in dendrite-targeting hippocampal CA1 interneurons. The data indicate non-linear summation, which is larger in dendrites of NDNF-expressing neurogliaform cells versus OLM cells. However, the underlying mechanisms are largely unclear.

      Strengths:

      Synaptic integration in dendrites of cortical GABAergic interneurons is important and still poorly investigated. Focal 2-photon uncaging of glutamate is a nice and detailed method to study temporal summation of small potentials in dendritic segments. 2P calcium imaging is a powerful method to potentially disentangle dendritic signal processing in interneuron dendrites.

      Weaknesses:

      Due to several experimental limitations of the study including a relatively low number of recorded dendrites, lack of voltage-clamp recordings, lack of NMDA-dependent calcium signals in OLM cells and lack of wash-out during pharmacological experiments (AP5-application), the mechanistic insights are limited.

      (1) NMDA-receptor signalling in NDNF-IN. The authors nicely show that temporal summation in dendrites of NDNF-INs is to a certain extent non-linear. Pharmacology with AP5 hints towards contribution of NMDA receptors. However, the authors report that the non-linearity in not significantly dependent on EPSP amplitude (Fig. S2), which should be the case if NMDA-receptors are involved. Unfortunately, there are no voltage-clamp data showing NMDA and AMPA currents, potentially providing a mechanistic explanation for the non-linear summation.

      (2) Recovery of drug effect. Pharmacological application of AP5 is the only argument for the involvement of NMDA receptors. However, as long-lasting experiments were apparently difficult to obtain, there is no washout-data presented - only drug effect versus baseline. For all the other drugs (TTX, Nimodipine, CPA) recordings were even shorter, lacking a baseline recording. Thus, it remains open to what extent the AP5-effect might be affected by rundown of receptors or channels during whole-cell recordings or beginning phototoxicity.

      (3) Nonlinear EPSP summation in OLM-IN. The authors do similar experiments in dendrite-targeting OLM-INs and show that the non-linear summation is smaller than in NDNF cells. The reason for this remains unclear. The diameter of proximal dendrites in OLM cells is larger than the diameter in NDNF cells. However, there is probably also an important role of synapse density and glutamate receptor density, which was shown to be very low in proximal dendrites of OLM cells and strongly increase with distance (Guirado et al. 2014, Cerebral Cortex 24:3014-24, Gramuntell et al. 2021, Front Aging Neurosci 13:782737). Therefore, it would have been helpful to see experiments quantifying synapse density (counting spines, PSD95-puncta, ...) and show how this density compares with non-linearity in the analyzed NDNF and OLM dendrites.

      (4) NMDA in OLM-IN. Similar to the NDNF cells, the authors argue for an involvement of NMDA receptors in OLM cells, based on bath-application of AP5 (Fig. 8). Again, there seems to be no significant dependence on EPSP amplitude (Fig. S3). Even more remarkable, the authors claim that there is no dendritic calcium increase after activation of NMDA receptors without showing data. Therefore, it remains unclear whether the calcium signals are just below detection threshold, or whether the non-linearity depends on other calcium-impermeable channels and receptors. To understand this phenomenon different calcium sensors, different Ca2+/Mg2+ concentrations or voltage-clamp data would have helped.

    1. Reviewer #1 (Public review):

      In recent years, our understanding of the nuclear steps of the HIV-1 life cycle has made significant advances. It has emerged that HIV-1 completes reverse transcription in the nucleus and that the host factor CPSF6 forms condensates around the viral capsid. The precise function of these CPSF6 condensates is under investigation, but it is clear that the HIV-1 capsid protein is required for their formation. This study by Tomasini et al. investigates the genesis of the CPSF6 condensates induced by HIV-1 capsid, what other co-factors may be required, and their relationship with nuclear speckels (NS). The authors show that disruption of the condensates by the drug PF74, added post-nuclear entry, blocks HIV-1 infection, which supports their functional role. They generated CPSF6 KO THP-1 cell lines, in which they expressed exogenous CPSF6 constructs to map by microscopy and pull down assays of the regions critical for the formation of condensates. This approach revealed that the LCR region of CPSF6 is required for capsid binding but not for condensates whereas the FG region is essential for both. Using SON and SRRM2 as markers of NS, the authors show that CPSF6 condensates precede their merging with NS but that depletion of SRRM2, or SRRM2 lacking the IDR domain, delays the genesis of condensates, which are also smaller.

      The study is interesting and well conducted and defines some characteristics of the CPSF6-HIV-1 condensates. Their results on the NS are valuable. The data presented are convincing.

      I have two main concerns. Firstly, the functional outcome of the various protein mutants and KOs is not evaluated. Although Figure 1 shows that disruption of the CPSF6 puncta by PF74 impairs HIV-1 infection, it is not clear if HIV-1 infection is at all affected by expression of the mutant CPSF6 forms (and SRRM2 mutants) or KO/KD of the various host factors. The cell lines are available, so it should be possible to measure HIV-1 infection and reverse transcription. Secondly, the authors have not assessed if the effects observed on the NS impact HIV-1 gene expression, which would be interesting to know given that NS are sites of highly active gene transcription. With the reagents at hand, it should be possible to investigate this too.

    2. Reviewer #2 (Public review):

      Summary:

      HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the already-known FG region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2).

      Strengths:

      The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation.

      Weaknesses:

      Some of the results presented in this manuscript, in particular the kinetics of fusion between CPSF6-aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983).

      The observations of the different effects of CPSF6 mutants, as well as SRRM2/SUN2 silencing experiments are not complemented by infection data which would have linked morphological changes in nuclear aggregates to function during viral infection. More importantly, these functional data could have helped stratify otherwise similar morphological appearances in CPSF6 aggregates.

      Overall, the results could be presented in a more concise and ordered manner to help focus the attention of the reader on the most important issues. Most of the figures extend to 3-4 different pages and some information could be clearly either aggregated or moved to supplementary data.

    3. Reviewer #3 (Public review):

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (https://doi.org/10.1093/nar/gkae769).

    1. Reviewer #1 (Public review):

      In this work, Urbanska and colleagues use a machine-learning based crossing of mechanical characterisations of various cells in different states and their transcriptional profiles. Using this approach, they identify a core set of five genes that systematically vary together with the mechanical state of the cells, although not always in the same direction depending on the conditions. They show that the combined transcriptional changes in this gene set is strongly predictive of a change in the cell mechanical properties, in systems that were not used to identify the genes (a validation set). Finally, they experimentally after the expression level of one of these genes, CAV1, that codes for the caveolin 1 protein, and show that, in a variety of cellular systems and contexts, perturbations in the expression level of CAV1 also induce changes in cell mechanics, cells with lower CAV1 expression being generally softer.

      Overall the approach seems accessible, sound and is well described. My personal expertize is not suited to judge its validity, novelty or relevance, so I do not make comments on that. The results it provides seem to have been thoroughly tested by the authors (using different types of mechanical characterisations of the cells) and to be robust in their predictive value. The authors also show convincingly that one of the genes they identified, CAV1, is not only correlated with the mechanical properties of cells, but also that changing its expression level affects cell mechanics. At this stage, the study appears mostly focused on the description and validation of the methodological approach, and it is hard to really understand what the results obtain really mean, the importance of the biological finding - what is this set of 5 genes doing in the context of cell mechanics? Is it really central, or is it just one of the set of knobs on which the cell plays - and it is identified by this method because it is systematically modulated but maybe, for any given context, it is not the dominant player - all these fundamental questions remain unanswered at this stage. On one hand, it means that the study might have identified an important novel module of genes in cell mechanics, but on the other hand, it also reveals that it is not yet easy to interpret the results provided by this type of novel approach.

      Comments on revisions:

      In their point-by-point answer, the authors did a great effort to provide pedagogical answers that clarified most of the points I had raised. They also did more analysis, some of which are included as supplementary data, and added a few sentences to the main text and discussion. As far as I am concerned, I see no particular issue with the revised article. I think it will be interesting both as a new type of approach in mechanobiology, and also as a motivation for more experimentally oriented labs to test the hypothesis proposed in the article and the 'module' they found.

    1. Reviewer #1 (Public review):

      Summary:

      The study examines how pyruvate, a key product of glycolysis that influences TCA metabolism and gluconeogenesis, impacts cellular metabolism and cell size. It primarily utilizes the Drosophila liver-like fat body, which is composed of large post-mitotic cells that are metabolically very active. The study focuses on the key observations that over-expression of the pyruvate importer MPC complex (which imports pyruvate from the cytoplasm into mitochondria) can reduce cell size in a cell-autonomous manner. They find this is by metabolic rewiring that shunts pyruvate away from TCA metabolism and into gluconeogenesis. Surprisingly, mTORC and Myc pathways are also hyper-active in this background, despite the decreased cell size, suggesting a non-canonical cell size regulation signaling pathway. They also show a similar cell size reduction in HepG2 organoids. Metabolic analysis reveals that enhanced gluconeogenesis suppresses protein synthesis. Their working model is that elevated pyruvate mitochondrial import drives oxaloacetate production and fuels gluconeogenesis during late larval development, thus reducing amino acid production and thus reducing protein synthesis.

      Strengths:

      The study is significant because stem cells and many cancers exhibit metabolic rewiring of pyruvate metabolism. It provides new insights into how the fate of pyruvate can be tuned to influence Drosophila biomass accrual, and how pyruvate pools can influence the balance between carbohydrate and protein biosynthesis. Strengths include its rigorous dissection of metabolic rewiring and use of Drosophila and mammalian cell systems to dissect carbohydrate:protein crosstalk.

      Weaknesses:

      However, questions on how these two pathways crosstalk, and how this interfaces with canonical Myc and mTORC machinery remain. There are also questions related to how this protein:carbohydrate crosstalk interfaces with lipid biosynthesis. Addressing these will increase the overall impact of the study.

    2. Reviewer #2 (Public review):

      In this manuscript, the authors leverage multiple cellular models including the drosophila fat body and cultured hepatocytes to investigate the metabolic programs governing cell size. By profiling gene programs in the larval fat body during the third instar stage - in which cells cease proliferation and initiate a period of cell growth - the authors uncover a coordinated downregulation of genes involved in mitochondrial pyruvate import and metabolism. Enforced expression of the mitochondrial pyruvate carrier restrains cell size, despite active signaling of mTORC1 and other pathways viewed as traditional determinants of cell size. Mechanistically, the authors find that mitochondrial pyruvate import restrains cell size by fueling gluconeogenesis through the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Pyruvate conversion to oxaloacetate and use as a gluconeogenic substrate restrains cell growth by siphoning oxaloacetate away from aspartate and other amino acid biosynthesis, revealing a tradeoff between gluconeogenesis and provision of amino acids required to sustain protein biosynthesis. Overall, this manuscript is extremely rigorous, with each point interrogated through a variety of genetic and pharmacologic assays. The major conceptual advance is uncovering the regulation of cell size as a consequence of compartmentalized metabolism, which is dominant even over traditional signaling inputs. The work has implications for understanding cell size control in cell types that engage in gluconeogenesis but more broadly raise the possibility that metabolic tradeoffs determine cell size control in a variety of contexts.

    3. Reviewer #3 (Public review):

      Summary:

      In this article, Toshniwal et al. investigate the role of pyruvate metabolism in controlling cell growth. They find that elevated expression of the mitochondrial pyruvate carrier (MPC) leads to decreased cell size in the Drosophila fat body, a transformed human hepatocyte cell line (HepG2), and primary rat hepatocytes. Using genetic approaches and metabolic assays, the authors find that elevated pyruvate import into cells with forced expression of MPC increases the cellular NADH/NAD+ ratio, which drives the production of oxaloacetate via pyruvate carboxylase. Genetic, pharmacological, and metabolic approaches suggest that oxaloacetate is used to support gluconeogenesis rather than amino acid synthesis in cells over-expressing MPC. The reduction in cellular amino acids impairs protein synthesis, leading to impaired cell growth.

      Strengths:

      This study shows that the metabolic program of a cell, and especially its NADH/NAD+ ratio, can play a dominant role in regulating cell growth.

      The combination of complementary approaches, ranging from Drosophila genetics to metabolic flux measurements in mammalian cells, strengthens the findings of the paper and shows a conservation of MPC effects across evolution.

      Weaknesses:

      In general, the strengths of this paper outweigh its weaknesses. However, some areas of inconsistency and rigor deserve further attention.

      The authors comment that MPC overrides hormonal controls on gluconeogenesis and cell size (Discussion, paragraph 3). Such a claim cannot be made for mammalian experiments that are conducted with immortalized cell lines or primary hepatocytes.

      Nuclear size looks to be decreased in fat body cells with elevated MPC levels, consistent with reduced endoreplication, a process that drives growth in these cells. However, acute, ex vivo EdU labeling and measures of tissue DNA content are equivalent in wild-type and MPC+ fat body cells. This is surprising - how do the authors interpret these apparently contradictory phenotypes?

      In Figure 4d, oxygen consumption rates are measured in control cells and those over-expressing MPC. Values are normalized to protein levels, but protein is reduced in MPC+ cells. Is oxygen consumption changed by MPC expression on a per-cell basis?

      Trehalose is the main circulating sugar in Drosophila and should be measured in addition to hemolymph glucose. Additionally, the units in Figure 4h should be related to hemolymph volume - it is not clear that they are.

      Measurements of NADH/NAD ratios in conditions where these are manipulated genetically and pharmacologically (Figure 5) would strengthen the findings of the paper. Along the same lines, expression of manipulated genes - whether by RT-qPCR or Western blotting - would be helpful to assess the degree of knockdown/knockout in a cell population (for example, Got2 manipulations in Figures 6 and S8).

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Toledo and colleagues describes the generation and characterization of Y220C mice (Y217C in the mouse allele). The authors make notable findings: Y217C mice that have been backcrossed to C57Bl/6 for five generations show decreased female pup births due to exencephaly, a known defect in p53 -/- mice, and they show a correlation with decreased Xist expression, as well increased female neonatal death. They also noted similar tumor formation in Y217C/+ and p53 +/- mice, suggesting that Y217C may not function as a dominant negative. Notably, the authors find that homozygous Y217C mice die faster than p53 -/- mice and that the lymphomas in the Y217C mice were more aggressive and invasive. The authors then perform RNA seq on thymi of Y217C homozygotes compared to p53 -/-, and they suggest that these differentially expressed genes may explain the increased tumorigenesis in Y217C mice.

      Strengths:

      Overall, the study is well controlled and quite well done and will be of interest to a broad audience, particularly given the high frequency of the Y220C mutation in cancer (1% of all cancers, 4% of ovarian cancer).

      Weaknesses:

      No weaknesses were noted by this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      Jaber et al. describe the generation and characterization of a knock-in mouse strain expressing the p53 Y217C hot-spot mutation. While the homozygous mutant cells and mice reflect the typical loss-of-p53 functions, as expected, the Y217C mutation also appears to display gain-of-function (GOF) properties, exemplified by elevated metastasis in the homozygous context (as noted with several hot-spot mutations). Interestingly, this mutation does not appear to exhibit any dominant-negative effects associated with most hot-spot p53 mutations, as determined by the absence of differences in overall survival and tumor predisposition of the heterozygous mice, as well as target gene activation upon nutlin treatment.

      In addition, the authors noted a severe reduction in the female 217/217 homozygous progeny, significantly more than that observed with the p53 null mice, due to exencephaly, leading them to conclude that the Y217C mutation also has additional, non-cancer-related GOFs. Though this property has been well described and attributed to p53 functional impairment, the authors conclude that the Y217C has additional properties in accelerating the phenotype.

      Transcriptomic analyses of thymi found additional gene signature differences between the p53 null and the Y217C strains, indicative of novel target gene activation, associated with inflammation.

      Strengths:

      Overall, the characterisation of the mice highlights the expected typical outcomes associated with most hot-spot p53 mutations published earlier. The quality of the work presented is well done and good, and the conclusions and reasonably well justified.

      Weaknesses:

      The manuscript would benefit from the provision of additional data to strengthen the claims made, as follows:

      (1) Oncogenic GOF - the main data shown for GOF are the survival curve and enhanced metastasis. Often, GOF is exemplified at the cellular level as enhanced migration and invasion, which are standard assays to support the GOF. As such, the authors should perform these assays using either tumor cells derived from the mice or transformed fibroblasts from these mice. This will provide important and confirmatory evidence for GOF for Y217C.

      (2) Novel target gene activation - while a set of novel targets appears to be increased in the Y217C cells compared to the p53 null cells, it is unclear how they are induced. The authors should examine if mutant p53 can bind to their promoters through CHIP assays, and, if these targets are specific to Y217C and not the other hot-spot mutations. This will strengthen the validity of the Y217C's ability to promote GOF.

      (3) Dominant negative effect - the authors' claim of lack of DN effect needs to be strengthened further, as most p53 hot-spot mutations do exhibit DN effect. At the minimum, the authors should perform additional treatment with nutlin and gamma irradiation (or cytotoxic/damaging agents) and examine a set of canonical p53 target genes by qRT-PCR to strengthen their claim.

    1. Reviewer #1 (Public review):

      Summary:

      In this report, the authors made use of a murine cell life derived from a MYC-driven liver cancer to investigate the gene expression changes that accompany the switch from normoxic to hypoxia conditions during 2D growth and the switch from 2D monolayer to 3D organoid growth under normoxic conditions. They find a significant (ca. 40-50%) overlap among the genes that are dysregulated in response to hypoxia in 2D cultures and in response to spheroid formation. Unsurprisingly, hypoxia-related genes were among the most prominently deregulated under both sets of conditions. Many other pathways pertaining to metabolism, splicing, mitochondrial electron transport chain structure and function, DNA damage recognition/repair, and lipid biosynthesis were also identified.

      Major comments:

      (1) Lines 239-240: The authors state that genes involved in DNA repair were identified as being necessary to maintain survival of both 2D and 3D cultures (Figure S6A). Hypoxia is a strong inducer of ROS. Thus, the ROS-specific DNA damage/recognition/repair pathways might be particularly important. The authors should look more carefully at the various subgroups of the many genes that are involved in DNA repair. They should also obtain at least a qualitative assessment of ROS and ROS-mediated DNA damage by staining for total and mitochondrial-specific ROS using dyes such as CM-H2-DCFDA and MitoSox. Actual direct oxidative damage could be assessed by immunostaining for 8-oxo-dG and related to the sub-types of DNA damage-repair genes that are induced. The centrality of DNA damage genes also raises the question as to whether the previously noted prominence of the TP53 pathway (see point 5 below) might represent a response to ROS-induced DNA damage.

      (2) Because most of the pathway differences that distinguish the various cell states from one another are described only in terms of their transcriptome variations, it is not always possible to understand what the functional consequences of these changes actually are. For example, the authors report that hypoxia alters the expression of genes involved in PDH regulation but this is quite vague and not backed up with any functional or empirical analyses. PDH activity is complex and regulated primarily via phosphorylation/dephosphorylation (usually mediated by PDK1 and PDP2, respectively), which in turn are regulated by prevailing levels of ATP and ADP. Functionally, one might expect that hypoxia would lead to the down-regulation of PDH activity (i.e. increased PDH-pSer392) as respiration changes from oxidative to non-oxidative. This would not be appreciated simply by looking at PDH transcript levels. This notion could be tested by looking at total and phospho-PDH by western blotting and/or by measuring actual PDH activity as it converts pyruvate to AcCoA.

      (3) Line 439: Related to the above point: the authors state: "It is likely that blockade of acetyl-CoA production by PDH knockout may force cells to use alternative energy sources under hypoxic and 3D conditions, averting the Warburg effect and promoting cell survival under limited oxygen and nutrient availability in 3D spheroids." This could easily be tested by determining whether exogenous fatty acids are more readily oxidized by hypoxic 2D cultures or spheroids than occurs in normoxic 2D cultures.

      (4) Line 472: "Hypoxia induces high expression of Acaca and Fasn in NEJF10 cells indicating that hypoxia promotes saturated fatty acid synthesis...The beneficial effect of Fasn and Acaca KO to NEJF10 under hypoxia is probably due to reduction of saturated fatty acid synthesis, and this hypothesis needs to be tested in the future.". As with the preceding comment, this supposition could readily be supported directly by, for example, performing westerns blots for these enzymes and by showing that incubation of hypoxic 2D cells or spheroids converted more AcCoA into lipid.

      (5) In Supplementary Figure 2B&C, the central hub of the 2D normoxic cultures is Myc (as it should well be) whereas, in the normoxic 3D, the central hub is TP53 and Myc is not even present. The authors should comment on this. One would assume that Myc levels should still be quite high given that Myc is driven by an exogenous promoter. Does the centrality of TP53 indicate that the cells within the spheroids are growth-arrested, being subjected to DNA damage and/or undergoing apoptosis?

      (6) In the Materials and Methods section (lines 711-720), the description of how spheroid formation was achieved is unclear. Why were the cells first plated into non-adherent 96 well plates and then into non-adherent T75 flasks? Did the authors actually utilize and expand the cells from 144 T75 flasks and did the cells continue to proliferate after forming spheroids? Many cancer cell types will initially form monolayers when plated onto non-adherent surfaces such as plastic Petri dishes and will form spheroid-like structures only after several days. Other cells will only aggregate on the "non-adherent" surface and form spheroid-like structures but will not actually detach from the plate's surface. Have the authors actually documented the formation of true, non-adherent spheroids at 2 days and did they retain uniform size and shape throughout the collection period? The single photo in Supplementary Figure 1 does not explain when this was taken. The authors include a schematic in Figure 2A of the various conditions that were studied. A similar cartoon should be included to better explain precisely how the spheroids were generated and clarify the rationale for 96 well plating. Overall, a clearer and more concise description of how spheroids were actually generated and their appearance at different stages of formation needs to be provided.

      (7) The authors maintained 2D cultures in either normoxic or hypoxic (1% O2) states during the course of their experiments. On the other hand, 3D cultures were maintained under normoxic conditions, with the assumption that the interiors of the spheroids resemble the hypoxic interiors of tumors. However, the actual documentation of intra-spheroid hypoxia is never presented. It would be a good idea for the authors to compare the degree of hypoxia achieved by 2D (1% O2) and 3D cultures by staining with a hypoxia-detecting dye such as Image-iT Green. Comparing the fluorescence intensities in 2D cultures at various O2 concentrations might even allow for the construction of a "standard curve" that could serve to approximate the actual internal O2 concentration of spheroids. This would allow the authors to correlate the relative levels of hypoxia between 2D and 3D cultures.

      (8) Related to the previous 2 points, the authors performed RNAseq on spheroids only 48 hours after initiating 3D growth. I am concerned that this might not have been a sufficiently long enough time for the cells to respond fully to their hypoxic state, especially given my concerns in Point 6. Might the results have been even more robust had the authors waited longer to perform RNA seq? Why was this short time used?

      (9) What happens to the gene expression pattern if spheroids are re-plated into standard tissue culture plates after having been maintained as spheroids? Do they resume 2D growth and does the gene expression pattern change back?

      (10) Overall, the paper is quite descriptive in that it lists many gene sets that are altered in response to hypoxia and the formation of spheroids without really delving into the actual functional implications and/or prioritizing the sets. Some of these genes are shown by CRISPR screening to be essential for maintaining viability although in very few cases are these findings ever translated into functional studies (for example, see points 1-4 above). The list of genes and gene pathways could benefit from a better explanation and prioritization of which gene sets the authors believe to be most important for survival in response to hypoxia and for spheroid formation.

      (11) The authors used a single MYC-driven tumor cell line for their studies. However, in their original paper (Fang, et al. Nat Commun 2023, 14: 4003.) numerous independent cell lines were described. It would help to know whether RNAseq studies performed on several other similar cell lines gave similar results in terms of up & down-regulated transcripts (i.e. representative of the other cell lines are NEJF10 cells).

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Fang et al., provides a tour-de-force study uncovering cancer cell's varied dependencies on several gene programs for their survival under different biological contexts. The authors addressed genomic differences in 2D vs 3D cultures and how hypoxia affects gene expression. They used a Myc-driven murine liver cancer model grown in 2D monolayer culture in normoxia and hypoxia as well as cells grown as 3D spheroids and performed CRISPR-based genome-wide KO screen to identify genes that play important roles in cell fitness. Some context-specific gene effects were further validated by in-vitro and in-vivo gene KO experiments.

      Strengths:

      The key findings in this manuscript are:

      (1) Close to 50% of differentially expressed genes were common between 2D Hypoxia and 3D spheroids conditions but they had differences in chromatin accessibility.<br /> (2) VHL-HIF1a pathway had differential cell fitness outcomes under 2D normoxia vs 2D hypoxia and 3D spheroids.<br /> (3) Individual components of the mitochondrial respiratory chain complex had contrasting effects on cell fitness under hypoxia.<br /> (4) Knockout of organogenesis or developmental pathway genes led to better cell growth specifically in the context of 3D spheroids and knockout of epigenetic modifiers had varied effects between 2D and 3D conditions.<br /> (5) Another key program that leads to cells fitness outcomes in normoxia vs hypoxia is the lipid and fatty acid metabolism.<br /> (6) Prmt5 is a key essential gene under all growth conditions, but in the context of 3D spheroids even partial loss of Prmt5 has a synthetic lethal effect with Mtap deletion and Mtap is epigenetically silenced specifically in the 3D spheroids.

      Issues to address:

      (1) The authors should clarify the link between the findings of the enrichment of TGFb-SMAD signaling REACTOME pathway to the findings that knocking out TGFb-SMAD pathway leads to better cell fitness outcomes for cells in the 3D growth conditions.

      (2) Supplementary Figure 4C has been cited in the text but doesn't exist in the supplementary figures section.

      (3) A small figure explaining this ABC-Myc driven liver cancer model in Supplementary Figure 1 would be helpful to provide context.

      (4) The method for spheroids formation is not found in the method section.

      (5) In Supplementary Figure 1b, the comparisons should be stated the opposite way - 3D vs 2D normoxia and 2D-Hypoxia vs 2D-Normoxia.

      (6) There are typos in the legend for Supplementary Figure 10.

      (7) Consider putting Supplementary Figure 1b into the main Figure 1.

      (8) Please explain only one timepoint (endpoint) for 3D spheroids was performed for the CRISPR KO screen experiment, while several timepoints were done for 2D conditions? Was this for technical convenience?

      (9) In line 372, it is indicated that Bcor KO (Fig 5e) had growth advantage - this was observed in only one of the gRNA -- same with Kmt2d KO in the same figure where there was an opposite effect. Please justify the use of only one gRNA.

      (10) Why was CRISPR based KO strategy not used for the PRMT5 gene but rather than the use of shRNA.? Note that one of the shRNA for PRMT5 had almost no KO (PRMT5-shRNA2 Figure 7B) but still showed phenotype (Figure 7D) - please explain.

      (11) In Figure 7D, which samples (which shRNA group) were being compared to do the t-test?

      (12) In line 240, it is stated that oxphos gene set is essential for NEJF10 cell survival in both normoxia and hypoxia conditions. But shouldn't oxphos be non-essential in hypoxia as cells move away from oxphos and become glycolytic?

      (13) In line 485 it is mentioned that Pmvk and Mvd genes which are involved in cholesterol synthesis when knocked out had a positive effect on cell growth in 3D conditions and since cholesterol synthesis is essential for cell growth how does this not matter much in the context of 3D - please explain.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Fang et al. systematically investigate the effects of culture conditions on gene expression, genome architecture, and gene dependency. To do this, they cultivate the murine HCC line NEJF10 under standard culture conditions (2D), then under similar conditions but under hypoxia (1% oxygen, 2D hypoxia) and under normoxia as spheroids (3D). NEJF10 was isolated from a marine HCC model that relies exclusively on MYC as a driver oncogene. In principle, (1) RNA-seq, (2) ATAC-seq and (3) genetic screens were then performed in this isogenic system and the results were systematically compared in the three cultivation methods. In particular, genome-wide screens with the CRISPR library Brie were performed very carefully. For example, in the 2D conditions, many different time points were harvested to control the selection process kinetically. The authors note differential dependencies for metabolic processes (not surprisingly, hypoxia signaling is affected) such as the regulation and activity of mitochondria, but also organogenesis signaling and epigenetic regulation.

