10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how the brain processes facial expressions across development by analyzing intracranial EEG (iEEG) data from children (ages 5-10) and post-childhood individuals (ages 13-55). The researchers used a short film containing emotional facial expressions and applied AI-based models to decode brain responses to facial emotions. They found that in children, facial emotion information is represented primarily in the posterior superior temporal cortex (pSTC)-a sensory processing area-but not in the dorsolateral prefrontal cortex (DLPFC), which is involved in higher-level social cognition. In contrast, post-childhood individuals showed emotion encoding in both regions. Importantly, the complexity of emotions encoded in the pSTC increased with age, particularly for socially nuanced emotions like embarrassment, guilt, and pride.The authors claim that these findings suggest that emotion recognition matures through increasing involvement of the prefrontal cortex, supporting a developmental trajectory where top-down modulation enhances understanding of complex emotions as children grow older.

      Strengths:

      (1) The inclusion of pediatric iEEG makes this study uniquely positioned to offer high-resolution temporal and spatial insights into neural development compared to non-invasive approaches, e.g., fMRI, scalp EEG, etc.

      (2) Using a naturalistic film paradigm enhances ecological validity compared to static image tasks often used in emotion studies.

      (3) The idea of using state-of-the-art AI models to extract facial emotion features allows for high-dimensional and dynamic emotion labeling in real time.

      Weaknesses:

      (1) The study has notable limitations that constrain the generalizability and depth of its conclusions. The sample size was very small, with only nine children included and just two having sufficient electrode coverage in the posterior superior temporal cortex (pSTC), which weakens the reliability and statistical power of the findings, especially for analyses involving age. Authors pointed out that a similar sample size has been used in previous iEEG studies, but the cited works focus on adults and do not look at the developmental perspectives. Similar work looking at developmental changes in iEEG signals usually includes many more subjects (e.g., n = 101 children from Cross ZR et al., Nature Human Behavior, 2025) to account for inter-subject variabilities.

      (2) Electrode coverage was also uneven across brain regions, with not all participants having electrodes in both the dorsolateral prefrontal cortex (DLPFC) and pSTC, making the conclusion regarding the different developmental changes between DLPFC and pSTC hard to interpret (related to point 3 below). It is understood that it is rare to have such iEEG data collected in this age group, and the electrode location is only determined by clinical needs. However, the scientific rigor should not be compromised by the limited data access. It's the authors' decision whether such an approach is valid and appropriate to address the scientific questions, here the developmental changes in the brain, given all the advantages and constraints of the data modality.

      (3) The developmental differences observed were based on cross-sectional comparisons rather than longitudinal data, reducing the ability to draw causal conclusions about developmental trajectories. Also, see comments in point 2.

      (4) Moreover, the analysis focused narrowly on DLPFC, neglecting other relevant prefrontal areas such as the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC), which play key roles in emotion and social processing. Agree that this might be beyond the scope of this paper, but a discussion section might be insightful.

      (5) Although the use of a naturalistic film stimulus enhances ecological validity, it comes at the cost of experimental control, with no behavioral confirmation of the emotions perceived by participants and uncertain model validity for complex emotional expressions in children. A non-facial music block that could have served as a control was available but not analyzed. The validation of AI model's emotional output needs to be tested. It is understood that we cannot collect these behavioral data retrospectively within the recorded subjects. Maybe potential post-hoc experiments and analyses could be done, e.g., collect behavioral, emotional perception data from age-matched healthy subjects.

      (6) Generalizability is further limited by the fact that all participants were neurosurgical patients, potentially with neurological conditions such as epilepsy that may influence brain responses. At least some behavioral measures between the patient population and the healthy groups should be done to ensure the perception of emotions is similar.

      (7) Additionally, the high temporal resolution of intracranial EEG was not fully utilized, as data were downsampled and averaged in 500-ms windows. It seems like the authors are trying to compromise the iEEG data analyses to match up with the AI's output resolution, which is 2Hz. It is not clear then why not directly use fMRI, which is non-invasive and seems to meet the needs here already. The advantages of using iEEG in this study are missing here.

      (8) Finally, the absence of behavioral measures or eye-tracking data makes it difficult to directly link neural activity to emotional understanding or determine which facial features participants attended to. Related to point 5 as well.

      Comments on revisions:

      A behavioral measurement will help address a lot of these questions. If the data continues collecting, additional subjects with iEEG recording and also behavioral measurements would be valuable.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, Fan et al. aim to characterize how neural representations of facial emotions evolve from childhood to adulthood. Using intracranial EEG recordings from participants aged 5 to 55, the authors assess the encoding of emotional content in high-level cortical regions. They report that while both the posterior superior temporal cortex (pSTC) and dorsolateral prefrontal cortex (DLPFC) are involved in representing facial emotions in older individuals, only the pSTC shows significant encoding in children. Moreover, the encoding of complex emotions in the pSTC appears to strengthen with age. These findings lead the authors to suggest that young children rely more on low-level sensory areas and propose a developmental shift from reliance on lower-level sensory areas in early childhood to increased top-down modulation by the prefrontal cortex as individuals mature.

      Strengths:

      (1) Rare and valuable dataset: The use of intracranial EEG recordings in a developmental sample is highly unusual and provides a unique opportunity to investigate neural dynamics with both high spatial and temporal resolution.

      (2 ) Developmentally relevant design: The broad age range and cross-sectional design are well-suited to explore age-related changes in neural representations.

      (3) Ecological validity: The use of naturalistic stimuli (movie clips) increases the ecological relevance of the findings.

      (4) Feature-based analysis: The authors employ AI-based tools to extract emotion-related features from naturalistic stimuli, which enables a data-driven approach to decoding neural representations of emotional content. This method allows for a more fine-grained analysis of emotion processing beyond traditional categorical labels.

      Weaknesses:

      (1) While the authors leverage Hume AI, a tool pre-trained on a large dataset, its specific performance on the stimuli used in this study remains unverified. To strengthen the foundation of the analysis, it would be important to confirm that Hume AI's emotional classifications align with human perception for these particular videos. A straightforward way to address this would be to recruit human raters to evaluate the emotional content of the stimuli and compare their ratings to the model's outputs.

      (2) Although the study includes data from four children with pSTC coverage-an increase from the initial submission-the sample size remains modest compared to recent iEEG studies in the field.

      (3) The "post-childhood" group (ages 13-55) conflates several distinct neurodevelopmental periods, including adolescence, young adulthood, and middle adulthood. As a finer age stratification is likely not feasible with the current sample size, I would suggest authors temper their developmental conclusions.

      (4) The analysis of DLPFC-pSTC directional connectivity would be significantly strengthened by modeling it as a continuous function of age across all participants, rather than relying on an unbalanced comparison between a single child and a (N=7) post-childhood group. This continuous approach would provide a more powerful and nuanced view of the developmental trajectory. I would also suggest including the result in the main text.

    1. Reviewer #1 (Public review):

      Summary:

      A central function of glial cells is the ensheathment of axons. Wrapping of larger-diameter axons involves myelin-forming glial classes (such as oligodendrocytes), whereas smaller axons are covered by non-myelin forming glial processes (such as olfactory ensheathing glia). While we have some insights into the underlying molecular mechanisms orchestrating myelination, our understanding of the signaling pathways at work in non-myelinating glia remains limited. As non-myelinating glial ensheathment of axons is highly conserved in both vertebrates and invertebrates, the nervous system of Drosophila melanogaster, and in particular the larval peripheral nerves, have emerged as powerful model to elucidate the regulation of axon ensheathment by a class of glia called wrapping glia. This study seeks to specifically address the question, as to which molecular mechanisms contribute to the regulation of the extent of glial ensheathment focusing on the interaction of wrapping glia with axons.

      Strengths and Weaknesses:

      For this purpose, the study combines state-of-the-art genetic approaches with high-resolution imaging, including classic electron microscopy. The genetic methods involve RNAi mediated knockdown, acute Crispr-Cas9 knock-outs and genetic epistasis approaches to manipulate gene function with the help of cell-type specific drivers. The successful use of acute Crispr-Cas9 mediated knockout tools (which required the generation of new genetic reagents for this study) will be of general interest to the Drosophila community.

      The authors set out to identify new molecular determinants mediating the extent of axon wrapping in the peripheral nerves of third instar wandering Drosophila larvae. They could show that over-expressing a constitutive-active version of the Fibroblast growth factor receptor Heartless (Htl) causes an increase of wrapping glial branching, leading to the formation of swellings in nerves close to the cell body (named bulges). To identify new determinants involved in axon wrapping acting downstream of Htl, the authors next conducted an impressive large-scale genetic interaction screen (which has become rare, but remains a very powerful approach), and identified Uninflatable (Uif) in this way. Uif is a large single-pass transmembrane protein which contains a whole series of extracellular domains, including Epidermal growth factor-like domains. Linking this protein to glial branch formation is novel, as it has so far been mostly studied in the context of tracheal maturation and growth. Intriguingly, a knock-down or knock-out of uif reduces branch complexity and also suppresses htl over-expression defects. Importantly, uif over-expression causes the formation of excessive membrane stacks. Together these observations are in in line with the notion that htl may act upstream of uif.

      Further epistasis experiments using this model implicated also the Notch signaling pathway as a crucial regulator of glial wrapping: reduction in Notch signaling reduces wrapping, whereas over-activation of the pathway increases axonal wrapping (but does not cause the formation of bulges). Importantly, defects caused by over-expression of uif can be suppressed by activated Notch signaling. Knock-down experiments in neurons suggest further that neither Delta nor Serrate act as neuronal ligands to activate Notch signaling in wrapping glia, whereas knock-down of Contactin, a GPI anchored Immunoglobulin domain containing protein led to reduced axon wrapping by glia, and thus could act as an activating ligand in this context.

      Based on these results the authors put forward a model proposing that Uif normally suppresses Notch signaling, and that activation of Notch by Contactin leads to suppression of Htl, to trigger the ensheathment of axons. While these are intriguing propositions, future experiments will need to conclusively address whether and how Uif could "stabilize" a specific membrane domain capable to interact with specific axons.

      Moreover, to obtain evidence for Uif suppression by Notch to inhibit "precocious" axon wrapping and for a "gradual increase" of Notch signaling that silences uif and htl, (1) reporters for N and Htl signaling in larvae, (2) monitoring of different stages at a time point when branch extension begins, and (3) a reagent enabling the visualization of Uif expression could be important next tools/approaches. Considering the qualitatively different phenotypes of reduced branching, compared to excessive membrane stacks close to cell bodies, it would perhaps be worthwhile to explore more deeply how membrane formation in wrapping glia is orchestrated at the subcellular level by Uif.

      However, the points raised above remain at present technically difficult to address because of the lack of appropriate genetic reagents. Also more detailed electron microscopy analyses of early developmental stages and comparisons of effects on cell bodies compared to branches will be very labor-intensive, and indeed may represent a new study.

      In summary, in light of the importance of correct ensheathment of axons by glia for neuronal function, the proposed model for the interactions between Htl, Uif and N to control the correct extent of neuron and glial contacts will be of general interest to the glial biology community.

      Comments on revisions:

      The authors have addressed all my comments. However, the sgRNAs in the Star method table are still all for cleavage just before the transmembrane domain, while the Supplemental figure suggests different locations.

    2. Reviewer #2 (Public review):

      The FGF receptor Heartless has previously been implicated in Drosophila peripheral glial growth and axonal wrapping. Here, the authors performed a large-scale screen of over 2,600 RNAi lines to identify factors regulating the downstream signaling of this process. They identified the transmembrane protein Uninflatable (Uif) as essential for the formation of plasma membrane domains. Furthermore, they found that Notch, a regulatory target of Uif, is required for glial wrapping. Interestingly, additional evidence implies that Notch reciprocally regulates uif and htl, suggesting a feedback loop. Consequently, the authors propose that Uif functions as a 'switch' to regulate the balance between glial growth and axonal wrapping.

      Little is known about how glial cell properties are coordinated with axons, and the identification of Uif provides essential insight into this orchestration. The manuscript is well-written, and the experiments are generally well-controlled. The electron microscopy studies, in particular, are of outstanding quality and help mechanistically dissect the consequences of Uif and Notch signaling in the regulation of glial processes. Together, this important study provides convincing evidence of a new player coordinating the glial wrapping of axons.

      Comments on revisions:

      Overall, the authors have done an excellent job of responding to my substantive concerns in this significantly improved manuscript. In particular, the authors have provided important additional details about the design, prioritization, and outcomes of their screen, and relayed changes that strengthen and extend the impact of their study. I have revised my assessment accordingly, and I expect this study to be of high interest to a variety of researchers in the field.

    1. Reviewer #1 (Public review):

      In this well-written and timely manuscript, Rieger et al. introduce Squidly, a new deep learning framework for catalytic residue prediction. The novelty of the work lies in the aspect of integrating per-residue embeddings from large protein language models (ESM2) with a biology-informed contrastive learning scheme that leverages enzyme class information to rationally mine hard positive/negative pairs. Importantly, the method avoids reliance on the use of predicted 3D structures, enabling scalability, speed, and broad applicability. The authors show that Squidly outperforms existing ML-based tools and even BLAST in certain settings, while an ensemble with BLAST achieves state-of-the-art performance across multiple benchmarks. Additionally, the introduction of the CataloDB benchmark, designed to test generalization at low sequence and structural identity, represents another important contribution of this work.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop Squidly, a sequence-only catalytic residue prediction method. By combining protein language model (ESM2) embedding with a biologically inspired contrastive learning pairing strategy, they achieve efficient and scalable predictions without relying on three-dimensional structure. Overall, the authors largely achieved their stated objectives, and the results generally support their conclusions. This research has the potential to advance the fields of enzyme functional annotation and protein design, particularly in the context of screening large-scale sequence databases and unstructured data. However, the data and methods are still limited by the biases of current public databases, so the interpretation of predictions requires specific biological context and experimental validation.

      Strengths:

      The strengths of this work include the innovative methodological incorporation of EC classification information for "reaction-informed" sample pairing, thereby enhancing the discriminative power of contrastive learning. Results demonstrate that Squidly outperforms existing machine learning methods on multiple benchmarks and is significantly faster than structure prediction tools, demonstrating its practicality.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors investigate the effects of Miro1 on VSMC biology after injury. Using conditional knockout animals, they provide the important observation that Miro1 is required for neointima formation. They also confirm that Miro1 is expressed in human coronary arteries. Specifically, in conditions of coronary diseases, it is localized in both media and neointima and, in atherosclerotic plaque, Miro1 is expressed in proliferating cells.

      However, the role of Miro1 in VSMC in CV diseases is poorly studied and the data available are limited; therefore, the authors decided to deepen this aspect. The evidence that Miro-/- VSMCs show impaired proliferation and an arrest in S phase is solid and further sustained by restoring Miro1 to control levels, normalizing proliferation. Miro1 also affects mitochondrial distribution, which is strikingly changed after Miro1 deletion. Both effects are associated with impaired energy metabolism due to the ability of Miro1 to participate in MICOS/MIB complex assembly, influencing mitochondrial cristae folding. Interestingly, the authors also show the interaction of Miro1 with NDUFA9, globally affecting super complex 2 assembly and complex I activity.<br /> Finally, these important findings also apply to human cells and can be partially replicated using a pharmacological approach, proposing Miro1 as a target for vasoproliferative diseases.

      Strengths:

      The discovery of Miro1 relevance in neointima information is compelling, as well as the evidence in VSMC that MIRO1 loss impairs mitochondrial cristae formation, expanding observations previously obtained in embryonic fibroblasts.<br /> The identification of MIRO1 interaction with NDUFA9 is novel and adds value to this paper. Similarly, the findings that VSMC proliferation requires mitochondrial ATP support the new idea that these cells do not rely mostly on glycolysis.

      The revised manuscript includes additional data supporting mitochondrial bioenergetic impairment in MIRO1 knockout VSMCs. Measurements of oxygen consumption rate (OCR), along with Complex I (ETC-CI) and Complex V activity, have been added and analyzed across multiple experimental conditions. Collectively, these findings provide a more comprehensive characterization of the mitochondrial functional state. Following revision, the association between MIRO1 deficiency and impaired Complex I activity is more robust.

      Although the precise molecular mechanism of action remains to be fully elucidated, in this updated version, experiments using a MIRO1 reducing agent are presented with improved clarity

      Although some limitations remain, the authors have addressed nearly all the concerns raised, and the manuscript has substantially improved

      Weaknesses:

      Figure 6: The authors do not address the concern regarding the cristae shape; however, characterization of the cristae phenotype with MIRO1 ΔTM would have strengthened the mechanistic link between MIRO1 and the MIB/MICOS complex

      Although the authors clarified their reasoning, they did not explore in vivo validation of key biochemical findings, which represents a limitation of the current study. While their justification is acknowledged, at least a preliminary exploratory effort could have been evaluated to reinforce the translational relevance of the study.

      Finally, in line with the explanations outlined in the rebuttal, the Discussion section should mention the limits of MIRO1 reducer treatment.

    2. Reviewer #2 (Public review):

      Summary:

      This study identifies the outer‑mitochondrial GTPase MIRO1 as a central regulator of vascular smooth muscle cell (VSMC) proliferation and neointima formation after carotid injury in vivo and PDGF-stimulation ex vivo. Using smooth muscle-specific knockout male mice, complementary in vitro murine and human VSMC cell models, and analyses of mitochondrial positioning, cristae architecture and respirometry, the authors provide solid evidence that MIRO1 couples mitochondrial motility with ATP production to meet the energetic demands of the G1/S cell cycle transition. However, a component of the metabolic analyses are suboptimal and would benefit from more robust methodologies. The work is valuable because it links mitochondrial dynamics to vascular remodelling and suggests MIRO1 as a therapeutic target for vasoproliferative diseases, although whether pharmacological targeting of MIRO1 in vivo can effectively reduce neointima after carotid injury has not been explored. This paper will be of interest to those working on VSMCs and mitochondrial biology.

      Strengths:

      The strength of the study lies in its comprehensive approach assessing the role of MIRO1 in VSMC proliferation in vivo, ex vivo and importantly in human cells. The subject provides mechanistic links between MIRO1-mediated regulation of mitochondrial mobility and optimal respiratory chain function to cell cycle progression and proliferation. Finally, the findings are potentially clinically relevant given the presence of MIRO1 in human atherosclerotic plaques and the available small molecule MIRO1.

      Weaknesses:

      (1) High-resolution respirometry (Oroboros) to determine mitochondrial ETC activity in permeabilized VSMCs would be informative.

      (2) Therapeutic targeting of MIRO1 failed to prevent neointima formation, however, the technical difficulties of such an experiment is appreciated.

    3. Reviewer #3 (Public review):

      Summary:

      This study addresses the role of MIRO1 in vascular smooth muscle cell proliferation, proposing a link between MIRO1 loss and altered growth due to disrupted mitochondrial dynamics and function. While the findings are useful for understanding the importance of mitochondrial positioning and function in this specific cell type, the main bioenergetic and mechanistic claims are not strongly supported.

      Strengths:

      This study focuses on an important regulatory protein, MIRO1, and its role in vascular smooth muscle cell (VSMC) proliferation, a relatively underexplored context.

      This study explores the link between smooth muscle cell growth, mitochondrial dynamics, and bioenergetics, which is a significant area for both basic and translational biology.

      The use of both in vivo and in vitro systems provides a useful experimental framework to interrogate MIRO1 function in this context.

      Weaknesses:

      The proposed link between MIRO1 and respiratory supercomplex biogenesis or function is not clearly defined.

      Completeness and integration of mitochondrial assays is marginal, undermining the strength of the conclusions regarding oxidative phosphorylation.

    1. Reviewer #1 (Public review):

      IBEX Knowledge Database

      Here, Yanid Z. and colleagues present the IBEX knowledge base. A community tool developed to centralize knowledge and help its adoption by more users. Authors have done a fantastic job, and there is careful consideration of the many aspects of the data management and FAIR principles. The manuscript needs no further work, as it is very well written and have detailed descriptions for data contribution as well as describing the KB itself. Overall, it is a great initiative, especially the aim to inform about negative data and non-recommended reagents, which will positively affect the user community and scientific reproducibility.

      This initiative will serve as a groundwork to include technical details of other multiple immunofluoresecence methods (such as immunoSABER, 4i, etc). Including other methods would help the knowledge base itself and related methods to evolve and assist their communities in the future.

      Significant care has been taken to allow the report of negative data. While there might be limitations as to how this information is included, transparency and community usage will ensure the knowledge base offers a fair representation.

      There are two ways to contribute to the knowledge base. While authors have contributed significantly to its creation, it will be the role of the maintainers to assist potential users and contributors. It is specially appreciated that a path to contribute is possible with no coding skills. I am keen to see how the KB evolves and it helps disseminate the use of this and other great techniques.

    2. Reviewer #2 (Public review):

      Summary:

      The paper introduces the IBEX Knowledge-Base (KB), a shared online resource designed to help scientists working with immunofluorescence imaging. It acts as a central hub where researchers can find and share information about reagents, protocols, and imaging methods. The KB is not static like traditional publications; instead, it evolves as researchers contribute new findings and refinements. A key highlight is that it includes results of both successful and unsuccessful experiments, helping scientists avoid repeating failed experiments and saving time and resources. The platform is built on open-access tools ensuring that the information remains available to everyone. Overall, the KB aims to collaboratively accelerate research, improve reproducibility, and reduce wasted effort in imaging experiments.

      Strengths:

      (1) The IBEX KB is built entirely on open-source tools, ensuring accessibility and long-term sustainability. This approach aligns with FAIR data principles and ensures that the KB remains adaptable to future advancements.

      (2) The KB also follows strict data organization standards, ensuring that all information about reagents and protocols is clearly documented and easy to find with little ambiguity.

      (3) The KB allows scientists to report both positive and negative results, reducing duplication of effort and speeds up the research process.

      (4) The KB is helpful for all researchers, but even more so for scientists in resource-limited settings. It provides guidance on finding affordable alternatives to expensive or discontinued reagents, making it easier for researchers with fewer resources to perform high-quality experiments.

      (5) The KB includes a community discussion forum where scientists can ask for advice, share troubleshooting tips, and collaborate with others facing similar challenges.

      (6) The authors discuss plans for active maintenance of the database and also to incentivize higher participation from the community.

      (7) Even those unfamiliar with Github may contribute with the help of the database maintenance team.

      Note: The authors have addressed my comments on the previous version of the article and the current version has been strengthened as a result.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have developed and interactive knowledge-base that uses crowdsourcing information on antibodies and reagents for immunofluorescence imaging.

      Strengths:

      The authors provide an extremely relevant and needed interphase for collaboration through a well-built platform. All the links in their website work, the information provided, reagents, datasets, videos and protocols are very informative. The instructions for the community researchers to contribute is clear and they provide detailed instructions in how to technically proceed. Additionally, the interface has been refined to enable the contribution regardless of the computational expertise of the researcher.

      Weaknesses:

      The Knowledge-Base relies on community contributions without mandatory, standardized metadata and validation criteria. Whilst this enhances the contributions, it limits the reliability of the database.

    1. Reviewer #1 (Public review):

      Summary:

      This study used explicit-solvent simulations and coarse-grained models to identify the mechanistic features that allow for unidirectional motion of SMC on DNA. Shorter explicit-solvent models provides a description of relevant hydrogen bond energetics, which was then encoded in a coarse-grained structure-based model. In the structure-based model, the authors mimic chemical reactions as signaling changes in the energy landscape of the assembly. By cycling through the chemical cycle repeatedly, the authors show how these time-dependent energetic shifts naturally lead SMC to undergo translocation steps along DNA that are on a length scale that has been identified.

      Strengths:

      Simulating large-scale conformational changes in complex assemblies is extremely challenging. This study utilizes highly-detailed models to parameterize a coarse-grained model, thereby allowing the simulations to connect the dynamics of precise atomistic-level interactions with a large-scale conformational rearrangement. This study serves as an excellent example for this overall methodology, where future studies may further extend this approach to investigated any number of complex molecular assemblies.

      Comments on revisions:

      No additional recommendations. I removed the weakness description in the summary, since the authors have addressed that concern.

    2. Reviewer #2 (Public review):

      Summary:

      The authors perform coarse grained and all atom simulations to provide a mechanism for loop extrusion that is involved in genome compaction.

      Strengths:

      The simulations are very thoughtful. They provide insights into the the translocation process, which is only one of the mechanisms. Much of the analyses is very good. Over all the study advances the use of simulations in this complicated systems.

      Weaknesses:

      Even the authors point out several limitations, which cannot be easily overcome in paper because of the paucity of experimental data. Nevertheless, the authors could have done to illustrate the main assertion that loop extrusion occurs by the motor translocating on DNA. They should mention more clearly that there are alternate theory that have accounted for a number of experimental data.

      Comments on revisions:

      The authors have adequately addressed my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      This paper aims to elucidate the gene regulatory network governing the development of cone photoreceptors, the light-sensing neurons responsible for high acuity and color vision in humans. The authors provide a comprehensive analysis through stage-matched comparisons of gene expression and chromatin accessibility using scRNA-seq and scATAC-seq from the cone-dominant 13-lined ground squirrel (13LGS) retina and the rod-dominant mouse retina. The abundance of cones in the 13LGS retina arises from a dominant trajectory from late retinal progenitor cells (RPCs) to photoreceptor precursors and then to cones, whereas only a small proportion of rods are generated from these precursors.

      Strengths:

      The paper presents intriguing insights into the gene regulatory network involved in 13LGS cone development. In particular, the authors highlight the expression of cone-promoting transcription factors such as Onecut2, Pou2f1, and Zic3 in late-stage neurogenic progenitors, which may be driven by 13LGS-specific cis-regulatory elements. The authors also characterize candidate cone-promoting genes Zic3 and Mef2C, which have been previously understudied. Overall, I found that the across-species analysis presented by this study is a useful resource for the field.

      Comments on Revision:

      The authors have addressed my questions, and the revised text now presents their findings more clearly.

    2. Reviewer #3 (Public review):

      Summary:

      The authors perform deep transcriptomic and epigenetic comparisons between mouse and 13-lined ground squirrel (13LGS) to identify mechanisms that drive rod vs cone rich retina development. Through cross species analysis the authors find extended cone generation in 13LGS, gene expression within progenitor/photoreceptor precursor cells consistent with lengthened cone window, and differential regulatory element usage. Two of the transcription factors, Mef2c and Zic3, were subsequently validated using OE and KO mouse lines to verify role of these genes in regulating competence to generate cone photoreceptors.

      Strengths:

      Overall, this is an impactful manuscript with broad implications toward our understanding of retinal development, cell fate specification, and TF network dynamics across evolution and with the potential to influence our future ability to treat vision loss in human patients. The generation of this rich new dataset profiling the transcriptome and epigenome of the 13LGS is a tremendous addition to the field that assuredly will be useful for numerous other investigations and questions of a variety of interests. In this manuscript, the authors use this dataset and compare to data they previously generated for mouse retinal development to identify 2 new regulators of cone generation and shed insights onto their regulation and their integration into the network of regulatory elements within the 13LGS compared to mouse.

      The authors have done considerable work to address reviewer concerns from the first draft. The current version of the manuscript is strong and supports the claims.

    1. Reviewer #1 (Public review):

      Summary:

      Press et al test, in three experiments, whether responses in a speeded response task reflect people's expectations, and whether these expectations are best explained by the objective statistics of the experimental context (e.g., stimulus probabilities) or by participants' mental representation of these probabilities. The studies use a classical response time and accuracy task, in which people are (1) asked to make a response (with one hand), this response then (2) triggers the presentation of one of several stimuli (with different probabilities depending on the response), and participants (3) then make a speeded response to identify this stimulus (with the other hand). In Experiment 1, participants are asked to rate, after the experiment, the subjective probabilities of the different stimuli. In Experiments 2 and 3, they rated, after each trial, to what extent the stimulus was expected (Experiment 2), or whether they were surprised by the stimulus (Experiment 3). The authors test (using linear models) whether the subjective ratings in each experiment predict stimulus identification times and accuracies better than objective stimulus probabilities (Experiment 1), or than their objective probability derived from a Rescorla-Wagner model of prior stimulus history (Experiment 2 and 3). Across all three experiments, the results are identical. Response times are best described by contributions from both subjective and objective probabilities. Accuracy is best described by subjective probability.

      Strengths:

      This is an exciting series of studies that tests an assumption that is implicit in predictive theories of response preparation (i.e., that response speed/accuracy tracks subjective expectancies), but has not been properly tested so far, to my knowledge. I find the idea of measuring subjective expectancy and surprise in the same trials as the response very clever. The manuscript is extremely well written. The experiments are well thought-out, preregistered, and the results seem highly robust and replicable across studies.

      Weaknesses:

      In my assessment, this is a well-designed, implemented, and analysed series of studies. I have one substantial concern that I would like to see addressed, and two more minor ones.

      (1) The key measure of the relationship between subjective ratings and response times/accuracy is inherently correlational. The causal relationship between both variables is therefore by definition ambiguous. I worry that the results don't reveal an influence of subjective expectancy of response times/accuracies, but the reverse: an influence of response times/accuracies on subjective expectancy ratings.

      This potential issue is most prominent in Experiments 2 and 3, where people rate their expectations in a given trial directly after they made their response. We can assume that participants have at least some insight into whether their response in the current trial was correct/erroneous or fast/slow. I therefore wonder if the pattern of results can simply be explained by participants noticing they made an error (or that they responded very slowly) and subsequently being more inclined to rate that they did not expect this stimulus (in Experiment 2) or that they were surprised by it (in Experiment 3).

      The specific pattern across the two response measures might support this interpretation. Typically, participants are more aware of the errors they make than of their response speed. From the above perspective, it would therefore be not surprising that all experiments show stronger associations between accuracy and subjective ratings than between response times and subjective ratings -- exactly as the three studies found.

      I acknowledge that this problem is less strong in Experiment 1, where participants do not rate expectancy or surprise after each response, but make subjective estimates of stimulus probabilities after the experiment. Still, even here, the flow of information might be opposite to what the authors suggest. Participants might not have made more errors for stimuli that they thought as least likely, but instead might have used the number of their responses to identify a given stimulus as a proxy for rating their likelihood. For example, if they identify a square as a square 25% of the time, even though 5% of these responses were in error, it is perhaps no surprise if their rating of the stimulus likelihood better tracks the times they identified it as a square (25%) than the actual stimulus likelihoods (20%).

      This potential reverse direction of effects would need to be ruled out to fully support the authors' claims.

      (2) My second, more minor concern, is whether the Rescorla-Wagner model is truly the best approximation of objective stimulus statistics. It is traditionally a model of how people learn. Isn't it, therefore, already a model of subjective stimulus statistics, derived from the trial history, instead of objective ones? If this is correct, my interpretation of Experiments 2 and 3 would be (given my point 1 above is resolved) that subjective expectancy ratings predict responses better than this particular model of learning, meaning that it is not a good model of learning in this task. Comparing results against Rescorla-Wagner may even seem like a stronger test than comparing them against objective stimulus statistics - i.e., they show that subjective ratings capture expectancies better even than this model of learning. The authors already touch upon this point in the General Discussion, but I would like to see this expanded, and - ideally - comparisons against objective stimulus statistics (perhaps up to the current trial) to be included, so that the authors can truly support the claim that it is not the objective stimulus statistics that determine response speed and accuracy.

      (3) There is a long history of research trying to link response times to subjective expectancies. For example, Simon and Craft (1989, Memory & Cognition) reported that stimuli of equal probability were identified more rapidly when participants had explicitly indicated they expect this stimulus to occur in the given trial, and there's similar more recent work trying to dissociate stimulus statistics and explicit expectations (e.g., Umbach et al., 2012, Frontiers; for a somewhat recent review, see Gaschler et al., 2014, Neuroscience & Biobehavioral Reviews). It has not become clear to me how the current results relate to this literature base. How do they impact this discussion, and how do they differ from what is already known?

    2. Reviewer #2 (Public review):

      Summary:

      This work by Clarke, Rittershofer, and colleagues used categorization and discrimination tasks with subjective reports of task regularities. In three behavioral experiments, they found that these subjective reports explain task accuracy and response times at least as well and sometimes better than objective measures. They conclude that subjective experience may play a role in predicting processing.

      Strengths:

      This set of behavioral studies addresses an important question. The results are replicated three times with a different experimental design, which strengthens the claims. The design is preregistered, which further strengthens the results. The findings could inspire many studies in decision-making.

      Weaknesses:

      It seems to me that it is important, but difficult to distinguish whether the objective and subjective measures stem from reasonably different mechanisms contributing to behavior, or whether they are simply two noisy proxies to the same mechanism, in which case it is not so surprising that both contribute to the explained variance. The authors acknowledge in the discussion that the type of objective measure that is chosen is crucial.

      For instance, the RW model's learning rates were not fitted to participants but to the sequence of stimuli, so they represent the optimal parameter values, not the true ones that participants are using. Is the subjective measure just a readout of the RW model's true state when using the participants' parameters? Relatedly, would the authors consider the RW predictions from participants using a sub-optimal alpha to be a subjective or an objective measure? Do the results truly show the importance of subjective measures, or is it another way of saying that humans are sub-optimal (Rahnev & Denison, 2018, BBS) ... or optimal for other goals. I see the difficulty of avoiding double-dipping on accuracy, but this seems essential to address. This relates to a more general question about the underlying mechanisms of subjective versus objective measures, which is alluded to in the discussion but could be interesting to develop a bit further.

      In terms of methods, I did not fully understand the 'RW model expectedness' objective metric in Experiments 2 and 3. VT is defined as the 'model's expectation for the given tone T. A (signed?) prediction error is defined for the expectation update, but it seems that the RW model expectedness used in the figures and statistical models is VT, sign-inverted for unexpected stimuli. So how do we interpret negative values, and how often do they occur? Shouldn't it be the unsigned value that is taken as objective surprise? This could be explained in a bit more detail. Could this be related to the quadratic effect that one can see in Figures 4E and 5E, which is not taken into account in the statistical model? Figures 4A and 5A also seem to show a combination of linear and quadratic effects. A more complete description of the objective measure could help determine whether this is a serious issue or just noise in the data.

      Gabor patches in Experiments 2 and 3 seemed to have been presented at quite a sharp contrast (I did not find this info), and accuracy seems to saturate at 100%. What was the distribution of error rates, i.e., how many participants were so close to 100% that there was no point in including them in the analysis?

      In the second preregistration, the authors announced that BIC comparisons between the full model and the objective model will test whether subjective measures capture additional variance [...] beyond objective prediction error. This is also the conclusion reached in sections 3.3 and 4.3. The model comparison, however, is performed by selecting the best of three models, excluding the null model. It seems that the full model still wins over the objective model, but sometimes quite marginally. Could the authors not test the significance of the model comparison since models are nested?

    3. Reviewer #3 (Public review):

      Summary:

      Clarke et al. investigate the role of subjective representations of task-based statistical structure on choice accuracy and reaction times during perceptual decision-making. Subjective representations of objective statistical structure are often overlooked in studies of predictive processing and, consequently, little is known about their role in predictive phenomena. By gauging the subjective experience of stimulus probability, expectedness, and surprise in tasks with fixed cue-stimulus contingencies, the authors aimed to separate subjective and objective (task-induced) contributions to predictive effects on behaviour.

      Across three different experiments, subjective and objective contributions to predictions were found to explain unique portions of variance in reaction time data. In addition, choice accuracy was best predicted by subjective representations of statistical structure in isolation. These findings reveal that the subjective experience of statistical regularities may play a key role in the predictive processes that shape perception and cognition.

      Strengths:

      This study combines careful and thorough behavioral experimentation with an innovative focus on subjective experience in predictive processing. By collecting three independent datasets with different perceptual decision-making paradigms, the authors provide converging evidence that subjective representations of statistical structure explain unique variance in behavior beyond objective task structure. The analysis strategy, which directly contrasts the contributions of subjective and objective predictors, is conceptually rigorous and allows clear insight into how subjective and objective influences shape behavior. The methods are consistently applied across all three datasets and produce coherent results, lending strong support to the authors' conclusions. The study emphasizes the critical role of subjective experience in predictive processing, with implications for understanding learning, perception, and decision-making.

      Weaknesses:

      Despite these strengths, there are several conceptual and technical issues that should be addressed. In Experiments 2 and 3, the authors use a Rescorla-Wagner (RW) learning model to estimate trialwise expectedness (Experiment 2) and surprise (Experiment 3). While the RW model is a well-established model for explaining learning behaviour, it does not represent the objective 'ground truth' statistical structure of the environment, and treating RW trajectories as such imposes assumptions about learning that may not match participants' actual behavior. This assumption could strongly affect the comparison between subjective and 'objective' predictors. It would strengthen the primary conclusions of the manuscript if other implementations of the objective statistical structure, such as the true task-defined probabilities (i.e., 25% or 75%), were considered to provide a complementary 'ground truth' perspective.

      Additionally, because objective statistical structure was predictive of subjective ratings in all three experiments, these predictors are likely collinear in the full model. Collinearity can lead to inflated standard errors and unstable coefficient estimates, even if the models converge. Currently, this potential critical problem of the applied statistical models is not assessed, reported on, or controlled for (e.g., by residualizing predictors). RW trajectories are also not reported in the manuscript, limiting the ability to assess how the model evolves over time and whether it maps onto the task-induced probabilities in a sensible way. This is particularly relevant because participants' subjective estimates of the task-induced probabilities seem to converge to the ground truth after just a few trials, especially for the 75% stimuli (Figure 3C).

    1. Reviewer #1 (Public review):

      This is an interesting manuscript aimed at improving the transcriptome characterization of 52 C. elegans neuron classes. Previous single-cell RNA seq studies already uncovered transcriptomes for these, but the data are incomplete, with a bias against genes with lower expression levels. Here, the authors use cell-specific reporter combinations to FACS purify neurons and use bulk RNA sequencing to obtain better sequencing depth. This reveals more rare transcripts, as well as non-coding RNAs, pseudo genes, etc. The authors develop computational approaches to combine the bulk and scRNA transcriptome results to obtain more definitive gene lists for the neurons examined.

      To ultimately understand features of any cell, from morphology to function, an understanding of the full complement of the genes it expresses is a pre-requisite. This paper gets us a step closer to this goal, assembling a current "definitive list" of genes for a large proportion of C. elegans neurons. The computational approaches used to generate the list are based on reasonable assumptions, the data appear to have been treated appropriately statistically, and the conclusions are generally warranted. I have a few issues that the authors may chose to address:

      (1) As part of getting rid of cross contamination in the bulk data, the authors model the scRNA data, extrapolate it to the bulk data and subtract out "contaminant" cell types. One wonders, however, given that low expressed genes are not represented in the scRNA data, whether the assignment of a gene to one or another cell type can really be made definitve. Indeed, it's possible that a gene is expressed at low levels in one cell, and in high levels in another, and would therefore be considered a contaminant. The result would be to throw out genes that actually are expressed in a given cell type. The definitive list would therefore be a conservative estimate, and not necessarily the correct estimate.

      (2) It would be quite useful to have tested some genes with lower expression levels using in vivo gene-fusion reporters to assess whether the expression assignments hold up as predicted. i.e. provide another avenue of experimentation, non-computational, to confirm that the decontamination algorithm works.

      (3) In many cases, each cell class would be composed of at least 2 if not more neurons. Is it possible that differences between members of a single class would be missed by applying the cleanup algorithms? Such transcripts would be represented only in a fraction of the cells isolated by scRNAseq, and might then be considered not real?

      (4) I didn't quite catch whether the precise staging of animals was matched between the bulk and scRNAseq datasets. Importantly, there are many genes whose expression is highly stage specific or age specific so that even slight temporal difference might yield different sets of gene expression.

      (5) To what extent does FACS sorting affect gene expression? Can the authors provide some controls?

      Comments on revisions:

      The authors have made reasonable arguments in response to my questions, and have done some additional experiments. I believe that although they did not do so, they could have generated additional reporters for the lower expressed genes, that would have validated their method of data integration. Nonetheless, I think the paper is rigorous and will be of use to the community.

    2. Reviewer #2 (Public review):

      Summary:

      This study from the CenGEN consortium addresses several limitations of single-cell RNA (scRNA) and bulk RNA sequencing in C. elegans with a focus on cells in the nervous system. scRNA datasets can give very specific expression profiles, but detecting rare and non-polyA transcripts is difficult. In contrast, bulk RNA sequencing on isolated cells can be sequenced to high depth to identify rare and non-polyA transcripts but frequently suffers from RNA contamination from other cell types. In this study, the authors generate a comprehensive set of bulk RNA datasets from 53 individual neurons isolated by fluorescence activated cell sorting (FACS). The authors combine these datasets with a previously published scRNA dataset (Taylor et al., 2021) to develop a novel method, called LittleBites, to estimate and subtract contamination from the bulk RNA data. The authors validate the method by comparing detected transcripts against gold-standard datasets on neuron-specific and non-neuronal transcripts. The authors generate an "integrated" list of protein-coding expression profiles for the 53 neuron sub-types, with fewer but higher confidence genes compared to expression profiles based only on scRNA. Also, the authors identify putative novel pan-neuronal and cell-type specific non-coding RNAs based on the bulk RNA data. LittleBites should be generally useful for extracting higher confidence data from bulk RNA-seq data in organisms where extensive scRNA datasets are available. The additional confidence in neuron-specific expression and non-coding RNA expands the already great utility of the neuronal expression reference atlas generated by the CenGEN consortium.

      Strengths:

      The study generates and analyzes a very comprehensive set of bulk RNA datasets from individual fluorescently tagged transgenic strains. These datasets are technically challenging to generate and significantly expand our knowledge of gene expression, particularly in cells that were poorly represented in the initial scRNA-seq datasets. Additionally, all transgenic strains are made available as a resource from the Caenorhabditis Elegans Genetics Center (CGC).

      The study uses the authors' extensive experience with neuronal expression to benchmark their method for reducing contamination utilizing a set of gold-standard validated neuronal and non-neuronal genes. These gold-standard genes will be helpful for benchmarking any C. elegans gene expression study.

      Weaknesses:

      The bulk RNA-seq data collected by the authors has high levels of contamination and, in some cases, is based on very few cells. The methodology to remove contamination partly makes up for this shortcoming, but the high background levels of contaminating RNA in the FACS-isolated neurons limit the confidence in cell-specific transcripts.

      The study does not experimentally validate any of the refined gene expression predictions, which was one of the main strengths of the initial CenGEN publication (Taylor et al, 2021). No validation experiments (e.g., fluorescence reporters or single molecule FISH) were performed for protein-coding or non-coding genes, which makes it difficult for the reader to assess how much gene predictions are improved, other than for the gold standard set, which may have specific characteristics (e.g., bias toward high expression as they were primarily identified in fluorescence reporter experiments).

      The study notes that bulk RNA-seq data, in contrast to scRNA-seq data, can be used to identify which isoforms are expressed in a given cell. Although not included in this manuscript, two bioRxiv papers have used the generous openness of the CenGEN consortium to study alternative splicing in C. elegans neurons [bioRxiv, 2024.2005.2016.594567 (2024) and bioRxiv, 2024.2005.2016.594572 (2024)], nicely showing the strengths of the data.

      Comments on revisions: I agree that the paper is improved.

    3. Reviewer #3 (Public review):

      Summary

      This study aims to overcome key limitations of single-cell RNA-seq in C. elegans neurons-especially the under-detection of lowly expressed and non-polyadenylated transcripts and residual contamination-by integrating bulk RNA-seq from FACS-isolated neuron types with an existing scRNA-seq atlas. The authors introduce LittleBites, an iterative, reference-guided decontamination algorithm that uses a single-cell reference together with ground-truth reporter datasets to optimize subtraction of contaminating signal from bulk profiles. They then generate an "Integrated" dataset that combines the sensitivity of bulk data with the specificity of scRNA-seq and use it to call neuron-specific expression for protein-coding genes, "rescued" genes not detected in scRNA-seq, and multiple classes of non-coding RNAs across 53 neuron classes. All data, code, and thresholded matrices are made publicly available to enable community reuse.

      Strengths

      (1) Conceptual advance and useful resource. The work demonstrates in a concrete way how bulk and single-cell datasets can be combined to overcome the weaknesses of each approach, and delivers a high-resolution transcriptomic resource for a substantial fraction of C. elegans neuron classes . The integrated matrices, thresholded expression calls, and non-coding RNA catalog will be useful both for basic neurobiology and for method developers.

      (2) Careful benchmarking and transparency. The revised manuscript includes extensive benchmarking of LittleBites and the Integrated dataset against multiple independent "ground-truth" sets: neuron-specific reporter lines, curated non-neuronal markers, and ubiquitous genes. The authors evaluate AUROCs over a wide range of thresholds, explain ROC/AUROC metrics for non-specialists, and quantify how integration affects both sensitivity and specificity relative to scRNA-seq alone.

      (3) Improved methodological clarity. In response to review, the authors now provide a much more intuitive description of the LittleBites algorithm, including a stepwise explanation of (1) contamination estimation via NNLS using single-cell references, (2) weighted subtraction tuned by a learning-rate parameter, and (3) performance optimization based on AUROC against ground-truth genes. this makes the approach accessible to readers who are not computational specialists and will facilitate re-implementation.

      (4) Systematic analysis of reference dependence. The authors explicitly address the concern that LittleBites depends on the completeness and accuracy of the scRNA-seq reference. They examine how performance varies with cluster size and by simulated degradation of the reference (e.g., reducing the number of cells per cluster), and show that AUROCs remain robust, but that gene-level assignments are more variable for clusters represented by fewer cells. This is an important and honest characterization of when the method is reliable and when users should be cautious.

      (5) Additional biological context. The manuscript now more clearly situates the dataset in the context of previous and ongoing work. In particular, the authors highlight that other groups have already used these bulk data to discover and validate cell-type-specific alternative splicing events, strengthening the case that the data are biologically meaningful beyond the immediate analyses presented here. The expanded analysis of non-coding RNAs and GPCR pseudogenes also adds biological interest.

      (6) Improved handling and documentation of "unexpressed" genes. The authors have trimmed the original list of 4,440 genes called "unexpressed" in scRNA-seq to a higher-confidence subset and provide new supplementary tables that include gene identities and tissue annotations. They also use a curated set of non-neuronal markers to estimate residual contamination and show that most such markers are not detected in the integrated data, with only a small number of apparent false positives remaining.

      Weaknesses

      (1) Novel assignments remain predictive rather than experimentally validated. Although the authors have strengthened their benchmarking and refer to external work that validates some splicing patterns from these data, the large sets of newly assigned lowly expressed genes and non-coding RNAs-particularly those rescued from the "unexpressed" gene pool-are still inferred from computational criteria (thresholding plus correlation-based decontamination) rather than direct orthogonal assays (e.g., smFISH, in situ hybridization, or reporter lines). This is understandable given scale and cost, but it means that many of these calls should be interpreted as well-supported predictions, not definitive expression maps. The revised manuscript acknowledges this, and a dedicated "Limitations of this study" subsection will further clarify this point for readers.

      (2) Reduced stability for neuron types with sparse single-cell representation. The authors' new analyses show that while integration improves overall correlation and AUROC across a wide range of neuron types, gene-level assignments are less stable for neuron classes represented by relatively few cells in the scRNA-seq reference. For such neuron types, both false negatives and false positives are more likely, and users should be cautious when interpreting cell-type-specific expression differences based solely on these calls.

      (3) Residual contamination and misclassification are not completely eliminated. Despite the careful design of LittleBites and the additional correlation-based decontamination of "unexpressed" genes, the authors' benchmarking against curated non-neuronal markers shows that a small fraction of putative non-neuronal genes remains detectable even at stricter thresholds, and some bona fide neuronal genes are removed as likely contaminants. The new supplementary tables documenting "unexpressed" genes and their tissue annotations, together with explicit statements about residual error rates and the predictive nature of these classifications, help users to judge the reliability of specific genes, but they also underscore that the dataset is not a perfect ground truth.

      (4) Scope and coverage remain incomplete. As the authors note, the dataset covers 53 neuron classes and does not fully represent all 302 neurons or all known neuron subtypes. In addition, bulk samples represent pools of neurons, and so the approach cannot resolve within-class heterogeneity or subtype-specific expression within those pools. These are inherent limitations of the current experimental design rather than flaws in the analysis, but they are important for readers to keep in mind when using the resource.

      Overall, the revised manuscript presents solid evidence for the main methodological and resource claims, with clearly articulated limitations. The work is likely to have valuable impact on the C. elegans community and provides a template for integrating bulk and single-cell data in other systems.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include a proposed mechanism underlying the sexual dimorphism phenotype based on experimentation in only males, and widespread reliance on over-expression when investigating protein-protein interaction and localization.

    2. Reviewer #2 (Public review):

      This study conducted by Lu et al. explores the molecular underpinnings of sexual dimorphism in antiviral immunity in zebrafish, with a particular emphasis on the male-biased gene cyp17a2. The authors demonstrate that male zebrafish exhibit stronger antiviral responses than females, and they identify a teleost-specific gene cyp17a2 as a key regulator of this dimorphism. Utilizing a combination of in vivo and in vitro methodologies, they demonstrate that Cyp17a2 potentiates IFN responses by stabilizing STING via K33-linked polyubiquitination and directly degrades the viral P protein via USP8-mediated deubiquitination. The work challenges conventional views of sex-based immunity and proposes a novel, hormone- and sex chromosome-independent mechanism.

      Strengths:

      (1) The following constitutes a novel concept, sexual dimorphism in immunity can be driven by an autosomal gene rather than sex chromosomes or hormones represents a significant advance in the field, offering a more comprehensive understanding of immune evolution.

      (2) The present study provides a comprehensive molecular pathway, from gene expression to protein-protein interactions and post-translational modifications, thereby establishing a link between Cyp17a2 and both host immune enhancement (via STING) and direct antiviral activity (via viral protein degradation).

      (3) In order to substantiate their claims, the authors utilize a wide range of techniques, including transcriptomics, Co-IP, ubiquitination assays, confocal microscopy, and knockout models.

      (4) The utilization of a singular model is imperative. Zebrafish, which are characterized by their absence of sex chromosomes, offer a clear genetic background for the dissection of autosomal contributions to sexual dimorphism.

    1. Reviewer #1 (Public review):

      Summary:

      This study employed a saccade-shifting sequential working memory paradigm, manipulating whether a saccade occurred after each memory array to directly compare retinotopic and transsaccadic working memory for both spatial location and color. Across four participant groups (young and older healthy adults, and patients with Parkinson's disease and Alzheimer's disease), the authors found a consistent saccade-related cost specifically for spatial memory - but not for color - regardless of differences in memory precision. Using computational modeling, they demonstrate that data from healthy participants are best explained by a complex saccade-based updating model that incorporates distractor interference. Applying this model to the patient groups further elucidates the sources of spatial memory deficits in PD and AD. The authors then extend the model to explain copying deficits in these patient groups, providing evidence for the ecological validity of the proposed saccade-updating retinotopic mechanism.

      Strengths:

      Overall, the manuscript is well written, and the experimental design is both novel and appropriate for addressing the authors' key research questions. I found the study to be particularly comprehensive: it first characterizes saccade-related costs in healthy young adults, then replicates these findings in healthy older adults, demonstrating how this "remapping" cost in spatial working memory is age-independent. After establishing and validating the best-fitting model using data from both healthy groups, the authors apply this model to clinical populations to identify potential mechanisms underlying their spatial memory impairments. The computational modeling results offer a clearer framework for interpreting ambiguities between allocentric and retinotopic spatial representations, providing valuable insight into how the brain represents and updates visual information across saccades. Moreover, the findings from the older adult and patient groups highlight factors that may contribute to spatial working memory deficits in aging and neurological disease, underscoring the broader translational significance of this work.

      Weaknesses:

      Several concerns should be addressed to enhance the clarity of the manuscript:

      (1) Relevance of the figure-copy results (pp. 13-15).

      Is it necessary to include the figure-copy task results within the main text? The manuscript already presents a clear and coherent narrative without this section. The figure-copy task represents a substantial shift from the LOCUS paradigm to an entirely different task that does not measure the same construct. Moreover, the ROCF findings are not fully consistent with the LOCUS results, which introduces confusion and weakens the manuscript's coherence. While I understand the authors' intention to assess the ecological validity of their model, this section does not effectively strengthen the manuscript and may be better removed or placed in the Supplementary Materials.

      (2) Model fitting across age groups (p. 9).

      It is unclear whether it is appropriate to fit healthy young and healthy elderly participants' data to the same model simultaneously. If the goal of the model fitting is to account for behavioral performance across all conditions, combining these groups may be problematic, as the groups differ significantly in overall performance despite showing similar remapping costs. This suggests that model performance might differ meaningfully between age groups. For example, in Figure 4A, participants 22-42 (presumably the elderly group) show the best fit for the Dual (Saccade) model, implying that the Interference component may contribute less to explaining elderly performance.

      Furthermore, although the most complex model emerges as the best-fitting model, the manuscript should explain how model complexity is penalized or balanced in the model comparison procedure. Additionally, are Fixation Decay and Saccade Update necessarily alternative mechanisms? Could both contribute simultaneously to spatial memory representation? A model that includes both mechanisms-e.g., Dual (Fixation) + Dual (Saccade) + Interference-could be tested to determine whether it outperforms Model 7 to rule out the sole contribution of complexity.

      Minor point: On p. 9, line 336, Figure 4A does not appear to include the red dashed vertical line that is mentioned as separating the age groups.

      (3) Clarification of conceptual terminology.

      Some conceptual distinctions are unclear. For example, the relationship between "retinal memory" and "transsaccadic memory," as well as between "allocentric map" and "retinotopic representation," is not fully explained. Are these constructs related or distinct? Additionally, the manuscript uses terms such as "allocentric map," "retinotopic representation," and "reference frame" interchangeably, which creates ambiguity. It would be helpful for the authors to clarify the relationships among these terms and apply them consistently.

      (4) Rationale for the selective disruption hypothesis (p. 4, lines 153-154).

      The authors hypothesize that "saccades would selectively disrupt location memory while leaving colour memory intact." Providing theoretical or empirical justification for this prediction would strengthen the argument.

      (5) Relationship between saccade cost and individual memory performance (p. 4, last paragraph).

      The authors report that larger saccades were associated with greater spatial memory disruption. It would be informative to examine whether individual differences in the magnitude of saccade cost correlate with participants' overall/baseline memory performance (e.g. their memory precision in the no-saccade condition). Such analyses might offer insights into how memory capacity/ability relates to resilience against saccade-induced updating.

      (6) Model fitting for the healthy elderly group to reveal memory-deficit factors (pp. 11-12).

      The manuscript discusses model-based insights into components that contribute to spatial memory deficits in AD and PD, but does not discuss components that contribute to spatial memory deficits in the healthy elderly group. Given that the EC group also shows impairments in certain parameters, explaining and discussing these outcomes of the EC group could provide additional insights into age-related memory decline, which would strengthen the study's broader conclusions.

      (7) Presentation of saccade conditions in Figure 5 (p. 11).

      In Figure 5, it may be clearer to group the four saccade conditions together within each patient group. Since the main point is that saccadic interference on spatial memory remains robust across patient groups, grouping conditions by patient type rather than intermixing conditions would emphasize this interpretation.

    2. Reviewer #2 (Public review):

      Summary:

      Zhao et al investigate how object location and colour are degraded across saccadic eye movements. They employ an eye-tracking task that requires participants to remember two sequentially presented items and subsequently report the colour and position of either one of these. Through counterbalancing of the presence or absence of saccades across items, the authors endeavour to dissect the impact of saccades independently on item location or colour. These behavioural findings form the basis of generative models designed to test competing, nested accounts of how stored information is stored and updated across saccades.

      Strengths:

      The combination of eye-tracking and generative modelling is a strength of the paper, which opens new perspectives into the impact of Alzheimer's and Parkinson's disease on the performance of visuospatial cognitive tests. The finding that the model parameters covary with clinical performance on the ROCF test is a nice example of a "computational assay" of disease.

      Weaknesses:

      I have a number of substantial and minor concerns for the authors to consider in a revision:

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript introduces a visual paradigm aimed at studying trans-saccadic memory.

      The authors observe how memory of object location is selectively impaired across eye movements, whereas object colour memory is relatively immune to intervening eye movements.<br /> Results are reported for young and elderly healthy controls, as well as PD and AD participants.

      A computational model is introduced to account for these results, indicating how early differences in memory encoding and decay (but not trans-saccadic updating per se) can account for the observed differences between healthy controls and clinical groups.

      Strengths:

      The data presented encompasses healthy and elderly controls, as well as clinical groups.

      The authors introduce an interesting modelling strategy, aimed at isolating and identifying the main components behind the observed pattern of results.

      Weaknesses:

      The models tested differ in terms of the number of parameters. In general, a larger number of parameters leads to a better goodness of fit. It is not clear how the difference in the number of parameters between the models was taken into account.

      It is not clear whether the modelling results could be influenced by overfitting (it is not clear how well the model can generalize to new observations).