      Strengths:

      The topic is interesting and relevant and the experimental set-up is carefully chosen and meaningful. The paper is well written. While the study does not reveal any major surprises, the results represent an important resource for the scientific community.

      Weaknesses:

      However, this presupposes that the statistical analysis and processing are carried out very carefully, and this is where my main suggestions for revision begin. Firstly, I cannot find any information on the number of replicates in RNA- and ATAC-seq. This should be clearly stated in the results section and figure legends and cut-offs, statistical procedures, p-values, etc. should be mentioned as well. In principle, all NGS experiments (here ATAC- and RNA-seq) should be performed in replicates (at least duplicates, better triplicates) or the results should be validated by RT-PCR in independent biological triplicates. Secondly, the quantification of the analyses shown in the figures and especially in the legends is not sufficiently careful. Units are often not mentioned. Example Figure 4a: The legend says: 'gRNA reads' but how can the read count be -1? I would guess these are FC, log2FC, or Z-values. All figure legends need careful revision.

      Furthermore, I would find a comparison of the sgRNA abundances at the earliest harvesting time with the distribution in the library interesting, to see whether and to what extent selection has already taken place before the three culture conditions were established (minor point).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors identified that NOLC1 was upregulated in gastric cancer samples, which promoted cancer progression and cisplatin resistance. They further found that NOLC1 could bind to p53 and decrease its nuclear transcriptional activity, then inhibit p53-mediated ferroptosis. There are several major concerns regarding the conclusions.

      Strengths:

      This study identified that NOLC1 could bind to p53 and decrease its nuclear transcriptional activity, then inhibit p53-mediated ferroptosis in gastric cancer.

      Weaknesses:

      The major conclusions were not sufficiently supported by the results. The experiments were not conducted in a comprehensive manner.

    2. Reviewer #2 (Public review):

      Summary:

      Shengsheng Zhao et al. investigated the role of nucleolar and coiled-body phosphoprotein 1 (NOLC1) in relegating gastric cancer (GC) development and cisplatin-induced drug resistance in GC. They found a significant correlation between high NOLC1 expression and the poor prognosis of GC. Meanwhile, upregulation of NOLC1 was associated with cis-resistant GC. Experimentally, the authors demonstrate that knocking down NOLC1 increased GC sensitivity to Cis possibly by regulating ferroptosis. Mechanistically, they found NOLC1 suppressed ferroptosis by blocking the translocation of P53 from the cytoplasm to the nucleus and promoting its degradation. In addition, The authors also evaluated the effect of combinational treatment of anti-PD-1 and cisplatin in NOLC1 -knockdown tumor cells, revealing a potential role of NOLC1 in the targeted therapy for GC.

      Strengths:

      Chemoresistance is considered a major reason causing failure of tumor treatment and death of cancer patients. This paper explored the role of NOLC1 in the regulation of Cis-mediated resistance, which involves a regulated cell death named ferroptosis. These findings provide more evidence highlighting the study of regulated cell death to overcome drug resistance in cancer treatment, which could give us more potential strategies or targets for combating cancer.

      Weaknesses:

      More evidence supporting the regulation of ferroptosis induced by Cisplatin by NOLC1 should be added. Particularly, the role of ferroptosis in the cisplatin-resistance should be verified and whether NOLC1 regulates ferroptosis induced by additional FINs should be explored. Besides, the experiments to verify the regulation of ferroptosis sensitivity by NOLC1 are sort of superficial. The role of MDM2/p53 in ferroptosis or cisplatin resistance mediated by NOLC1 should be further studied by genetic manipulation of p53, which is the key evidence to confirm its contribution to NOLC1 regulation of GC and relative cell death.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have put forth a compelling argument that NOLC1 is indispensable for gastric cancer resistance in both in vivo and in vitro models. They have further elucidated that NOLC1 silencing augments cisplatin-induced ferroptosis in gastric cancer cells. The mechanistic underpinning of their findings suggests that NOLC1 modulates the p53 nuclear/plasma ratio by engaging with the p53 DNA Binding Domain, which in turn impedes p53-mediated transcriptional regulation of ferroptosis. Additionally, the authors have shown that NOLC1 knockdown triggers the release of ferroptosis-induced damage-associated molecular patterns (DAMPs), which activate the tumor microenvironment (TME) and enhance the efficacy of the anti-PD-1 and cisplatin combination therapy.

      Strengths:

      The manuscript presents a robust dataset that substantiates the authors' conclusion. They have identified NOLC1 as a potential oncogene that confers resistance to immuno-chemotherapy in gastric cancer through the mediation of ferroptosis and subsequent TME reprogramming. This discovery positions NOLC1 as a promising therapeutic target for gastric cancer treatment. The authors have delineated a novel mechanistic pathway whereby NOLC1 suppresses p53 transcriptional functions by reducing its nuclear/plasma ratio, underscoring the significance of p53 nuclear levels in tumor suppression over total protein levels.

      Weaknesses:

      While the overall findings are commendable, there are specific areas that could benefit from further refinement. The authors have posited that NOLC1 suppresses p53-mediated ferroptosis; however, the mRNA levels of ferroptosis genes regulated by p53 have not been quantified, which is a critical gap in the current study. In Figure 4A, transmission electron microscopy (TEM) results are reported solely for the MGC-803 cell line. It would be beneficial to include TEM data for the MKN-45 cell line to strengthen the findings. The authors have proposed a link between NOLC1-mediated reduction in the p53 nuclear/plasma ratio and gastric cancer resistance, yet the correlation between this ratio and patient prognosis remains unexplored, which is a significant limitation in the context of clinical relevance.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Tiang et al. explore the role of ubiquitination of non-structural protein 16 (nsp16) in the SARS-CoV-2 life cycle. nsp16, in conjunction with nsp10, performs the final step of viral mRNA capping through its 2'-O-methylase activity. This modification allows the virus to evade host immune responses and protects its mRNA from degradation. The authors demonstrate that nsp16 undergoes ubiquitination and subsequent degradation by the host E3 ubiquitin ligases UBR5 and MARCHF7 via the ubiquitin-proteasome system (UPS). Specifically, UBR5 and MARCHF7 mediate nsp16 degradation through K48- and K27-linked ubiquitination, respectively. Notably, degradation of nsp16 by either UBR5 or MARCHF7 operates independently, with both mechanisms effectively inhibiting SARS-CoV-2 replication in vitro and in vivo. Furthermore, UBR5 and MARCHF7 exhibit broad-spectrum antiviral activity by targeting nsp16 variants from various SARS-CoV-2 strains. This research advances our understanding of how nsp16 ubiquitination impacts viral replication and highlights potential targets for developing broadly effective antiviral therapies.

      Strengths:

      The proposed study is of significant interest to the virology community because it aims to elucidate the biological role of ubiquitination in coronavirus proteins and its impact on the viral life cycle. Understanding these mechanisms will address broadly applicable questions about coronavirus biology and enhance our overall knowledge of ubiquitination's diverse functions in cell biology. Employing in vivo studies is a strength.

      Weaknesses:

      While the conclusions are generally well-supported by the data, additional work is needed to confirm that NSP16 is ubiquitinated in a biologically relevant context and to better define the roles of the reported E3 ligases. Clarifications regarding aspects of data acquisition, data analysis, and text editing could notably strengthen the manuscript and its conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides a novel understanding of CoV-host interaction, leading potential therapeutics for SARS-CoV2 infection. Tian et al. identified and demonstrated that the two E3 ligases UBR5 and MARCHF7 both interact with and catalyze the ubiquitination of NSP16 protein of SARS-CoV2, thereby leading to its degradation by the ubiquitin-proteasome system (UPS) and inhibiting SARS-CoV-2 replication. It is interesting to see that the two E3 ligases perform their functions on the same target independently.

      Strengths:

      Overall, the topic and initial discoveries appear interesting. The experimental designs of this study were rigorous and logical, most of the work has been carefully done, and the conclusions drawn from this study are relatively convincing and reliable.

      Weaknesses:

      The quality of the presentation could be improved with better organization, a more conservative interpretation of the data, and further clarity in the writing.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript "SARS-CoV-2 nsp16 is regulated by host E3 ubiquitin ligases, UBR5 and MARCHF7" is an interesting work by Tian et al. describing the degradation/ stability of NSP16 of SARS CoV2 via K48 and K27-linked Ubiquitination and proteasomal degradation. The authors have demonstrated that UBR5 and MARCHF7, an E3 ubiquitin ligase bring about the ubiquitination of NSP16. The concept, and experimental approach to prove the hypothesis looks ok. The in vivo data looks ok with the controls. Overall, the manuscript is good. However, several major and minor changes/points need to be addressed.

      Strengths:

      The study identified important E3 ligases (MARCHF7 and UBR5) that can ubiquitinate NSP16, an important viral factor.

      Weaknesses:

      Most of the in vitro experiments (IP, overexpression) lack appropriate controls. The summary figure in actual terms does not show/correlate to the experimental findings.

    1. Reviewer #1 (Public review):

      Summary:

      The study "Monitoring of Cell-free Human Papillomavirus DNA in Metastatic or Recurrent Cervical Cancer: Clinical Significance and Treatment Implications" by Zhuomin Yin and colleagues focuses on the relationship between cell-free HPV (cfHPV) DNA and metastatic or recurrent cervical cancer patients. It expands the application of cfHPV DNA in tracking disease progression and evaluating treatment response in cervical cancer patients. The study is overall well-designed, including appropriate analyses.

      Strengths:

      The findings provide valuable reference points for monitoring drug efficacy and guiding treatment strategies in patients with recurrent and metastatic cervical cancer. The concordance between HPV cfDNA fluctuations and changes in disease status suggests that cfDNA could play a crucial role in precision oncology, allowing for more timely interventions. As with similar studies, the authors used Droplet Digital PCR to measure cfDNA copy numbers, a technique that offers ultrasensitive nucleic acid detection and absolute quantification, lending credibility to the conclusions.

      Weaknesses:

      Despite including 28 clinical cases, only 7 involved recurrent cervical cancer, which may not be sufficient to support some of the authors' conclusions fully. Future studies on larger cohorts could solidify HPV cfDNA's role as a standard in the personalized treatment of recurrent cervical cancer patients.

    2. Reviewer #2 (Public review):

      Summary:

      The authors conducted a study to evaluate the potential of circulating HPV cell-free DNA (cfDNA) as a biomarker for monitoring recurrent or metastatic HPV+ cervical cancer. They analyzed serum samples from 28 patients, measuring HPV cfDNA levels via digital droplet PCR and comparing these to squamous cell carcinoma antigen (SCC-Ag) levels in 26 SCC patients, while also testing the association between HPV cfDNA levels and clinical outcomes. The main hypothesis that the authors set out to test was whether circulating HPV cfDNA levels correlated with metastatic patterns and/or treatment response in HPV+ CC.

      The main claims put forward by the paper are that:

      (1) HPV cfDNA was detected in all 28 CC patients enrolled in the study and levels of HPV cfDNA varied over a median 2-month monitoring period.<br /> (2) 'Median baseline' HPV cfDNA varied according to 'metastatic pattern' in individual patients.<br /> (3) Positivity rate for HPV cfDNA was more consistent than SCC-Ag.<br /> (4) In 20 SCC patients monitored longitudinally, concordance with changes in disease status was 90% for HPV cfDNA.

      This study highlights HPV cfDNA as a promising biomarker with advantages over SCC-Ag, underscoring its potential for real-time disease surveillance and individualized treatment guidance in HPV-associated cervical cancer.

      Strengths:

      This study presents valuable insights into HPV+ cervical cancer with potential translational significance for management and guiding therapeutic strategies. The focus on a non-invasive approach is particularly relevant for women's cancers, and the study exemplifies the promising role of HPV cfDNA as a biomarker that could aid personalized treatment strategies.

      Weaknesses:

      While the authors acknowledge the study's small cohort and variability in sequential sampling protocols as a limitation, several revisions should be made to ensure that (1) the findings are presented in a way that aligns more closely with the data without overstatement and (2) that the statistical support for these findings is made more clear. Specific suggestions are outlined below.

      (1) The authors should provide source data for Figures 2, 3, and 4 as supplementary material.

      (2) Description of results in Figure 2: Figure 2 would benefit from clearer annotations regarding HPV virus subtypes. For example, does the color-coding in Figure 2B imply that all samples in the LR subgroup are of type HPV16? If that is the case, is it possible that detection variations are due to differences in subtype detection efficiency rather than cfDNA levels? The authors should clarify these aspects. Annotation of Figure 2B suggests that the p-value comes from comparing the LR and LN+H+DSM groups. This should be clarified in the legend. If this p-value comes from comparing HPV cfDNA copies for the (LR, LNM, HM) and (LN+HM, LN+HM+DSM) groups, did the authors carry out post-hoc pairwise comparisons? It would be helpful to include acronyms for these groups in the legend also.

      (3) Interpretation of results in Figure 2 and elsewhere: Significant differences detected in Figure 2B could imply potential associations between HPV cfDNA levels (or subtypes) and recurrence/metastasis patterns. Figure 2C shows that there is a difference in cfDNA levels between the groups compared, suggesting an association but this would not necessarily be a direct "correlation". Overall, interpretation of statistical findings would benefit from more precise language throughout the text and overstatement should be avoided.

      (4) The authors state that six patients showed cfDNA elevation with clinically progressive disease, yet only three are represented in Figure 3B1 under "Patients whose disease progressed during treatment." What is the expected baseline variability in cfDNA for patients? If we look at data from patients with early-stage cancer would we see similar fluctuations? And does the degree of variability vary for different HPV subtypes? Without understanding the normal fluctuations in cfDNA levels, interpreting these changes as progression indicators may be premature.

      (5) It would be helpful if where p-values are given, the test used to derive these values was also stated within parentheses e.g. (P < 0.05, permutation test with Benjamini-Hochberg procedure).

    1. Reviewer #1 (Public review):

      This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

      I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

      I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

      It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

      As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

      Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

    2. Reviewer #1 (Public review):

      This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

      I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

      I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

      It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

      As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

      Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

  2. Dec 2024
    1. Reviewer #1 (Public review):

      Summary:

      Dalal and Haddad investigated how neurons in the olfactory bulb are synchronized in oscillatory rhythms at gamma frequency. Temporal coordination of action potentials fired by projection neurons can facilitate information transmission to downstream areas. In a previous paper (Dalal and Haddad 2022, https://doi.org/10.1016/j.celrep.2022.110693), the authors showed that gamma frequency synchronization of mitral/tufted cells (MTCs) in the olfactory bulb enhances the response in the piriform cortex. The present study builds on these findings and takes a closer look at how gamma synchronization is restricted to a specific subset of MTCs in the olfactory bulb. They combined odor and optogenetic stimulations in anesthetized mice with extracellular recordings.

      The main findings are that lateral synchronization of MTCs at gamma frequency is mediated by granule cells (GCs), independent of the spatial distance, and strongest for MTCs with firing rates close to 40 Hz. The authors conclude that this reveals a simple mechanism by which spatially distributed neurons can form a synchronized ensemble. In contrast to lateral synchronization, they found no evidence for the involvement of GCs in lateral inhibition of nearby MTCs.

      Strengths:

      Investigating the mechanisms of rhythmic synchronization in vivo is difficult because of experimental limitations for the readout and manipulation of neuronal populations at fast timescales. Using spatially patterned light stimulation of opsin-expressing neurons in combination with extracellular recordings is an elegant approach. The paper provides evidence for an activity-dependent synchronization of MTCs in gamma frequency that is mediated by GCs.

      Weaknesses:

      The study provides several results showing the firing of MTCs in gamma frequency range, however, direct evidence for the synchronization of MTCs in gamma frequency is missing.

    2. Reviewer #2 (Public review):

      Summary

      This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.

      The authors use a clever combination of single cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods, to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of other, lateral glomerular MTC ensembles. This assay is rounded off by a gain of function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization of a single MTC's spiking to the gamma rhythm. They had used the same optogenetic manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation.

      Strengths

      This study is of high interest for olfactory processing since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance synchronization of single neurons to gamma in one receptor channel and thus by inference most likely in both. Such synchronization across co-active receptor channels in turn would enable upstream neurons in olfactory cortices to read out odour identity.

      The authors find that these interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities. In my view, analogies between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.

      Such enhanced local synchronization to gamma in one channel was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve reduction of firing rates, drops off with distance and most likely is caused by a different circuit mediated by PV+ neurons (PVN). The evidence for the latter is more circumstantial since no manipulations of PVNs were performed.

      Weaknesses/Room for improvement

      This study is an impressive proof of concept that however does not yet allow for broad generalization. Thus the framing of results should be slightly more careful IMHO. While the claims in the initial version of this preprint have been toned down quite substantially, the authors do not provide direct hard evidence for synchronization across channels. Admittedly, this would be hard to achieve since it would require paired recordings from MTCs in different locations in vivo. Therefore, the term „lateral synchronization" as it is used in the abstract is still problematic, as well as the title which should rather say „can enable" instead of „enables". That being said, this study definitely provides important evidence regarding the concept of "lateral synchronization".

      The other comments and recommendations have been well taken care of in the new version.

    1. Reviewer #1 (Public review):

      The authors aimed to investigate how the probability of a reversal in a decision-making task is represented in cortical neurons. They analyzed neural activity in the prefrontal cortex of monkeys and units in recurrent neural networks (RNNs) trained on a similar task. Their goal was to understand how the dynamical systems that implement computation perform a probabilistic reversal learning task in RNNs and nonhuman primates.

      Major strengths and weaknesses:

      Strengths:

      (1) Integrative Approach: The study exemplifies a modern approach by combining empirical data from monkey experiments with computational modeling using RNNs. This integration allows for a more comprehensive understanding of the dynamical systems that implement computation in both biological and artificial neural networks.

      (2) The focus on using perturbations to identify causal relationships in dynamical systems is a good goal. This approach aims to go beyond correlational observations.

      Weaknesses:

      (1) The description of the RNN training procedure and task structure lacks detail, making it difficult to fully evaluate the methodology.

      (2) The conclusion that the representation is better described by separable dynamic trajectories rather than fixed points on a line attractor may be premature.

      (3) The use of targeted dimensionality reduction (TDR) to identify the axis determining reversal probability may not necessarily isolate the dimension along which the RNN computes reversal probability.

      Appraisal of aims and conclusions:

      The authors claim that substantial dynamics associated with intervening behaviors provide evidence against a line attractor. The conclusion that this representation is better described by separable dynamic trajectories rather than fixed points on a line attractor may be premature. The authors found that the state was translated systematically in response to whether outcomes were rewarded, and this translation accumulated across trials. This is consistent with a line attractor, where reward input bumps the state along a line. The observed dynamics could still be consistent with a curved line attractor, with faster timescale dynamics superimposed on this structure.

      Likely impact and utility:

      This work contributes to our understanding of how probabilistic information is represented in neural circuits and how it influences decision-making. The methods used, particularly the combination of empirical data and RNN modeling, provide a valuable approach for investigating neural computations. However, the impact may be limited by some of the methodological concerns raised.

      The data and methods could be useful to the community, especially if the authors provide more detailed descriptions of their RNN training procedures and task structure. However, reverse engineering of the network dynamics was minimal. Most analyses didn't take advantage of the full access to the RNN's update equations.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors trained RNN to perform a reversal task also performed by animals while PFC activity is recorded. The authors devised a new method to train RNN on this type of reversal task, which in principle ensures that the behavior of the RNN matches the behavior of the animal. They then performed some analysis of neural activity, both RNN and PFC recording, focusing on the neural representation of the reversal probability and its evolution across trials. Given the analysis presented, it has been difficult for me to assess at which point RNN can reasonably be compared to PFC recordings.

      Strengths:

      Focusing on a reversal task, the authors address a challenge in RNN training, as they do not use a standard supervised learning procedure where the desired output is available for each trial. They propose a new way of doing that.

      They attempt to confront RNN and neural recordings in behaving animals.

      Weaknesses:

      The design of the task for the RNN does not seem well suited to support the claim of the paper: no action is required to be performed by neurons in the RNN, instead, the choice of the animal is determined by applying a non-linearity to the RNN's readout (equation 7), no intervening behavior is thus performed by neurons on which the analysis is performed throughout the paper. 
Instead, it would have been nice to mimic more closely the task structure of the experiments on monkeys, with a fixation period where the read-out is asked to be at a zero value, and then asked to reach a target value (not just taking its sign), depending on the expected choice after a cue presentation period.

      The comparison between RNN and neural data focuses on very specific features of neural activity. It would have been nice to see how individual units in the RNN behave over the course of the trial, do all units show oscillatory behavior like the readout shown in Figure 1B?

      It would be nice to justify why it has been chosen to take a network of inhibitory neurons and to know whether the analysis can also be performed with excitatory neurons.
 All the analysis relies on the dimensionality reduction. It would have been nice to have some other analysis confirming the claim of the absence of a line attractor in the neural data. Or at least to better characterize this dimensionality reduction procedure, e.g. how much of the variance is explained by this analysis for instance?

      It is thus difficult to grasp, besides the fact that reversal behavior is similar, to what extent the RNN is comparable to PFC functioning and to what extent we learn anything about the latter.

      Other computational works (e.g. [1,2]) have developed procedures to train RNN on reversal-like tasks, it would have been nice to compare the procedure presented here with these other works.

      [1] H Francis Song & Xiao-Jing Wang. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife doi:10.7554/elife.21492.001.

      [2] Molano-Mazón, M. et al. Recurrent networks endowed with structural priors explain suboptimal animal behavior. Current Biology 33, 622-638.e7 (2023).

    3. Reviewer #3 (Public review):

      Summary:

      Kim et al. present a study of the neural dynamics underlying reversal learning in monkey PFC and neural networks. The concept of studying neural dynamics throughout the task (including intervening behaviour) is interesting, and the data provides some insights into the neural dynamics driving reversal learning. The modelling seems to support the analyses, but both the modelling and analyses also leave several open questions.

      Strengths:

      The paper addresses an interesting topic of the neural dynamics underlying reversal learning in PFC, using a combination of biological and simulated data. Reversal learning has been studied extensively in neuroscience, but this paper takes a step further by analysing neural dynamics throughout the trials instead of focusing on just the evidence integration epoch.

      The authors show some close parallels between the experimental data and RNN simulations, both in terms of behaviour and neural dynamics. The analyses of how rewarded and unrewarded trials differentially affect dynamics throughout the trials in RNNs and PFC were particularly interesting. This work has the potential to provide new insights into the neural underpinnings of reversal learning.

      Weaknesses:

      Conceptual:

      A substantial focus of the paper is on the within-trial dynamics associated with "intervening behaviour", but it is not clear whether that is well-modelled by the RNN. In particular, since there is little description of the experimental task, and the RNN does not have to do any explicit computation during the non-feedback parts of the trial, it is unclear whether the RNN 'non-feedback' dynamics can be expected to reasonably model the experimental data.

      Data analyses:

      While the basic analyses seem mostly sound, it seems like a potential confound that they are all aligned to the inferred reversal trial rather than the true experimental reversal trial. For example, the analyses showing that 'x_rev' decays strongly after the reversal trial, irrespective of the reward outcome, seem like they are true essentially by design. The choice to align to the inferred reversal trial also makes this trial seem 'special' (e.g. in Figure 2, Figure 5A), but it is unclear whether this is a real feature of the data or an artifact of effectively conditioning on a change in behaviour. It would be useful to investigate whether any of these analyses differ when aligned to the true reversal trial. It is also unsurprising that x_rev increases before the reversal and decreases after the reversal (it is hard to imagine a system where this is not the case), yet all of Figure 5 and much of Figure 4 is devoted to this point.

      Most of the analyses focus on the dynamics specifically in the x_rev subspace, but a major point of the paper is to say that biological (and artificial) networks may also have to do other things at different times in the trial. If that is the case, it would be interesting to also ask what happens in other subspaces of neural activity, that are not specifically related to evidence integration or choice - are there other subspaces that explain substantial variance? Do they relate to any meaningful features of the experiment?

      On a related note, descriptions of the task itself, the behaviour of the animal(s?), and the neural recordings are largely absent, making it difficult to know what we should expect from neural dynamics throughout a trial. In fact, we are not even told how many monkeys were used for the paper or which part of PFC the recordings are from.

      Modelling:

      There are a number of surprising and non-standard modelling choices made in this paper. For example, the choice to only use inhibitory neurons is non-conventional and not consistent with prior work. The authors cite van Vreeswijk & Sompolinsky's balanced network paper, but this and most other balanced networks use a combination of excitatory and inhibitory neurons.

      It also seems like the inputs are provided without any learnable input weights (and the form of the inputs is not described in any detail). This makes it hard to interpret the input-driven dynamics during the different phases of a trial, despite these dynamics being a central topic of the paper.

      It is surprising that the RNN is "trained to flip its preferred choice a few trials after the inferred scheduled reversal trial", with the reversal trial inferred by an ideal Bayesian observer. A more natural approach would be to directly train the RNN to solve the task (by predicting the optimal choice) and then investigate the emergent behaviour & dynamics. If the authors prefer their imitation learning approach (which should at least be motivated), it is also surprising that the network is trained to predict the reversal trial inferred using Bayesian smoothing instead of Bayesian filtering.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      A few questions remain:

      (1) What is the behavioral consequence for loss of srrm4 and/or loss-of-function mutations in other genes encoding microexon splicing machinery in zebrafish?

      (2) What is the consequence of loss-of-function in microexon splicing genes on splicing of the genes studied (especially those for which phenotypes were observed).

      (3) For the microexons whose loss is associated with substantial behavioral, morphological, or activity changes, are the same changes observed in loss-of-function mutants for these genes?

      (4) Do "microexon mutations" presented here result in the precise loss of those microexons from the mRNA sequence? E.g. are there other impacts on mRNA sequence or abundance?

      (5) Microexons with a "canonical layout" (containing TGC / UC repeats) were selected based on the likelihood that they are regulated by srrm4. Are there other parallel pathways important for regulating the inclusion of microexons? Is it possible to speculate on whether they might be more important in zebrafish or in the case of early brain development?

      Strengths:

      (1) The authors provide a qualitative analysis of splicing plasticity for microexons during early zebrafish development.

      (2) The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

      Weaknesses:

      (1) It is difficult to interpret the largely negative findings reported in this paper without knowing how the loss of srrm4 affects brain activity, morphology, and behavior in zebrafish.

      (2) The authors do not present experiments directly testing the effects of their mutations on RNA splicing/abundance.

      (3) A comparison between loss-of-function phenotypes and loss-of-microexon splicing phenotypes could help interpret the findings from positive hits.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript from Calhoun et al. uses a well-established screening protocol to investigate the functions of microexons in zebrafish neurodevelopment. Microexons have gained prominence recently due to their enriched expression in neural tissues and misregulation in autism spectrum disease. However, screening of microexon functionality has thus far been limited in scope. The authors address this lack of knowledge by establishing zebrafish microexon CRISPR deletion lines for 45 microexons chosen in genes likely to play a role in CNS development. Using their high throughput protocol to test larval behaviour, brain activity, and brain structure, a modest group of 9 deletion lines was revealed to have neurodevelopmental functions, including 2 previously known to be functionally important.

      Strengths:

      (1) This work advances the state of knowledge in the microexon field and represents a starting point for future detailed investigations of the function of 7 microexons.