      Results specificity: it is not clear how specific the modelling results are with respect to constructional ability (measured via the Rey-Osterrieth Complex Figure test). As with any cognitive test, performance can also be influenced by general, non-specific abilities that contribute broadly to test success.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the use of computational tools to design a mimetic of the interleukin-7 (IL-7) cytokine with superior stability and receptor binding activity compared to the naturally occurring molecule. The authors focused their engineering efforts on the loop regions to preserve receptor interfaces while remediating structural irregularities that destabilize the protein. They demonstrated the enhanced thermostability, production yield, and bioactivity of the resulting molecule through biophysical and functional studies. Overall, the manuscript is well written, novel, and of high interest to the fields of molecular engineering, immunology, biophysics, and protein therapeutic design. The experimental methodologies used are convincing; however, the article would benefit from more quantitative comparisons of bioactivity through titrations.

      Comments on revisions:

      All comments have been sufficiently addressed, with the exception of comment 24 from Reviewer 1. The authors need to modify the manuscript abstract, introduction, and/or discussion to clarify which limitations of IL-7 were addressed by their molecule and to note the limitations of their approach in terms of mitigating toxicity or enhancing half-life.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript reports a prospective longitudinal study examining whether infants with high likelihood (HL) for autism differ from low-likelihood (LL) infants in two levels of word learning: brain-to-speech cortical entrainment and implicit word segmentation. The authors report reduced syllable tracking and post-learning word recognition in the HL group relative to the LL group. Importantly, both the syllable-tracking entrainment measure and the word recognition ERP measure are positively associated with verbal outcomes at 18-20 months, as indexed by the Mullen Verbal Developmental Quotient. Overall, I found this to be a thoughtfully designed and carefully executed study that tackles a difficult and important set of questions. With some clarifications and modest additional analyses or discussion on the points below, the manuscript has strong potential to make a substantial contribution to the literature on early language development and autism.

      Strengths:

      This is an important study that addresses a central question in developmental cognitive neuroscience: what mechanisms underlie variability in language learning, and what are the early neural correlates of these individual differences? While language development has a relatively well-defined sensitive period in typical development, the mechanisms of variability - particularly in the context of neurodevelopmental conditions - remain poorly understood, in part because longitudinal work in very young infants and toddlers is rare. The present study makes a valuable contribution by directly targeting this gap and by grounding the work in a strong theoretical tradition on statistical learning as a foundational mechanism for early language acquisition.

      I especially appreciate the authors' meticulous approach to data quality and their clear, transparent description of the methods. The choice of partial least squares correlation (PLS-c) is well motivated, given the multidimensional nature of the data and collinearity among variables, and the manuscript does a commendable job explaining this technique to readers who may be less familiar with it.

      The results reveal interesting developmental changes in syllable tracking and word segmentation from birth to 2 years in both HL and LL infants. Simply mapping these trajectories in both groups is highly valuable. Moreover, the associations between neural indices of brain-to-speech entrainment and word segmentation with later verbal outcomes in the LL group support a critical role for speech perception and statistical learning in early language development, with clear implications for understanding autism. Overall, this is a rich dataset with substantial potential to inform theory.

      Weaknesses:

      (1) Clarifying longitudinal vs. concurrent associations

      Because the current analytical approach incorporates all time points, including the final visit, it is challenging to determine to what extent the brain-language associations are driven by longitudinal relationships vs. concurrent correlations at the last time point. This does not undermine the main findings, but clarifying this issue could significantly enhance the impact of the individual-differences results. If feasible, the authors might consider (a) showing that a model excluding the final visit still predicts verbal outcomes at the last visit in a similar way, or (b) more explicitly acknowledging in the discussion that the observed associations may be partly or largely driven by concurrent correlations. Either approach would help readers interpret the strength and nature of the longitudinal claims.

      (2) Incorporating sleep status into longitudinal models

      Sleep status changes systematically across developmental stages in this cohort. Given that some of the papers cited to justify the paradigm also note limitations in speech entrainment and word segmentation during sleep or in patients with impaired consciousness, it would be helpful to account for sleep more directly. Including sleep status as a factor or covariate in the longitudinal models, or at least elaborating more fully on its potential role and limitations, would further strengthen the conclusions and reassure readers that these effects are not primarily driven by differences in sleep-wake state.

      (3) Use of PLS-c and potential group × condition interactions

      I am relatively new to PLS-c. One question that arose is whether PLS-c could be extended to handle a two-way interaction between group and condition contrasts (STR vs. RND). If so, some of the more complex supplementary models testing developmental trajectories within each group (Page 8, Lines 258-265) might be more directly captured within a single, unified framework. Even a brief comment in the methods or discussion about the feasibility (or limitations) of modeling such interactions within PLS-c would be informative for readers and could streamline the analytic narrative.

      (4) STR-only analyses and the role of RND

      Page 8, Lines 241-245: This analysis is conducted only within the STR condition. The lack of group difference observed here appears consistent with the lack of group difference in word-level entrainment (Page 9, Lines 292-294), suggesting that HL and LL groups may not differ in statistical learning per se, but rather in syllabic-level entrainment. As a useful sanity check and potential extension, it might be informative to explore whether syllable-level entrainment in the RND condition differs between groups to a similar extent as in Figure 2C-D. In other work (e.g., adults vs. children; Moreau et al., 2022), group differences can be more pronounced for syllable-level than for word-level entrainment. Figure S6 seems to hint that a similar pattern may exist here. If feasible, including or briefly reporting such an analysis could help clarify the asymmetry between the two learning measures and further support the interpretation of syllabic-level differences.

      (5) Multi-speaker input and voice perception (Page 15, Lines 475-483)

      The multi-speaker nature of the speech input is an interesting and ecologically relevant feature of the design, but it does add interpretive complexity. The literature on voice perception in autism is still mixed: for example, Boucher et al. (2000) reported no differences in voice recognition and discrimination between children with autism and language-matched non-autistic peers, whereas behavioral work in autistic adults suggests atypical voice perception (e.g., Schelinski et al., 2016; Lin et al., 2015). I found the current interpretation in this paragraph somewhat difficult to follow, partly because the data do not directly test how HL and LL infants integrate or suppress voice information. I think the authors could strengthen this section by slightly softening and clarifying the claims.

      (6) Asymmetry between EEG learning measures

      Page 16, Lines 502-507 touches on the asymmetry between the two EEG learning measures but leaves some questions for the reader. The presence of word recognition ERPs in the LL group suggests that a failure to suppress voice information during learning did not prevent successful word learning. At the same time, there is an interesting complementary pattern in the HL group, who show LL-like word-level entrainment but does not exhibit robust word recognition. Explicitly discussing this asymmetry - why HL infants might show relatively preserved word-level entrainment yet reduced word recognition ERPs, whereas LL infants show both - would enrich the theoretical contribution of the manuscript.

      References:

      (1) Moreau, C. N., Joanisse, M. F., Mulgrew, J., & Batterink, L. J. (2022). No statistical learning advantage in children over adults: Evidence from behaviour and neural entrainment. Developmental Cognitive Neuroscience, 57, 101154. https://doi.org/10.1016/j.dcn.2022.101154

      (2) Boucher, J., Lewis, V., & Collis, G. M. (2000). Voice processing abilities in children with autism, children with specific language impairments, and young typically developing children. Journal of Child Psychology and Psychiatry, 41(7), 847-857. https://doi.org/10.1111/1469-7610.00672

      (3) Schelinski, S., Borowiak, K., & von Kriegstein, K. (2016). Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Social Cognitive and Affective Neuroscience, 11(11), 1812-1822. https://doi.org/10.1093/scan/nsw089

      (4) Lin, I.-F., Yamada, T., Komine, Y., Kato, N., Kato, M., & Kashino, M. (2015). Vocal identity recognition in autism spectrum disorder. PLOS ONE, 10(6), e0129451. https://doi.org/10.1371/journal.pone.0129451

    2. Reviewer #2 (Public review):

      Summary:

      This article looks at differences in how the brain entrains to, or tracks, the rhythmic presentation of syllables and words in speech in infants at increased likelihood versus low likelihood for autism. The authors first sought to characterize how brain responses are modulated by learning the statistical probability of a given syllable following the one before it over the first two years of life. They then sought to identify at which stages of word learning infants with increased likelihood of autism showed difficulties, and whether those difficulties worsened over time. Finally, they sought to indicate whether infants' statistical learning and word learning abilities could predict later verbal skills. The authors found similar developmental trajectories of neural entrainment to syllables in infants at high and low likelihood for autism, but infants at high likelihood for autism had overall weaker syllable-level entrainment. Infants at high versus low likelihood for autism showed different developmental trajectories for word entrainment. Lower syllable entrainment in high-likelihood infants corresponded with poorer verbal outcomes, but word entrainment was not associated with verbal outcomes. Event-related potential responses to words and part words were positively associated with verbal outcomes, however, but only in low-likelihood infants.

      Strengths:

      Overall, the article provides rigorous statistical analysis of longitudinal EEG data to provide strong support for the claims that neural entrainment to syllable and word features of speech may be a useful marker for language development difficulties, particularly in infants at increased likelihood for neurodevelopmental disorders. The EEG data collection and preprocessing procedures are well within standards in the field. Readers should take care to note that authors indexed neural entrainment to speech using phase-locking values instead of spectral power.

      Weaknesses:

      While the statistical analyses are rigorous, a few of the components of the models are not clearly defined, and some corrections and thresholds for significance warrant further justification. Further, a few stimuli and participant details that could influence results are not specified. It is not clear whether all participants came from majority French-speaking families; differences in the amount of French language exposure (compared to other languages that may be spoken by a participant's family) could influence results. The standardized volume of the stimuli is also not included. As a result, readers should be encouraged to interpret that neural entrainment to speech features is likely a useful mechanism to explain differences in language development, while taking this interpretation with some caution.

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a novel investigation of the movement vigor of individuals completing a synchronous extension-flexion task. Participants were placed into groups of two (so-called "dyads") and asked to complete shared movements (connected via a virtual loaded spring) to targets placed at varying amplitudes. The authors attempted to quantify what, if any, adjustments in movement vigor individual participants made during the dyadic movements, given the combined or co-dependent nature of the task. This is a novel, timely question of interest within the broader field of human sensorimotor control.

      Participants from each dyad were labeled as "slow" (low vigor) or "fast" (high vigor), and their respective contributions to the combined movement metrics were assessed. The authors presented four candidate models for dyad interactions: (a) independent motor plans (i.e., co-activity hypothesis), (b) individual-led motor plans (i.e., leader-follower hypothesis), (c) generalization to a weighted average motor plan (i.e., weighted adaptation hypothesis), and (d) an uncertainty-based model of dynamic partner-partner interaction (i.e., interactive adaptation hypothesis). The final model allowed for dynamic changes in individual motor plans (and therefore, movement vigor) based on partner-partner interactions and observations. After detailed observations of interaction torque and movement duration (or vigor), the authors concluded that the interactive adaptation model provided the best explanation of human-human interaction during self-paced dyadic movements.

      Strengths:

      The experimental setup (simultaneous wrist extension-flexion movements) has been thoroughly vetted. The task was designed particularly well, with adequate block pseudo-randomization to ensure general validity of the results. The analyses of torque interaction, movement kinematics, and vigor are sound, as are the statistical measures used to assess significance. The authors structured the work via a helpful comparison of several candidate models of human-human interaction dynamics, and how well said models explained variance in the vigor of solo and combined movements. The research question is timely and extends current neuroscientific understanding of sensorimotor control, particularly in social contexts.

      Weaknesses:

      (1) My chief concern about the study as it currently stands is the relatively low number of data points (n=10). The authors recruited 20 participants, but the primary conclusions are based on dyad-specific interactions (i.e., analyses of "fast" vs "slow" participants in each pair). Some of these analyses would benefit greatly, in terms of power, from the addition of more data points.

      1a) The distribution of delta-vigor (Fast group vs Slow group) is highly skewed (see Figures 3D, S6D), with over half of the dyads exhibiting delta-vigor less than 0.2 (i.e., less than 20% of unit vigor). Given the relatively low number of dyads, it would be helpful for the authors to provide explicit listings of VigorFast, VigorSlow, and VigorCombined for each of the 10 separate dyads or pairings.

      1b) The authors concluded that the interactive adaptation hypothesis provided the best summary of the combined movement dynamics in the study. If this is indeed the case, then the relative degree of difference in vigor between the fast and slow participants in a dyad should matter. How well did the interactive adaptation model explain variance in the dyads with relatively low delta-vigor (e.g., less than 0.2) vs relatively high delta-vigor?

      (2) The authors shared the results of one analysis of reaction time, showing that the reaction times of the slow partners and the fast partners did not differ during the initial passive block. Did the authors observe any changes in RT of either the slow or fast partner during the combined (primary task) blocks (KL, KH, etc.)? If the pairs of participants did indeed employ a form of interactive adaptation, then it is certainly plausible that this interaction would manifest in the initial movement planning phase (i.e., RT) in addition to the vigor and smoothness of the movements themselves.

    2. Reviewer #2 (Public review):

      Summary:

      This study examines how individual movement vigor is integrated into a shared, dyadic vigor when two individuals are physically coupled. Participants performed wrist-reaching movements toward targets at different distances while mechanically linked via a virtual elastic band, and dyads were formed by pairing participants with different baseline vigor profiles. Under interaction conditions, movements converged to coordinated patterns that could not be explained by simple averaging, indicating that each dyad behaved as a single functional unit. Notably, under coupling, movement durations for both partners were shorter than in the solo condition, arguing against the view that each individual simply executed an independent movement plan. Furthermore, dyadic vigor was primarily predicted by the slower partner's vigor rather than by the faster partner's, suggesting that neither a leader-follower strategy nor a weighted averaging account fully explains the observed behavior. The authors propose a computational model in which both partners adapt to the emerging interaction dynamics ("interactive adaptation strategy"), providing a coherent explanation of the behavioral observations.

      Strengths:

      The study is carefully designed and addresses an important question about how individual movement vigor is integrated during joint action. The experimental paradigm allows systematic manipulation of interaction strength and partner asymmetry. The behavioral results show clear and robust patterns, particularly the shortening of movement durations under elastic coupling (KL and KH conditions) and the asymmetrical contribution of the slower partner's vigor to dyadic vigor. The computational model captures the main behavioral patterns well and provides a principled framework for interpreting dyadic vigor not as a simple combination of two independent motor plans, but as an emergent property arising from mutual adaptation. Conceptually, the study is notable in extending the notion of vigor from an individual attribute to a dyad-level construct, opening a new perspective on coordinated movement and motor decision-making.

      Weaknesses:

      A key conceptual issue concerns the apparent asymmetry between partners in the computational framework. While dyadic vigor is empirically better predicted by the slower partner's vigor, the model formulation appears to emphasize the faster partner's time-related cost and interaction forces. Although the cost function includes an uncertainty-related component associated with the slower partner, it remains unclear from the current formulation and description how dyadic vigor is formally derived from the slower partner's control policy within the same modeling framework. This raises an important question regarding whether the model offers a symmetric account of dyadic vigor formation for both partners or whether it is effectively anchored to the faster partner's control architecture.

      A second conceptual issue concerns the interpretation of the term "motor plan." It remains unclear whether this term refers primarily to movement-related characteristics such as speed or duration, or more broadly to the underlying optimization structure that governs these variables. This distinction is theoretically important, as it determines whether the reported interaction effects should be understood as adjustments in movement characteristics or as changes in the structure of the control policy itself.

    3. Reviewer #3 (Public review):

      Summary:

      This study provides novel insights into how individuals regulate the speed of their movements both alone and in pairs, highlighting consistent differences in movement vigor across people and showing that these differences can adapt in dyadic contexts. The findings are significant because they reveal stable individual patterns of action that are flexible when interacting with others, and they suggest that multiple factors, beyond reward sensitivity, may contribute to these idiosyncrasies. The evidence is generally strong, supported by careful behavioral measurements and appropriate modeling, though clarifying some statistical choices and including additional measures of accuracy and smoothness would further strengthen the support for the conclusions.

      Major Comments:

      (1) Given the idiosyncrasies in individual vigor, would linear mixed models (LMMs) be more appropriate than ANOVAs in some analyses (e.g., in the section "Solo session"), as they can account for random intercepts and slopes on vigor measures? Some figures (e.g., Figure 2.B and 3.E) indeed seem to show that some aspects of behaviour may present variability in slopes and intercepts across participants. In fact, I now realize that LMMs are used in the "Emergence of dyadic vigor from the partners' individual vigor" section, so could the authors clarify why different statistical approaches were applied depending on the sections?

      (2) If I understand correctly, the introduction suggests that idiosyncrasies in movement vigor may be driven by inter-individual differences in reward sensitivity. However, the current task does not involve any explicit rewards, yet the authors still observe idiosyncrasies in vigor, which is interesting. Could this indicate that other factors contribute to these consistent individual differences? For example, could sensitivity to temporal costs or physical effort explain the slow versus fast subgrouping? Specifically, might individuals more sensitive to temporal costs move faster to minimize opportunity costs, and might those less sensitive to effort costs also move faster? Along the same lines, could the two subgroups (slow vs. fast) be characterized in terms of underlying computational "phenotypes," such as their sensitivities to time and effort? If this is not feasible with the current dataset, it would still be valuable to discuss whether these factors could plausibly account for the observed patterns, based on existing literature.

      (3) The observation that dyads did not lose accuracy or smoothness despite changes in vigor is interesting and suggests a shift in the speed-accuracy tradeoff. Could the authors include accuracy and smoothness measures in the main figures rather than only in supplementary materials? I think it would make the manuscript more complete.

      (4) It is a bit unclear to me whether the variance assumptions for ANOVAs were checked, for instance, in Figure 3H.

    1. Reviewer #1 (Public review):

      Summary

      The strength of this manuscript lies in the behavior: mice use a continuous auditory background (pink vs brown noise) to set a rule for interpreting an identical single-whisker deflection (lick in W+ and withhold in W− contexts) while always licking to a brief 10 kHz tone. Behaviorally, animals acquire the rule and switch rapidly at block transitions and take a few trials to fully integrate the context cue. What's nice about this behavior is the separate auditory cue, which shows the animals remain engaged in the task, so it's not just that the mice check out (i.e., become disengaged in the W- context). The authors then use optical tools, combining cortex-wide optogenetic inactivation (using localized inhibition in a grid-like fashion) with widefield calcium imaging to map what regions are necessary for the task and what the local and global dynamics are. Classic whisker sensorimotor nodes (wS1/wS2/wM/ALM) behave as expected with silencing reducing whisker-evoked licking. Retrosplenial cortex (RSC) emerges as a somewhat unexpected, context-specific node: silencing RSC (and tjS1) increases licking selectively in W−, arguing that these regions contribute to applying the "don't lick" policy in that context. I say somewhat because work from the Delamater group points to this possibility, albeit in a Pavlovian conditioning task and without neural data. I would still recommend the authors of the current manuscript review that work to see whether there is a relevant framework or concept (Castiello, Zhang, Delamater, 'The retrosplenial cortex as a possible 'sensory integration' area: a neural network modeling approach of the differential outcomes effect of negative patterning', 2021, Neurobiology of Learning and Memory).

      The widefield imaging shows that RSC is the earliest dorsal cortical area to show W+ vs W− divergence after the whisker stimulus, preceding whisker motor cortex, consistent with RSC injecting context into the sensorimotor flow. A "Context Off" control (continuous white noise; same block structure) impairs context discrimination, indicating the continuous background is actually used to set the rule (an important addition!) Pre-stimulus functional-connectivity analyses suggest that there is some activity correlation that maps to the context presumably due to the continuous background auditory context. Simultaneous opto+imaging projects perturbations into a low-dimensional subspace that separates lick vs no-lick trajectories in an interpretable way.

      In my view, this is a clear, rigorous systems-level study that identifies an important role for RSC in context-dependent sensorimotor transformation, thereby expanding RSC's involvement beyond navigation/memory into active sensing and action selection. The behavioral paradigm is thoughtfully designed, the claims related to the imaging are well defended, and the causal mapping is strong. I have a few suggestions for clarity that may require a bit of data analysis. I also outline one key limitation that should be discussed, but is likely beyond the scope of this manuscript.

      Major strengths

      (1) The task is a major strength. It asks the animal to generate differential motor output to the same sensory stimulus, does so in a block-based manner, and the Context-Off condition convincingly shows that the continuous contextual cue is necessary. The auditory tone control ensures this is more than a 'motivational' context but is decision-related. In fact, the slightly higher bias to lick on the catch trials in the W+ context is further evidence for this.

      (2) The dorsal-cortex optogenetic grid avoids a 'look-where-we-expect' approach and lets RSC fall out as a key node. The authors then follow this up with pharmacology and latency analyses to rule out simple motor confounds. Overall, this is rigorous and thoughtfully done.

      (3) While the mesoscale imaging doesn't allow for cellular resolution, it allows for mapping of the flow of information. It places RSC early in the context-specific divergence after whisker onset, a valuable piece that complements prior work.

      (4) The baseline (pre-stim) functional connectivity and the opto-perturbation projections into a task subspace increase the significance of the work by moving beyond local correlates.

      Key limitation

      The current optogenetic window begins ~10 ms before the sensory cue and extends 1s after, which is ideal for perturbing within-trial dynamics but cannot isolate whether RSC is required to maintain the context-specific rule during the baseline. Because context is continuously available, it makes me wonder whether RSC is the locus maintaining or, instead, gating the context signal. The paper's results are fully consistent with that possibility, but causality in the pre-stimulus window remains an open question. (As a pointer for future work, pre-stimulus-only inactivation, silencing around block switches, or context-omission probe trials (e.g., removing the background noise unexpectedly within a W+ or W- context block), could help separate 'holding' from 'gating' of the rule. But I'm not suggesting these are needed for this manuscript, but would be interesting for future studies.)

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to understand the neural basis of context-dependent sensory processing and decision-making.

      Strengths:

      They used an innovative behavioral paradigm where the action-outcome association changes independent of the sensory stimulus. This theoretically allows the authors to disentangle the effect of behavioral context on sensory processing. Using this approach combined with optogenetic silencing, they discover that RSC activity is necessary for suppressing a lick response when the stimulus switches to the unrewarded context.

      Weaknesses:

      Sensory processing appears to be entangled with jaw/tongue movement initiation. Activity in M1 and RSC during auditory-evoked lick responses appears to be identical to activity during whisker-evoked lick responses, indicating that movement initiation is the main driver of M1/RSC activity, rather than changes in the flow of sensory information. If sensory information were the main driver of the initial M1/RSC response, then auditory evoked responses should have a longer latency. Perhaps this is beyond the resolution of the calcium indicator or imaging frame rate. It is not clear from the data shown if differences in S1 activity when comparing W+ and W- stimulation are caused by context-sensitive sensory processing or whisker movement following whisker deflection.

    1. Reviewer #1 (Public review):

      The authors address a set of important and challenging questions at the interface of (developmental) neuroscience, genetics, and computation. They ask how complex neural circuits could emerge from compact genomic information, and they outline a bold vision in which this process might eventually be harnessed to design synthetic biological intelligence through genetic control of synaptogenesis. These are significant and stimulating ideas that merit rigorous theoretical and experimental exploration.

      However, the present work does not convincingly engage with these questions at a mechanistic level. Most of the circuit formation aspects appear to be adopted from prior models, and it is not clear how the main methodological modifications-introducing synaptic conductance and stochastic formalisms-provide new conceptual insight into genomic specification of neural circuitry. The manuscript does not include significant biological data or validation to support the proposed framework, and the results provided instead use artificial reinforcement learning benchmarks, which do not appear informative with respect to the biological claims.

      Overall, while the manuscript raises intriguing themes and ambitions, the proposed model is conceptually disconnected from the biological problem it purports to address. The strength of evidence does not support the strong interpretative or translational claims, and substantial rethinking of the modeling framework, in particular its validation strategy, would be required for the work to match the claims of our improved understanding of the genomic basis of neural circuit formation and our ability to engineer it.

    2. Reviewer #2 (Public review):

      In this manuscript, the authors built upon the Connectome Model literature and proposed SynaptoGen, a differentiable model that explicitly takes into account multiplicity and conductance in neural connectivity. The authors evaluated SynaptoGen through simulated reinforcement learning tasks and established its performance as often superior to two considered baselines. This work is a valuable addition to the field, supported by a solid methodology with some details and limitations missing.

      Major points:

      (1) The genetic features in the X and Y matrices in the CM were originally introduced as combinatorial gene expression patterns that correspond to the presence and even absence of a subset of genes. The authors oversimplify this original scope by only considering single-gene expression features. While this was arguably a reasonable first approximation for a case study of gap junctions in C. elegans, it is by no means expected to be a plausible expectation for chemical synapses. As the authors appear to motivate their model by chemical synapses that have polarities, they should either consider combinatorial rules in the model or at least present this explicitly as a key limitation of the model. Omitting combinatorial effects also renders the presented "bioplausible" baseline much less bioplausible, likely calling for a different name.

      (2) It is not fully explained how Equation (11) is obtained, even conceptually. It is unclear why \bar{B} and \bar{G} should be element-wise multiplied together, both already being expected values. Moreover, the authors acknowledged in lines 147-149 that the components of \bar{G} actually depend on gene expression X, which is a component in \bar{B}, so the logic here seems circular.

      (3) The authors considered two baselines, namely SNES and a bioplausible control. However, it would be of interest to also investigate: a) Vanilla DQN with the same size trained on the same MLP, to judge whether the biological insights behind SynaptoGen parameterization add value to performance. b) Using Equation (7) instead of Equation (11) to construct the weight matrices, to judge whether incorporating the conductance adds value to performance.

    3. Reviewer #3 (Public review):

      Summary

      Boccato et al. present an ambitious and thoughtfully developed framework, SynaptoGen, which proposes a differentiable model of synaptogenesis grounded in gene-expression vectors, protein interaction probabilities, and conductance rules. The authors aim to bridge the gap between computational connectomics and synthetic biological intelligence by enabling gradient-based optimization of genetically encoded circuit architectures. They support this goal with mathematical derivations, simulation experiments across several RL benchmarks, and a biologically grounded validation using C. elegans adhesion-molecule co-expression data. The paper is timely and conceptually compelling, offering a unified formulation of synaptic multiplicity and synaptic weight formation that can be integrated directly into learning systems.

      Strengths

      (1) Well-motivated framework with clear conceptual contributions.

      (2) Rigorous mathematical development.

      (3) Compelling empirical validation.

      (4) Excellent framing and discussion of future impact.

      Weaknesses

      (1) Overstated claims in the abstract and discussion.

      (2) Ambiguity in "first of its kind" assertions.

    1. Reviewer #1 (Public review):

      Summary:

      The study examined the extent to which children's word recognition skill improves across early development, becoming faster, more accurate and less variable, and the extent to which word recognition skill is related to children's concurrent and later vocabulary knowledge.

      Strengths:

      The main strength of the study comes from the dataset, which recycles previously collected data from 24 studies to examine the development of word recognition skill using data from 1963 children. This maximizes the impact of previously collected data while also allowing the study to reliably ask big-picture questions on the development of word recognition skill and its relation to chronological age and vocabulary knowledge. Data analysis is rigorous, thought through and very clearly described. Data and code necessary to reproduce the manuscript are shared on the project's GitHub.

      Weaknesses:

      The limitations of the study are acknowledged to some extent, but need to be improved and ensured that they run throughout the manuscript. Thus, in the discussion, the authors note that the approach is observational and exploratory, and highlight for me a key alternative explanation of the findings, namely that faster children could be faster due to their larger vocabulary, rather than faster children learning more words. Indeed, the latter explanation for the relationship is called into question, given that growth in speed was not related to growth in vocabulary. Here, the authors note that the null result may be related to the fact that they do not sufficiently precise estimates of growth slopes, rather than taking the alternative explanation seriously that there may not be as causal a link between being a faster word learner and a better word learner (learn more words). This is especially since, but correct me if I'm wrong here, the current vocabulary size is not taken into consideration in the model examining vocabulary growth. Given the increasing number of studies showing that current vocabulary knowledge predicts vocabulary growth (Laing, Kalinowski et al, Siew & Vitevitch), one simple alternative explanation is that current vocabulary knowledge predicts both current word recognition skill and later vocabulary knowledge. Is there anything in the data speaking against this hypothesis?

      Equally, while the SEM examines vocabulary growth controlling for age, I wonder about the other way around. What would happen to the effect of age on word recognition skill (in the LME model, S8) if one were to add concurrent vocabulary size? So does chronological age explain word recognition skill or vocabulary knowledge? Right now, the manuscript describes this effect purely related to chronological age, but is it age per se or other cognitive abilities, including a key change across development, namely, vocabulary size? Thus, the presentation of the skill learning hypothesis suggests that age is a proxy for experience, while you actually have here a very nice proxy for experience in terms of children's vocabulary size.

      Critically, while the discussion is more nuanced, the way the abstract is concluded and the way the Introduction is phrased suggest that the study is able to answer a causal question, which, as the authors themselves note, is not possible. The abstract, for instance, states that word recognition becomes faster, more accurate and less variable...consistent with a process of skill learning. And also that this skill plays a role in supporting early language learning, which is very causal language. I don't think you can really claim that you are testing the two hypotheses you suggest here. The work is definitely embedded in the context of these hypotheses, but are you really able to test them? My worry is that while the discussion is more nuanced, the extent to which this study will then be cited down the line as showing that children learn more words down the line because they are faster at recognizing words, and anything that you can do to tamper with such interpretations would be good for the literature. For me, this should not just be relegated to the discussion but should be touched upon in the abstract and Introduction.

      Finally, it would help to talk more about the mechanisms at work in any relationship between word recognition and language learning. It seems to me that this would rely on some predictive processing framework, given the description on page 4, and it would be good to make this clear (faster and more accurately you can recognize a ball, better use this evidence to infer the speaker's intended meaning). Equally, when referring to word recognition, it would be good to clarify what this refers to - how well a child knows what a word refers to (and in the context of LWL, what it does not refer to) or how quickly it directs attention to what is referred to.

      With regards to the data, I wonder if there is a clustering of kids past 24 months that is happening here, looking at Figures 1 and 2, where it seems like there is less change past the 24-month point. Is there any way to look at whether the effect of age or vocabulary on word recognition is not linear but asymptotic?

    2. Reviewer #2 (Public review):

      Summary:

      This paper presents a series of analyses of a large dataset combining many prior studies of early word recognition (Peekbank). The analyses demonstrate that the speed, accuracy and consistency of word learning improve with age. Moreover, the speed of word learning early in development was related to vocabulary growth over time.

      Strengths:

      A key strength of the paper is the use of a large multi-study dataset. This is particularly valuable in the field of early cognitive development, which has (due to practical limitations) often been based on small-scale studies that necessarily provide a shaky foundation for conclusions. The analyses are also well-motivated.

      Weaknesses:

      The weaknesses I saw are primarily in some aspects of the conceptual motivation for the research.

      First, I wasn't entirely clear about what the authors meant by "word recognition ability". For much of the manuscript (including the use of the term "word recognition ability" itself), this comes across as an intrinsic ability or skill that improves with development. Alternatively, the speed and accuracy metrics taken from studies in Peekbank might capture children's increasing knowledge of the common, concrete words typically used in these studies. To me, this is a somewhat different construct from a general skill at recognizing words. It would be helpful if the authors could clarify which construct they intend to capture, or if it is not possible to distinguish between these constructs from the Peekbank data.

      Second, and relatedly, if the source of the age-related improvements is increasing experience with the common concrete words used in the Peekbank studies, then one might expect word recognition and improvements with age to be related to word frequency, given that more frequent words are experienced more often. Word frequency predicts word knowledge when assessed using CDI data. Can effects of frequency be detected in Peekbank word recognition metrics? If not, why? Similarly, is the speed and accuracy of word recognition in Peekbank data related to CDI-derived word age of acquisition, and again, if not, why?

      Finally, there is a bit of a risk of the main findings of this paper coming across as a foregone conclusion. I.e., how could it be otherwise that word recognition improves with development?

    1. Reviewer #1 (Public review):

      Summary:

      Wu and colleagues aimed to explain previous findings that adolescents, compared to adults, show reduced cooperation following cooperative behaviour from a partner in several social scenarios. The authors analysed behavioural data from adolescents and adults performing a zero-sum Prisoner's Dilemma task and compared a range of social and non-social reinforcement learning models to identify potential algorithmic differences. Their findings suggest that adolescents' lower cooperation is best explained by a reduced learning rate for cooperative outcomes, rather than differences in prior expectations about the cooperativeness of a partner. The authors situate their results within the broader literature, proposing that adolescents' behaviour reflects a stronger preference for self-interest rather than a deficit in mentalising.

      Strengths:

      The work as a whole suggests that, in line with past work, adolescents prioritise value accumulation, and this can be, in part, explained by algorithmic differences in wegithed value learning. The authors situate their work very clearly in past literature, and make it obvious the gap they are testing and trying to explain. The work also includes social contexts which move the field beyond non-social value accumulation in adolescents. The authors compare a series of formal approaches that might explain the results and establish generative and model-comparison procedures to demonstrate the validity of their winning model and individual parameters. The writing was clear, and the presentation of the results was logical and well-structured.

      Weaknesses:

      I had some concerns about the methods used to fit and approximate parameters of interest. Namely, the use of maximum likelihood versus hierarchical methods to fit models on an individual level, which may reduce some of the outliers noted in the supplement, and also may improve model identifiability.

      There was also little discussion given the structure of the Prisoner's Dilemma, and the strategy of the game (that defection is always dominant), meaning that the preferences of the adolescents cannot necessarily be distinguished from the incentives of the game, i.e. they may seem less cooperative simply because they want to play the dominant strategy, rather than a lower preferences for cooperation if all else was the same.

      The authors have now addressed my comments and concerns in their revised version.

      Appraisal & Discussion:

      Overall, I believe this work has the potential to make a meaningful contribution to the field. Its impact would be strengthened by more rigorous modelling checks and fitting procedures, as well as by framing the findings in terms of the specific game-theoretic context, rather than general cooperation.

      Comments on revisions:

      Thank you to the authors for addressing my comments and concerns.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates age-related differences in cooperative behavior by comparing adolescents and adults in a repeated Prisoner's Dilemma Game (rPDG). The authors find that adolescents exhibit lower levels of cooperation than adults. Specifically, adolescents reciprocate partners' cooperation to a lesser degree than adults do. Through computational modeling, they show that this relatively low cooperation rate is not due to impaired expectations or mentalizing deficits, but rather a diminished intrinsic reward for reciprocity. A social reinforcement learning model with asymmetric learning rate best captured these dynamics, revealing age-related differences in how positive and negative outcomes drive behavioral updates. These findings contribute to understanding the developmental trajectory of cooperation and highlight adolescence as a period marked by heightened sensitivity to immediate rewards at the expense of long-term prosocial gains.

      Strengths:

      (1) Rigid model comparison and parameter recovery procedure.

      (2) Conceptually comprehensive model space.

      (3) Well-powered samples.

      Weaknesses:

      A key conceptual distinction between learning from non-human agents (e.g., bandit machines) and human partners is that the latter are typically assumed to possess stable behavioral dispositions or moral traits. When a non-human source abruptly shifts behavior (e.g., from 80% to 20% reward), learners may simply update their expectations. In contrast, a sudden behavioral shift by a previously cooperative human partner can prompt higher-order inferences about the partner's trustworthiness or the integrity of the experimental setup (e.g., whether the partner is truly interactive or human). The authors may consider whether their modeling framework captures such higher-order social inferences. Specifically, trait-based models-such as those explored in Hackel et al. (2015, Nature Neuroscience)-suggest that learners form enduring beliefs about others' moral dispositions, which then modulate trial-by-trial learning. A learner who believes their partner is inherently cooperative may update less in response to a surprising defection, effectively showing a trait-based dampening of learning rate.

      This asymmetry in belief updating has been observed in prior work (e.g., Siegel et al., 2018, Nature Human Behaviour) and could be captured using a dynamic or belief-weighted learning rate. Models incorporating such mechanisms (e.g., dynamic learning rate models as in Jian Li et al., 2011, Nature Neuroscience) could better account for flexible adjustments in response to surprising behavior, particularly in the social domain.

      Second, the developmental interpretation of the observed effects would be strengthened by considering possible non-linear relationships between age and model parameters. For instance, certain cognitive or affective traits relevant to social learning-such as sensitivity to reciprocity or reward updating-may follow non-monotonic trajectories, peaking in late adolescence or early adulthood. Fitting age as a continuous variable, possibly with quadratic or spline terms, may yield more nuanced developmental insights.

      Finally, the two age groups compared-adolescents (high school students) and adults (university students)-differ not only in age but also in sociocultural and economic backgrounds. High school students are likely more homogenous in regional background (e.g., Beijing locals), while university students may be drawn from a broader geographic and socioeconomic pool. Additionally, differences in financial independence, family structure (e.g., single-child status), and social network complexity may systematically affect cooperative behavior and valuation of rewards. Although these factors are difficult to control fully, the authors should more explicitly address the extent to which their findings reflect biological development versus social and contextual influences.

      Comments on revisions:

      The authors have adequately addressed my previous comments.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Interestingly, the three-fold pattern identified in the hippocampus explains quirks in participants' behavior where navigation performance follows a three-fold periodicity. Finally, the authors propose a EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. The wide array and creativity of the techniques used is impressive but because of their unique nature, the paper would benefit from more details on how some of these techniques were implemented.

      Comments on revisions:

      Most of my concerns were adequately addressed, and I believe the paper is greatly improved. I have two more points. I noticed that the legend for Figure 4 still refers to some components of the previous figure version, this should be updated to reflect the current version of the figure. I also think the paper would benefit from more details regarding some of the analyses. Specifically, the phase-amplitude coupling analysis should have a section in the methods which should be sure to clarify how the BOLD signals were reconstructed.

    2. Reviewer #2 (Public review):

      The authors report results from behavioral data, fMRI recordings, and computer simulations during a conceptual navigation task. They report 3-fold symmetry in behavioral and simulated model performance, 3-fold symmetry in hippocampal activity, and 6-fold symmetry in entorhinal activity (all as a function of movement directions in conceptual space). The analyses seem thoroughly done, and the results and simulations are very interesting.

    1. Reviewer #1 (Public review):

      Summary

      The authors propose a transformer-based model for prediction of condition- or tissue-specific alternative splicing and demonstrate its utility in design of RNAs with desired splicing outcomes, which is a novel application. The model is compared to relevant exising approaches (Pangolin and SpliceAI) and the authors clearly demonstrate its advantage. Overall, a compelling method that is well thought out and evaluated.

      Strengths:

      (1) The model is well thought out: rather than modeling a cassette exon using a single generic deep learning model as has been done e.g. in SpliceAI and related work, the authors propose a modular architecture that focuses on different regions around a potential exon skipping event, which enables the model to learn representations that are specific to those regions. Because each component in the model focuses on a fixed length short sequence segment, the model can learn position-specific features. Furthermore, the architecture of the model is designed to model alternative splicing events, whereas Pangolin and SpliceAI are focused on modeling individual splice junctions, which is an easier problem.

      (2) The model is evaluated in a rigorous way - it is compared to the most relevant state-of-the-art models, uses machine learning best practices, and an ablation study demonstrates the contribution of each component of the architecture.

      (3) Experimental work supports the computational predictions: Regulatory elements predicted by the model were experimentally verified; novel tissue-specific cassette exons were verified by LSV-seq.

      (4) The authors use their model for sequence design to optimize splicing outcome, which is a novel application.

      Weaknesses:

      None noted.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a transformer-based model, TrASPr, for the task of tissue-specific splicing prediction (with experiments primarily focused on the case of cassette exon inclusion) as well as an optimization framework (BOS) for the task of designing RNA sequences for desired splicing outcomes.

      For the first task, the main methodological contribution is to train four transformer-based models on the 400bp regions surrounding each splice site, the rationale being that this is where most splicing regulatory information is. In contrast, previous work trained one model on a long genomic region. This new design should help the model capture more easily interactions between splice sites. It should also help in cases of very long introns, which are relatively common in the human genome.

      TrASPr's performance is evaluated in comparison to previous models (SpliceAI, Pangolin, and SpliceTransformer) on numerous tasks including splicing predictions on GTEx tissues, ENCODE cell lines, RBP KD data, and mutagenesis data. The scope of these evaluations is ambitious; however, significant details on most of the analyses are missing, making it difficult to evaluate the strength of evidence.

      In the second task, the authors combine Latent Space Bayesian Optimization (LSBO) with a Transformer-based variational auto encoder to optimize RNA sequences for a given splicing-related objective function. This method (BOS) appears to be a novel application of LSBO, with promising results on several computational evaluations and the potential to be impactful on sequence design for both splicing-related objectives and other tasks. However, comparison of BOS against existing methods for sequence design is lacking.

      Strengths:

      - A novel machine learning model for an important problem in RNA biology with excellent prediction accuracy.

      - Instead of being based on a generic design as in previous work, the proposed model incorporates biological domain knowledge (that regulatory information is concentrated around splice sites). This way of using inductive bias can be important to future work on other sequence-based prediction tasks.

      Weaknesses:

      - Most of the analyses presented in the manuscript are described in broad strokes and are often confusing. As a result, it is difficult to assess the significance of the contribution.

      - As more and more models are being proposed for splicing prediction (SpliceAI, Pangolin, SpliceTransformer, TrASPr), there is a need for establishing standard benchmarks, similar to those in computer vision (ImageNet). Without such benchmarks, it is exceedingly difficult to compare models.<br /> *This point is now addressed in the revision *<br /> *Moreover, datasets have been made available by the authors on BitBucket. *

      - Related to the previous point, as discussed in the manuscript, SpliceAI and Pangolin are not designed to predict PSI of cassette exons. Instead, they assign a "splice site probability" to each nucleotide. Converting this to a PSI prediction is not obvious, and the method chosen by the authors (averaging the two probabilities (?)) is likely not optimal. It would interesting to see what happens if an MLP is used on top of the four predictions (or the outputs of the top layers) from SpliceAI/Pangolin. This could also indicate where the improvement in TrASPr comes from: is it because TrASPr combines information from all four splice sites? Also consider fine-tuning Pangolin on cassette exons only (as you do for your model).<br /> *This point is still not addressed in the revision. *

      - L141, "TrASPr can handle cassette exons spanning a wide range of window sizes from 181 to 329,227 bases-thanks to its multi-transformer architecture." This is reported to be one of the primary advantages compared to existing models. Additional analysis should be included on how TrASPr performs across varying exon and intron sizes, with comparison to SpliceAI, etc.

      Added after revision: The authors have added additional analyses of performance based on both the length of the exon under consideration and the total length of the surrounding intronic contexts. The result that TrASPr performs well across various context sizes (i.e., the length of the sequence between the upstream and downstream exons, ranging from <1k to >10k) is highly encouraging and supports the claim that most of the sequence-based splicing logic is located proximal to the splice sites. It is also noteworthy that TrASPr performs well for exons longer than 200, suggesting that most of the "regulatory code" is present at the exon boundaries rather than in its center (which TrASPr is blind to).<br /> Additionally, Pearson correlation is used as the sole performance metric in many analyses (e.g., Fig 2 - Supp 2). The authors should consider alternative accuracy metrics, such as RMSE, which better convey the magnitude of prediction error and are more easily comparable across datasets. Pearson correlation may also be more sensitive to outliers on the smaller samples that arise when binning sequences.

      - L171, "training it on cassette exons". This seems like an important point: previous models were trained mostly on constitutive exons, whereas here the model is trained specifically on cassette exons. This should be discussed in more detail.<br /> * Our initial comment was incorrect, as pointed out by the authors. *

      - L214, ablations of individual features are missing.<br /> * This was addressed in the revision. *

      - L230, "ENCODE cell lines", it is not clear why other tissues from GTEx were not included<br /> * This was addressed in the revision. *

      - L239, it is surprising that SpliceAI performs so badly, and might suggest a mistake in the analysis. Additional analysis and possible explanations should be provided to support these claims. Similarly for the complete failure of SpliceAI and Pangolin shown in Fig 4d.<br /> * The authors should consider adding SpliceAI/Pangolin predictions for the alternative 5' and 3' splice site selection tasks (and code for related analyses) to the BitBucket repository.*

      - BOS seems like a separate contribution that belongs in a separate publication. Instead, consider providing more details on TrASPr.

      *Minor comment added after revision: regarding the author response that "A completely independent evaluation would have required a high-throughput experimental system to assess designs, which is beyond the scope of the current paper.":<br /> It's not clear why BOS cannot be evaluated as a separate contribution by instead using different "teacher" models instead of TrASPr. Additionally, BOS lacks evaluation against existing methods for sequence optimization. *

      - The authors should consider evaluating BOS using Pangolin or SpliceTransformer as the oracle, in order to measure the contribution to the sequence generation task provided by BOS vs TrASPr.<br /> * See comment above *

    1. Joint Public Review:

      Summary:

      This is an excellent, timely study investigating and characterizing the underlying neural activity that generates the neuroendocrine GnRH and LH surges that are responsible for triggering ovulation. Abundant evidence accumulated over the past 20 years implicated the population of kisspeptin neurons in the hypothalamic RP3V region (also referred to as the POA or AVPV/PeN kisspeptin neurons) as being involved in driving the GnRH surge in response to elevated estradiol (E2), also known as the "estrogen positive feedback". However, while former studies used Cfos coexpression as a marker of RP3V kisspeptin neuron activation at specific times and found this correlates with the timing of the LH surge, detailed examination of the live in vivo activity of these neurons before, during, and after the LH surge remained elusive due to technical challenges.

      Here, Zhou and colleagues use fiber photometry to measure the long-term synchronous activity of RP3V kisspeptin neurons across different stages of the mouse estrous cycle, including on proestrus when the LH surge occurs, as well as in a well-established OVX+E2 mouse model of the LH surge.

      The authors report that RP3V kisspeptin neuron activity is low on estrous and diestrus, but increases on proestrus several hours before the late afternoon LH surge, mirroring prior reports of rising GnRH neuron activity in proestrus female mice. The measured increase in RP3V kisspeptin activation is long, spanning ~13 hours in proestrus females and extending well beyond the end of the LH secretion, and is shown by the authors to be E2 dependent.

      For this work, Kiss-Cre female mice received a Cre-dependent AAV injection, containing GCaMP6, to measure the neuronal activation of RP3V Kiss1 cells. Females exhibited periods of increased neuronal activation on the day of proestrus, beginning several hours prior to the LH surge and lasting for about 12 hours. Though oscillations in the pattern of GCaMP fluorescence were occasionally observed throughout the ovarian cycle, the frequency, duration, and amplitude of these oscillations were significantly higher on the day of proestrus. This increase in RP3V Kiss1 neuronal activation that precedes the increase in LH supports the hypothesis that these neurons are critical in regulating the LH surge. The authors compare this data to new data showing a similar increased activation pattern in GnRH neurons just prior to the LH surge, further supporting the hypothesis that RP3V Kiss1 cell activation causes the release of kisspeptin to stimulate GnRH neurons and produce the LH surge.

      Strengths:

      This study provides compelling data demonstrating that RP3V kisspeptin neuronal activity changes throughout the ovarian cycle, likely in response to changes in estradiol levels, and that neuronal activation increases on the day of the LH surge.

      The observed increase in RP3V kisspeptin neuronal activation precedes the LH surge, which lends support to the hypothesis that these neurons play a role in regulating the estradiol-induced LH surge. Continuing to examine the complexities of the LH surge and the neuronal populations involved, as done in this study, is critical for developing therapeutic treatments for women's reproductive disorders.

      This innovative study uses a within-subject design to examine neuronal activation in vivo across multiple hormone milieus, providing a thorough examination of the changes in activation of these neurons. The variability in neuronal activity surrounding the LH surge across ovarian cycles in the same animals is interesting and could not be achieved without this within-subjects design. The inclusion and comparison of ovary-intact females and OVX+E2 females is valuable to help test mechanisms under these two valuable LH surge conditions, and allows for further future studies to tease apart minor differences in the LH surge pattern between these 2 conditions.

      This study provides an excellent experimental setup able to monitor the daily activity of preoptic kisspeptin neurons in freely moving female mice. It will be a valuable tool to assess the putative role of these kisspeptin neurons in various aspects of altered female fertility (aging, pathologies...). This approach also offers novel and useful insights into the impact of E2 and circadian cues on the electrical activity of RP3V kisspeptin neurons.

      An intriguing cyclical oscillation in kisspeptin neural activity every 90 minutes exists, which may offer critical insight into how the RP3V kisspeptin system operates. Interestingly, there was also variability in the onset and duration of RP3V Kisspeptin neuron activity between and within mice in naturally cycling females. Preoptic kisspeptin neurons show an increased activity around the light/dark transition only on the day of proestrus, and this is associated with an increase in LH secretion. An original finding is the observation that the peak of kisspeptin neuron activation continues a few hours past the peak of LH, and the authors hypothesize that this prolonged activity could drive female sexual behaviors, which usually appear after the LH surge.

      The authors demonstrated that ovariectomy resulted in very little neuronal activity in RP3V kisspeptin neurons. When these ovarietomized females were treated with estradiol benzoate (EB) and an LH surge was induced, there was an increase in RP3V kisspeptin neuronal activation, as was seen during proestrus. However, the magnitude of the change in activity was greater during proestrus than during the EB-induced LH surge. Interestingly, the authors noted a consistent peak in activity about 90 minutes prior to lights out on each day of the ovarian cycle and during EB treatment, but not in ovariectomized females. The functional purpose of this consistent neuronal activity at this time remains to be determined.

      Though not part of this study, the comparison of neuronal activation of GnRH neurons during the LH surge to the current data was convincing, demonstrating a similar pattern of increased activation that precedes the LH surge.

      In summary, the study is well-designed, uses proper controls and analyses, has robust data, and the paper is nicely organized and written. The data from these experiments is compelling, and the authors' claims and conclusions are nicely supported and justified by the data. The data support the hypothesis in the field that these RP3V neurons regulate the LH surge. Overall, these findings are important and novel, and lend valuable insight into the underlying neural mechanisms for neuroendocrine control of ovulation.

      Weaknesses:

      (1) LH levels were not measured in many mice or in robust temporal detail, such as every 30 or 60 min, to allow a more detailed comparison between the fine-scale timing of RP3V neuron activation with onset and timing of LH surge dynamics.

      (2) The authors report that the peak LH value occurred 3.5 hours after the first RP3V kisspeptin neuron oscillation. However, it is likely, and indeed evident from the 2 example LH patterns shown in Figures 3A-B, that LH values start to increase several hours before the peak LH. This earlier rise in LH levels ("onset" of the surge) occurs much closer in time to the first RP3V kisspeptin neuron oscillatory activation, and as such, the ensuing LH secretion may not be as delayed as the authors suggest.

      (3) The authors nicely show that there is some variation (~2 hours) in the peak of the first oscillation in proestrus females. Was this same variability present in OVX+E2 females, or was the variability smaller or absent in OVX+E2 versus proestrus? It is possible that the variability in proestrus mice is due to variability in the timing and magnitude of rising E2 levels, which would, in theory, be more tightly controlled and similar among mice in the OVX+E2 model. If so, the OVX+E2 mice may have less variability between mice for the onset of RP3V kisspeptin activity.

      (4) One concern regarding this study is the lack of data showing the specificity of the AAV and the GCaMP6s signals. There are no data showing that GCaMP6s is limited to the RP3V and is not expressed in other Kiss1 populations in the brain. Given that 2ul of the AAV was injected, which seems like a lot considering it was close to the ventricle, it is important to show that the signal and measured activity are specific to the RP3V region. Though the authors discuss potential reasons for the low co-expression of GCaMP6 and kisspeptin immunoreactivity, it does raise some concern regarding the interpretation of these results. The low co-expression makes it difficult to confirm the Kiss1 cell-specificity of the Cre-dependent AAV injections. In addition, if GFP (GCaMP6s) and kisspeptin protein co-localization is low, it is possible that the activation of these neurons does not coincide with changes in kisspeptin or that these neurons are even expressing Kiss1 or kisspeptin at the time of activation. It is important to remember that the study measures activation of the kisspeptin neuron, and it does not reveal anything specific about the activity of the kisspeptin protein.

      (5) One additional minor concern is that LH levels were not measured in the ovariectomized females during the expected time of the LH surge. The authors suggest that the lower magnitude of activation during the LH surge in these females, in comparison to proestrus females, may be the result of lower LH levels. It's hard to interpret the difference in magnitude of neuronal activation between EB-treated and proestrus females without knowing LH levels. In addition, it's possible that an LH surge did not occur in all EB-treated females, and thus, having LH levels would confirm the success of the EB treatment.

      (6) This kisspeptin neuron peak activity is abolished in ovariectomized mice, and estradiol replacement restored this activity, but only partially. Circulating levels of estradiol were not measured in these different setups, but the authors hypothesize that the lack of full restoration may be due to the absence of other ovarian signals, possibly progesterone.

      (7) Recordings in several mice show inter- and intra-variability in the time of peak onset. It is not shown whether this variability is associated with a similar variability in the timing of the LH surge onset in the recorded mice. The authors hypothesized that this variability indicates a poor involvement of the circadian input. However, no experiments were done to investigate the role of the (vasopressinergic-driven) circadian input on the kisspeptin neuron activation at the light/dark transition. Thus, we suggest that the authors be more tentative about this hypothesis.

    1. Reviewer #1 (Public review):

      This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses.

      Using a proteomics approach, the authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein (Sipa1l3), shows particularly strong evidence of being an integral component of the electrical synapse. The function of Sipa1l3 remains to be determined.

      Another strength is the use of two different model organisms (zebrafish and mice) to determine which components are conserved across species. This approach also expands the utility of this work to benefit researchers working with both species.

      The methodology is robust and there is compelling evidence supporting the findings.

      Comments on revisions:

      I thank the authors for responding to the comments. No further recommendations.

    2. Reviewer #3 (Public review):

      Summary:

      This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins in proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

      Strengths:

      A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

      Comments on revisions:

      The authors have addressed my concerns in the revised manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that there is a large corpus of research establishing the importance of LC-NE projections to medial prefrontal cortex (mPFC) of rats and mice in attentional set or 'rule' shifting behaviours. However, this is complex behavior and the authors were attempting to gain an understanding of how locus coeruleus modulation of the mPFC contributes to set shifting.

      The authors replicated the ED-shift impairment following NE denervation of mPFC by chemogenetic inhibition of the LC. They further showed that LC inhibition changed the way neurons in mPFC responded to the cues, with a greater proportion of individual neurons responsive to 'switching', but the individual neurons also had broader tuning, responding to other aspects of the task (i.e., response choice and response history). The population dynamics was also changed by LC inhibition, with reduced separation of population vectors between early-post-switch trials, when responding was at chance, and later trials when responding was correct. This was what they set out to demonstrate and so one can conclude they achieved their aims.

      The authors concluded that LC inhibition disrupted mPFC "encoding capacity for switching" and suggest that this "underlie[s] the behavioral deficits."

      Strengths:

      The principal strength is combining inactivation of LC with calcium imaging in mPFC. This enabled detailed consideration of the change in behavior (i.e., defining epochs of learning, with an 'early phase' when responding is at chance being compared to a 'later phase' when the behavioral switch has occurred) and how these are reflected in neuronal activity in the mPFC, with and without LC-NE input.

      Comments on revised version:

      In their response to reviewers, the authors say "We report p values using 2 decimal points and standard language as suggested by this reviewer". However, no changes were made in the manuscript: for example, "P = 4.2e-3" rather than "p = 0.004".

      In their response to the reviewers, they wrote: "Upon closer examination of the behavioral data, we exclude several sessions where more trials were taken in IDS than in EDS." If those sessions in which EDSIDS. Most problematic is the fact that the manuscript now reads "Importantly, control mice (pooled from Fig. 1e, 1h, Supp. Fig. 1a, 1b) took more trials to complete EDS than IDS (Trials to criterion: IDS vs. EDS, 10 {plus minus} 1 trials vs. 16 {plus minus} 1 trials, P < 1e-3, Supp. Fig. 1c), further supporting the validity of attentional switching (as in Fig. 1c)" without mentioning that data has been excluded.

    2. Reviewer #3 (Public review):

      Summary:

      Nigro et al examine how the locus coeruleus (LC) influences the medial prefrontal cortex (mPFC) during attentional shifts required for behavioral flexibility. Specifically, the propose that LC-mPFC inputs enable mice to shift attention effectively from texture to odor cues to optimize behavior. The LC and its noradrenergic projections to the mPFC have previously been implicated in this behavior. The authors further establish this by using chemogenetics to inhibit LC terminals in mPFC and show a selective deficit in extradimensional set shifting behavior. But the study's primary innovation is the simultaneous inhibition of LC while recording multineuron patterns of activity in mPFC. Analysis at the single neuron and population levels revealed broadened tuning properties, less distinct population dynamics, and disrupted predictive encoding when LC is inhibited. These findings add to our understanding of how neuromodulatory inputs shape attentional encoding in mPFC and are an important advance. There are some methodological limitations and/or caveats that should be considered when interpreting the findings, and these are described below.

      Strengths:

      The naturalistic set-shifting task in freely-moving animals is a major strength and the inclusion of localized suppression of LC-mPFC terminals is builds confidence in the specificity of their behavioral effect. Combining chemogenetic inhibition of LC while simultaneously recording neural activity in mPFC with miniscopes is state-of-the-art. The authors apply analyses to population dynamics in particular that can advance our understanding of how the LC modifies patterns of mPFC neural activity. The authors show that neural encoding at both the single cell level and the population level are disrupted when LC is inhibited. They also show that activity is less able to predict key aspects of the behavior when the influence of LC is disrupted. This is quite interesting and adds to a growing understanding of how neuromodulatory systems sharpen tuning of mPFC activity.

      Weaknesses:

      Weaknesses are mostly minor, but there are some caveats that should be considered. First, the authors use a DBH-Cre mouse line and provide histological confirmation of overlap between HM4Di expression and TH immunostaining. While this strongly suggests modulation of noradrenergic circuit activity, the results should be interpreted conservatively as there is no independent confirmation that norepinephrine (NE) release is suppressed and these neurons are known to release other neurotransmitters and signaling peptides. In the absence of additional control experiments, it is important to recognize that effects on mPFC activity may or may not be directly due to LC-mPFC NE.

      Another caveat is that the imaging analyses are entirely from the extradimensional shift session. Without analyzing activity data from the intradimensional shift (IDS) session, one cannot be certain that the observed changes are to some feature of activity that is specific to extradimensional shifts. Future experiments should examine animals with LC suppression during the IDS as well, which would show whether the observed effects are specific to an extradimensional shift and might explain behavioral effects.

    1. Reviewer #1 (Public review):

      Summary:

      The paper uses rigorous methods to determine phase dynamics from human cortical stereotactic EEGs. It finds that the power of the phase is higher at the lowest spatial phase. The application to data illustrates the solidity of the method and their potential for discovery.

      Comments on revised submission:

      The authors have provided responses to the previous recommendations.

    2. Reviewer #3 (Public review):

      Summary:

      The authors propose a method for estimating the spatial power spectrum of cortical activity from irregularly sampled data and apply it to iEEG data from human patients during a delayed free recall task. The main findings are that the spatial spectra of cortical activity peak at low spatial frequencies and decrease with increasing spatial frequency. This is observed over a broad range of temporal frequencies (2-100 Hz).

      Strengths:

      A strength of the study is the type of data that is used. As pointed out by the authors, spatial spectra of cortical activity are difficult to estimate from non-invasive measurements (EEG and MEG) and from commonly used intracranial measurements (i.e. electrocorticography or Utah arrays) due to their limited spatial extent. In contrast, iEEG measurements are easier to interpret than EEG/MEG measurements and typically have larger spatial coverage than Utah arrays. However, iEEG is irregularly sampled within the three-dimensional brain volume and this poses a methodological problem that the proposed method aims to address.

      Weaknesses:

      Although the proposed method is evaluated in several indirect ways, a direct evaluation is lacking. This would entail simulating cortical current source density (CSD) with known spatial spectrum and using a realistic iEEG volume-conductor model to generate iEEG signals.

      Comments on revised version:

      In my original review, I raised the following issue:

      "The proposed method of estimating wavelength from irregularly sampled three-dimensional iEEG data involves several steps (phase-extraction, singular value-decomposition, triangle definition, dimension reduction, etc.) and it is not at all clear that the concatenation of all these steps actually yields accurate estimates. Did the authors use more realistic simulations of cortical activity (i.e. on the convoluted cortical sheet) to verify that the method indeed yields accurate estimates of phase spectra?"

      And the authors' response was:

      "We now included detailed surrogate testing, in which varying combinations of sEEG phase data and veridical surrogate wavelengths are added together. See our reply from the public reviewer comments. We assess that real neurophysiological data (here, sEEG plus surrogate and MEG manipulated in various ways) is a more accurate way to address these issues. In our experience, large scale TWs appear spontaneously in realistic cortical simulations, and we now cite the relevant papers in the manuscript (line 53)."

      The point that I wanted to make is not that traveling waves appear in computational models of cortical activity, as the authors seem to think. My point was that the only direct way to evaluate the proposed method for estimating spatial spectra is to use simulated cortical activity with known spatial spectrum. In particular, with "realistic simulations" I refer to the iEEG volume-conductor model that describes the mapping from cortical current source density (CSD) to iEEG signals, and that incorporates the reference electrodes and the particular montage used.

      Although in the revised manuscript the authors have provided indirect evidence for the soundness of the proposed estimation method, the lack of a direct evaluation using realistic simulations with ground truth as described above makes that remain sceptical about the soundness of the method.

    1. Reviewer #1 (Public review):

      Summary:

      The authors scrutinized differences in C-terminal region variant profiles between Rett syndrome patients and healthy individuals and pinpointed that subtle genetic alternation can cause benign or pathogenic output, which harbors important implications in Rett syndrome diagnosis and proposes a therapeutic strategy. This work will be beneficial to clinicians and basic scientists who work on Rett syndrome, and carries the potential to be applied to other Mendelian rare diseases.

      Strengths:

      Well-designed genetic and molecular experiments translate genetic differences into functional and clinical changes. This is a unique study resolving subtle changes in sequences that give rise to dramatic phenotypic consequences.

      Weaknesses:

      There are many base-editing and protein-expression changes throughout the manuscript, and they cause confusion. It would be helpful to readers if authors could provide a simple summary diagram at the end of the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This study by Guy and Bird and colleagues is a natural follow-up to their 2018 Human Molecular Genetics paper, further clarifying the molecular basis of C-terminal deletions (CTDs) in MECP2 and how they contribute to Rett syndrome. The authors combine human genetic data with well-designed experiments in embryonic stem cells, differentiated neurons, and knock-in mice to explain why some CTD mutations are disease-causing while others are harmless. They show that pathogenic mutations create a specific amino acid motif at the C-terminus, where +2 frameshifts produce a PPX ending that greatly reduces MeCP2 protein levels (likely due to translational stalling) whereas +1 frameshifts generating SPRTX endings are well tolerated.

      Strengths:

      This is a comprehensive and rigorous study that convincingly pinpoints the molecular mechanism behind CTD pathogenicity, with strong agreement between the cell-based and animal data. The authors also provide a proof of principle that modifying the PPX termination codon can restore MeCP2-CTD protein levels and rescue symptoms in mice. In addition, they demonstrate that adenine base editing can correct this defect in cultured cells and increase MeCP2-CTD protein levels. Overall, this is a well-executed study that provides important mechanistic and translational insight into a clinically important class of MECP2 mutations.

      Weaknesses:

      The adenine base editing to change the termination codon is shown to be feasible in generated cell lines, but has yet to be shown in vivo in animal models.

    3. Reviewer #3 (Public review):

      Summary:

      Guy et al. explored the variation in the pathogenicity of carboxy-terminal frameshift deletions in the X-linked MECP2 gene. Loss-of-function variants in MECP2 are associated with Rett syndrome, a severe neurodevelopmental disorder. Although 100's of pathogenic MECP2 variants have been found in people with Rett syndrome, 8 recurrent point mutations are found in ~65% of disease cases, and frameshift insertions/deletions (indels) variants resulting in production of carboxy-terminal truncated (CTT) MeCP2 protein account for ~10% of cases. Many of these occur in a "deletion prone region" (DPR) between c.1110-1210, with common recurrent deletions c.1157-1197del (CTD1) and c.1164_1207del (CTD2). While two major protein functional domains have been defined in MeCP2, the methyl-binding domain (MBD) and the NCoR interacting domain (NID), the functional role of the carboxy-terminal domain (CTD, beyond the NID, predicted to have a disordered protein structure) has not been identified, and previous work by this group and others demonstrated that a Mecp2 "minigene" lacking the CTD retains MeCP2 function suggesting that the CTD is dispensable. This raises an important question: If the CTD is dispensable, what is the pathogenic basis of the various CTT frameshift variants? Prior work from this group demonstrated that genetically engineered mice expressing the CTD1 variant had decreased expression of Mecp2 RNA and MeCP2 protein and decreased survival, but those expressing the CTD2 variant had normal Mecp2 RNA and protein and survival. However, they noted that differences between the mouse and human coding sequences resulted in different terminal sequences between the two common CTD, with CTD1 ending in -PPX in both mouse and human, but CTD2 ending in -PPC in human but -SPX in mouse, and in the previous paper they demonstrated in humanized mouse ES cells (edited to have the same -PPX termination) containing the CTD2 deletion resulted in decreased Mecp2 RNA and protein levels. This previous work provides the underlying hypotheses that they sought to explore, which is that the pathological basis of disease causing CTD relates to the formation of truncated proteins that end with a specific amino acid sequence (-PPX), which leads to decreased mRNA and protein levels, whereas tolerated, non-pathogenic CTD do not lead to production of truncated proteins ending in this sequence and retain normal mRNA/protein expression.

      In this manuscript, they evaluate missense variants, in-frame deletions, and frame shift deletions within the DPR from the aggregated Genome Aggregated Database (gnomAD) and find that the "apparently" normal individuals within gnomAD had numerous tolerated missense variants and in-frame deletions within this region, as well as frameshift deletions (in hemizygous males) in the defined region. All of the gnomAD deletions within this region resulted in terminal amino acid sequences -SPRTX (due to +1 frameshift), whereas nearly all deletion variants in this region from people with Rett syndrome (from the Clinvar copy of the former RettBase database) had a terminal -PPX sequence, due to a +2 frameshift. They hypothesized that terminal proline codons causing ribosomal stalling and "nonsense mediated decay like" degradation of mRNA (with subsequent decreased protein expression) was the basis of the specific pathogenicity of the +2 frameshift variants, and that utilizing adenine base editors (ABE) to convert the termination codon to a tryptophan could correct this issue. They demonstrate this by engineering the change into mouse embryonic stem cell lines and mouse lines containing the CTD1 deletion and show that this change normalized Mecp2 mRNA and protein levels and mouse phenotypes. Finally, they performed an initial proof-of-concept in an inducible HEK cell line and showed the ability of targeted ABE to edit the correct adenine and cause production of the expected larger truncated Mecp2 protein from CTD1 constructs.

      The findings of this manuscript provide a level of support for their hypothesis about the pathogenicity versus non-pathogenicity of some MECP2 CTT intragenic deletions and provide preliminary evidence for a novel therapeutic approach for Rett syndrome; however, limitations in their analysis do not fully support the broader conclusions presented.

      Strengths:

      (1) Utilization of publicly available databases containing aggregated genetic sequencing data from adult cohorts (gnomAD) and people with Rett syndrome (Clinvar copy of RettBase) to compare differences in the composition of the resulting terminal amino acid sequences resulting from deletions presumed to be pathogenic (n+2) versus presumed to be tolerated (n+1).

      (2) Evaluation of a unique human pedigree containing an n+1 deletion in this region that was reported as pathogenic, with demonstration of inheritance of this from the unaffected father and presence within other unaffected family members.

      (3) Development of a novel engineered mouse model of a previously assumed n+1 pathogenic variant to demonstrate lack of detrimental effect, supporting that this is likely a benign variant and not causative of Rett syndrome.

      (4) Creation and evaluation of novel cell lines and mouse models to test the hypothesis that the pathogenicity of the n+2 deletion variants could be altered by a single base change in the frameshifted stop codon.

      (5) Initial proof-of-concept experiments demonstrating the potential of ABE to correct the pathogenicity of these n+2 deletion variants.

      Weaknesses:

      (1) While the use of the large aggregated gnomAD genetic data benefits from the overall size of the data, the presence of genetic variants within this collection does not inherently mean that they are "neutral" or benign. While gnomAD does not include children, it does include aggregated data from a variety of projects targeting neuropsychiatric (and other conditions), so there is information in gnomAD from people with various medical/neuropsychiatric conditions. The authors do make some acknowledgement of this and argue that the presence of intragenic deletion variants in their region of interest in hemizygous males indicates that it is highly likely that these are tolerated, non-pathogenic variants. Broadly, it is likely true that gnomAD MECP2 variants found in hemizygous males are unlikely to cause Rett syndrome in heterozygous females, it does not necessarily mean that these variants have no potential to cause other, milder, neuropsychiatric disorders. As a clear example, within gnomAD, there is a hemizygous male with the rs28934908 C>T variant that results in p.A140V (p.A152V in e1 transcript numbering convention). This pathogenic variant has been found in a number of pedigrees with an X-linked intellectual disability pattern, in which males have a clear neurodevelopmental disorder and heterozygous females have mild intellectual disability (see PMIDs 12325019, 24328834 as representative examples of a large number of publications describing this). Thus, while their claim that hemizygous deletion variants in gnomAD are unlikely to cause Rett syndrome, that cannot make the definitive statement that they are not pathogenic and completely benign, especially when only found in a very small number of individuals in gnomAD.

      (2) The authors focus exclusively on deletions within the "DPR", they define as between c.1110-1210 and say that these deletions account for 10% of Rett syndrome cases. However, the published studies that are the basis for this 10% estimate include all genetic variants (frameshift deletions, insertions, complex insertion/deletions, nonsense variants) resulting in truncations beyond the NID. For example, Bebbington 2010 (PMID: 19914908), which includes frameshift indels as early as c.905 and beyond c.1210. Further specific examples from RettBase are described below, but the important point is that their evaluation of only frameshift variants within c.1110-1210 is not truly representative of the totality of genetic variants that collectively are considered CTT and account for 10% of Rett cases.

      (3) The authors say that they evaluated the putative pathogenic variants contained within RettBase (which is no longer available, but the data were transferred to Clinvar) for all cases with Classic Rett syndrome and de novo deletion variants within their defined DPR domain. Looking at the data from the Clinvar copy of RettBase, there are a number (n=143) of c-terminal truncating variants (either frameshift or nonsense) present beyond the NID, but the authors only discuss 14 deletion frameshift variants in this manuscript. A number of these variants have molecular features that do not fall into the pathogenic classification proposed by the authors and are not addressed in the manuscript and do not support the generalization of the conclusions presented in this manuscript, especially the conclusion that the determination of pathogenicity of all c-terminal truncating variants can be determined according to their proposed n+2 rule, or that all of the 10% of people with Rett syndrome and c-terminal truncating variants could be treated by using a base editor to correct the -PPX termination codon.

      (4) The HEK-based system utilized is convenient for doing the initial experiments testing ABE; however, it represents an artificial system expressing cDNA without splicing. Canonical NMD is dependent on splicing, and while non-canonical "NMD-like" processes are less well understood, a concern is whether the artificial system used can adequately predict efficacy in a native setting that includes introns and splicing.

    1. Reviewer #1 (Public review):

      Summary:

      The authors integrate multiple large databases to test whether body sizes were positively associated with which species tolerate urban areas. In general, many plant families showed a positive association between body size and urban tolerance, whereas a smaller, though still non-trivial, percentage of animal families showed the same pattern. Notably, the authors are careful in the interpretation of their findings and provide helpful context for the ways that this analysis can be generative in shaping new hypotheses and theory around how urbanization influences biodiversity at large. They are careful to discuss how body size is an important trait, but the absence of a relationship between body size and urban tolerance in many families suggests a variety of other traits undergird urban success.

      Strengths:

      The authors aggregated a large dataset, but they also applied robust filters to ensure they had an adequate and representative number of detections for a given species, family, geography, etc. The authors also applied their analysis at multiple taxonomic scales (family and order), which allowed for a better interpretation of the patterns in the data and at what taxonomic scale body size might be important.

      Weaknesses:

      My main concern is that it is not fully clear how the measure of body size might influence the result. The authors were unable to obtain consistent measures of body size (mean, median, maximum, or sex variation). This, of course, could be very consequential as means and medians can differ quite a bit, and they certainly will differ substantially from a maximum. And of course, sex differences can be marked in multiple directions or absent altogether. The authors do note that they selected the measure that was most common in a family, but it was not clear whether species in that family that did not have that measure were removed or not. This could potentially shape the variability in the dataset and obscure true patterns. This may require additional clarity from the authors and is also a real constraint in compiling large data from disparate sources.

    2. Reviewer #2 (Public review):

      I have completed a thorough review of this paper, which seeks to use the large datasets of species occurrences available through GBIF to estimate variation in how large numbers of plant and animal species are associated with urbanization throughout the world, describing what they call the "species urbanness distribution" or SUD. They explore how these SUDs differ between regions and different taxonomic levels. They then calculate a measure of urban tolerance and seek to explore whether organism size predicts variation in tolerance among species and across regions.

      The study is impressive in many respects. Over the course of several papers, Callaghan and coauthors have been leaders in using "big [biodiversity] data" to create metrics of how species' occurrence data are associated with urban environments, and in describing variation in urban tolerance among taxa and regions. This work has been creative, novel, and it has pushed the boundaries of understanding how urbanization affects a wide diversity of taxa. The current paper takes this to a new level by performing analyses on over 94000 observations from >30,000 species of plants and animals, across more than 370 plant and animal taxonomic families. All of these analyses were focused on answering two main questions:

      (1) What is the shape of species' urban tolerance distributions within regional communities?

      (2) Does body size consistently correlate with species' urban tolerance across taxonomic groups and biogeographic contexts?

      Overall, I think the questions are interesting and important, the size and scope of the data and analyses are impressive, and this paper has a potentially large contribution to make in pushing forward urban macroecology specifically and urban ecology and evolution more generally.

      Despite my enthusiasm for this paper and its potential impact, there are aspects that could be improved, and I believe the paper requires major revision.

      Some of these revisions ideally involve being clearer about the methodology or arguments being made. In other cases, I think their metrics of urban tolerance are flawed and need to be rethought and recalculated, and some of the conclusions are inaccurate. I hope the authors will address these comments carefully and thoroughly. I recognize that there is no obligation for authors to make revisions. However, revising the paper along the lines of the comments made below would increase the impact of the paper and its clarity to a broad readership.

      Major Comments:

      (1) Subrealms

      Where does the concept of "subrealms" come from? No citation is given, and it could be said that this sounds like an idea straight out of Middle Earth. How do subrealms relate to known bioclimatic designations like Koppen Climate classifications, which would arguably be more appropriate? Or are subrealms more socio-ecologically oriented? From what I can tell, each subrealm lumps together climatically diverse areas. It might be better and more tractable to break things in terms of continents, as the rationale for subrealms is unclear, and it makes the analyses and results more confusing. The authors rationalized the use of subrealms to account for potential intraspecific differences in species' response to urbanization, but that is never a core part of the questions or interpretation in the paper, and averaging across subrealms also accounts for intraspecific variation. Another issue with using the subrealm approach is that the authors only included a species if it had 100 observations in a given subrealm, leading to a focus on only the most common species, which may be biased in their SUD distribution. How many more species would be included if they did their analysis at the continental or global scale, and would this change the shape of SUDs?

      (2) Methods - urban score

      The authors describe their "urban score" as being calculated as "the mean of the distribution of VIIRS values as a relative species specific measure of a response to urban land cover."

      I don't understand how this is a "relative species-specific measure". What is it relative to? Figures S4 and S5 show the mean distribution of VIIRS for various taxa, and this mean looks to be an absolute measure. Mean VIIRS for a given species would be fine and appropriate as an "urban score", but the authors then state in the next sentence: "this urban score represents the relative ranking of that species to other species in response to urban land cover".

      That doesn't follow from the description of how this is calculated. Something is missing here. Please clarify and add an explicit equation for how the urban score is calculated because the text is unclear and confusing.

      (3) Methods - urban tolerance

      How the authors are defining and calculating tolerance is unclear, confusing, and flawed in my opinion.

      Tolerance is a common concept in ecology, evolution, and physiology, typically defined as the ability for an organism to maintain some measure of performance (e.g., fitness, growth, physiological homeostasis) in the presence versus absence of some stressor. As one example, in the herbivory literature, tolerance is often measured as the absolute or relative difference in fitness of plants that are damaged versus undamaged (e.g., https://academic.oup.com/evolut/article/62/9/2429/6853425?login=true).

      On line 309, after describing the calculation of urban scores across subrealms, they write: "Therefore, a species could be represented across multiple subrealms with differing measures of urban tolerance (Fig. S4). Importantly, this continuous metric of urban tolerance is a relative measure of a species' preference, or affinity, to urban areas: it should be interpreted only within each subrealm".

      This is problematic on several fronts. First, the authors never define what they mean by the term "tolerance". Second, they refer to urban tolerance throughout the paper, but don't describe the calculation until lines 315-319, where they write (text in [ ] is from the reviewer):

      "Within each subrealm, we further accounted for the potential of different levels of urbanization by scaling each species' urban score by subtracting the mean VIIRS of all observations in the subrealm (this value is hereafter referred to as urban tolerance). This 'urban tolerance' (Fig. S5) value can be negative - when species under-occupy urban areas [relative to the average across all species] suggesting they actively avoid them-or positive-when species over-occupy urban areas [relative to the average across all species] suggesting they prefer them (i.e., ranging from urban avoiders to urban exploiters, respectively).<br /> They are taking a relativized urban score and then subtracting the mean VIIRS of all observations across species in a subrealm. How exactly one interprets the magnitude isn't clear and they admit this metric is "not interpretative across subrealms".

      This is not a true measure of tolerance, at least not in the conventional sense of how tolerance is typically defined. The problem is that a species distribution isn't being compared to some metric of urbanness, but instead it is relative to other species' urban scores, where species may, on average, be highly urban or highly nonurban in their distribution, and this may vary from subrealm to subrealm. A measure of urban tolerance should be independent of how other species are responding, and should be interpretable across subrealms, continents, and the globe.

      I propose the authors use one of two metrics of urban tolerance:

      (i) Absolute Urban Tolerance = Mean VIIRS of species_i - Mean VIIRS of city centers<br /> Here, the mean VIIRS of city centers could be taken from the center of multiple cities throughout a subrealm, across a continent, or across the world. Here, the units are in the original VIIRS units where 0 would correspond to species being centered on the most extreme urban habitats, and the most extreme negative values would correspond to species that occupy the most non-urban habitats (i.e., no artificial light at night). In essence, this measure of tolerance would quantify how far a species' distribution is shifted relative to the most highly urbanized habitat available.

      (ii) % Urban Tolerance = (Mean VIIRS of species_i - Mean VIIRS of city centers)/MeanVIIRS of city centers * 100%<br /> This metric provides a % change in species mean VIIRS distribution relative to the most urban habitats. This value could theoretically be negative or positive, but will typically be negative, with -100% being completely non-urban, and 0% being completely urban tolerant.

      Both of these metrics can be compared across the world, as it would provide either absolute (equation 1) or relative (equation 2) metrics of urban tolerance that are comparable and easily interpretable in any region.

      In summary, the definition of tolerance should be clear, the metric should be a true measure of tolerance that is comparable across regions, and an equation should be given.

      (4) Figure 1: The figure does not stand alone. For example, what is the hypothesis for thermophily or the temperature-size rule? The authors should expand the legend slightly to make the hypotheses being illustrated clearer.

      (5) SUDs: I don't agree with the conclusion given on line 83 ("pattern was consistent across subrealms and several taxonomic levels") or in the legend of Figure 2 ("there were consistent patterns for kingdoms, classes, and orders, as shown by generally similar density histograms shapes for each of these").

      The shapes of the curves are quite different, especially for the two Kingdoms and the different classes. I agree they are relatively consistent for the different taxonomic Orders of insects.

    3. Reviewer #3 (Public review):

      Summary:

      This paper reports on an association between body size and the occurrence of species in cities, which is quantified using an 'urban score' that can be visualized as a 'Species Urbanness Distribution' for particular taxa. The authors use species records from the Global Biodiversity Information Facility (GBIF) and link the occurrence data to nighttime lighting quantified using satellite data (Visible Infrared Imaging Radiometer Suite-VIIRS). They link the urban score to body size data to find 'heterogeneous relationship between body size and urban tolerance across the tree'. The results are then discussed with reference to potential mechanisms that could possibly produce the observed effects (cf. Figure 1).

      Strengths:

      The novelty of this study lies in the huge number of species analyzed and the comparison of results among animal taxa, rather than in a thorough analysis of what traits allow species to persist under urban conditions. Such analyses have been done using a much more thorough approach that employs presence-absence data as well as a suite of traits by other studies, for example, in (Hahs et al. 2023, Neate-Clegg et al. 2023). The dataset that the authors produced would also be very valuable if these raw data were published, both the cleaned species records as well as the body sizes.

      The paper could strongly add to our understanding of what species occur in cities when the open questions are addressed.

      Weaknesses:

      I value the approach of the authors, but I think the paper needs to be revised.

      In my view, the authors could more carefully validate their approach. Currently, any weakness or biases in the approach are quickly explained away rather than carefully explored. This concerns particularly the use of presence-only data, but also the calculation of the urban score.

      The vast majority of data in GBIF is presence-only data. This produces a strong bias in the analysis presented in the paper. For some taxa, it is likely that occurrences within the city are overrepresented, and for other taxa, the opposite is true (cf. Sweet et al. 2022). I think the authors should try to address this problem.

      The authors should compare their results to studies focusing on particular taxa where extensive trait-based analyses have already been performed, i.e., plants and birds. In fact, I strongly suggest that the authors should compare their results to previous studies on the relationship between traits, including body size and occurrences along a gradient of urbanisation, to draw conclusions about the validity of the approach used in the current study, which has a number of weaknesses.

      They should be be more careful in coming up with post-hoc explanations of why the pattern found in this study makes sense or suggests a particular mechanism. This reviewer considers that there is no way in which the current study can disentangle the different possible mechanisms without further analyses and data, so I would suggest pointing out carefully how the mechanisms could be studied

      More details should be given about the methodology. The readers should be able to understand the methods without having to read a number of other papers.

      References:

      Hahs, A. K., B. Fournier, M. F. Aronson, C. H. Nilon, A. Herrera-Montes, A. B. Salisbury, C. G. Threlfall, C. C. Rega-Brodsky, C. A. Lepczyk, and F. A. La Sorte. 2023. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nature Communications 14:4751.

      Neate-Clegg, M. H. C., B. A. Tonelli, C. Youngflesh, J. X. Wu, G. A. Montgomery, Ç. H. Şekercioğlu, and M. W. Tingley. 2023. Traits shaping urban tolerance in birds differ around the world. Current Biology 33:1677-1688.

      Sweet, F. S. T., B. Apfelbeck, M. Hanusch, C. Garland Monteagudo, and W. W. Weisser. 2022. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. Journal of Urban Ecology 8:juac002.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Qiu et al. developed a novel spatial navigation task to investigate the formation of multi-scale representations in the human brain. Over multiple sessions and diverse tasks, participants learned the location of 32 objects distributed across 4 different rooms. The key task was a "judgement of relative direction" task delivered in the scanner, which was designed to assess whether object representations reflect local (within-room) or global (across-room) similarity structures. In between the two scanning sessions, participants received extensive further training. The goal of this manipulation was to test how spatial representations change with learning.

      Strengths:

      The authors designed a very comprehensive set of tasks in virtual reality to teach participants a novel spatial map. The spatial layout is well-designed to address the question of interest in principle. Participants were trained in a multi-day procedure, and representations were assessed twice, allowing the authors to investigate changes in the representation over multiple days.

      Weaknesses:

      Unfortunately, I see multiple problems with the experimental design that make it difficult to draw conclusions from the results.

      (1) In the JRD task (the key task in this paper), participants were instructed to imagine standing in front of the reference object and judge whether the second object was to their left or right. The authors assume that participants solve this task by retrieving the corresponding object locations from memory, rotating their imagined viewpoint and computing the target object's relative orientation. This is a challenging task, so it is not surprising that participants do not perform particularly well after the initial training (performance between 60-70% accuracy). Notably, the authors report that after extensive training, they reached more than 90% accuracy.

      However, I wonder whether participants indeed perform the task as intended by the authors, especially after the second training session. A much simpler behavioural strategy is memorising the mapping between a reference object and an associated button press, irrespective of the specific target object. This basic strategy should lead to quite high success rates, since the same direction is always correct for four of the eight objects (the two objects located at the door and the two opposite the door). For the four remaining objects, the correct button press is still the same for four of the six target objects that are not located opposite to the reference object. Simply memorising the button press associated with each reference object should therefore lead to a high overall task accuracy without the necessity to mentally simulate the spatial geometry of the object relations at all.

      I also wonder whether the random effect coefficients might reflect interindividual differences in such a strategy shift - someone who learnt this relationship between objects and buttons might show larger increases in RTs compared to someone who did not.

      (2) On a related note, the neural effect that appears to reflect the emergence of a global representation might be more parsimoniously explained by the formation of pairwise associations between reference and target objects. Since both objects always came from the same room, an RDM reflecting how many times an object pair acted as a reference-target pair will correlate with the categorical RDM reflecting the rooms corresponding to each object. Since the categorical RDM is highly correlated with the global RDM, this means that what the authors measure here might not reflect the formation of a global spatial map, but simply the formation of pairwise associations between objects presented jointly.

      (3) In general, the authors attribute changes in neural effects to new learning. But of course, many things can change between sessions (expectancy, fatigue, change in strategy, but also physiological factors...). Baseline phsiological effects are less likely to influence patterns of activity, so the RSA analyses should be less sensitive to this problem, but especially the basic differences in activation for the contrast of post-learning > pre-learning stages in the judgment of relative direction (JRD) task could in theory just reflect baseline differences in blood oxygenation, possibly due to differences in time of day, caffeine intake, sleep, etc. To really infer that any change in activity or representation is due to learning, an active control would have been great.

      (4) RSA typically compares voxel patterns associated with specific stimuli. However, the authors always presented two objects on the screen simultaneously. From what I understand, this is not considered in the analysis ("The β-maps for each reference object were averaged across trials to create an overall β-map for that object."). Furthermore, participants were asked to perform a complex mental operation on each trial ("imagine standing at A, looking at B, then perform the corresponding motor response"). Assuming that participants did this (although see points 1 and 2 above), this means that the resulting neural representation likely reflects a mixture of the two object representations, the mental transformation and the corresponding motor command, and possibly additionally the semantic and perceptual similarity between the two presented words. This means that the βs taken to reflect the reference object representation must be very noisy.

      This problem is aggravated by two additional points. Firstly, not all object pairs occurred equally often, because only a fraction of all potential pairs were sampled. If the selection of the object pairs is not carefully balanced, this could easily lead to sampling biases, which RSA is highly sensitive to.

      Secondly, the events in the scanner are not jittered. Instead, they are phase-locked to the TR (1.2 sec TR, 1.2 sec fixation, 4.8 sec stimulus presentation). This means that every object onset starts at the same phase of the image acquisition, making HRF sampling inefficient and hurting trial-wise estimation of betas used for the RSA. This likely significantly weakens the strength of the neural inferences that are possible using this dataset.

      (5) It is not clear why the authors focus their report of the results in the main manuscript on the preselected ROIs instead of showing whole-brain results. This can be misleading, as it provides the false impression that the neural effects are highly specific to those regions.

      (6) I am missing behavioural support for the authors' claims.

      Overall, I am not convinced that the main conclusion that global spatial representations emerge during learning is supported by the data. Unfortunately, I think there are some fundamental problems in the experimental design that might make it difficult to address the concerns.

      However, if the authors can provide convincing evidence for their claims, I think the paper will have an impact on the field. The question of how multi-scale representations are represented in the human brain is a timely and important one.

    2. Reviewer #2 (Public review):

      Summary:

      Qui and colleagues studied human participants who learned about the locations of 32 different objects located across 4 different rooms in a common spatial environment. Participants were extensively trained on the object locations, and fMRI scans were done during a relative direction judgement task in a pre- and post-session. Using RSA analysis, the authors report that the hippocampus increased global relative to local representations with learning; the RSC showed a similar pattern, but also increased effects of both global and local information with time.

      Strengths:

      (1) The manuscript asks a generally interesting question concerning the learning of global versus local spatial information.

      (2) The virtual environment task provides a rich and naturalistic spatial setting for participants, and the setup with 32 objects across 4 rooms is interesting.

      (3) The within-subject design and use of verbal cues for spatial retrieval is elegant .

      Weaknesses:

      (1) My main concern is that the global Euclidean distances and room identity are confounded. I fear this means that all neural effects in the RSA could be alternatively explained by associations to the visual features of the rooms that build up over time.

      (2) The direction judgement task is not very informative about cognitive changes, as only objects in a room are compared. The setup also discourages global learning, and leaves unclear whether participants focussed on learning the left/right relationships required by the task.

      (3) With N = 23, the power is low, and the effects are weak.

      (4) It appears no real multiple comparisons correction is done for the ROI based approach, and significance across ROIs is not tested directly.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Qui et al. explores the issue of spatial learning in both local (rooms) and global (connected rooms) environments. The authors perform a pointing task, which involves either pressing the right or left button in the scanner to indicate where an object is located relative to another object. Participants are repeatedly exposed to rooms over sessions of learning, with one "pre" and one "post" learning session. The authors report that the hippocampus shifted from lower to higher RSA for the global but not the local environment after learning. RSC and OFC showed higher RSA for global object pointing. Other brain regions also showed effects, including ACC, which seemed to show a similar pattern as the hippocampus, as well as other regions shown in Figure S5. The authors attempt to tie their results in with local vs. global spatial representations.

      Strengths:

      Extensive testing of subjects before and after learning a spatial environment, with data suggesting that there may be fMRI codes sensitive to both global and local codes. Behavioral data suggest that subjects are performing well at the task and learning both global and local object locations, although see further comments.

      Weaknesses:

      (1) The authors frame the entire introduction around confirming the presence of the cognitive map either locally or globally. There are some significant issues with this framing. For one, the introduction appears to be confirmatory and not testing specific hypotheses that can be falsified. What exactly are the hypotheses being tested? I believe that this relates to the testing whether neural representations are global and/or local. However, this is not clear. Given that a previous paper (Marchette et al. 2014 Nature Neuro, which bears many similarities) showed only local coding in RSC, this paper needs to be discussed in far more depth in terms of its similarities and differences. This paper looked at both position and direction, while the current paper looks at direction. Even here, direction in the current study is somewhat impoverished: it involves either pointing right or left to an object, and much of this could be categorical or even lucky guesses. From what I could tell, all behavioral inferences are based on reaction time and not accuracy, and therefore, it is difficult to determine if the subject's behavior actually reflects knowledge gained or simply faster reaction time, either due to motor learning or a speed-accuracy trade-off. The pointing task is largely egocentric: it can be solved by remembering a facing direction and an object relative to that. It is not the JRD task as has been used in other studies (e.g., Huffman et al. 2019 Neuron), which is continuous and has an allocentric component. This "version" of the task would be largely egocentric. In this way, the pointing task used does not test the core tenets of the cognitive map during navigation, which is defined as allocentric and Euclidean (please see O'Keefe and Nadel 1978, The Hippocampus as a Cognitive Map). Since neither of these assumptions appears valid, the paper should be reframed to reflect spatial representations more broadly or even egocentric spatial representations.

      (2) The fMRI data workup is insufficient. What do the authors mean by "deactivations" in Figure 3b? Does this mean the object task showed more activation than the spatial task in HSC? Given that HSC is one of these regions, this would seem to suggest that the hippocampus is more involved in object than spatial processing, although it is difficult to tell from how things are written. The RSA is more helpful, but now a concern is that the analysis focuses on small clusters that are based on analyses determined previously. This appears to be the case for the correlations shown in Figure 3e as well. The issues here are several-fold. For one, it has been shown in previous work that basing secondary analyses on related first analyses can inflate the risk of false positives (i.e., Kriegeskorte et al. 2009 Nature Neuro). The authors should perform secondary analyses in ways that are unbiased by the first analyses, preferably, selecting cluster centers (if they choose to go this route) from previous papers rather than their own analyses. Another option would be to perform analyses at the level of the entire ROI, meaning that the results would generalize more readily. The authors should also perform permutation tests to ensure that the RSA results are reliable, as these can run the risk of false positives (e.g., Nolan et al. 2018 eNeuro). If these results hold, the authors should perform post-hoc (corrected) t-tests for global vs. local before and after learning to ensure these differences are robust and not simply rely on the interaction effect. The figures were difficult to follow in this regard, and an interaction effect does not necessarily mean the differences that are critical (global higher than local after) are necessarily significant. The end part of the results was hard to follow. If ACC showed a similar effect to HC and RSC, why is it not being considered? Many other areas that seemed to show local vs. global effects were dismissed, but these should instead be discussed in terms of whether they are consistent or inconsistent with the hypotheses.

      (3) Concerns about the discussion: there are areas involving reverse inference about brain areas rather than connecting the findings with hypotheses (see Poldrack et al. 2006 Trends in Cognitive Science). The authors also argue for 'transfer" of information (for example, from ACC to OFC), but did not perform any connectivity analyses, so these conclusions are not based on any results. Instead, the authors should carefully compare what can be concluded from the reaction time findings and the fMRI data. What is consistent vs. inconsistent with the hypotheses? The authors should also provide a much more detailed comparison with past work. The Marchette et al. paper comes to different conclusions regarding RSC and involves more detailed analyses than those done here, including position. What is different in the current paper that might explain the differences in results? Another previous paper that came to a different conclusion (hippocampus local, retrosplenial global) and should be carefully considered and compared, as it also involved learning of environments and comparisons at different phases (e.g., Wolbers & Buchel 2005 J Neuro). Other papers that have used the JRD task have demonstrated similar, although not identical, networks (e.g., Huffman et al. 2019 Neuron) and the results here should be more carefully compared, as the current task is largely egocentric while the Huffman et al. paper involves a continuous and allocentric version of the JRD task.

      (4) The authors cite rodent papers involving single neuron recordings. These are quite different experiments, however: they involve rodents, the rodents are freely moving, and single neurons are recorded. Here, the study involves humans who are supine and an indirect vascular measure of neural activity. Citations should be to studies of spatial memory and navigation in humans using fMRI: over-reliance on rodent studies should be avoided for the reasons mentioned above.

    1. Reviewer #1 (Public review):

      Summary:

      Englert et al. proposed a functional connectivity-based Attractor Neural Network (fcANN) to reveal attractor states and activity flows across various conditions, including resting state, task-evoked, and pathological conditions. The large-scale brain attractors reconstructed by fcANNs are orthogonal organization, which is in line with the free-energy theoretical framework. Additionally, the fcANN demonstrates differences in attractor states between individuals with autism and typically developing individuals.

      The study used seven datasets, which ensures robust replication and validation of generalization across various conditions. The study is a representative example that combines experimental evidence based on fcANN and the theoretical framework. The fcANN projection offers an interesting way of visualization, allowing researchers to observe attractor states and activity flow patterns directly. Overall, the study may offer valuable insights into brain dynamics and computational neuroscience.

      Comments on revision:

      The authors have addressed my previous concerns and substantially improved the manuscript. Fig.4 and Fig.5 still keep fcHNN rather than the updated fcANN.

    2. Reviewer #2 (Public review):

      Summary:

      Englert et al. use a novel modelling approach called functional connectome-based Hopfield Neural Networks (fcHNN) to describe spontaneous and task-evoked brain activity, and the alterations in brain disorders. Given its novelty, the authors first validate the model parameters (the temperature and noise) with empirical resting-state function data and against null models. Through the optimisation of the temperature parameter, they first show that the optimal number of attractor states is four before fixing the optimal noise that best reflects the empirical data, through stochastic relaxation. Then, they demonstrate how these fcHNN generated dynamics predict task-based functional activity relating to pain and self-regulation. To do so, they characterise the different brain states (here as different conditions of the experimental pain paradigm) in terms of the distribution of the data on the fcHNN projections and flow-analysis. Lastly, a similar analysis was performed on a population with autism condition. Through Hopfield modeling, this work proposes a comprehensive framework that links various types of functional activity under a unified interpretation with high predictive validity.

      Strengths:

      The phenomenological nature of the Hopfield model and its validation across multiple datasets presents a comprehensive and intuitive framework for the analysis of functional activity. The results presented in this work further motivate the study of phenomenological models as an adequate mechanistic characterisation of large-scale brain activity.

      Following up from Cole et al. 2016, the authors put forward a hypothesis that many of the changes to the brain activity, here, in terms of task-evoked and clinical data, can be inferred from the resting-state brain data alone. This brings together neatly the idea of different facets of brain activity emerging from a common space of functional (ghost) attractors.

      The use of the null models motivates the benefit for non-linear dynamics in the context of phenomenological models when assessing the similarity to the real empirical data.

      Comments on revision:

      I am happy with how the authors addressed the comments and am happy to move ahead without further comments.

    1. Reviewer #2 (Public review):

      Summary:

      Tissue-resident macrophages are more and more thought to exert key homeostatic functions and contribute to physiological responses. In the report of O'Brien and Colleagues, the idea that the macrophage-expressed scavenger receptor MARCO could regulate adrenal corticosteroid output at steady-state was explored. The authors found that male MARCO-deficient mice exhibited higher plasma aldosterone levels and higher lung ACE expression as compared to wild-type mice, while the availability of cholesterol and the machinery required to produce aldosterone in the adrenal gland were not affected by MARCO deficiency. The authors take these data to conclude that MARCO in alveolar macrophages can negatively regulate ACE expression and aldosterone production at steady-state and that MARCO-deficient mice suffer from a secondary hyperaldosteronism.

      Strengths:

      If properly demonstrated and validated, the fact that tissue-resident macrophages can exert physiological functions and influence endocrine systems would be highly significant and could be amenable to novel therapies.

      Major weakness:

      The comparison between C57BL/6J wild-type mice and knock-out mice for which a precise information about the genetic background and the history of breedings and crossings is lacking can lead to misinterpretations of the results obtained. Hence, MARCO-deficient mice should be compared with true littermate controls.

    1. Reviewer #1 (Public review):

      Summary:

      The article presents the details of the high-resolution light-sheet microscopy system developed by the group. In addition to presenting the technical details of the system, its resolution has been characterized and its functionality demonstrated by visualizing subcellular structures in a biological sample.

      Strengths:

      (1) The article includes extensive supplementary material that complements the information in the main article.

      (2) However, in some sections, the information provided is somewhat superficial.

      Weaknesses:

      (1) Although a comparison is made with other light-sheet microscopy systems, the presented system does not represent a significant advance over existing systems. It uses high numerical aperture objectives and Gaussian beams, achieving resolution close to theoretical after deconvolution. The main advantage of the presented system is its ease of construction, thanks to the design of a perforated base plate.

      (2) Using similar objectives (Nikon 25x and Thorlabs 20x), the results obtained are similar to those of the LLSM system (using a Gaussian beam without laser modulation). However, the article does not mention the difficulties of mounting the sample in the implemented configuration.

      (3) The authors present a low-cost, open-source system. Although they provide open source code for the software (navigate), the use of proprietary electronics (ASI, NI, etc.) makes the system relatively expensive. Its low cost is not justified.

      (4) The fibroblast images provided are of exceptional quality. However, these are fixed samples. The system lacks the necessary elements for monitoring cells in vivo, such as temperature or pH control.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present Altair-LSFM (Light Sheet Fluorescence Microscope), a high-resolution, open-source microscope, that is relatively easy to align and construct and achieves sub-cellular resolution. The authors developed this microscope to fill a perceived need that current open-source systems are primarily designed for large specimens and lack sub-cellular resolution or are difficult to construct and align, and are not stable. While commercial alternatives exist that offer sub-cellular resolution, they are expensive. The authors' manuscript centers around comparisons to the highly successful lattice light-sheet microscope, including the choice of detection and excitation objectives. The authors thus claim that there remains a critical need for high-resolution, economical, and easy-to-implement LSFM systems.

      Strengths:

      The authors succeed in their goals of implementing a relatively low-cost (~ USD 150K) open-source microscope that is easy to align. The ease of alignment rests on using custom-designed baseplates with dowel pins for precise positioning of optics based on computer analysis of opto-mechanical tolerances, as well as the optical path design. They simplify the excitation optics over Lattice light-sheet microscopes by using a Gaussian beam for illumination while maintaining lateral and axial resolutions of 235 and 350 nm across a 260-um field of view after deconvolution. In doing so they rest on foundational principles of optical microscopy that what matters for lateral resolution is the numerical aperture of the detection objective and proper sampling of the image field on to the detection, and the axial resolution depends on the thickness of the light-sheet when it is thinner than the depth of field of the detection objective. This concept has unfortunately not been completely clear to users of high-resolution light-sheet microscopes and is thus a valuable demonstration. The microscope is controlled by an open-source software, Navigate, developed by the authors, and it is thus foreseeable that different versions of this system could be implemented depending on experimental needs while maintaining easy alignment and low cost. They demonstrate system performance successfully by characterizing their sheet, point-spread function, and visualization of sub-cellular structures in mammalian cells, including microtubules, actin filaments, nuclei, and the Golgi apparatus.

      Weaknesses:

      There is a fixation on comparison to the first-generation lattice light-sheet microscope, which has evolved significantly since then:

      (1) The authors claim that commercial lattice light-sheet microscopes (LLSM) are "complex, expensive, and alignment intensive", I believe this sentence applies to the open-source version of LLSM, which was made available for wide dissemination. Since then, a commercial solution has been provided by 3i, which is now being used in multiple cores and labs but does require routine alignments. However, Zeiss has also released a commercial turn-key system, which, while expensive, is stable, and the complexity does not interfere with the experience of the user. Though in general, statements on ease of use and stability might be considered anecdotal and may not belong in a scientific article, unreferenced or without data.

      (2) One of the major limitations of the first generation LLSM was the use of a 5 mm coverslip, which was a hinderance for many users. However, the Zeiss system elegantly solves this problem, and so does Oblique Plane Microscopy (OPM), while the Altair-LSFM retains this feature, which may dissuade widespread adoption. This limitation and how it may be overcome in future iterations is not discussed.

      (3) Further, on the point of sample flexibility, all generations of the LLSM, and by the nature of its design, the OPM, can accommodate live-cell imaging with temperature, gas, and humidity control. It is unclear how this would be implemented with the current sample chamber. This limitation would severely limit use cases for cell biologists, for which this microscope is designed. There is no discussion on this limitation or how it may be overcome in future iterations.

      (4) The authors' comparison to LLSM is constrained to the "square" lattice, which, as they point out, is the most used optical lattice (though this also might be considered anecdotal). The LLSM original design, however, goes far beyond the square lattice, including hexagonal lattices, the ability to do structured illumination, and greater flexibility in general in terms of light-sheet tuning for different experimental needs, as well as not being limited to just sample scanning. Thus, the Alstair-LSFM cannot compare to the original LLSM in terms of versatility, even if comparisons to the resolution provided by the square lattice are fair.

      (5) There is no demonstration of the system's live-imaging capabilities or temporal resolution, which is the main advantage of existing light-sheet systems.

      While the microscope is well designed and completely open source, it will require experience with optics, electronics, and microscopy to implement and align properly. Experience with custom machining or soliciting a machine shop is also necessary. Thus, in my opinion, it is unlikely to be implemented by a lab that has zero prior experience with custom optics or can hire someone who does. Altair-LSFM may not be as easily adaptable or implementable as the authors describe or perceive in any lab that is interested, even if they can afford it. The authors indicate they will offer "workshops," but this does not necessarily remove the barrier to entry or lower it, perhaps as significantly as the authors describe.

      There is a claim that this design is easily adaptable. However, the requirement of custom-machined baseplates and in silico optimization of the optical path basically means that each new instrument is a new design, even if the Navigate software can be used. It is unclear how Altair-LSFM demonstrates a modular design that reduces times from conception to optimization compared to previous implementations.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a high-resolution, open-source light-sheet fluorescence microscope optimized for sub-cellular imaging.

      The system is designed for ease of assembly and use, incorporating a custom-machined baseplate and in silico optimized optical paths to ensure robust alignment and performance. The authors demonstrate lateral and axial resolutions of ~235 nm and ~350 nm after deconvolution, enabling imaging of sub-diffraction structures in mammalian cells.

      The important feature of the microscope is the clever and elegant adaptation of simple gaussian beams, smart beam shaping, galvo pivoting and high NA objectives to ensure a uniform thin light-sheet of around 400 nm in thickness, over a 266 micron wide Field of view, pushing the axial resolution of the system beyond the regular diffraction limited-based tradeoffs of light-sheet fluorescence microscopy.

      Compelling validation using fluorescent beads and multicolor cellular imaging highlights the system's performance and accessibility. Moreover, a very extensive and comprehensive manual of operation is provided in the form of supplementary materials. This provides a DIY blueprint for researchers who want to implement such a system.

      Strengths:

      (1) Strong and accessible technical innovation:

      With an elegant combination of beam shaping and optical modelling, the authors provide a high-resolution light-sheet system that overcomes the classical light-sheet tradeoff limit of a thin light-sheet and a small field of view. In addition, the integration of in silico modelling with a custom-machined baseplate is very practical and allows for ease of alignment procedures. Combining these features with the solid and super-extensive guide provided in the supplementary information, this provides a protocol for replicating the microscope in any other lab.

      (2) Impeccable optical performance and ease of mounting of samples:

      The system takes advantage of the same sample-holding method seen already in other implementations, but reduces the optical complexity. At the same time, the authors claim to achieve similar lateral and axial resolution to Lattice-light-sheet microscopy (although without a direct comparison (see below in the "weaknesses" section). The optical characterization of the system is comprehensive and well-detailed. Additionally, the authors validate the system imaging sub-cellular structures in mammalian cells.

      (3) Transparency and comprehensiveness of documentation and resources:

      A very detailed protocol provides detailed documentation about the setup, the optical modeling, and the total cost.

      Weaknesses:

      (1) Limited quantitative comparisons:

      Although some qualitative comparison with previously published systems (diSPIM, lattice light-sheet) is provided throughout the manuscript, some side-by-side comparison would be of great benefit for the manuscript, even in the form of a theoretical simulation. While having a direct imaging comparison would be ideal, it's understandable that this goes beyond the interest of the paper; however, a table referencing image quality parameters (taken from the literature), such as signal-to-noise ratio, light-sheet thickness, and resolutions, would really enhance the features of the setup presented. Moreover, based also on the necessity for optical simplification, an additional comment on the importance/difference of dual objective/single objective light-sheet systems could really benefit the discussion.

      (2) Limitation to a fixed sample:

      In the manuscript, there is no mention of incubation temperature, CO₂ regulation, Humidity control, or possible integration of commercial environmental control systems. This is a major limitation for an imaging technique that owes its popularity to fast, volumetric, live-cell imaging of biological samples.

      (3) System cost and data storage cost:

      While the system presented has the advantage of being open-source, it remains relatively expensive (considering the 150k without laser source and optical table, for example). The manuscript could benefit from a more direct comparison of the performance/cost ratio of existing systems, considering academic settings with budgets that most of the time would not allow for expensive architectures. Moreover, it would also be beneficial to discuss the adaptability of the system, in case a 30k objective could not be feasible. Will this system work with different optics (with the obvious limitations coming with the lower NA objective)? This could be an interesting point of discussion. Adaptability of the system in case of lower budgets or more cost-effective choices, depending on the needs.

      Last, not much is said about the need for data storage. Light-sheet microscopy's bottleneck is the creation of increasingly large datasets, and it could be beneficial to discuss more about the storage needs and the quantity of data generated.

      Conclusion:

      Altair-LSFM represents a well-engineered and accessible light-sheet system that addresses a longstanding need for high-resolution, reproducible, and affordable sub-cellular light-sheet imaging. While some aspects-comparative benchmarking and validation, limitation for fixed samples-would benefit from further development, the manuscript makes a compelling case for Altair-LSFM as a valuable contribution to the open microscopy scientific community.

  2. Dec 2025
    1. Reviewer #1 (Public review):

      Summary:

      Zhou and colleagues developed a computational model of replay that heavily builds on cognitive models of memory in context (e.g., the context-maintenance and retrieval model), which have been successfully used to explain memory phenomena in the past. Their model produces results that mirror previous empirical findings in rodents and offers a new computational framework for thinking about replay.

      Strengths:

      The model is compelling and seems to explain a number of findings from the rodent literature. It is commendable that the authors implement commonly used algorithms from wakefulness to model sleep/rest, thereby linking wake and sleep phenomena in a parsimonious way. Additionally, the manuscript's comprehensive perspective on replay, bridging humans and non-human animals, enhanced its theoretical contribution.

      Weaknesses:

      This reviewer is not a computational neuroscientist by training, so some comments may stem from misunderstandings. I hope the authors would see those instances as opportunities to clarify their findings for broader audiences.

      (1) The model predicts that temporally close items will be co-reactivated, yet evidence from humans suggests that temporal context doesn't guide sleep benefits (instead, semantic connections seem to be of more importance; Liu and Ranganath 2021, Schechtman et al 2023). Could these findings be reconciled with the model or is this a limitation of the current framework?

      (2) During replay, the model is set so that the next reactivated item is sampled without replacement (i.e., the model cannot get "stuck" on a single item). I'm not sure what the biological backing behind this is and why the brain can't reactivate the same item consistently. Furthermore, I'm afraid that such a rule may artificially generate sequential reactivation of items regardless of wake training. Could the authors explain this better or show that this isn't the case?

      (3) If I understand correctly, there are two ways in which novelty (i.e., less exposure) is accounted for in the model. The first and more talked about is the suppression mechanism (lines 639-646). The second is a change in learning rates (lines 593-595). It's unclear to me why both procedures are needed, how they differ, and whether these are two different mechanisms that the model implements. Also, since the authors controlled the extent to which each item was experienced during wakefulness, it's not entirely clear to me which of the simulations manipulated novelty on an individual item level, as described in lines 593-595 (if any).

      As to the first mechanism - experience-based suppression - I find it challenging to think of a biological mechanism that would achieve this and is selectively activated immediately before sleep (somehow anticipating its onset). In fact, the prominent synaptic homeostasis hypothesis suggests that such suppression, at least on a synaptic level, is exactly what sleep itself does (i.e., prune or weaken synapses that were enhanced due to learning during the day). This begs the question of whether certain sleep stages (or ultradian cycles) may be involved in pruning, whereas others leverage its results for reactivation (e.g., a sequential hypothesis; Rasch & Born, 2013). That could be a compelling synthesis of this literature. Regardless of whether the authors agree, I believe that this point is a major caveat to the current model. It is addressed in the discussion, but perhaps it would be beneficial to explicitly state to what extent the results rely on the assumption of a pre-sleep suppression mechanism.

      (4) As the manuscript mentions, the only difference between sleep and wake in the model is the initial conditions (a0). This is an obvious simplification, especially given the last author's recent models discussing the very different roles of REM vs NREM. Could the authors suggest how different sleep stages may relate to the model or how it could be developed to interact with other successful models such as the ones the last author has developed (e.g., C-HORSE)? Finally, I wonder how the model would explain findings (including the authors') showing a preference for reactivation of weaker memories. The literature seems to suggest that it isn't just a matter of novelty or exposure, but encoding strength. Can the model explain this? Or would it require additional assumptions or some mechanism for selective endogenous reactivation during sleep and rest?

      (5) Lines 186-200 - Perhaps I'm misunderstanding, but wouldn't it be trivial that an external cue at the end-item of Figure 7a would result in backward replay, simply because there is no potential for forward replay for sequences starting at the last item (there simply aren't any subsequent items)? The opposite is true, of course, for the first-item replay, which can't go backward. More generally, my understanding of the literature on forward vs backward replay is that neither is linked to the rodent's location. Both commonly happen at a resting station that is further away from the track. It seems as though the model's result may not hold if replay occurs away from the track (i.e. if a0 would be equal for both pre- and post-run).

      (6) The manuscript describes a study by Bendor & Wilson (2012) and tightly mimics their results. However, notably, that study did not find triggered replay immediately following sound presentation, but rather a general bias toward reactivation of the cued sequence over longer stretches of time. In other words, it seems that the model's results don't fully mirror the empirical results. One idea that came to mind is that perhaps it is the R/L context - not the first R/L item - that is cued in this study. This is in line with other TMR studies showing what may be seen as contextual reactivation. If the authors think that such a simulation may better mirror the empirical results, I encourage them to try. If not, however, this limitation should be discussed.

      (7) There is some discussion about replay's benefit to memory. One point of interest could be whether this benefit changes between wake and sleep. Relatedly, it would be interesting to see whether the proportion of forward replay, backward replay, or both correlated with memory benefits. I encourage the authors to extend the section on the function of replay and explore these questions.

      (8) Replay has been mostly studied in rodents, with few exceptions, whereas CMR and similar models have mostly been used in humans. Although replay is considered a good model of episodic memory, it is still limited due to limited findings of sequential replay in humans and its reliance on very structured and inherently autocorrelated items (i.e., place fields). I'm wondering if the authors could speak to the implications of those limitations on the generalizability of their model. Relatedly, I wonder if the model could or does lead to generalization to some extent in a way that would align with the complementary learning systems framework.

    2. Reviewer #3 (Public review):

      In this manuscript, Zhou et al. present a computational model of memory replay. Their model (CMR-replay) draws from temporal context models of human memory (e.g., TCM, CMR) and claims replay may be another instance of a context-guided memory process. During awake learning, CMR-replay (like its predecessors) encodes items alongside a drifting mental context that maintains a recency-weighted history of recently encoded contexts/items. In this way, the presently encoded item becomes associated with other recently learned items via their shared context representation - giving rise to typical effects in recall such as primacy, recency and contiguity. Unlike its predecessors, CMR-replay has built in replay periods. These replay periods are designed to approximate sleep or wakeful quiescence, in which an item is spontaneously reactivated, causing a subsequent cascade of item-context reactivations that further update the model's items-context associations.

      Using this model of replay, Zhou et al. were able to reproduce a variety of empirical findings in the replay literature: e.g., greater forward replay at the beginning of a track and more backwards replay at the end; more replay for rewarded events; the occurrence of remote replay; reduced replay for repeated items, etc. Furthermore, the model diverges considerably (in implementation and predictions) from other prominent models of replay that, instead, emphasize replay as a way of predicting value from a reinforcement learning framing (i.e., EVB, expected value backup).

      Overall, I found the manuscript clear and easy to follow, despite not being a computational modeller myself. (Which is pretty commendable, I'd say). The model also was effective at capturing several important empirical results from the replay literature while relying on a concise set of mechanisms - which will have implications for subsequent theory building in the field.