      (2) The phenotypic analysis using high-throughput approaches is sound and provides invaluable data.

      Weaknesses:

      (1) There is not enough information on the exact nature of the deletion for each microexon.

      (2) Only one deletion is phenotypically analysed, leaving space for the phenotype observed to be due to sequence modifications independent of the microexon itself.

    3. Reviewer #3 (Public review):

      Summary:

      This paper sought to understand how microexons influence early brain function. By selectively deleting a large number of conserved microexons and then phenotyping the mutants with behavior and brain activity assays, the authors find that most microexons have minimal effects on the global brain activity and broad behaviors of the larval fish-- although a few do have phenotypes.

      Strengths:

      The work takes full advantage of the scale that is afforded in zebrafish, generating a large mutant collection that is missing microexons and systematically phenotyping them with high throughput behaviour and brain activity assays. The work lays an important foundation for future studies that seek to uncover the likely subtle roles that single microexons will play in shaping development and behavior.

      Weaknesses:

      The work does not make it clear enough what deleting the microexon means, i.e. is it a clean removal of the microexon only, or are large pieces of the intron being removed as well-- and if so how much? Similarly, for the microexon deletions that do yield phenotypes, it will be important to demonstrate that the full-length transcript levels are unaffected by the deletion. For example, deleting the microexon might have unexpected effects on splicing or expression levels of the rest of the transcript that are the actual cause of some of these phenotypes.

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.<br /> Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      (2) It's not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension.

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well described (Fig.1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      A more detailed analysis of glial cell types within the hypothalamus in response to drug should be provided.

      (4) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      Comments on revisions:

      Some of the concerns were addressed in this revised version, and the authors responded and addressed study design limitations in both sexes/ages.

      However, there are still some concerns that were not sufficiently addressed:

      While the term "senescent" was changed to "stressed," some histological/ cellular validation of this phenotype is still needed.

      Some discussion on the sex-specific effects of 17α-estradiol in the hypothalamus is still required. Previous studies in mice demonstrated that 17α-estradiol reduced hypothalamic microgliosis and astrogliosis in male but not female UM-HET3 mice.

      Additionally, the provided analysis on astrocytes and microglia is superficial.

    2. Reviewer #2 (Public review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels to those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons on mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      • The single nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.<br /> • There is a variety of functions used that allowed the differential analysis of a very complex type of data. This led to a better comparison between the different groups in many levels.<br /> • There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression.

      Weaknesses:

      • One main control group is missing from the study, the young males treated with 17α-Estradiol.<br /> • Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.<br /> • Although the authors claim to have several findings, the data fail to support these claims.<br /> • The study is about improving ageing but no physiological data from the study demonstrated such claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.<br /> • Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression is related to metabolic, synaptic or other function.

      Comments on revisions:

      The authors revised part of the manuscript to address some of the reviewers' comments This improved the language and the text flow to a certain extent. They also added an additional analysis including glial cells. However, they failed to address the main weaknesses brought up by the reviewers and did not add any experimental demonstration of their claims on lifespan expansion induced by 17α-estradiol in rats. In addition, they insisted i keeping parts in the discussion that are not directly linked to any of the papers' findings.

    1. Reviewer #1 (Public review):

      The manuscript examines the role of Naa10 in cKO animals, in immortalized neurons, and in primary neurons. Given that Naa10 mutations in humans produce defects in nervous system function, the authors used various strategies to try to find a relevant neuronal phenotype and its potential molecular mechanism.

      This work contains valuable findings that suggest that the depletion of Naa10 from CA1 neurons in mice exacerbates anxiety-like behaviors. Using neuronal-derived cell lines authors establish a link between N-acetylase activity, Btbd3 binding to CapZb, and F-actin, ultimately impinging on neurite extension. The evidence demonstrating this is in most cases incomplete, since some key controls are missing and clearly described or simply because claims are not supported by the data. The manuscript also contains biochemical, co-immunoprecipitation, and proteomic data that will certainly be of value to our knowledge of the effects of protein N--acetylation in neuronal development and function.

    2. Reviewer #2 (Public review):

      In this study, the authors sought to elucidate the neural mechanisms underlying the role of Naa10 in neurodevelopmental disruptions with a focus on its role in the hippocampus. The authors use an impressive array of techniques to identify a chain of events that occurs in the signaling pathway starting from Naa10 acetylating Btbd3 to regulation of F-actin dynamics that are fundamental to neurite outgrowth. They provide convincing evidence that Naa10 acetylates Btbd3, that Btbd3 facilitates CapZb binding to F-actin in a Naa10 acetylation-dependent manner, and that this CapZb binding to F-actin is key to neurite outgrowth. Besides establishing this signaling pathway, the authors contribute novel lists of Naa10 and Btbd3 interacting partners, which will be useful for future investigations into other mechanisms of action of Naa10 or Btbd3 through alternative cell signaling pathways. The evidence presented for an anxiety-like behavioral phenotype as a result of Naa10 dysfunction is mixed and tenuous, and assays for the primary behaviors known to be altered by Naa10 mutations in humans were not tested. As such, behavioral findings and their translational implications should be interpreted with caution. Finally, while not central to the main cell signaling pathway delineated, the characterization of brain region-specific and cell maturity of Naa10 expression patterns was presented in few to single animals and not quantified, and as such should also be interpreted with caution. On a broader level, these findings have implications for neurodevelopment and potentially, although not tested here, synaptic plasticity in adulthood, which means this novel pathway may be fundamental for brain health.

      Summarized list of minor concerns

      (1) The early claims of the manuscript are supported by very small sample sizes (often 1-3) and/or lack of quantification, particularly in Figures S1 and 1.

      (2) Evidence is insufficient for CA1-specific knockdown of Naa10.

      (3) The relationship between the behaviors measured, which centered around mood, and Ogden syndrome, was not clear, and likely other behavioral measures would be more translationally relevant for this study. Furthermore, the evidence for an anxiety-like phenotype was mixed.

      (4) Btbd3 is characterized by the authors as an OCD risk gene, but its status as such is not well supported by the most recent, better-powered genome-wide association studies than the one that originally implicated Btbd3. However, there is evidence that Btbd3 expression, including selectively in the hippocampus, is implicated in OCD-relevant behaviors in mice.

      (5) The reporting of the statistics lacks sufficient detail for the reader to deduce how experimental replicates were defined.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Bisht et al address the hypothesis that protein folding chaperones may be implicated in aggregopathies and in particular Tau aggregation, as a means to identify novel therapeutic routes for these largely neurodegenerative conditions.

      The authors conducted a genetic screen in the Drosophila eye, which facilitates the identification of mutations that either enhance or suppress a visible disturbance in the nearly crystalline organization of the compound eye. They screened by RNA interference all 64 known Drosophila chaperones and revealed that mutations in 20 of them exaggerate the Tau-dependent phenotype, while 15 ameliorated it. The enhancer of the degeneration group included 2 subunits of the typically heterohexameric prefoldin complex and other co-translational chaperones.

      The authors characterized in depth one of the prefoldin subunits, Pfdn5, and convincingly demonstrated that this protein functions in the regulation of microtubule organization, likely due to its regulation of proper folding of tubulin monomers. They demonstrate convincingly using both immunohistochemistry in larval motor neurons and microtubule binding assays that Pfdn5 is a bona fide microtubule-associated protein contributing to the stability of the axonal microtubule cytoskeleton, which is significantly disrupted in the mutants.

      Similar phenotypes were observed in larvae expressing Frontotemporal dementia with Parkinsonism on chromosome 17-associated mutations of the human Tau gene V377M and R406W. On the strength of the phenotypic evidence and the enhancement of the TauV377M-induced eye degeneration, they demonstrate that loss of Pfdn5 exaggerates the synaptic deficits upon expression of the Tau mutants. Conversely, the overexpression of Pfdn5 or Pfdn6 ameliorates the synaptic phenotypes in the larvae, the vacuolization phenotypes in the adult, and even memory defects upon TauV377M expression.

      Strengths:

      The phenotypic analyses of the mutant and its interactions with TauV377M at the cell biological, histological, and behavioral levels are precise, extensive, and convincing and achieve the aims of characterization of a novel function of Pfdn5.

      Regarding this memory defect upon V377M tau expression. Kosmidis et al (2010) pmid: 20071510, demonstrated that pan-neuronal expression of TauV377M disrupts the organization of the mushroom bodies, the seat of long-term memory in odor/shock and odor/reward conditioning. If the novel memory assay the authors use depends on the adult brain structures, then the memory deficit can be explained in this manner.

      If the mushroom bodies are defective upon TauV377M expression does overexpression of Pfdn5 or 6 reverse this deficit? This would argue strongly in favor of the microtubule stabilization explanation.

      The discovery that Pfdn5 (and 6 most likely) affect tauV377M toxicity is indeed a novel and important discovery for the Tauopathies field. It is important to determine whether this interaction affects only the FTDP-17-linked mutations, or also WT Tau isoforms, which are linked to the rest of the Tauopathies. Also, insights on the mode(s) that Pfdn5/6 affect Tau toxicity, such as some of the suggestions above are aiming at, will likely be helpful towards therapeutic interventions.

      Weaknesses:

      What is unclear however is how Pfdn5 loss or even overexpression affects the pathological Tau phenotypes.

      Does Pfdn5 (or 6) interact directly with TauV377M? Colocalization within tissues is a start, but immunoprecipitations would provide additional independent evidence that this is so.

      Does Pfdn5 loss exacerbate TauV377M phenotypes because it destabilizes microtubules, which are already at least partially destabilized by Tau expression?<br /> Rescue of the phenotypes by overexpression of Pfdn5 agrees with this notion.

      However, Cowan et al (2010) pmid: 20617325 demonstrated that wild-type Tau accumulation in larval motor neurons indeed destabilizes microtubules in a Tau phosphorylation-dependent manner.

      So, is TauV377M hyperphosphorylated in the larvae?? What happens to TauV377M phosphorylation when Pfdn5 is missing and presumably more Tau is soluble and subject to hyperphosphorylation as predicted by the above?

      Expression of WT human Tau (which is associated with most common Tauopathies other than FTDP-17) as Cowan et al suggest has significant effects on microtubule stability, but such Tau-expressing larvae are largely viable. Will one mutant copy of the Pfdn5 knockout enhance the phenotype of these larvae?? Will it result in lethality? Such data will serve to generalize the effects of Pfdn5 beyond the two FDTP-17 mutations utilized.

      Does the loss of Pfdn5 affect TauV377M (and WTTau) levels?? Could the loss of Pfdn5 simply result in increased Tau levels? And conversely, does overexpression of Pfdn5 or 6 reduce Tau levels?? This would explain the enhancement and suppression of TauV377M (and possibly WT Tau) phenotypes. It is an easily addressed, trivial explanation at the observational level, which if true begs for a distinct mechanistic approach.

      Finally, the authors argue that TauV377M forms aggregates in the larval brain based on large puncta observed especially upon loss of Pfdn5. This may be so, but protocols are available to validate this molecularly the presence of insoluble Tau aggregates (for example, pmid: 36868851) or soluble Tau oligomers as these apparently differentially affect Tau toxicity. Does Pfdn5 loss exaggerate the toxic oligomers and overexpression promotes the more benign large aggregates??

    2. Reviewer #2 (Public review):

      Bisht et al detail a novel interaction between the chaperone, Prefoldin 5, microtubules, and tau-mediated neurodegeneration, with potential relevance for Alzheimer's disease and other tauopathies. Using Drosophila, the study shows that Pfdn5 is a microtubule-associated protein, which regulates tubulin monomer levels and can stabilize microtubule filaments in the axons of peripheral nerves. The work further suggests that Pfdn5/6 may antagonize Tau aggregation and neurotoxicity. While the overall findings may be of interest to those investigating the axonal and synaptic cytoskeleton, the detailed mechanisms for the observed phenotypes remain unresolved and the translational relevance for tauopathy pathogenesis is yet to be established. Further, a number of key controls and important experiments are missing that are needed to fully interpret the findings.

      The strength of this study is the data showing that Pfdn5 localizes to axonal microtubules and the loss-of-function phenotypic analysis revealing disrupted synaptic bouton morphology. The major weakness relates to the experiments and claims of interactions with Tau-mediated neurodegeneration. In particular, it is unclear whether knockdown of Pfdn5 may cause eye phenotypes independent of Tau. Further, the GMR>tau phenotype appears to have been incorrectly utilized to examine age-dependent, neurodegeneration.

      This manuscript argues that its findings may be relevant to thinking about mechanisms and therapies applicable to tauopathies; however, this is premature given that many questions remain about the interactions from Drosophila, the detailed mechanisms remain unresolved, and absent evidence that tau and Pfdn may similarly interact in the mammalian neuronal context. Therefore, this work would be strongly enhanced by experiments in human or murine neuronal culture or supportive evidence from analyses of human data.

    1. Reviewer #1 (Public review):

      Summary:

      This study utilized publicly available Hi-C data to ensemble a comprehensive set of breast cancer cell lines (luminal, Her2+, TNBC) with varying metastatic features to answer whether breast cancer cells would acquire organ-specific features at the 3D genome level to metastasize to that specific organ. The authors focused on lung metastasis and included several controls as the comparison including normal mammary lines, normal lung epithelial lines, and lung cancer cell lines. Due to the lower resolution at 250KB binning size, the authors only addressed the compartments (A for active compartment and B for inactive compartment) not the other 3D organization of the genome. They started by performing clustering and PCA analysis for the compartment identity and discovered that this panel of cell lines could be well separated based on Her2 and epithelial-mesenchymal features according to the compartment identity. While correlating with the transcriptomic changes, the authors noticed the existence of concordance and divergence between the compartment changes and transcriptomic changes. The authors then switched gears to tackle the core question of metastatic organotropism to the lung. They discovered a set of "lung permissive compartment changes" and concluded that "lung metastatic breast cancer cell lines acquire lung-like genome architecture" and "organotropic 3D genome changes match target organ more than an unrelated organ". To prove the latter point, the authors enlisted an additional non-breast cancer cell line (prostate cancer) in the setting of brain metastasis. This is a piece of pure dry computational work without wet bench experiments.

      Strengths:

      The authors embarked on an ambitious journey to seek the answer regarding 3D genome changes predisposing to metastatic organotropism. The authors succeeded in the assembly of a comprehensive panel of breast cancer cell lines and the aggregation of the 3D genome structure data to conduct a hypothesis-driven computation analysis. The authors also achieved in including proper controls representing normal non-cancerous epithelium and the end organ of interest. The authors did well in the citation of relevant references in 3D genome organization and EMT.

      Weaknesses:

      (1) The authors should clearly indicate how they determine the patterns of spread of the breast cancer cell lines being utilized in this manuscript. How did the authors arrive at the conclusion that certain cell lines would be determined as "localized spread" and "metastatic tropism to the lung"? This definition is crucial, and I will explain why.

      Todd Golub's team from the Broad Institute of MIT and Harvard published "A metastasis map of human cancer cell lines" to exhaustively create a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis. (By the way, this work was not cited in the reference in this manuscript.) The MetMap Explorer (https://depmap.org/metmap/vis-app/index.html) is a public resource that could be openly accessed to visualize the metastatic potential of each cell line as determined by the in vivo barcoding approach as described in the MetMap paper in the format of petal plots. 5 organs were tested in the MetMap paper, including brain, lung, liver, kidney, and bone. The authors would discover that some of the organ-specific metastasis patterns defined in the MetMap Explorer would be different from the authors' classification. For example, the authors defined MCF7 as a line as lung metastatic, and rightly so the MetMap charted a signal towards lung with low penetrance and low metastatic potential. The authors defined ZR751 as a line with localized spread, however, the MetMap charted a signal towards the kidney with low penetrance and low metastatic potential, the signal strength similar to the lung metastasis in MCF7. A similar argument could be made for T47D. The TNBC line MDA-MB-231 is indeed highly metastatic, however, in MetMap data, its metastasis is not only specific to the lung but towards all 5 organs with high penetrance and metastatic potential. The 2 lung cancer cell lines mentioned in this study, A549 and H460, the authors defined them as localized spread to the lung. However, the MetMap data clearly indicated that A549 and H460 are highly metastatic to all 5 organs with high penetrance and high metastatic potential.

      Since results will vary among different experimental models testing metastatic organotropism, (intra-cardiac injection was the metastasis model being adopted in the MetMap), the authors should state more clearly which experimental model system served as the basis for their definition of organ-specific metastasis. In my opinion, this is the most crucial first step for this entire study to be sound and solid.

      (2) Figure 1b: The authors found that "MDA-MB-231 cells were grouped with the lung carcinoma cells. This implies that the genome organization of this cell line is closer to that of lung cells than to other breast epithelial cell lines.". In fact, another TNBC line BT549 was also clustered under the same clade. So this clade consisted of normal-like and highly metastatic lines. Therefore, the authors should be mindful of the fact that the compartment features might not directly link to metastasis (or even metastatic organotropism).

      (3) Figure 3: In the text, the authors stated, "To further investigate this result, we examined the transcription status of genes that changed compartment across the EMT spectrum and, conversely, the compartment status of genes that changed transcription (Fig. 3b, c, and d)". However, it was not apparent in the figure that the cell lines were arranged according to an EMT spectrum. Also, the clustering heatmaps did not provide sufficient information regarding the genes with concordant/divergent compartments vs transcription changes. It would be more informative if the authors could spend more effort in annotating these genes/pathways.

      (4) Figure 4: The title of the subheading of this section was 'Lung metastatic breast cancer cell lines acquire lung-like genome architecture". Echoing my comments in point 1, I am a bit hesitant to term it as "lung metastatic" but rather "metastatic' in general since cell lines such as MDA-MD-231 do metastasize to other organs as well. However, I do get the point that the definition of "lung metastasis" is derived from the common metastasis features among the cell lines here (MCF7, T47D, SKBR3, MDA-MB-231).

      There might be another argument about whether the "lung" carcinoma cell lines can be considered "localized" since they are also capable of metastasizing to other organs. In a way, what the authors probably were trying to leverage here is the "tissue" identity of that organ. Having said this, in addition to showing the "lung permissive changes", the authors should show the "breast identity conservation" as well. Because this section started to deal with the concept of "tissue/lineage identify", the authors should also clarify whether these breast cancer cell lines capable of making lung metastasis are also preserving their original tissue identity from the compartment features (which would most likely be the case).

      (5) Rest of the sections: The authors started to claim that the organ-specific metastasis permissive compartmental features mimic the destinated end organ. The authors utilized additional non-breast cancer cell lines (prostate cancer cell lines LNCaP as localized and DU145 as brain metastatic) in brain metastasis to strengthen this claim. (DU145 in MetMap again is highly metastatic to lung, brain, and kidney). However, this makes one wonder that for cell lines that are capable of metastasizing to multiple organ sites (eg. MDA-MB-231, DU145, A459, H460), does it mean that they all acquire the permissive features for all these organs? This scenario is clinically relevant in Stage 4 patients who often present with not only one metastatic lesion in one single organ but multiple metastatic lesions in more than one organ (eg. concomitant liver and lung metastasis). Do the authors think that there might be different clones having different tropism-permissive 3D genome features or there might be evolutionary trajectory in this?

      In my opinion, to further prove this point, the authors might need to consider doing in vivo experiments to collect paired primary and organ-specific metastatic samples to look at the 3D genome changes.

      (6) Technically, the study utilized public Hi-C data without generating new Hi-C data. The resolution of the Hi-C data for compartments was set at 250KB as the binning size indicating that the Hi-C data was at lower resolution so it might not be ideal to address other 3D genome architecture changes such as TADs or long-range loops. It is therefore unknown whether there might be permissive TAD/loop changes associated with organotropism and this is the limitation of this study.

      (7) In the final sentence of the discussion the authors stated "Overall, our results suggest that genome spatial compartment changes can help encode a cell state that favors metastasis (EMT)". The "metastasis (EMT)" was in fact not clearly linked inside the manuscript. The authors did not provide a strong link between metastasis and EMT in their result description. It is also unclear whether the EMT-associated compartment identity would also correlate with the organotropic compartment identity.

    2. Reviewer #2 (Public review):

      Summary:

      This work addresses an important question of chromosome architecture changes associated with organotopic metastatic traits, showing important trends in genome reorganization. The most important observation is that 3D genome changes consistent with adaptations for new microenvironments, including lung metastatic breast cells exhibiting signatures of the genome architecture typical to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state.

      Strengths:

      This work presents interesting original results, which will be important for future studies and biomedical implications of epigenetic regulation in norm and pathology.

      Weaknesses:

      The authors used publicly available data for 15 cell types. They should show how many different sources the data were obtained from and demonstrate that obtained results are consistent if the data from different sources were used.

    1. Reviewer #1 (Public review):

      Summary:

      Dorn et al. investigate the role of specific serotonergic cell types in fed appetite and starved hunger. They show that neurons labeled by the Sert3-GAL4 line modulate sucrose appetite and that neurons labeled by R50H05-GAL4 and Tph-GAL4 modulate yeast hunger, by expressing a non-functioning serotonin transporter. Similarly, activating these neurons leads to the same effects - a decrease in sucrose appetite and an increase in yeast hunger, respectively. Manipulation of the serotonin transporter in Sert3 neurons impairs appetitive sugar-odor conditioning, however aversive shock-odor conditioning is intact. The authors further tested the role of insulin signaling in this paradigm and the Sert3 neurons. Expressing either constitutively active or non-function insulin receptor impaired sucrose appetite. The expression of the different modulated insulin receptors affects the anatomy of the cells and the distribution of serotonin transporters. It seems that overexpression of the serotonin transporter can rescue the sugar appetite phenotype caused by the constitutively active insulin receptor. Additional experiments reveal that CG9911 and CG10029 RNAi - genes potentially involved in the insulin-serotonin pathway - knockdown does not affect sugar appetite, however Sec24AB RNAi - required for proper serotonin transporter localization - knockdown also leads to sugar appetite reduction. Finally, the authors show that IR60b taste receptor neurons potentially get modulated by Sert 3 and thereby influence sucrose appetite.

      Strengths:

      The authors provide a more detailed description of the multiple roles that serotonin neurons can take on. Manipulating specific subsets of serotonergic cells, they can distinguish cells that are involved in sucrose feeding in fed animals, whereas other cells are involved in regulating yeast hunger in starved animals. Thus, further cell-type specific dissections and manipulations are required to understand the full functional repertoire of different serotonergic neurons in the brain. The authors further describe that insulin seems to modulate serotonergic neurons and starts to elucidate the underlying complex neuromodulatory mechanisms.

      Weaknesses:

      Even though the authors provide evidence for behavioral phenotypes due to manipulations of serotonin and insulin cells, the evidence for the required molecular mechanism and connectivity is not convincing and requires further investigation. The authors expand their findings to play a role in sugar conditioning, however, according to the authors flies were starved for these experiments - thus these results rather contradict the innate phenotype.

    2. Reviewer #2 (Public review):

      Summary:

      This study by Dorn et al. from Dr. Henrike Scholz's group investigates the function of serotonin signaling in state-dependent feeding control for protein and sugar intake. Using a dominant-negative serotonin transporter to block serotonin reuptake and optogenetics to activate serotoninergic neurons, the authors identified that serotonin released from a small group of Sert3-expressing neurons specifically reduces sucrose consumption of the fed files but not in the starved flies. Conversely, blocking serotonin reuptake in broad serotonergic neurons increases yeast consumption only in starved flies but does not affect fed flies. These results suggest prolonged serotonin signals may suppress sucrose appetite in fed flies while promoting protein intake in starved flies.

      Although the phenotypes presented are intriguing and fundamental to animal fitness, the data in its current form is insufficient to support the proposed mechanisms underlying the state-dependent diet control by serotonin signals. Specifically, the authors should carefully analyze the requirement of serotonin by showing the efficiency of the serotonin reuptake blockade caused by the dominant-negative serotonin and validating the requirement of serotonin in the optogenetic activation of Sert3-expressing neurons. Additionally, the conclusions based on the overexpressed Sert3::gfp transgene should be retrieved as the overexpression affects sucrose consumption. Therefore, I recommend some alternative interpretations and approaches below for authors to verify the current form of conclusions.

      Strengths:

      The authors identified the state-dependent diet control for sucrose and yeast intake regulated by a restricted population of serotonin neurons expressing Sert3.

      Weaknesses:

      The data only partially supports most conclusions. Specifically, findings based on the use of the transgene Sert3::GFP lack sufficient rigor, as the authors overlooked potential overexpression effects.

      Major issues

      (1) The authors try to distinguish the motivation to feed on sucrose or protein in fed or starved conditions using "sucrose appetite" and "protein hunger", respectively. However, appetite and hunger should be synonymous in the current context. When specifying protein hunger, readers will expect the craving for protein in the protein-deprived situation. In the current study, starved flies were prepared by starvation on wet tissues so the flies are supposed to be hungry for sugar and protein. To avoid confusion, "sucrose appetite in fed flies" and "protein appetite in starved flies" are better descriptions.

      (2) In Figure 1A-1I (lines 141-142), it remains unclear whether additional serotonergic neurons are required or if the serotonergic neurons labeled exclusively by R50H05-Gal4 and Tph-Gal4 are necessary to regulate yeast consumption in starved flies. The overlapping expressions of these two drivers with the Sert3-Gal4 make it hard to distinguish these two possibilities.

      (3) The data in Figure 1L-1M suggests that the serotonin-dependent regulation in yeast consumption of starved flies is suppressed by sucrose supplementation. However, the neurons required for yeast consumption remain undefined due to the overlapping expression. This result implies that the neurons labeled by R50H05-Gal4 and Tph-Gal4 influence both sucrose and yeast consumption but not specific to yeast.

      (4) The regulatory relationship between insulin receptors and serotonin signaling in sucrose appetite remains unclear. How do the authors interpret the result that both the constitutively active and dominant-negative forms of the insulin receptor (InR) reduce sucrose appetite in Figure 4? One possibility is that insulin receptors are involved in two parallel pathways to regulate sucrose consumption that converge to the same phenotype. However, the insulin receptor (InR) pathways can still be independent of the serotonin signaling pathway despite showing a comparable reduction of sucrose consumption in fed flies. This issue should be discussed further following lines 229-231.

      (5) The quantification of Figure 5 should be revised. First, as the transgene Sert3::GFP affects sucrose consumption, quantifying the transgene signals may not explain its endogenous function. Second, the quantification lacks a Gal4 expression control using an untagged fluorescent marker, preferably a different color so that the authors can quantify it in the same individual as the comparison. Lastly, it is hard to be convinced that the distance between two layers represents the broad expression of Sert3::GFP in response to insulin receptor alterations. Quantifying the area size of each layer with fixed imaging conditions such as the intervals of brain sections and the laser intensity may be a better alternative approach.

      (6) The conclusions drawn based on the Sert3::GFP transgene failed to explain the endogenous function of the serotonin transporter Sert3 in regulating sucrose consumption. Expressing the constitutive-active form of the insulin receptor in Sert3-expressing neurons reduces the total sucrose consumption of fed flies in Figure 4A, which appears inconsistent with the fly line with an additional Sert3::GFP expression shown in Figures 6F, where the suppression of sucrose consumption is not shown for the normalized sucrose intake. This inconsistency suggests that Sert3::GFP transgene itself affects sucrose consumption.

      (7) In lines 324-326, the authors should investigate whether IR60b neurons are indeed the downstream of serotoninergic neurons SE1 to regulate sucrose consumption in fed flies. First, synaptic connections could be confirmed by additional approaches. Following this, the authors could demonstrate that the knockdown of serotonin receptors in IR60b neurons eliminates the suppression in sucrose consumption induced by the activation of Sert3-expressing neurons or by the expression of the dominant-negative serotonin transporter in fed flies.