      The authors addressed my concerns with respect to adding methodological detail. I am satisfied with the changes.

    1. Joint Public Review:

      Meiotic recombination begins with DNA double-strand breaks (DSBs) generated by the conserved enzyme Spo11, which relies on several accessory factors that vary widely across eukaryotes. In C. elegans, multiple proteins have been implicated in promoting DSB formation, but their functional relationships and how they collectively recruit the DSB machinery to chromosome axes have remained unclear.

      In this study, Raices et al. investigate the biochemical and genetic interactions among known DSB-promoting factors in C. elegans meiosis. Using yeast two-hybrid assays and co-immunoprecipitation, they map pairwise protein interactions and identify a connection between the chromatin-associated protein HIM-17 and the transcription factor XND-1. They also confirm the established interaction between DSB-1 and SPO-11 and show that DSB-1 associates with the nematode-specific factor HIM-5, which is required for X-chromosome DSB formation.

      The authors extend these findings with genetic analyses, placing these factors into four epistasis groups based on single- and double-mutant phenotypes. Together, these biochemical and genetic data support a model describing how these proteins engage chromatin loops and localize to chromosome axes. The work provides a clearer view of how C. elegans assembles its DSB-forming machinery and how this process compares to mechanisms in other organisms.

      Comment from the Reviewing Editor on the revised version:

      The authors have adequately addressed the prior review comments. At this point, after going through multiple rounds of reviews and revisions, the community will be better served by having this paper out in public. This version was assessed by the editors without further input from the reviewers.

    1. Reviewer #1 (Public review):

      Summary:

      In their article, Guo and coworkers investigate the Ca²⁺ signaling responses induced by Enteropathogenic Escherichia coli (EPEC) in epithelial cells and how these responses regulate NF-κB activation. The authors show that EPEC induces rapid, spatially coordinated Ca²⁺ transients mediated by extracellular ATP released through the type III secretion system (T3SS). Using high-speed Ca²⁺ imaging and stochastic modeling, they propose that low ATP levels trigger "Coordinated Ca²⁺ Responses from IP₃R Clusters" (CCRICs) via fast Ca²⁺ diffusion and Ca²⁺-induced Ca²⁺ release. These responses may dampen TNF-α-induced NF-κB activation through Ca²⁺-dependent modulation of O-GlcNAcylation of p65. The interdisciplinary work suggests a new perspective on calcium-mediated immune response by combining quantitative imaging, bacterial genetics, and computational modeling.

      Strengths:

      The study provides a new concept for host responses to bacterial infections and introduces the concept of Coordinated Ca²⁺ Responses from IP₃R Clusters (CCRICs) as synchronized, whole-cell-scale Ca²⁺ transients with the fast kinetics typical of local events. This is elegantly done by an interdisciplinary approach using quantitative measurements and mechanistic modelling.

      Weaknesses:

      (1) The effect of coordination by fast diffusion for small eATP concentrations is explained by the resulting low Ca2+ concentration that is not as strongly affected by calcium buffers compared to higher concentrations. While I agree with this statement on the relative level, CICR is based on the resulting absolute concentration at neighboring IP3Rs (to activate them). Thus, I do not fully agree with the explanation, or at least would expect to use the modelling approach to demonstrate this effect. Simulations for different activation and buffer concentrations could strengthen this point and exclude potential inhibition of channels at higher stimulation levels.

      In this respect, I would also include the details of the modelling, such as implementation environment, parameters, and benchmarking. The description in the Supplementary Methods is very similar to the description in the main text. In terms of reproducibility, it would be important to at least provide simulation parameters, and providing the code would align with the emerging standards for reproducible science.

      (2) Quantitative characterization of CCRICs:

      The paper would benefit from a clearer definition of the term CCRICs and quantitative descriptors like duration, amplitude distribution, frequency, and spatial extent (also in relation to the comment on the EGTA measurements below). Furthermore, it remains unclear to me whether CCRICs represent a population of rapidly propagating micro-waves or truly simultaneous events. Maybe kymographs or wave-front propagation analyses (at least from simulations if experimental resolution is too bad) would strengthen this point.

      (3) Specificity of pharmacological tools:

      Suramin and U73122 are known to have off-target effects. Control experiments using alternative P2 receptor antagonists like PPADS or inactive U73343 analogs would strengthen the causal link.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this study are trying to resolve how cellular infection by enteropathogenic E. coli (EPEC) subverts cellular signaling pathways to promote infection and dampen immune responses. Specifically, alteration in calcium dynamics has been evidenced in the prior literature as a potential initiator of these adaptations, and this study provides ideas and mechanistic detail as to how cellular calcium dynamics may be subverted by pathogens.

      Strengths:

      The clear strengths of this paper relate to the new ideas inherent in the proposed hypothesis and their support from the experimental approaches used. Overall, the proposed work provides new ideas in this area, which will benefit from further investigation. Certainly, this is an interesting and challenging paradigm to pick apart mechanistically, and is important for improving treatments from intestinal infections.

      Weaknesses:

      Additional insight is needed in three specific areas to convincingly support the conclusions drawn by the authors. These three areas are: first, a better description of the infection-associated calcium signals. Second, a mechanistic definition of the relevant purinoceptors versus other pathways to increase cellular calcium. Third, an effort to show that the proposed pathways have relevance in a polarized epithelial cell.

    1. Reviewer #1 (Public review):

      Summary:

      Drosophila larval type II neuroblasts generate diverse types of neurons by sequentially expressing different temporal identity genes during development. Previous studies have shown that transition from early temporal identity genes (such as Chinmo and Imp) to late temporal identity genes (such as Syp and Broad) depends on the activation of the expression of EcR by Seven-up (Svp) and progression through the G1/S transition of the cell cycle. In this study, Chaya and Syed examined if the expression of Syp and EcR is regulated by cell cycle and cytokinesis by knocking down CDK1 or Pav, respectively, throughout development or at specific developmental stages. They find that knocking down CDK1 or Pav either in all type II neuroblasts throughout the development or in single type neuroblast clones after larval hatching consistently leads to failure to activate late temporal identity genes Syp and EcR. To determine whether the failure of the activation of Syp and EcR is due to impaired Svp expression, they also examined Svp expression using a Svp-lacZ reporter line. They find that Svp is expressed normally in CDK1 RNAi neuroblasts. Further, knocking down CDK1 or Pav after Svp activation still leads to loss of Syp and EcR expression. Finally, they also extended their analysis to type I neuroblasts. They find that knocking down CDK1 or Pav, either at 0 hours or at 42 hours after larval hatching, also results in loss of Syp and EcR expression in type I neuroblasts. Based on these findings, the authors conclude that cycle and cytokinesis are required for the transition from early to late late temporal identity genes in both types of neuroblasts. These findings add mechanistic details to our understanding of the temporal patterning of Drosophila larval neuroblasts.

      Strengths:

      The data presented in the paper are solid and largely support their conclusion. Images are of high quality. The manuscript is well-written and clear.

      Weaknesses:

      The authors have addressed all the weaknesses in this revision.

    2. Reviewer #2 (Public review):

      Summary:

      Neural stem cells produce a wide variety of neurons during development. The regulatory mechanisms of neural diversity are based on the spatial and temporal patterning of neural stem cells. Although the molecular basis of spatial patterning is well-understood, the temporal patterning mechanism remains unclear. In this manuscript, the authors focused on the roles of cell cycle progression and cytokinesis in temporal patterning and found that both are involved in this process.

      Strengths:

      They conducted RNAi-mediated disruption on cell cycle progression and cytokinesis. As they expected, both disruptions affected temporal patterning in NSCs.

      Weaknesses:

      Although the authors showed clear results, they needed to provide additional data to support their conclusion sufficiently.

      For example, they can examine the effects of cell cycle acceleration on the temporal patterning.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chaya and Syed focuses on understanding the link between cell cycle and temporal patterning in central brain type II neural stem cells (NSCs). To investigate this, the authors perturb the progression of the cell cycle by delaying the entry into M phase and preventing cytokinesis. Their results convincingly show that temporal factor expression requires progression of the cell cycle in both Type 1 and Type 2 NSCs in the Drosophila central brain. Overall, this study establishes an important link between the two timing mechanisms of neurogenesis.

      Strengths:

      The authors provide solid experimental evidence for the coupling of cell cycle and temporal factor progression in Type 2 NSCs. The quantified phenotype shows an all-or-none effect of cell cycle block on the emergence of subsequent temporal factors in the NSCs, strongly suggesting that both nuclear division and cytokinesis are required for temporal progression. The authors also extend this phenotype to Type 1 NSCs in the central brain, providing a generalizable characterization of the relationship between cell cycle and temporal patterning.

      Weaknesses:

      One major weakness of the study is that the authors do not explore the mechanistic relationship between cell cycle and temporal factor expression. Although their results are quite convincing, they do not provide an explanation as to why Cdk1 depletion affects Syp and EcR expression but not the onset of svp. This result suggests that at least a part of the temporal cascade in NSCs is cell-cycle independent which isn't addressed or sufficiently discussed.

    1. Reviewer #1 (Public review):

      Petrovic et al. investigate CCR5 endocytosis via arrestin2, with a particular focus on clathrin and AP2 contributions. The study is thorough and methodologically diverse. The NMR titration data clearly demonstrate chemical shift changes at the canonical clathrin-binding site (LIELD), present in both the 2S and 2L arrestin splice variants. To assess the effect of arrestin activation on clathrin binding, the authors compare: truncated arrestin (1-393), full-length arrestin, and 1-393 incubated with CCR5 phosphopeptides. All three bind clathrin comparably, whereas controls show no binding. These findings are consistent with prior crystal structures showing peptide-like binding of the LIELD motif, with disordered flanking regions. The manuscript also evaluates a non-canonical clathrin binding site specific to the 2L splice variant. Though this region has been shown to enhance beta2-adrenergic receptor binding, it appears not to affect CCR5 internalization.

      Similar analyses applied to AP2 show a different result. AP2 binding is activation-dependent and influenced by the presence and level of phosphorylation of CCR5-derived phosphopeptides. These findings are reinforced by cellular internalization assays.

      In sum, the results highlight splice-variant-dependent effects and phosphorylation-sensitive arrestin-partner interactions. The data argue against a (rapidly disappearing) one-size-fits-all model for GPCR-arrestin signaling and instead support a nuanced, receptor-specific view, with one example summarized effectively in the mechanistic figure.

    2. Reviewer #2 (Public review):

      Summary:

      Based on extensive live cell assays, SEC, and NMR studies of reconstituted complexes, these authors explore the roles of clathrin and the AP2 protein in facilitating clathrin mediated endocytosis via activated arrestin-2. NMR, SEC, proteolysis, and live cell tracking confirm a strong interaction between AP2 and activated arrestin using a phosphorylated C-terminus of CCR5. At the same time a weak interaction between clathrin and arrestin-2 is observed, irrespective of activation.

      These results contrast with previous observations of class A GPCRs and the more direct participation by clathrin. The results are discussed in terms of the importance of short and long phosphorylated bar codes in class A and class B endocytosis.

      Strengths:

      The 15N,1H and 13C,methyl TROSY NMR and assignments represent a monumental amount of work on arrestin-2, clathrin, and AP2. Weak NMR interactions between arrestin-2 and clathrin are observed irrespective of activation of arrestin. A second interface, proposed by crystallography, was suggested to be a possible crystal artifact. NMR establishes realistic information on the clathrin and AP2 affinities to activated arrestin with both kD and description of the interfaces.

    3. Reviewer #3 (Public review):

      Summary:

      Overall, this is a well-done study, and the conclusions are largely supported by the data, which will be of interest to the field.

      Strengths:

      Strengths of this study include experiments with solution NMR that can resolve high-resolution interactions of the highly flexible C-terminal tail of arr2 with clathrin and AP2. Although mainly confirmatory in defining the arr2 CBL 376LIELD380 as the clathrin binding site, the use of the NMR is of high interest (Fig. 1). The 15N-labeled CLTC-NTD experiment with arr2 titrations reveals a span from 39-108 that mediates an arr2 interaction, which corroborates previous crystal data, but does not reveal a second area in CLTC-NTD that in previous crystal structures was observed to interact with arr2.

      SEC and NMR data suggest that full-length arr2 (1-418) binding with 2-adaptin subunit of AP2 is enhanced in the presence of CCR5 phospho-peptides (Fig. 3). The pp6 peptide shows the highest degree of arr2 activation, and 2-adaptin binding, compared to less phosphorylated peptide or not phosphorylated at all. It is interesting that the arr2 interaction with CLTC NTD and pp6 cannot be detected using the SEC approach, further suggesting that clathrin binding is not dependent on arrestin activation. Overall, the data suggest that receptor activation promotes arrestin binding to AP2, not clathrin, suggesting the AP2 interaction is necessary for CCR5 endocytosis.

      To validate the solid biophysical data, the authors pursue validation experiments in a HeLa cell model by confocal microscopy. This requires transient transfection of tagged receptor (CCR5-Flag) and arr2 (arr2-YFP). CCR5 displays a "class B"-like behavior in that arr2 is rapidly recruited to the receptor at the plasma membrane upon agonist activation, which forms a stable complex that internalizes onto endosomes (Fig. 4). The data suggest that complex internalization is dependent on AP2 binding not clathrin (Fig. 5).

      The addition of the antagonist experiment/data adds rigor to the study.

      Overall, this is a solid study that will be of interest to the field.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Yamamoto et al. presents a model by which the four main axes of the limb are required for limb regeneration to occur in the axolotl. A longstanding question in regeneration biology is how existing positional information is used to regenerate the correct missing elements. The limb provides an accessible experimental system by which to study the involvement of the anteroposterior, dorsoventral, and proximodistal axes in the regenerating limb. Extensive experimentation has been performed in this area using grafting experiments. Yamamoto et al. use the accessory limb model and some molecular tools to address this question. There are some interesting observations in the study. In particular, one strength the potent induction of accessory limbs in the dorsal axis with BMP2+Fgf2+Fgf8 is very interesting. Although interesting, the study makes bold claims about determining the molecular basis of DV positional cues, but the experimental evidence is not definitive and does not take into account the previous work on DV patterning in the amniote limb. Also, testing the hypothesis on blastemas after limb amputation would be needed to support the strong claims in the study.

      Strengths:

      The manuscript presents some novel new phenotypes generated in axolotl limbs due to Wnt signaling. This is generally the first example in which Wnt signaling has provided a gain of function in the axolotl limb model. They also present a potent way of inducing limb patterning in the dorsal axis by the addition of just beads loaded with Bmp2+Fgf8+Fgf2.

      Comments on revised version:

      Re-evaluation: The authors have significantly improved the manuscript and their conclusions reflect the current state of knowledge in DV patterning of tetrapod limbs. My only point of consideration is their claim of mesenchymal and epithelial expression of Wnt10b and the finding that Fgf2 and Wnt10b are lowly expressed. It is based upon the failed ISH, but this doesn't mean they aren't expressed. In interpreting the Li et al. scRNAseq dataset, conclusions depend heavily on how one analyzes and interprets it. The 7DPA sample shows a very low representation of epithelial cells compared to other time points, but this is likely a technical issue. Even the epithelial marker, Krt17, and the CT/fibroblast marker show some expression elsewhere. If other time points are included in the analysis, Wnt10b, would be interpreted as relatively highly expressed almost exclusively in the epithelium. By selecting the 7dpa timepoint, which may or may not represent the MB stage as it wasn't shown in the paper, the conclusions may be based upon incomplete data. I don't expect the authors to do more work, but it is worth mentioning this possibility. The authors have considered and made efforts to resolve previous concerns.

    2. Reviewer #2 (Public review):

      Summary:

      This study explores how signals from all sides of a developing limb, front/back and top/bottom, work together to guide the regrowth of a fully patterned limb in axolotls, a type of salamander known for its impressive ability to regenerate limbs. Using a model called the Accessory Limb Model (ALM), the researchers created early staged limb regenerates (called blastemas) with cells from different sides of the limb. They discovered that successful limb regrowth only happens when the blastema contains cells from both the top (dorsal) and bottom (ventral) of the limb. They also found that a key gene involved in front/back limb patterning, called Shh (Sonic hedgehog), is only turned on when cells from both the dorsal and ventral sides come into contact. The study identified two important molecules, Wnt10B and FGF2, that help activate Shh when dorsal and ventral cells interact. Finally, the authors propose a new model that explains how cells from all four sides of a limb, dorsal, ventral, anterior (front), and posterior (back), contribute at both the cellular and molecular level to rebuilding a properly structured limb during regeneration

      Strengths:

      The techniques used in this study, like delicate surgeries, tissue grafting, and implanting tiny beads soaked with growth factors, are extremely difficult, and only a few research groups in the world can do them successfully. These methods are essential for answering important questions about how animals like axolotls regenerate limbs with the correct structure and orientation. To understand how cells from different sides of the limb communicate during regeneration, the researchers used a technique called in situ hybridization, which lets them see where specific genes are active in the developing limb. They clearly showed that the gene Shh, which helps pattern the front and back of the limb, only turns on when cells from both the top (dorsal) and bottom (ventral) sides are present and interacting. The team also took a broad, unbiased approach to figure out which signaling molecules are unique to dorsal and ventral limb cells. They tested these molecules individually and discovered which could substitute for actual dorsal and ventral cells, providing the same necessary signals for proper limb development. Overall, this study makes a major contribution to our understanding of how complex signals guide limb regeneration, showing how different regions of the limb work together at both the cellular and molecular levels to rebuild a fully patterned structure.

      Weaknesses:

      Because the expressional analyses are performed on thin sections of regenerating tissue, in the original manuscript, they provided only a limited view of the gene expression patterns in their experiments, opening the possibility that they could be missing some expression in other regions of the blastema. Additionally, the quantification method of the expressional phenotypes in most of the experiments did not appear to be based on a rigorous methodology. The authors' inclusion of an alternate expression analysis, qRT-PCR, on the entire blastema helped validate that the authors are not missing something in the revised manuscript.

      Overall, the number of replicates per sample group in the original manuscript was quite low (sometimes as low as 3), which was especially risky with challenging techniques like the ones the authors employ. The authors have improved the rigor of the experiment in the revised manuscript by increasing the number of replicates. The authors have not performed a power analysis to calculate the number of animals used in each experiment that is sufficient to identify possible statistical differences between groups. However, the authors have indicated that there was not sufficient preliminary data to appropriately make these quantifications.

      Likewise, in the original manuscript, the authors used an AI-generated algorithm to quantify symmetry on the dorsal/ventral axis, and my concern was that this approach doesn't appear to account for possible biases due to tissue sectioning angles. They also seem to arbitrarily pick locations in each sample group to compare symmetry measurements. There are other methods, which include using specific muscle groups and nerve bundles as dorsal/ventral landmarks, that would more clearly show differences in symmetry. The authors have now sufficiently addressed this concern by including transverse sections of the limbs annd have explained the limitations of using a landmark-based approach in their quantification strategy.

    3. Reviewer #3 (Public review):

      Summary:

      After salamander limb amputation, the cross-section of the stump has two major axes: anterior-posterior and dorsal-ventral. Cells from all axial positions (anterior, posterior, dorsal, ventral) are necessary for regeneration, yet the molecular basis for this requirement has remained unknown. To address this gap, Yamamoto et al. took advantage of the ALM assay, in which defined positional identities can be combined on demand and their effects assessed through the outgrowth of an ectopic limb. They propose a compelling model in which dorsal and ventral cells communicate by secreting Wnt10b and Fgf2 ligands respectively, with this interaction inducing Shh expression in posterior cells. Shh was previously shown to induce limb outgrowth in collaboration with anterior Fgf8 (PMID: 27120163). Thus, this study completes a concept in which four secreted signals from four axial positions interact for limb patterning. Notably, this work firmly places dorsal-ventral interactions upstream of anterior-posterior, which is striking for a field that has been focussed on anterior-posterior communication. The ligands identified (Wnt10b, Fgf2) are different to those implicated in dorsal-ventral patterning in the non-regenerative mouse and chick models. The strength of this study is in the context of ALM/ectopic limb engineering. Although the authors attempt to assay the expression of Wnt10b and Fgf2 during limb regeneration after amputation, they were unable to pinpoint the precise expression domains of these genes beyond 'dorsal' and 'ventral' blastema. Given that experimental perturbations were not performed in regenerating limbs - almost exclusively under ALM conditions - this author finds the title "Dorsoventral-mediated Shh induction is required for axolotl limb regeneration" a little misleading.

      Strengths:

      (1) The ALM and use of GFP grafts for lineage tracing (Figures 1-3) take full advantage of the salamander model's unique ability to outgrow patterned limbs under defined conditions. As far as I am aware, the ALM has not been combined with precise grafts that assay 2 axial positions at once, as performed in Figure 3. The number of ALMs performed in this study deserves special mention, considering the challenging surgery involved.

      (2) The authors identify that posterior Shh is not expressed unless both dorsal and ventral cells are present. This echoes previous work in mouse limb development models (AER/ectoderm-mesoderm interaction) but this link between axes was not known in salamanders. The authors elegantly reconstitute dorsal-ventral communication by grafting, finding that this is sufficient to trigger Shh expression (Figure 3 - although see also section on Weaknesses).

      (3) Impressively, the authors discovered two molecules sufficient to substitute dorsal or ventral cells through electroporation into dorsal- or ventral- depleted ALMs (Figure 5). These molecules did not change the positional identity of target cells. The same group previously identified the ventral factor (Fgf2) to be a nerve-derived factor essential for regeneration. In Figure 6, the authors demonstrate that nerve-derived factors, including Fgf2, are alone sufficient to grow out ectopic limbs from a dorsal wound. Limb induction with a 3-factor cocktail without supplementing with other cells is conceptually important for regenerative engineering.

      (4) The writing style and presentation of results is very clear.

      Overall appraisal:

      This is a logical and well-executed study that creatively uses the axolotl model to advance an important framework for understanding limb patterning. The relevance of the mechanisms to normal limb regeneration are not yet substantiated, in the opinion of this reviewer. Additionally, Wnt10b and Fgf2 should be considered molecules sufficient to substitute dorsal and ventral identity (solely in terms of inducing Shh expression). It is not yet clear whether these molecules are truly necessary (loss of function would address this).

      Comments on revisions:

      Congratulations - I still find this an elegant and easy-to-read study with significant implications for the field! Linking your mechanisms to normal limb regeneration (i.e. regenerating blastema, not ALM), as well as characterising the cell populations involved, will be interesting directions for the future.

    1. Reviewer #1 (Public review):

      Summary

      The manuscript presents EIDT, a framework that extracts an "individuality index" from a source task to predict a participant's behaviour in a related target task under different conditions. However, the evidence that it truly enables cross-task individuality transfer is not convincing.

      Strengths

      The EIDT framework is clearly explained, and the experimental design and results are generally well-described. The performance of the proposed method is tested on two distinct paradigms: a Markov Decision Process (MDP) task (comparing 2-step and 3-step versions) and a handwritten digit recognition (MNIST) task under various conditions of difficulty and speed pressure. The results indicate that the EIDT framework generally achieved lower prediction error compared to baseline models and that it was better at predicting a specific individual's behaviour when using their own individuality index compared to using indices from others.

      Furthermore, the individuality index appeared to form distinct clusters for different individuals, and the framework was better at predicting a specific individual's behaviour when using their own derived index compared to using indices from other individuals.

      Comments on revisions:

      I thank the author for the additional analyses. They have fully addressed all of my previous concerns, and I have no further recommendations.

    2. Reviewer #2 (Public review):

      This paper introduces a framework for modeling individual differences in decision-making by learning a low-dimensional representation (the "individuality index") from one task and using it to predict behaviour in a different task. The approach is evaluated on two types of tasks: a sequential value-based decision-making task and a perceptual decision task (MNIST). The model shows improved prediction accuracy when incorporating this learned representation compared to baseline models.

      The motivation is solid, and the modelling approach is interesting, especially the use of individual embeddings to enable cross-task generalization. That said, several aspects of the evaluation and analysis could be strengthened.

      (1) The MNIST SX baseline appears weak. RTNet isn't directly comparable in structure or training. A stronger baseline would involve training the GRU directly on the task without using the individuality index-e.g., by fixing the decoder head. This would provide a clearer picture of what the index contributes.

      (2) Although the focus is on prediction, the framework could offer more insight into how behaviour in one task generalizes to another. For example, simulating predicted behaviours while varying the individuality index might help reveal what behavioural traits it encodes.

      (3) It's not clear whether the model can reproduce human behaviour when acting on-policy. Simulating behaviour using the trained task solver and comparing it with actual participant data would help assess how well the model captures individual decision tendencies.

      (4) Figures 3 and S1 aim to show that individuality indices from the same participant are closer together than those from different participants. However, this isn't fully convincing from the visualizations alone. Including a quantitative presentation would help support the claim.

      (5) The transfer scenarios are often between very similar task conditions (e.g., different versions of MNIST or two-step vs three-step MDP). This limits the strength of the generalization claims. In particular, the effects in the MNIST experiment appear relatively modest, and the transfer is between experimental conditions within the same perceptual task. To better support the idea of generalizing behavioural traits across tasks, it would be valuable to include transfers across more structurally distinct tasks.

      (6) For both experiments, it would help to show basic summaries of participants' behavioural performance. For example, in the MDP task, first-stage choice proportions based on transition types are commonly reported. These kinds of benchmarks provide useful context.

      (7) For the MDP task, consider reporting the number or proportion of correct choices in addition to negative log-likelihood. This would make the results more interpretable.

      (8) In Figure 5, what is the difference between the "% correct" and "% match to behaviour"? If so, it would help to clarify the distinction in the text or figure captions.

      (9) For the cognitive model, it would be useful to report the fitted parameters (e.g., learning rate, inverse temperature) per individual. This can offer insight into what kinds of behavioural variability the individuality index might be capturing.

      (10) A few of the terms and labels in the paper could be made more intuitive. For example, the name "individuality index" might give the impression of a scalar value rather than a latent vector, and the labels "SX" and "SY" are somewhat arbitrary. You might consider whether clearer or more descriptive alternatives would help readers follow the paper more easily.

      (11) Please consider including training and validation curves for your models. These would help readers assess convergence, overfitting, and general training stability, especially given the complexity of the encoder-decoder architecture.

      Comments on revisions:

      Thank you to the authors for the updated manuscript. The authors have addressed the majority of my concerns, and the paper is now in a much better form.

      Regarding my previous Comment 6, I still believe it would be helpful to include a graph similar to what is typically reported for these tasks-specifically, a breakdown of choices based on rare versus common transitions (see Model-Based Influences on Humans' Choices and Striatal Prediction Errors, Figure 2). Presenting this for both the actual behaviour and the simulated data would strengthen the paper and allow for clearer comparison.

    3. Reviewer #3 (Public review):

      Summary:

      This work presents a novel neural network-based framework for parameterizing individual differences in human behavior. Using two distinct decision-making experiments, the author demonstrates the approach's potential and claims it can predict individual behavior (1) within the same task, (2) across different tasks, and (3) across individuals. While the goal of capturing individual variability is compelling and the potential applications are promising, the claims are weakly supported, and I find that the underlying problem is conceptually ill-defined.

      Strengths:

      The idea of using neural networks for parameterizing individual differences in human behavior is novel, and the potential applications can be impactful.

      Weaknesses:

      (1) To demonstrate the effectiveness of the approach, the authors compare a Q-learning cognitive model (for the MDP task) and RTNet (for the MNIST task) against the proposed framework. However, as I understand it, neither the cognitive model nor RTNet is designed to fit or account for individual variability. If that is the case, it is unclear why these models serve as appropriate baselines. Isn't it expected that a model explicitly fitted to individual data would outperform models that do not? If so, does the observed superiority of the proposed framework simply reflect the unsurprising benefit of fitting individual variability? I think the authors should either clarify why these models constitute fair control or validate the proposed approach against stronger and more appropriate baselines.

      (2) It's not very clear in the results section what it means by having a shorter within-individual distance than between-individual distances. Related to the comment above, is there any control analysis performed for this? Also, this analysis appears to have nothing to do with predicting individual behavior. Is this evidence toward successfully parameterizing individual differences? Could this be task-dependent, especially since the transfer is evaluated on exceedingly similar tasks in both experiments? I think a bit more discussion of the motivation and implications of these results will help the reader in making sense of this analysis.

      (3) The authors have to better define what exactly he meant by transferring across different "tasks" and testing the framework in "more distinctive tasks". All presented evidence, taken at face value, demonstrated transferring across different "conditions" of the same task within the same experiment. It is unclear to me how generalizable the framework will be when applied to different tasks.

      (4) Conceptually, it is also unclear to me how plausible it is that the framework could generalize across tasks spanning multiple cognitive domains (if that's what is meant by more distinctive). For instance, how can an individual's task performance on a Posner task predict task performance on the Cambridge face memory test? Which part of the framework could have enabled such a cross-domain prediction of task performance? I think these have to be at least discussed to some extent, since without it the future direction is meaningless.

      (5) How is the negative log-likelihood, which seems to be the main metric for comparison, computed? Is this based on trial-by-trial response prediction or probability of responses, as what usually performed in cognitive modelling?

      (6) None of the presented evidence is cross-validated. The authors should consider performing K-fold cross-validation on the train, test, and evaluation split of subjects to ensure robustness of the findings.

      (7) The authors excluded 25 subjects (20% of the data) for different reasons. This is a substantial proportion, especially by the standards of what is typically observed in behavioral experiments. The authors should provide a clear justification for these exclusion criteria and, if possible, cite relevant studies that support the use of such stringent thresholds.

      (8) The authors should do a better job of creating the figures and writing the figure captions. It is unclear which specific claim the authors are addressing with the figure. For example, what is the key message of Figure 2C regarding transfer within and across participants? Why are the stats presentation different between the Cognitive model and the EIDT framework plots? In Figure 3, it's unclear what these dots and clusters represent and how they support the authors' claim that the same individual forms clusters. And isn't this experiment have 98 subjects after exclusion, this plot has way less than 98 dots as far as I can tell. Furthermore, I find Figure 5 particularly confusing, as the underlying claim it is meant to illustrate is unclear. Clearer figures and more informative captions are needed to guide the reader effectively.

      (9) I also find the writing somewhat difficult to follow. The subheadings are confusing, and it's often unclear which specific claim the authors are addressing. The presentation of results feels disorganized, making it hard to trace the evidence supporting each claim. Also, the excessive use of acronyms (e.g., SX, SY, CG, EA, ES, DA, DS) makes the text harder to parse. I recommend restructuring the results section to be clearer and significantly reducing the use of unnecessary acronyms.

      Comments on revisions:

      The authors have addressed my previous comments with great care and detail. I appreciate the additional analyses and edits. I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents compelling new data that combine two FTD-tau mutations P301L/S320F (PL-SF), that reliably induce spontaneous full-length tau aggregation across multiple cellular systems. However, several conclusions would benefit from more validation. Key findings rely on quantification of overexposed immunoblot, and in some experiments, the tau bands shift in molecular weight that are not explained (and in some instances vary between experiments). The effect seems to be driven by the S320F mutation, with the P301L mutation enhancing the effect observed with S320F alone. Although the observation that Hsp70, but not the related Hsc70, enhances aggregation is intriguing, the mechanistic basis for these differences remains unclear despite both Hsp70 and Hsc70 binding to tau. Additional experiments clarifying which PL-SF tau species Hsp70 engages, how this interaction alters tau conformational landscapes, and whether other chaperones or cofactors contribute to this effect would help solidify the conclusions and build a mechanistic picture. Overexpression of Hsp70 in the context of PL tau did not increase tau aggregation, which raises questions about whether the observed effects are specific to the SF mutation. Hsp70 functions in the context of a larger network of chaperones and has been proposed to cooperate with other proteins/machinery to disassemble tau amyloids, perhaps to produce more seeds. This would be consistent with the presented observations. For example, co-IP experiments using Hsp70 as bait combined with proteomics could really help build a more complete picture of what tau species Hsp70 binds and what other factors cooperate to yield the observed increases in aggregation. As it stands, the Hsp70 component of the paper is not fully developed, and additional experiments to address these questions would strengthen this manuscript beyond simply presenting a new tool to study spontaneous tau aggregation.

      Strengths:

      (1) The PL-SF FL tau mutant aggregates spontaneously in different cellular systems and shows hallmarks of tau pathology linked to disease.

      (2) PL-SF 4delta mutant reverses the spontaneous aggregation phenotype, consistent with these residues being critical for tau aggregation.

      (3) PL-SF 4delta also loses the ability to recruit Hsp70/Hsc70, consistent with these residues also being critical for chaperone recruitment.

      (4) The PL-SF tau mutant establishes a new system to study spontaneous tau assembly and to begin to compare it to seeded tau aggregation processes.

      Weaknesses:

      (1) Mechanistic insight into how Hsp70 but not Hsc70 increase PL-SF FL tau aggregation/pathology is missing. This is despite both chaperones binding to PL-SF FL tau. What species of tau does Hsp70 bind, and what cofactors are important in this process?

      (2) The study relies heavily on densitometry of bands to draw conclusions; in several instances, the blots are overexposed to accurately quantify the signal.

    2. Reviewer #2 (Public review):

      Summary:

      This study developed a novel tauopathy model combining two mutations, P301L and S320F, termed the PL-SF model. This model shows rapid tau protein aggregation.

      Strengths:

      The authors demonstrated pathogenicity through solid in vivo and in vitro experiments. Simultaneously, they used this model to investigate the role of the heat shock protein Hsp70 in tau protein aggregation, finding that Hsp70 promotes rather than inhibits tau pathology, which differs from previous findings.

      Weaknesses:

      (1) Although the PL-SF model can accelerate tau aggregation, it is crucial to determine whether this aligns with the temporal progression and spatial distribution of tau pathology in the brains of patients with tauopathies.

      (2) The authors did not elucidate the specific molecular mechanism by which Hsp70 promotes tau aggregation.

      (3) Some figures in this study show large error bars in the quantitative data (some statistical analysis figures, MEA recordings, etc.), indicating significant inter-sample variability. It is recommended to label individual data points in all quantitative figures and clearly indicate them in figure legends.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents convincing findings that oligodendrocytes play a regulatory role in spontaneous neural activity synchronization during early postnatal development, with implications for adult brain function. Utilizing targeted genetic approaches, the authors demonstrate how oligodendrocyte depletion impacts Purkinje cell activity and behaviors dependent on cerebellar function. Delayed myelination during critical developmental windows is linked to persistent alterations in neural circuit function, underscoring the lasting impact of oligodendrocyte activity.

      Strengths:

      (1) The research leverages the anatomically distinct olivocerebellar circuit, a well-characterized system with known developmental timelines and inputs, strengthening the link between oligodendrocyte function and neural synchronization.

      (2) Functional assessments, supported by behavioral tests, validate the findings of in vivo calcium imaging, enhancing the study's credibility.

      (3) Extending the study to assess long-term effects of early life myelination disruptions adds depth to the implications for both circuit function and behavior.

      Weaknesses:

      (1) The study would benefit from a closer analysis of myelination during the periods when synchrony is recorded. Direct correlations between myelination and synchronized activity would substantiate the mechanistic link and clarify if observed behavioral deficits stem from altered myelination timing.

      (2) Although the study focuses on Purkinje cells in the cerebellum, neural synchrony typically involves cross-regional interactions. Expanding the discussion on how localized Purkinje synchrony affects broader behaviors-such as anxiety, motor function, and sociality - would enhance the findings' functional significance.

      (3) The authors discuss the possibility of oligodendrocyte-mediated synapse elimination as a possible mechanism behind their findings, drawing from relevant recent literature on oligodendrocyte precursor cells. However, there are no data presented supporting these assumptions. The authors should explain why they think the mechanism behind their observation extends beyond the contribution of myelination or remove this point from the discussion entirely.

      Comment for resubmission: Although the argument on synaptic elimination has been removed, it has been replaced with similarly unclear speculation about roles for oligodendrocytes outside of conventional myelination or metabolic support, again without clear evidence. The authors measured MBP area but have not performed detailed analysis of oligodendrocyte biology to support the claims made in the discussion. Please consider removing this section or rephrasing it to align with the data presented.

      (4) It would be valuable to investigate secondary effects of oligodendrocyte depletion on other glial cells, particularly astrocytes or microglia, which could influence long-term behavioral outcomes. Identifying whether the lasting effects stem from developmental oligodendrocyte function alone or also involve myelination could deepen the study's insights.

      (5) The authors should explore the use of different methods to disturb myelin production for a longer time, in order to further determine if the observed effects are transient or if they could have longer-lasting effects.

      (6) Throughout the paper, there are concerns about statistical analyses, particularly on the use of the Mann-Whitney test or using fields of view as biological replicates.

    1. Reviewer #1 (Public review):

      Summary:

      Kashiwagi et al. undertook a population analysis of dendritic spine nanostructure applied to the objective grouping of 8 mouse models of neuropsychiatric disorders. They report that spine morphology in cultured hippocampal neurons shows a higher similarity among schizophrenia mouse models (compared with autism spectrum disorder (ASD) mouse models), and identify an effect of Ecrg4 (encoding small secretory peptides) on spine dynamics and shape in these models.

      Strengths:

      The study developed a method for objectively comparing spine properties in primary hippocampal neuron cultures from 8 mouse models of psychiatric disorders at the population level using high-resolution structured illumination microscopy (SIM) imaging. This novel technique identified two distinct groups of mouse models according to the population-level spine properties: those with ASD-related gene mutations and those with schizophrenia-related gene mutations. Functional studies, including gene knockdown and overexpression experiments, identified an effect of Ecrg4 on the spine phenotype of the schizophrenia model mice.

      Weaknesses:

      The main weakness is that the study is wholly in vitro, using cultured hippocampal neurons. The authors present this as an advantage, however, arguing that spine morphology as measured in a reduced culture system can demonstrate direct effects of gene mutations on neuronal phenotypes in the absence of indirect influences from nonneuronal cells or specific environments.

      Another weakness is that CaMKIIαK42R/K42R mutant mice are presented as a schizophrenia model, the authors justifying this by saying that "CaMKII-related signaling pathway disruption has been implicated in the working memory deficits found in schizophrenia patients". Since mutations in CAMK2A cause autosomal dominant intellectual developmental disorder-53 (OMIM 617798) and autosomal recessive intellectual developmental disorder-63 (OMIM 618095), and mice carrying the CAMK2A E183V mutation exhibit ASD-related synaptic and behavioral phenotypes (PMID: 28130356), I think it's stretching credibility to refer to the CaMKIIαK42R/K42R mice as a schizophrenia model.

      Although the manuscript is largely well written, there are some instances of ambiguous/unspecific language. This extends to the title (Decoding Spine Nanostructure in Mental Disorders Reveals a Schizophrenia-1 Linked Role for Ecrg4), which gives no indication that the work was in vitro on cultured neurons derived from mouse models.

    2. Reviewer #2 (Public review):

      Okabe and colleagues build on a super-resolution-based technique that they have previously developed in cultured hippocampal neurons, improving the pipeline and using it to analyze spine nanostructure differences across 8 different mouse lines with mutations in autism or schizophrenia (Sz) risk genes/pathways. It is a worthy goal to try to use multiple models to examine potential convergent (or not) phenotypes, and the authors have made a good selection of models. They identify some key differences between the autism versus the Sz risk gene models, primarily that dendritic spines are smaller in Sz models and (mostly) larger in autism risk gene models. They then focus on three models (2 Sz - 22q11.2 deletion, Setd1a; 1 ASD - Nlgn3) for time-lapse imaging of spine dynamics, and together with computational modelling provide a mechanistic rationale for the smaller spines in Sz risk models. Bulk RNA sequencing of all 8 model cultures identifies several differentially expressed genes, which they go on to test in cultures, finding that ecgr4 is upregulated in several Sz models and its misexpression recapitulates spine dynamics changes seen in the Sz mutants, while knockdown rescues spine dynamics changes in the Sz mutants. Overall, these have the potential to be very interesting findings and useful for the field. However, I do have a number of major concerns.

      (1) The main finding of spine nanostructure changes is done by carrying out a PCA on various structural parameters, creating spine density plots across PC1 and PC2, and then subtracting the WT density plot from the mutant. Then, spines in the areas with obvious differences only are analyzed, from which they derive the finding that, for example, spine sizes are smaller. However, this seems a circular approach. It is like first identifying where there might be a difference in the data, then only analyzing that part of the data. I welcome input from a statistician, but to me, this is at best unconventional and potentially misleading. I assume the overall means are not different (although this should be included), but could they look at the distribution of sizes and see if these are shifted?

      (2) Despite extracting 64 parameters describing spine structure, only 5 of these seemed to be used for the PCA. It should be possible to use all parameters and show the same results. More information on PC1 and PC2 would be helpful, given that the rest of the paper is based on these - what features are they related to? These specific features could then be analyzed in the full dataset, without doing the cherry picking above. It would also be helpful to demonstrate whether PC1 and 2 differ across groups - for example, the authors could break their WT data into 2 subsets and repeat the analysis.

      (3) Throughout the paper, the 'n' used for statistical analysis is often spine, which is not appropriate. At a minimum, cell should be used, but ideally a nested mixed model, which would take into account factors like cell, culture, and animal, would be preferable. Also, all of these factors should be listed, with sufficient independent cultures.

      (4) The authors should confirm that all mutants are also on the C57BL/6J background, and clarify whether control cultures are from littermates (this would be important). Also, are control versus mutant cultures done simultaneously? There can be significant batch effects with cultures.

      (5) The spine analysis uses cultures from 18-22 DIV - this is quite a large range. It would be worth checking whether age is a confounder or correlated with any parameters / principal components.

      (6) The computational modelling is interesting, but again, I am concerned about some circularity. Parameter optimization was used to identify the best fit model that replicated the spine turnover rates, so it is somewhat circular to say that this matched the observations when one of these is the turnover rate. It is more convincing for spine density and size, but why not go back and test whether parameter differences are actually seen - for example, it would be possible to extract the probability of nascent spine loss, etc. More compelling would be to repeat the experiments and see if the model still fits the data. In the interpretation (line 314-318) it is stated that '... reduced spine maturation rate can account for the three key properties of schizophrenia-related spines...', which is interesting if true, but it has just been stated that the probability of spine destabilization is also higher in mutants (line 303) - the authors should test whether if the latter is set to be the same as controls whether all the findings are replicated.

      (7) No validation for overexpression or knockdown is shown, although it is mentioned in the methods - please include. Also, for the knockdown, a scrambled shRNA control would be preferable.

      (8) The finding regarding ecgr4 is interesting, but showing that some ecgr4 is expressed at boutons and spines and some in DCVs is not enough evidence to suggest that actively involved in the regulation of synapse formation and maturation (line 356).

      (9) The same caveats that apply to the analysis also apply to the ecgr4 rescue. In addition, while for 22q the control shRNA mutant vs WT looks vaguely like Figure 2, setd1a looks completely different. And if rescued, surely shRNA in the mutant should now resemble control in WT, so there shouldn't be big differences, but in fact, there are just as many differences as comparing mutant vs wildtype? Plus, for spine features, they only compare mutant rescue with mutant control, but this is not ideal - something more like a 2-way ANOVA is really needed. Maybe input from a statistician might be useful here?

      (10) Although this is a study entirely focused on spine changes in mouse models for Sz, there is no discussion (or citation) of the various studies that have examined this in the literature. For example, for Setd1a, smaller spines or reduced spine densities have been described in various papers (Mukai et al, Neuron 2019; Chen et al, Sci Adv 2022; Nagahama et al, Cell Rep 2020).

      (11) There is a conceptual problem with the models if being used to differentiate autism risk from Sz risk genes. It is difficult to find good mouse models for Sz, so the choice of 22q11.2del and Setd1a haploinsufficiency is completely reasonable. However, these are both syndromic. 22qdel syndrome involves multiple issues, including hearing loss, delayed development, and learning disabilities, and is associated with autism (20% have autism, as compared to 25% with Sz). Similarly, Setd1a is also strongly associated with autism as well as Sz (and also involves global developmental delay and intellectual disability). While I think this is still the best we can do, and it is reasonable to say that these models show biased risk for these developmental disorders, it definitely can't be used as an explanation for the higher variability seen in the autism risk models.

      (12) I am not convinced that using dissociated cultures is 'more likely to reflect the direct impact of schizophrenia-related gene mutations on synaptic properties' - first, cultures do have non-neuronal cells, although here glial proliferation was arrested at 2 days, glia will be present with the protocol used (or if not, this needs demonstrating). Second, activity levels will affect spine size, and activity patterns are very abnormal in dissociated cultures, so it is very possible that spine changes may not translate into in vivo scenarios. Overall, it is a weakness that the dissociated culture system has been used, which is not to say that it is not useful, and from a technical and practical perspective, there are good justifications.

      (13) As a minor comment, the spine time-lapse imaging is a strength of the paper. I wonder about the interpretation of Figure 5. For example, the results in Figure 5G and J look as if they may be more that the spines grow to a smaller size and start from a smaller size, rather than necessarily the rate of growth.

    1. Reviewer #1 (Public review):

      Summary of goals:

      The authors' stated goal (line 226) was to compare gene expression levels for gut hormones between males and females. As female flies contain more fat than males, they also sought to identify hormones that control this sex difference. Finally, they attempted to place their findings in the broader context of what is already known about established underlying mechanisms.

      Strengths:

      (1) The core research question of this work is interesting. The authors provide a reasonable hypothesis (neuro/entero-peptides may be involved) and well-designed experiments to address it.

      (2) Some of the data are compelling, especially positive results that clearly implicate enteropeptides in sex-biased fat contents (Figures 1 and 3).

      Weaknesses:

      (1) The greatest weakness of this work is that it falls short of providing a clear mechanism for the regulation of sex-biased fat content by AstC and Tk. By and large, feminization of neurons or enteroendocrine cells with UAS-traF did not increase fat in males (Figure 2). The authors mention that ecdysone, juvenile hormone or Sex-lethal may instead play a role (lines 258-270), but this is speculative, making this study incomplete.

      (2) Related to the above point, the cellular mechanisms by which AstC and Tk regulate fat content in males and females are only partially characterized. For example, knockdown of TkR99D in insulin-producing neurons (Figure 4E) but not pan-neuronally (Figure 4B) increases fat in males, but Tk itself only shows a tendency (Figure 3B). In females, the situation is even less clear: again, Tk only shows a tendency (Figure 3B), and pan-neuronal, but not IPC-specific knockdown of TkR99D decreases fat.

      (3) The text sometimes misrepresents or contradicts the Results shown in the figures. UAS-traF expression in neurons or enteroendocrine cells did sometimes alter fat contents (Figure 2H, S), but the authors report that sex differences were unaffected (lines 164-166). On the other hand, although knockdown of Tk in enteroendocrine cells caused no significant effect (Figure 3B), the authors report this as a trend towards reduction (lines 182-183). This biased representation raises concerns about the interpretation of the data and the authors' conclusions.

      (4) The authors find that in males, neuropeptide expression in the head is higher (Figure 1F-J). This may also play an important role in maintaining lower levels of fat in males, but this finding is not explored in the manuscript.

      Appraisal of goal achievement & conclusions:

      The authors were successful in identifying hormones that show sex bias in their expression and also control the male vs. female difference in fat content. However, elucidation of the relevant cellular pathways is incomplete. Additionally, some of their conclusions are not supported by the data (see Weaknesses, point 3).

      Impact:

      It is difficult to evaluate the impact of this study. This is in great part because the authors do not attempt to systematically place their findings about AstC/Tk in the broader context of their previous studies, which investigated the same phenomenon (Wat et al., 2021, eLife and Biswas et al., 2025, Cell Reports). As the underlying mechanisms are complex and likely redundant, it is necessary to generate a visual model to explain the pathways which regulate fat content in males and females.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Biswas and Rideout investigates sex differences in the expression and function of hormones derived from Drosophila enteroendocrine cells (EE). The authors report that while whole-body and head expression of several EE hormones (AstA, AstC, Tk, NPF, Dh31) is male-biased, gut-specific expression of AstC, Tk, and NPF is female-biased. Intriguingly, this sex-specific effect is not dependent on Tra - a surprising and important result. The authors then used an RNAi-based approach to demonstrate that gut-derived AstC and Tk promote fat storage specifically in females. Similar effects are observed when their receptors are knocked down in neurons. In addition, the authors were able to demonstrate that while Tk promotes female body fat via the insulin-producing cells. Together, these findings suggest that EE cell-derived hormones contribute to sex-specific fat storage regulation.

      Strengths:

      Overall, I find the paper quite interesting. While the findings are brief, they reveal novel aspects of the sex-specific lipid storage program that I believe are important. As noted by the authors in the discussion, there are many open questions, including how these neuronal effects translate into systemic sex-specific regulation of lipid storage. Regardless, I find the results to be convincing - this paper will serve as the launching point of many future studies.

      Weaknesses:

      My main criticisms are focused on two points:

      (1) If the sex specific differences are eliminated by tra overexpression, what else might be responsible? As the authors note, the differences in 20E titers might be responsible. I would encourage the authors to simply feed adult flies with food containing 20E and determine if this alters sex-specific 20E expression.

      (2) I'm quite intrigued by the discovery that Tra does not eliminate the sex-specific differences. There are quite a few recent studies demonstrating that fruitless influences sex-specific neuronal function - here to I would encourage the authors to examine whether this aspect of the sex-determination pathway is involved in the lipid accumulation phenotype.

    1. Reviewer #1 (Public review):

      Summary:

      This is a strong paper that presents a clear advance in multi-animal tracking. The authors introduce an updated version of idtracker.ai that reframes identity assignment as a contrastive representation learning problem rather than a classification task requiring global fragments. This change leads to substantial gains in speed and accuracy and removes a known bottleneck in the original system. The benchmarking across species is comprehensive, the results are convincing, and the work significant.

      Strengths:

      The main strengths are the conceptual shift from classification to representation learning, the clear performance gains, and the improved robustness of the new version. Removing the need for global fragments makes the software much more flexible in practice, and the accuracy and speed improvements are well demonstrated across a diverse set of datasets. The authors' response also provides further support for the method's robustness.

      The comparison to other methods is now better documented. The authors clarify which features are used, how failures are defined, how parameters are sampled, and how accuracy is assessed against human-validated data. This helps ensure that the evaluation is fair and that readers can understand the assumptions behind the benchmarks.

      The software appears thoughtfully implemented, with GUI updates, integration with pose estimators, and tools such as idmatcher.ai for linking identities across videos. The overall presentation has been improved so that the limitations of the original idtracker.ai, the engineering optimizations, and the new contrastive formulation are more clearly separated. This makes the central ideas and contributions easier to follow.

      Weaknesses:

      I do not have major remaining criticisms. The authors have addressed my earlier concerns about the clarity and fairness of the comparison with prior methods, the benchmark design, and the memory usage analysis by adding methodological detail and clearly explaining their choices. At this point I view these aspects as transparent features of the experimental design that readers can take into account, rather than weaknesses of the work.

      Overall, this is a high-quality paper. The improvements to idtracker.ai are well justified and practically significant, and the authors' response addresses the main concerns about clarity and evaluation. The conceptual contribution, thorough empirical validation, and thoughtful software implementation make this a valuable and impactful contribution to multi-animal tracking.

    2. Reviewer #3 (Public review):

      Summary:

      The authors propose a new version of idTracker.ai for animal tracking. Specifically, they apply contrastive learning to embed cropped images of animals into a feature space where clusters correspond to individual animal identities. By doing this, they address the requirement for so-called global fragments - segments of the video, in which all entities are visible/detected at the same time. In general, the new method reduces the long tracking times from the previous versions, while also increasing the average accuracy of assigning the identity labels.

      Strengths and weaknesses:

      The authors have reorganized and rewritten a substantial portion of their manuscript, which has improved the overall clarity and structure to some extent. In particular, omitting the different protocols enhanced readability. However, all technical details are now in appendix which is now referred to more frequently in the manuscript, which was already the case in the initial submission. These frequent references to the appendix - and even to appendices from previous versions - make it difficult to read and fully understand the method and the evaluations in detail. A more self-contained description of the method within the main text would be highly appreciated.

      Furthermore, the authors state that they changed their evaluation metric from accuracy to IDF1. However, throughout the manuscript they continue to refer to "accuracy" when evaluating and comparing results. It is unclear which accuracy metric was used or whether the authors are confusing the two metrics. This point needs clarification, as IDF1 is not an "accuracy" measure but rather an F1-score over identity assignments.

      The authors compare the speedups of the new version with those of the previous ones by taking the average. However, it appears that there are striking outliers in the tracking performance data (see Supplementary Table 1-4). Therefore, using the average may not be the most appropriate way to compare. The authors should consider using the median or providing more detailed statistics (e.g., boxplots) to better illustrate the distributions.

      The authors did not provide any conclusion or discussion section. Including a concise conclusion that summarizes the main findings and their implications would help to convey the message of the manuscript.

      The authors report an improvement in the mean accuracy across all benchmarks from 99.49% to 99.82% (with crossings). While this represents a slight improvement, the datasets used for benchmarking seem relatively simple and already largely "solved". Therefore, the impact of this work on the field may be limited. It would be more informative to evaluate the method on more challenging datasets that include frequent occlusions, crossings, or animals with similar appearances. The accuracy reported in the main text is "without crossings" - this seems like incomplete evaluation, especially that tracking objects that do not cross seems a straightforward task. Information is missing why crossings are a problem and are dealt with separately. There are several videos with a much lower tracking accuracy, explaining what the challenges of these videos are and why the method fails in such cases would help to understand the method's usability and weak points.

    1. Reviewer #1 (Public review):

      Olmstead et al. present a single-cell nuclear sequencing dataset that interrogates how hippocampal gene expression changes in response to distinct physiological stimuli and across circadian time. The authors perform single-nucleus RNA sequencing on mouse hippocampal tissue after (1) kainic acid-induced seizure, (2) exposure to an enriched environment, and (3) at multiple circadian phases.

      The dataset is rigorously collected, and a major strength is the use of the previously established ABC taxonomy from Yao et al. (2023) to define cell types. The authors further show that this taxonomy is largely independent of activity-driven transcriptional programs. Using these annotations, they examine activity-regulated gene expression across neuronal and glial subclasses. They identify ZT12, corresponding to the transition from the light to the dark period, as transcriptionally distinct from other circadian time points, and show that this pattern is conserved across many cell types. Finally, they test how circadian phase influences activity-dependent gene expression by exposing mice to an enriched environment at different times of day, and report no significant interaction between circadian phase and enriched environment exposure.

      A crucial consideration for users of this dataset is the potential confounding effect between circadian phase and locomotor activity. This is particularly relevant because dentate gyrus activity is strongly modulated by locomotion. The authors acknowledge this issue in the Discussion and provide useful guidance for how to interpret their findings, considering this confound.

      Taken together, this dataset represents a useful resource for the neuroscience community, particularly for investigators interested in how novel experience and circadian phase shape activity-related and immediate early gene expression in the hippocampus

    2. Reviewer #2 (Public review):

      This manuscript presents the ACT-DEPP dataset, a comprehensive single-nucleus RNA-sequencing atlas of the mouse hippocampus that examines how activity-dependent and circadian transcriptional programs intersect. The dataset spans multiple experimental conditions and circadian time points, clarifying how cell-type identity relates to transcriptional state. In particular, the authors compare stimulus-evoked activity programs (environmental enrichment and kainate-induced seizures) with circadian phase-dependent transcriptional oscillations. They also identify a transcriptional inflection point near ZT12 and argue that immediate early gene (IEG) induction is broadly maintained across circadian phases, with minimal ZT-dependent modulation.

      Strengths:

      The study is ambitious in scope and data volume, and outlines the data-processing and atlas-registration workflows. The side-by-side treatment of stimulus paradigms and ZT sampling provides a coherent framework for parsing state (activity) from phase (circadian) across diverse neuronal and non-neuronal classes. Several findings - especially the ZT12 "inflection" and the differential sensitivity of pathways across subclasses - are intriguing.

      Weaknesses:

      (1) The authors acknowledge, but do not adequately address, the fundamental confounding factor between circadian phase and spontaneous locomotor activity. The assertion that these represent "orthogonal regulatory axes," based on largely non-overlapping DEGs, may be overstated. The absence of behavioral monitoring during baseline is a major limitation.

      (2) The statement "Thus, novel experiences and seizures trigger categorically distinct transcriptional responses-with respect to both magnitude and specific genes-in these hippocampal subregions" is overstated, given the data presented. Figure 2A-B shows that approximately one-third of EE-induced DEGs at 30 minutes overlap with KA DEGs, and this overlap increases substantially at 6 hours in CA1 (where EE and KA responses become "fully shared"). This suggests the responses are quantitatively different rather than "categorically distinct."

      (3) In Figure 4B, "active cells" are defined as those with {greater than or equal to}3 of 15 IEGs above the 90th percentile, with thresholds apparently calibrated in CA1. Because baseline expression distributions differ across subclasses, this rule can bias activation rates across cell types.

      (4) Few genes show significant ZT × stimulus (EE or seizure) interactions, concentrated in neuronal populations. Given unequal nucleus counts and biological replicates across subclasses, small effects may be underpowered.

      (5) In Figure 6 I, J, the relationship between the highlighted pathways/functions and circadian phase is not yet explicit.

      (6) Line 276-280: The enrichment of lncRNAs at ZT12 in CA1 is intriguing but underdeveloped. What are these lncRNAs, and what might they regulate?

      Overall, most descriptive conclusions are supported (e.g., broad phase-robustness of classical IEGs; an inflection near ZT12). Claims about the separability/orthogonality of activity vs circadian programs, and about categorical distinctions between EE and KA responses, would benefit from more conservative wording or additional analyses to rule out behavioral and power-related alternatives.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods to delineate the role of STN neurons during avoidance behaviours. The work is thorough and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

      Weaknesses:

      One possible remaining conceptual concern that might require future work is determining whether STN primarily mediates higher-level cognitive avoidance or if its activation primarily modulates motor tone.

    2. Reviewer #2 (Public review):

      Summary:

      Zhou, Sajid et al. present a study investigating the STN involvement in signaled movement. They use fiber photometry, implantable lenses, and optogenetics during active avoidance experiments to evaluate this. The data are useful for the scientific community and the overall evidence for their claims is solid, but many aspects of the findings are confusing. The authors present a huge collection of data, it is somewhat difficult to extract the key information and the meaningful implications resulting from these data.

      Strengths:

      The study is comprehensive in using many techniques and many stimulation powers and frequencies and configurations.

      Weaknesses - re-review:

      All previous weaknesses have been addressed. The authors should explain how inhibition of the STN impairing active avoidance is consistent with the STN encoding cautious action. If 'caution' is related to avoid latency, why does STN lesion or inhibition increase avoid latency, and therefore increase caution? Wouldn't the opposite be more consistent with the statement that the STN 'encodes cautious action'?

    3. Reviewer #3 (Public review):

      Summary:

      The authors use calcium recordings from STN to measure STN activity during spontaneous movement and in a multi-stage avoidance paradigm. They also use optogenetic inhibition and lesion approaches to test the role of STN during the avoidance paradigm. The paper reports a large amount of data and makes many claims, some seem well supported to this Reviewer, others not so much.

      Strengths:

      Well-supported claims include data showing that during spontaneous movements, especially contraversive ones, STN calcium activity is increased using bulk photometry measurements. Single-cell measures back this claim but also show that it is only a minority of STN cells that respond strongly, with most showing no response during movement, and a similar number showing smaller inhibitions during movement.

      Photometry data during cued active avoidance procedures show that STN calcium activity sharply increases in response to auditory cues, and during cued movements to avoid a footshock. Optogenetic and lesion experiments are consistent with an important role for STN in generating cue-evoked avoidance. And a strength of these results is that multiple approaches were used.

      Original Weaknesses:

      I found the experimental design and presentation convoluted and some of the results over-interpreted.

      As presented, I don't understand this idea that delayed movement is necessarily indicative of cautious movements. Is the distribution of responses multi-modal in a way that might support this idea; or do the authors simply take a normal distribution and assert that the slower responses represent 'caution'? Even if responses are multi-modal and clearly distinguished by 'type', why should readers think this that delayed responses imply cautious responding instead of say: habituation or sensitization to cue/shock, variability in attention, motivation, or stress; or merely uncertainty which seems plausible given what I understand of the task design where the same mice are repeatedly tested in changing conditions. This relates to a major claim (i.e., in the title).

      Related to the last, I'm struggling to understand the rationale for dividing cells into 'types' based the their physiological responses in some experiments.

      In several figures the number of subjects used was not described. This is necessary. Also necessary is some assessment of the variability across subjects. The only measure of error shown in many figures relates trial-to-trial or event variability, which is minimal because in many cases it appears that hundreds of trials may have been averaged per animal, but this doesn't provide a strong view of biological variability (i.e., are results consistent across animals?).

      It is not clear if or how spread of expression outside of target STN was evaluated, and if or how or how many mice were excluded due to spread or fiber placements. Inadequate histological validation is presented and neighboring regions that would be difficult to completely avoid, such as paraSTN may be contributing to some of the effects.

      Raw example traces are not provided.

      The timeline of the spontaneous movement and avoidance sessions were not clear, nor the number of events or sessions per animal and how this was set. It is not clear if there was pre-training or habituation, if many or variable sessions were combined per animal, or what the time gaps between sessions was, or if or how any of these parameters might influence interpretation of the results.

      Comments on revised version:

      The authors removed the optogenetic stimulation experiments, but then also added a lot of new analyses. Overall the scope of their conclusions are essentially unchanged.

      Part of the eLife model is to leave it to the authors discretion how they choose to present their work. But my overall view of it is unchanged. There are elements that I found clear, well executed, and compelling. But other elements that I found difficult to understand and where I could not follow or concur with their conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      Artiushin et al. establish a comprehensive 3D atlas of the brain of the orb-web building spider Uloborus diversus. First, they use immunohistochemistry detection of synapsin to mark and reconstruct the neuropils of the brain of six specimen and they generate a standard brain by averaging these brains. Onto this standard 3D brain, they plot immunohistochemical stainings of major transmitters to detect cholinergic, serotonergic, octopaminergic/taryminergic and GABAergic neurons, respectively. Further, they add information on the expression of a number of neuropeptides (Proctolin, AllatostatinA, CCAP and FMRFamide). Based on this data and 3D reconstructions, they extensively describe the morphology of the entire synganglion, the discernable neuropils and their neurotransmitter/neuromodulator content.

      Strengths:

      While 3D reconstruction of spider brains and the detection of some neuroactive substances have been published before, this seems to be the most comprehensive analysis so far both in terms of number of substances tested and the ambition to analyzing the entire synganglion. Interestingly, besides the previously described neuropils, they detect a novel brain structure, which they call the tonsillar neuropil.

      Immunohistochemistry, imaging and 3D reconstruction are convincingly done and the data is extensively visualized in figures, schemes and very useful films, which allow the reader to work with the data. Due to its comprehensiveness, this dataset will be a valuable reference for researchers working on spider brains or on the evolution of arthropod brains.

      Weaknesses:

      As expected for such a descriptive groundwork, new insights or hypotheses are limited while the first description of the tonsillar neuropil is interesting. The reconstruction of the main tracts of the brain would be a very valuable complementary piece of data.

    2. Reviewer #2 (Public review):

      Summary

      Artiushin et al. created the first three-dimensional atlas of a synganglion in the hackled orb-weaver spider, which is becoming a popular model for web-building behavior. Immunohistochemical analysis with an impressive array of antisera reveal subcompartments of neuroanatomical structures described in other spider species as well as two previously undescribed arachnid structures, the protocerebral bridge, hagstone, and paired tonsillar neuropils. The authors describe the spider's neuroanatomy in detail and discuss similarities and differences from other spider species. The final section of the discussion examines the homology between onychophoran and chelicerate arcuate bodies and mandibulate central bodies.

      Strengths

      The authors set out to create a detailed 3D atlas and accomplished this goal.

      Exceptional tissue clearing and imaging of the nervous system reveals the three-dimensional relationships between neuropils and some connectivity that would not be apparent in sectioned brains.

      Detailed anatomical description makes it easy to reference structures described between the text and figures.

      The authors used a large palette of antisera which may each be investigated in future studies for function in the spider nervous system and may be compared across species.

      Weaknesses addressed in the revision

      Additional added information about spider-specific neuropils helps orient a non-expert reader. While the function and connectivity of many of these structures is currently unknown, this study will be foundational in future investigations of function.

    3. Reviewer #3 (Public review):

      Summary:

      This is an impressive paper that offers a much-needed 3D standardized brain atlas for the hackled-orb weaving spider Uloborus diversus, an emerging organism of study in neuroethology. The authors used a detailed immunohistological wholemount staining method that allowed them to localize a wide range of common neurotransmitters and neuropeptides and map them on a common brain atlas. Through this approach, they discovered groups of cells that may form parts of neuropils that had not previously been described, such as the 'tonsillar neuropil', which might be part of a larger insect-like central complex. Further, this work provides unique insights into previously underappreciated complexity of higher-order neuropils in spiders, particularly the arcuate body, and hints at a potentially important role for the mushroom bodies in vibratory processing for web-building spiders.

      Strengths:

      To understand brain function, data from many experiments on brain structure must be compiled to serve as a reference and foundation for future work. As demonstrated by the overwhelming success in genetically tractable laboratory animals, 3D standardized brain atlases are invaluable tools-especially as increasing amounts of data are obtained at the gross morphological, synaptic, and genetic levels, and as functional data from electrophysiology and imaging are integrated. Among 'non-model' organisms, such approaches have included global silver staining and confocal microscopy, MRI, and more recently, micro-computed tomography (X-ray) scans used to image multiple brains and average them into a composite reference. In this study, the authors used synapsin immunoreactivity to generate an averaged spider brain as a scaffold for mapping immunoreactivity to other neuromodulators. Using this framework, they describe many previously known spider brain structures and also identify some previously undescribed regions. They argue that the arcuate body-a midline neuropil thought to have diverged evolutionarily from the insect central complex-shows structural similarities that may support its role in path integration and navigation.

      Having diverged from insects such as the fruit fly Drosophila melanogaster over 400 million years ago, spiders are an important group for study-particularly due to their elegant web-building behavior, which is thought to have contributed to their remarkable evolutionary success. How such exquisitely complex behavior is supported by a relatively small brain remains unclear. A rich tradition of spider neuroanatomy emerged in the previous century through the work of comparative zoologists, who used reduced silver and Golgi stains to reveal remarkable detail about gross neuroanatomy. Yet, these techniques cannot uncover the brain's neurochemical landscape, highlighting the need for more modern approaches-such as those employed in the present study.

      A key insight from this study involves two prominent higher-order neuropils of the protocerebrum: the arcuate body and the mushroom bodies. The authors show that the arcuate body has a more complex structure and lamination than previously recognized, suggesting it is insect central complex-like and may support functions such as path integration and navigation, which are critical during web building. They also report strong synapsin immunoreactivity in the mushroom bodies and speculate that these structures contribute to vibratory processing during sensory feedback, particularly in the context of web building and prey localization. These findings align with prior work that noted the complex architecture of both neuropils in spiders and their resemblance (and in some cases greater complexity) compared to their insect counterparts. Additionally, the authors describe previously unrecognized neuropils, such as the 'tonsillar neuropil,' whose function remains unknown but may belong to a larger central complex. The diverse patterns of neuromodulator immunoreactivity further suggest that plasticity plays a substantial role in central circuits.

      Weaknesses:

      My major concern, however, is some of the authors' neuroanatomical descriptions rely too heavily on inference rather than what is currently resolvable from their immunohistochemistry stains alone.

      Comments on revisions:

      I thought that the authors did an excellent job responding to the reviews, and I have no further comments.

    1. Reviewer #1 (Public review):

      Summary

      In their manuscript, Ho and colleagues investigate the importance of thymically-imprinted self-reactivity in determining CD8 T cell pathogenicity in non-obese diabetic (NOD) mice. The authors describe pre-existing functional biases associated with naive CD8 T cell self-reactivity based on CD5 levels, a well characterized proxy for T cell affinity to self-peptide. They find that naive CD5hi CD8 T cells are poised to respond to antigen challenge; these findings are largely consistent with previously published data on the C57Bl/6 background. The authors go on to suggest that naive CD5hi CD8 T cells are more diabetogenic as 1) the CD5hi naive CD8 T cell receptor repertoire has features associated with autoreactivity and contains a larger population of islet-specific T cells, and 2) the autoreactivity of "CD5hi" monoclonal islet-specific TCR transgenic T cells cannot be controlled by phosphatase over-expression. Thus, they implicate CD8 T cells with relatively higher levels of basal self-reactivity in autoimmunity. The data presented offers valuable insights and sets the foundation for future studies, but some conclusions are not yet fully supported.

      Specific comments

      There is value in presenting phenotypic differences between naive CD5lo and CD5hi CD8 T cells in the NOD background as most previous studies have used T cells harvested from C57Bl/6 mice or peripheral blood from healthy human donors.

      The comparison of a marker of self-reactivity, CD5 in this case, on broad thymocyte populations (DN/DP/CD8SP) is cautioned. CD5 is upregulated with signals associated with b-selection and positive selection; CD5 levels will thus vary even among subsets within these broad developmental intermediates. This is a particularly important consideration when comparing CD5 across thymic intermediates in polyclonal versus TCR transgenic thymocytes due to the striking differences in thymic selection efficiency, resulting in different developmental population profiles. The higher levels of CD5 noted in the DN population of NOD8.3 mice, for example, is likely due to the shift towards more mature DN4 post-b-selection cells. Similarly, in the DP population, the larger population of post-positive selection cells in the NOD8.3 transgenic thymus may also skew CD5 levels significantly. Overall, the reported differences between NOD and NOD8.3 thymocyte subsets could be due largely to differences in differentiation/maturation stage rather than affinity for self-antigen during T cell development. The authors have added some additional text to the revised manuscript that acknowledges some of these limitations.

      The lack of differences in CD5 levels of post-positive selection DP thymocytes, CD8 SP thymocytes, and CD8 T cells in the pancreas draining lymph nodes from NOD vs NOD8.3 mice also raises questions about the relevance of this model to address the question of basal self-reactivity and diabetogenicity and the authors' conclusion that "that intrinsic high CD5-associated self-reactivity in NOD8.3 T cells overrides the transgenic Pep-mediated protection observed in dLPC/NOD mice"; the phenotype of the polyclonal and NOD8.3 TCR transgenic CD8 T cells that were analyzed in the (spleen and) pancreas draining lymph nodes is not clear (i.e., are these gated on naive T cells?). Furthermore, the rationale for the comparison with NOD-BDC2.5 mice that carry an MHC II-restricted TCR is unclear.

      In reference to the conclusion that transgenic Pep phosphatase does not inhibit the diabetogenic potential of "CD5hi" CD8 T cells, there is some concern that comparing diabetes development in mice receiving polyclonal versus TCR transgenic T cells specific for an islet antigen is not appropriate. The increased frequency and number of antigen specific T cells in the NOD8.3 mice may be responsible for some of the observed differences. Further justification for the comparison is suggested.

      The manuscript presents an interesting observation that TCR sequences from CD5hi CD8 T cells may share certain characteristics with diabetogenic T cells found in patients (e.g., CDR3 length), and that autoantigen-specific T cells may be enriched within the CD5hi naive CD8 T cell population. However, the percentage of tetramer-positive cells among naive CD8 T cells appears unusually high in the data presented, and caution is warranted when comparing additional T cell receptor features of self-reactivity/auto-reactivity between CD4 and CD8 T cells.

      The counts for the KEGG enrichment pathways presented are relatively low, and the robustness of the analysis should be carefully considered, particularly given that several significance values appear borderline. That said, the differentially expressed genes among CD5lo and CD5hi CD8 T cells are generally consistent with previously published datasets.

      The manuscript includes some imprecise wording that may be misleading. For example (not exhaustive): The strength of TCR reactivity to foreign antigen is not "contributed by basal TCR signal" per se but rather correlates with sub-threshold TCR signals necessary for T cell development and survival, CD5 is not broadly expressed on all B cells as the text might suggest but is restricted to a specific subset of B cells, some of the proximal signaling molecules downstream of the preTCR are different than for the mature TCR, upregulation of CD127 at early timepoints post T cell activation is not directly suggestive of their "heightened capabilities in memory T cell homeostasis", etc. The statement "Our study exclusively examined female mice because the disease modeled is relevant in females" should be reconsidered. While the use of female NOD mice can be justified by their higher incidence of diabetes than their male counterparts, the current wording could be misleading.

      For clarity and transparency, please consider while additional information is provided in the revised manuscript, gating strategies are not always clear (i.e., naive versus total CD8 T cells), and the age/status of the mice from which cells are harvested (i.e., prediabetic?) is not consistently provided as far as this reviewer noted.

    2. Reviewer #2 (Public review):

      Summary:

      In this study Chia-Lo Ho et al. study the impact of CD5high CD8 T cells in the pathophysiology of type 1 diabetes (T1D) in NOD mice. The authors used high expression of CD5 as a surrogate of high TCR signaling and self-reactivity and compared the phenotype, transcriptome, TCR usage, function and pathogenic properties of CD5high vs. CD5low CD8 T cells extracted from the so-called naive T cell pool. The study shows that CD5high CD8 T cells resemble memory T cells poised for stronger response to TCR stimulation and that they exacerbate disease upon transfer in RAG-deficient NOD mice. The authors attempt to link these features to the thymic selection events of these CD5high CD8 T cells. Importantly, forced overexpression of the phosphatase PTPN22 in T cells attenuated TCR signaling and reduced pathogenicity of polyclonal CD8 T cells but not highly autoreactive 8.3-TCR CD8 T cells.

      Strengths:

      The study is nicely performed and the manuscript is clearly and well written. Interpretation of the data is careful and fair. The data are novel and likely important. However, some issues would need to be clarified through either text changes or addition of new data.

      Weaknesses:

      The definition of naïve T cells based solely on CD44low and CD62Lhigh staining may be oversimplistic. Indeed, even within this definition naïve CD5high CD8 T cells express much higher levels of CD44 than CD5low CD8 T cells.

      Comments on revisions:

      The authors addressed my previous comments thoughtfully and extensively.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Ho et al. hypothesised that autoreactive T cells receiving enhanced TCR signals during positive selection in the thymus are primed for generating effector and memory T cells. They used CD5 as a marker for TCR signal strength during their selection at the double positive stage. Supporting their hypothesis, naïve T cells with high CD5 proliferated better and expressed markers of T cell activation compared to naïve T cells with lower levels of CD5. Furthermore, results showed that autoimmune diabetes can be efficiently induced after the transfer of naïve CD5 hi T cells compared to CD5 lo T cells. This provided solid evidence in support of their hypothesis that T cells receiving higher basal TCR signaling are primmed to develop into effector T cells. However, all functional characterisation was done on the cells in the periphery and CD5 hi cells in the peripheral lymphoid compartment can receive tonic TCR signaling. Hence, the function of CD5 hi T cells might not be related to development and programming in the thymus. This is a major hurdle in the interpretation of the results and justifying the title of the study. The evidence that transgenic PTPN22 expression could not regulate T cell activation in CD5 hi TCR transgenic autoreactive T cells was weak. Studying T cell development in TCR transgenic mice and looking at TCR downstream signaling could be misleading due to transgenic expression of TCR at all developmental stages.

      Strengths:

      (1) Demonstrating that CD5 hi cells in naïve CD8 T cell compartment express markers of T cell activation, proliferation and cytotoxicity at a higher level

      (2) Using gene expression analysis, study showed CD5 hi cells among naïve CD8 T cells are transcriptionally poised to develop into effector or memory T cells.

      (3) Study showed that CD5 hi cells have higher basal TCR signaling compared to CD5 lo T cells.

      (4) Key evidence of pathogenicity of autoreactive CD5 hi T cells was provided by doing the adoptive transfer of CD5 hi and CD5 lo CD8 T cells into NOD Rag1-/- mice and comparing them.

      Weaknesses:

      (1) Although CD5 can be used as a marker for self-reactivity and T cell signal strength during thymic development, it can also be regulated in the periphery by tonic TCR signaling or when T cells are activated by its cognate antigen. Hence, TCR signals in the periphery could also prime the T cells towards effector/memory differentiation. That's why from the evidence presented here it cannot be concluded that this predisposition of T cells towards effector/memory differentiation is programmed due to higher reactivity towards self-MHC molecules in the thymus, as stated in the title.

      (2) Flow cytometry data needs to be revisited for the gating strategy, biological controls and interpretation.

      (3) Evidence linking CD5 hi cells to more effector phenotype using gene enrichment scores is very weak.

      (4) Experiments done in this study did not address why CD5 hi T cells could be negatively regulated in NOD mice when PTPN22 is overexpressed resulting in protection from diabetes but the same cannot be achieved in NOD8.3 mice.

      (5) Experimental evidence provided to show that PTPN22 overexpression does not regulate TCR signaling in NOD8.3 T cells is weak.

      (6) TCR sequencing analysis does not conclusively show that CD5 hi population is linked with autoreactive T cells. Doing single-cell RNAseq and TCR seq analysis would have helped address this question.

      (7) When analysing data from CD5 hi T cells from the pancreatic lymph node, it is difficult to discriminate if the phenotype is just because of T cells that would have just encountered the cognate antigen in the draining lymph node or if it is truly due to basal TCR signaling.

    1. Reviewer #1 (Public review):

      Summary:

      In this study the authors use a Drosophila model to demonstrate that Tachykinin (Tk) expression is regulated by the microbiota. In Drosophila conventionally reared (CR) flies are typically shorter lived than those raised without a microbiota (axenic). Here, knockdown of Tk expression is found to prevent lifespan shortening by the microbiota and the reduction of lipid stores typically seen in CR flies when compared to axenic counterparts. It does so without reducing food intake or fecundity which are often seen as necessary trade-offs for lifespan extension. Further, the strength of the interaction between Tk and the microbiota is found to be bacteria specific and is stronger in Acetobacter pomorum (Ap) mono-associated flies compared to Levilactobacillus brevis (Lb) mono-association. The impact on lipid storage was also only apparent in Ap-flies.

      Building on these findings the authors show that gut specific knockdown is largely sufficient to explain these phenotypes. Knockdown of the Tk receptor, TkR99D, in neurons recapitulates the lifespan phenotype of intestinal Tk knockdown supporting a model whereby Tk from the gut signals to TkR99D expressing neurons to regulate lifespan. In addition, the authors show that FOXO may have a role in lifespan regulation by the Tk-microbiota interaction. However, they rule out a role for insulin producing cells or Akh-producing cells suggesting the microbiota-Tk interaction regulates lifespan through other, yet unidentified, mechanisms.

      Major comments:

      Overall, I find the key conclusions of the paper convincing. The authors present an extensive amount of experimental work, and their conclusions are well founded in the data. In particular, the impact of TkRNAi on lifespan and lipid levels, the central finding in this study, has been demonstrated multiple times in different experiments and using different genetic tools. As a result, I don't feel that additional experimental work is necessary to support the current conclusions.

      However, I find it hard to assess the robustness of the lifespan data from the other manipulations used (TkR99DRNAi, TkRNAi in dFoxo mutants etc.) because information on the population size and whether these experiments have been replicated is lacking. Can the authors state in the figure legends the numbers of flies used for each lifespan and whether replicates have been done? For all other data it is clear how many replicates have been done, and the methods give enough detail for all experiments to be reproduced.

      Significance:

      Overall, I find the key conclusions of the paper convincing. The authors present an extensive amount of experimental work, and their conclusions are well founded in the data. We have known that the microbiota influence lifespan for some time but the mechanisms by which they do so have remained elusive. This study identifies one such mechanism and as a result opens several avenues for further research. The Tk-microbiota interaction is shown to be important for both lifespan and lipid homeostasis, although it's clear these are independent phenotypes. The fact that the outcome of the Tk-microbiota interaction depends on the bacterial species is of particular interest because it supports the idea that manipulation of the microbiota, or specific aspects of the host-microbiota interaction, may have therapeutic potential.

      These findings will be of interest to a broad readership spanning host-microbiota interactions and their influence on host health. They move forward the study of microbial regulation of host longevity and have relevance to our understanding of microbial regulation of host lipid homeostasis. They will also be of significant interest to those studying the mechanisms of action and physiological roles of Tachykinins.

      Field of expertise: Drosophila, gut, ageing, microbiota, innate immunity

    2. Reviewer #2 (Public review):

      Summary:

      The main finding of this work is that microbiota impacts lifespan though regulating the expression of a gut hormone (Tk) which in turn acts on its receptor expressed on neurons. This conclusion is robust and based on a number of experimental observations, carefully using techniques in fly genetics and physiology: 1) microbiota regulates Tk expression, 2) lifespan reduction by microbiota is absent when Tk is knocked down in gut (specifically in the EEs), 3) Tk knockdown extends lifespan and this is recapitulated by knockdown of a Tk receptor in neurons. These key conclusions are very convincing. Additional data are presented detailing the relationship between Tk and insulin/IGF signalling and Akh in this context. These are two other important endocrine signalling pathways in flies. The presentation and analysis of the data are excellent.

      There are only a few experiments or edits that I would suggest as important to confirm or refine the conclusions of this manuscript. These are:

      (1) When comparing the effects of microbiota (or single bacterial species) in different genetic backgrounds or experimental conditions, I think it would be good to show that the bacterial levels are not impacted by the other intervention(s). For example, the lifespan results observed in Figure 2A are consistent with Tk acting downstream of the microbes but also with Tk RNAi having an impact on the microbiota itself. I think this simple, additional control could be done for a few key experiments. Similarly, the authors could compare the two bacterial species to see if the differences in their effects come from different ability to colonise the flies.

      (2) The effect of Tk RNAi on TAG is opposite in CR and Ax or CR and Ap flies, and the knockdown shows an effect in either case (Figure 2E, Figure 3D). Why is this? Better clarification is required.

      (3) With respect to insulin signalling, all the experiments bar one indicate that insulin is mediating the effects of Tk. The one experiment that does not is using dilpGS to knock down TkR99D. Is it possible that this driver is simply not resulting in an efficient KD of the receptor? I would be inclined to check this, but as a minimum I would be a bit more cautious with the interpretation of these data.

      (4) Is it possible to perform at least one lifespan repeat with the other Tk RNAi line mentioned? This would further clarify that there are no off-target effects that can account for the phenotypes.

      There are a few other experiments that I could suggest as I think they could enrich the current manuscript, but I do not believe they are essential for publication:

      (5) The manuscript could be extended with a little more biochemical/cell biology analysis. For example, is it possible to look at Tk protein levels, Tk levels in circulation, or even TkR receptor activation or activation of its downstream signalling pathways? Comparing Ax and CR or Ap and CR one would expect to find differences consistent with the model proposed. This would add depth to the genetic analysis already conducted. Similarly, for insulin signalling - would it be possible to use some readout of the pathway activity and compare between Ax and CR or Ap and CR?

      (6) The authors use a pan-acetyl-K antibody but are specifically interested in acetylated histones. Would it be possible to use antibodies for acetylated histones? This would have the added benefit that one can confirm the changes are not in the levels of histones themselves.

      (7) I think the presentation of the results could be tightened a bit, with fewer sections and one figure per section.

      Significance:

      The main contribution of this manuscript is the identification of a mechanism that links the microbiota to lifespan. This is very exciting and topical for several reasons:

      (1) The microbiota is very important for overall health but it is still unclear how. Studying the interaction between microbiota and health is an emerging, growing field, and one that has attracted a lot of interest, but one that is often lacking in mechanistic insight. Identifying mechanisms provides opportunities for therapies. The main impact of this study comes from using the fruit fly to identify a mechanism.

      (2) It is very interesting that the authors focus on an endocrine mechanism, especially with the clear clinical relevance of gut hormones to human health recently demonstrated with new, effective therapies (e.g. Wegovy).

      (3) Tk is emerging as an important fly hormone and this study adds a new and interesting dimension by placing TK between microbiota and lifespan.

      I think the manuscript will be of great interest to researchers in ageing, human and animal physiology and in gut endocrinology and gut function.

    3. Reviewer #3 (Public review):

      Summary:

      Marcu et al. demonstrate a gut-neuron axis that is required for the lifespan-shortening effects mediated by gut bacteria. They show that the presence of commensal bacteria-particularly Acetobacter pomorum-promotes Tk expression in the gut, which then binds to neuronal tachykinin receptors to shorten lifespan. Tk has also recently been reported to extend lifespan via adipokinetic hormone (Akh) signaling (Ahrentløv et al., Nat Metab 7, 2025), but the mechanism here appears distinct. The lifespan shortening by Ap via Tk seems to be partially dependent on foxo and independent of both insulin signaling and Akh-mediated lipid mobilization.

      Although the detailed mechanistic link to lifespan is not fully resolved, the experiment and its results clearly show the involvement of the molecules tested. This work adds a valuable dimension to our growing understanding of how gut bacteria influence host longevity. However, there are some points that should be addressed.

      (1) Tk+ EEC activity should be assessed directly, rather than relying solely on transcript levels. Approaches such as CaLexA or GCaMP could be used.

      (2) In Line243, the manuscript states that the reporter activity was not increased in the posterior midgut. However, based on the presented results in Fig4E, there is seemingly not apparent regional specificity. A more detailed explanation is necessary.

      (3) If feasible, assessing foxo activation would add mechanistic depth. This could be done by monitoring foxo nuclear localization or measuring the expression levels of downstream target genes.

      (4) Fig1C uses Adh for normalization. Given the high variability of the result, the authors should (1) check whether Adh expression levels changed via bacterial association and/or (2) compare the results using different genes as internal standard.

      (5) While the difficulty of maintaining lifelong axenic conditions is understandable, it may still be feasible to assess the induction of Tk (i.e.. Tk transcription or EE activity upregulation) by the microbiome on males.

      (6) We also had some concerns regarding the wording of the title.<br /> Fig6B and C suggests that TkR86C, in addition to TkR99D, may be involved in the A. pomorum-lifespan interaction. Consider revising the title to refer more generally to the "tachykinin receptor" rather than only TkR99D.<br /> The difference between "aging" and "lifespan" should also be addressed. While the study shows a role for Tk in lifespan, assessment of aging phenotypes (e.g. Climbing assay, ISC proliferation) beyond the smurf assay is required to make conclusions about aging.

      (7) The statement in Line 82 that EEs express 14 peptide hormones should be supported with an appropriate reference, if available.

      Significance:

      General assessment: The main strength of this study is the careful and extensive lifespan analyses, which convincingly demonstrate the role of gut microbiota in regulating longevity. The authors clarify an important aspect of how microbial factors contribute to lifespan control. The main limitation is that the study primarily confirms the involvement of previously reported signaling pathways, without identifying novel molecular players or previously unrecognized mechanisms of lifespan regulation.

      Advance: The lifespan-shortening effect of Acetobacter pomorum (Ap) has been reported previously, as has the lifespan-shortening effect of Tachykinin (Tk). However, this study is the first to link these two factors mechanistically, which represents a significant and original contribution to the field. The advance is primarily mechanistic, providing new insight into how microbial cues converge on host signaling pathways to influence ageing.

      Audience: This work will be of particular interest to a specialized audience of basic researchers in ageing biology. It will also attract interest from microbiome researchers who are investigating host-microbe interactions and their physiological consequences. The findings will be useful as a conceptual framework for future mechanistic studies in this area.

      Field of expertise: Drosophila ageing, lifespan, microbiome, metabolism

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hernandez-Nunez et al. provides a comprehensive characterization of how heart-brain circuits develop in a vertebrate brain, namely the zebrafish. The characterization is performed using a combination of modern and sophisticated imaging and neural manipulation techniques and achieves unprecedented clarity and detail in how the heart-brain communication develops early in life. The paper describes a three-stage program, where first an efferent-circuit from the motor vagus to the heart develops, followed by sympathetic innervation, and lastly sensory neurons innervate the heart.

      Strengths:

      The paper is very clearly and nicely written. The findings are novel and of high quality and relevance. The presentations are very clear and nicely interpreted. The analyses are well presented and applied.

      Weaknesses:

      From the heart rate traces, heart rate variability seems to be prominent and changes across days post-fertilization (dpf). That would be a useful dependent variable, considering that the variation captured by the models does not fully explain heart rate, both for sympathetic and parasympathetic efferents. Given the strong autorhythmicity of nodal tissue in neurogenic hearts, modulatory inputs could potentially predict heart rate variability with higher precision.

    2. Reviewer #2 (Public review):

      Hernandez-Nunez et al. investigate the development and function of neural circuits involved in the regulation of heart rate in larval zebrafish. Using conserved genetic markers, they identify neural pathways involved in the bidirectional control of heart rate and in providing sensory feedback, potentially enabling more precise tuning. The main observation is that the different elements of this circuit are laid down in a developmentally staggered manner.

      At 4 days old, the heart rate is invariant to a range of sensory stimuli, and the vagal motor or sympathetic pathways could not be seen to innervate the heart. Progressively through development, the heart is first innervated by the vagal motor pathway, whose axons are cholinergic, before the formation of phox2bb+ intracardiac neurons (ICNs). At this stage, before the first ICNs are observed, activation of the vagal motor pathway by optogenetic activation of a localized population of cholinergic hindbrain neurons leads to bradycardia. After the vagal motor innervation begins, the sympathetic pathway innervates the heart, which could be visualized in the form of TH+ fibers from the anterior paravertebral ganglia (APG). The activity of the TH+ APG neurons was diverse and showed proportional, integral, and derivative-like relationships to the heart rate, suggesting a role in more precise tuning of the rate than what could be achieved through the vagal pathway alone. The sensory vagus innervation of the heart was identified to be the last stage to develop; however, neurons in the nodose ganglion exhibited diverse responses tuned to the heart rate well before the innervation reached the heart. The authors attribute this to the fact that other indirect sensory cues from the gills or vasculature could be used to sense heart rate prior to innervation.

      This study identifies key components of the control loop required for the regulation of heart rate in zebrafish. The control mechanism appears to be independent of the cues that trigger heart rate changes, indicating that the circuit is indeed part of an interoceptive pathway for heart rate control. Evidence for the staggered development of the vagal-motor, sympathetic, and sensory pathways is conclusive, and as the authors discuss, this phenomenon progressively allows for finer-grained control of the heart rate. This could be achieved through proportional-integral-derivative-like control properties emerging in a diverse set of neurons in the APG and sensory feedback of the state of the heart. In line with these findings, the baseline variability of heart rate prior to innervation at 4 days old appears to be comparatively lower than the later stages (Figure 1C, D, Supplementary Figure 1C-F) and increases over development.

      Based on this observation and the time courses of the kernels identified by the GLMs, I would expect heart rate fluctuations of a finer time scale, ultimately limited by the time course of GCaMP6s, to be captured by the models in Figures 3, 5, and 7, in addition to the stimulus-locked changes that are highlighted. While the models yield valuable insight in the form of the activation kernels and their potential roles, in one instance, this captures the potential contribution of either the motor vagus or the APG to the change in heart rate. This makes it challenging to identify where it falls short and the potential functions of pathways that are yet to be discovered.

      Lastly, the proposed anatomical connectivity of the heart-brain circuit is based on tracts observed in this study as well as those inferred from function and from previous studies.

      (1) It is not clear from the images presented here whether the VSNs send feedback projections to the brainstem VPN.

      (2) Do the brainstem neurons identified by their functional roles send efferent projections via the motor vagus nerve? This is unclear from the results presented and needs to be clarified in the text.

      (3) Add appropriate clarifying annotations to Figure 9 and a section of text discussing the potential unknowns in the proposed circuit diagram.

    1. Reviewer #1 (Public review):

      Summary:

      This paper demonstrates the first application of voltage imaging using a genetically encoded voltage indicator, ArcLight, for recording the spontaneous activity of the developing spinal cord in zebrafish. This technology enabled better temporal resolution compared to what has been demonstrated with calcium imaging in past studies (Muto et al., 2011; Warp et al., 2012; Wan et al., 2019 ), which led to the discovery of the maturation process of "firing" shapes in spinal neurons. This maturation process occurs simultaneously with axonal elongation and network integration. Thus, voltage imaging revealed new biological details of the development of the spinal circuits.

      Strengths:

      The use of voltage imaging instead of calcium imaging revealed biological details of the functional maturation of spinal cord neurons in developing zebrafish.

      Weaknesses:

      This manuscript lacks many basic components and explanations necessary for understanding the methodologies used in this study.

    2. Reviewer #2 (Public review):

      The authors present highly impressive in vivo voltage‐imaging data, demonstrating neuronal activity at subcellular, cellular, and population levels in a developing organism. The approach provides excellent spatial and temporal resolution, with sufficient signal-to-noise to detect hyperpolarizations and subthreshold events. The visualization of contralateral synchrony and its developmental loss over time is particularly compelling. The observation that ipsilateral synchrony persists despite contralateral desynchronization is a striking demonstration of the power of GEVIs in vivo. While I outline several points that should be addressed, I consider this among the strongest demonstrations of in vivo GEVI imaging to date.

      Major points:

      (1) Clarification of GEVI performance characteristics

      There is a widespread misconception in the GEVI field that response speed is the dominant or primary determinant of sensor performance. Although fast kinetics are certainly desirable, they are not the only (or even necessarily the limiting) factor for effective imaging. Kinetic speed specifies the time to reach ~63% of the maximal ΔF/F for a given voltage step (typically 100 mV, approximating the amplitude of a neuronal action potential), but in practical imaging, a slower sensor with a large ΔF/F can outperform a faster sensor with a small ΔF/F. In this context, the authors' use of ArcLight is actually instructive. ArcLight is one of the slower GEVIs in common use, yet Figures S1a-b clearly show that it still reports voltage transients in vivo very well. I therefore strongly recommend moving these panels into the main text to emphasize that robust in vivo imaging can be achieved even with a relatively slow GEVI, provided the signal amplitude and SNR are adequate. This will help counteract the common misunderstanding in the field.

      (2) ArcLight's voltage-response range

      ArcLight is shifted toward more negative potentials (V₁/₂ ≈ −30 mV). This improves subthreshold detection but makes distinguishing action potentials from subthreshold transients more challenging. The comparison with GCaMP is helpful because the Ca²⁺ signal largely reflects action potentials. Panels S1c-f show similar onset kinetics but a longer decay for GCaMP. Surprisingly, the ΔF/F amplitudes are comparable; typically, GCaMP changes are larger. To support lines 193-194, the authors should include a table summarizing the onset/offset kinetics and ΔF/F ranges for neurons expressing ArcLight versus GCaMP.

      Additionally, the expected action-potential amplitude in zebrafish neurons should be stated. In Figure S1b, a 40 mV change appears to produce ~0.5% ΔF/F, but this should be quantified and noted. Could this comparison to GCaMP help resolve action potentials from subthreshold bursts?

      (3) Axonal versus somatic amplitudes (Line 203)

      The manuscript states that voltage amplitudes are "slightly smaller" in axons than in somata; this requires quantitative values and statistical testing. More importantly, differences in optical amplitude reflect factors such as expression levels, background fluorescence, and optical geometry, not necessarily true differences in voltage amplitude. The axonal signals are clearly present, but their relative magnitude should not be interpreted without correction.

      (4) Figure 4C: need for an off-ROI control

      Figure 4C should include a control ROI located away from ROI3 to demonstrate that the axonal signal is not due to background fluctuations, similar to the control shown in Figure S3. Although the ΔF image suggests localization, showing the trace explicitly would strengthen the point. The fluorescence-change image in Figure 4c should also be fully explained in the legend.

      (5) Figure 5: hyperpolarization signals

      Figure 5 is particularly impressive. It appears that Cell 2 at 18.5 hpf and Cell 1 at 18 hpf exhibit hyperpolarizing events. The authors should confirm that these are true hyperpolarizations by giving some indication of how often they were observed.

      (6) SNR comparison (Lines 300-302)

      The claim that ArcLight and GCaMP exhibit comparable SNR requires statistical support across multiple cells.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to establish a long-term voltage imaging platform to investigate how coordinated neuronal activity emerges during spinal cord development in zebrafish embryos. Using the genetically encoded voltage indicator ArcLight, they tracked membrane potential dynamics in motor neurons at population, single-cell, and subcellular levels from 18 to 23 hours post-fertilization (hpf), revealing relationships between firing maturation, waveform characteristics, and axonal outgrowth.

      Strengths:

      (1) Technical advancement in developmental voltage imaging:

      This study demonstrates voltage imaging of motor neurons in the developing vertebrate spinal cord. The approach successfully captures voltage dynamics at multiple spatial scales-neuronal population, single-cell, and subcellular compartments.

      (2) Insights into the relationship between morphological and functional maturation:

      The work reveals important relationships between voltage dynamics maturation and morphological changes.

      (3) Kinetics analysis of membrane potential waveform enabled by voltage imaging:

      The characterization of "immature" versus "mature" firing based on quantitative waveform parameters provides insights into functional maturation that are inaccessible by calcium imaging. This analysis reveals a maturation process in the biophysical properties of developing neurons.

      (4) Matching of voltage indicator kinetics to biological signal:

      The authors' choice of ArcLight, despite its slow kinetics compared to newer GEVIs, proved well-suited to the low-frequency activity patterns in developing spinal neurons (frequency ~0.3 Hz).

      Weaknesses:

      (1) Insufficient comparison with prior calcium imaging studies:

      While the authors state that voltage imaging provides superior temporal resolution compared to calcium imaging (lines 192-196, 301), and this is generally true, the current manuscript does not adequately cite or discuss previous calcium imaging studies. Since neural activity occurs at low frequency in the developing spinal cord, calcium imaging is adequate for characterizing the emergence of coordinated activity patterns in the developing zebrafish spinal cord. Notably, Wan et al. (2019, Cell) performed a comprehensive single-cell reconstruction of emerging population activity in the entire developing zebrafish spinal cord using calcium imaging. This work should be properly acknowledged and compared. The specific advantages of voltage imaging over these prior studies need to be more clearly articulated, e.g. detection of subthreshold events and membrane potential waveform kinetics.

      (2) Considerations for generalizability of the ArcLight-based voltage imaging approach:

      While this study successfully demonstrates voltage imaging using ArcLight in the developing spinal cord, the generalizability of this approach to later developmental stages and other neural systems warrants discussion. ArcLight exhibits relatively slow kinetics (rise time ~100-200 ms, decay τ ~200-300 ms). In the current study, these kinetics are well-suited to the developmental activity patterns observed (firing frequency ~0.3 Hz), representing appropriate matching of indicator properties to biological timescales. However, the same approach may be less suitable for later developmental stages when neural activity occurs at higher frequencies.

      (3) Incomplete methodological descriptions:

      As a paper establishing a new imaging approach, several critical details are missing or unclear.

      (a) Imaging system specifications: The imaging setup description lacks essential information, including light source specifications, excitation wavelength/filter sets, and light power at the sample. The authors should also clarify whether wide-field optics was used rather than confocal or selective plane imaging.

      (b) Long-term imaging protocol: Whether neurons were imaged continuously or with breaks between imaging sessions is not explicitly stated. The current phrasing could be interpreted as a continuous 4.5-hour recording, which would be technically impressive but may not be what was actually done.

      (c) Image processing procedures: Denoising and bleach correction procedures are mentioned but not described, which is critical for a methods-focused paper.

      (d) The waveform classification (Supplementary Figure S6) shows overlapping kinetics between "immature" and "mature" firing, yet the classification method is not adequately justified.

      (e) Given that photostability and toxicity are critical considerations for long-term voltage imaging, these aspects warrant further clarification. While the figures suggest stable ArcLight fluorescence during the experiments, the manuscript lacks quantification of photobleaching, a discussion of potential toxicity concerns associated with the indicator, and information regarding the maximum duration over which the ArcLight signal can faithfully report physiological voltage dynamics.

      (4) Incomplete data representation and quantification:

      (a) The claim of "reduced variability" in calcium imaging (line 194) is not clearly demonstrated in Supplementary Figure S1.

      (b) Amplitude distributions for cell/subcellular compartments are not systematically quantified. Figure S3 shows ~5% changes in some axons versus ~2% in others, but it remains unclear whether these variabilities reflect differences between axonal compartments within the same cell, between individual cells, or between individual fish.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript reported a method for deep brain imaging with a GRIN lens that combines "low-NA telecentric scanning (LNTS) of laser excitation with high-NA fluorescence collection" to achieve a larger FOV than conventional approaches.

      Strengths:

      The manuscript presented in vivo structural images and calcium activity results in side-by-side comparison to wide-field epi fluorescence imaging through a GRIN lens and two-photon scanning imaging.

      Weaknesses:

      (1) Lack of sufficient technique information on the "high-NA (1.0) fluorescence collection". Is it custom-made or an off-the-shelf component? The only optical schematic, Figure 1, shows two lenses and a Si-PMT as the collection apparatus. There is no information about the lenses and the spacing between each component.

      (2) There is no discussion about the speed limitation of the LNTS method, which, as a scanning-based method, is limited by the scanner speed. At a 10 Hz frame rate, the LNTS, although it has a better FOV, is much slower than widefield fluorescence imaging. The 10 Hz speed is not sufficient for some fast calcium activities.

      (3) Supplementary Figure 5 is irrelevant to the main claim of the manuscript. This is a preliminary simulation related to the authors' proposed future work.

    2. Reviewer #2 (Public review):

      Summary:

      This study introduces a simple optical strategy for one-photon imaging through GRIN lenses that prioritizes coverage while maintaining practical signal quality. By using low-NA telecentric scanned excitation together with high-NA collection, the approach aims to convert nearly the full lens facet into a usable field of view (FOV) with uniform contrast and visible somata. The method is demonstrated in 4-µm fluorescent bead samples and mouse brain, with qualitative comparisons to widefield and two-photon (2P) imaging. Because the configuration relies on standard components and a minimalist optical layout, it may enable broader access to large-area cellular imaging in the deep brain across neuroscience laboratories.

      Strengths:

      (1) This method mitigates off-axis aberrations and enlarges the usable FOV. It achieves near full-facet usable FOV with consistent centre-to-edge contrast, as evidenced by 4-µm fluorescent bead samples (uniform visibility to the edge) and in vivo microglia imaging (resolvable somata across the field).

      (2) The optical design is simple and supports efficient photon collection, lowering the barrier to adoption relative to adaptive optics (AO) or lens design-based correction. Using standard components and treating the GRIN lens as a high-NA (~1.0) light pipe increases collection efficiency for ballistic and scattered fluorescence. Figure annotations report the illumination energy required to reach a fixed detected-photon target (e.g., ~1000 detected photons per bead/cell for the 500-µm FOV condition), and under this equal-output criterion, the LNTS configuration achieves comparable or better image quality at lower illumination energy than conventional wide-field imaging, supporting improved photon efficiency and implying reduced bleaching and heating for equivalent signal levels.

      (3) The in vivo functional recordings are stable and exhibit strong signals. In vivo calcium imaging shows high-SNR ΔF/F₀ traces that remain stable over ~30-minute sessions with only modest baseline drift reported, supporting physiological measurements without heavy denoising and enabling large-scale data collection.

      (4) The low-NA excitation provides an extended focal depth, enabling more neurons to be tracked concurrently within a single FOV while maintaining practical signal quality. It reduces sensitivity to axial motion and minor misalignment and enhances overall experimental efficiency.

      Weaknesses:

      (1) Quantitative characterization is limited. Resolution and contrast are not comprehensively mapped as functions of field position and depth, and a clear, operational definition of "usable FOV" is not specified with threshold criteria.

      (2) The claim of approximately 100% usable FOV is largely supported by qualitative images; standardized metrics (e.g., PSF/MTF maps, contrast-to-noise ratio profiles, cell-detection yield versus radius) are needed to calibrate expectations and enable comparison across systems.

      (3) The trade-off inherent to low NA excitation, namely a broader axial PSF and possible neuropil/background contamination, is acknowledged qualitatively but not quantified. Analyses that separate in-focus from out-of-focus signal would help readers judge single-cell fidelity across the field.

      (4) Generalizability remains to be established. Performance across multiple GRIN models (e.g., diameter, NA), wavelengths, is not yet demonstrated. Longer-session photobleaching, heating, and phototoxicity, particularly near the edge of the FOV, also require fuller evaluation.

      Readers should view it as a coverage-first strategy that enlarges the FOV while accepting a modest trade-off in resolution due to the low-NA excitation and the extended axial PSF.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a non-decision time (NDT)-informed approach to estimating time-varying decision thresholds in diffusion models of decision making. The manuscript motivates the method well, outlines the identifiability issues it is intended to address, and evaluates it using simulations and two empirical datasets. The aim is clear, the scope is deliberately focused, and the manuscript is well written. The core idea is interesting, technically grounded, and a meaningful contribution to ongoing work on collapsing thresholds.

      Strengths:

      The manuscript is logically structured and easy to follow. The emphasis on parameter recovery is appropriate and appreciated. The finding that the exponential NDT-informed function produces substantially better recovery than the hyperbolic form is useful, given the importance placed on identifiability earlier in the paper. The threshold visualisations are also helpful for interpreting what the models are doing. Overall, the work offers a well-defined, methodologically oriented contribution that will interest researchers working on time-varying thresholds.

      Weaknesses / Areas for Clarification:

      A few points would benefit from clarification, additional analysis, or revised presentation:

      (1) It would help readers to see a concrete demonstration of the trade-off between NDT and collapsing thresholds, to give a sense of the scale of the identifiability problem motivating the work.

      (2) Before moving to the empirical datasets, the manuscript really needs a simulation-based model-recovery comparison, since all major conclusions of the empirical applications rely on model comparison. One approach might be to simulate from (a) an FT model with across-trial drift variability and (b) one of the CT models, then fit both models to each of the simulated data sets. This would address a longstanding issue: sometimes CT models are preferred even when the estimated collapse in the thresholds is close to zero. A recovery study would confirm that model selection behaves sensibly in the new framework.

      (3) An additional subtle point is that BIC is defined in terms of the maximised log-likelihood of the model for the data being modelled. In the joint model, the parameter estimates maximise the combined likelihood of behavioural and non-decision-time data. This means the behavioural log-likelihood evaluated at the joint MLEs is not the behavioural MLE. If BIC is being computed for the behavioural data only, this breaks the assumptions underlying BIC. The only valid BIC here would be one defined for the joint model using the joint likelihood.

      (4) Table 1 sets up the Study 1 comparisons, but there's no row for the FT model. Similarly, Figures 10 and 13 would be more informative if they included FT predictions. This matters because, in Study 1, the FT model appears to fit aggregate accuracy better than the BIC-preferred collapsing model, currently shown only in Appendix 5. Some discussion of why would strengthen the argument.

      (5) In Figure 7, the degree of decay underestimation is obscured by using a density plot rather than a scatterplot, consistent with the other panels of the same figure. Presenting it the same way would make the mis-recovery more transparent. The accompanying text may also need clarification: when data are generated from an FT model with across-trial drift variability, the NDT-informed model seems to infer FT boundaries essentially. If that's correct, the model must be misfitting the simulated data. This is actually a useful result as it suggests across-trial drift variability in FT models is discriminable from collapsing-threshold models. It would be good to make this explicit.

      (6) Given the large recovery advantage of the exponential NDT-informed function over the hyperbolic one, the authors may want to consider whether the results favour adopting the former more generally. Given these findings, I would consider recommending the exponential NDT-informed model for future use.

      (7) In Study 2 (Figure 13), all models qualitatively miss an interesting empirical pattern: under speed emphasis, errors are faster than corrects, while under accuracy emphasis, errors become slower. The error RT distribution in the speed condition is especially poorly captured. It would be helpful for the authors to comment, as it suggests that something theoretically relevant is missing from all models tested.

      (8) The threshold visualisations extend to 3 seconds, yet both datasets show decisions mostly finishing by ~1.5 seconds. Shortening the x-axis would better reflect the empirical RT distributions and avoid unintentionally overstating the timescale of the empirical decision processes.

    2. Reviewer #2 (Public review):

      Summary:

      The authors use simulations and empirical data fitting in order to demonstrate that informing a decision model on estimates of single-trial non-decision time can guide the model to more reliable parameter estimates, especially when the model has collapsing bounds.

      Strengths:

      The paper is well written and motivated, with clear depth of knowledge in the areas of neurophysiology of decision-making, sequential sampling models, and, in particular, the phenomenon of collapsing decision bounds.

      Two large-scale simulations are run to test parameter recovery, and two empirical datasets are fit and assessed; the fitting procedures themselves are state-of-the-art, and the study makes use of a very new and well-designed ERP decomposition algorithm that provides single-trial estimates of the duration of diffusion; the results provide inferences about the operation of decision bound collapse - all of this is impressive.

      Weaknesses:

      This is an interesting and promising idea, but a very important issue is not clear: it is an intuitive principle that information from an external empirical source can enhance the reliability of parameter estimates for a given model, but how can the overall BIC improve, unless it is in fact a different model? Unfortunately, it is not clear whether and how the model structure itself differs between the NDT-informed and non-NDT-informed cases. Ideally, they are the same actual model, but with one getting extra guidance on where to place the tau and/or sigma parameters from external measurements. The absence of sigma (non-decision time variance) estimates for the non-NDT-informed model, however, suggests it is different in structure, not just in its lack of constraints. If they were the same model, whether they do or do not possess non-decision time variability (which is not currently clear), the only possible reason that the NDT-informed model could achieve better BIC is because the non-NDT-informed model gets lost in the fitting procedure and fails to find the global optimum. If they are in fact different models - for example, if the NDT-informed model is endowed with NDT variability, while the non-NDT-informed model is not - then the fit superiority doesn't necessarily say anything about an NDT-informed reliability boost, but rather just that a model with NDT variability fits better than one without.

      One reason this is unclear is that Footnote 4 says that this study did not allow trial-to-trial variability in nondecision time, but the entire premise of using variable external single-trial estimates of nondecision times (illustrated in Figure 2) assumes there is nondecision time variability and that we have access to its distribution.

      It is good that there is an Intro section to explain how the tradeoff between NDT and collapsing bound parameters renders them difficult to simultaneously identify, but I think it needs more work to make it clear. First of all, it is not impossible to identify both, in the same way as, say, pre- and post-decisional nondecision time components cannot be resolved from behaviour alone - the intro had already talked about how collapsing bounds impact RT distribution shapes in specific ways, and obviously mean (or invariant) NDT can't do that - it can only translate the whole distribution earlier/later on the time axis. This is at odds with the phrasing "one CANNOT estimate these three parameters simultaneously." So it should be first clarified that this tradeoff is not absolute. Second, many readers will wonder if it is simply a matter of characterising the bound collapse time course as beginning at accumulation onset, instead of stimulus offset - does that not sidestep the issue? Third, assuming the above can be explained, and there is a reason to keep the collapse function aligned to stimulus onset, could the tradeoff be illustrated by picking two distinct sets of parameter values for non-decision time, starting threshold, and decay rate, which produce almost identical bound dynamics as a function of RT? It is not going to work for most readers to simply give the formula on line 211 and say "There is a tradeoff." Most readers will need more hand-holding.

      A lognormal distribution is used as line 231 says it "must" produce a right-skew. Why? It is unusual for non-decision time distribution to be asymmetric in diffusion modeling, so this "must" statement must be fully explained and justified. Would I be right in saying that if either fixed or symmetrically distributed nondecision times were assumed, as in the majority of diffusion models, then the non-identifiability problem goes away? If the issue is one faced only by a special class of DDMs with lognormal NDT, this should be stated upfront.

      In the simulation study methods, is the only difference between NDT-informed and non-informed models that the non-NDT-informed must also estimate tau and sigma, whereas the NDT-informed model "knows" these two parameters and so only has the other three to estimate? And is it the exact same data that the two models are fit to, in each of the simulation runs? Why is sigma missing from the uninformed part of Figure 4? If it is nondecision time variability, shouldn't the model at least be aware of the existence of sigma and try to estimate it, in order for this to be a meaningful comparison?

      I am curious to know whether a linear bound collapse suffers from the same identifiability issues with NDT, or was it not considered here because it is so suboptimal next to the hyperbolic/exponential?

      The approach using HMP rests on the assumption that accumulation onset is marked by the peak of a certain neural event, but even if it is highly predictive of accumulation onset, depending on what it reflects, it could come systematically earlier or later than the actual accumulation onset. Could the authors comment on what implications this might have for the approach?

      Figure 7: for this simulation, it would be helpful to know the degree to which you can get away with not equipping the model to capture drift rate variability, when the degree of that d.r. variability actually produces appreciable slow error rates. The approach here is to sample uniformly from ranges of the parameters, but how many of these produce data that can be reasonably recognised as similar to human behaviour on typical perceptual decision tasks? The authors point out that only 5% of fits estimate an appreciable bound collapse but if there are only 10% of the parameter vectors that produce data in a typical RT range with typical error rates etc, and half of these produce an appreciable downturn in accuracy for slower RT, and all of the latter represent that 5%, then that's quite a different story. An easy fix would be to plot estimated decay as a scatter plot against the rate of decline of accuracy from the median RT to the slowest RT, to visualise the degree to which slow errors can be absorbed by the no-dr-var model without falsely estimating steep bound collapse. In general, I'm not so sure of the value of this section, since, in principle, there is no getting around the fact that if what is in truth a drift-variability source of slow errors is fit with a model that can only capture it with a collapsing bound, it will estimate a collapsing bound, or just fail to capture those slow errors.

    3. Reviewer #3 (Public review):

      The current paper addresses an important issue in evidence accumulation models: many modelers implement flat decision boundaries because the collapsing alternatives are hard to reliably estimate. Here, using simulations, the authors demonstrate that parameter recovery can be drastically improved by providing the model with additional data (specifically, an EEG-informed estimate of non-decision time). Moreover, in two empirical datasets, it is shown that those EEG-informed models provide a better fit to the data. The method seems sound and promising and might inform future work on the debate regarding flat vs collapsing choice boundaries. As an evidence-accumulation enthusiast, I am quite excited about this work, although for a broader audience, the immediate applicability of this approach seems limited because it does require EEG data (i.e. limiting widespread use of the method or e.g., answering questions about individual differences that require a very large N).

    1. Reviewer #1 (Public review):

      Summary:

      Two major breakthroughs in the field of arbuscular mycorrhiza (AM) were the discoveries that first AM fungi obtain lipids (not only carbohydrates) from their plant hosts (Bravo et al 2017; Jiang et al 2017; Keymer et al 2017; Luginbuehl et al 2017) and second that presumably obligate biotrophic AM fungi can produce spores in the absence of host plants when exposed to myristate (Sugiura et al 2020; Tanaka et al 2022).