    1. Reviewer #1 (Public review):

      This study investigates spatial and temporal aspects of feedback information in the brain during categorization tasks. The authors found that feedback to V1 contained low-level features and was present in the deep layers of V1 originating presumably from occipito-temporal brain regions. High-level category feedback was found in the deep and the superficial layers and was directed to V1 from occipitotemporal and parietal cortices. This study raises a timely question in the fields of object categorization and predictive coding about the granularity of feedback and its separability by cortical depth and time course.

      Here are a couple of concerns and questions:

      The authors argue that low-level features in a feedback format could be decoded only from deep layers of V1 (and not superficial layers) during a perceptual categorization task. However, previous studies (Bergman et al., 2024; Iamshchinina et al., 2021) demonstrated that low-level features in the form of feedback can be decoded from both superficial and deep layers. While this result could be due to perceptual task or highly predictable orientation feature (orientation was kept the same throughout the experimental block), an alternative explanation is a weaker representation of orientation in the feedback (even before splitting by layers there is only a trend towards significance; also granger causality for orientation information in MEG part is lower than that for category in peripheral categorization task), because it is orthogonal to the task demand. It would be helpful if the authors added a statistical comparison of the strength of category and orientation representations in each layer and across the layers.

      The authors argue that category feedback is not driven by low-level confounding features embedded in the stimuli. They demonstrate the ability to decode orientations, particularly well represented by V1, in the absence of category discrimination. However, the orientation is not a category-discriminating feature in this task. It could be that the category-discriminating features cannot be as well decoded from V1 activity patterns as orientations. Also, there are a number of these category discriminating features and it is unclear if it is a variation in their representational strength or merely the absence of the task-driven enhancement that preempts category decoding in V1 during the foveal task. In other words, I am not sure whether, if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of the primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.

      Strengths:

      (1) Rigorous and appropriate use of "laminar fMRI" techniques.

      (2) The introduction does an excellent job of contextualizing the work.

      (3) Control experiments and analyses are designed and implemented well

      Weaknesses:

      (1) While not necessarily a weakness, I do not fully agree with the description of the 2 kinds of feedback information as "low-order" and "high-order". I understand the motivation to do this - orientation is typically considered a low-level visual feature. But when it's the orientation of an entire object, not a single edge, orientation can only be defined after the elements of the object are grouped. Also, the discrimination between spikies and smoothies requires detecting the orientations of particular edges that form the identifying features. To my mind, it would make more sense to refer to discrimination of object orientation as "coarse" feature discrimination, and orientation of object identity as "fine" feature discrimination. Thus, the sentence on line 83, for example, would read "Interestingly, feedback with fine and coarse feature information exhibits different laminar profiles.".

      (2) Figure 2 and text on lines 185, and 186: it is difficult to interpret/understand the findings in foveal ROIs for the foveal control task without knowing how big the ROI was. Foveal regions of V1 are grossly expanded by cortical magnification, such that the central half-degree can occupy several centimeters across the cortical surface. Without information on the spatial extent of the foveal ROI compared to the object size, we can't know whether the ROI included voxels whose population receptive fields were expected to include the edges of the objects.

      (3) Line 143 and ROI section of the methods: in order for the reader to understand how robust the responses and analyses are, voxel counts should be provided for the ROIs that were defined, as well as for the number (fraction) of voxels excluded due to either high beta weights or low signal intensity (lines 505-511).

      (4) I wasn't able to find mention of how multiple-comparisons corrections were performed for either the MEG or fMRI data (except for one Holm-Bonferonni correction in Figure S1), so it's unclear whether the reported p-values are corrected.

    1. Reviewer #1 (Public review):

      Summary:

      There is prior literature showing a robust relationship between sulcal interruptions in the posterior occipital temporal sulcus (pOTS) and reading ability. The goals of this study were to extend these findings to children examined longitudinally as they become better readers, and to examine the underlying white matter properties in individuals with and without pOTS sulcal interruptions. To do this, the authors collected longitudinal structural, diffusion, and behavioral data in 51 children (TP1 age 5.5, TP3 age 8.2 years).

      First, the authors found that the gyral gap was consistent across time within the subject. This is expected, as they state in the introduction that sulcal patterns are typically established in utero. Next, they found that children with an interrupted pOTS have higher reading scores (across a variety of measures) at timepoint (TP) 3 than children with continuous pOTS, and this was specific to the pOTS, as no associations emerged for the anterior OTS or MFS; this is again expected from prior literature. They then found that the binary presence of this gap, but not anterior OTS or MFS predicted T3 reading performance. Further, they found that a subsample of the lowest readers at TP1 did not have differences in reading score by gyral gap, but that this difference emerged at TP3. Additionally, the gyral gap at TP1 is similar to variance TOWRE 3 reading skills as some behavioral measures at TP1. Examining underlying white matter in a smaller subset of children, the authors found higher MD in children with an interrupted pOTS vs. those with a continuous pOTS, which was contrary to their hypothesis, and higher local connectivity for interrupted, aligning with their hypothesis, but this difference was no longer present when accounting for TP3 reading scores. The authors conclude that structural properties, in this case, the gyral gap, may guide neural plasticity for reading.

      Strengths:

      This paper has an interesting set of longitudinal data to examine the perhaps changing relationship between sulcal interruptions in the pOTS with reading scores. I commend the authors on data collection and attention to detail in the anatomical analyses.

      Weaknesses:

      However, my enthusiasm was somewhat dampened after finding numerous prior publications on this very topic and I'm unclear as to how much more this paper adds to the current literature. Would we expect the existence of sulcal interruptions to be aligned with reading skills in older kids but not younger kids? Is the point to see if the interruptions exist prior to reading (but these children are not really prereaders)? What is the alternative- why would these interruptions not exist? After all, this anatomy is determined prenatally. Children who have pOTS interruptions at T1 should also have these interruptions at T3 (and indeed that is what the authors find). So how can this be the mechanism that drives plasticity? The authors also talk about the neuronal recycling hypothesis but their data cannot speak to this because they do not have fMRI data nor does their sample include only prereaders with no reading experience. The conclusions are overall overstated and not supported by the results. I think this paper could add interesting knowledge for the specific subfield of reading and the brain. However, the current state of the results, especially with the inclusion of so many trending results and the comparison of so many different processing pipelines and models, in addition to a conclusion that is not motivated by the work makes it difficult to appreciate the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript examined the impact of sulcal morphology on reading development. A very specific feature on the ventral surface of the brain was identified, namely the presence of an interruption in the posterior portion of the left occipitotemporal sulcus (pOTS). Compared to children with a continuous pOTS, children with an interruption at age 5 years had better reading ability at age 8. This was a large effect measured in 43 children. Surprisingly, this morphological feature was a better predictor of reading ability than measures of pre-literacy cognitive skills, such as phonological awareness. The effect was tested and reproduced across several different measures of reading ability. The authors hypothesised that the mechanism underlying this benefit related to greater local connectivity, which confers a computational advantage. This was demonstrated using analysis of diffusion-weighted imaging data in 29 of the children obtained at age 8.

      Strengths:

      The novelty of the manuscript is threefold: (i) the measure was made in children who were pre-literate (previous work was in older children and adults); (ii) longitudinal brain imaging and behavioural data were analysed; and (iii) diffusion data were analysed to test a hypothesis about the underlying mechanism.

      The manuscript is exceptionally well written. The methods are detailed and easily reproduced. The approach is thoughtful and meticulous. All possible alternatives appear to have been considered. Where possible, further analyses have been done to address these alternatives. For example, the testing of the specificity of the sulcal interruption to left pOTS was an important addition. None predicted reading skills.

      Weaknesses:

      The correlation of the interruption with all kinds of literacy measures and in particular reading comprehension and then PIQ suggest this interruption might confer a more general cognitive advantage rather than specifically a reading one.

      It would be interesting to know if the anatomical difference predicts any other cognitive ability or if there might be any cognitive cost (a negative correlation) of this sulcal interruption.<br /> The location of the interruption in the sulcus is quite variable and in some cases, there is more than one interruption. The sample size is probably not big enough to compare these different patterns or to evaluate the influence of the location of the sulcal interruption.

      The sample is quite high-functioning and the generalisability of the findings outside of this specific population is inevitably limited.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed experimental evolution of MreB mutants that have a slow growing round phenotype and studied the subsequent evolutionary trajectory using analysis tool from molecular biology. It was remarkable and interesting that they found that the original phenotype was not restored (most common in these studies) but that the round phenotype was maintained.

      Strengths:

      The finding that the round phenotype was maintained during evolution rather than that the original phenotype, rod shape cells, was recovered is interesting. The paper extensively investigates what happens during adaptation with various different techniques. Also the extensive discussion of the findings at the end of the paper is well thought through and insightful.

      Weaknesses:

      I find there are three general weaknesses<br /> (1) Although the paper states in the abstract that it emphasizes "new knowledge to be gained" it remains unclear what this concretely is. At page 4 they state 3 three research questions, these could be more extensively discussed in the abstract. Also these questions read more like genetics questions while the paper is a lot about cell biological findings.<br /> (2) It is not clear to me from the text what we already know about restoration of MreB loss from suppressors studies (in the literature). Are there supressor screens in the literature and which part of the findings is consistent with suppressor screens and which parts are new knowledge?<br /> (3) The clarity of the figures, captions and data quantification need to be improved.

    2. Reviewer #3 (Public review):

      This paper addresses a long-standing problem in microbiology: the evolution of bacterial cell shape. Bacterial cells can take a range of forms, among the most common being rods and spheres. The consensus view is that rods are the ancestral form and spheres the derived form. The molecular machinery governing these different shapes is fairly well understood but the evolutionary drivers responsible for the transition between rods and spheres is not. Enter Yulo et al.'s work. The authors start by noting that deletion of a highly conserved gene called MreB in the Gram-negative bacterium Pseudomonas fluorescens reduces fitness but does not kill the cell (as happens in other species like E. coli and B. subtilis) and causes cells to become spherical rather than their normal rod shape. They then ask whether evolution for 1000 generations restores the rod shape of these cells when propagated in a rich, benign medium.

      The answer is no. The evolved lineages recovered fitness by the end of the experiment, growing just as well as the unevolved rod-shaped ancestor, but remained spherical. The authors provide an impressively detailed investigation of the genetic and molecular changes that evolved. Their leading results are:

      (1) the loss of fitness associated with MreB deletion causes high variation in cell volume among sibling cells after cell division;<br /> (2) fitness recovery is largely driven by a single, loss-of-function point mutation that evolves within the first ~250 generations that reduces the variability in cell volume among siblings;<br /> (3) the main route to restoring fitness and reducing variability involves loss of function mutations causing a reduction of TPase and peptidoglycan cross-linking, leading to a disorganized cell wall architecture characteristic of spherical cells.

      The inferences made in this paper are on the whole well supported by the data. The authors provide a uniquely comprehensive account of how a key genetic change leads to gains in fitness and the spectrum of phenotypes that are impacted and provide insight into the molecular mechanisms underlying models of cell shape.

      Suggested improvements and clarifications include:<br /> (1) A schematic of the molecular interactions governing cell wall formation could be useful in the introduction to help orient readers less familiar with the current state of knowledge and key molecular players;<br /> (2) It remains unclear whether corrections for multiple comparisons are needed when more than one construct or strain is compared to the common ancestor, as in Supp Fig 19A (relative PG density of different constructs versus the SBW25 ancestor). The author's response did not clarify matters: was data for the WT obtained independently alongside each each strain/construct (justifying a paired t-test) or was a single set of data for the WT obtained and used to compare against all other strains/constructs (which would demand a correction for multiple comparisons)?<br /> (3) The authors refrain from making strong claims about the nature of selection on cell shape, perhaps because their main interest is the molecular mechanisms responsible. They identify sources of stabilizing selection favouring an intermediate cell size (lack of DNA in small cells and disorganized DNA in large cells). Their interpretation of stabilizing selection in the review is correct and entirely consistent with the mechanistic causes identified here. I think this is valuable and interesting, although I recognize it is not the focus of the paper.

      Comments on revisions:

      Please further clarify the experimental design and replication for the contrast between mutants and WT to address the issue of multiple comparisons.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Avila et al. tested the hypothesis that chronic pain states are associated with changes in excitability of the medial prefrontal cortex (mPFC). The authors used the slope of the aperiodic component of the EEG power spectrum (= the aperiodic exponent) as a novel, non-invasive proxy for the cortical excitation-inhibition ratio. They performed source localization to estimate the EEG signals generated specifically by the mPFC. By pooling resting-state EEG recordings from three existing datasets, the authors were able to compare the aperiodic exponent in the mPFC and across the whole brain (at all modeled cortical sources) between 149 chronic pain patients and 115 healthy controls. Additionally, they assessed the relationship between the aperiodic exponent and pain intensity reported by the patients. To account for heterogeneity in pain etiology, the analysis was also performed separately for two patient subgroups with different chronic pain conditions (chronic back pain and chronic widespread pain). The study found robust evidence against differences in the aperiodic exponent in the mPFC between people with chronic pain and healthy participants, and no correlation was observed between the aperiodic exponent and pain intensity. These findings were consistent across different patient subgroups and were corroborated by the whole-brain analysis.

      Strengths:

      The study is based on sound scientific reasoning and rigorously employs suitable methods to test the hypothesis. It follows a pre-registered protocol, which greatly increases the transparency and, consequently, the credibility of the reported results. In addition to the planned steps, the authors used a multiverse analysis to ensure the robustness of the results across different methodological choices. I find this particularly interesting, as the EEG aperiodic exponent has only recently been linked to network excitability, and the most appropriate methods for its extraction and analysis are still being determined. The methods are clearly and comprehensively described, making this paper very useful for researchers planning similar studies. The results are convincing, supported by informative figures, and the lack of the expected difference in mPFC excitability between the tested groups is thoroughly and constructively discussed.

      Weaknesses:

      Firstly, to augment the sample size, the authors pooled data recorded by different researchers using different experimental protocols. This inevitably increases sample variability and may limit the availability of certain measures, as was the case here with the reports of pain intensity in the patient group. Secondly, the analysis heavily relies on the estimation of cortical sources, an approach that may yield imprecise results, especially when default conduction models, source models, and electrode coordinates are used (as was the case here).

      Comments on revisions:

      The authors satisfactorily revised the manuscript and responded to previous questions and suggestions. I have no further comments.

    2. Reviewer #2 (Public review):

      Summary:

      This study evaluated the aperiodic component in the medial prefrontal cortex (mPFC) using resting-state EEG recordings from 149 individuals with chronic pain and 115 healthy participants. The findings showed no significant differences in the aperiodic component of the mPFC between the two groups, nor was there any correlation between the aperiodic component and pain intensity. These results were consistent across various chronic pain subtypes and were corroborated by whole-brain analyses. The study's robustness was further reinforced by preregistration and multiverse analyses, which accounted for a wide range of methodological choices.

      Strengths:

      This study was rigorously conducted, yielding clear and conclusive results. Furthermore, it adhered to stringent open and reproducible science practices, including preregistration, blinded data analysis, and Bayesian hypothesis testing. All data and code have been made openly available, underscoring the study's commitment to transparency and reproducibility.

      Weaknesses:

      The aperiodic exponent of the EEG power spectrum is often regarded as an indicator of the excitatory/inhibitory (E/I) balance. However, this measure may not be the most accurate or optimal for quantifying E/I balance, a limitation that the authors might consider addressing in the future.

      Comments on revisions:

      All my comments have been well addressed.

    1. Reviewer #1 (Public review):

      This study tests whether Little Swifts exhibit optimal foraging, which the data seem to indicate is the case. This is unsurprising as most animals would be expected to optimize the energy income : expenditure ratio, however it hasn't been explicitly quantified before the way it was in this manuscript.

      The major strength of this work is the sheer volume of tracking data and the accuracy of those data. The ATLAS tracking system really enhanced this study and allowed for pinpoint monitoring of the tracked birds. These data could be used to ask and answer many questions beyond just the one tested here.

      The major weakness of this work lies in the sampling of insect prey abundance at a single point on the landscape, 6.5 km from the colony. This sampling then requires the authors to work under the assumption that prey abundance is simultaneously even across the study region. It may be fair to say that prey populations might be correlated over space but are not equal. It is uncertain whether other aspects of the prey data are problematic. For example, the radar only samples insects at 50m or higher from the ground - how often do Little Swifts forage under 50m high?

      The finding that Little Swifts forage optimally is indeed supported by the data, notwithstanding some of the shortcomings in the prey abundance data. The authors achieved their aims and the results support their conclusions.

      At its centre, this work adds to our understanding of Little Swift foraging and extends to a greater understanding of aerial insectivores in general. While unsurprising that Little Swifts act as optimal foragers, it is good to have quantified this and show that the population declines observed in so many aerial insectivores are not necessarily a function of inflexible foraging habits. Further, the methods used in this research have great potential for other work. For example, the ATLAS system poses some real advantages and an exciting challenge to existing systems, like MOTUS. The radar that was used to quantify prey abundance also presents exciting possibilities if multiple units could be deployed to get a more spatially-explicit view.

      To improve the context of this work, it is worth noting that this research goes into much further depth than any previous studies on a similar topic in several flycatcher and swallow species. A further justification is posited that this research is needed due to dramatic insect population declines, however, the magnitude and extent of such declines are fiercely debated in the literature.

    2. Reviewer #2 (Public review):

      Summary:

      Bloch et al. studied the relationships between aerial foragers (lesser swifts) tracked using an automated radio telemetry system (Atlas) and their prey (flying insects) monitored using a small vertical-looking radar (BirdScan MR1). The aim of the study was to check whether swifts optimise their foraging according to the abundance of their prey. The results provide evidence that small swifts can increase their foraging rate when aerial insect abundance is high, but found no correlation between insect abundance and flight energy expenditure.

      Key points:

      This study fills gaps in fundamental knowledge of prey-predator dynamics in the air. It describes the coincidence between the abundance of flying insects and the characteristics derived from monitoring individual swifts.

      Weaknesses:

      The paper uses assumptions largely derived from optimal foraging theory, but mixes up the form of natural selection: parental energy, parental survival (predation risk), nestling foraging and reproductive success. The results are partly inconsistent, and confounding factors (e.g., the brooding phase versus the nestling phase) remained ignored. In conclusion, the analyses performed are insufficient to rigorously assess whether lesser swifts are optimising their foraging beyond making shorter foraging trips.<br /> The filters applied to the monitoring data are necessary but may strongly influence the characteristics derived based on maximum or mean values. Sensitivity tests or the use of characteristics that are less dependent on extreme values could provide more robust results.

    1. Reviewer #1 (Public review):

      Summary:

      In the first half of this study, Pham et al. investigate the regulation of TEAD via ubiquitination and PARylation, identifying an E3 ubiquitin ligase, RNF146, as a negative regulator of TEAD activity through an siRNA screen of ubiquitin-related genes in MCF7 cells. The study also finds that depletion of PARP1 reduced TEAD4 ubiquitination levels, suggesting a certain relationship between TEAD4 PARylation and ubiquitination which was also explored through an interesting D70A mutation. Pham et al. subsequently tested this regulation in D. melanogaster by introducing Hpo loss-of-function mutations and rescuing the overgrowth phenotype through RNF146 overexpression.

      In the second half of this study, Pham et al. designed and assayed several potential TEAD degraders with a heterobifunctional design, which they term TEAD-CIDE. Compounds D and E were found to effectively degrade pan-TEAD, an effect which could be disrupted by treatment with TEAD lipid pocket binders, proteasome inhibitors, or E1 inhibitors, demonstrating that the TEAD-CIDEs operate in a proteasome-dependent manner. These TEAD-CIDEs could reduce cell proliferation in OVCAR-8, a YAP deficient cell line, but not SK-N-FI, a Hippo pathway independent cell line. Finally, this study also utilizes ATAC-seq on Compound D to identify reductions in chromatin accessibility at the regions enriched for TEAD DNA binding motifs.

      Strengths:

      The study provides compelling evidence that the E3 ubiquitin ligase RNF146 is a novel negative regulator of TEAD activity. The authors convincingly delineate the mechanism through multiple techniques and approaches. The authors also describe the development of heterobifunctional pan-degraders of TEAD, that could serve as valuable reagents to more deeply study TEAD biology.

      Weaknesses:

      The scope of this study is extremely broad. The first half of the paper highlights the mechanisms underlying TEAD degradation; however, the connection to the second half of the paper on small molecule degraders of TEAD is jarring, and it seems as though two separate stories were combined into this single massive study. In my opinion, the study would be stronger if it chose to focus on only one of these topics and instead went deeper.

      Additionally, the figure clarity needs to be substantially improved, as readability and interpretation was difficult in many panels. Lastly, there are numerous typos and poor grammar throughout the text that need to be addressed.

      Comments on revisions:

      The authors have addressed most of our critiques. The manuscript has improved significantly, particularly in the clarity of the figures and the flow of the text. The findings of this study contribute valuable insights into TEAD biology in cancer and provide useful resources for further research into TEAD.

      However, as noted by other reviewers, the manuscript still feels somewhat disjointed, despite the attempt to connect the two parts on RNF146-mediated TEAD degradation and the development of TEAD degraders. Certain data inconsistencies and technical limitations may have made some aspects of the data hard to interpret accurately and could benefit from further clarification.

    1. Reviewer #1 (Public review):

      The revision by Ruan et al clarifies several aspects of the original manuscript that were difficult to understand, and I think it presents some useful and interesting ideas. I understand that the authors are distinguishing their model from the standard Wright-Fisher model in that the population size is not imposed externally, but is instead a consequence of the stochastic reproduction scheme. Here, the authors chose a branching process but in principle any Markov chain can probably be used. Within this framework, the authors are particularly interested in cases where the variance in reproductive success changes through time, as explored by the DDH model, for example. They argue with some experimental results that there is a reason to believe that the variance in reproductive success does change over time.

      One of the key aspects of the original manuscript that I want to engage with is the DDH model. As the authors point out, their equations 5 and 6 are assumptions, and not derived from any principles. In essence, the authors are positing that that the variance in reproductive success, given by 6, changes as a function of the current population size. There is nothing "inherent" to a negative binomial branching mechanism that results in this: in fact, the the variance in offspring number could in principle be the same for all time. As relates to models that exist in the literature, I believe that this is the key difference: unlike Cannings models, the authors allow for a changing variance in reproduction through time.

      This is, of course, an interesting thing to consider, and I think that the situation the authors point out, in which drift is lower at small population sizes and larger at large population sizes, is not appreciated in the literature. However, I am not so sure that there is anything that needs to be resolved in Paradox 1. A very strong prediction of that model is that Ne and N could be inversely related, as shown by the blue line in Fig 3b. This suggests that you could see something very strange if you, for example, infer a population size history using a Wright-Fisher framework, because you would infer a population *decline* when there is in fact a population *expansion*. However, as far as I know there are very few "surprising population declines" found in empirical data. An obvious case where we know there is very rapid population growth is human populations; I don't think I've ever seen an inference of recent human demographic history from genetic data that suggests anything other than a massive population expansion. While I appreciate the authors empirical data supporting their claim of Paradox 1 (more on the empirical data later), it's not clear to me that there's a "paradox" in the literature that needs explaining so much as this is a "words of caution about interpreting inferred effective population sizes". To be clear, I think those words of caution are important, and I had never considered that you might be so fundamentally misled as to infer decline when there is growth, but calling it a "paradox" seems to suggest that this is an outstanding problem in the literature, when in fact I think the authors are raising a *new* and important problem. Perhaps an interesting thing for the authors to do to raise the salience of this point would be to perform simulations under this model and then infer effective population sizes using e.g. dadi or psmc and show that you could identify a situation in which the true history is one of growth, but the best fit would be one of decline

      The authors also highlight that their approach reflects a case where the population size is determined by the population dynamics themselves, as opposed to being imposed externally as is typical in Cannings models. I agree with the authors that this aspect of population regulation is understudied. Nonetheless, several manuscripts have dealt with the case of population genetic dynamics in populations of stochastically fluctuating size. For example, Kaj and Krone (2003) show that under pretty general conditions you get something very much like a standard coalescent; for example, combining their theorem 1 with their arguments on page 36 and 37, they find that exchangeable populations with stochastic population dynamics where the variance does not change with time still converge to exactly the coalescent you would expect from Cannings models. This is strongly suggestive that the authors key result isn't about stochastic population dynamics per se, but instead related to arguing that variance in reproductive success could change through time. In fact, I believe that the result of Kaj and Krone (2003) is substantially more general than the models considered in this manuscript. That being said, I believe that the authors of this manuscript do a much better job of making the implications for evolutionary processes clear than Kaj and Krone, which is important---it's very difficult to understand from Kaj and Krone the conditions under which effective population sizes will be substantially impacted by stochastic population dynamics.

      I also find the authors exposition on Paradox 3 to be somewhat strange. First of all, I'm not sure there's a paradox there at all? The authors claim that the lack of dependence of the fixation probability on Ne is a paradox, but this is ultimately not surprising---fixation of a positively selected allele depends mostly on escaping the boundary layer, which doesn't really depend on the population size (see Gillespie's book "The Causes of Molecular Evolution" for great exposition on boundary layer effects). Moreover, the authors *use a Cannings-style argument* to get gain a good approximation of how the fixation probability changes when there is non-Poisson reproduction. So it's not clear that the WFH model is really doing a lot of work here. I suppose they raise the interesting point that the particularly simple form of p(fix) = 2s is due to the assumption that variance in offspring is equal to 1.

      In addition, I raised some concerns about the analysis of empirical results on reproductive variance in my original review, and I don't believe that the authors responded to it at all. I'm not super worried about that analysis, but I think that the authors should probably respond to me.

      Overall, I feel like I now have a better understanding of this manuscript. However, I think it still presents its results too strongly: Paradox 1 contains important words of caution that reflect what I am confident is an under appreciated possibility, and Paradox 3 is, as far as I'm concerned, not a paradox at all. I have not addressed Paradox 2 very much because I think that another reviewer had solid and interesting comments on that front and I am leaving it to them. That being said, I do think Paradox 2 actually presents a deep problem in the literature and that the authors' argument may actually represent a path toward a solution.

      This manuscript can be a useful contribution to the literature, but as it's presented at the moment, I think most of it is worded too strongly and it continues to not engage appropriately with the literature. Theoretical advances are undoubtedly important, and I think the manuscript presents some interesting things to think about but ultimately needs to be better situated and several of the claims strongly toned down.

      References:<br /> Kaj, I., & Krone, S. M. (2003). The coalescent process in a population with stochastically varying size. Journal of Applied Probability, 40(1), 33-48.

    2. Reviewer #2 (Public review):

      Summary:

      This theoretical paper examines genetic drift in scenarios deviating from the standard Wright-Fisher model. The authors discuss Haldane's branching process model, highlighting that the variance in reproductive success equates to genetic drift. By integrating the Wright-Fisher model with the Haldane model, the authors derive theoretical results that resolve paradoxes related to effective population size.

      Strengths:

      The most significant and compelling result from this paper is perhaps that the probability of fixing a new beneficial mutation is 2s/V(K). This is an intriguing and potentially generalizable discovery that could be applied to many different study systems.

      The authors also made a lot of effort to connect theory with various real-world examples, such as genetic diversity in sex chromosomes and reproductive variance across different species.

      Comments on revisions:

      The author has addressed some of the concerns in my review, and I think the revised manuscript is more clear. I like the discussion about the caveats of the WFH model.

      I hope the authors could also discuss the conditions needed for V(K)/Ne to be a reasonable approximation. It is currently unclear how the framework should be adopted in general.