      For this manuscript, Chen et al asked the question of whether myristate in the soil may also play a role in AM symbiosis when AM fungi live in symbiosis with their plant hosts. They show that myristate occurs in natural as well as agricultural soils, probably as a component of root exudates. Further, they treat AM fungi with myristate when grown in symbiosis in a Petri dish system with carrot hairy roots or in pots with alfalfa or rice to describe which effect the exogenous myristate has on symbiosis. Using 13C labelling, they show that myristate is taken up by AM fungi, although they can obtain sugars and lipids from the plant host. They also show that myristate leads to an increase in root colonization as well as expression of fungal genes involved in FA assimilation.

      Interestingly, the effect of myristate on colonization depends on the plant species and the level of phosphate fertilization provided to the plant. The reason for this remains unknown.

      Strengths:

      The findings are interesting and provide an advance in our understanding of lipid use by the extraradical mycelium of AM fungi.

      Weaknesses:

      However, there are some misconceptions in the writing, and some experimental results remain poorly clear as they are presented in a highly descriptive manner without interpretation or explanation.

    2. Reviewer #2 (Public review):

      Summary:

      Arbuscular mycorrhizal fungi (AMF) are among the most widely distributed soil microorganisms, forming symbiotic relationships (AM symbiosis) with approximately 70% of terrestrial vascular plants. AMF are considered obligate biotrophs that rely on host-derived symbiotic carbohydrates. However, it remains unclear whether symbiotic AMF can access exogenous non-symbiotic carbon sources. By conducting three interconnected and complementary experiments, Chen et al. investigated the direct uptake of exogenous 13C1-labeled myristate by symbiotic Rhizophagus irregularis, R. intraradices, and R. diaphanous, and assessed their growth responses using AMF-carrot hairy root co-culture systems (Experiments 1 and 2). They also explored the environmental distribution of myristate in plant and soil substrates, and evaluated the impact of exogenous myristate on the symbiotic carbon-phosphorus exchange between R. irregularis and alfalfa or rice in a greenhouse experiment (Experiment 3). Given that the AM symbiosis not only plays a significant role in the biogeochemical cycling of C and P elements but also acts as a key driver of plant community structure and productivity. The topic of this manuscript is relevant. The study is well-designed, and the manuscript is well-written. I find it easy and interesting to follow the entire narrative.

      Strengths:

      The manuscript provides evidence from 13C labeling and molecular analyses showing that symbiotic AMF can absorb non-symbiotic C sources like myristate in the presence of plant-derived symbiotic carbohydrates, challenging the traditional assumption that AMF exclusively rely on symbiotic carbon sources supplied from associated host plants. This finding advances our understanding of the nutritional interactions between AMF and host plants. Furthermore, the manuscript reveals that myristate is widely present in diverse soil and plant components; however, exogenous myristate disrupts the carbon-phosphorus exchange in arbuscular mycorrhizal symbiosis. These insights have significant implications for the application and regulation of the AM symbiosis in sustainable agriculture and ecological restoration.

      Weaknesses:

      The limitations of this study include:

      (1) The absorption of myristate by symbiotic AMF was observed only after exogenous application under artificial conditions, which may not accurately reflect natural environments.

      (2) The investigation into the mechanism by which myristate disrupts C-P exchange in AM symbiosis remains preliminary.

      Nevertheless, the authors have adequately discussed these limitations in the manuscript.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have addressed a major question since the discovery of myristate uptake from AM fungi as a non-symbiotic C source. Myristate has been used to grow some AM fungi axenically, but the biological significance of this saprobic attitude in natural or agronomical environments remained unexplored. The results of this research soundly demonstrate that myristate-derived C is used by AM fungi, leading to improved development of both extraradical and intraradical mycelium (at least under low P conditions). However, this does not lead to obvious advantages for the plant, since symbiotic nutrient exchange (carbon and phosphorus) is reduced upon myristate application. Furthermore, myristate-treated plants quench their defence responses.

      Strengths:

      The study is extensive, based on a solid experimental setup and methodological approach, combining several state-of-the-art techniques. The conclusions are novel and of high relevance for the scientific community. The writing is fluent and clear.

      Weaknesses:

      Some of the figures should be improved for clarity. The conclusions do not express a conclusive remark that, in my opinion, emerges clearly from the results: myristate application in agriculture does not seem to be a very promising approach, since it unbalances the symbiosis nutritional equilibrium and may weaken plant immunity. This is a very important point (albeit rather unpleasant for applicative scientists) that should be stressed in the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Okell et al. describe the imaging protocol and analysis pipeline pertaining to the arterial spin labeling (ASL) MRI protocol acquired as part of the UK Biobank imaging study. In addition, they present preliminary analyses of the first 7000+ subjects in whom ASL data were acquired, and this represents the largest such study to date. Careful analyses revealed expected associations between ASL-based measures of cerebral hemodynamics and non-imaging-based markers, including heart and brain health, cognitive function, and lifestyle factors. As it measures physiology and not structure, ASL-based measures may be more sensitive to these factors compared with other imaging-based approaches.

      Strengths:

      This study represents the largest MRI study to date to include ASL data in a wide age range of adult participants. The ability to derive arterial transit time (ATT) information in addition to cerebral blood flow (CBF) is a considerable strength, as many studies focus only on the latter.

      Some of the results (e.g., relationships with cardiac output and hypertension) are known and expected, while others (e.g., lower CBF and longer ATT correlating with hearing difficulty in auditory processing regions) are more novel and intriguing. Overall, the authors present very interesting physiological results, and the analyses are conducted and presented in a methodical manner.

      The analyses regarding ATT distributions and the potential implications for selecting post-labeling delays (PLD) for single PLD ASL are highly relevant and well-presented.

      Weaknesses:

      At a total scan duration of 2 minutes, the ASL sequence utilized in this cohort is much shorter than that of a typical ASL sequence (closer to 5 minutes as mentioned by the authors). However, this implementation also included multiple (n=5) PLDs. As currently described, it is unclear how any repetitions were acquired at each PLD and whether these were acquired efficiently (i.e., with a Look-Locker readout) or whether individual repetitions within this acquisition were dedicated to a single PLD. If the latter, the number of repetitions per PLD (and consequently signal-to-noise-ratio, SNR) is likely to be very low. Have the authors performed any analyses to determine whether the signal in individual subjects generally lies above the noise threshold? This is particularly relevant for white matter, which is the focus of several findings discussed in the study.

      Hematocrit is one of the variables regressed out in order to reduce the effect of potential confounding factors on the image-derived phenotypes. The effect of this, however, may be more complex than accounting for other factors (such as age and sex). The authors acknowledge that hematocrit influences ASL signal through its effect on longitudinal blood relaxation rates. However, it is unclear how the authors handled the fact that the longitudinal relaxation of blood (T1Blood) is explicitly needed in the kinetic model for deriving CBF from the ASL data. In addition, while it may reduce false positives related to the relationships between dietary factors and hematocrit, it could also mask the effects of anemia present in the cohort. The concern, therefore, is two-fold: (1) Were individual hematocrit values used to compute T1Blood values? (2) What effect would the deconfounding process have on this?

      The authors leverage an observed inverse association between white matter hyperintensity volume and CBF as evidence that white matter perfusion can be sensitively measured using the imaging protocol utilized in this cohort. The relationship between white matter hyperintensities and perfusion, however, is not yet fully understood, and there is disagreement regarding whether this structural imaging marker necessarily represents impaired perfusion. Therefore, it may not be appropriate to use this finding as support for validation of the methodology.

    2. Reviewer #2 (Public review):

      Summary:

      Okell et al. report the incorporation of arterial spin-labeled (ASL) perfusion MRI into the UK Biobank study and preliminary observations of perfusion MRI correlates from over 7000 acquired datasets, which is the largest sample of human perfusion imaging data to date. Although a large literature already supports the value of ASL MRI as a biomarker of brain function, this important study provides compelling evidence that a brief ASL MRI acquisition may lead to both fundamental observations about brain health as manifested in CBF and valuable biomarkers for use in diagnosis and treatment monitoring.

      ASL MRI noninvasively quantifies regional cerebral blood flow (CBF), which reflects both cerebrovascular integrity and neural activity, hence serves as a measure of brain function and a potential biomarker for a variety of CNS disorders. Despite a highly abbreviated ASL MRI protocol, significant correlations with both expected and novel demographic, physiological, and medical factors are demonstrated. In many such cases, ASL was also more sensitive than other MRI-derived metrics. The ASL MRI protocol implemented also enables quantification of arterial transit time (ATT), which provides stronger clinical correlations than CBF in some factors. The results demonstrate both the feasibility and the efficacy of ASL MRI in the UK Biobank imaging study, which expects to complete ASL MRI in up to 60,000 richly phenotyped individuals. Although a large literature already supports the value of ASL MRI as a biomarker of brain function, this important study provides compelling evidence that a brief ASL MRI acquisition may lead to both fundamental observations about brain health as manifested in CBF and valuable biomarkers for use in diagnosis and treatment monitoring.

      Strengths:

      A key strength of this study is the use of an ASL MRI protocol incorporating balanced pseudocontinuous labeling with a background-suppressed 3D readout, which is the current state-of-the-art. To compensate for the short scan time, voxel resolution was intentionally only moderate. The authors also elected to acquire these data across five post-labeling delays, enabling ATT and ATT-corrected CBF to be derived using the BASIL toolbox, which is based on a variational Bayesian framework. The resulting CBF and ATT maps shown in Figure 1 are quite good, especially when combined with such a large and deeply phenotyped sample.

      Another strength of the study is the rigorous image analysis approach, which included covariation for a number of known CBF confounds as well as correction for motion and scanner effects. In doing so, the authors were able to confirm expected effects of age, sex, hematocrit, and time of day on CBF values. These observations lend confidence in the veracity of novel observations, for example, significant correlations between regional ASL parameters and cardiovascular function, height, alcohol consumption, depression, and hearing, as well as with other MRI features such as regional diffusion properties and magnetic susceptibility. They also provide valuable observations about ATT and CBF distributions across a large cohort of middle-aged and older adults.

      Weaknesses:

      This study primarily serves to illustrate the efficacy and potential of ASL MRI as an imaging parameter in the UK Biobank study, but some of the preliminary observations will be hypothesis-generating for future analyses in larger sample sizes. However, a weakness of the manuscript is that some of the reported observations are difficult to follow. In particular, the associations between ASL and resting fMRI illustrated in Figure 7 and described in the accompanying Results text are difficult to understand. It could also be clearer whether the spatial maps showing ASL correlates of other image-derived phenotypes in Figure 6B are global correlations or confined to specific regions of interest. Finally, while addressing partial volume effects in gray matter regions by covarying for cortical thickness is a reasonable approach, the Methods section seems to imply that a global mean cortical thickness is used, which could be problematic given that cortical thickness changes may be localized.

    3. Reviewer #3 (Public review):

      Summary:

      This is an extremely important manuscript in the evolution of cerebral perfusion imaging using Arterial Spin Labelling (ASL). The number of subjects that were scanned has provided the authors with a unique opportunity to explore many potential associations between regional cerebral blood flow (CBF) and clinical and demographic variables.

      Strengths:

      The major strength of the manuscript is the access to an unprecedentedly large cohort of subjects. It demonstrates the sensitivity of regional tissue blood flow in the brain as an important marker of resting brain function. In addition, the authors have demonstrated a thorough analysis methodology and good statistical rigour.

      Weaknesses:

      This reviewer did not identify any major weaknesses in this work.

    1. Reviewer #2 (Public review):

      Summary:

      This is an interesting study exploring methods for reconstructing visual stimuli from neural activity in the mouse visual cortex. Specifically, it uses a competition dataset (published in the Dynamic Sensorium benchmark study) and a recent winning model architecture (DNEM, dynamic neural encoding model) to recover visual information stored in ensembles of mouse visual cortex.

      Strengths:

      This is a great start for a project addressing visual reconstruction. It is based on physiological data obtained at a single-cell resolution, the stimulus movies were reasonably naturalistic and representative of the real world, the study did not ignore important correlates such as eye position and pupil diameter, and of course, the reconstruction quality exceeded anything achieved by previous studies. There appear to be no major technical flaws in the study, and some potential confounds were addressed upon revision. The study is an enjoyable read.

      Weaknesses:

      The study is technically competent and benchmark-focused, but without significant conceptual or theoretical advances. The inclusion of neuronal data broadens the study's appeal, but the work does not explore potential principles of neural coding, which limits its relevance for neuroscience and may create some disappointment to some neuroscientists. The authors are transparent that their goal was methodological rather than explanatory, but this raises the question of why neuronal data were necessary at all, as more significant reconstruction improvements might be achievable using noise-less artificial video encoders alone (network-to-network decoding approaches have been done well by teams such as Han, Poggio, and Cheung, 2023, ICML). Yet, even within the methodological domain, the study does not articulate clear principles or heuristics that could guide future progress. The finding that more neurons improve reconstruction aligns with well-established results in the literature that show that higher neuronal numbers improve decoding in general (for example, Hung, Kreiman, Poggio, and DiCarlo, 2005) and thus may not constitute a novel insight.

      Specific issues:

      (1) The study showed that it could achieve high-quality video reconstructions from mouse visual cortex activity using a neural encoding model (DNEM), recovering 10-second video sequences and approaching a two-fold improvement in pixel-by-pixel correlation over attempts. As a reader, I was left with the question: okay, does this mean that we should all switch to DNEM for our investigations of mouse visual cortex? What makes this encoding model special? It is introduced as "a winning model of the Sensorium 2023 competition which achieved a score of 0.301...single trial correlation between predicted and ground truth neuronal activity," but as someone who does not follow this competition (most eLife readers are not likely to do so, either), I do not know how to gauge my response. Is this impressive? What is the best theoretical score, given noise and other limitations? Is the model inspired by the mouse brain in terms of mechanisms or architecture, or was it optimized to win the competition by overfitting it to the nuances of the data set? Of course, I know that as a reader, I am invited to read the references, but the study would stand better on its own, if it clarified how its findings depended on this model.

      The revision helpfully added context to the Methods about the range of scores achieved by other models, but this information remains absent from the Abstract and other important sections. For instance, the Abstract states, "We achieve a pixel-level correlation of 0.57 between the ground truth movie and the reconstructions from single-trial neural responses," yet this point estimate (presented without confidence intervals or comparisons to controls) lacks meaning for readers who are not told how it compares to prior work or what level of performance would be considered strong. Without such context, the manuscript undercuts potentially meaningful achievements.

      (2) Along those lines, the authors conclude that "the number of neurons in the dataset and the use of model ensembling are critical for high-quality reconstructions." If true, these principles should generalize across network architectures. I wondered whether the same dependencies would hold for other network types, as this could reveal more general insights. The authors replied that such extensions are expected (since prior work has shown similar effects for static images) but argued that testing this explicitly would require "substantial additional work," be "impractical," and likely not produce "surprising results." While practical difficulty alone is not a sufficient reason to leave an idea untested, I agree that the idea that "more neurons would help" would be unsurprising. The question then becomes: given that this is a conclusion already in the field, what new principle or understanding has been gained in this study?

      (3) One major claim was that the quality of the reconstructions depended on the number of neurons in the dataset. There were approximately 8000 neurons recorded per mouse. The correlation difference between the reconstruction achieved by 1000 neurons and 8000 neurons was ~0.2. Is that a lot or a little? One might hypothesize that 7000 additional neurons could contribute more information, but perhaps, those neurons were redundant if their receptive fields are too close together or if they had the same orientation or spatiotemporal tuning. How correlated were these neurons in response to a given movie? Why did so many neurons offer such a limited increase in correlation? Originally, this question was meant to prompt deeper analysis of the neural data, but the authors did not engage with it, suggesting a limited understanding of the neuronal aspects of the dataset.

      (4) We appreciated the experiments testing the capacity of the reconstruction process, by using synthetic stimuli created under a Gaussian process in a noise-free way. But this originally further raised questions: what is the theoretical capability for reconstruction of this processing pipeline, as a whole? Is 0.563 the best that one could achieve given the noisiness and/or neuron count of the Sensorium project? What if the team applied the pipeline to reconstruct the activity of a given artificial neural network's layer (e.g., some ResNet convolutional layer), using hidden units as proxies for neuronal calcium activity? In the revision, this concern was addressed nicely in the review in Supplementary Figure 3C. Also, one appreciates that as a follow up, the team produced error maps (New Figure 6) that highlight where in the frames the reconstruction are likely to fail. But the maps went unanalyzed further, and I am not sure if there was a systematic trend in the errors.

      (5) I was encouraged by Figure 4, which shows how the reconstructions succeeded or failed across different spatial frequencies. The authors note that "the reconstruction process failed at high spatial frequencies," yet it also appears to struggle with low spatial frequencies, as the reconstructed images did not produce smooth surfaces (e.g., see the top rows of Figures 4A and 4B). In regions where one would expect a single continuous gradient, the reconstructions instead display specular, high-frequency noise. This issue is difficult to overlook and might deserve further discussion.

    2. Reviewer #3 (Public review):

      Summary:

      This paper presents a method for reconstructing input videos shown to a mouse from the simultaneously recorded visual cortex activity (two-photon calcium imaging data). The publicly available experimental dataset is taken from a recent brain-encoding challenge, and the (publicly available) neural network model that serves to reconstruct the videos is the winning model from that challenge (by distinct authors). The present study applies gradient-based input optimization by backpropagating the brain-encoding error through this selected model (a method that has been proposed in the past, with other datasets). The main contribution of the paper is, therefore, the choice of applying this existing method to this specific dataset with this specific neural network model. The quantitative results appear to go beyond previous attempts at video input reconstruction (although measured with distinct datasets). The conclusions have potential practical interest for the field of brain decoding, and theoretical interest for possible future uses in functional brain exploration.

      Strengths:

      The authors use a validated optimization method on a recent large-scale dataset, with a state-of-the-art brain encoding model. The use of an ensemble of 7 distinct model instances (trained on distinct subsets of the dataset, with distinct random initializations) significantly improves the reconstructions. The exploration of the relation between reconstruction quality and number of recorded neurons will be useful to those planning future experiments.

      Weaknesses:

      The main contribution is methodological, and the methodology combines pre-existing components without any new original component.

    1. Reviewer #1 (Public review):

      This manuscript introduces a biologically informed RNN (bioRNN) that predicts the effects of optogenetic perturbations in both synthetic and in vivo datasets. By comparing standard sigmoid RNNs (σRNNs) and bioRNNs, the authors make a compelling case that biologically grounded inductive biases improve generalization to perturbed conditions. This work is innovative, technically strong, and grounded in relevant neuroscience, particularly the pressing need for data-constrained models that generalize causally.

      Comments on revisions:

      The authors have addressed all my concerns.

    2. Reviewer #2 (Public review):

      Sourmpis et al. present a study in which the importance of including certain inductive biases in the fitting of recurrent networks is evaluated with respect to the generalization ability of the networks when exposed to untrained perturbations.

      The work proceeds in three stages:

      (i) a simple illustration of the problem is made. Two reference (ground-truth) networks with qualitatively different connectivity, but similar observable network dynamics, are constructed, and recurrent networks with varying aspects of design similarity to the reference networks are trained to reproduce the reference dynamics. The activity of these trained networks during untrained perturbations is then compared to the activity of the perturbed reference networks. It is shown that, of the design characteristics that were varied, the enforced sign (Dale's law) and locality (spatial extent) of efference were especially important.

      (ii) The intuition from the constructed example is then extended to networks that have been trained to reproduce certain aspects of multi-region neural activity recorded from mice during a detection task with a working-memory component. A similar pattern is demonstrated, in which enforcing the sign and locality of efference in the fitted networks has an influence on the ability of the trained networks to predict aspects of neural activity during unseen (untrained) perturbations.

      (iii) The authors then illustrate the relationship between the gradient of the motor readout of trained networks with respect to the net inputs to the network units, and the sensitivity of the motor readout to small perturbations of the input currents to the units, which (in vivo) could be controlled optogenetically. The paper is concluded with a proposed use for trained networks, in which the models could be analyzed to determine the most sensitive directions of the network and, during online monitoring, inform a targeted optogenetic perturbation to bias behavior.

      The authors do not overstate their claims, and in general, I find that I agree with their conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyzed the expression of ATAD2 protein in post-meiotic stages and characterized the localization of various testis-specific proteins in the testis of the Atad2 knockout (KO). By cytological analysis as well as the ATAC sequencing, the study showed that increased levels of HIRA histone chaperone, accumulation of histone H3.3 on post-meiotic nuclei, defective chromatin accessibility and also delayed deposition of protamines. Sperm from the Atad2 KO mice reduces the success of in vitro fertilization. The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

      Strengths:

      The paper describes the role of ATAD2 AAA+ ATPase in the proper localization of sperm-specific chromatin proteins such as protamine, suggesting the importance of the DNA replication-independent histone exchanges with the HIRA-histone H3.3 axis.

      Weaknesses:

      The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Liakopoulou et al. presents a comprehensive investigation into the role of ATAD2 in regulating chromatin dynamics during spermatogenesis. The authors elegantly demonstrate that ATAD2, via its control of histone chaperone HIRA turnover, ensures proper H3.3 localization, chromatin accessibility, and histone-to-protamine transition in post-meiotic male germ cells. Using a new well-characterized Atad2 KO mouse model, they show that ATAD2 deficiency disrupts HIRA dynamics, leading to aberrant H3.3 deposition, impaired transcriptional regulation, delayed protamine assembly, and defective sperm genome compaction. The study bridges ATAD2's conserved functions in embryonic stem cells and cancer to spermatogenesis, revealing a novel layer of epigenetic regulation critical for male fertility.

      Strengths:

      The MS first demonstration of ATAD2's essential role in spermatogenesis, linking its expression in haploid spermatids to histone chaperone regulation by connecting ATAD2-dependent chromatin dynamics to gene accessibility (ATAC-seq), H3.3-mediated transcription, and histone eviction. Interestingly and surprisingly, sperm chromatin defects in Atad2 KO mice impair only in vitro fertilization but not natural fertility, suggesting unknown compensatory mechanisms in vivo.

      Weaknesses:

      The MS is robust and there are not big weaknesses

      The authors have addressed all the queries successfully.

    3. Reviewer #3 (Public review):

      Summary:

      The authors generated knockout mice for Atad2, a conserved bromodomain-containing factor expressed during spermatogenesis. In Atad2 KO mice, HIRA, a chaperone for histone variant H3.3, was upregulated in round spermatids, accompanied by an apparent increase in H3.3 levels. Furthermore, the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis were partially disrupted in the absence of ATAD2, possibly due to delayed histone removal. Despite these abnormalities, Atad2 KO male mice were able to produce offspring normally.

      Strengths:

      The manuscript addresses the biological role of ATAD2 in spermatogenesis using a knockout mouse model, providing a valuable in vivo framework to study chromatin regulation during male germ cell development. The observed redistribution of H3.3 in round spermatids is clearly presented and suggests a previously unappreciated role of ATAD2 in histone variant dynamics. The authors also document defects in the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis, providing phenotypic insight into chromatin transitions in late spermatogenic stages. Overall, the study presents a solid foundation for further mechanistic investigation into ATAD2 function.

      Weaknesses:

      While the manuscript reports the gross phenotype of Atad2 KO mice, the findings remain largely superficial and do not convincingly demonstrate how ATAD2 deficiency affects chromatin.

    1. Reviewer #3 (Public review):

      Summary:

      This paper presents a timely and significant contribution to the study of lysine acetoacetylation (Kacac). The authors successfully demonstrate a novel and practical chemo-immunological method using the reducing reagent NaBH4 to transform Kacac into lysine β-hydroxybutyrylation (Kbhb).

      Strengths:

      This innovative approach enables simultaneous investigation of Kacac and Kbhb, showcasing their potential in advancing our understanding of post-translational modifications and their roles in cellular metabolism and disease.

      Weaknesses:

      The study lacks supporting in vivo data, such as gene knockdown experiments, to validate the proposed conclusions at the cellular level.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Subhramanian et al. carefully examined how microglia adapt their surveillance strategies during chronic neurodegeneration, specifically in prion-infected mice. The authors used ex vivo time-lapse imaging and in vitro strategies and found that reactive microglia adopt a highly mobile, "kiss-and-ride" behavior, contrasting the more static surveillance typical of homeostatic microglia. The manuscript provides fundamental mechanistic insights into the dynamics of microglia-neuron interactions, implicates P2Y6 signaling in regulating mobility, and suggests that intrinsic reprogramming of microglia might underlie this behavior, the conclusions are therefore compelling.

      Strengths:

      (1) The novelty of the study is high, particularly the demonstration that microglia lose territorial confinement and dynamically migrate from neuron to neuron under chronic neurodegeneration.

      (2) The possible implications of a stimulus-independent high mobility in reactive microglia are particularly striking. Although this is not fully explored.

      (3) The use of time-lapse imaging in organotypic slices rather than overexpression models provided a more physiological approach.

      (4) Microglia-neuron interactions in neurodegeneration have broad implications for understanding the progression of diseases, such as Alzheimer's and Parkinson's, that are associated with chronic inflammation.

      Weaknesses:

      Previous weaknesses were addressed.

    2. Reviewer #2 (Public review):

      This is a nice paper focused microglial responses to different clinical stages of prion infection in acute brain slices. The key here is the use of time-lapse imaging that captures the dynamics of microglial surveillance, including morphology, migration, and intracellular neuron/microglial contacts. The authors use a myeloid GFP-labeled transgenic mouse to track microglia in SSLOW-infected brain slices, quantifying differences in motility and microglial-neuronal interactions via live fluorescence imaging. Interesting findings include the elaborate patterns of motility among microglia, the distinct types and durations of intracellular contacts, the potential role of calcium signaling in facilitating hypermobility, and the fact that this motion-promoting status is intrinsic to the microglia, persisting even after the cells have been isolated from infected brains. Although largely a descriptive paper, it offers mechanistic insights, including the role of calcium in supporting microglial movement, with bursts of signaling identified even within the time lapse format, and inhibition studies implicating the purinergic receptor and calcium transient regulator P2Y6 in migratory capacity.

      Strengths:

      (1) The focus on microglia activation and activity in the context of prion disease is interesting

      (2) Two different prions produce largely the same response

      (3) Use of time-lapse provides insight into the dynamics of microglia, distinguishing between types of contact - mobility vs motility - and providing insight on the duration/transience and reversibility of extensive somatic contacts that include brief and focused connections in addition to soma envelopment.

      (4) Imaging window selection (3 hours) guided by prior publications documenting preserved morphology, activity, and gene expression regulation up to 4 hours.

      (5) The distinction between high- and low-mobility microglia is interesting, especially given that hypermobility seems to be an innate property of the cells.

      (6) The live-imaging approach is validated by fixed tissue confocal imaging.

      (7) The variance in duration of neuron/microglia contacts is interesting, although there is no insight into what might dictate which status of interaction predominates

      (8) The reversibility of the enveloping action, which is not apparently a commitment to engulfment, is interesting, as is the fact that only neurons are selected for this activity.

      (9) The calcium studies use the fluorescent dye calbryte-590, which picks up neuronal and microglial bursts -prolonged bursts are detected in enveloped neurons and in the hyper-mobile microglia - the microglial lead is followed up using MRS-2578 P2Y6 inhibitor that blunts the mobility of the microglia

      Comments on revisions:

      The authors have addressed my concerns in full - I think this is a very nice addition to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      Siddiqui et al., investigate the question of how bacterial metabolism contributes to the attraction of C. elegans to specific bacteria. They show that C. elegans prefers three bacterial species when cultured in a leucine-enriched environment. These bacterial species release more isoamyl alcohol, a known C. elegans attractant, when cultured with leucine supplement than without leucine supplement. The study shows correlative evidence that isoamyl alcohol is produced from leucine by the Ehrlich pathway. In addition, they show that SNIF-1 is a receptor for isoamyl alcohol because a null mutant of this receptor exhibits lower chemotaxis to isoamyl alcohol and that chemotaxis to isoamyl alcohol is rescued by expression of snif-1 in AWC.

      Strengths:

      (1) This study takes a creative approach to examine the question of what specific volatile chemicals released by bacteria may signify to C. elegans by examining both bacterial metabolism and C. elegans preference behavior. Although C. elegans has long been known to be attracted to bacterial metabolites, this study may be one of the first to examine the possible role of a specific bacterial metabolic pathway in mediating attraction.

      (2) A strength of the paper is the identification of SNIF-1 as a receptor for isoamyl alcohol. The ligands for very few olfactory receptors have been identified in C. elegans and so this is a significant addition to the field. The SNIF-1 null mutant strain will likely be a useful reagent for many labs examining olfactory and foraging behaviors.

      Weaknesses:

      (1) The authors write that the leucine metabolism via the Ehrlich pathway is required for production of isoamyl alcohol by three bacteria (CEent1, JUb66, BIGb0170), but their evidence for this is correlation and not causation. They show that the gene, ilvE (which is part of the Ehrlich pathway) is upregulated in CEent1 bacteria upon exposure to leucine. Although this indicates that the ilvE gene may be involved in leucine metabolism, it does not show causation. To show causation, they need to knockout ilvE from one of these strains, show that the bacteria does not have increased isoamyl alcohol production when cultured on leucine, and that the bacteria is no longer attractive to C. elegans.

      (2) Although the authors do show that the three bacterial strains they focus on (CEent1, JUb66, and BIGb0170) are more attractive to C. elegans when supplemented with leucine. Some other strains such as BIGb0393 are also more attractive with leucine supplementation and produce isoamyl alcohol (Fig 1B and Supp Table 2). It is unclear why these other strains are not included with the selected three strains.

      (3) The behavioral evidence that snif-1 gene encodes a receptor for isoamyl alcohol is compelling because of the mutant phenotype and rescue experiments. The evidence would be stronger with calcium imaging of AWC neurons in response to isoamyl alcohol in the receptor mutant with the expectation that the response would be reduced or abolished in the mutant compared to wildtype.

    2. Reviewer #2 (Public review):

      Summary:

      Siddiqui et al. show that C. elegans prefers certain bacterial strains that have been supplemented with the essential amino acid (EEA) leucine. They convincingly show that some leucine enriched bacteria stimulate the production of isoamyl alcohol (IAA). IAA is an attractive odorant that is sensed by the AWC. The authors an identify a receptor, SRD-12, that is expressed in the AWC chemosensory neurons and is required for chemotaxis to IAA. The authors propose that IAA is a predominant olfactory cue that determines diet preference in C. elegans. Since leucine is an EAA, the authors propose that worm IAA sensing allows the animal provides a proxy mechanism to identify EAA rich diets.

      Strengths:

      The authors propose IAA as a predominant olfactory cue that determines diet preference in C. elegans providing molecular mechanism underlying diet selection. They show that wild isolates of C. elegans have strong chemotactic response to IAA indicating that IAA is an ecologically relevant odor for the worm. The paper is well written, and the presented data are convincing and well organized. This is an interesting paper that connects chemotactic response with bacterially produced odors and thus provides an understanding how animals adapt their foraging behavior through the perception of molecules that may indicate the nutritional value.

      Weaknesses:

      Major: While I do like the way the authors frame C. elegans IAA sensing as mechanisms to identify leucine (EAA) rich diets, it is not fully clear whether bacterial IAA production is a proxy for bacterial leucine levels.

      (1) Can the authors measure leucine (or other EAA) content of the different CeMbio strains? This would substantiate the premise in the way they frame this in the introduction. While the authors convincingly show that leucine supplementation induces IAA production in some strains, it is not clear if there are lower leucine levels in the different in the non-preferred strains.

      (2) It is not clear whether the non-preferred bacteria in Figure 1A and 1B have the ability to produce IAA. To substantiate the claim that C. elegans prefers CEent1, JUb66, and BIGb0170 due to their ability to generate IAA from leucine, it would be measure IAA levels in non-preferred bacteria (+ and - leucine supplementation). If the authors have these data it would be good to include this.

      (3) The authors would strengthen their claim if they could show that deletion or silencing ilvE enzyme reduces IAA levels and eliminates the increased preference upon leucine supplementation.

      (4) While the three preferred bacteria possess the ilvE gene, it is not clear whether this enzyme is present in the other non-preferred bacterial strains. As far as I know, the CeMbio strains have been sequenced, so it should be easy to determine if the non-preferred bacteria possess the capacity to make IAA. Does expression of ilvE in e.g. E. coli increase its preference index or are the other genes in the biosynthesis pathway missing?

      (5) It is strongly implied that leucine rich diets are beneficial to the worm. Do the authors have data to show the effect on leucine supplementation on C. elegans healthspan, life-span or broodsize?

      Comments on revisions:

      (1) The authors have addressed most of the earlier questions. The main unresolved issue is the link between iaa production is a reflection of bacterial leucine levels. It is not clear if there are lower leucine levels in the different in non-preferred strains.

      The main conclusions that: 1. some bacterial strains can convert exogenous leucine into IAA which is an attractant to C. elegans. 2. The identification of a GPCR required for IAA responses are solid. These are important results that carry the paper. My outstanding concern remains with the overinterpretation of the framing that C. elegans IAA sensing is used as a mechanism to identify leucine (EAA) rich diets. It is fine to leave this a favorite hypothesis in the discussion but statements throughout the paper need to be nuanced without leucine measurement of the different bacterial strains. (Also since for the bacterial chemotaxis assays there were only done with a single concentration of leucine makes it difficult to infer bacterial leucine concentrations). I recommend softening claims related to leucine-rich diet detection unless quantitative measurements are provided.

      Part of the issue in the text lies in the difference between "supplemented" and "chemotaxis" (lab based constructs) and enriched and foraging (natural environment based). This is also the way it is set up in the introduction "Do animals use specific sensing mechanisms to find an EAA-enriched diet?". If enriched is used strictly the same as supplemented then it would be fine but in the text this distinction gets blurred and enriched drifts to the more ethological explanation.

      Then it is more than just semantics since leucine-supplemented diets are not something that occurs in the natural environment. IAA production by bacteria could be a signal for a leucine rich environment and it is fine to speculate about this in the discussion.

      Examples where the wording needs to be more precise to reflect the experimental results rather than the possible impact in its natural environment:

      The title:' The olfactory receptor SNIF-1 mediates foraging for leucine-rich diets in C. elegans"

      The intro:"Taken together, SNIF-1 regulates the dietary preference of worms to IAA-producing bacteria and thereby mediates the foraging behavior of C. elegans to leucine-enriched diets. Thus, IAA produced by bacteria is a dietary quality code for leucine-enriched bacteria."

      Results "Figure 1. C. elegans relies on odors to select leucine-enriched bacteria"

      Supplementation is used more in the text and the figure legends whereas headings and abstract use enriched. The experiments in the paper only describe leucine-supplemented experiments. So use I would supplemented instead of enriched when describing experiments for clarity.

      For instance:

      Page 4:"Microbial odors drive the preference of C. elegans for leucine-enriched diet"

      Page 5: "Altogether, these findings suggested that worms rely on odors to distinguish various bacteria and find leucine-enriched bacteria"

      Page 7: "Isoamyl alcohol odor is a signature for a leucine-enriched diet"

      Page 9: AWC odor sensory neurons facilitate the diet preference of C. elegans for leucine-enriched diets"

      page 20 "Leucine-enriched diets produce significantly higher levels of IAA odor, making up to 90% of their headspace"

      (2) As suggested in the first round of review the authors now add data IAA levels in non-preferred bacteria (+ and - leucine supplementation) in table S2. While it is good to have this data, the table is not very clear. Not clear what ND stands for in the table S2. Not determined or not detected? I assume not determined since some strains Jub44, BiGb0393 Jub134 produce IAA even in the absence of LEU. The authors mention that "the abundance of IAA in these strains is significantly less". However, the table just reflects yes or no. Can the authors give an indication of the concentration to understand what significantly less means? Fig. 2c at least gives a heat map.

      (3) On wormbase the gene is still called srd-12. The authors should seek permission to rename srd-12 to snif-1.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Al-Jezani et al. focused on characterizing clonally derived MSC populations from the synovium of normal and osteoarthritis (OA) patients. This included characterizing the cell surface marker expression in situ (at time of isolation), as well as after in vitro expansion. The group also tried to correlate marker expression with trilineage differential potential. They also tested the ability of the different sub-populations for their efficacy in repairing cartilage in a rat model of OA. The main finding of the study is that CD47hi MSCs may have a greater capacity to repair cartilage than CD47lo MSCs, suggesting that CD47 may be a novel marker of human MSCs that have enhanced chondrogenic potential.

      Strengths:

      Studies on cell characterization of the different clonal populations isolated indicate that the MSC are heterogenous and traditional cell surface markers for MSCs do not accurately predict the differentiation potential of MSCs. While this has been previously established in the field of MSC therapy, the authors did attempt to characterize clones derived from single cells, as well as evaluate the marker profile at the time of isolation. While the outcome of heterogeneity is not surprising, the methods used to isolate and characterze the cells were well developed. The interesting finding of the study is the identification of CD47 as a potential MSC marker that could be related to chondrogenic potential. The authors suggest that MSCs with high CD47 repaired cartilage more effectively than MSC with low CD47 in a rat OA model.

      Comments on revisions:

      Thank you for addressing the comments from the first review. No additional revisions.

    2. Reviewer #2 (Public review):

      Summary:

      This is a compelling study that systematically characterized and identified clonal MSC populations derived from normal and osteoarthritis human synovium. There is immense growth in the focus on synovial-derived progenitors in the context of both disease mechanisms and potential treatment approaches, and the authors sought to understand the regenerative potential of synovial-derived MSCs.

      Strengths:

      This study has multiple strengths. MSC cultures were established from an impressive number of human subjects, and rigorous cell surface protein analyses were conducted, at both pre-culture and post-culture timepoints. In vivo experiments using a rat DMM model showed beneficial therapeutic effects of MSCs vs non-MSCs, with compelling data demonstrating that only "real" MSC clones incorporate into cartilage repair tissue and express Prg4. Proteomics analysis was performed to characterize non-MSC vs MSC cultures, and high CD47 expression was identified as a marker for MSC. Injection of CD47-Hi vs CD47-Low cells in the same rat DMM model also demonstrated beneficial effects, albeit only based on histology. A major strength of these studies is the direct translational opportunity for novel MSC-based therapeutic interventions, with high potential for a "personalized medicine" approach.

      Weaknesses:

      Weaknesses of this study include the rather cursory assessment of the OA phenotype in the rat model, confined entirely to histology (i.e. no microCT, no pain/behavioral assessments, no molecular readouts). This is relevant given the mixed results in therapeutic experiments demonstrating lower OA scores, but not lower inflammation scores, in CD47-Hi-treated rats. Thus, future work should focus on characterizing the therapeutic mechanism further given the clinical relevant of inflammation and pain in OA. It is somewhat unclear how the authors converged on CD47 vs other factors, but despite its somewhat broad profile, it was shown to be a useful marker to differentiate functional effects of MSCs. Additional work is needed to understand whether MSCs also engraft in ectopic cartilage (in the context of osteophyte/chondrophyte formation) or whether their effects are limited to articular cartilage. Despite these areas for improvement, this is a strong paper with a high degree of rigor, and the results are compelling, timely, and important.

      Overall, the authors achieved their aims, and the results support not just the therapeutic value of clonally-isolated synovial MSCs but also the immense heterogeneity in stromal cell populations (containing true MSCs and non-MSCs) that must be investigated further. Of note, the authors employed the ISCT criteria to characterize MSCs, with mixed results in pre-culture and post-culture assessments. This work is likely to have a long-term impact on methodologies used to culture and study MSCs, in addition to advancing the field's knowledge about how synovial-derived progenitors contribute to cartilage repair in vivo.

      Comments on revisions:

      I commend the authors for a good revision. While the revision primarily entailed re-analysis or additional analysis of existing data, as well as text-based changes, it improved the clarity and completeness of the manuscript.

      I do encourage the authors to expand their phenotyping assessments in future studies given that the interaction between structural disease, inflammation, and pain is complex, and our understanding of how the two interact and affect each other is evolving. There are multiple recent publications that show that a therapeutic or knock-out is protective against cartilage damage but doesn't alleviate pain, or vice versa. Thus, as a field, understanding which therapies target which pathological manifestations is an important next step to advance treatments. I also look forward to the follow-up studies on the MSC's role in ectopic cartilage.

    1. Reviewer #1 (Public review):

      This is a highly original and impactful study that significantly advances our understanding of transcriptional regulation, in particular RNAPII pausing, during early heart development. The Chen lab has a long history of producing influential studies in cardiac morphogenesis, and this manuscript represents another thorough and mechanistically insightful contribution. The authors have thoroughly addressed this Reviewer's concerns and incorporated all of my suggestions in the revised manuscript. In addition, their responses to the other reviewer's comments are also very clear. As it is, this work is of great interest to the readership of Elife, as well as to the general scientific community.

      The authors reveal a fundamentally new role for Rtf1-a component of the PAF1 complex-in governing promoter-proximal RNAPII pausing in the context of myocardial lineage specification. While transcriptional pausing has been implicated in stress responses and inducible gene programs, its developmental relevance has remained poorly defined. This study fills that gap with rigorous in vivo evidence demonstrating that Rtf1-dependent pausing is indispensable for activating the cardiac gene program from the lateral plate mesoderm.

      Importantly, the study also provides compelling therapeutic implications. Showing that CDK9 inhibition-using either flavopiridol or targeted knockdown-can restore promoter-proximal pausing and rescue cardiomyocyte formation in Rtf1-deficient embryos suggests that modulation of pause-release kinetics may represent a new avenue for correcting transcriptionally driven congenital heart defects. Given that many CDK inhibitors are clinically approved or in active development, this connection significantly elevates the translational impact of the findings.

      In sum, this study is rigorous, innovative, and transformative in its implications for developmental biology and cardiac medicine. I strongly support its publication.

    2. Reviewer #2 (Public review):

      Summary:

      Langenbacher at el. examine the requirement of Rtf1, a component of the PAF1C complex, which regulates transcriptional pausing in cardiac development. The authors first confirm that newly generated rtf1 mutant alleles recapitulate the defects in cardiac progenitor differentiation found using morpholinos from their previous work. The authors then show that conditional loss of Rtf1 in mouse embryos and depletion in mouse ESCs both demonstrates a failure to turn on cardiac progenitor and differentiation marker genes, supporting conservation of Rtf1 in promoting vertebrate cardiac progenitor development. The authors then employ bulk RNA-seq on flow-sorted hand2:GFP+ cells and multiomic single-cell RNA-seq on whole Rtf1-depleted zebrafish embryos at the 10-12 somite stage. These experiments corroborate that gene expression associated with cardiac progenitor differentiation is lost. Furthermore, analysis of differentiation trajectories suggests that the expression of genes associated with cardiac, blood, and endothelial progenitor differentiation is not initiated within the anterior lateral plate mesoderm. Structure-function analysis supports that the Rtf1 Plus3 domain is necessary for its function in promoting cardiac progenitor differentiation. ChIP-seq for RNA Pol II on 10-12 somite stage zebrafish embryos supports that Rtf1 is required for proper promoter pausing at the transcriptional start site. The transcriptional promoter pausing defect and cardiac differentiation can partially be rescued in zebrafish rtf1 mutants through pharmacological inhibition and depletion of Cdk9, a kinase that inhibits elongation. Thus, the authors have provided a clear analysis of the requirements and basic mechanism that Rf1 employs regulating cardiac progenitor development.

      Strengths and weaknesses:

      Overall, the data presented are strong and the message of the study is clear. The conclusions that Rtf1 is required for transcriptional pause release and promotes vertebrate cardiac progenitor differentiation are supported. Areas of strength include the complementary approaches in zebrafish and mouse embryos, and mouse embryonic stem cells, which together support the conserved requirement for Rtf1 in promoting cardiac differentiation. The bulk and single-cell RNA-sequencing analyses provide further support for this model via examining broader gene expression. In particular, the pseudotime analysis bolsters that there is a broader effect on differentiation of anterior lateral plate mesoderm derivatives. The structure-function analysis provides a relatively clean demonstration of the requirement of the Rtf1 Plus3 domain. The pharmacological and depletion epistasis of Cdk9 combined with the RNA Pol II ChIP-seq nicely support the mechanism implicating Cdk9 in the Rtf1-dependent RNA Pol II promoter pausing. Additionally, this is a revised manuscript. The authors were overall responsive to the previous critiques. The new analysis and revisions have helped to strengthen their hypothesis and improve the clarity of their study. While the revised manuscript is significantly improved, the lack of analysis from the multiomic analysis still represents a lost opportunity to provide further insight into Rtf1 mechanisms within this study. However, the authors have nevertheless achieved their goal for this study. The data sets reported will also be useful tools for further analysis and integration by the cardiovascular development community. Thus, the study will be of interest to scientists studying cardiovascular development and those broadly interested in epigenetic regulation controlling vertebrate development.

    1. Reviewer #1 (Public review):

      The authors used fluorescence microscopy, image analysis, and mathematical modeling to study the effects of membrane affinity and diffusion rates of MinD monomer and dimer states on MinD gradient formation in B. subtilis. To test these effects, the authors experimentally examined MinD mutants that lock the protein in specific states, including Apo monomer (K16A), ATP-bound monomer (G12V) and ATP-bound dimer (D40A, hydrolysis defective), and compared to wild-type MinD. Overall, the experimental results support the conclusions that reversible membrane binding of MinD is critical for the formation of the MinD gradient, but the binding affinities between monomers and dimers are similar.

      The modeling part is a new attempt to use the Monte Carlo method to test the conditions for the formation of the MinD gradient in B. subtilis. The modeling results provide good support for the observations and find that the MinD gradient is sensitive to different diffusion rates between monomers and dimers. This simulation is based on several assumptions and predictions, which raises new questions that need to be addressed experimentally in the future.

    2. Reviewer #3 (Public review):

      This important study by Bohorquez et al examines the determinants necessary for concentrating the spatial modulator of cell division, MinD, at the future site of division and the cell poles. Proper localization of MinD is necessary to bring the division inhibitor, MinC, in proximity to the cell membrane and cell poles where it prevents aberrant assembly of the division machinery. In contrast to E. coli, in which MinD oscillates from pole-to-pole courtesy of a third protein MinE, how MinD localization is achieved in B. subtilis-which does not encode a MinE analog-has remained largely a mystery. The authors present compelling data indicating that MinD dimerization is dispensable for membrane localization but required for concentration at the cell poles. Dimerization is also important for interactions between MinD and MinC, leading to the formation of large protein complexes. Computational modeling, specifically a Monte Carlo simulation, supports a model in which differences in diffusion rates between MinD monomers and dimers lead to concentration of MinD at cell poles. Once there, interaction with MinC increases the size of the complex, further reinforcing diffusion differences. Notably, interactions with MinJ-which has previously been implicated in MinCD localization, are dispensable for concentrating MinD at cell poles although MinJ may help stabilize the MinCD complex at those locations.

      [Editor's note: The editors and reviewers have no further comments and encourage the authors to proceed with a Version of Record.]

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates the biological mechanism underlying the assembly and transport of the AcrAB-TolC efflux pump complex. By combining endogenous protein purification with cryo-EM analysis, the authors show that the AcrB trimer adopts three distinct conformations simultaneously and identify a previously uncharacterized lipoprotein, YbjP, as a potential additional component of the complex. The work aims to advance our understanding of the AcrAB-TolC efflux system in near-native conditions and may have broader implications for elucidating its physiological mechanism.

      Strengths:

      Overall, the manuscript is clearly presented, and several of the datasets are of high quality. The use of natively isolated complexes is a major strength, as it minimizes artifacts associated with reconstituted systems and enables the discovery of a novel subunit. The authors also distinguish two major assemblies-the TolC-YbjP sub-complex and the complete pump-which appear to correspond to the closed and open channel states, respectively. The conceptual advance is potentially meaningful, and the findings could be of broad interest to the field.

      Weaknesses:

      (1) As the identification of YbjP is a key contribution of this work, a deeper comparison with functional "anchor" proteins in other efflux pumps is needed. Including an additional supplementary figure illustrating these structural comparisons would be valuable.

      (2) The observation of the LTO states in the presence of TolC represents an important extension of previous findings. A more detailed discussion comparing these LTO states to those reported in earlier structural and biochemical studies would improve the clarity and significance of this point.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the high-resolution cryo-EM structures of the endogenous TolC-YbjP-AcrABZ complex and a TolC-YbjP subcomplex from E. coli, identifying a novel accessory subunit. This work is an impressive effort that provides valuable structural insights into this native complex.

      Strengths:

      (1) The study successfully determines the structure of the complete, endogenously purified complex, marking a significant achievement.

      (2) The identification of a previously unknown accessory subunit is an important finding.

      (3) The use of cryo-EM to resolve the complex, including potential post-translational modifications such as N-palmitoyl and S-diacylglycerol, is a notable highlight.

      Weaknesses:

      (1) Clarity and Interpretation: Several points need clarification. Additionally, the description of the sample preparation method, which is a key strength, is currently misplaced and should be introduced earlier.

      (2) Data Presentation: The manuscript would benefit significantly from improved figures.

      (3) Supporting Evidence: The inclusion of the protein purification profile as a supplementary figure is essential. Furthermore, a discussion comparing the endogenous AcrB structure to those obtained in other systems (e.g., liposomes) and commenting on observed lipid densities would strengthen the overall analysis.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript "Structural mechanisms of pump assembly and drug transport in the AcrAB-TolC efflux system" by Ge et al. describes the identification of a previously uncharacterized lipoprotein, YbjP, as a novel partner of the well-studied Enterobacterial tripartite efflux pump AcrAB-TolC. The authors present cryo-electron microscopy structures of the TolC-YbjP subcomplex and the complete AcrABZ-TolC-YbjP assembly. While the identification and structural characterization of YbjP are potentially novel, the stated focus of the manuscript-mechanisms of pump assembly and drug transport - is not sufficiently addressed. The manuscript requires reframing to emphasize the principal novelty associated with YbjP and significant development of the other aspects, especially the claimed novelty of the AcrB drug-efflux cycle.

      Strengths:

      The reported association of YbjP with AcrAB-TolC is novel; however, a recent deposition of a preceding and much more detailed manuscript to the BioRxiv server (Horne et al., https://doi.org/10.1101/2025.03.19.644130) removes much of the immediate novelty.

      Weaknesses:

      While the identification of YbjP is novel, the authors do not appear to acknowledge the precedence of another work (Horne et al., 2025), and it is not cited within the correct context in the manuscript.

      Several results presented in the TolC-YbjP section do not represent new findings regarding TolC structure itself. The structure and gating behaviour of TolC should be more thoroughly introduced in the Introduction, including prior work describing channel opening and conformational transitions. The current manuscript does not discuss the mechanistic role of helices H3/H4 and H7/H8 in channel dilation, despite implying that YbjP binding may influence these features. Only the original closed TolC structure is cited, and the manuscript does not address prior mutational studies involving the D396 region, though this residue is specifically highlighted in the presented structures.

      The manuscript provides only a general structural alignment between the closed TolC-YbjP subcomplex and the open TolC observed in the full pump assembly. However, multiple open, closed, and intermediate conformations of AcrAB-TolC have already been reported. Thus, YbjP alone cannot be assumed to account for TolC channel gating. A systematic comparison with existing structures is necessary to determine whether YbjP contributes any distinct allosteric modulation.

      The analysis of AcrB peristaltic action is superficial, poorly substantiated and importantly, not novel. Several references to the ATP-synthase cycle have been provided, but this has been widely established already some 20 years ago - e.g. https://www.science.org/doi/10.1126/science.1131542.

      The most significant limitation of the study is the absence of functional characterization of YbjP in vivo or in vitro. While the structural association between YbjP and TolC is interesting, the biological role of YbjP remains unclear. Moreover, the manuscript does not examine structural differences between the presented complex and previously solved AcrAB-TolC or MexAB-OprM assemblies that might support a mechanistic model.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Lu and colleagues demonstrates convincingly that PRRT2 interacts with brain voltage-gated sodium channels to enhance slow inactivation in vitro and in vivo. The work is interesting and rigorously conducted. The relevance to normal physiology and disease pathophysiology (e.g., PRRT2-related genetic neurodevelopmental disorders) seems high. Some simple additional experiments could elevate the impact and make the study more complete.

      Strengths:

      Experiments are conducted rigorously, including experimenter blinding and appropriate controls. Data presentation is excellent and logical. The paper is well written for a general scientific audience.

      Weaknesses:

      There are a few missing experiments and one place where data are over-interpreted.

      (1) An in vitro study of Nav1.6 is conspicuously absent. In addition to being a major brain Na channel, Nav1.6 is predominant in cerebellar Purkinje neurons, which the authors note lack PRRT2 expression. They speculate that the absence of PRRT2 in these neurons facilitates the high firing rate. This hypothesis would be strengthened if PRRT2 also enhanced slow inactivation of Nav1.6. If a stable Nav1.6 cell were not available, then simple transient co-transfection experiments would suffice.

      (2) To further demonstrate the physiological impact of enhanced slow inactivation, the authors should consider a simple experiment in the stable cell line experiments (Figure 1) to test pulse frequency dependence of peak Na current. One would predict that PRRT2 expression will potentiate 'run down' of the channels, and this finding would be complementary to the biophysical data.

      (3) The study of one K channel is limited, and the conclusion from these experiments represents an over-interpretation. I suggest removing these data unless many more K channels (ideally with measurable proxies for slow inactivation) were tested. These data do not contribute much to the story.

      (4) In Figure 2, the authors should confirm that protein is indeed expressed in cells expressing each truncated PRRT2 construct. Absent expression should be ruled out as an explanation for absent enhancement of slow inactivation.

    2. Reviewer #2 (Public review):

      Summary:

      As a member of DspB subfamily, PRRT2 is primarily expressed in the nervous system and has been associated with various paroxysmal neurological disorders. Previous studies have shown that PRRT2 directly interacts with Nav1.2 and Nav1.6, modulating channel properties and neuronal excitability.

      In this study, Lu et al. reported that PRRT2 is a physiological regulator of Nav channel slow inactivation, promoting the development of Nav slow inactivation and impeding the recovery from slow inactivation. This effect can be replicated by the C-terminal region (256-346) of PRRT2, and is highly conserved across species from zebrafish, mouse, to human PRRT2. TRARG1 and TMEM233, the other two DspB family members, showed similar effects on Nav1.2 slow inactivation. Co-IP data confirms the interaction between Nav channels and PRRT2. Prrt2-mutant mice, which lack PRRT2 expression, require lower stimulation thresholds for evoking after-discharges when compared to WT mice.

      Strengths:

      (1) This study is well designed, and data support the conclusion that PRRT2 is a potent regulator of slow inactivation of Nav channels.

      (2) This study reveals similar effects on Nav1.2 slow inactivation by PRRT2, TMEM233, and TRARG1, indicating a common regulation of Nav channels by DspB family members (Supplemental Figure 2). A recent study has shown that TMEM233 is essential for ExTxA (a plant toxin)-mediated inhibition on fast inactivation of Nav channels; and PRRT2 and TRARG1 could replicate this effect (Jami S, et al. Nat Commun 2023). It is possible that all three DspB members regulate Nav channel properties through the same mechanism, and exploring molecules that target PRRT2/TRARG1/TMEM233 might be a novel strategy for developing new treatments of DspB-related neurological diseases.

      Weaknesses:

      (1) Previously, the authors have reported that PRRT2 reduces Nav1.2 current density and alters biophysical properties of both Nav1.2 and Nav1.6 channels, including enhanced steady-state inactivation, slower recovery, and stronger use-dependent inhibition (Lu B, et al. Cell Rep 2021, Fig 3 & S5). All those changes are expected to alter neuronal excitability and should be discussed.

      (2) In this study, the fast inactivation kinetics was examined by a single stimulus at 0 mV, which may not be sufficient for the conclusion. Inactivation kinetics at more voltage potentials should be added.

      (3) It is a little surprising that there is no difference in Nav1.2 current density in axon-blebs between WT and Prrt2-mutant mice (Figure 7B). PRRT2 significantly shifts steady-state slow inactivation curve to hyperpolarizing direction, at -70 mV, nearly 70% of Nav1.2 channels are inactivated by slow inactivation in cells expressing PRRT2 when compared to less than 10% in cells expressing GFP (Figure supplement 1B); with a holding potential of -70 mV, I would expect that most of Nav channels are inactivated in axon-blebs from WT mice but not in axon-blebs from Prrt2-mutant mice, and therefore sodium current density should be different in Figure 7B, which was not. Any explanation?

      (3) Besides Nav channels, PRRT2 has been shown to act on Cav2.1 channels as well as molecules involved in neurotransmitter release, which may also contribute to abnormal neuronal activity in Prrt2-mutant mice. These should be mentioned when discussing PRRT2's role in neuronal resilience.

    3. Reviewer #3 (Public review):

      This paper reveals that the neuronal protein PRRT2, previously known for its association with paroxysmal dyskinesia and infantile seizures, modulates the slow inactivation of voltage-gated sodium ion (Nav) channels, a gating process that limits excitability during prolonged activity. Using electrophysiology, molecular biology, and mouse models, the authors show that PRRT2 accelerates entry of Nav channels into the slow-inactivated state and slows their recovery, effectively dampening excessive excitability. The effect seems evolutionarily conserved, requires the C-terminal region of PRRT2, and is recapitulated in cortical neurons, where PRRT2 deficiency leads to hyper-responsiveness and reduced cortical resilience in vivo. These findings extend the functional repertoire of PRRT2, identifying it as a physiological brake on neuronal excitability. The work provides a mechanistic link between PRRT2 mutations and episodic neurological phenotypes.

      Comments:

      (1) The precise structural interface and the molecular basis of gating modulation remain inferred rather than demonstrated.

      (2) The in vivo phenotype reflects a complex circuit outcome and does not isolate slow-inactivation defects per se.

      (3) Expression of PRRT2 in muscle or heart is low, so the cross isoform claims are likely of limited physiological significance.

      (4) The mechanistic separation between the trafficking of PRRT2 and its gating effects is not clearly resolved.

      (5) Additional studies with Nav1.6 should be carried out.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides valuable new insights into the Paleocene Asian mammal recovery and diversification dynamics during the first ten million years post-dinosaur extinction. Studies that have examined the mammalian recovery and diversification post-dinosaur extinction have primarily focused on the North American mammal fossil record, and it's unclear if patterns documented in North America are characteristic of global patterns. This study examines dietary metrics of Paleocene Asian mammals and found that there is a body size disparity increase before dietary niche expansion and that dietary metrics track climatic and paleobotanical trends of Asia during the first 10 million years after the dinosaur extinction.

      Strengths:

      The Asian Paleocene mammal fossil record is greatly understudied, and this work begins to fill important gaps. In particular, the use of interdisciplinary data (i.e., climatic and paleobotanical) is really interesting in conjunction with observed dietary metric trends.

      Weaknesses:

      While this work has the potential to be exciting and contribute greatly to our understanding of mammalian evolution during the first 10 million years post-dinosaur extinction, the major weakness is in the dental topographic analysis (DTA) dataset.

      There are several specimens in Figure 1 that have broken cusps, deep wear facets, and general abrasion. Thus, any values generated from DTA are not accurate and cannot be used to support their claims. Furthermore, the authors analyze all tooth positions at once, which makes this study seem comprehensive (200 individual teeth), but it's unclear what sort of noise this introduces to the study. Typically, DTA studies will analyze a singular tooth position (e.g., Pampush et al. 2018 Biol. J. Linn. Soc.), allowing for more meaningful comparisons and an understanding of what value differences mean. Even so, the dataset consists of only 48 specimens. This means that even if all the specimens were pristinely preserved and generated DTA values could be trusted, it's still only 48 specimens (representing 4 different clades) to capture patterns across 10 million years. For example, the authors note that their results show an increase in OPCR and DNE values from the middle to the late Paleocene in pantodonts. However, if a singular tooth position is analyzed, such as the lower second molar, the middle and late Paleocene partitions are only represented by a singular specimen each. With a sample size this small, it's unlikely that the authors are capturing real trends, which makes the claims of this study highly questionable.

    2. Reviewer #2 (Public review):

      Summary:

      This study uses dental traits of a large sample of Chinese mammals to track evolutionary patterns through the Paleocene. It presents and argues for a 'brawn before bite' hypothesis - mammals increased in body size disparity before evolving more specialized or adapted dentitions. The study makes use of an impressive array of analyses, including dental topographic, finite element, and integration analyses, which help to provide a unique insight into mammalian evolutionary patterns.

      Strengths:

      This paper helps to fill in a major gap in our knowledge of Paleocene mammal patterns in Asia, which is especially important because of the diversification of placentals at that time. The total sample of teeth is impressive and required considerable effort for scanning and analyzing. And there is a wealth of results for DTA, FEA, and integration analyses. Further, some of the results are especially interesting, such as the novel 'brawn before bite' hypothesis and the possible link between shifts in dental traits and arid environments in the Late Paleocene. Overall, I enjoyed reading the paper, and I think the results will be of interest to a broad audience.

      Weaknesses:

      I have four major concerns with the study, especially related to the sampling of teeth and taxa, that I discuss in more detail below. Due to these issues, I believe that the study is incomplete in its support of the 'brawn before bite' hypothesis. Although my concerns are significant, many of them can be addressed with some simple updates/revisions to analyses or text, and I try to provide constructive advice throughout my review.

      (1) If I understand correctly, teeth of different tooth positions (e.g., premolars and molars), and those from the same specimen, are lumped into the same analyses. And unless I missed it, no justification is given for these methodological choices (besides testing for differences in proportions of tooth positions per time bin; L902). I think this creates some major statistical concerns. For example, DTA values for premolars and molars aren't directly comparable (I don't think?) because they have different functions (e.g., greater grinding function for molars). My recommendation is to perform different disparity-through-time analyses for each tooth position, assuming the sample sizes are big enough per time bin. Or, if the authors maintain their current methods/results, they should provide justification in the main text for that choice.

      Also, I think lumping teeth from the same specimen into your analyses creates a major statistical concern because the observations aren't independent. In other words, the teeth of the same individual should have relatively similar DTA values, which can greatly bias your results. This is essentially the same issue as phylogenetic non-independence, but taken to a much greater extreme.

      It seems like it'd be much more appropriate to perform specimen-level analyses (e.g., Wilson 2013) or species-level analyses (e.g., Grossnickle & Newham 2016) and report those results in the main text. If the authors believe that their methods are justified, then they should explain this in the text.

      (2) Maybe I misunderstood, but it sounds like the sampling is almost exclusively clades that are primarily herbivorous/omnivorous (Pantodonta, Arctostylopida, Anagalida, and maybe Tillodonta), which means that the full ecomorphological diversity of the time bins is not being sampled (e.g., insectivores aren't fully sampled). Similarly, the authors say that they "focused sampling" on those major clades and "Additional data were collected on other clades ... opportunistically" (L628). If they favored sampling of specific clades, then doesn't that also bias their results?

      If the study is primarily focused on a few herbivorous clades, then the Introduction should be reframed to reflect this. You could explain that you're specifically tracking herbivore patterns after the K-Pg.

      (3) There are a lot of topics lacking background information, which makes the paper challenging to read for non-experts. Maybe the authors are hindered by a short word limit. But if they can expand their main text, then I strongly recommend the following:

      (a) The authors should discuss diets. Much of the data are diet correlates (DTA values), but diets are almost never mentioned, except in the Methods. For example, the authors say: "An overall shift towards increased dental topographic trait magnitudes ..." (L137). Does that mean there was a shift toward increased herbivory? If so, why not mention the dietary shift? And if most of the sampled taxa are herbivores (see above comment), then shouldn't herbivory be a focal point of the paper?

      (b) The authors should expand on "we used dentitions as ecological indicators" (L75). For non-experts, how/why are dentitions linked to ecology? And, again, why not mention diet? A strong link between tooth shape and diet is a critical assumption here (and one I'm sure that all mammalogists agree with), but the authors don't provide justification (at least in the Introduction) for that assumption. Many relevant papers cited later in the Methods could be cited in the Introduction (e.g., Evans et al. 2007).

      (c) Include a better introduction of the sample, such as explicitly stating that your sample only includes placentals (assuming that's the case) and is focused on three major clades. Are non-placentals like multituberculates or stem placentals/eutherians found at Chinese Paleocene fossil localities and not sampled in the study, or are they absent in the sampled area?

      (d) The way in which "integration" is being used should be defined. That is a loaded term which has been defined in different ways. I also recommend providing more explanation on the integration analyses and what the results mean.

      If the authors don't have space to expand the main text, then they should at least expand on the topics in the supplement, with appropriate citations to the supplement in the main text.

      (4) Finally, I'm not convinced that the results fully support the 'brawn before bite' hypothesis. I like the hypothesis. However, the 'brawn before ...' part of the hypothesis assumes that body size disparity (L63) increased first, and I don't think that pattern is ever shown. First, body size disparity is never reported or plotted (at least that I could find) - the authors just show the violin plots of the body sizes (Figures 1B, S6A). Second, the authors don't show evidence of an actual increase in body size disparity. Instead, they seem to assume that there was a rapid diversification in the earliest Paleocene, and thus the early Paleocene bin has already "reached maximum saturation" (L148). But what if the body size disparity in the latest Cretaceous was the same as that in the Paleocene? (Although that's unlikely, note that papers like Clauset & Redner 2009 and Grossnickle & Newham 2016 found evidence of greater body size disparity in the latest Cretaceous than is commonly recognized.) Similarly, what if body size disparity increased rapidly in the Eocene? Wouldn't that suggest a 'BITE before brawn' hypothesis? So, without showing when an increase in body size diversity occurred, I don't think that the authors can make a strong argument for 'brawn before [insert any trait]".

      Although it's probably well beyond the scope of the study to add Cretaceous or Eocene data, the authors could at least review literature on body size patterns during those times to provide greater evidence for an earliest Paleocene increase in size disparity.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting and useful review highlighting the complex pathways through which pulmonary colonisation or infection with Mycobacterium tuberculosis (Mtb) may progress to develop symptomatic disease and transmit the pathogen. I found the section on immune correlates associated with individuals who have clearly been exposed to and reacted to Mtb but did not develop latent infections particularly valuable. However, several aspects would benefit from clarification.

      Strengths:

      The main strengths lie in the arguments presented for a multiplicity of immune pathways to TB disease.

      Weaknesses:

      The main weaknesses lie in clarity, particularly in the precise meanings of the three figures.

      I accept that there is a 'goldilocks zone' that underpins the majority of TB cases we see and predominantly reflects different patterns of immune response, but the analogies used need to be more clearly thought through.

    2. Reviewer #2 (Public review):

      Summary:

      This is a thought-provoking perspective by Reichmann et al, outlining supportive evidence that Mycobacterium tuberculosis co-evolved with its host Homo Sapiens to both increase susceptibility to infection and reduce rates of fatal disease through decreased virulence. TB is an ancient disease where two modes of virulence are likely to have evolved through different stages of human evolution: one before the Neolithic Demographic Transition, where humans lived in sparse hunter-gatherer communities, which likely selected for prolonged Mtb infection with reduced virulence to allow for transmission across sparse populations. Conversely, following the agricultural and industrial revolutions, Mtb virulence is likely to have evolved to attack a higher number of susceptible individuals. These different disease modalities highlight the central idea that there are different immunological routes to TB disease, which converge on a disease phenotype characterized by high bacterial load and destruction of the extracellular matrix. The writing is very clear and provides a lot of supportive evidence from population studies and the recent clinical trials of novel TB vaccines, like M72 and H56. However, there are areas to support the thesis that have been described only in broad strokes, including the impact of host and Mtb genetic heterogeneity on this selection, and the alternative model that there are likely different TB diseases (as opposed to different routes to the same disease), as described by several groups advancing the concept of heterogeneous TB endotypes. I expand on specific points below.

      Strengths:

      (1) The idea that Mtb evolved to both increase transmission (and possible commensalism with humans) with low rates of reactivation is intriguing. The heterogeneous TB phenotypes in the collaborative cross model (PMID: 35112666) support this idea, where some genetic backgrounds can tolerate a high bacterial load with minimal pathology, while others show signs of pathogenesis with low bacterial loads. This supports the idea that the underlying host state, driven by a number of factors like genetics and nutrition, is likely to explain whether someone will co-exist with Mtb without pathology, or progress to disease. I particularly enjoyed the discussion of the protective advantages provided by Mtb infection, which may have rewired the human immune system to provide protection against heterologous pathogens- this is supported by recent studies showing that Mtb infection provides moderate protection against SARS-CoV-2 (PMID: 35325013, and 37720210), and may have applied to other viruses that are likely to have played a more significant role in the past in the natural selection of Homo Sapiens.

      (2) Modeling from Marcel Behr and colleagues (PMID: 31649096) indeed suggests that there are at least TB clinical phenotypes that likely mirror the two distinct phases of Mtb co-evolution with humans. Most of the TB disease progression occurs rapidly (within 1-2 years of exposure), and the rest are slow cases of reactivation over time. I enjoyed the discussion of the difference between the types of immune hits needed to progress to disease in the two scenarios, where you may need severe immune hits for rapid progression, a phenotype that likely evolved after the Neolithic transition to larger human populations. On the other hand, a series of milder immune events leading to reactivation after a long period of asymptomatic infection likely mirrors slow progression in the hunter-gatherer communities, to allow for prolonged transmission in scarce populations. Perhaps a clearer analysis of these models would be helpful for the reader.

      Weaknesses:

      (1) The discussion of genetic heterogeneity is limited and only discusses evidence from MSMD studies. Genetics is an important angle to consider in the co-evolution of Mtb and humans. There is a large body of literature on both host and Mtb genetic associations with TB disease. The very fact that host variants in one population do not necessarily cross-validate across populations is evidence in support of population-specific adaptations. Specific Mtb lineages are likely to have co-evolved with distinct human populations. A key reference is missing (PMID: 23995134), which shows that different lineages co-evolved with human migrations. Also, meta-analyses of human GWAS studies to define variants associated with TB are very relevant to the topic of co-evolution (e.g., PMID: 38224499). eQTL studies can also highlight genetic variants associated with regulating key immune genes involved in the response to TB. The authors do mention that Mtb itself is relatively clonal with ~2K SNPs marking Mtb variation, much of which has likely evolved under the selection pressure of modern antibiotics. However, some of this limited universe of variants can still explain co-adaptations between distinct Mtb lineages and different human populations, as shown recently in the co-evolution of lineage 2 with a variant common in Peruvians (PMID: 39613754).

      (2) Although the examples of anti-TNF and anti-PD1 treatments are relevant as drivers of TB in limited clinical contexts, the bigger picture is that they highlight major distinct disease endotypes. These restricted examples show that TB can be driven by immune deficiency (as in the case of anti-TNF, HIV, and malnutrition) or hyperactivation (as in the case of anti-PD1 treatment), but there are still certainly many other routes leading to immune suppression or hyperactivation. Considering the idea of hyper-activation as a TB driver, the apparent higher rate of recurrence in the H56 trial referenced in the review is likely due to immune hyperactivation, especially in the context of residual bacteria in the lung. These different TB manifestations (immune suppression vs immune hyperactivation) mirror TB endotypes described by DiNardo et al (PMID: 35169026) from analysis of extensive transcriptomic data, which indicate that it's not merely different routes leading to the same final endpoint of clinical disease, but rather multiple different disease endpoints. A similar scenario is shown in the transcriptomic signatures underlying disease progression in BCG-vaccinated infants, where two distinct clusters mirrored the hyperactivation and immune suppression phenotypes (PMID: 27183822). A discussion of how to think about translating the extensive information from system biology into treatment stratification approaches, or adjunct host-directed therapies, would be helpful.

    3. Reviewer #3 (Public review):

      Summary:

      This perspective article by Reichmann et al. highlights the importance of moving beyond the search for a single, unified immune mechanism to explain host-Mtb interactions. Drawing from studies in immune profiling, host and bacterial genetics, the authors emphasize inconsistencies in the literature and argue for broader, more integrative models. Overall, the article is thought-provoking and well-articulated, raising a concept that is worth further exploration in the TB field.

      Strengths:

      Timely and relevant in the context of the rapidly expanding multi-omics datasets that provide unprecedented insights into host-Mtb interactions.

      Weaknesses (Minor):

      (1) Clarity on the notion of a "unified mechanism". It remains unclear whether prior studies explicitly proposed a single unifying immunological model. While inconsistencies in findings exist, they do not necessarily demonstrate that earlier work was uniformly "single-minded". Moreover, heterogeneity in TB has been recognized previously (PMIDs: 19855401, 28736436), which the authors could acknowledge.

      (2) Evolutionary timeline and industrial-era framing. The evolutionary model is outdated. Ancient DNA studies place the Mtb's most recent common ancestor at ~6,000 years BP (PMIDs: 25141181; 25848958). The Industrial Revolution is cited as a driver of TB expansion, but this remains speculative without bacterial-genomics evidence and should be framed as a hypothesis. Additionally, the claim that Mtb genomes have been conserved only since the Industrial Revolution (lines 165-167) is inaccurate; conservation extends back to the MRCA (PMID: 31448322).

      (3) Trained immunity and TB infection. The treatment of trained immunity is incomplete. While BCG vaccination is known to induce trained immunity (ref 59), revaccination does not provide sustained protection (ref 8), and importantly, Mtb infection itself can also impart trained immunity (PMID: 33125891). Including these nuances would strengthen the discussion.

    1. Reviewer #1 (Public review):

      In this important study, the authors characterized the transformation of neural representations of olfactory stimuli from primary sensory cortex to multisensory regions in the medial temporal lobe and investigated how they were affected by non-associative learning. The authors used high-density silicon probe recordings from five different cortical regions while familiar vs. novel odors were presented to a head-restrained mouse. This is a timely study because unlike other sensory systems (e.g., vision), the progressive transformation of olfactory information is still poorly understood. The authors report that both odor identity and experience are encoded by all of these five cortical areas but nonetheless, some themes emerge. Single neuron tuning of odor identity is broad in the sensory cortices but becomes narrowly tuned in hippocampal regions. Furthermore, while experience affects neuronal response magnitudes in early sensory cortices, it changes the proportion of active neurons in hippocampal regions. Thus, this study is an important step forward in the ongoing quest to understand how olfactory information is progressively transformed along the olfactory pathway.

      The study is well-executed. The direct comparison of neuronal representations from five different brain regions is impressive. Conclusions are based on single neuronal level as well as population level decoding analyses. Among all the reported results, one stands out for being remarkably robust. The authors show that the anterior olfactory nucleus (AON), which receives direct input from the olfactory bulb output neurons, was far superior at decoding odor identity as well as novelty compared to all the other brain regions. This is perhaps surprising because the other primary sensory region - the piriform cortex - has been thought to be the canonical site for representing odor identity. A vast majority of studies have focused on aPCx, but direct comparisons between odor coding in the AON and aPCx are rare. The experimental design of this current study allowed the authors to do so and the AON was found to convincingly outperform aPCx. Although this result goes against the canonical model, it is consistent with a few recent studies including one that predicted this outcome based on anatomical and functional comparisons between the AON-projecting tufted cells vs. the aPCx-projecting mitral cells in the olfactory bulb.

      Future experiments are needed to probe the circuit mechanisms underlying the differential importance of the two primary olfactory cortices, as well as their potential causal roles in odor identification. Moreover, future work should test whether the decoding accuracy of odor identity and experience from neural data (as reported here) can predict the causal contributions of these regions, as revealed through perturbations during behavioral tasks that explicitly probe odor identification and/or experience.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates how olfactory representations are transformed along the cortico-hippocampal pathway in mice during a non-associative learning paradigm involving novel and familiar odors. By recording single-unit activity in several key brain regions (AON, aPCx, LEC, CA1, and SUB), the authors aim to elucidate how stimulus identity and experience are encoded and how these representations change across the pathway.

      The study addresses an important question in sensory neuroscience regarding the interplay between sensory processing and signaling novelty/familiarity. It provides insights into how the brain processes and retains sensory experiences, suggesting that the earlier stations in the olfactory pathway, the AON aPCx, play a central role in detecting novelty and encoding odor, while areas deeper into the pathway (LEC, CA1 & Sub) are more sparse and encodes odor identity but not novelty/familiarity. However, there are several concerns related to methodology, data interpretation, and the strength of the conclusions drawn.

      Strengths:

      The authors combine the use of modern tools to obtain high-density recordings from large populations of neurons at different stages of the olfactory system (although mostly one region at a time) with elegant data analyses to study an important and interesting question.

      Weaknesses:

      The first and biggest problem I have with this paper is that it is very confusing, and the results seem to be all over the place. In some parts, it seems like the AON and aPCx are more sensitive to novelty; in others, it seems the other way around. I find their metrics confusing and unconvincing. For example, the example cells in Figure 1C shows an AON neuron with a very low spontaneous firing rate and a CA1 with a much higher firing rate, but the opposite is true in Fig. 2A. So, what are we to make of Fig. 2C that shows the difference in firing rates between novel vs. familiar odors measured as a difference in spikes/sec. The meaning of this is unclear. The authors could have used a difference in Z-scored responses to normalize different baseline activity levels. (This is just one example of a problem with the methodology.)

      There are a lot of high-level data analyses (e.g., decoding, analyzing decoding errors, calculating mutual information, calculating distances in state space, etc.) but very little neural data (except for Fig. 2C, and see my comment above about how this is flawed). So, if responses to novel vs. familiar odors are different in the AON and aPCx, how are they different? Why is decoding accuracy better for novel odors in CA1 but better for familiar odors in SUB (Fig. 3A)? The authors identify a small subset of neurons that have unusually high weights in the SVM analyses that contribute to decoding novelty, but they don't tell us which neurons these are and how they are responding differently to novel vs. familiar odors.

      The authors call AON and aPCx "primary sensory cortices" and LEC, CA1, and Sub "multisensory areas". This is a straw man argument. For example, we now know that PCx encodes multimodal signals (Poo et al. 2021, Federman et al., 2024; Kehl et al., 2024), and LEC receives direct OB inputs, which has traditionally been the criterion for being considered a "primary olfactory cortical area". So, this terminology is outdated and wrong, and although it suits the authors' needs here in drawing distinctions, it is simplistic and not helpful moving forward.

      Why not simply report z-scored firing rates for all neurons as a function of trial number? (e.g., Jacobson & Friedrich, 2018). Fig. 2C is not sufficient. For example, in the Discussion, they say, "novel stimuli caused larger increases in firing rates than familiar stimuli" (L. 270), but what does this mean? Odors typically increase the firing in some neurons and suppress firing in others. Where does the delta come from? Is this because novel odors more strongly activate neurons that increase their firing or because familiar odors more strongly suppress neurons?

      Ls. 122-124 - If cells in AON and aPCx responded the same way to novel and familiar odors, then we would say that they only encode for odor and not at all for experience. So, I don't understand why the authors say these areas code for a "mixed representation of chemical identity and experience." "On the other hand," if LEC, CA1, and SUB are odor selective and only encode novel odors, then these areas, not AON and aPCx, are the jointly encoding chemical identity and experience. Also, I do not understand why, here, they say that AON and PCx respond to both while LEC, CA1, and SUB were selective for novel stimuli, but the authors then go on to argue that novelty is encoded in the AON and PCx, but not in the LEC, CA1, and SUB.

      Ls. 132-140 - As presented in the text and the figure, this section is unclear and confusing. Their use of the word "shuffled" is a major source of this confusion, because this typically is the control that produces outcomes at chance level. More importantly, it seems as though they did the wrong analysis here. A better way to do this analysis is to train on some of the odors and test on an untrained odor (i.e., what Bernardi et al., 2021 called "cross-condition generalization performance"; CCGP).

      Comments on revisions:

      I think the authors have done an adequate job addressing the reviewers' concerns. Most importantly, I found the first version of the manuscript quite confusing, and the consequent clarifications have addressed this issue.

      In several cases, I see their point, while I still disagree with whether they made the best decisions. However, the issues here do not fundamentally change the big-picture outcome, and if they want to dig in with their approaches (e.g., only using auROC or just reporting delta firing rates without any normalization), it's their choice.

    3. Reviewer #3 (Public review):

      In this manuscript, the authors investigate how odor-evoked neural activity is modulated by experience within the olfactory-hippocampal network. The authors perform extracellular recordings in the anterior olfactory nucleus (AON), the anterior piriform (aPCx) and lateral entorhinal cortex (LEC), the hippocampus (CA1) and the subiculum (SUB), in naïve mice and in mice repeatedly exposed to the same odorants. They determine the response properties of individual neurons and use population decoding analyses to assess the effect of experience on odor information coding across these regions.

      The authors' findings show that odor identity is represented in all recorded areas, but that the response magnitude and selectivity of neurons are differentially modulated by experience across the olfactory-hippocampal pathway.

      Overall, this work represents a valuable multi-region data set of odor-evoked neural activity. However, a few limitations in experimental design and analysis restrict the conclusions that can be drawn from this study.

      Main limitations:

      The authors use a non-associative learning paradigm - repeated odor exposure - to test how experience modulates odor responses along the olfactory-hippocampal pathway. While repeated odor exposure clearly modulates sampling behavior and odor-evoked neural activity, the relevance of this modulation across different brain areas remains difficult to assess.

      The authors discuss the olfactory-hippocampal pathway as a transition from primary sensory (AON, aPCx) to associative areas (LEC, CA1, SUB). While this is reasonable, given the known circuit connectivity, other interpretations are possible. For example, AON, aPCx, and LEC receive direct inputs from the olfactory bulb ('primary cortex'), while CA1 and SUB do not; AON receives direct top-down inputs from CA1 ('associative cortex'), while aPCx does not. In fact, the data presented in this manuscript do not appear to support a consistent transformation from sensory to associative, as implied by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes critical intermediate reaction steps of a HA synthase at the molecular level; specifically, it examines the 2nd step, polymerization, adding GlcA to GlcNAc to form the initial disaccharide of the repeating HA structure. Unlike the vast majority of known glycosyltransferases, the viral HAS (a convenient proxy extrapolated to resemble the vertebrate forms) uses a single pocket to catalyze both monosaccharide transfer steps. The authors' work illustrates the interactions needed to bind & proof-read the UDP-GlcA using direct and '2nd layer' amino acid residues. This step also allows the HAS to distinguish the two UDP-sugars; this is very important as the enzymes are not known or observed to make homopolymers of only GlcA or GlcNAc, but only make the HA disaccharide repeats GlcNAc-GlcA.

      Strengths:

      Overall, the strengths of this paper lie in its techniques & analysis.

      The authors make significant leaps forward towards understanding this process using a variety of tools and comparisons of wild-type & mutant enzymes. The work is well presented overall with respect to the text and illustrations (especially the 3D representations), and the robustness of the analyses & statistics is also noteworthy.

      Furthermore, the authors make some strides towards creating novel sugar polymers using alternative primers & work with detergent binding to the HAS. The authors tested a wide variety of monosaccharides and several disaccharides for primer activity and observed that GlcA could be added to cellobiose and chitobiose, which are moderately close structural analogs to HA disaccharides. Did the authors also test the readily available HA tetramer (HA4, [GlcA-GlcNAc]2) as a primer in their system? This is a highly recommended experiment; if it works, then this molecule may also be useful for cryo-EM studies of CvHAS as well.

      Weaknesses:

      In the past, another report describing the failed attempt of elongating short primers (HA4 & chitin oligosaccharides larger than the cello- or chitobiose that have activity in this report) with a vertebrate HAS, XlHAS1, an enzyme that seems to behave like the CvHAS ( https://pubmed.ncbi.nlm.nih.gov/10473619/); this work should probably be cited and briefly discussed. It may be that the longer primers in the 1999 paper and/or the different construct or isolation specifics (detergent extract vs crude) were not conducive to the extension reaction, as the authors extracted recombinant enzyme.

      There are a few areas that should be addressed for clarity and correctness, especially defining the class of HAS studied here (Class I-NR) as the results may (Class I-R) or may not (Class II) align (see comment (a) below), but overall, a very nicely done body of work that will significantly enhance understanding in the field.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Stephens and co-workers provides important mechanistic insight into how hyaluronan synthase (HAS) coordinates alternating GlcNAc and GlcA incorporation using a single Type-I catalytic centre. Through cryo-EM structures capturing both "proofreading" and fully "inserted" binding poses of UDP-GlcA, combined with detailed biochemical analysis, the authors show how the enzyme selectively recognizes the GlcA carboxylate, stabilizes substrates through conformational gating, and requires a priming GlcNAc for productive turnover.

      These findings clarify how one active site can manage two chemically distinct donor sugars while simultaneously coupling catalysis to polymer translocation.

      The work also reports a DDM-bound, detergent-inhibited conformation that possibly illuminates features of the acceptor pocket, although this appears to be a purification artefact (it is indeed inhibitory) rather than a relevant biological state.

      Overall, the study convincingly establishes a unified catalytic mechanism for Type-I HAS enzymes and represents a significant advance in understanding HA biosynthesis at the molecular level.

      Strengths:

      There are many strengths.

      This is a multi-disciplinary study with very high-quality cryo-EM and enzyme kinetics (backed up with orthogonal methods of product analysis) to justify the conclusions discussed above.

      Weaknesses:

      There are few weaknesses.

      The abstract and introduction assume a lot of detailed prior knowledge about hyaluronan synthases, and in doing so, risk lessening the readership pool.

      A lot of discussion focuses on detergents (whose presence is totally inhibitory) and transfer to non-biological acceptors (at high concentrations). This risks weakening the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigated whether the identity of a peripheral saccade target object is fed back to the foveal retinotopic cortex during saccade preparation, a critical prediction of the foveal prediction hypothesis proposed by Kroell & Rolfs (2022). To achieve this, the authors leveraged a gaze-contingent fMRI paradigm, where the peripheral saccade target was removed before the eyes landed near it, and used multivariate decoding analysis to quantify identity information in the foveal cortex. The results showed that the identity of the saccade target object can be decoded based on foveal cortex activity, despite the fovea never directly viewing the object, and that the foveal feedback representation was similar to passive viewing and not explained by spillover effects. Additionally, exploratory analysis suggested IPS as a candidate region mediating such foveal decodability. Overall, these findings provide neural evidence for the foveal cortex processing the features of the saccade target object, potentially supporting the maintenance of perceptual stability across saccadic eye movements.

      Strengths:

      This study is well-motivated by previous theoretical findings (Kroell & Rolfs, 2022), aiming to provide neural evidence for a potential neural mechanism of trans-saccadic perceptual stability. The question is important, and the gaze-contingent fMRI paradigm is a solid methodological choice for the research goal. The use of stimuli allowing orthogonal decoding of stimulus category vs stimulus shape is a nice strength, and the resulting distinctions in decoded information by brain region are clean. The results will be of interest to readers in the field, and they fill in some untested questions regarding pre-saccadic remapping and foveal feedback.

      Weaknesses:

      The authors have done a nice job addressing the previous weaknesses. The remaining weaknesses / limitations are appropriately discussed in the manuscript. E.g., the use of only 4 unique stimuli in the experiment. The findings are intriguing and relevant to saccadic remapping and foveal feedback, but somewhat limited in terms of the ability to draw theoretical distinctions between these related phenomena.

      Specifics:

      The revised manuscript is much improved in terms of framing and discussion of the prior literature, and the theoretical claims are now stated with appropriate nuance.

      I have two remaining minor suggestions/comments, which the authors may optionally respond to:

      (1) In the parametric modulation analysis, the authors' additional analyses nicely addresses my concern and strengthens the claim. However, the description in the revised manuscript (Pg 7 Ln 190-191) is minimal and may be difficult to grasp what the control analysis is about and how it rules out alternative explanations to the IPS findings. The authors may wish to elaborate on the description in the text.

      (2) Out of curiosity (not badgering): The authors argued that the findings of Harrison et al. (2013) and Szinte et al. (2015) can be explained by feature integration between the currently attended location and its future, post-saccadic location. Couldn't the same argument apply in the current paradigm, where attention at the saccade target gets remapped to the pre-saccadic fovea (see also Rolfs et al., 2011 Fig 5), thus leading to the observed feature remapping?

    2. Reviewer #3 (Public review):

      Summary:

      In this paper the authors used fMRI to determine whether peripherally-viewed objects could be decoded from foveal cortex, even when the objects themselves were never viewed foveally. Specifically they investigated whether pre-saccadic target attributes (shape, semantic category) could be decoded from foveal cortex. They found that object shape, but not semantic category could be decoded, providing evidence that foveal feedback relies on low-mid-level information. The authors claim that this provides evidence for a mechanism underlying visual stability and object recognition across saccades.

      Strengths:

      I think this is another nice demonstration that peripheral information can be decoded from / is processed in foveal cortex - the methods seem appropriate, and the experiments and analyses carefully conducted, and the main results seem convincing. The paper itself was very clear and well-written.

      Weaknesses:

      Given that foveal feedback has been found in previous studies that don't incorporate saccades, it is still unclear how this mechanism might specifically contribute to stability across saccades, rather than just being a general mechanism that aids the processing/discrimination of peripherally-viewed stimuli. The authors address this point, but I guess whether foveal feedback during fixation and saccade prep are really the same, is ultimately a question that needs more experimental work to disentangle.

    1. Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Comments on revised version:

      I have no additional comments regarding the current version of the manuscript.

    2. Reviewer #3 (Public review):

      Summary:

      The authors have provided a thorough and constructive response to the comments. They effectively addressed concerns regarding the dependence on marker gene selection by detailing the incorporation of multiple feature selection strategies, such as highly variable genes and spatially informative markers (e.g., via Moran's I), which enhance glmSMA's robustness even when using gene-limited reference atlases.

      Furthermore, the authors thoughtfully acknowledged the assumption underlying glmSMA-that transcriptionally similar cells are spatially proximal-and discussed both its limitations and empirical robustness in heterogeneous tissues such as human PDAC. Their use of real-world, heterogeneous datasets to validate this assumption demonstrates the method's practical utility and adaptability.

      Overall, the response appropriately contextualizes the limitations while reinforcing the generalizability and performance of glmSMA. The authors' clarifications and experimental justifications strengthen the manuscript and address the reviewer's concerns in a scientifically sound and transparent manner.

      Comments on revised version:

      Figure 1 does not yet clearly convey what the glmSMA algorithm actually does. I recommend revising or redesigning the figure so that the workflow, main inputs, and outputs of the algorithm are more intuitively presented. A clearer visual explanation would help readers quickly grasp the core concept and contribution of glmSMA.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines whether changes in pupil size index prediction-error-related updating during associative learning, formalised as information gain via Kullback-Leibler (KL) divergence. Across two independent tasks, pupil responses scaled with KL divergence shortly after feedback, with the timing and direction of the response varying by task. Overall, the work supports the view that pupil size reflects information-theoretic processes in a context-dependent manner.

      Strengths:

      This study provides a novel and convincing contribution by linking pupil dilation to information-theoretic measures, such as KL divergence, supporting Zénon's hypothesis that pupil responses reflect information gain during learning. The robust methodology, including two independent datasets with distinct task structures, enhances the reliability and generalisability of the findings. By carefully analysing early and late time windows, the authors capture the timing and direction of prediction-error-related responses, offering new insights into the temporal dynamics of model updating. The use of an ideal-learner framework to quantify prediction errors, surprise, and uncertainty provides a principled account of the computational processes underlying pupil responses. The work also highlights the critical role of task context in shaping the direction and magnitude of these effects, revealing the adaptability of predictive processing mechanisms. Importantly, the conclusions are supported by rigorous control analyses and preprocessing sanity checks, as well as convergent results from frequentist and Bayesian linear mixed-effects modelling approaches.

      Weaknesses:

      Some aspects of directionality remain context-dependent, and on current evidence cannot be attributed specifically to whether average uncertainty increases or decreases across trials. Differences between the two tasks (e.g., sensory modality and learning regime) limit direct comparisons of effect direction and make mechanistic attribution cautious. In addition, subjective factors such as confidence were not measured and could influence both prediction-error signals and pupil responses. Importantly, the authors explicitly acknowledge these limitations, and the manuscript clearly frames them as areas for future work rather than settled conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigate whether pupil dilation reflects information gain during associative learning, formalised as Kullback-Leibler divergence within an ideal observer framework. They examine pupil responses in a late time window after feedback and compare these to information-theoretic estimates (information gain, surprise, and entropy) derived from two different tasks with contrasting uncertainty dynamics.

      Strength:

      The exploration of task evoked pupil dynamics beyond the immediate response/feedback period and then associating them with model estimates was interesting and inspiring. This offered a new perspective on the relationship between pupil dilation and information processing.

      Weakness:

      However, the interpretability of the findings remains constrained by the fundamental differences between the two tasks (stimulus modality, feedback type, and learning structure), which confound the claimed context-dependent effects. The later time-window pupil effects, although intriguing, are small in magnitude and may reflect residual noise or task-specific arousal fluctuations rather than distinct information-processing signals. Thus, while the study offers valuable methodological insight and contributes to ongoing debates about the role of the pupil in cognitive inference, its conclusions about the functional significance of late pupil responses should be treated with caution.

    3. Reviewer #3 (Public review):

      Summary:

      Thank you for inviting me to review this manuscript entitled "Pupil dilation offers a time-window on prediction error" by Colizoli and colleagues. The study examines prediction errors, information gain (Kullback-Leibler [KL] divergence), and uncertainty (entropy) from an information-theory perspective using two experimental tasks and pupillometry. The authors aim to test a theoretical proposal by Zénon (2019) that the pupil response reflects information gain (KL divergence). The conclusion of this work is that (post-feedback) pupil dilation in response to information gain is context dependent.

      Strengths:

      Use of an established Bayesian model to compute KL divergence and entropy.

      Pupillometry data preprocessing and multiple robustness checks.

      Weaknesses:

      Operationalization of prediction errors based on frequency, accuracy, and their interaction:

      The authors rely on a more model-agnostic definition of the prediction error in terms of stimulus frequency ("unsigned prediction error"), accuracy, and their interaction ("signed prediction error"). While I see the point, I would argue that this approach provides a simple approximation of the prediction error, but that a model-based approach would be more appropriate.

      Model validation:

      My impression is that the ideal learner model should work well in this case. However, the authors don't directly compare model behavior to participant behavior ("posterior predictive checks") to validate the model. Therefore, it is currently unclear if the model-derived terms like KL divergence and entropy provide reasonable estimates for the participant data.

      Lack of a clear conclusion:

      The authors conclude that this study shows for the first time that (post-feedback) pupil dilation in response to information gain is context dependent. However, the study does not offer a unifying explanation for such context dependence. The discussion is quite detailed with respect to task-specific effects, but fails to provide an overarching perspective on the context-dependent nature of pupil signatures of information gain. This seems to be partly due to the strong differences between the experimental tasks.

    1. Reviewer #2 (Public review):

      Summary

      This study investigates the role of GMCL1 in regulating the mitotic surveillance pathway (MSP), a protective mechanism that activates p53 following prolonged mitosis. The authors identify a physical interaction between 53BP1 and GMCL1, but not with GMCL2. They propose that the ubiquitin ligase complex CRL3-GMCL1 targets 53BP1 for degradation during mitosis, thereby preventing the formation of the "mitotic stopwatch" complex (53BP1-USP28-p53) and subsequent p53 activation. The authors show that high GMCL1 expression correlates with resistance to paclitaxel in cancer cell lines that express wild-type p53. Importantly, loss of GMCL1 restores paclitaxel sensitivity in these cells, but not in p53-deficient lines. They propose that GMCL1 overexpression enables cancer cells to bypass MSP-mediated p53 activation, promoting survival despite mitotic stress. Targeting GMCL1 may thus represent a therapeutic strategy to re-sensitize resistant tumors to taxane-based chemotherapy.

      Strengths

      This manuscript presents potentially interesting observations. The major strength of this article is the identification of GMCL1 as 53BP1 interaction partner. The authors identified relevant domains and show that GMCL1 controls 53BP1 stability. The authors further show a potentially interesting link between GMCL1 status and sensitivity to Taxol.

      Weaknesses

      A major limitation of the original manuscript was that the functional relevance of GMCL1 in regulating 53BP1 within an appropriate model system was not clearly demonstrated. In the revised version, the authors attempt to address this point. However, the new experiment is insufficiently controlled, making it difficult to interpret the results. State-of-the-art approaches would typically rely on single-cell tracking to monitor cell fate following release from a moderately prolonged mitosis.

      In contrast, the authors use a population-based assay, but the reported rescue from arrest is minimal. If the assay were functioning robustly, one would expect that nearly all cells depleted of USP28 or 53BP1 should have entered S-phase at a defined time after release. Thus, the very small rescue effect of siTP53BP1 suggests that the current assay is not suitable. It is also likely that release from a 16-hour mitotic arrest induces defects independent of the 53BP1-dependent p53 response.

      Furthermore, the cell-cycle duration of RPE1 cells is less than 20 hours. It is therefore unclear why cells are released for 30 hours before analysis. At this time point, many cells are likely to have progressed into the next cell cycle, making it impossible to draw conclusions regarding the immediate consequences of prolonged mitosis. As a result, the experiment cannot be evaluated due to inadequate controls.

      To strengthen this part of the study, I recommend that the authors first establish an assay that reliably rescues the mitotic-arrest-induced G1 block upon depletion of p53, 53BP1, or USP28. Once this baseline is validated, GMCL1 knockout can then be introduced to quantify its contribution to the response.

      A broader conceptual issue is that the evidence presented does not form a continuous line of reasoning. For example, it is not demonstrated that GMCL1 interacts with or regulates 53BP1 in RPE1 cells-the system in which the limited functional experiments are conducted.

      There are also a number of inconsistencies and issues with data presentation that need to be addressed:

      (1) Figure 2C: p21 levels appear identical between GMCL1 KO and WT rescue. If GMCL1 regulates p53 through 53BP1, p21 should be upregulated in the KO.

      (2) Figure 2A vs. 2C: GMCL1 KO affects chromatin-bound 53BP1 in Figure 2A, yet in Figure 2C it affects 53BP1 levels specifically in G1-phase cells. This discrepancy requires clarification.

      (3) Figure 2C quantification: The three biological repeats show an unusual pattern, with one repeat's data points lying exactly between the other two. It is unclear what the line represents; please clarify.

      (4) Figure nomenclature: Some abbreviations (e.g., FLAG-KI in Fig. 1F, WKE in Fig. 1C-D, ΔMFF in Fig. 1E) are not defined in the figure legends. All abbreviations must be explained.

      (5) Figure 2D: Please indicate how many times the experiment was reproduced. Quantification with statistical testing would strengthen the result. Pull-downs of 53BP1 with calculation of the ubiquitinated/total ratio could also support the conclusion.

      (6) Figures 3A and 3C: The G1 bars share the same color as the error bars, making the graphs difficult to interpret. Please adjust the color scheme.

    2. Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex. Here they identified mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild type FLAG-GMCL1 but not GMCL1 EK or GMCL1 BBO. These proteins included 53BP1, which plays a well characterized role in double strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1. Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and/or docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (PMID: 8105478, PMID: 10198049) so careful follow up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (PMID: 10951339, PMID: 8826941, PMID: 10955790). The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper cited (PMID: 38547292) reported that U2OS cells have an inactive stopwatch. Though it can be partially restored by treatment with an inhibitor of WIP1, the stopwatch was reported to be substantially impaired in U2OS cells, in contrast to what is reported here. Additionally, activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (PMID: 24670687, PMID: 34516829, PMID: 37883329). Physiologically relevant concentrations are achieved with approximately 5-10 nM paclitaxel, rather than the 100 nM used here. The findings here demonstrating that GMCL1 mediates chromatin localization of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unlikely that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface followed by mutational analysis identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells followed by FLAG immunoprecipitation confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed though mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole or 48 hours of 100 nM paclitaxel. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles, raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. Nocodazole is a microtubule poison that is not used clinically and does not induce multipolar spindles, so a similar apoptotic response to both drugs increases concern about a lack of physiological relevance. Moreover, clinical response to paclitaxel does not correlate with p53 status (PMID: 10951339, PMID: 8826941, PMID: 10955790). No evidence is presented that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

      Comments on revisions:

      (1) The claim that GMCL1 modulates paclitaxel sensitivity in cancer should be toned down. Inaccurate statements based on an outdated understanding of the anti-cancer mechanism of paclitaxel should be removed (eg lines 42-44: "In cancers that are resistant to paclitaxel, a microtubule-targeting agent, cells bypass mitotic surveillance activation, allowing unchecked proliferation...", lines 73-75: "Proper mitotic arrest is critical for the efficacy of microtubule-targeting therapies...", lines 78-79: "This resistance is frequently associated with loss of MSP activity, for example due to defective p53 signaling". As cited in the public review, p53 status does not correlate with paclitaxel response in cancer.)

      (2) Perform timelapse experiments +/- GMCL1 siRNA in the absence of drug and in the presence of low, physiologically relevant concentrations of paclitaxel (5-10 nM), as well as supraphysiologic concentrations (100 nM) and correlate mitotic duration with cell cycle arrest. Test if co-depletion of 53BP1 with GMCL1 rescues cell cycle arrest after a substantially prolonged mitosis. Perform these experiments in a cell line with an intact mitotic stopwatch.

    1. Reviewer #1 (Public review):

      Summary:

      This paper introduces a dual-pathway model for reconstructing naturalistic speech from intracranial ECoG data. It integrates an acoustic pathway (LSTM + HiFi-GAN for spectral detail) and a linguistic pathway (Transformer + Parler-TTS for linguistic content). Output from the two components is later merged via CosyVoice2.0 voice cloning. Using only 20 minutes of ECoG data per participant, the model achieves high acoustic fidelity and linguistic intelligibility.

      Strengths:

      (1) The proposed dual-pathway framework effectively integrates the strengths of neural-to-acoustic and neural-to-text decoding and aligns well with established neurobiological models of dual-stream processing in speech and language.

      (2) The integrated approach achieves robust speech reconstruction using only 20 minutes of ECoG data per subject, demonstrating the efficiency of the proposed method.

      (3) The use of multiple evaluation metrics (MOS, mel-spectrogram R², WER, PER) spanning acoustic, linguistic (phoneme and word), and perceptual dimensions, together with comparisons against noise-degraded baselines, adds strong quantitative rigor to the study.

      Weaknesses:

      (1) It is unclear how much the acoustic pathway contributes to the final reconstruction results, based on Figures 3B-E and 4E. Including results from Baseline 2 + CosyVoice and Baseline 3 + CosyVoice could help clarify this contribution.

      (2) As noted in the limitations, the reconstruction results heavily rely on pre-trained generative models. However, no comparison is provided with state-of-the-art multimodal LLMs such as Qwen3-Omni, which can process auditory and textual information simultaneously. The rationale for using separate models (Wav2Vec for speech and TTS for text) instead of a single unified generative framework should be clearly justified. In addition, the adaptor employs an LSTM architecture for speech but a Transformer for text, which may introduce confounds in the performance comparison. Is there any theoretical or empirical motivation for adopting recurrent networks for auditory processing and Transformer-based models for textual processing?

      (3) The model is trained on approximately 20 minutes of data per participant, which raises concerns about potential overfitting. It would be helpful if the authors could analyze whether test sentences with higher or lower reconstruction performance include words that were also present in the training set.

      (4) The phoneme confusion matrix in Figure 4A does not appear to align with human phoneme confusion patterns. For instance, /s/ and /z/ differ only in voicing, yet the model does not seem to confuse these phonemes. Does this imply that the model and the human brain operate differently at the mechanistic level?

      (5) In general, is the motivation for adopting the dual-pathway model to better align with the organization of the human brain, or to achieve improved engineering performance? If the goal is primarily engineering-oriented, the authors should compare their approach with a pretrained multimodal LLM rather than relying on the dual-pathway architecture. Conversely, if the design aims to mirror human brain function, additional analysis, such as detailed comparisons of phoneme confusion matrices, should be included to demonstrate that the model exhibits brain-like performance patterns.

    2. Reviewer #2 (Public review):

      Summary:

      The study by Li et al. proposes a dual-path framework that concurrently decodes acoustic and linguistic representations from ECoG recordings. By integrating advanced pre-trained AI models, the approach preserves both acoustic richness and linguistic intelligibility, and achieves a WER of 18.9% with a short (~20-minute) recording.

      Overall, the study offers an advanced and promising framework for speech decoding. The method appears sound, and the results are clear and convincing. My main concerns are the need for additional control analyses and for more comparisons with existing models.

      Strengths:

      (1) This speech-decoding framework employs several advanced pre-trained DNN models, reaching superior performance (WER of 18.9%) with relatively short (~20-minute) neural recording.

      (2) The dual-pathway design is elegant, and the study clearly demonstrates its necessity: The acoustic pathway enhances spectral fidelity while the linguistic pathway improves linguistic intelligibility.

      Weaknesses:

      The DNNs used were pre-trained on large corpora, including TIMIT, which is also the source of the experimental stimuli. More generally, as DNNs are powerful at generating speech, additional evidence is needed to show that decoding performance is driven by neural signals rather than by the DNNs' generative capacity.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors address the organization of reach-related activity in layer 2/3 across a broad swath of anterodorsal neocortex that included large subregions of M1, M2, and S1. In mice performing a novel variant water-reaching task, the authors measured activity using two-photon fluorescence imaging of a GECI expressed in excitatory projection neurons. The authors found a substantial diversity of response patterns using a number of metrics they developed for characterizing the PETHs of neurons across reach conditions (target locations). By mapping single-neuron properties across the cortex, the authors found substantial spatial variation, only some of which aligned with traditional boundaries between cortical regions. Using Gaussian mixture models, the authors found evidence of distinct response types in each region, with several types prominent in multiple cortical regions. Aggregating across regions, four primary subpopulations were apparent, each distinct in its average response properties. Strikingly, each subpopulation was observed in multiple regions, but subpopulation members from different regions exhibited largely similar response properties.

      Strengths:

      The work addresses a fundamental question in the field that has not previously been addressed at cellular resolution across such a broad cortical extent. I see this as truly foundational work that will support future investigation of how the rodent brain drives and controls reaching.

      The quantification is thoughtful and rigorous. It is great that the authors provide an explanation for and intuition behind their response metrics, rather than burying everything in the Methods.

      The Discussion and general contextualization of the results are thorough, thoughtful, and strong. It is great that the authors avoid the common over-interpretation of classical observations regarding cortical organization that are endemic in the field.

      All things considered, this is the best paper regarding spatial structure in the motor system I have ever read. The breadth of cellular resolution activity measurement, the rigor of the quantification, and the clear and open-minded interrogation of the data collectively have produced a very special piece of work.

      Weaknesses:

      The behavioral task is very impressive and an important contribution to the field in its own right. However, given that it appears substantially different from the one used in the previous paper, the characterization of the behavior provided in the Results is too brief. More illustration of the behavior would be helpful. For example, it is rather deep into the paper when the authors reveal that the mice can whisk to help localize the target location. That should be expressed at the outset when the behavior is first described. Other suggestions for elaborating the behavior description are included below.

      Statistical support for key claims is lacking. For example, "The five areas of interest varied in the fraction of neurons that were modulated: M2 had 14%, M1 had 23%, S1-fl had 30%, S1-hl had 25%, and S1-tr had 27%" - I cannot locate the statistical tests showing that these values are actually different. Another example is Figure 7, where a key observation is that distributions of PETH features are distinct across regions. It is clear that at least some distributions are not overlapping, but a clearer statistical basis for this key claim should be provided.

      I understand that the authors are planning a follow-up study that addresses the relation between activity patterns and kinematics. One question about interpreting the results here though, is how much the activity variation across target locations may relate to the kinematic differences across these different conditions, as opposed to true higher-order movement features like reach direction.

    2. Reviewer #2 (Public review):

      Summary:

      The functional parcellation of cortical areas is a critical question in neuroscience. This is particularly true in frontal areas in mice. While sensory areas are relatively well characterized by their tuning to sensory stimuli, the situation is much less clear for motor areas. This has become even more ambiguous since recent studies using large-scale neuronal recordings consistently report mixed sensory and motor-related activity throughout the brain, and motor mapping studies have shown that movements evoked by cortical stimulation are by no means limited to motor areas alone. Here, the authors use a correlation approach combining large-scale functional imaging at cellular resolution with movement-tracking in mice executing a reaching task. Across multiple recording sessions in the same animals, the authors have imaged a large portion of the sensorimotor cortex at cellular resolution in mice performing a reaching task, recording the activity of nearly 40,000 neurons. By aligning the calcium signal of each neuron to three task events-the Go cue triggering the reach, the onset of paw lift, and the contact between the paw and the target-for different target positions, the authors identified different response patterns distributed differently across cortical areas. They defined a set of features that describe the neurons' response pattern, representing the temporal dynamics and tuning properties for the different target positions. These features were used to construct cortical maps, and the authors show that, interestingly, gradient maps obtained from the first derivative of the feature maps reveal sharp discontinuities at the boundaries between anatomically defined cortical areas. Using dimensionality reduction of the neuronal response features, the authors found that, despite clear differences in their average response properties, individual neurons from the same cortical areas do not form distinct clusters in the reduced-dimensional space. In fact, most areas contain heterogeneous neuronal populations, and most neuronal populations are present in multiple areas, albeit in different proportions. Interestingly, the authors identified four neuronal subpopulations based on the distance between the components of the Gaussian mixture model used to model the distribution of neurons within each area. One of these subpopulations is almost exclusively represented in the anterior M2 cortex, while another is broadly distributed across the different areas.

      Strengths:

      This article is based on an impressive dataset of nearly 40,000 neurons covering a large portion of the sensorimotor cortex and on innovative analytical approaches. This study is likely the first to clearly demonstrate boundaries between cortical areas defined based on the responses of individual neurons. This innovative approach to functional mapping of cortical areas potentially opens up new perspectives for higher-resolution mapping of frontal cortical areas, using a broader repertoire of sensory and motor evoked responses.

      Weaknesses:

      The second part of the article, which presents multimodal responses in the cortical areas, seems to be a perhaps overly complicated way of showing what has already been demonstrated in numerous recent publications, but these new analyses expand upon these previous observations by revealing an interesting functional organization of the sensorimotor cortex, highlighting interesting similarities and differences between certain areas.

    1. Reviewer #1 (Public review):

      WIPI1 is a PROPPIN family protein that has been implicated in Retromer-mediated membrane fission events. Although the cargos that it has been tested to be important for are diverse, one of the cargos that is unaffected is Beta1-Integrin. This leads the authors to assess another PROPPIN family protein - WIPI2, which is a homolog of WIPI1. KD using siRNA is effective and had no consequences on LAMP1, EGFR trafficking or GLUT1 trafficking. Integrin-B1, however, had a large and significant defect in its recycling from the endosome, with a clear endosomal colocalisation. Complementation experiments with WT WIPI2 recovered the phenotype, but various mutant WIPI2 complements resulted in elongated tubules, and there was also a dominant negative effect of the mutant. Integrin is a classic retreiver cargo, so the authors rationalise that WIPI2 may be playing a role with retreiver that WIPI1 plays with retromer. To assess this, they perform a set of immunoprecipitations. SNX17, the retreiver-associated sorting nexin, co-IPs with WIPI2 in a VPS26C-dependent manner. VPS26C but not VPS26 co-IPs with WIPI2, and the reciprocal with WIPI1. These interactions were not present for the FSSS mutation of WIPI2. WIPI2 localises to Rab11 endosomes mainly, as does retriever. Mutations of WIPI2 not only affected WIPI2 localisation, but also VPS35L mutations, indicating that there is a functional relationship between the two.

      On the whole, I find the manuscript compelling. The manuscript is very clearly written, the results are convincing and well performed. The flow of experiments is logical, and although not comprehensive in the subsequent mechanistic understanding, the fundamental findings are important and convincing. My comments below are, on the whole, minor and are intended to support the communication of the findings to the field.

      (1) The IP interaction data were convincing; however, for me and some others, an interaction is only convincing when performed in vitro, and understood at a structural level. I do not suggest the authors do that in this case; however, I think, at a minimum, some sensible moderation of claims would be useful here.

      (2) I found the final localisation data and its interpretation confusing. My interpretation of that data would not be that the retreiver is relocalised, but rather that there is less of both recruited to the membrane and the remaining localisation distribution is shifted. In addition, I am not quite sure of the model here - is the idea that WIPI2 recruits retreiver, if that is the case, I find it hard to resolve with its role as a mediator of fission. Clarity would be appreciated here.

      (3) I am concerned that the repeats being compared for statistical analysis are not biological repeats but technical repeats (cells in the same experiment). I should think the idea of the statistical comparison is to show experimental reproducibility and variability across biological repeats. Therefore, I would expect an appropriate number of biological repeats (3 or more minimum), to be the data compared in the statistical analysis and graphs. I think it is appropriate to average the technical repeats from each biological repeat. I find these to be useful resources https://doi.org/10.1083/jcb.202401074, https://doi.org/10.1083/jcb.200611141

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript from De Leo and Mayer presents evidence that the PROPPIN protein, WIPI2, associates with the Retriever complex, and is required for the proper transport of the SNX17-Retriever cargo, beta1-integrin. This finding fits with prior papers from the Mayer lab, which showed that a related PROPPIN, WIPI1, is required for the transport of some SNX27-Retromer cargo, including GLUT1. The retromer and retriever complexes are architecturally similar. Importantly, they act at the same endosomes, and each transports cargo from endosomes to the plasma membrane. Thus, the possibility that each also requires a structurally related PROPPIN is of interest. However, the manuscript is incomplete, and the main claims are only partially supported.

      Strengths:

      The topic that PROPPIN proteins are important for the function of the Retromer and Retriever complexes expands our view of the trafficking complex.

      Weaknesses:

      Many important controls are missing. Several points that are made in the manuscript are only supported through a single approach.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript of Mayer and colleagues analyzes the function of WIPI proteins in mammalian cells. The authors previously identified CROP as a complex consisting of WIPI1 and the retromer complex, primarily in yeast cells. In mammalian cells, both WIPI1 and WIPI2 exist, whereas retromer has a homologous complex termed retriever. They now find that WIPI2 can form a complex with retriever subunits. They named this complex CROP2. Their data further indicate that CROP2 and CROP1 have distinct substrate specificities as knockdown of CROP2 subunits affects beta1 integrin sorting, whereas knockdown of CROP1 affects EGFR and GLUT1. They further identify a similar sequence (FSSS) in both WIPI1 and WIPI2, which is required for their specific binding to retromer and retriever.

      Strengths:

      CROP1 and CROP2 seem to use similar features for their formation, and have different substrates, which is convincingly shown.

      Weaknesses:

      The analysis lacks information that this is a complex as claimed. It can be deduced from the interaction analysis, but was not shown.