      The idea about estimating male-female V(K) ratios from population genetic data is interesting. Unfortunately, the results fell short. The accuracy of their estimators (derived using approximation Ne/V(K) approximation, and certain choice of theta, and then theta estimated with Watterson's estimator) should be tested with simulated results before applying to real data. The reliability of their estimator and their results from real data are unclear.

      Arguments made in this paper sometimes lack precision (perhaps the authors want to emphasize intuition, but it seems more confusing than otherwise). For example: The authors stated that "This independence from N seems intuitively obvious: when an advantageous mutation increases to say, 100 copies in determining a population (depending mainly on s), its fixation would be almost certain, regardless of N.". Assuming large Ne, and with approximation, one could assume the probability of loss is e^(-2sn), but the writing about "100 copies" and "almost certain" is very imprecise, in fact, a mutation with s=0.001 segregating at 100 copies in a large Ne population is most probably lost. Whereas in a small population, it will be fixed. Yet the following sentence states "regardless of N. This may be a most direct argument against equating genetic drift, certainly no less important than 1/ N . with N, or Ne (which is supposed to be a function of N's)." I find this new paragraph misleading.

      Some of the statements/wordings in this paper still seem too strong to me.

    3. Reviewer #3 (Public review):

      Summary:

      Ruan and colleagues consider a branching process model (in their terminology the "Haldane model") and the most basic Wright-Fisher model. They convincingly show that offspring distributions are usually non-Poissonian (as opposed to what's assumed in the Wright-Fisher model), and can depend on short-term ecological dynamics (e.g., variance in offspring number may be smaller during exponential growth). The authors discuss branching processes and the Wright-Fisher model in the context of 3 "paradoxes" --- 1) how Ne depends on N might depend on population dynamics; 2) how Ne is different on the X chromosome, the Y chromosome, and the autosomes, and these differences do match the expectations base on simple counts of the number of chromosomes in the populations; 3) how genetic drift interacts with selection. The authors provide some theoretical explanations for the role of variance in the offspring distribution in each of these three paradoxes. They also perform some experiments to directly measure the variance in offspring number, as well as perform some analyses of published data.

      Strengths:

      - The theoretical results are well-described and easy to follow.<br /> - The analyses of different variances in offspring number (both experimentally and analyzing public data) are convincing that non-Poissonian offspring distributions are the norm.<br /> - The point that this variance can change as the population size (or population dynamics) change is also very interesting and important to keep in mind.<br /> - I enjoyed the Density-Dependent Haldane model. It was a nice example of the decoupling of census size and effective size.<br /> - Equation (10) is a nice result (but see below)

      Weaknesses:

      - I am not convinced that these types of effects cannot just be absorbed into some time-varying Ne and still be well-modeled by the Wright-Fisher process. As a concrete example, Mohle and Sagitov 2001 show that a "coalescent Ne" for the WF model should be (N-1)/Var(K). This resolves the exponentially growing bacteria "paradox" raised in the present paper --- when the bacteria are growing Var(K) ~ 0, and hence there should be very little drift. This exactly resolves the "paradox" raised by the authors. Instead, it merely underscores that Ne does not need to be equal to (or even positively correlated!) with N. I absolutely do not see this as a failure of the WF model. Whether one finds branching processes or the WF model more biologically intuitive is a matter of taste, but to say that WF models cannot explain this "paradox" is false, when a well-known paper from more than 20 years ago does just that.<br /> - Along these lines, the result that Ne in the Wright-Fisher process might not be related to N in any straightforward (or even positively correlated) way are well-known (e.g., Neher and Hallatschek 2012; Spence, Kamm, and Song 2016; Matuszewski, Hildebrandt, Achaz, and Jensen 2018; Rice, Novembre, and Desai 2018; the work of Lounès Chikhi on how Ne can be affected by population structure; etc...)<br /> - I was also missing some discussion of the relationship between the branching process and the Wright-Fisher model (or more generally Cannings' Exchangeable Models) when conditioning on the total population size. In particular, if the offspring distribution is Poisson, then conditioned on the total population size, the branching process is identical to the Wright-Fisher model.<br /> - Given that Cannings' exchangeable models decouple N and Ne, it would not surprise me if something like equation (10) could be derived under such a model. I have not seen such a derivation, and the authors' result is nice, but I do not see it as proof that WF-type models (i.e., Cannings' models) are irreparably broken.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used multiple approaches to study salt effects in liquid-liquid phase separation (LLPS). Results on both wild-type Caprin1 and mutants and on different types of salts contribute to a comprehensive understanding.

      Strengths:

      The main strength of this work is the thoroughness of investigation. This aspect is highlighted by the multiple approaches used in the study, and reinforced by the multiple protein variants and different salts studied.

      Weaknesses:

      (1) The multiple computational approaches are a strength, but they're cruder than explicit-solvent all-atom molecular dynamics (MD) simulations and may miss subtle effects of salts. In particular, all-atom MD simulations demonstrate that high salt strengthens pi-types of interactions (ref. 42 and MacAinsh et al, https://www.biorxiv.org/content/10.1101/2024.05.26.596000v3).<br /> (2) The paper can be improved by distilling the various results into a simple set of conclusions. By example, based on salt effects revealed by all-atom MD simulations, MacAinsh et al. presented a sequence-based predictor for classes of salt dependence. Wild-type Caprin1 fits right into the "high net charge" class, with a high net charge and a high aromatic content, showing no LLPS at 0 NaCl and an increasing tendency of LLPS with increasing NaCl. In contrast, pY-Caprin1 belongs to the "screening" class, with a high level of charged residues and showing a decreasing tendency of LLLPS.<br /> (3) Mechanistic interpretations can be further simplified or clarified. (i) Reentrant salt effects (e.g., Fig. 4a) are reported but no simple explanation seems to have been provided. Fig. 4a,b look very similar to what has been reported as strong-attraction promotor and weak-attraction suppressor, respectively (ref. 50; see also PMC5928213 Fig. 2d,b). According to the latter two studies, the "reentrant" behavior of a strong-attraction promotor, CL- in the present case, is due to Cl-mediated attraction at low to medium [NaCl] and repulsion between Cl- ions at high salt. Do the authors agree with this explanation? If not, could they provide another simple physical explanation? (ii) The authors attributed the promotional effect of Cl- to counterion-bridged interchain contacts, based on a single instance. There is another simple explanation, i.e., neutralization of the net charge on Caprin1. The authors should analyze their simulation results to distinguish net charge neutralization and interchain bridging; see MacAinsh et al.<br /> (4) The authors presented ATP-Mg both as a single ion and as two separate ions; there is no explanation of which of the two versions reflects reality. When presenting ATP-Mg as a single ion, it's as though it forms a salt with Na+. I assume NaCl, ATP, and MgCl2 were used in the experiment. Why is Cl- not considered? Related to this point, it looks ATP is just another salt ion studied and much of the Results section is on NaCl, so the emphasis of ATP ("Diverse Roles of ATP" in the title is somewhat misleading.

      Comments on revisions:

      This revision addressed all my previous comments.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, Lin and colleagues aim to understand the role of different salts on the phase behavior of a model protein of significant biological interest, Caprin1, and its phosphorylated variant, pY-Caprin1. To achieve this, the authors employed a variety of methods to complement experimental studies and obtain a molecular-level understanding of ion partitioning inside biomolecular condensates. A simple theory based on rG-RPA is shown to capture the different salt dependencies of Caprin1 and pY-Caprin1 phase separation, demonstrating excellent agreement with experimental results. The application of this theory to multivalent ions reveals many interesting features with the help of multicomponent phase diagrams. Additionally, the use of CG model-based MD simulations and FTS provides further clarity on how counterions can stabilize condensed phases.

      Strengths:

      The greatest strength of this study lies in the integration of various methods to obtain complementary information on thermodynamic phase diagrams and the molecular details of the phase separation process. The authors have also extended their previously proposed theoretical approaches, which should be of significant interest to other researchers. Some of the findings reported in this paper, such as bridging interactions, are likely to inspire new studies using higher-resolution atomistic MD simulations.

    3. Reviewer #3 (Public review):

      Authors first use rG-RPA to reproduce two observed trends. Caprin1 does not phase separate at very low salt but then undergoes LLPS with added salt while further addition of salt reduces its propensity to LLPS. On the other hand pY-Caprin1 exhibits a monotonic trend where the propensity to phase separate decreases with the addition of salt. This distinction is captured by a two component model and also when salt ions are explicitly modeled as a separate species with a ternary phase diagram. The predicted ternary diagrams (when co and counter ions are explicitly accounted for) also predict the tendency of ions to co-condense or exclude proteins in the dense phase. Predicted trends are generally in line with the measurement for Cparin1. Next, the authors seek to explain the observed difference in phase separation when Arginines are replaced by Lysines creating different variants. In the current rG-RPA type models both Arginine (R) and Lysine (K) are treated equally since non-electrostatic effects are only modeled in a mean-field manner that can be fitted but not predicted. For this reason, coarse grain MD simulation is suitable. Moreover, MD simulation affords structural features of the condensates. They used a force field that is capable of discriminating R and K. The MD predicted degrees of LLPS of these variants again is consistent with the measurement. One additional insight emerges from MD simulations that a negative ion can form a bridge between two positively charged residues on the chain. These insights are not possible to derive from rG-RPA. Both rG-RPA and MD simulation become cumbersome when considering multiple types of ions such as Na, Cl, [ATP] and [ATP-Mg] all present at the same time. FTS is well suited to handle this complexity. FTS also provides insights into the co-localization of ions and proteins that is consistent with NMR. By using different combinations of ions they confirm the robustness of the prediction that Caprin1 shows salt-dependent reentrant behavior, adding further support that the differential behavior of Caprin1, and pY-Caprin1 is likely to be mediated by charge-charge interactions.

      Comments on revisions:

      The authors addressed my comments and it is ready for publication.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript explores the multiple cell types present in the wall of murine collecting lymphatic vessels with the goal of identifying cells that initiate the autonomous action potentials and contractions needed to drive lymphatic pumping. Through the use of genetic models to delete individual genes or detect cytosolic calcium in specific cell types, the authors convincingly determine that lymphatic muscle cells are the origin of the action potential that triggers lymphatic contraction.

      Strengths:

      The experiments are rigorously performed, the data justify the conclusions and the limitations of the study are appropriately discussed.

      There is a need to identify therapeutic targets to improve lymphatic contraction and this work helps identify lymphatic muscle cells as potential cellular targets for intervention.

    2. Reviewer #2 (Public review):

      Summary:

      This is a well written manuscript describing studies directed at identifying the cell type responsible for pacemaking in murine collecting lymphatics. Using state-of-the-art approaches, the authors identified a number of different cell types in the wall of these lymphatics and then using targeted expression of Channel Rhodopsin and GCaMP, the authors convincingly demonstrate that only activation of lymphatic muscle cells produces coordinated lymphatic contraction and that only lymphatic muscle cells display pressure-dependent Ca2+ transients as would be expected of a pacemaker in these lymphatics.

      Strengths:

      The use of targeted expression of channel rhodopsin and GCaMP to test the hypothesis that lymphatic muscle cells serve as the pacemakers in musing lymphatic collecting vessels.

      Weaknesses:

      The only significant weakness was the lack of quantitative analysis of most of the imaging data shown in Figures 1-11. In particular, the colonization analysis should be extended to show cells not expected to demonstrate colocalization as a negative control for the colocalization analysis that the authors present. These weaknesses have been resolved by revision and addition of new and novel RNAseq data, additional colocalization data and membrane potential measurements.

    3. Reviewer #3 (Public review):

      Summary:

      Zawieja et al. aimed to identify the pacemaker cells in the lymphatic collecting vessels. Authors have used various Cre-based expression systems and optogentic tools to identify these cells. Their findings suggest these cells are lymphatic muscle cells that drive the pacemaker activity in the lymphatic collecting vessels.

      Strengths:

      The authors have used multiple approaches to test their hypothesis. Some findings are presented as qualitative images, while some quantitative measurements are provided.

      Weaknesses:

      - More quantitative measurements.<br /> - Possible mechanisms associated with the pacemaker activity.<br /> - Membrane potential measurements.

      Comments on revisions:

      The authors have answered my comments with additional experiments, data and manuscript edits.

    1. Reviewer #1 (Public Review):

      This study presents valuable observations of white matter organisation from diffusion MRI and two types of synchrotron imaging in both monkeys and mice. Cross-modality comparisons are interesting as the different methods are able to probe anatomical structures at different length scales, from single axons in high-resolution synchrotron (ESRF) imaging, to clusters of axons in lower-resolution synchrotron (DEXY) data, to axon populations at the mm-scale in diffusion MRI. By acquiring all modalities in monkey and mouse ex vivo samples, the authors can observe principles of fibre organisation, and characterise how fibre characteristics, such as tortuosity and micro-dispersion, vary across select brain regions and in healthy tissue versus a demyelination model.

      One very interesting result is the observation of apparent laminar organisation of fibres in ex vivo monkey white matter samples. DESY data from the corpus callosum shows fibres with two dominant orientations (one L-R, one slightly inclined), clustered in laminar structures within this major fibre bundle. Thanks to the authors providing open data, I was able to look through the raw DESY volume and observe regions with different "textures" (different orientations) in the described laminar arrangement. That this organisation can be observed by eye, as well as by structure tensor, is fairly convincing.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors combine diffusion MRI and high-resolution x-ray synchrotron phase-contrast imaging in monkey and mouse brains to investigate the 3D organization of brain white matter across different scales and species. The work is at the forefront of the anatomical investigation of the human connectome and aligns with several current efforts to bridge the resolution gap between what we can see in vivo at the millimeter scale and the complexity of the human brain at the sub-micron scale. The authors compare the 3D white matter organization across modalities within 2 small regions in one monkey brain (body of the corpus callosum, centrum semiovale) and within one region (splenium of the corpus callosum) in healthy mice and in one murine model of focal demyelination. The study compares measures of tissue anisotropy and fiber orientations across modalities, performs a qualitative comparison of fasciculi trajectories across brain regions and tissue conditions using streamlined tractography based on the structure tensor, and attempts to quantify the shape of fasciculi trajectories by measuring the tortuosity index and the maximum deviation for each reconstructed streamline. Results show measures of anisotropy and fiber orientations largely agree across modalities, especially for larger FOV data. The high-resolution data allows us to explore the fiber trajectories in relation to tissue complexity and pathology. The authors claim the study reveals new common organization principles of white matter fibers across species and scales, for which axonal fasciculi arrange into sheet-like laminar structures.

      Strengths:

      The aim of the study is of central importance within present efforts to bridge the gap between macroscopic structures observable in vivo in humans using conventional diffusion MRI and the microscopic organization of white matter tissue. Results obtained from this type of study are important to interpret data obtained in vivo, inform the development of novel methodologies, and expand our knowledge of the structural and thus functional organization of brain circuits.

      Multi-scale data acquired across modalities within the same sample constitute extremely valuable data that is often hard to acquire and represent a precious resource for validation of both diffusion MRI tractography and microstructure methods.

      The inclusion of multi-species data adds value to the study, allowing the exploration of common organization principles across species.

      The addition of data from a murine cuprizone model of focal demyelination adds interesting opportunities to study the underlying biological changes that follow demyelination and how these impact tissue anisotropy and fiber trajectories. These data can inform the interpretation and development of diffusion MRI microstructure models.

      [Editors' note: The Reviewing Editor considers that the authors addressed the reviewers' questions adequately. The original reviews are here: https://elifesciences.org/reviewed-preprints/94917/reviews]

    1. Reviewer #1 (Public review):

      This study extends the previous interesting work of this group to address the potentially differential control of movement and posture. Their earlier work explored a broad range of data to make the case for a downstream neural integrator hypothesized to convert descending velocity movement commands into postural holding commands. Included in that data were observations from people with hemiparesis due to stroke. The current study uses similar data, but pushes into a different, but closely related direction, suggesting that these data may address the independence of these two fundamental components of motor control. I find the logic laid out in the second sentence of the abstract ("The paretic arm after stroke is notable for abnormalities both at rest and during movement, thus it provides an opportunity to address the relationships between control of reaching, stopping, and stabilizing") less then compelling, but the study does make some interesting observations. Foremost among them, is the relation between the resting force postural bias and the effect of force perturbations during the target hold periods, but not during movement. While this interesting observation is consistent with the central mechanism the authors suggest, it seems hard to me to rule out other mechanisms, including peripheral ones. These limitations should should be discussed.

    2. Reviewer #2 (Public review):

      Summary:

      Here the authors address the idea that postural and movement control are differentially impacted with stroke. Specifically, they examined whether resting postural forces influenced several metrics of sensorimotor control (e.g., initial reach angle, maximum lateral hand deviation following a perturbation, etc.) during movement or posture. The authors found that resting postural forces influenced control only following the posture perturbation for the paretic arm of stroke patients, but not during movement. They also found that resting postural forces were greater when the arm was unsupported, which correlated with abnormal synergies (as assessed by the Fugl-Meyer). The authors suggest that these findings can be explained by the idea that the neural circuitry associated with posture is relatively more impacted by stroke than the neural circuitry associated with movement. They also propose a conceptual model that differentially weights the reticulospinal tract (RST) and corticospinal tract (CST) to explain greater relative impairments with posture control relative to movement control, due to abnormal synergies, in those with stroke.

      Comments on revisions:

      The authors should be commended for being very responsive to comments and providing several further requested analyses, which have improved the paper. However, there is still some outstanding issues that make it difficult to fully support the provided interpretation.

      The authors say within the response, "We would also like to stress that these perturbations were not designed so that responses are directly compared to each other ***(though of course there is an *indirect* comparison in the sense that we show influence of biases in one type of perturbation but not the other)***." They then state in the first paragraph of the discussion that "Remarkably, these resting postural force biases did not seem to have a detectable effect upon any component of active reaching but only emerged during the control of holding still after the movement ended. The results suggest a dissociation between the control of movement and posture." The main issue here is relying on indirect comparisons (i.e., significant in one situation but not the other), instead of relying on direct comparisons. Using well-known example, just because one group / condition might display a significant linear relationship (i.e., slope_1 > 0) and another group / condition does not (slope_2 = 0), does not necessarily mean that the two groups / conditions are statistically different from one another [see Figure 1 in Makin, T. R., & Orban de Xivry, J. J. (2019). Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife, 8, e48175.].

      The authors have provided reasonable rationale of why they chose certain perturbation waveforms for different. Yet it still holds that these different waveforms would likely yield very different muscular responses making it difficult to interpret the results and this remains a limitation. From the paper it is unknown how these different perturbations would differentially influence a variety of classic neuromuscular responses, including short-range stiffness and stretch reflexes, which would be at play here.

      Much of the results can be interpreted when one considers classic neuromuscular physiology. In Experiment 1, differences in resting postural bias in supported versus unsupported conditions can readily be explained since there is greater muscle activity in the unsupported condition that leads to greater muscle stiffness to resist mechanical perturbations (Rack, P. M., & Westbury, D. R. (1974). The short-range stiffness of active mammalian muscle and its effect on mechanical properties. The Journal of physiology, 240(2), 331-350.). Likewise muscle stiffness would scale with changes in muscle contraction with synergies. Importantly for experiment 2, muscle stiffness is reduced during movement (Rack and Westbury, 1974) which may explain why resting postural biases do not seem to be impacting movement. Likewise, muscle spindle activity is shown to scale with extrafusal muscle fiber activity and forces acting through the tendon (Blum, K. P., Campbell, K. S., Horslen, B. C., Nardelli, P., Housley, S. N., Cope, T. C., & Ting, L. H. (2020). Diverse and complex muscle spindle afferent firing properties emerge from multiscale muscle mechanics. eLife, 9, e55177.). The concern here is that the authors have not sufficiently considered muscle neurophysiology, how that might relate to their findings, and how that might impact their interpretation. Given the differences in perturbations and muscle states at different phases, the concern is that it is not possible to disentangle whether the results are due to classic neurophysiology, the hypothesis they propose, or both. Can the authors please comment.

      The authors should provide a limitations paragraph. They should address 1) how they used different perturbation force profiles, 2) the muscles were in different states which would change neuromuscular responses between trial phase / condition, 3) discuss a lack of direct statistical comparisons that support their hypothesis, and 4) provide a couple of paragraphs on classic neurophysiology, such as muscle stiffness and stretch reflexes, and how these various factors could influence the findings (i.e., whether they can disentangle whether the reported results are due to classic neurophysiology, the hypothesis they propose, or both).

    1. Reviewer #1 (Public review):

      Summary:

      Govindan and Conrad use a genome-wide CRISPR screen to identify genes regulating retention of intron 4 in OGT, leveraging an intron retention reporter system previously described (PMID: 35895270). Their OGT intron 4 reporter reliably responds to O-GlcNAc levels, mirroring the endogenous splicing event. Through a genome-wide CRISPR knockout library, they uncover a range of splicing-related genes, including multiple core spliceosome components, acting as negative regulators of OGT intron 4 retention. They choose to follow up on SFSWAP, a largely understudied splicing regulator shown to undergo rapid phosphorylation in response to O-GlcNAc level changes (PMID: 32329777). RNA-sequencing reveals that SFSWAP depletion not only promotes OGT intron 4 splicing but also broadly induces exon inclusion and intron splicing, affecting decoy exon usage. While this study offers interesting insights into intron retention and O-GlcNAc signaling regulation, the RNA sequencing experiments lack the essential controls needed to provide full confidence to the authors' conclusions.

      Strengths:

      (1) This study presents an elegant genetic screening approach to identify regulators of intron retention, uncovering core spliceosome genes as unexpected positive regulators of intron retention.

      (2) The work proposes a novel functional role for SFSWAP in splicing regulation, suggesting that it acts as a negative regulator of splicing and cassette exon inclusion, which contrasts with expected SR-related protein functions.

      (3) The authors suggest an intriguing model where SFSWAP, along with other spliceosome proteins, promotes intron retention by associating with decoy exons.

      Weaknesses:

      (1) The conclusions on SFSWAP impact on alternative splicing are based on cells treated with two pooled siRNAs for five days. This extended incubation time without independent siRNA treatments raises concerns about off-target effects and indirect effects from secondary gene expression changes, potentially limiting confidence in direct SFSWAP-dependent splicing regulation. Rescue experiments and shorter siRNA-treatment incubation times could address these issues.

      (2) The mechanistic role of SFSWAP in splicing would benefit from further exploration. Key questions remain, such as whether SFSWAP directly binds RNA, specifically the introns and exons (including the decoy exons) it appears to regulate. Furthermore, given that SFSWAP phosphorylation is influenced by changes in O-GlcNAc signaling, it would be interesting to investigate this relationship further. While generating specific phosphomutants may not yield definitive insights due to redundancy and also beyond the scope of the study, the authors could examine whether distinct SFSWAP domains, such as the SR and SURP domains, which likely overlap with phosphorylation sites, are necessary for regulating OGT intron 4 splicing.

      (3) Data presentation could be improved (specific suggestions are included in the recommendations section). Furthermore, Excel tables with gene expression and splicing analysis results should be provided as supplementary datasheets. Finally, a more detailed explanation of statistical analyses is necessary in certain sections.

    2. Reviewer #2 (Public review):

      Summary:

      The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly.

      Strengths:

      (1) Exhaustive analysis of potential splicing factors in an unbiased screen.

      (2) Extensive genome wide bioinformatic analysis.

      (3) Thoughtful discussion and literature survey.

      Weaknesses:

      (1) No firm evidence linking SFSWA to an O-GlcNAc specific mechanism.

      (2) Resulting model leaves many unanswered questions.

    3. Reviewer #3 (Public review):

      Summary:

      The major novel finding in this study is that SFSWAP, a splicing factor containing an RS domain but no canonical RNA binding domain, functions as a negative regulator of splicing. More specifically, it promotes retention of specific introns in a wide variety of transcripts including transcripts from the OGT gene previously studied by the Conrad lab. The balance between OGT intron retention and OGT complete splicing is an important regulator of O-GlcNAc expression levels in cells.

      Strengths:

      An elegant CRISPR knockout screen employed a GFP reporter, in which GFP is efficiently expressed only when the OGT retained intron is removed (so that the transcript will be exported from the nucleus to allow for translation of GFP). Factors whose CRISPR knockdown causes decreased intron retention therefore increase GFP, and can be identified by sequencing RNA of GFP-sorted cells. SFSWAP was thus convincingly identified as a negative regulator of OGT retained intron splicing. More focused studies of OGT intron retention indicate that it may function by regulating a decoy exon previously identified in the intron, and that this may extend to other transcripts with decoy exons.

      Weaknesses:

      The mechanism by which SFSWAP represses retained introns is unclear, although some data suggests it can operate (in OGT) at the level of a recently reported decoy exon within that intron. Interesting/appropriate speculation about possible mechanisms are provided and will likely be the subject of future studies.

      Overall the study is well done and carefully described but some figures and some experiments should be described in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      This study explores how heterozygosity for specific neurodevelopmental disorder-associated Trio variants affects mouse behavior, brain structure, and synaptic function, revealing distinct impacts on motor, social, and cognitive behaviors linked to clinical phenotypes. Findings demonstrate that Trio variants yield unique changes in synaptic plasticity and glutamate release, highlighting Trio's critical role in presynaptic function and the importance of examining variant heterozygosity in vivo.

      Strengths:

      This study generated multiple mouse lines to model each Trio variant, reflecting point mutations observed in human patients with developmental disorders. The authors employed various approaches to evaluate the resulting behavioral, neuronal morphology, synaptic function, and proteomic phenotypes.

      Weaknesses:

      While the authors present extensive results, the flow of experiments is challenging to follow, raising concerns about the strength of the experimental conclusions. Additionally, the connection between sex, age, behavioral data, brain regions, synaptic transmission, and plasticity lacks clarity, making it difficult to understand the rationale behind each experiment. Clearer explanations of the purpose and connections between experiments are recommended. Furthermore, the methodology requires more detail, particularly regarding mouse breeding strategies, timelines for behavioral tests, electrophysiology conditions, and data analysis procedures.

    2. Reviewer #2 (Public review):

      Summary:

      The authors generated three mouse lines harboring ASD, Schizophrenia, and Bipolar-associated variants in the TRIO gene. Anatomical, behavioral, physiological, and biochemical assays were deployed to compare and contrast the impact of these mutations in these animals. In this undertaking, the authors sought to identify and characterize the cellular and molecular mechanisms responsible for ASD, Schizophrenia, and Bipolar disorder development.

      Strengths:

      The establishment of TRIO dysfunction in the development of ASD, Schizophrenia, and Bipolar disorder is very recent and of great interest. Disorder-specific variants have been identified in the TRIO gene, and this study is the first to compare and contrast the impact of these variants in vivo in preclinical models. The impact of these mutations was carefully examined using an impressive host of methods. The authors achieved their goal of identifying behavioral, physiological, and molecular alterations that are disorder/variant specific. The impact of this work is extremely high given the growing appreciation of TRIO dysfunction in a large number of brain-related disorders. This work is very interesting in that it begins to identify the unique and subtle ways brain function is altered in ASD, Schizophrenia, and Bipolar disorder.

      Weaknesses:

      (1) Most assays were performed in older animals and perhaps only capture alterations that result from homeostatic changes resulting from prodromal pathology that may look very different.

      (2) Identification of upregulated (potentially compensating) genes in response to these disorder-specific Trio variants is extremely interesting. However, a functional demonstration of compensation is not provided.

      (3) There are instances where data is not shown in the manuscript. See "data not shown". All data collected should be provided even if significant differences are not observed.

      I consider weaknesses 1 and 2 minor. While they would very interesting to explore, these experiments might be more appropriate for a follow-up study. I would recommend that the missing data in 3 should be provided in the supplemental material.

    1. Reviewer #1 (Public review):

      Summary:<br /> This study addresses the roles of polyunsaturated fatty acids (PUFAs) in animal physiology and membrane function. A C. elegans strain carrying the fat-2(wa17) mutation possess a very limited ability to synthesize PUFAs and there is no dietary input because the E. coli diet consumed by lab grown C. elegans does not contain any PUFAs. The fat-2 mutant strain was characterized to confirm that the worms grow slowly, have rigid membranes, and have a constitutive mitochondrial stress response. The authors showed that chemical treatments or mutations known to increase membrane fluidity did not rescue growth defects. A thorough genetic screen was performed to identify genetic changes to compensate for the lack of PUFAs. The newly isolated suppressor mutations that compensated for FAT-2 growth defects included intergenic suppressors in the fat-2 gene, as well as constitutive mutations in the hypoxia sensing pathway components EGL-9 and HIF-1, and loss of function mutations in ftn-2, a gene encoding the iron storage protein ferritin. Taken together, these mutations lead to the model that increased intracellular iron, an essential cofactor for fatty acid desaturases, allows the minimally functional FAT-2(wa17) enzyme to be more active, resulting in increased desaturation and increased PUFA synthesis.

      Strengths:<br /> (1) This study provides new information further characterizing fat-2 mutants. The authors measured increased rigidity of membranes compared to wild type worms, however this rigidity is not able to be rescued with other fluidity treatments such as detergent or mutants. Rescue was only achieved with polyunsaturated fatty acid supplementation.<br /> (2) A very thorough genetic suppressor screen was performed. In addition to some internal fat-2 compensatory mutations, the only changes in pathways identified that are capable of compensating for deficient PUFA synthesis was the hypoxia pathway and the iron storage protein ferritin. Suppressor mutations included an egl-9 mutation that constitutively activates HIF-1, and Gain of function mutations in hif-1 that are dominant. This increased activity of HIF conferred by specific egl-9 and hif-1 mutations lead to decreased expression of ftn-2. Indeed, loss of ftn-2 leads to higher intracellular iron. The increased iron apparently makes the FAT-2 fatty acid desaturase enzyme more active, allowing for the production of more PUFAs.<br /> (3) The mutations isolated in the suppressor screen show that the only mutations able to compensate for lack of PUFAs were ones that increased PUFA synthesis by the defective FAT-2 desaturase, thus demonstrating the essential need for PUFAs that cannot be overcome by changes in other pathways. This is a very novel study, taking advantage of genetic analysis of C. elegans, and it confirms the observations in humans that certain essential PUFAs are required for growth and development.<br /> (4) Overall, the paper is well written, and the experiments were carried out carefully and thoroughly. The conclusions are well supported by the results.

      Weaknesses:<br /> Overall, there are not many weaknesses. The main one I noticed is that the lipidomic analysis shown in Figs 3C, 7C, S1 and S3. Whie these data are an essential part of the analysis and provide strong evidence for the conclusions of the study, it is unfortunate that the methods used did not enable the distinction between two 18:1 isomers. These two isomers of 18:1 are important in C. elegans biology, because one is a substrate for FAT-2 (18:1n-9, oleic acid) and the other is not (18:1n-7, cis vaccenic acid). Although rarer in mammals, cis-vaccenic acid is the most abundant fatty acid in C. elegans and is likely the most important structural MUFA. The measurement of these two isomers is not essential for the conclusions of the study, but the manuscript should include a comment about the abundance of oleic vs vaccenic acid in C. elegans (authors can find this information, even in the fat-2 mutant, in other publications of C. elegans fatty acid composition). Otherwise, readers who are not familiar with C. elegans might assume the 18:1 that is reported is likely to be mainly oleic acid, as is common in mammals.

      Other suggestions to authors to improve the paper:<br /> (1) The title could be less specific; it might be confusing to readers to include the allele name in the title.<br /> (2) There are two errors in the pathway depicted in Figure 1A. The16:0-16:1 desaturation can be performed by FAT-5, FAT-6, and FAT-7. The 18:0-18:1 desaturation can only be performed by FAT-6 and FAT-7

    2. Reviewer #2 (Public review):

      Summary:<br /> The authors use a genetic screen in C. elegans to investigate the physiological roles of polyunsaturated fatty acids (PUFAs). They screen for mutations that rescue fat-2 mutants, which have strong reductions in PUFAs. As a result, either mutations in fat-2 itself, or mutations in genes involved in the HIF-1 pathway, were found to rescue fat-2 mutants.

      Strengths:<br /> As C. elegans can produce PUFAs de novo as essential lipids, the genetic model is well suited to study the fundamental roles of PUFAs, and the results are very interesting. The genetic screen finds mutations in convergent pathways, suggesting that it has reached near-saturation. The link between the HIF-1 pathway and lipid unsaturation is very interesting. As many of the mutations found to rescue fat-2 mutants are of gain-of-function, it is unlikely that similar discoveries could have been made with other approaches like genome-wide CRISPR screenings, making the current study distinctive.

      Weaknesses:<br /> The authors make very important statements, but some are not sufficiently supported by data. In page 5, they conclude that membrane rigidity is a minor cause of fat-2 mutant defects, which is a relevant observation regarding why PUFAs are important. However, they use treatments that have rescued fluidity in another mutant (paqr-2), but do not test if they have the same fluidifying effects in fat-2 mutants.

      The screening results seem to converge into the HIF-1 pathway, which is hypothetically correct according to the literature. However, the authors do not validate this hypothesis, which is a critical limitation, especially because many of the mutations they obtained seem to be of gain-of-function. Therefore, without experimental testing, it cannot be concluded that the mutations have the expected effect on the HIF-1 pathway.

      In some of the mutants, the rescues in lipid compositions seem to be weak, and it is arguable whether phenotypic rescues are really via a restoration in lipid compositions.

      The hypothesis linking iron homeostasis and the rescue of fat-2 mutants is interesting, but the data of rescue by iron repletion seem to be against it. The results might be due to the inefficiency in iron repletion, as the authors suggest, but this has not been formally addressed.

      Therefore, the authors propose multiple very interesting and important hypotheses, but experimental validations remain limited.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Nedbalova et al. investigate the biochemical pathway that acts in circulating immune cells to generate adenosine, a systemic signal that directs nutrients toward the immune response, and S-adenosylmethionine (SAM), a methyl donor for lipid, DNA, RNA, and protein synthetic reactions. They find that SAM is largely generated through the uptake of extracellular methionine, but that recycling of adenosine to form ATP contributes a small but important quantity of SAM in immune cells during the immune response. The authors propose that adenosine serves as a sensor of cell activity and nutrient supply, with adenosine secretion dominating in response to increased cellular activity. Their findings of impaired immune action but rescued larval developmental delay when the enzyme Ahcy is knocked down in hemocytes are interpreted as due to effects on methylation processes in hemocytes and reduced production of adenosine to regulate systemic metabolism and development, respectively. Overall this is a strong paper that uses sophisticated metabolic techniques to map the biochemical regulation of an important systemic mediator, highlighting the importance of maintaining appropriate metabolite levels in driving immune cell biology.

      Strengths:

      The authors deploy metabolic tracing - no easy feat in Drosophila hemocytes - to assess flux into pools of the SAM cycle. This is complemented by mass spectrometry analysis of total levels of SAM cycle metabolites to provide a clear picture of this metabolic pathway in resting and activated immune cells.

      The experiments show that the recycling of adenosine to ATP, and ultimately SAM, contributes meaningfully to the ability of immune cells to control infection with wasp eggs.

      This is a well-written paper, with very nice figures showing metabolic pathways under investigation. In particular, the italicized annotations, for example, "must be kept low", in Figure 1 illustrate a key point in metabolism - that cells must control levels of various intermediates to keep metabolic pathways moving in a beneficial direction.

      Experiments are conducted and controlled well, reagents are tested, and findings are robust and support most of the authors' claims.

      Weaknesses:

      The authors posit that adenosine acts as a sensor of cellular activity, with increased release indicating active cellular metabolism and insufficient nutrient supply. It is unclear how generalizable they think this may be across different cell types or organs.

      The authors extrapolate the findings in Figure 3 of decreased extracellular adenosine in ex vivo cultures of hemocytes with knockdown of Ahcy (panel B) to the in vivo findings of a rescue of larval developmental delay in wasp egg-infected larvae with hemocyte-specific Ahcy RNAi (panel C). This conclusion (discussed in lines 545-547) should be somewhat tempered, as a number of additional metabolic abnormalities characterize Ahcy-knockdown hemocytes, and the in vivo situation may not mimic the ex vivo situation. If adenosine (or inosine) measurements were possible in hemolymph, this would help bolster this idea. However, adenosine at least has a very short half-life.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors wish to explore the metabolic support mechanisms enabling lamellocyte encapsulation, a critical antiparasitic immune response of insects. They show that S-adenosylmethionine metabolism is specifically important in this process through a combination of measurements of metabolite levels and genetic manipulations of this metabolic process.

      Strengths:

      The metabolite measurements and the functional analyses are generally very strong and clearly show that the metabolic process under study is important in lamellocyte immune function.

      Weaknesses:

      The gene expression data are a potential weakness. Not enough is explained about how the RNAseq experiments in Figures 2 and 4 were done, and the representation of the data is unclear. The paper would also be strengthened by the inclusion of some measure of encapsulation effectiveness: the authors show that manipulation of the S-adenosylmethionine pathway in lamellocytes affects the ability of the host to survive infection, but they do not show direct effects on the ability of the host to encapsulate wasp eggs.

    3. Reviewer #3 (Public review):

      Summary:

      The authors of this study provide evidence that Drosophila immune cells show upregulated SAM transmethylation pathway and adenosine recycling upon wasp infection. Blocking this pathway compromises the lamellocyte formation, developmental delay, and host survival, suggesting its physiological relevance.

      Strengths:

      Snapshot quantification of the metabolite pool does not provide evidence that the metabolic pathway is active or not. The authors use an ex vivo isotope labelling to precisely monitor the SAM and adenosine metabolism. During infection, the methionine metabolism and adenosine recycling are upregulated, which is necessary to support the immune reaction. By combining the genetic experiment, they successfully show that the pathway is activated in immune cells.

      Weaknesses:

      The authors knocked down Ahcy to prove the importance of SAM methylation pathway. However, Ahcy-RNAi produces a massive accumulation of SAH, in addition to blocking adenosine production. To further validate the phenotypic causality, it is necessary to manipulate other enzymes in the pathway, such as Sam-S, Cbs, SamDC, etc. The authors do not demonstrate how infection stimulates the metabolic pathway given the gene expression of metabolic enzymes is not upregulated by infection stimulus.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors aim to understand the neural basis of implicit causal inference, specifically how people infer causes of illness. They use fMRI to explore whether these inferences rely on content-specific semantic networks or broader, domain-general neurocognitive mechanisms. The study explores two key hypotheses: first, that causal inferences about illness rely on semantic networks specific to living things, such as the 'animacy network,' given that illnesses affect only animate beings; and second, that there might be a common brain network supporting causal inferences across various domains, including illness, mental states, and mechanical failures. By examining these hypotheses, the authors aim to determine whether causal inferences are supported by specialized or generalized neural systems.

      The authors observed that inferring illness causes selectively engaged a portion of the precuneus (PC) associated with the semantic representation of animate entities, such as people and animals. They found no cortical areas that responded to causal inferences across different domains, including illness and mechanical failures. Based on these findings, the authors concluded that implicit causal inferences are supported by content-specific semantic networks, rather than a domain-general neural system, indicating that the neural basis of causal inference is closely tied to the semantic representation of the specific content involved.

      Strengths:

      (1) The inclusion of the four conditions in the design is well thought out, allowing for the examination of the unique contribution of causal inference of illness compared to either a different type of causal inference (mechanical) or non-causal conditions. This design also has the potential to identify regions involved in a shared representation of inference across general domains.

      (2) The presence of the three localizers for language, logic, and mentalizing, along with the selection of specific regions of interest (ROIs), such as the precuneus and anterior ventral occipitotemporal cortex (antVOTC), is a strong feature that supports a hypothesis-driven approach (although see below for a critical point related to the ROI selection).

      (3) The univariate analysis pipeline is solid and well-developed.

      (4) The statistical analyses are a particularly strong aspect of the paper.

      Weaknesses:

      Based on the current analyses, it is not yet possible to rule out the hypothesis that inferring illness causes relies on neurocognitive mechanisms that support causal inferences irrespective of their content, neither in the precuneus nor in other parts of the brain.

      (1) The authors, particularly in the multivariate analyses, do not thoroughly examine the similarity between the two conditions (illness-causal and mechanical-causal), as they are more focused on highlighting the differences between them. For instance, in the searchlight MVPA analysis, an interesting decoding analysis is conducted to identify brain regions that represent illness-causal and mechanical-causal conditions differently, yielding results consistent with the univariate analyses. However, to test for the presence of a shared network, the authors only perform the Causal vs. Non-causal analysis. This analysis is not very informative because it includes all conditions mixed together and does not clarify whether both the illness-causal and mechanical-causal conditions contribute to these results.

      (2) To address this limitation, a useful additional step would be to use as ROIs the different regions that emerged in the Causal vs. Non-causal decoding analysis and to conduct four separate decoding analyses within these specific clusters:<br /> (a) Illness-Causal vs. Non-causal - Illness First;<br /> (b) Illness-Causal vs. Non-causal - Mechanical First;<br /> (c) Mechanical-Causal vs. Non-causal - Illness First;<br /> (d) Mechanical-Causal vs. Non-causal - Mechanical First.<br /> This approach would allow the authors to determine whether any of these ROIs can decode both the illness-causal and mechanical-causal conditions against at least one non-causal condition.

      (3) Another possible analysis to investigate the existence of a shared network would be to run the searchlight analysis for the mechanical-causal condition versus the two non-causal conditions, as was done for the illness-causal versus non-causal conditions, and then examine the conjunction between the two. Specifically, the goal would be to identify ROIs that show significant decoding accuracy in both analyses.

      (4) Along the same lines, for the ROI MVPA analysis, it would be useful not only to include the illness-causal vs. mechanical-causal decoding but also to examine the illness-causal vs. non-causal conditions and the mechanical-causal vs. non-causal conditions. Additionally, it would be beneficial to report these data not just in a table (where only the mean accuracy is shown) but also using dot plots, allowing the readers to see not only the mean values but also the accuracy for each individual subject.

      (5) The selection of Regions of Interest (ROIs) is not entirely straightforward:<br /> In the introduction, the authors mention that recent literature identifies the precuneus (PC) as a region that responds preferentially to images and words related to living things across various tasks. While this may be accurate, we can all agree that other regions within the ventral occipital-temporal cortex also exhibit such preferences, particularly areas like the fusiform face area, the occipital face area, and the extrastriate body area. I believe that at least some parts of this network (e.g., the fusiform gyrus) should be included as ROIs in this study. This inclusion would make sense, especially because a complementary portion of the ventral stream known to prefer non-living items (i.e., anterior medial VOTC) has been selected as a control ROI to process information about the mechanical-causal condition. Given the main hypothesis of the study - that causal inferences about illness might depend on content-specific semantic representations in the 'animacy network' - it would be worthwhile to investigate these ROIs alongside the precuneus, as they may also yield interesting results.

      (6) Visual representation of results:<br /> In all the figures related to ROI analyses, only mean group values are reported (e.g., Figure 1A, Figure 3, Figure 4A, Supplementary Figure 6, Figure 7, Figure 8). To better capture the complexity of fMRI data and provide readers with a more comprehensive view of the results, it would be beneficial to include a dot plot for a specific time point in each graph. This could be a fixed time point (e.g., a certain number of seconds after stimulus presentation) or the time point showing the maximum difference between the conditions of interest. Adding this would allow for a clearer understanding of how the effect is distributed across the full sample, such as whether it is consistently present in every subject or if there is greater variability across individuals.

      (7) Task selection:<br /> (a) To improve the clarity of the paper, it would be helpful to explain the rationale behind the choice of the selected task, specifically addressing: (i) why an implicit inference task was chosen instead of an explicit inference task, and (ii) why the "magic detection" task was used, as it might shift participants' attention more towards coherence, surprise, or unexpected elements rather than the inference process itself.<br /> (b) Additionally, the choice to include a large number of catch trials is unusual, especially since they are modeled as regressors of non-interest in the GLM. It would be beneficial to provide an explanation for this decision.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors hypothesize that "causal inferences about illness depend on content-specific semantic representations in the animacy network". They test this hypothesis in an fMRI task, by comparing brain activity elicited by participants' exposure to written situations suggesting a plausible cause of illness with brain activity in linguistically equivalent situations suggesting a plausible cause of mechanical failure or damage and non-causal situations. These contrasts identify PC as the main "culprit" in a whole-brain univariate analysis. Then the question arises of whether the content-specificity has to do with inferences about animates in general, or if there are some distinctions between reasoning about people's bodies versus mental states. To answer this question, the authors localize the mentalizing network and study the relation between brain activity elicited by Illness-Causal > Mech-Causal and Mentalizing > Physical stories. They conclude that inferring about the causes of illness partially differentiates from reasoning about people's states of mind. The authors finally test the alternative yet non-mutually exclusive hypothesis that both types of causal inferences (illness and mechanical) depend on shared neural machinery. Good candidates are language and logic, which justifies the use of a language/logic localizer. No evidence of commonalities across causal inferences versus non-causal situations is found.

      Strengths:

      (1) This study introduces a useful paradigm and well-designed set of stimuli to test for implicit causal inferences.

      (2) Another important methodological advance is the addition of physical stories to the original mentalizing protocol.

      (3) With these tools, or a variant of these tools, this study has the potential to pave the way for further investigation of naïve biology and causal inference.

      Weaknesses:

      (1) This study is missing a big-picture question. It is not clear whether the authors investigate the neural correlates of causal reasoning or of naïve biology. If the former, the choice of an orthogonal task, making causal reasoning implicit, is questionable. If the latter, the choice of mechanical and physical controls can be seen as reductive and problematic.

      (2) The rationale for focusing mostly on the precuneus is not clear and this choice could almost be seen as a post-hoc hypothesis.

      (3) The choice of an orthogonal 'magic detection' task has three problematic consequences in this study:<br /> (a) It differs in nature from the 'mentalizing' task that consists of evaluating a character's beliefs explicitly from the corresponding story, which complicates the study of the relation between both tasks. While the authors do not compare both tasks directly, it is unclear to what extent this intrinsic difference between implicit versus explicit judgments of people's body versus mental states could influence the results.<br /> (b) The extent to which the failure to find shared neural machinery between both types of inferences (illness and mechanical) can be attributed to the implicit character of the task is not clear.<br /> (c) The introduction of a category of non-interest that contains only 36 trials compared to 38 trials for all four categories of interest creates a design imbalance.

      (4) Another imbalance is present in the design of this study: the number of trials per category is not the same in each run of the main task. This imbalance does not seem to be accounted for in the 1st-level GLM and renders a bit problematic the subsequent use of MVPA.

      (5) The main claim of the authors, encapsulated by the title of the present manuscript, is not tested directly. While the authors included in their protocol independent localizers for mentalizing, language, and logic, they did not include an independent localizer for "animacy". As such, they cannot provide a within-subject evaluation of their claim, which is entirely based on the presence of a partial overlap in PC (which is also involved in a wide range of tasks) with previous results on animacy.

    3. Reviewer #3 (Public review):

      Summary:

      This study employed an implicit task, showing vignettes to participants while a bold signal was acquired. The aim was to capture automatic causal inferences that emerge during language processing and comprehension. In particular, the authors compared causal inferences about illness with two control conditions, causal inferences about mechanical failures and non-causal phrases related to illnesses. All phrases that were employed described contexts with people, to avoid animacy/inanimate confound in the results. The authors had a specific hypothesis concerning the role of the precuneus (PC) in being sensitive to causal inferences about illnesses.

      These findings indicate that implicit causal inferences are facilitated by semantic networks specialized for encoding causal knowledge.

      Strengths:

      The major strength of the study is the clever design of the stimuli (which are nicely matched for a number of features) which can tease apart the role of the type of causal inference (illness-causal or mechanical-causal) and the use of two localizers (logic/language and mentalizing) to investigate the hypothesis that the language and/or logical reasoning networks preferentially respond to causal inference regardless of the content domain being tested (illnesses or mechanical).

      Weaknesses:

      I have identified the following main weaknesses:

      (1) Precuneus (PC) and Temporo-Parietal junction (TPJ) show very similar patterns of results, and the manuscript is mostly focused on PC (also the abstract). To what extent does the fact that PC and TPJ show similar trends affect the inferences we can derive from the results of the paper? I wonder whether additional analyses (connectivity?) would help provide information about this network.

      (2) Results are mainly supported by an univariate ROI approach, and the MVPA ROI approach is performed on a subregion of one of the ROI regions (left precuneus). Results could then have a limited impact on our understanding of brain functioning.

      (3) In all figures: there are no measures of dispersion of the data across participants. The reader can only see aggregated (mean) data. E.g., percentage signal changes (PSC) do not report measures of dispersion of the data, nor do we have bold maps showing the overlap of the response across participants. Only in Figure 2, we see the data of 6 selected participants out of 20.

      (4) Sometimes acronyms are defined in the text after they appear for the first time.

    1. Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells. These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      Another weakness of this study is that it is performed only in one receiving cell type (NIH3T3 mouse cells). Thus, rather than a general phenomenon occurring on a massive scale in every multicellular organism, it could merely reflect aberrant properties of a cell line that for some reason became permeable to exogenous cfChPs. This begs the question of the relevance of this study for living organisms.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

    2. Reviewer #2 (Public review):

      I must note that my comments pertain to the evolutionary interpretations rather than the study's technical results. The techniques appear to be appropriately applied and interpreted, but I do not feel sufficiently qualified to assess this aspect of the work in detail.

      I was repeatedly puzzled by the use of the term "function." Part of the issue may stem from slightly different interpretations of this word in different fields. In my understanding, "function" should denote not just what a structure does, but what it has been selected for. In this context, where it is unclear if cfChPs have been selected for in any way, the use of this term seems questionable.

      Similarly, the term "predatory genome," used in the title and throughout the paper, appears ambiguous and unjustified. At this stage, I am unconvinced that cfChPs provide any evolutionary advantage to the genome. It is entirely possible that these structures have no function whatsoever and could simply be byproducts of other processes. The findings presented in this study do not rule out this neutral hypothesis. Alternatively, some particular components of the genome could be driving the process and may have been selected to do so. This brings us to the hypothesis that cfChPs could serve as vehicles for transposable elements. While speculative, this idea seems to be compatible with the study's findings and merits further exploration.

      I also found some elements of the discussion unclear and speculative, particularly the final section on the evolution of mammals. If the intention is simply to highlight the evolutionary impact of horizontal transfer of transposable elements (e.g., as a source of new mutations), this should be explicitly stated. In any case, this part of the discussion requires further clarification and justification.

      In summary, this study presents important new findings on the behavior of cfChPs when introduced into a foreign cellular context. However, it overextends its evolutionary interpretations, often in an unclear and speculative manner. The concept of the "predatory genome" should be better defined and justified or removed altogether. Conversely, the suggestion that cfChPs may function at the level of transposable elements (rather than the entire genome or organism) could be given more emphasis.

    1. Reviewer #1 (Public review):

      Summary:

      Formins are complex proteins with multiple effects on actin filament assembly, including nucleation, capping with processive elongation, and bundling. Determining which of these activities is important for a given biological process and normal cellular function is a major challenge.

      Here, the authors study the formin FHOD3L, which is essential for normal sarcomere assembly in muscle cells. They identify point mutants of FHOD3L in which formin nucleation and elongation/bundling activities are functionally separated. Expression of these mutants in neonatal rat ventricular myocytes shows that the control of actin filament elongation by formin is the major activity required for the normal assembly of functional sarcomeres.

      Strengths:

      The strength of this work is to combine sensitive biochemical assays with excellent work in neonatal rat ventricular myocytes. This combination of approaches is highly effective for analyzing the function of proteins with multiple activities in vitro.

      Weaknesses:

      FHOD3L does not seem to be the easiest formin to study because of its relatively weak nucleation activity and the short duration of capping events. This difficulty imposes rigorous biochemical analysis and careful interpretation of the data, which should be improved in this work.

    2. Reviewer #2 (Public review):

      This article elucidates the biochemical and cellular mechanisms by which the FHOD-family of formins, particularly FHOD3, contributes to sarcomere formation and contractility in cardiomyocytes. Formins are mainly known to nucleate and elongate actin filaments, with certain family members also exhibiting capping, severing, and bundling activities. Although FHOD3 has been well-established as essential for sarcomere assembly in cardiomyocytes, its precise biochemical functions and contributions to actin dynamics remain poorly understood.

      In this study, the authors combine in vitro biochemical assays with cellular experiments to dissect FHOD3's roles in actin assembly and sarcomere formation. They demonstrate that FHOD3 nucleates actin filaments and acts as a transient elongator, pausing elongation after an initial burst of filament growth. Using separation-of-function mutants, they show that FHOD3's elongation activity - rather than its nucleation, capping, or bundling capabilities - is key for its sarcomeric function.

      The experiments have been conducted rigorously and well-analyzed, and the paper is clearly written. The data presented support the authors' conclusions. I appreciate the detailed description and rationale behind the FHOD3 constructs used in this study.

      However, I was somewhat surprised and a bit disappointed that while the authors conducted single-color TIRF experiments to observe the effects of FHOD3 on single filaments, they did not use fluorescently labeled FHOD3 to directly visualize its behavior. Incorporating such experiments would significantly strengthen their conclusions regarding FHOD3's bursts of elongation interspersed with capping activity. While I understand this might require a few additional weeks of experiments, these data would add considerable value by directly testing the proposed mechanism.

      There is a typo in the word "required" in line number 30. The authors also use fit data to extract parameters in several panels (e.g., Figures 2b, 2d, 3a, and 3b). While these fit functions may be intuitive to actin experts, explicitly describing the fit functions in the figure legends or methods would greatly benefit the broader readership.

    3. Reviewer #3 (Public review):

      Valencia et al. aim to elucidate the biochemical and cellular mechanisms through which the human formin FHOD3 drives sarcomere assembly in cardiomyocytes. To do so, they combined rigorous in vitro biochemical assays with comprehensive in vivo characterizations, evaluating two wild-type FHOD3 isoforms and two function-separating mutants. Surprisingly, they found that both wild-type FHOD3 isoforms can nucleate new actin filaments, as well as elongate existing actin filaments in conjunction with profilin following barbed-end capping. This is in addition to FHOD3's proposed role as an actin bundler. Next, the authors asked whether FHOD3L promotes sarcomere assembly in cardiomyocytes through its activity in actin nucleation or rather elongation. With two function-separating mutants, the authors evaluated the numbers and morphology of sarcomeres, as well as their ability to beat and generate cardiac rhythm. The authors found that while the wild-type FHOD3L and the K1193L mutant can rescue sarcomere morphology and physiology, the GS-FH1 mutant fails to do so. Given that in GS-FH1 mainly elongation activity is compromised, the authors concluded that the elongation activity of FHOD3 is essential for its role in sarcomere assembly in cardiomyocytes, while its nucleator activity is dispensable. Overall, this important study provided a broadened view on the biochemical activities of FHOD3, and a pioneering view on a possible cellular mechanism of how FHOD3L drives sarcomere assembly. If further validated, this can lead to new mechanistic models of sarcomere assembly and potentially new therapeutic targets of cardiomyopathy.

      The conclusions of this paper are mostly well supported by the comprehensive biochemical analyses performed by the authors. However, the sarcomere assembly defect phenotype in the GS-FH1 rescue condition requires further investigation, as the extremely low level of GS-FH1 signal in transfected cells in Figure 6A may reflect a failure of actin-binding by this construct in vivo, rather than its inability to drive elongation. Though the authors do show in Figure 6 that GS-FH1 can bind to normal-looking sarcomeres when they are present, this may be due to a lack of siRNA activity in these cells, such that endogenous FHOD3L is still present. In this possible scenario, GS-FH1 may dimerize with endogenous FHOD3L. The authors should demonstrate that GS-FH1 alone can indeed interact with existing actin filaments in vivo. While this has been clearly demonstrated in vitro, given the more complex biochemical environment in vivo where additional unknown binding partners may present, cautions should be made when extrapolating findings from the former to the latter.

    1. Reviewer #1 (Public review):

      Summary:

      The authors seek to establish whether triadic interaction can promote affiliative relationships in the context of strict dominance hierarchies, and whether the vasopressinergic system is involved in such affiliations. To address this, they experimentally examine how male same-sex affiliations form by testing triadic cohabitation in large-billed crows, a species where males are known to develop and maintain same-sex affiliative relationships within a strict linear social hierarchy. They show a reduction in aggressive behavior over time with cohabitation and the formation of affiliative relationships, as measured by reciprocal allopreening, between two members (dyad) of the triad. The authors then administer a V1aR antagonist to each member of the triad, finding that allopreening decreases and dominance/submissive behaviors reemerge only in the dyad that developed an affiliated relationship ("affiliated dyad") with blockade of V1aR, demonstrating that V1aR mediates maintenance of affiliative peer relationships. The questions of how peer affiliations form, particularly in the context of dominance hierarchies, and the role of V1aR in regulating these behaviors are impactful for the field of social behavior. While the experimental paradigm provides a new way of approaching these questions, we have outlined below our concerns regarding the collection and interpretation of the data that limit the impact of this particular study.

      Strengths:

      (1) The authors develop a behavioral paradigm and experimental sequence using large-billed crows that allows them to identify the formation of stable, affiliated dyads within triadic groups that are robust to subsequent testing and are sensitive to pharmacological manipulation.

      (2) The effects of V1aR antagonism on allopreening and respective dominance or submissive behaviors appear significant and specific to the affiliated dyad, which supports the view that V1aR plays a role in context-dependent, flexible regulation of aggressive behaviors across species. However, these results are difficult to interpret with respect to the authors' main claims given the weaknesses outlined below.

      Weaknesses:

      (1) The authors claim that the data demonstrates that a triadic social group facilitates the formation of affiliative dyads and go further to claim that these relationships have relevance to understanding coalition formation. It is difficult to say whether the triadic structure actually facilitates or promotes the formation of these affiliative interactions as stated without direct comparisons to alternately sized groupings. Further, the relevance to coalitions is weak without expanded behavioral testing.

      (2) Aspects of the experimental design introduce confounding factors that make it difficult to interpret the resulting data. In experiment 1, 6 of the 18 animals that are used for testing are part of multiple triads. This is not accounted for in either the experimental design (wash-out period prior to reuse of animals) or statistical analysis (including repeated testing as a factor in the model) or is not described. Further, while the authors do randomize and counterbalance the two dose trials for the antagonist, vehicle vs drug exposure is not randomized.

      (3) The re-emergence of dominance-related agonistic behaviors with V1aR antagonism specifically in the affiliated dyads is interesting, but difficult to interpret without further description and analysis of the dyadic behavior, particularly given the absence of dominance-related behaviors in either affiliated or unaffiliated dyads during the cohabitation period. In addition, the current data does not support the hypothesis that V1aR is also required to form affiliative relationships, as stated in the discussion (Lines 464-5, 472, 494), since the authors did not administer V1aR antagonist during the initial period of triadic cohabitation.

      (4) Sentences are often repetitive or duplicated (lines 424-426), and paragraphs should be condensed for easier reading, especially in the discussion. Further, some of the discussion might be better presented in an "Ideas and Speculation" subsection, which would help readers appropriately assess the validity of the conclusions based on the data vs the larger implications suggested by the authors.

    2. Reviewer #2 (Public review):

      Seguchi and Izawa provide robust evidence for the role of vasopressin in modulating same-sex affiliative relationships. Especially striking is that these effects appear to be selective to key relationships within a triadic social context. Overall, this is an interesting and rich dataset with compelling results. I largely have some clarifying questions.

      Experiment 1 Comments:

      (1) The primary argument/finding in this experiment is that a triadic situation/environment facilitates the development of male-male reciprocal social relationships. Overall, this effect appears striking in that male-male affiliative bonds (defined as reciprocal allopreening) formed in 6 of the 8 triads tested. However, there is no comparison group of dyads to determine whether co-housing for 2 weeks could also support the formation of male-male social bonds. This lack of a comparison group makes it unclear to what extent the triad is the key aspect of the environment that supports social bonding.

      (2) More specifically, the authors argue that it is not just that triads support affiliative male-male bonds, but that bonds form between the second "middle" (dominant/subordinate) and third "low" (subordinate/subordinate) individuals in each triad. However, it was difficult to assess this from the results.<br /> a) For example, in Figure 3B is each data point the average of two individuals, since in each triad there are two dominant and two subordinate individuals?<br /> b) For me, using more precise language beyond dominant and subordinate (e.g. middle and low), and more clearly displaying the results of allopreening for each pairwise dyad within a triad would improve the impact of the results and support the authors' argument.

      (3) Experiment 2 Comments:<br /> The results here are quite striking, despite the low sample size. In Figure 4, it appears that in every instance of administration V1aRA low and high administration decreased allopreening for both dominant and subordinate individuals.

      (4) Some methodological questions:<br /> a) Can you clarify whether the duration of the post-test was also 30 min?<br /> b) As in Experiment 1, how are individual birds represented in the triad? Was the second "Middle" bird (dominant/subordinate) tested as both a dominant and subordinate bird? My understanding is that the dominant and subordinate birds in Figure 4 are different individuals but that they are the same individuals represented between the affiliated dyad and unaffiliated dyad.

      (5) Throughout the manuscript (Lines 57-67; 557-566) the authors argue that the role of VP in regulating gregariousness can be extrapolated to understand the role of same-sex affiliative bonding. Importantly, gregariousness does not necessarily reflect affiliative bonding. While allopreening is specifically associated with social bonding (e.g. monogamous pair bonds) independent of broader social systems, gregariousness in general, and specifically as defined in many of the references cited, is independent of social bonds - in fact, it is assessed primarily in novel social contexts.

      (6) To clarify, adult prairie voles in the wild do not engage in same-sex affiliative behavior commonly. In fact one of the primary components of opposite-sex pair bonding is same-sex aggression. Thus, while mechanistic studies on the neurobiology of same-sex peer bonds are relevant for this work, I am less convinced that you can make comparisons between the ultimate function of same-sex affiliative relationships in prairie voles.

      (17) The results here are consistent with VP having an anxiolytic effect, as has been suggested in birds, with the consequences on social behaviors being directly or indirectly related. This may be a useful point to draw on in the discussion when considering your findings.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Seguchi & Izawa investigate the formation of male-male affiliative relationships within triads of large-billed crows. They then administered a vasopressin 1a receptor (V1aR) antagonist to either the dominant or subordinate individual within affiliative dyads, to examine whether blocking V1aR disrupts affiliative behavior. They discovered that affiliative dyads can be induced in large-billed crows by housing them in triads. They also found that blocking V1aRs significantly decreased allopreening (an affiliative behavior) within dyads. In addition, it increased aggression by dominant individuals and submissive calls by subordinate individuals.

      Strengths:

      This manuscript uses an especially interesting species - a highly intelligent and highly social corvid, with complex dominance hierarchies - to extend previous work into the effects of the oxytocin and vasopressin peptides hormones on social behaviors. The results are surprisingly clear, despite a small sample size. The authors use the correct statistical approaches to account for a complex, nested design. The introduction and discussion both reflect a strong understanding of the relevant literature, including the limitations of extrapolating from peripheral (intramuscular) versus central (into the brain) injections of the V1aR antagonist. In addition, the authors appear to have been transparent about the data and results, accounting for some of the challenges and limitations of the data and study.

      Weaknesses:

      There are two major concerns. First, the study has a very low sample size (8 triads for Experiment 1, and only 5 triads for Experiment 2). Despite the surprisingly convincing findings, the sample size is too small to support the claim that the vasopressin system "universally mediates same sex relationships. Secondly, the study does not account for the effects of V1aR on non-social behaviors. This is especially true because vasopressin/V1aR (and the particular antagonist used in this study) is known to have effects on osmotic balance, food intake, and stress, including in birds. My concern is that the behavioral effects could be accounted before by differences in general stress or activity levels. Allopreening is usually an activity performed in periods of relative inactivity with aggression being more characterized by high activity levels. The authors discuss these different effects of vasopressin/V1aR in the Discussion, but they do not account for these effects in the study design.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigate the role of microtubule dynamics and its effects on neuronal aging. Using C. elegans as a model, the authors investigate the role of evolutionarily conserved Hippo pathway in microtubule dynamics of touch receptor neurons (TRNs) in an age-dependent manner. Using genetic, molecular, behavioral, and pharmacological approaches, the authors show that age-dependent loss of microtubule dynamics might underlie structural and functional aging of TRNs. Further, the authors show that the Hippo pathway specifically functions in these neurons to regulate microtubule dynamics. Specifically, authors show that hyperactivation of YAP-1, a downstream component of the Hippo pathway that is usually inhibited by the kinase activity of the upstream components of the pathway, results in microtubule stabilization and that might underlie the structural and functional decline of TRNs with age. However, how the Hippo pathway regulates microtubule dynamics and neuronal aging was not investigated by the authors.

      Strengths:

      This is a well-conducted and well-controlled study, and the authors have used multiple approaches to address different questions.

      Weaknesses:

      There are no major weaknesses identified, except that the effect of the Hippo pathway seems to be specific to only a subset of neurons. I would like the authors to address the specificity of the effect of the Hippo pathway in TRNs, in their resubmission.

    2. Reviewer #2 (Public review):

      Summary:

      This study examines a novel role of the Hpo signaling pathway, specifically of wts-1/LATS and the downstream regulator of gene expression, yap, in age-related neurodegeneration in C. elegans touch-responsive mechanosensory neurons, ALM and PLM. The study shows that knockdown or deletion of wts-1/LATS causes age-associated morphological abnormalities of these neurons, accompanied by functional loss of touch responsiveness. This is further associated with enhanced, abnormal, microtubule stabilization in these neurons.

      Strengths:

      This study examines a novel role of the Hpo signaling pathway, specifically of wts-1/LATS and the downstream regulator of gene expression, yap, in age-related neurodegeneration in C. elegans touch-responsive mechanosensory neurons, ALM and PLM. The study shows that knockdown or deletion of wts-1/LATS causes age-associated morphological abnormalities of these neurons, accompanied by functional loss of touch responsiveness. This is further associated with enhanced, abnormal, microtubule stabilization in these neurons. Strong pharmacological and especially genetic manipulations of MT-stabilizing or severing proteins show a strong genetic link between yap and regulation of MTs stability. The study is strong and uses robust approaches, especially strong genetics. The demonstrations on the aging-related roles of the Hpo signaling pathway, and the link to MTs, are novel and compelling. Nevertheless, the study also has mechanistic weaknesses (see below).

      Weaknesses:

      Specific comments:

      (1) The study demonstrates age-specific roles of the Hpo pathway, specifically of wts-1/LATS and yap, specifically in TRN mechanosensory neurons, without observing developmental defects in these neurons, or effects in other neurons. This is a strong demonstration. Nevertheless, the study does not address whether there is a correlation of Hpo signaling pathway activity decline specifically in these neurons, and not other neurons, and at the observed L4 stage and onwards (including the first day of adulthood, 1DA stage). Such demonstrations of spatio-temporal regulation of the Hpo signaling pathway and its activation seem important for linking the Hpo pathway with the observed age-related neurodegeneration. Can this age-related response be correlated to indeed a decline in Hpo signaling during adulthood? Especially at L4 and onwards? It will be informative to measure this by examining the decline in wts1 as well as yap levels and yap nuclear localization.

      (2) The Hpo pathway eventually activates gene expression via yap. Although the study uses robust genetic manipulations of yap and wts-1/LATS, it is not clear whether the observed effects are attributed to yap-mediated regulation of gene expression (see 3).

      (3) The observations on the abnormal MT stabilization, and the subsequent genetic examinations of MT-stability/severing genes, are a significant strength of the study. Nevertheless, despite the strong genetic links to yap and wts-1/LATS, it is not clear whether MT-regulatory genes are regulated by transcription downstream of the Hpo pathway, thus not enabling a strong causal link between MT regulation and Hpo-mediated gene expression, making this strong part of the study mechanistically circumstantial. Specifically, it will be good to examine whether the genes addressed herein, for example, Spastin, are transcriptionally regulated downstream of the Hpo pathway. This comment is augmented by the finding that in the wts-1/ yap-1 double mutants, MT abnormality, and subsequent neuronal morphology and touch responses are restored, clearly indicating that there is an associated transcriptional regulation

      Other comments:

      (1) The TRN-specific knockdown of wts-1 and yap-1 is a clear strength. Nevertheless, these do not necessarily show cell-autonomous effects, as the yap transcription factor may regulate the expression of external cues, secreted or otherwise, thus generating non-cell autonomous effects. For example, it is known that yap regulates TGF-beat expression and signaling.

      (2) Continuing from comment (3) above, it seems that many of the MT-regulators chosen here for genetic examinations were chosen based on demonstrated roles in neurodegeneration in other studies. It would be good to show whether these MT-associated genes are directly regulated by transcription by the Hpo pathway.

      (3) The impairment of the touch response may not be robust: it is only a 30-40% reduction at L4, and even less reduction at 1DA. It would be good to offer possible explanations for this finding.

    1. Reviewer #1 (Public Review):

      Summary

      The authors asked if parabrachial CGRP neurons were only necessary for a threat alarm to promote freezing or were necessary for a threat alarm to promote a wider range of defensive behaviors, most prominently flight.

      Major Strengths of Methods and Results

      The authors performed careful single-unit recording and applied rigorous methodologies to optogenetically tag CGRP neurons within the PBN. Careful analyses show that single-units and the wider CGRP neuron population increases firing to a range of unconditioned stimuli. The optogenetic stimulation of experiment 2 was comparatively simpler but achieved its aim of determining the consequence of activating CGRP neurons in the absence of other stimuli. Experiment 3 used a very clever behavioral approach to reveal a setting in which both cue-evoked freezing and flight could be observed. This was done by having the unconditioned stimulus be a "robot" traveling along a circular path at a given speed. Subsequent cue presentation elicited mild flight in controls and optogenetic activation of CGRP neurons significantly boosted this flight response. This demonstrated for the first time that CGRP neuron activation does more than promote freezing. The authors conclude by demonstrating that bidirectional modulation of CGRP neuron activity bidirectionally affects freezing in a traditional fear conditioning setting and affects both freezing and flight in a setting in which the robot served as the unconditioned stimulus. Altogether, this is a very strong set of experiments that greatly expand the role of parabrachial CGRP neurons in threat alarm.

      Weaknesses

      In all of their conditioning studies the authors did not include a control cue. For example, a sound presented the same number of times but unrelated to US (shock or robot) presentation. This does not detract from their behavioral findings. However, it means the authors do not know if the observed behavior is a consequence of pairing. Or is a behavior that would be observed to any cue played in the setting? This is particularly important for the experiments using the robot US.

      The authors make claims about the contribution of CGRP neurons to freezing and fleeing behavior, however, all of the optogenetic manipulations are centered on the US presentation period. Presently, the experiments show a role for these neurons in processing aversive outcomes but show little role for these neurons in cue responding or behavior organizing. Claims of contributions to behavior should be substantiated by manipulations targeting the cue period.

      Appraisal

      The authors achieved their aims and have revealed a much greater role for parabrachial CGRP neurons in threat alarm.

      Discussion

      Understanding neural circuits for threat requires us (as a field) to examine diverse threat settings and behavioral outcomes. A commendable and rigorous aspect of this manuscript was the authors decision to use a new behavioral paradigm and measure multiple behavioral outcomes. Indeed, this manuscript would not have been nearly as impactful had they not done that. This novel behavior was combined with excellent recording and optogenetic manipulations - a standard the field should aspire to. Studies like this are the only way that we as a field will map complete neural circuits for threat.

    2. Reviewer #2 (Public Review):

      -Summary of the Authors' Aims:<br /> The authors aimed to investigate the role of calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) in modulating defensive behaviors in response to threats. They sought to determine whether these neurons, previously shown to be involved in passive freezing behavior, also play a role in active defensive behaviors, such as fleeing, when faced with imminent threats.

      -Major Strengths and Weaknesses of the Methods and Results:<br /> The authors utilized an innovative approach by employing a predator-like robot to create a naturalistic threat scenario. This method allowed for a detailed observation of both passive and active defensive behaviors in mice. The combination of electrophysiology, optogenetics, and behavioral analysis provided a comprehensive examination of CGRP neuron activity and its influence on defensive behaviors. The study's strengths lie in its robust methodology, clear results, and the multi-faceted approach that enhances the validity of the findings.

      No notable weakness found.

      -Appraisal of Aims and Results:<br /> The authors successfully achieved their aims by demonstrating that CGRP neurons in the PBN modulate both passive and active defensive behaviors. The results clearly show that activation of these neurons enhances fear memory and promotes conditioned fleeing behavior, while inhibition reduces these responses. The study provides strong evidence supporting the hypothesis that CGRP neurons act as a comprehensive alarm system in the brain.

      -Impact on the Field and Utility of Methods and Data:<br /> This work has significant implications for the field of neuroscience, particularly in understanding the neural mechanisms underlying adaptive defensive behaviors. The innovative use of a predator-like robot to simulate naturalistic threats adds ecological validity to the findings and may inspire future studies to adopt similar approaches. The comprehensive analysis of CGRP neuron activity and its role in defensive behaviors provides valuable data that could be useful for researchers studying fear conditioning, neural circuitry, and behavior modulation.

      -Additional Context:<br /> The study builds on previous research that primarily focused on the role of CGRP neurons in passive defensive responses, such as freezing. By extending this research to include active responses, the authors have provided a more complete picture of the role of these neurons in threat detection and response. The findings highlight the versatility of CGRP neurons in modulating different types of defensive behaviors based on the perceived intensity and immediacy of threats.

      Overall, this manuscript makes a significant contribution to our understanding of the neural basis of defensive behaviors and offers valuable methodological insights for future research in the field.

    3. Reviewer #3 (Public Review):

      Strengths:<br /> The study used optogenetics together with in vivo electrophysiology to monitor CGRP neuron activity in response to various aversive stimuli including robot chasing to determine whether they encode noxious stimuli differentially. The study used an interesting conditioning paradigm to investigate the role of CGRP neurons in the PBN in both freezing and flight behaviors.

      Weakness:<br /> The major weakness of this study is that the chasing robot threat conditioning model elicits weak unconditioned and conditioned flight responses, making it difficult to interpret the robustness of the findings. Furthermore, the conclusion that the CGRP neurons are capable of inducing flight is not substantiated by the data. No manipulations are made to influence the flight behavior of the mouse. Instead, the manipulations are designed to alter the intensity of the unconditioned stimulus.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the potential of targeting specific regions within the RNA genome of the Porcine Epidemic Diarrhea Virus (PEDV) for antiviral drug development. The authors used SHAPE-MaP to analyze the structure of the PEDV RNA genome in infected cells. They categorized different regions of the genome based on their structural characteristics, focusing on those that might be good targets for drugs or small interfering RNAs (siRNAs).

      They found that dynamic single-stranded regions can be stabilized by compounds (e.g., to form G-quadruplexes), which inhibit viral proliferation. They demonstrated this by targeting a specific G4-forming sequence with a compound called Braco-19. The authors also describe stable (structured) single-stranded regions that they used to design siRNAs showing that they effectively inhibited viral replication.

      Strengths:

      There are a number of strengths to highlight in this manuscript.

      (1) The study uses a sophisticated technique (SHAPE-MaP) to analyze the PEDV RNA genome in situ, providing valuable insights into its structural features.

      (2) The authors provide a strong rationale for targeting specific RNA structures for antiviral development.

      (3) The study includes a range of experiments, including structural analysis, compound screening, siRNA design, and viral proliferation assays, to support their conclusions.

      (4) Finally, the findings have potential implications for the development of new antiviral therapies against PEDV and other RNA viruses.

      Overall, this interesting study highlights the importance of considering RNA structure when designing antiviral therapies and provides a compelling strategy for identifying promising RNA targets in viral genomes.

      Weaknesses:

      I have some concerns about the utility of the 3D analyses, the effects of their synonymous mutants on expression/proliferation, a potentially missed control for studies of mutants, and the therapeutic utility of the compound they tested vs. G-quadruplexes.

    2. Reviewer #2 (Public review):

      Summary:

      Luo et. al. use SHAPE-MaP to find suitable RNA targets in Porcine Epidemic Diarrhoea Virus. Results show that dynamic and transient structures are good targets for small molecules, and that exposed strand regions are adequate targets for siRNA. This work is important to segment the RNA targeting.

      Strengths:

      This work is well done and the data supports its findings and conclusions. When possible, more than one technique was used to confirm some of the findings.

      Weaknesses:

      The study uses a cell line that is not porcine (not the natural target of the virus).

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript by Luo et al. applied SHAPE-Map to analyze the secondary structure of the Porcine Epidemic Diarrhoea Virus (PEDV) RNA genome in infected cells. By combining SHAPE reactivity and Shannon entropy, the study indicated that the folding of the PEDV genomic RNA was nonuniform, with the 5' and 3' untranslated regions being more compactly structured, which revealed potentially antiviral targetable RNA regions. Interestingly, the study also suggested that compounds bound to well-folded RNA structures in vitro did not necessarily exhibit antiviral activity in cells, because the binding of these compounds did not necessarily alter the functions of the well-folded RNA regions. Later in the manuscript, the authors focus on guanine-rich regions, which may form G-quadruplexes and be potential targets for small interfering RNA (siRNA). The manuscript shows the binding effect of Braco-19 (a G-quadruplex-binding ligand) to a predicted G4 region in vitro, along with the inhibition of PEDV proliferation in cells. This suggests that targeting high SHAPE-high Shannon G4 regions could be a promising approach against RNA viruses. Lastly, the manuscript identifies 73 single-stranded regions with high SHAPE and low Shannon entropy, which demonstrated high success in antiviral siRNA targeting.

      Strengths:

      The paper presents valuable data for the community. Additionally, the experimental design and data analysis are well documented.

      Weakness:

      The manuscript presents the effect of Braco-19 on PQS1, a single G4 region with high SHAPE and high Shannon entropy, to suggest that "the compound can selectively target the PQS1 of the high SHAPE-high Shannon region in cells" (lines 625-626). While the effect of Braco-19 on PQS1 is supported by strong evidence in the manuscript, the conclusion regarding the G4 region with high SHAPE and high Shannon entropy is based on a single target, PQS1.

    1. Reviewer #1 (Public review):

      Summary:<br /> In the manuscript "Intergenerational transport of double-stranded RNA limits heritable epigenetic changes," Shugarts and colleagues investigate intergenerational dsRNA transport in the nematode C. elegans. By inducing oxidative damage, they block dsRNA import into cells, which affects heritable gene regulation in the adult germline (Fig. 2). They identify a novel gene, sid-1-dependent gene-1 (sdg-1), upregulated upon SID-1 inhibition (Fig. 3). Both transient and genetic depletion of SID-1 lead to the upregulation of sdg-1 and a second gene, sdg-2 (Fig. 5). Interestingly, while sdg-1 expression suggests a potential role in dsRNA transport, neither its overexpression nor loss-of-function impacts dsRNA-mediated silencing in the germline (Fig. 7).

      Strengths:<br /> • The authors employ a robust neuronal stress model to systematically explore SID-1 dependent intergenerational dsRNA transport in C. elegans.<br /> • They discover two novel SID-1-dependent genes, sdg-1 and sdg-2.<br /> • The manuscript is well-written and addresses the compelling topic of dsRNA signaling in C. elegans.

      Weaknesses:<br /> • The molecular mechanism downstream of SDG-1 remains unclear. Testing whether sdg-2 functions redundantly with sdg-1could provide further insights.<br /> • SDG-1 dependent genes in other nematodes remain unknown.

    2. Reviewer #2 (Public review):

      Summary:

      RNAs can function across cell borders and animal generations as sources of epigenetic information for development and immunity. The specific mechanistic pathways how RNA travels between cells and progeny remains an open question. Here, Shugarts, et al. use molecular genetics, imaging, and genomics methods to dissect specific RNA transport and regulatory pathways in the C. elegans model system. Larvae ingesting double-stranded RNA is noted to not cause continuous gene silencing throughout adulthood. Damage of neuronal cells expressing double-stranded target RNA is observed to repress target gene expression in the germline. Exogenous short or long double-stranded RNA required different genes for entry into progeny. It was observed that the SID-1 double-stranded RNA transporter showed different expression over animal development. Removal of the sid-1 gene caused upregulation of two genes, the newly described sid-1-dependent gene sdg-1 and sdg-2. Both genes were observed to be negatively regulated by other small RNA regulatory pathways. Strikingly, loss then gain of sid-1 through breeding still caused variability of sdg-1 expression for many, many generations. SDG-2 protein co-localizes with germ granules, intracellular sites for heritable RNA silencing machinery. Collectively, sdg-1 presents a model to study how extracellular RNAs can buffer gene expression in germ cells and other tissues.

      Strengths:

      (1) Very cleaver molecular genetic methods and genomic analyses, paired with thorough genetics, were employed to discover insights into RNA transport, sdg-1 and sdg-2 as sid-1-dependent genes, and sdg-1's molecular phenotype.

      (2) The manuscript is well cited, and figures reasonably designed.

      (3) The discovery of the sdg genes being responsive to the extracellular RNA cell import machinery provides a model to study how exogenous somatic RNA is used to regulate gene expression in progeny. The discovery of genes within retrotransposons stimulates tantalizing models how regulatory loops may actually permit the genetic survival of harmful elements.

      Weaknesses:

      (1) The manuscript is broad, making it challenging to read and consider the data presented. Of note, since the original submission, the authors have improved the clarity of the writing and presentation.

      Comments on revised version:

      This reviewer thanks the authors for their efforts in revising the manuscript. In their rebuttal, the authors acknowledged the broad scope of their manuscript. I concur. While I still think the manuscript is a challenge to read due to its expansive nature, the current draft is substantially improved when compared to the previous one. This work will contribute to our general knowledge of RNA biology, small RNA regulatory pathways, and RNA inheritance.

    1. Reviewer #1 (Public review):

      Summary:

      Recommendations for the authors In this study, Liu, Jiang, Diao et.al. investigated the role of GSDMD in psoriasis-like skin inflammation in mice. The authors have used full-body GSDMD knock-out mice and Gsdm floxed mice crossed with the S100A8- Cre. In both mice, the deficiency of GSDMD ameliorated the skin phenotype induced by the imiquimod. The authors also analyzed RNA sequencing data from the psoriatic patients to show an elevated expression of GSDMD in the psoriatic skin.

      Strengths:

      It has the potential to unravel the new role of neutrophils.

      Comments on revisions:

      The authors have addressed the majority of comments and concerns and highlighted the potential limitations wherever not possible.

    2. Reviewer #2 (Public review):

      Summary:

      The authors describe elevated GSDMD expression in psoriatic skin, and knock-out of GSDMD abrogates psoriasis-like inflammation.

      Strengths:

      The study is well conducted with transgenic mouse models. Using mouse-models with GSDMD knock-out showing abrogating inflammation, as well as GSDMD fl/fl mice without neutrophils having a reduced phenotype.

      My major concern would be the involvement of other inflammasome and GSDMD bearing cell types, esp. Keratinocytes (KC), which could be an explanation why the experiments in Fig 4 still show inflammation.

      Comments on revisions:

      The authors have sufficiently addressed my questions.

    1. Reviewer #1 (Public review):

      Fuchs describes a novel method of enzymatic protein-protein conjugation using the enzyme Connectase. The author is able to make this process irreversible by screening different Connectase recognition sites to find an alternative sequence that is also accepted by the enzyme. They are then able to selectively render the byproduct of the reaction inactive, preventing the reverse reaction, and add the desired conjugate with the alternative recognition sequence to achieve near-complete conversion. I agree with the authors that this novel enzymatic protein fusion method has several applications in the field of bioconjugation, ranging from biophysical assay conduction to therapeutic development. Previously the author has published on the discovery of the Connectase enzymes and has shown its utility in tagging proteins and detecting them by in-gel fluorescence. They now extend their work to include the application of Connectase in creating protein-protein fusions, antibody-protein conjugates, and cyclic/polymerized proteins. As mentioned by the author, enzymatic protein conjugation methods can provide several benefits over other non-specific and click chemistry labeling methods. Connectase specifically can provide some benefits over the more widely used Sortase, depending on the nature of the species that is desired to be conjugated. However, due to a similar lengthy sequence between conjugation partners, the method described in this paper does not provide clear benefits over the existing SpyTag-SpyCatcher conjugation system. Additionally, specific disadvantages of the method described are not thoroughly investigated, such as difficulty in purifying and separating the desired product from the multiple proteins used. Overall, this method provides a novel, reproducible way to enzymatically create protein-protein conjugates.

      The manuscript is well-written and will be of interest to those who are specifically working on chemical protein modifications and bioconjugation.

    2. Reviewer #2 (Public review):

      Summary:

      Unlike previous traditional protein fusion protocols, the author claims their proposed new method is fast, simple, specific, reversible, and results in a complete 1:1 fusion. A multi-disciplinary approach from cloning and purification, biochemical analyses, and proteomic mass spec confirmation revealed fusion products were achieved.

      Strengths:

      The author provides convincing evidence that an alternative to traditional protein fusion synthesis is more efficient with 100% yields using connectase. The author optimized the protocol's efficiency with assays replacing a single amino acid and identification of a proline aminopeptidase, Bacilius coagulans (BcPAP), as a usable enzyme to use in the fusion reaction. Multiple examples including Ubiquitin, GST, and antibody fusion/conjugations reveal how this method can be applied to a diverse range of biological processes.

      Weaknesses:

      Though the ~100% ligation efficiency is an advancement, the long recognition linker may be the biggest drawback. For large native proteins that are challenging/cannot be synthesized and require multiple connectase ligation reactions to yield a complete continuous product, the multiple interruptions with long linkers will likely interfere with protein folding, resulting in non-native protein structures. This method will be a good alternative to traditional approaches as the author mentioned but limited to generating epitope/peptide/protein tagged proteins, and not for synthetic protein biology aimed at examining native/endogenous protein function in vitro.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Lo et al. seeks to explain the cellular defects underlying the brain phenotypes of Lowe syndrome (LS). There have been limited studies on this topic and hence this is a timely study.

      Strengths:

      Studies such as these can contribute to an understanding of the cellular and developmental mechanisms of brain disorders.

      Weaknesses:

      This study by Lo et al. seeks to explain the cellular defects underlying the brain phenotypes of Lowe syndrome (LS). There have been limited studies on this topic and hence this is a timely study.

      The study uses two models: (1) an LS IOB knockout mouse and (2) neurons derived from iPSC lines from LS patients. These two models are used to present three separate findings: (1) altered mitochondria function, (2) altered numbers of neurons and glia in both models, and (3) some evidence of altered Sonic Hedgehog signaling projected as a defect in cilia.

      Conceptually, there are some problems of serious concern which must be carefully considered:<br /> (1) The IOB mouse was very extensively phenotyped when it was generated by Festa et.al HMM, 2019. It does not have any obvious phenotypes of brain deficits although the studies in this paper were very detailed indeed.<br /> (2) Reduced brain size is reported as a phenotype of the IOB mouse in this study. Yet over the many clinical studies of LS published over the years, altered brain size has not been noted, either in clinical examination or in the many MRI reports of LS patients.

      While reading through these results it is striking that the link between the three reported phenotypes is at least tenuous, and in fact may not exist at all. The link between mitochondria and neurogenesis is based on a single paper that has been cited incorrectly and out of context. There is no evidence presented for a link between the Shh signaling defect reported and the mitochondrial phenotype.

      General comments

      (1) The preparation of the manuscript requires improvement. There are many errors in the presentation of data.<br /> (2) The use of references needs to be re-considered. Sometimes a reference is used when in fact the results included in that paper are the opposite of what the authors intend.<br /> (3) The authors conclude the paper by claiming that mitochondrial dysfunction and impairments of the ciliary SHH contribute to abnormal neuronal differentiation in LS, but the mechanism by which this sequence of events might happen hasn't been shown.

      Final comments:

      (1) Phenotype of increased astrocytes:<br /> The phenotype of increased astrocytes in both the IOB mouse brain or iPSC-derived cultures iN cells requires clarification as one of the markers used as an astrocyte marker, BRN2, is commonly used as a neuronal marker. As LS is a neurodevelopmental disorder, and the phenotype in question is related to differentiation, it is crucial to shed light on the developmental timeline in which this phenotype is seen in the mouse brain.

      (2) Ciliary homeostasis:<br /> Mitochondrial dysfunction in astrocytes has been shown to induce a ciliogenic program. However, almost the opposite is shown in this paper, with regards to ciliation. Morphology of the cilia was not assessed either, which is an important feature of ciliary homeostasis. The improper ciliary homeostasis here appears to be the improper Shh signalling, which has not been shown to be related to mitochondrial dysfunction. This leaves one wondering how exactly the different phenotypes shown in this paper are connected.

      (3) This paper lacks a clear mechanistic approach. While the data validates the 3 broad phenotypes mentioned, there is a lack of connection between these phenotypes or an answer to why these phenotypes appear. While the discussion attempts to shed light on this by referencing previous studies, some of the referenced studies show contradicting results. Hence, it would be beneficial to clarify these gaps with further experiments and address the larger question of the connection between the mitochondria, Shh signalling, and astrocyte formation.

      (4) Most importantly, there is no mention of how the loss of OCRL, a 5-phosphatase enzyme, results in the appearance of the mentioned phenotypes. Since there are multiple studies in the field of Lowe Syndrome that shed light on the various functions of OCRL, both catalytic and non-catalytic, it is important to address the role of OCRL in resulting in these phenotypes.

      (5) There are numerous errors in the qPCR experiments performed with regard to the genes that were assayed. The genes mentioned in the text section do not match those indicated in the graphs or legends. This takes away the confidence of the reader in this data.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates how neural cell development is affected in Lowe syndrome. Using neural cultures differentiated from human iPSCs carrying either an LS mutation or a genetically engineered mutation in OCRL, the authors show a depletion of mitochondrial DNA and a decrease in mitochondrial activities that correlate with an increased formation of astrocytes at the expense of neurons. Similar effects on mitochondria and on astrocyte development were observed in an LS mouse model. Moreover, these mutant brain cells are less likely to be ciliated and show a reduction in Sonic Hedgehog signalling.

      Strengths/Weaknesses:

      The study derives strength from the analyses of two different models of Lowe syndrome, both reaching similar conclusions. However, the observed changes in mitochondrial defects, neuronal/astrocytic development, and primary cilia are only correlated, with no attempt to investigate a causal relationship. Moreover, the mouse model is only analysed at the adult stage providing no insights into the development of the defects. Different brain regions are analysed with immunostainings and qRT-PCR making it challenging to draw clear correlations between these findings. The quality of the corresponding figures is often poor and the selection of markers is frequently inappropriate. Taken together, these limitations complicate the interpretations of the data and significantly limit the conclusions that can be drawn from the study.

    1. Reviewer #1 (Public review):

      Summary:

      The authors develop a set of biophysical models to investigate whether a constant area hypothesis or a constant curvature hypothesis explains the mechanics of membrane vesiculation during clathrin-mediated endocytosis.

      Strengths:

      The models that the authors choose are fairly well-described in the field and the manuscript is well-written.

      Weaknesses:

      One thing that is unclear is what is new with this work. If the main finding is that the differences are in the early stages of endocytosis, then one wonders if that should be tested experimentally. Also, the role of clathrin assembly and adhesion are treated as mechanical equilibrium but perhaps the process should not be described as equilibria but rather a time-dependent process. Ultimately, there are so many models that address this question that without direct experimental comparison, it's hard to place value on the model prediction.<br /> While an attempt is made to do so with prior published EM images, there is excessive uncertainty in both the data itself as is usually the case but also in the methods that are used to symmetrize the data. This reviewer wonders about any goodness of fit when such uncertainty is taken into account.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors employ theoretical analysis of an elastic membrane model to explore membrane vesiculation pathways in clathrin-mediated endocytosis. A complete understanding of clathrin-mediated endocytosis requires detailed insight into the process of membrane remodeling, as the underlying mechanisms of membrane shape transformation remain controversial, particularly regarding membrane curvature generation. The authors compare constant area and constant membrane curvature as key scenarios by which clathrins induce membrane wrapping around the cargo to accomplish endocytosis. First, they characterize the geometrical aspects of the two scenarios and highlight their differences by imposing coating area and membrane spontaneous curvature. They then examine the energetics of the process to understand the driving mechanisms behind membrane shape transformations in each model. In the latter part, they introduce two energy terms: clathrin assembly or binding energy, and curvature generation energy, with two distinct approaches for the latter. Finally, they identify the energetically favorable pathway in the combined scenario and compare their results with experiments, showing that the constant-area pathway better fits the experimental data.

      Strengths:

      The manuscript is well-written, well-organized, and presents the details of the theoretical analysis with sufficient clarity.<br /> The calculations are valid, and the elastic membrane model is an appropriate choice for addressing the differences between the constant curvature and constant area models.<br /> The authors' approach of distinguishing two distinct free energy terms-clathrin assembly and curvature generation-and then combining them to identify the favorable pathway is both innovative and effective in addressing the problem.<br /> Notably, their identification of the energetically favorable pathways, and how these pathways either lead to full endocytosis or fail to proceed due to insufficient energetic drives, is particularly insightful.

      Weaknesses:

      Membrane remodeling in cellular processes is typically studied in either a constant area or constant tension ensemble. While total membrane area is preserved in the constant area ensemble, membrane area varies in the constant tension ensemble. In this manuscript, the authors use the constant tension ensemble with a fixed membrane tension, σe. However, they also use a constant area scenario, where 'area' refers to the surface area of the clathrin-coated membrane segment. This distinction between the constant membrane area ensemble and the constant area of the coated membrane segment may cause confusion.

      As mentioned earlier, the theoretical analysis is performed in the constant membrane tension ensemble at a fixed membrane tension. The total free energy E_tot of the system consists of membrane bending energy E_b and tensile energy E_t, which depends on membrane tension, σe. Although the authors mention the importance of both E_b and E_t, they do not present their individual contributions to the total energy changes. Comparing these contributions would enable readers to cross-check the results with existing literature, which primarily focuses on the role of membrane bending rigidity and membrane tension.

      The authors introduce two different models, (1,1) and (1,2), for generating membrane curvature. Model 1 assumes a constant curvature growth, corresponding to linear curvature growth, while Model 2 relates curvature growth to its current value, resembling exponential curvature growth. Although both models make physical sense in general, I am concerned that Model 2 may lead to artificial membrane bending at high curvatures. Normally, for intermediate bending, ψ > 90, the bending process is energetically downhill and thus proceeds rapidly. the bending process is energetically downhill and thus proceeds rapidly. However, Model 2's assumption would accelerate curvature growth even further. This is reflected in the endocytic pathways represented by the green curves in the two rightmost panels of Fig. 4a, where the energy steeply increases at large ψ. I believe a more realistic version of Model 2 would require a saturation mechanism to limit curvature growth at high curvatures.

    1. Reviewer #1 (Public review):

      Summary:

      Al Asafen and colleagues apply a set of scanning fluorescence correlation spectroscopic approaches (Raster Image Correlation Spectroscopy (RICS), cross-correlation RICS, and pair-correlation function spectroscopy) to address the nuclear-cytoplasmic kinetics of the Dorsal (Dl) transcription factor in early Drosophila embryos. The Toll/Dl system has long been appreciated to establish dorsal-ventral polarity of the embryo through Toll-dependent control of Dl nuclear localization, and provides an example of a morphogen gradient produced with high enough precision to yield robust biophysical measurements of general transcription factor activity and function. By measuring GFP-tagged Dl protein, either in wild-type embryos or in mutant embryos with low/medium/high levels of Toll signaling, the authors report diffusivity of Dl in nuclear and cytoplasmic compartments of the embryo, as well as the fraction of mobile and immobile Dl, which can be correlated with DNA binding through cross-correlation RICS. A model is presented where Cactus/IkB is implicated in preventing Dl from binding to DNA.

      Strengths:

      The experiments on wild-type GFP-tagged Dorsal are performed well, are mostly reported well, and are interpreted fairly.

      Weaknesses:

      The discrepancy between experiment and theory as pertains to Michaelis-Menten kinetics is not fully motivated in the text, and could benefit from a more clear presentation. The experiments performed to distinguish between the contribution of Toll-dependent phosphorylation and Cactus interaction models for limiting Dorsal DNA binding are possibly confounded by the presence of wild-type, GFP-tagged Dorsal protein.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Al Asafen, Clark et al., use fluorescence correlation spectroscopy (FCS) to quantitatively analyze the mobility of Dl along the DV axis of the early Drosophila embryo. Dl is essential for dorsal-ventral (DV) patterning and its gradient initiates the activation of several genes and thereby orchestrates the formation of the Drosophila body plan. While the mechanisms underlying the formation of the Dl gradient have been extensively studied by this group and others, there are some observations for which there is not yet a mechanistic explanation. For example, the peak of the Dl gradient grows continuously during nuclear cycles 10-14. This is likely due to Cact-dependent Dl diffusion and Dl binding to DNA. However, the biophysical parameters governing Dl nuclear dynamics that would support these claims have not been previously measured. In this work, the authors provide evidence that GFP-tagged Dl may be separated into a mobile pool and an immobile pool. Interestingly, the fraction of immobile Dl is position-dependent along the DV axis, revealing more binding to DNA in the ventral than in the dorsal nuclei. This is either due to higher binding affinity in ventral locations (due to Toll-dependent Dl phosphorylation) or to higher Dl-Cact binding in dorsal nuclei that would prevent Dl from binding to DNA. Using dl-mutant alleles, the authors support the latter hypothesis.

      Strengths:

      The manuscript is well written and their conclusions are convincingly supported by their methodology and analysis. As a quantitative study, the biophysical analysis seems rigorous, in general.

      Although this is not the first study that employs FSC to investigate the dynamics of a morphogen, it further exemplifies how these quantitative tools can be used to uncover mechanistic aspects of morphogen dynamics during development. In particular, the manuscript reports novel biophysical parameters of Dl dynamics that will be helpful in future hypotheses-driven modeling studies.

      Weaknesses:

      In my opinion, the main weakness of the manuscript is that the main biological implication of the study, namely that the asymmetry in the fraction of immobile Dl is a result of nuclear Dl-Cact binding which prevents Dl from binding DNA (Figure 5), occurs in a region of the embryo where there is very little Dl anyways (Figure 1A, 5A). While it is interesting that the fraction of immobile Dl increases (just a little, but significantly) in dorsal nuclei in mutants expressing a form of Dl with reduced Cact binding it is unclear what is the biological impact of this effect in a location where Dl is nearly absent. As can be seen in Figure 3F, the fraction of immobile is unaffected in Dl-mutant forms with reduced DNA binding, because it is already very low. It is unlikely that Dl binding to Cact in dorsal nuclei would affect shuttling as well since the fraction is very low anyway.

      While the authors have a very clear understanding of the biology of the Dl gradient, I feel that the manuscript is more written as a 'tools' paper (i.e., to exemplify how FSC methods and analysis can be used for biological discovery). This is ok, but I think that the authors should discuss further what are the biological implications of these findings other than the contribution to uncovering the biophysical parameters. For example, I think that the implications of the rejected hypothesis (i.e., that Toll-dependent Dl phosphorylation does not seem to have an impact on Dl binding affinities to DNA) are important and should be further discussed (even if no additional experiments are performed). What is then the role of Dl phosphorylation? Perhaps it could have an impact on patterning robustness in lateral regions. The authors should report in Figure 5 also what happens to the fraction of Dl bound to DNA in lateral regions in the reduced Cact binding and reduced Toll phosphorylation mutants.

      The way that position along the DV axis is reported using the nuclear-cytoplasmic-ratio (NCR) in Figures 1-3 is not incorrect, but I wonder if it is the best way of doing it. The reason is that it spreads out a relatively small region of the embryo (the ventral-most locations) and shrinks a relatively large region of the embryo (lateral and dorsal regions), see Figure 1A. Perhaps reporting the NCR in log_2 units would be more appropriate.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents useful insights into the in vivo dynamics of insulin-producing cells (IPCs), key cells regulating energy homeostasis across the animal kingdom. The authors further provide compelling evidence using adult Drosophila melanogaster that IPCs, unlike neighboring DH44 cells, do not respond to glucose directly, but that glucose can indirectly regulate IPC activity after ingestion supporting an incretin-like mechanism in flies similar to mammals. The authors link decreased activity of IPCs to hyperactivity observed in starved flies, a locomotive behavior aimed to increase food search. Furthermore, the authors provide evidence that IPCs receive inhibitory inputs from Dh44 neurons, which are linked to increased locomotor activity.

      This paper is of outstanding interest to scientists aiming to understand metabolic control of circuit dynamics, in particular for internal state-linked behaviors competing with the feeding state.

      Strengths:

      (1) By using whole cell patch clamp recording, the authors convincingly showed the activity pattern and regulation of IPCs and neighboring DH44 neurons under different feeding states and in various refeeding paradigms.<br /> (2) The paper provides compelling evidence that IPCs are not directly and acutely activated by glucose, but rather through a post-ingestive incretin-like mechanism. In addition, the authors show that Dh44 neurons located adjacent to the IPCs respond to bath application of nutritive sugars contrary to the IPCs.<br /> (3) The paper also provides useful data on the regulation of IPC activity by Dh44 neurons, which is useful to understand their regulation in vivo.

      No major weaknesses remain in the revised version of this work.

    2. Reviewer #2 (Public review):

      Summary

      In this study, Bisen et al. characterized the state-dependency of insulin-producing cells in the brain of Drosophila melanogaster. They successfully established that IPC activity is modulated by the nutritional state and age of the animal. Interestingly, they demonstrate that IPCs respond to the ingestion of glucose, rather than to perfusion with it, an observation reminiscent of the incretin effect in mammals. The study is well conducted and presented and the experimental data convincingly support the claims made.

      Strengths

      The study makes great use of the tools available in *Drosophila* research, demonstrating the effect that starvation and subsequent refeeding have on the physiological activity of IPCs as well as on the behavior of flies to then establish causal links by making use of optogenetic tools.<br /> It is particularly nice to see how the authors put their findings in context to published research and use for example TDC2 neuron activation or DH44 activity to establish baselines to relate their data to.

    3. Reviewer #3 (Public review):

      Although insulin release is essential in the control of metabolism, adjusted to nutritional state, and plays major roles in normal brain function as well as in aging and disease, our knowledge about the activity of insulin-producing (and releasing) cells (IPCs) in vivo in limited.

      In this technically demanding study, IPC activity is studied in the Drosophila model system by fine in vivo patch clamp recordings with parallel behavioral analyses and various optogenetic as well as feeding manipulations.

      The data provide compelling evidence that IPC activity is increased with a slow time course after feeding a high glucose diet. By contrast, IPC activity is not directly affected by rising blood glucose levels. This is reminiscent of the incretin effect known from vertebrates and points to a conserved mechanism in insulin production and release upon sugar feeding.

      Moreover, the data confirm earlier studies that nutritional state strongly affects locomotion. Surprisingly, strong evidence shows that IPC activity makes only a negligible contribution to this. Instead, other modulatory neurons that are directly sensitive to blood glucose levels strongly affect locomotion. Together, these data reveal a network of multiple parallel and interacting neuronal layers to orchestrate the physiological, metabolic, and behavioral responses to the nutritional state. Together with the data from a previous study, this work sets the stage to dissect the architecture and function of this network.

      Strengths:

      State-of-the-art current clamp in situ patch clamp recordings in behaving animals are a demanding but powerful method to provide novel insight into the interplay of nutritional state, IPC activity, and locomotion. The patch clamp recordings and the parallel behavioral analyses are of high quality, as are the optogenetic manipulations. The data showing that starvation silences IPC activity in young flies (younger than 1 week) are excellent. The evidence for the claim that locomotor activity is not increased upon IPC activity but upon the activity of other blood glucose sensitive modulatory neurons (Dh44) is compelling, too. The study provides a great system to experimentally dissect the interplay of insulin production and release with metabolism, physiology, nutritional state, and behavior. Demonstrating the incretin effect in Drosophila provides novel experimental routes to further study it. During the revision process, compelling evidence has been added to underscore the incretin effect, the finding that IPCs themselves do not sense sugars, and that feeding a high sugar diet does not cause unspecific stress responses.

      I found no more weaknesses: The authors have carefully addressed all of my previous critiques by adding compelling new data and carefully revising the text. This paper provides a prime example of how responsible authors can utilize this constructive (but relatively new) reviewing procedure to make a very good manuscript even better.

    1. Reviewer #1 (Public review):

      Summary:

      The authors test the "OHC-fluid-pump" hypothesis by assaying the rates of kainic acid dispersal both in quiet and in cochleae stimulated by sounds of different levels and spectral content. The main result is that sound (and thus, presumably, OHC contractions and expansions) result in faster transport along the duct. OHC involvement is corroborated using salicylate, which yielded results similar to silence. Especially interesting is the fact that some stimuli (e.g., tones) seem to provide better/faster pumping than others (e.g., noise), ostensibly due to the phase profile of the resulting cochlear traveling-wave response.

      Strengths:

      The experiments appear well controlled and the results are novel and interesting. Some elegant cochlear modeling that includes coupling between the organ of Corti and the surrounding fluid as well as advective flow supports the proposed mechanism.

      The current limitations and future directions of the study, including possible experimental tests, extensions of the modeling work, and practical applications to drug delivery, are thoughtfully discussed.

    2. Reviewer #2 (Public review):

      Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unclear. The authors hypothesized that motile outer hair cells facilitate cochlear fluid circulation. To test this, they investigated the effects of acoustic stimuli and salicylate on kainic acid-induced changes in the cochlear nucleus activities. The results reveal that low-frequency tones accelerate the effect of kainic acid, while salicylate reduces the impact of acoustic stimuli, indicating that outer hair cells actively drive cochlear fluid circulation.

      The major strengths of this study lie in its high significance and the synergistic use of both electrophysiological recording and computational modeling. Recent in vivo observations of the broadband reticular lamina vibration challenge the traditional view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The author utilized a well-established electrophysiological method to produce valuable new data and a custom-developed computational model to enhanced the interpretation of their experimental results.

      The authors successfully validated their hypothesis, showing through the experimental and modeling results that active outer hair cells enhance cochlear fluid circulation in the living cochlea.

      These findings have significant implications for advancing our understanding of cochlear amplification and offer promising clinical applications for treating hearing loss by accelerating cochlear drug delivery.

    3. Reviewer #3 (Public review):

      Summary:

      This study reveals that sound exposure enhances drug delivery to the cochlea through the non-selective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.

      Strengths:

      The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.

      Weaknesses:

      The primary weakness of this paper lies in the surgical procedure used for drug administration through the round window. Opening the cochlea can alter intracochlear pressure and disrupt the traveling wave from sound, a key factor influencing outer hair cell activity. However, the authors do not provide sufficient details on how they managed this issue during surgery. Additionally, the introduction section needs further development to better explain the background and emphasize the significance of the work.

    1. Reviewer #1 (Public review):

      I have reviewed the manuscript "Psychological stress disturbs bone metabolism via miR-335-3p/Fos signaling in osteoclast" with interest. The described findings are relevant and useful for daily practice in periodontology. The paper is concise, professionally written, and easy to read. In this study, Jiayao et al. revealed the role of miR-335-3p in psychological stress-induced osteoporosis. CUMS mice were constructed to observe the femur phenotype, osteoclasts were identified as the main research object, and miRNA-seq was used to find the key miRNAs linking the brain and peripheral tissues. This study showed that miR-335-3p expression was simultaneously reduced in murine NAC, serum, and bone under psychological stress. The miR-335-3p/Fos/NFATC1 signaling pathway was validated in osteoclasts to reveal the potential mechanism of enhanced osteoclast activity under psychological stress. This study, from a new perspective of miRNAs, indicates a possible cause of disturbed bone metabolism due to psychological stress and may suggest a new approach to treating osteoporosis.

    2. Reviewer #2 (Public review):

      Zhang et al. established chronic unpredictable mild stress (CUMS) mouse model, which displayed osteoporosis phenotype, suggesting a potential correlation between psychological stress and bone metabolism. They found that miRNA candidate miR-335-3p is downregulated in the long bone of CUMS mice through microRNA sequencing experiments and qRT-PCR. They further demonstrated that miR-335-3p attenuates osteoclast activity via inhibiting Fos signaling, which can induce NFATC1 expression and regulate osteoclast activity.

      My concerns have been addressed. And the quality of the manuscript is improved significantly.

    1. Reviewer #1 (Public review):

      Batra, Cabrera and Spence et al. present a model which integrates histone posttranslational modification (PTM) data across cell models to predict gene expression with the goal of using this model to better understand epigenetic editing. This gene expression prediction model approach is useful if a) it predicts gene expression in specific cell lines b) it predicts expression values rather than a rank or bin, c) if it helps us to better understand the biology of gene expression or d) it helps us to understand epigenome editing activity. Problematically for point a) and b) it is easier to directly measure gene expression than to measure multiple PTMs and so the real usefulness of this approach mostly relates to c) and d).

      Other approaches have been published that use histone PTM to predict expression (e.g. PMID 27587684, 36588793). Is this model better in some way? No comparisons are made although a claim is made that direct comparisons are difficult. I appreciate that the authors have not used the histone PTM data to predict gene expression levels of an "average cell" but rather that they are predicting expression within specific cell types or for unseen cell types. Approaches that predict expression levels are much more useful whereas some previous approaches have only predicted expressed or not expressed or a rank order or bin-based ranking. The paper does not seem to have substantial novel insights into understanding the biology of gene expression.

      The approach of using this model to predict epigenetic editor activity on transcription is interesting and to my knowledge novel although only examined in the context of a p300 editor. As the author point out the interpretation of the epigenetic editing data is convoluted by things like sgRNA activity scoring and to fully understand the results likely would require histone PTM profiling and maybe dCas9 ChIP-seq for each sgRNA which would be a substantial amount of work.

      Furthermore from the model evaluation of H3K9me3 is seems the model is performing modestly for other forms of epigenetic or transcriptional editing- e.g. we know for the best studied transcriptional editor which is CRISPRi (dCas9-KRAB) that recruitment to a locus is associated with robust gene repression across the genome and is associated with H3K9me3 deposition by recruitment of KAP1/HP1/SETDB1 (PMID: 35688146, 31980609, 27980086, 26501517).

      One concern overall with this approach is that dCas9-p300 has been observed to induce sgRNA independent off target H3K27Ac (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349887/ see Figure S5D) which could convolute interpretation of this type of experiment for the model.