    1. Reviewer #1 (Public review):

      A summary of what the authors were trying to achieve:

      (1) Identify probiotic candidates based on the phylogenetic proximity and their presence in the lower respiratory tract based on phylogenetic analysis and on meta-analysis of 16S rRNA sequencing of mouse lung samples.

      (2) Predefine probiotic candidates with overlapping and competing metabolic profiles based on a simple and easy-to-applicable score, taking carbon source use into consideration.

      (3) Confirm the functionality of these candidate probiotics in vitro and define their mechanism of action (niche exclusion by either metabolic competition or active antibacterial strategies).

      (4) Confirm the probiotic action in vivo.

      Strengths:

      The authors attempt to go the whole 9 yards from rational choice of phylogenetic close lower respiratory tract probiotics, over in silico modelling of niche index based on use of similar carbon sources with in vitro confirmation, to in vivo competition experiments in mice.

      Weaknesses:

      (1) The use of a carbon source is defined as growth to OD600 two SD above the blank level. While allowing a clear cutoff, this procedure does not take into account larger differences in the preferences of carbon sources between the pathogen and the probiotic candidate. If the pathogen is much better at taking up and processing a carbon source, the competition by the probiotic might be biologically irrelevant.

      (2) The authors do not take into account the growth of candidate probiotics in the presence of Bt. In monoculture, three of the four most potent candidate probiotics grow to comparable levels as Bt in LSM.

      (3) Niche exclusion in vivo is not shown. Mortality of hosts after infection with Bt is not a measure for competition of CP with the pathogen. Only Bt titers would prove a competitive effect. For CP17, less than half of the mice were actually colonized, but still, there is 100% protection. Activation of the host immune system would explain this and has to be excluded as an alternative reason for improved host survival.

      Appraisal:

      (1) Based on phylogenetic comparison and published resources on lower respiratory tract colonizing bacteria, the authors find a reasonably good number of candidate probiotics that grow in LSM and successfully compete with the pathogenic target bacterium Bt in vitro.

      (2) In vivo, only host survival was tested, and a direct competition of CP with Bt by testing for Bt titers was not shown.

      Impact:

      Niche exclusion based on competition for environmentally provided metabolites is not a new concept and was experimentally tested, e.g. in the intestine. The authors show here that this concept could be translated into the resource-poor environment of the respiratory tract. It remains to be tested if the LSM growth-based competition data in vitro can be translated into niche exclusion in vivo.

    2. Reviewer #2 (Public review):

      Summary:

      This study aims to establish a rational framework for designing bacterial probiotics against respiratory infections. The central hypothesis is that in vitro antagonism, particularly through metabolic niche overlap with a pathogen, predicts in vivo efficacy.

      Strengths:

      (1) Systematic pipeline: The study integrates bacterial isolation, in vitro characterization, model development, and in vivo validation into a cohesive workflow.

      (2) Quantitative model: The introduction of the Niche Index (NI) and Niche Index Fraction (NIF) provides a novel, quantitative tool for predicting probiotic efficacy based on ecological principles.

      (3) Mechanistic insight: The work dissects different modes of action, clearly demonstrating that inhibition can be driven by specialized metabolite production (CP8) or carbon resource competition (e.g., CP7), with lactate utilization identified as a key factor.

      Weaknesses:

      (1) Limited model generalizability: The predictive power of the NI model is not universal. It fails to account for the in vivo inefficacy of CP8 (a metabolite-dependent inhibitor) and cannot explain the short-term protection conferred by some non-inhibitory CPs in vivo, suggesting unmodeled mechanisms like immune priming are at play.

      (2) Preliminary nature of key findings: The emphasis on lactate consumption as a critical predictor, while interesting, is not sufficiently explored to establish its general importance beyond the specific strains and conditions tested.

      Appraisal:

      The authors successfully achieve their aim of establishing a rational probiotic-design pipeline. The data robustly support the conclusion that metabolic niche overlap predicts efficacy for many strains, while also clearly delineating the model's limitations, as acknowledged by the authors.

      Impact:

      This work provides a valuable methodological framework for hypothesis-driven probiotic discovery. The quantitative Niche Index offers immediate utility to the field and, with further refinement, has the potential to become a fundamental tool for developing respiratory therapeutics.

    1. Reviewer #1 (Public review):

      Summary:

      This research group has consistently performed cutting-edge research aiming to understand the role of hormones in the control of social behaviors, specifically by utilizing the genetically-tractable teleost fish, medaka, and the current work is no exception. The overall claim they make, that estrogens modulate social behaviors in males is supported, with important caveats. For one, there is no evidence these estrogens are generated by "neurons" as would be assumed by their main claim that it is NEUROestrogens that drive this effect. While indeed the aromatase they have investigated is expressed solely in the brain, in most teleosts, brain aromatase is only present in glial cells (astrocytes, radial glia). The authors should change this description so as not to mislead the reader. Below I detail more specific strengths and weaknesses of this manuscript.

      Strengths:

      Excellent use of the medaka model to disentangle the control of social behavior by sex steroid hormones

      The findings are strong for the most part because deficits in the mutants are restored by the molecule (estrogens) that was no longer present due to the mutation

      Presentation of the approach and findings are clear, allowing the reader to make their own inferences and compare them with the authors'

      Includes multiple follow-up experiments, which leads to tests of internal replication and an impactful mechanistic proposal

      Findings are provocative not just for teleost researchers, but for other species since, as the authors point out, the data suggest mechanisms of estrogenic control of social behaviors may be evolutionary ancient

      Weaknesses:

      The experimental design for studying aggression in males has flaws, but it appears a typical resident-intruder type assay is not appropriate for medaka. seems other species may be better for studying aggression in teleosts.

    2. Reviewer #3 (Public review):

      Summary:

      Taking advantage of the existence in fish of two genes coding for estrogen synthase, the enzyme aromatase, one mostly expressed in the brain (Cyp19a1b) and the other mostly found in the gonads (Cyp19a1a), this study investigates the role of brain-derived estrogens in the control of sexual and aggressive behavior in male medaka. The constitutive deletion of Cyp19a1b, confirmed by the ablation of its transcript, markedly reduced brain estrogen content. This effect is accompanied by reduced sexual and aggressive behavior and reduced expression of the transcripts coding for androgen receptors (AR), ara and arb, in brain regions involved in social behavior regulation. Both AR expression and aspects of social behaviors were restored by adult treatment with estrogens, providing some support for a role of aromatization. Expression analysis of AR isoforms and behavior of mutants of estrogen receptors (ER) indicates that these effects are likely mediated by the activation of the esr1 and esr2a isoforms. Together, these results provide valuable insights into the role of brain-derived estrogens in social behavior in fish.

      Strengths:

      This study evaluates the role of brain "specific" Cyp19a1 in the social behavior in male teleost fish, which as a taxon are more abundant and yet proportionally less studied that the most common birds and rodents. Therefore, evaluating the generalizability of results from higher vertebrates is important. The study suggests that, as opposed to mammals, the facilitatory role of brain-derived estrogens on mating and aggression is limited to adulthood.

      Results obtained from multiple mutant lines converge to show that estrogens most likely synthesized in the brain drives aspects of male sexual behavior.

      The comparative discussion of the age-dependent abundance of brain aromatase in fish vs mammals and its role in organization vs activation is important beyond the study of the targeted species.

      Weaknesses:

      Most experiments are weakly powered (low sample size).

      The variability of the mRNA content for a same target gene between experiments (genotype comparison vs E2 treatment comparison) raises questions about the reproducibility of the data (apparent disappearance of genotype effect).

      Conclusions :

      Overall, the present study provides convincing evidence for a facilitatory role of estrogens originating from the brain on sexual behavior and aggressive behavior in male medaka. The role of specific estrogen receptor isoforms underlying the expression of androgen receptors is supported by converging evidence from multiple mutant lines.

    1. Reviewer #1 (Public review):

      Summary:

      This paper provides a novel method to improve the accuracy of predictions of the impact of ITN strategies, by using sub-national estimates of the duration of ITN access and use over time from cross-sectional survey data and annual country ITNs received.

      Strengths:

      The approach is novel, makes use of available data, and has considered all of the relevant components of ITN distributions.

      Weaknesses:

      (1) The main message of the paper was not very clear, and did not seem to fit the title. The title focuses on sub-national tailoring of ITN, but the abstract did not feature results directly about SNT. It was not very clear what the main result of the paper was - there are several ITN observations in the results and discussion. Most did not seem to be directly about SNT, but rather sub-national differences in use and access were accounted for in the analyses. It was not clear if the same conclusions would be reached without accounting for sub-national differences, but the estimates and predictions could be expected to be more accurate.

      (2) Some of the results seemed to me to be apparent even without a modelling exercise (eg high coverage could not be maintained between campaigns, use would be higher with 2-yearly distributions rather than 3-yearly) or were not in themselves new insights (eg estimates of the duration of use). It would be helpful to clearly state what the novel results are in the abstract, the first paragraph of the discussion and the conclusions, and to make sure that the title is consistent.

      (3) On L236, the link to SNT is stated: "the models indicate trends that can support sub-national tailoring of ITNs". They could indeed, but SNT itself is not done in this paper. It seems to be about improving sub-national predictions of the impact of single ITN strategies, by taking into account sub-national variation in access and use duration. This is useful, and the model developed has novel aspects.

      (4) Individual countries may have records on when nets were distributed to the regions rather than needing to use the annual country number of nets together with the DHS data. It could be helpful to say what the analysis steps would be in that case.

      (5) There were several assumptions that needed to be made in building the model. There is some validation of the timing of the distributions (L633 "verified where possible through discussion with interested parties nationally and internationally") and the fit of estimated access and use to survey data, and agreement between predictions of prevalence and MAP estimates. It would be helpful to say which assumptions are important for the results (and would be key knowledge gaps) and which would not make a difference. It might be possible to validate the net timing model using a country where net distributions are known reasonably well.

      (6) What was assumed about what happens to old nets after a mass campaign was not clear. This assumption is likely to affect the predictions of access for the biennial distributions.

      (7) L312 and elsewhere: That use given access declines with net age is plausible. However, I wondered if this could be partly a consequence of the assumptions in the model (eg the two exponential decays for access and use, the possible assumption that new nets displace the current ones when there is a mass campaign).

      (8) The Methods section on Estimating historical use and access seemed to be aimed at readers familiar with formulae, but I think it could lose other interested readers. It could be useful to explain a little more about what is happening at each step and also why.

      (9) The model was fitted to MAP estimates of PfPR2-10, which themselves come from a model. It may be that there is different uncertainty in the MAP estimates for different regions. I couldn't see this on the graph, but maybe the uncertainty is small. Was this taken into account in the fitting?

      (10) Was uncertainty from each estimated component integrated into the other components?

      (11) Eyeballing Figure 2 (Burkina Faso), there is a general pattern of decline in all the regions, some differences between the regions and some differences in how well the model fits between the regions. If possible, it could be helpful to say how much better the fit was when using region-specific compared to countrywide parameter values for access and use, and how different the results would be.

      (12) The question of moving from a campaign every three to every two years may not be the most pertinent question in the current funding landscape. I realise that a paper is in development for a long time, but it would be helpful to comment on what else the model could be used for when fewer rather than more nets are likely to be available.

    2. Reviewer #2 (Public review):

      Summary:

      The authors design a custom Bayesian model to estimate the probabilities of access, use and use given access of insecticide-treated nets in six African countries, providing sub-national estimates and inferring the average duration of ITN use and access. An individual-based model was employed to simulate malaria epidemics and estimate the effectiveness of different ITN distribution strategies. The study finds that the mean probability of use or access did not reach 80% (a universal coverage formely targeted by WHO) for any of the regions, even for biennial campaigns, demonstrates that switching from triennial to biennial distribution campaigns increases population use by 7.9%, and evaluates the impact of employing more efficient ITNs on P. falciparum prevalence.

      Strengths:

      The authors developed a data-driven model that accounts for data collection imperfections and sources of uncertainty while differentiating between ITN use and access. They developed a methodology to infer the timing of a mass campaign from publicly available data instead of assuming fixed dates. The probability of use given access allows for determining the regions where ITN distribution is least effective. This work can help better inform future interventions by identifying regions where increasing mass campaign frequency or employing better ITNs are most effective. Finally, in addition to insights on ITN access and use for the six countries analyzed, the paper contributes a methodological framework that can likely be extended to other countries.

      Weaknesses:

      Since the models employed are rather complex, the description of the methodology may be hard to follow for most readers. In addition, the models assume many hypotheses, including:

      (1) Exponential decay of ITN use/access.

      (2) The decay rates for the probability of the ITN repelling and killing a mosquito are the same.

      (3) Given a time instant, all individuals in the same administrative unit and have the same probability of using a net;

      (4) ITN use/access decay models do not depend on the distribution strategy (e.g. bienal vs trienal distribution).

      (5) The Bayesian model assumes some narrow prior distributions.

      The impact of these hypotheses on the estimated parameters is not explored in the paper, and no sensitivity analyses are performed, although some limitations are discussed.

    1. Reviewer #1 (Public review):

      Summary:

      Metabolic dysfunction-associated steatotic liver disease (MASLD) ranges from simple steatosis, steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. In the current study, the authors aimed to determine the early molecular signatures differentiating patients with MASLD associated fibrosis from those patients with early MASLD but no symptoms. The authors recruited 109 obese individuals before bariatric surgery. They separated the cohorts as no MASLD (without histological abnormalities) and MASLD. The liver samples were then subjected to transcriptomic and metabolomic analysis. The serum samples were subjected to metabolomic analysis. The authors identified dysregulated lipid metabolism, including glyceride lipids, in the liver samples of MASLD patients compared to the no MASLD ones. Circulating metabolomic changes in lipid profiles slightly correlated with MASLD, possibly due to the no MASLD samples derived from obese patients. Several genes involved in lipid droplet formation were also found elevated in MASLD patients. Besides, elevated levels of amino acids, which are possibly related to collagen synthesis, were observed in MASLD patients. Several antioxidant metabolites were increased in MASLD patients. Furthermore, dysregulated genes involved in mitochondrial function and autophagy were identified in MASLD patients, likely linking oxidative stress to MASLD progression. The authors then determined the representative gene signatures in the development of fibrosis by comparing this cohort with the other two published cohorts. Top enriched pathways in fibrotic patients included GTPas signaling and innate immune responses, suggesting the involvement of GTPas in MASLD progression to fibrosis. The authors then challenged human patient derived 3D spheroid system with a dual PPARa/d agonist and found that this treatment restored the expression levels of GTPase-related genes in MASLD 3D spheroids. In conclusion, the authors suggested the involvement of upregulated GTPase-related genes during fibrosis initiation.

      Concerns from first round of review:

      (1) A recent study, via proteomic and transcriptomic analysis, revealed that four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2) could be used to identify MASLD patients at risk of steatohepatitis (PMID: 37037945). It is not clear why the authors did not include this study in their comparison.

      (2) The authors recruited 109 patients but only performed transcriptomic and metabolomic analysis in 94 liver samples. Why did the authors exclude other samples?

      (3) The authors mentioned clinical data in Table 1 but did not present the table in this manuscript.

      (4) The generated metabolomic data could be a very useful resource to the MASLD community. However, it is very confusing how the data was generated in those supplemental tables. There is no clear labeling of human clinical information in those tables. Also, what do those values mean in columns 47-154? This reviewer assumed that they are the raw data of metabolomic analysis in plasma samples. However, without clear clinical information in these patients, it is impossible that any scientist can use the data to reproduce the authors' findings.

      (5) In Fig. 5B, the authors excluded the steatosis and fibrosis overlapped genes. Steatosis and fibrosis specific genes could simply reflect the outcomes rather than causes. In this case, the obtained results might not identify the gene signatures related to fibrosis initiation.

      (6 In Fig. 6D, the authors used 3D liver spheroid to validate their findings. However, there is no images showing the 3D liver spheroid formation before and after PPARa/d agonist treatment. It is not clear whether the 3D liver spheroid was successfully established.

      (7) The authors suggested that targeting LX-2 cells with Rac1 and Cdc42 inhibitors could reduce collagen production. Did the authors observe these two genes upregulated in mRNA and protein expression levels in their cohort when compared MASLD patients with and without fibrosis?

      (8) Did the authors observe that the expression levels of Rac1 and Cdc42 are correlated with fibrosis progression in MASLD patients?

      (9) Other studies have revealed several metabolite changes related to MASLD progression (PMID: 35434590, PMID: 22364559). However, the authors did not discuss the discrepancies between their findings with the previous studies.

      Significance:

      Overall, the current study might provide some new resources regarding transcriptomic and metabolomic data derived from obese patients with and without MASLD. The MASLD research community will be interested in the resource data.

      Comments on revised version:

      Thank you for the authors' responses to my concerns. I do not have any further comments.

    2. Reviewer #2 (Public review):

      In this paper, Kaldis and collaborators investigate the molecular heterogeneity of a 109 morbidly obese patient cohort, focusing on liver transcriptomics and metabolomics analysis from liver and serum. The main finding (i.e. upregulation of GTPase-coding genes) was validated in spheroids and a human HSC cell line. As these proteins are involved in critical cellular functions related to metabolism and cytoskeleton dynamics, these findings shed light on their involvement in human liver pathology which so far has been poorly (or even not) documented to date. This is an interesting addition to the current knowledge about chronic liver pathology and warranting further in-depth molecular investigations to address molecular mechanisms of action (cellular specificity, GTPase-driven pathways...).

      Strengths:

      Using a well-characterized patient cohort of moderate size, the study provide transcriptomic and metabolomic data of high quality with adequate statistical corrections which are a very useful resource for the community. Mechanistic experiments usefully hint at novel druggable targets in the early steps of fibrosis, hence probably in hepatic stellate cell activation.

      Weaknesses:

      Cross comparisons with other cohorts is informative but of limited interest due to patient classification issues, inherent to histological staging practices. The lack of correlation between transcriptomic and metabolomic data is deceptive but expected due to the systemic nature of metabolomic analysis and was also observed in recently published papers.

      Comments on revised version:

      I have no further comment about this amended version, aside from suggesting to add (if known) the time at which biopsies were collected. Time-of-day is an important yet often overlooked parameter of gene expression variation, and along the same line, the imposed fasting to bariatric surgery patients is also a matter of variation of gene expression and of metabolite abundance. It is hoped that future investigations will more precisely characterize the role of the newly identified targets in MASLD.

    3. Reviewer #3 (Public review):

      Summary:

      Metabolic dysfunction associated liver disease (MASLD) describes a spectrum of progressive liver pathologies linked to life style-associated metabolic alterations (such as increased body weight and elevated blood sugar levels), reaching from steatosis over steatohepatitis to fibrosis and finally end stage complications, such as liver failure and hepatocellular carcinoma. Treatment options for MASLD include diet adjustments, weight loss, and the receptor-β (THR-β) agonist resmetirom, but remain limited at this stage, motivating further studies to elucidate molecular disease mechanisms to identify novel therapeutic targets.

      In their present study, the authors aim to identify early molecular changes in MASLD linked to obesity. To this end, they study a cohort of 109 obese individuals with no or early-stage MASLD combining measurements from two anatomic sides: 1. bulk RNA-sequencing and metabolomics of liver biopsies, and 2. metabolomics from patient blood. Their major finding is that GTPase-related genes are transcriptionally altered in livers of individuals with steatosis with fibrosis compared to steatosis without fibrosis.

      Comments from the first round of review:

      (1) Confounders (such as (pre-)diabetes)

      The patient table shows significant differences in non-MASLD vs. MASLD individuals, with the latter suffering more often from diabetes or hypertriglyceridemia. Rather than just stating corrections, subgroup analyses should be performed (accompanied with designated statistical power analyses) to infer the degree to which these conditions contribute to the observations. I.e., major findings stating MASLD-associated changes should hold true in the subgroup of MASLD patients without diabetes/of female sex and so forth (testing for each of the significant differences between groups).

      Post-rebuttal update: The authors have performed the requested sub-group analysis and find the gene signatures hold for the non-diabetic sub-cohort, but not the diabetic subgroup. They denote a likely interaction between fibrosis and diabetes, that was not corrected for in the original analysis.

      (2) External validation

      Additionally, to back up the major GTPase signature findings, it would be desirable to analyze an external dataset of (pre)diabetes patients (other biased groups) for alternations in these genes. It would be important to know if this signature also shows in non-MASLD diabetic patients vs. healthy patients or is a feature specific to MASLD. Also, could the matched metabolic data be used to validate metabolite alterations that would be expected under GTPase-associated protein dysregulation?

      Post-rebuttal update: The authors confirm that with the present data, insulin resistance cannot be fully ruled out as a confounder to the GTP-ase related gene signature. They however plan future mouse model experiments to study whether the GTPase-fibrosis signature differs in diabetic vs. non-diabetic conditions.

      (3).3D liver spheroid MASH model, Fig. 6D/E

      This 3D experiment is technically not an external validation of GTPase-related genes being involved in MASLD, since patient-derived cells may only retain changes that have happened in vivo. To demonstrate that the GTPase expression signature is specifically invoked by fibrosis the LX-2 set up is more convincing, however, the up-regulation of the GTPase-related genes upon fibrosis induction with TGF-beta, in concordance with the patient data, needs to be shown first (qPCR or RNA-seq). Additionally, the description of the 3D model is too uncritical. The maintenance of functional PHHs is a major challenge (PMID: 38750036, PMID: 21953633, PMID: 40240606, PMID: 31023926). It cannot be ruled out that their findings are largely attributable to either 1) the (other present) mesenchymal cells (i.e., mesenchyme-derived cells, such as for example hepatic stellate cells, not to be confused with mesenchymal stem cells, MSCs), or 2) related to potential changes in PHHs in culture, and these limitations need to be stated.

      Post-rebuttal update: To address the concern of other cells than hepatocytes contributing to the observed effects in culture, the authors performed TGF-beta treatment in independent mono-cultures (Figure R4): LX-2 and hepatocytes, and the spheroid system. Surprisingly, important genes highlighted in Figure 6E for the spheroid system (RAB6A, ARL4A, RAB27B, DIRAS2) are all absent from this qPCR(?) validation experiment. The authors evaluate instead RAC1, RHOU, VAV1, DOCK2, RAB32. ­In spheroids, RHOU and RAB32 are down-regulated with TGF-B. In hepatocytes DOCK2 and RAC seemed up-regulated. They find no difference in these genes in LX-2 cells. Surprisingly, ACTA2 expression values are missing for LX-2 cells. Together, it is hard to judge which individual cell type recapitulates the changes observed in patients in this validation experiment, as the major genes called out in Figure 6E are not analyzed.

      Unfortunately, the 3D liver spheroid model used (as presente­d in PMID39605182) lacks important functional validation tests of maintained hepatocyte identity in culture (at the very least Albumin expression and secretion plus CYP3A4 assay). This functional data (acquired at the time point in culture when the RNA expression analysis in 6E was performed) is indispensable prior to stating that mature hepatocytes cause the observed effects.

      (4) Novelty / references

      Similar studies that also combined liver and blood lipidomics/metabolomics in obese individuals with and without MASLD (e.g. PMID 39731853, 39653777) should be cited. Additionally, it would benefit the quality of the discussion to state how findings in this study add new insights over previous studies, if their findings/insights differ, and if so, why.

      Post-rebuttal update: The authors have included the studies into their discussion.

    1. Reviewer #1 (Public Review):

      Summary:

      Argunşah et al. describe and investigate the mechanisms underlying the differential response dynamics of barrel vs septa domains in the whisker-related primary somatosensory cortex (S1). Upon repeated stimulation, the authors report that the response ratio between multi- and single-whisker stimulation increases in layer (L) 4 neurons of the septal domain, while remaining constant in barrel L4 neurons. The authors attribute this divergence to differences in short-term synaptic plasticity, particularly within somatostatin-expressing (SST⁺) interneurons. This interpretation is supported by 1) the increased density of SST+ neurons in L4 of the septa compared to barrel domain, 2) the stronger response of (L2/3) SST+ neurons to repeated multi- vs single-whisker stimulation and 3) the reduced functional difference in single- versus multi-whisker response ratios across barrel and septal domains in Elfn1 KO mice, which lack a synaptic protein that confers characteristic short-term plasticity, notably in SST+ neurons. Consistently, a decoder trained on WT data fails to generalize to Elfn1 KO responses. Finally, the authors report a relative enrichment of S2- and M1-projecting cell densities in L4 of the septal domain compared to the barrel domain, suggesting that septal and barrel circuits may differentially route information about single vs multi-whisker stimulation downstream of S1.

      Strengths:

      This paper describes and aims to study a circuit underlying differential response between barrel columns and septal domains of the primary somatosensory cortex. This work supports the view these two domains contribute distinctly to the processing single versus multi-whisker inputs and highlight the role of SST+ neuron and their short-term plasticity. Together, this study suggests that the barrel cortex multiplexes whisker-derived sensory information across its domains, enabling parallel processing within S1.

      Weaknesses:

      Although the divergence in responses to repeated single- versus multi-whisker stimulation between barrel and septal domains is consistent with a role for SST⁺ neuron short-term plasticity, the evidence presented does not conclusively demonstrate that this mechanism is the critical driver of the difference. The lack of targeted recordings and manipulations limits the strength of this conclusion: SST⁺ neuron activity is not measured in L4, nor is it assessed in a domain-specific manner. The Elfn1 knockout manipulation does not appear to selectively affect either stimulus condition, domain or interneuron subtype. Finally, all experiments were performed under anesthesia, which raises concerns about how well the reported dynamics generalize to awake cortical processing.

    2. Reviewer #2 (Public review):

      Summary:

      Argunsah and colleagues demonstrate that SST expressing interneurons are concentrated in the mouse septa and differentially respond to repetitive multi-whisker inputs. Identifying how a specific neuronal phenotype impacts responses is an advance.

      Strengths:

      (1) Careful physiological and imaging studies.

      (2) Novel result showing the role of SST+ neurons in shaping responses.

      (3) Good use of a knockout animal to further the main hypothesis.

      (4) Clear analytical techniques.

      Comments on revisions:

      The authors have effectively responded to my initial critiques - I have no further concerns.

    3. Reviewer #3 (Public review):

      Summary:

      This study investigates the functional differences between barrel and septal columns in the mouse somatosensory cortex, focusing on how local inhibitory dynamics (particularly involving SST⁺ interneurons) may mediate temporal integration of multi-whisker (MW) stimuli in septa. Using a combination of in vivo multi-unit recordings, calcium imaging, and anatomical tracing, the authors propose a model in which Elfn1-dependent synaptic facilitation onto SST⁺ interneurons contributes to the distinct sensory responses to MW input in barrels and septa, enabling functional segregation between these domains.

      Strengths:

      The study presents a thought-provoking and useful conceptual model for understanding sensory processing in the somatosensory cortex. While barrel columns have been widely studied, septal regions remain relatively understudied in mice. If septa indeed act as selective integrators of distributed sensory input, this would suggest a novel computational role for cortical microcircuits beyond the classical view focused on barrels. Although still hypothetical, the proposed model in which SST⁺ interneurons contribute to domain-specific sensory responses between barrel and septal domains is intriguing and opens new avenues for investigating inhibitory circuit mechanisms.

      Weaknesses:

      The primary limitation of this study lies in the spatial and cellular specificity of the recording techniques. The physiological data rely predominantly on unsorted multi-unit activity (MUA) recorded with low-channel-count silicon probes. Because MUA aggregates signals from multiple neurons over a radius of approximately 50-100 µm (often wider than the typical septal width in mice), this approach makes it difficult to confidently isolate activity originating strictly from within septal domains. The manuscript would benefit from additional analyses to validate the spatial specificity of these recordings, such as systematically varying spike detection thresholds to test the robustness of domain attribution, as suggested by the reviewer. Furthermore, although the authors now appropriately frame their findings in the Elfn1 knockout mice as indirect evidence, it is worth emphasizing that the study lacks direct in vivo, cell-type-specific recordings and manipulations to more definitively test the proposed mechanism.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Pereira de Castro and coworkers are studying potential competition between a more standard splicing factor SF1 and an alternative splicing factor called QK1. This is interesting because they bind to overlapping sequence motifs and could potentially have opposing effects on promoting the splicing reaction. To test this idea, the authors KD either SF1 or QK1 in mammalian cells and uncover several exons whose splicing regulation follows the predicted pattern of being promoted for splicing by SF1 and repressed by QK1. Importantly, these have introns enriched in SF1 and QK1 motifs. The authors then focus on one exon in particular with two tandem motifs to study the mechanism of this in greater detail and their results confirm the competition model. Mass spec analysis largely agrees with their proposal; however, it is complicated by apparently quick transition of SF1 bound complexes to later splicing intermediates. An inspired experiment in yeast shows how QK1 competition could potentially have a determinental impact on splicing in an orthogonal system. Overall these results show how splicing regulation can be achieved by competition between a "core" and alternative splicing factor and provide additional insight into the complex process of branch site recognition. The manuscript is exceptionally clear and the figures and data very logically presented. The work will be valuable to those in the splicing field who are interested in both mechanism and bioinformatics approaches to deconvolve any apparent "splicing code" being used by cells to regulate gene expression.

      Strengths:

      (1) The main discovery of the manuscript involving evidence for SF1/QK1 competition is quite interesting and important for this field. This evidence has been missing and may change how people think about branch site recognition.

      (2) The experiments and the rationale behind them are clearly and logically presented.

      (3) The experiments are carried out to a high standard and well-designed controls are included.

      (4) The extrapolation of the result to yeast in order to show the potentially devastating consequences of QK1 competition was creative and informative.

      Weaknesses:

      Overall the weaknesses are relatively minor and involve cases where conclusions could potentially have been strengthened with additional experimentation. For example, pull-down of the U2 snRNP could be strengthened by detection of the snRNA whereas the proteins may themselves interact with these factors in the absence of the snRNA. In addition the discussion is a bit speculative given the data, but compelling nonetheless.

    2. Reviewer #3 (Public review):

      Summary:

      In this manuscript the authors were trying to establish whether competition between the RNA binding proteins SF1 and QKI controlled splicing outcomes. These two proteins have similar binding sites and protein sequences, but SF1 lacks a dimerization motif and seems to bind a single version of the binding sequence. Importantly, these binding sequences correspond to branchpoint consensus sequences, with SF1 binding leading to productive splicing, but QKI binding leading instead to association with paraspeckle proteins. They show that in human cells SF1 generally activates exons and QKI represses, and a large group of the jointly regulated exons (43% of joint targets) are reciprocally controlled by SF1 and QKI. They focus on one of these exons RAI14 that shows this reciprocal pattern of regulation, and has 2 repeats of the binding site that make it a candidate for joint regulation, and confirm regulation within a minigene context. The authors used assembly of proteins within nuclear extracts to explain the effect of QKI versus SF1 binding. Finally the authors show that expression of QKI is lethal in yeast, and causes splicing defects.

      How this fits in the field. This study is interesting and provides a conceptual advance by providing a general rule how SF1 and QKI interact with relation to binding sites, and the relative molecular fates followed, so is very useful. Most of the analysis seems to focus on one example, but the choice of this example was carefully explained in the text. The molecular analysis and global work significantly adds to the picture from the previously published paper about NUMB joint regulation by QKI and SF (Zong et al, cited in text as reference 50, that looked at SF1 and QKI binding in relation to a duplicated binding site/branchpoint sequence in NUMB).

      Strengths:

      The data presented are strong and clear. The ideas discussed in this paper are of wide interest, and present a simple model where two binding sites generates a potentially repressive QKI response, whereas exons that have a single upstream sequence are just regulated by SF1. The assembly of splicing complexes on RNAs derived from RAI14 in nuclear extracts, followed by mass spec gave interesting mechanistic insight into what was occurring as a result of QKI versus SF1 binding.

      Weaknesses:

      The authors have addressed the previous weaknesses of the study, resulting in a much stronger manuscript

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigate the nanoscopic distribution of glycine receptor subunits in the hippocampus, dorsal striatum, and ventral striatum of the mouse brain using single-molecule localization microscopy (SMLM). They demonstrate that only a small number of glycine receptors are localized at hippocampal inhibitory synapses. Using dual-color SMLM, they further show that clusters of glycine receptors are predominantly localized within gephyrin-positive synapses. A comparison between the dorsal and ventral striatum reveals that the ventral striatum contains approximately eight times more glycine receptors and this finding is consistent with electrophysiological data on postsynaptic inhibitory currents. Finally, using cultured hippocampal neurons, they examine the differential synaptic localization of glycine receptor subunits (α1, α2, and β). This study is significant as it provides insights into the nanoscopic localization patterns of glycine receptors in brain regions where this protein is expressed at low levels. Additionally, the study demonstrates the different localization patterns of GlyR in distinct striatal regions and its physiological relevance using SMLM and electrophysiological experiments. However, several concerns should be addressed.

      Specific comments on the original version:

      (1) Colocalization analysis in Figure 1A. The colocalization between Sylite and mEos-GlyRβ appears to be quite low. It is essential to assess whether the observed colocalization is not due to random overlap. The authors should consider quantifying colocalization using statistical methods, such as a pixel shift analysis, to determine whether colocalization frequencies remain similar after artificially displacing one of the channels.

      (2) Inconsistency between Figure 3A and 3B. While Figure 3B indicates an ~8-fold difference in the number of mEos4b-GlyRβ detections per synapse between the dorsal and ventral striatum, Figure 3A does not appear to show a pronounced difference in the localization of mEos4b-GlyRβ on Sylite puncta between these two regions. If the images presented in Figure 3A are not representative, the authors should consider replacing them with more representative examples or providing an expanded images with multiple representative examples. Alternatively, if this inconsistency can be explained by differences in spot density within clusters, the authors should explain that.

      (3) Quantification in Figure 5. It is recommended that the authors provide quantitative data on cluster formation and colocalization with Sylite puncta in Figure 5 to support their qualitative observations.

      (4) Potential for pseudo replication. It's not clear whether they're performing stats tests across biological replica, images, or even synapses. They often quote mean +/- SEM with n = 1000s, and so does that mean they're doing tests on those 1000s? Need to clarify.

      (5) Does mEoS effect expression levels or function of the protein? Can't see any experiments done to confirm this. Could suggest WB on homogenate, or mass spec?

      (6) Quantification of protein numbers is challenging with SMLM. Issues include i) some of FP not correctly folded/mature, and ii) dependence of localisation rate on instrument, excitation/illumination intensities, and also the thresholds used in analysis. Can the authors compare with another protein that has known expression levels- e.g. PSD95? This is quite an ask, but if they could show copy number of something known to compare with, it would be useful.

      (7) Rationale for doing nanobody dSTORM not clear at all. They don't explain the reason for doing the dSTORM experiments. Why not just rely on PALM for coincidence measurements, rather than tagging mEoS with a nanobody, and then doing dSTORM with that? Can they explain? Is it to get extra localisations- i.e. multiple per nanobody? If so, localising same FP multiple times wouldn't improve resolution. Also, no controls for nanobody dSTORM experiments- what about non-spec nb, or use on WT sections?

      (8) What resolutions/precisions were obtained in SMLM experiments? Should perform Fourier Ring Correlation (FRC) on SR images to state resolutions obtained (particularly useful for when they're presenting distance histograms, as this will be dependent on resolution). Likewise for precision, what was mean precision? Can they show histograms of localisation precision.

      (9) Why were DBSCAN parameters selected? How can they rule out multiple localisations per fluor? If low copy numbers (<10), then why bother with DBSCAN? Could just measure distance to each one.

      (10) For microscopy experiment methods, state power densities, not % or "nominal power".

      (11) In general, not much data presented. Any SI file with extra images etc.?

      (12) Clarification of the discussion on GlyR expression and synaptic localization: The discussion on GlyR expression, complex formation, and synaptic localization is sometimes unclear, and needs terminological distinctions between "expression level", "complex formation" and "synaptic localization". For example, the authors state: "What then is the reason for the low protein expression of GlyRβ? One possibility is that the assembly of mature heteropentameric GlyR complexes depends critically on the expression of endogenous GlyR α subunits." Does this mean that GlyRβ proteins that fail to form complexes with GlyRα subunits are unstable and subject to rapid degradation? If so, the authors should clarify this point. The statement "This raises the interesting possibility that synaptic GlyRs may depend specifically on the concomitant expression of both α1 and β transcripts." suggests a dependency on α1 and β transcripts. However, is the authors' focus on synaptic localization or overall protein expression levels? If this means synaptic localization, it would be beneficial to state this explicitly to avoid confusion. To improve clarity, the authors should carefully distinguish between these different aspects of GlyR biology throughout the discussion. Additionally, a schematic diagram illustrating these processes would be highly beneficial for readers.

      (13) Interpretation of GlyR localization in the context of nanodomains. The distribution of GlyR molecules on inhibitory synapses appears to be non-homogeneous, instead forming nanoclusters or nanodomains, similar to many other synaptic proteins. It is important to interpret GlyR localization in the context of nanodomain organization.

      Significance:

      The paper presents biological and technical advances. The biological insights revolve mostly on the documentation of Glycine receptors in particular synapses in forebrain, where they are typically expressed at very low levels. The authors provide compelling data indicating that the expression is of physiological significance. The authors have done a nice job of combining genetically tagged mice with advanced microscopy methods to tackle the question of distributions of synaptic proteins. Overall, these advances are more incremental than groundbreaking.

      Comments on revised version:

      The authors have addressed the majority of the significant issues raised in the review and revised the manuscript appropriately. One issue that can be further addressed relates to the issue of pseudo-replication. The authors state in their response that "All experiments were repeated at least twice to ensure reproducibility (N independent experiments). Statistical tests were performed on pooled data across the biological replicates; n denotes the number of data points used for testing (e.g., number of synaptic clusters, detections, cells, as specified in each case).". This suggests that they're not doing their stats on biological replicates, and instead are pseudo replicating. It's not clear how they have ensured reproducibility, when the stats seem to have been done on pooled data across repeats.

    2. Reviewer #2 (Public review):

      Summary:

      In their manuscript "Single molecule counting detects low-copy glycine receptors in hippocampal and striatal synapses" Camuso and colleagues apply single molecule localization microscopy (SMLM) methods to visualize low copy numbers of GlyRs at inhibitory synapses in the hippocampal formation and the striatum. SMLM analysis revealed higher copy numbers in striatum compared to hippocampal inhibitory synapses. They further provide evidence that these low copy numbers are tightly linked to post-synaptic scaffolding protein gephyrin at inhibitory synapses. Their approach profits from the high detection sensitivity and resolution of SMLM and challenges the controversial view on the presence of GlyRs in these formations although there are reports (electrophysiology) on the presence of GlyRs in these particular brain regions. These new datasets in the current manuscript may certainly assist in understanding the complexity of fundamental building blocks of inhibitory synapses.

      Strengths:

      The manuscript provides new insights to presence of low-copy numbers by visualizing them via SMLM. This is the first report that visualizes GlyR optically in the brain applying the knock-in model of mEOS4b tagged GlyRß and quantifies their copy number comparing distribution and amount of GlyRs from hippocampus and striatum. Imaging data correspond well to electrophysiological measurements in the manuscript.

      Comments on revised version:

      My concerns have been successfully addressed by the authors during the revision process.

    3. Reviewer #3 (Public review):

      In this study, Camuso et al., make use of a knock-in mouse model expressing endogenously mEos4b-tagged GlyRβ subunits to detect endogenous glycine receptors in mouse brain using single-molecule localization microscopy (SMLM). At synapses in the hippocampus GlyRβ molecules are detected at very low copy numbers. Assuming that each detected GlyRβ molecule is incorporated in a pentameric glycine receptor, it was estimated that while the majority of hippocampal inhibitory synapses do not contain glycine receptors, a small population of inhibitory synapses contain a few (up to 10) glycine receptors. Using dual-color SMLM approaches it is furthermore confirmed that the detected GlyRβ molecules are embedded in the postsynaptic domain marked by gephyrin. In contrast to the hippocampus, at inhibitory synapses in the striatum GlyRβ molecules were detected at considerably higher copy numbers. Interestingly, the observed number of GlyRβ detections was significantly higher in the ventral striatum compared to the dorsal striatum. These findings are corroborated by electrophysiological recordings showing that postsynaptic glycinergic currents can be readily detected in the ventral striatum but are almost absent in the dorsal striatum. Using lentiviral overexpression of recombinant GlyRalpha1, alpha2, and beta subunits in cultured hippocampal neurons, it is shown that GlyR alpha1 subunits are readily detectable at synapses, but overexpressed GlyRalpha2 and beta subunits did not strongly enrich at synapses. This could indicate that GlyRa1 expression is limiting the synaptic expression of GlyRβ-containing glycine receptors in hippocampal neurons.

      Comments on revised version:

      This revised manuscript is significantly improved. New experimental and quantitative analysis is presented that strengthen the conclusions. Overall, the results presented in this manuscript are based on carefully performed SMLM experiments and are well-presented and described. The knock-in mouse with endogenously tagged GlyRβ molecules is a very strong aspect of this study and provides confidence in the labeling, the combination with SMLM is very strong as it provides high sensitivity and spatial resolution. These results confirm previous studies and will be of interest to a specialised audience interested in glycine receptors, inhibitory synapse biology and super-resolution microscopy.

    1. Reviewer #1 (Public review):

      Summary:

      This very thorough anatomical study addresses the innervation of the Drosophila male reproductive tract. Two distinct glutamatergic neuron types were classified: serotonergic (SGNs) and octopaminergic (OGNs). By expansion microscopy, it was established that glutamate and serotonin /octopamine are co-released. The expression of different receptors for 5-HT and OA in muscles and epithelial cells of the innervation target organs was characterized. The pattern of neurotransmitter receptor expression in the target organs suggests that seminal fluid and sperm transport and emission are subjected to complex regulation. While silencing of abdominal SGNs leads to male infertility and prevents sperm from entering the ejaculatory duct, silencing of OGNs does not render males infertile.

      Strengths:

      The studied neurons were analysed with different transgenes and methods, as well as antibodies against neurotransmitter synthesis enzymes, building a consistent picture of their neurotransmitter identity. The careful anatomical description of innervation patterns together with receptor expression patterns if the target organs provides a solid basis for advancing the understanding how seminal fluid and sperm transport and emission are subjected to complex regulation. The functional data showing that SGNs are required for male fertility and for the release of sperm from the seminal vesicle into the ejaculatory duct is convincing.

      Weaknesses:

      The functional analysis of the characterized neurons is not as comprehensive as the anatomical description and phenotypic characterization was limited to simple fertility assays. It is understandable that a full functional dissection is beyond the scope of the present work. The paper contains experiments showing neuron-independent peristaltic waves in the reproductive tract muscles, which are thematically not very well integrated into the paper. Although very interesting, one wonders if these experiments would not fit better into a future work that also explores these peristaltic waves and their interrelation with neuromodulation mechanistically.

      Comments on revisions:

      The manuscript has improved after fixing many small issues/errors. The new sections in the discussion are likewise adding to the quality of the manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      Cheverra et al. present a comprehensive anatomical and functional analysis of the motor neurons innervating the male reproductive tract in Drosophila melanogaster, addressing a gap in our understanding of the peripheral circuits underlying ejaculation and male fertility. They identify two classes of multi-transmitter motor neurons-OGNs (octopamine/glutamate) and SGNs (serotonin/glutamate)-with distinct innervation patterns across reproductive organs. The authors further characterize the differential expression of glutamate, octopamine, and serotonin receptors in both epithelial and muscular tissues of these organs. Behavioral assays reveal that SGNs are essential for male fertility, whereas OGNs and glutamatergic transmission are dispensable. This work provides a high-resolution map linking neuromodulatory identity to organ-specific motor control, offering a valuable framework to explore the neural basis of male reproductive function.

      Strengths:

      Through the use of an extensive set of GAL4 drivers and antibodies, this work successfully and precisely defines the neurons that innervate the male reproductive tract, identifying the specific organs they target and the nature of the neurotransmitters they release. It also characterizes the expression patterns and localization of the corresponding neurotransmitter receptors across different tissues. The authors describe two distinct groups of dual-identity neurons innervating the male reproductive tract: OGNs, which co-express octopamine and glutamate, and SGNs, which co-express serotonin and glutamate. They further demonstrate that the various organs within the male reproductive system differentially express receptors for these neurotransmitters. Based on these findings, the authors propose that a single neuron capable of co-releasing a fast-acting neurotransmitter along side a slower-acting one may more effectively synchronize and stagger events that require precise timing. This, together with the differential expression of ionotropic glutamate receptors and metabotropic aminergic receptors in postsynaptic muscle tissue, adds an additional layer of complexity to the coordinated regulation of fluid secretion, organ contractility, and directional sperm movement-all contributing to the optimization of male fertility.

      Weaknesses:

      One potential limitation of the study is the absence of information regarding the number of individuals examined for the various characterizations, which may weaken the strength of the conclusions. Another limitation may be the lack of quantitative analyses in the colocalization and morphological differentiation experiments. Nevertheless, the authors have indicated that such quantifications will be provided in a forthcoming publication; therefore, this should be considered only a partial limitation, as it is expected to be addressed in the near future.

      Wider context:

      This study delivers the first detailed anatomical map connecting multi-transmitter motor neurons with specific male reproductive structures. It highlights a previously unrecognized functional specialization between serotonergic and octopaminergic pathways and lays the groundwork for exploring fundamental neural mechanisms that regulate ejaculation and fertility in males. The principles uncovered here may help explain how males of Drosophila and other organisms adjust reproductive behaviors in response to environmental changes. Furthermore, by shedding light on how multi-transmitter systems operate in reproductive control, this model could provide insights into therapeutic targets for conditions such as male infertility and prostate cancer-where similar neuronal populations are involved in humans. Ultimately, this genetically accessible system serves as a powerful tool for uncovering how multi-transmitter neurons orchestrate coordinated physiological actions necessary for the functioning of complex organs.

    3. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as, the cord but this work fills a gap of knowledge at the level of the reproductive organs. Using complementary approaches the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of expression of the different glutamate, octopamine and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons are required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap on characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release.The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors developed a chemical labeling reagent for P2X7 receptors, called X7-uP. This labeling reagent selectively labels endogenous P2X7 receptors with biotin based on ligand-directed NASA chemistry. After labeling the endogenous P2X7 receptor with biotin, the receptor can be fluorescently labeled with streptavidin-AlexaFluor647. The authors carefully examined the binding properties and labeling selectivity of X7-uP to P2X7, characterized the labeling site of P2X7 receptors, and demonstrated fluorescence imaging of P2X7 receptors. The data obtained by SDS-PAGE, Western blot, and fluorescence microscopy clearly shows that X7-uP labels the P2X7 receptor. Finally, the authors fluorescently labeled the endogenous P2X7 in BV2 cells, which are a murine microglia model, and used dSTORM to reveal a nanoscale P2X7 redistribution mechanism under inflammatory conditions at high resolution.

      Strengths:

      X7-uP selectively labels endogenous P2X7 receptors with biotin. Streptavidin-AlexaFluor647 binds to the biotin labeled to the P2X7 receptor, allowing visualization of endogenous P2X7 receptors.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Arnould et. al. develop an unbiased, affinity-guided reagent to label P2X7 receptor and use super-resolution imaging to monitor P2X7 redistribution in response to inflammatory signaling.

      Strengths:

      I think the X7-uP probe that they developed is very useful for visualizing localization of P2X7 receptor. They convincingly show that under inflammatory conditions, there is a reorganization of P2X7 localization into receptor clusters. Moreover, I think they have shown a very clever way to specifically label any receptor of interest. This has broad appeal.

      I think the authors have done a very nice job addressing my original concerns. Here are those original concerns and my new comments related to how the authors address them.

      (1) While the authors state that chemical modification of AZ10606120 to produce the X7-UP reagent has "minimal impact" on the inhibition of P2X7, we can see from Figure 2A and 2B that it does not antagonize P2X7 as effectively as the original antagonist. For the sake of completeness and quantitation, I think it would be great if the authors could determine the IC50 for X7-uP and compare it to the IC50 of AZ10606120.

      The authors now show the relative inhibition of X7-uP compared to AZ10606120 at different concentrations. This provides a nice comparison to give the reader an idea of how effectively X7-uP inhibits P2X7 receptor. This is great.

      (2) Do the authors know whether modification of the lysines with biotin affects the receptor's affinity for ATP (or ability to be activated by ATP)? What about P2X7 that has been modified with biotin and then labeled with Alexa 647? For the sake of completeness and quantitation, I think it would be great if the authors could determine the EC50 of biotinylated P2X7 for ATP as well as biotinylated and then Alexa 647 labeled P2X7 for ATP and compare these values to the affinity of unmodified WT P2X7 for ATP.

      I agree with the authors that assessing the functional integrity of P2X7 following biotinylation and fluorophore labeling is outside the scope of this paper but would be important for studies involving dynamic or post-labeling functional analyses such as live trafficking.

      (3) It is a little misleading to color the fluorescence signal from mScarlet green (for example, in Figure 3 and Figure 4). The fluorescence is not at the same wavelength as GFP. In fact, the wavelength (570 nm - 610 nm) for emission is closer to orange/red than to green. I think this color should be changed to differentiate the signal of mScarlet from the GFP signal used for each of the other P2X receptor subtypes.

      The authors have now changed the mScarlet color to orange, which solves my concern.

      (4) It is my understanding that P2X6 does not form homotrimers. Thus, I was a little surprised to see that the density and distribution of P2X6-GFP in Figure 3 looks very similar to the density and distribution of the other P2X subtypes. Do the authors have an explanation for this? Are they looking at P2X6 protomers inserted into the plasma membrane? Does the cell line have endogenous P2X receptor subtypes? Is Figure 3 showing heterotrimers with P2X6 receptor? A little explanation might be helpful.

      The authors address this point very well and include nice data to show that P2X6 does not insert into the plasma membrane as a homotrimer.

      (5) It is easy to overlook the fact that the antagonist leaves the binding pocket once the biotin has been attached to the lysines. It might be helpful if the authors made this a little more apparent in Figure 1 or in the text describing the NASA chemistry reaction.

      The authors have modified Figure 1 to make it easier to understand the NASA chemistry reaction.

      I congratulate the authors on an outstanding paper!

    1. Reviewer #1 (Public review):

      Summary:

      The co-localization of large conductance calcium- and voltage activated potassium (BK) channels with voltage-gated calcium channels (CaV) at the plasma membrane is important for the functional role of these channels in controlling cell excitability and physiology in a variety of systems. An important question in the field is where and how do BK and CaV channels assemble as 'ensembles' to allow this coordinated regulation - is this through preassembly early in the biosynthetic pathway, during trafficking to the cell surface or once channels are integrated into the plasma membrane. These questions also have broader implications for assembly of other ion channel complexes. Using an imaging based approach, this paper addresses the spatial distribution of BK-CaV ensembles using both overexpression strategies in tsa201 and INS-1 cells and analysis of endogenous channels in INS-1 cells using proximity ligation and superesolution approaches. In addition, the authors analyse the spatial distribution of mRNAs encoding BK and Cav1.3. The key conclusion of the paper that BK and CaV1.3 are co-localised as ensembles intracellularly in the ER and Golgi is well supported by the evidence. The experiments and analysis are carefully performed and the findings are very well presented.

    2. Reviewer #3 (Public review):

      Summary:

      The authors present a clearly written and beautifully presented piece of work demonstrating clear evidence to support the idea that BK channels and Cav1.3 channels can co-assemble prior to their assertion in the plasma membrane.

      Strengths:

      The experimental records shown back up their hypotheses and the authors are to be congratulated for the large number of control experiments shown in the ms.

    1. Reviewer #1 (Public review):

      Summary:

      Adult (4mo) rats were tasked to either press one lever for an immediate reward or another for a delayed reward. The task had an adjusting amount structure in which (1) the number of pellets provided on the immediate reward lever changed as a function of the decisions made, (2) rats were prevented from pressing the same lever three times in a row.

      While the authors have been very responsive to the reviews, and I appreciate that, unfortunately, the new analyses reported in this revision actually lead me to deeper concerns about the adequacy of the data to support the conclusions. In this revision, it has become clear that the conclusions are forced and not supported by the data. Alternative theories are not considered or presented. This revision has revealed deep problems with the task, the analyses, and the modeling.

      Data Weaknesses

      Most importantly, the inclusion of the task behavior data has revealed a deep problem with the entire structure of the data. As is obvious in Figure 1D, there is a slow learning effect that is changing over the sessions as the animals learn to stop taking the delayed outcome. Unfortunately, the 8s delays came *after* the 4s. The first 20 sessions contain 19 4s delays and 1 8s delay, while the last 20 sessions contain 14 8s delays and 6 4s delays. Given the changes across sessions, it is likely that a large part of the difference is due to across-session learning (which is never addressed or considered).

      These data are not shown by subject and I suspect that individual subjects did all 4s then all 8s and some subjects switched tasks at different times. If my suspicion is true, then any comparisons between the 4s and 8s conditions (which are a major part of the author's claims) may have nothing to do with the delays, but rather with increased experience on the task.

      Furthermore, the four "groups", which are still poorly defined, seem to have been assessed at a session-by-session level. So when did each animal fall into a given group? Why is Figure 1D not showing which session fell into which group and why are we not seeing each animal's progression? They also admit that animals used a mixture of strategies, which implies that the "group" assignment is an invalid analysis, as the groups do not accommodate strategy mixing.

      Figure 2 shows that none of the differences of the group behavior against random choice with a basic p(delay) are significant. The use a KS test to measure these differences. KS tests are notoriously sensitive as KS tests simply measure whether there are any statistical differences between two distributions. They do not report the full statistics for Figure 2, but only say that the 4HI group was not significant (KS p-value = 0.72) and the 8LO showed a p-value of 0.1 (which they interpret as significant). p=0.1 is not significant. They don't report the value of the 4LO or 8HI groups (why not?), but say they are in-between these two extremes. That means *none* of the differences are significant.

      They then test a model with additional parameters, and say that the model includes more than the minimal p_D parameter, but never report BIC or AIC model comparisons. In order to claim that the model is better than the bare p_D assumption, they should be reporting model-comparison statistics. But given that the p_D parameters are enough (q.v. Figure 2), this entire model seems unnecessary

      It took me a while to determine what was being shown in Figure 3, but I was eventually able to determine that 0 was the time after the animal made the choice to wait out the delay side, so the 4s in Figure 3A1 with high power in the low-frequency (<5 Hz) range is the waiting time. They don't show the full 8s time. Nor do they show the spectrograms separated by group (assuming that group is the analytical tool they are using). In B they show only show theta power, but it is unclear how to interpret these changes over time.

      In Figure 4, panel A is mostly useless because it is just five sample sessions showing firing rate plotted on the same panels as the immediate reward amount. If they want to claim correlation, they should show and test it. But moreover, this is not how neural data should be presented - we need to know what the cells are doing, population-wise. We need to have an understanding of the neural ensemble. These data are clearly being picked and chosen, which is not OK.

      Figure 4, panels B and C show that the activity trivially reflects the reward that has been delivered to the animal, if I am understanding the graphs correctly. (The authors do not interpret it this way, but the data is, to my eyes, clear.) The "immediate" signal shows up immediately at choice and reflects the size of the immediate reward (which is varying). The "delay" signal shows up after the delay and does not, which makes sense as the animals get 6 pellets on the delayed side no matter what. In fact, the max delayed side activity = the max immediate side activity, which is 6 pellets. This is just reward-related firing.

      Figure 5 is poorly laid out, switching the order in 5C to be 2 1 3 in E and F. (Why?!) The statistics for Figure 5 on page 17 should be asking whether there are differences between neuron types, not whether there is a choice x time interaction in a given neuron type. When I look at Figure 5F1-3, all three types look effectively similar with different levels of noise. It is unclear why they are doing this complicated PC analysis or what we should be drawing from it.

      Figure 6 mis-states pie charts as "total number" rather than proportions.

      Interpretation Weaknesses

      The separation of cognitive effort into "resource-based" and "resistance-based" seems artificial to me. I still do not understand why the ability to resist a choice does not also depend on resource or why using resources are not a form of resistance. Doesn't every action in the end depend on the resources one has available? And doesn't every use of a resource resist one option by taking another? Even if one buys these two separate cognitive control processes (which at this point in reading the revision, I do not), the paper starts from the assumption that a baseline probability of waiting out the delays is a "resistance-based cognitive control" (why?) and a probability of choice that takes into account the size of the immediate value (confusingly abbreviated as ival) is a "resource-based cognitive control" (again, why?)

    2. Reviewer #2 (Public review):

      Summary:

      I appreciate the considerable work the authors have done on the revision. The manuscript is markedly improved.

      Strengths still include the strong theoretical basis, well-done experiments, and clear links to LFP / spectral analyses that have links to human data. The task is now more clearly explained, and the neural correlates better articulated.

      Weaknesses:

      I had remaining questions, many related to my previous questions.<br /> (1) The results have some complexity, but I still had questions about which is resource and which is resistance based. The authors say in the last sentence of the discussion: "Prominent pre-choice theta power was associated with a behavioral strategy characterized by a strong bias towards a resistance-based strategy, whereas the neural signature of ival-tracking was associated with a strong bias towards a resource-based strategy.".<br /> I might suggest making this simpler and clear in the abstract and the first paragraph of the discussion. A simple statement like 'pre-choice theta was biased towards resistance whereas single neurons were biased towards resources" might make this idea come across?

      (2) I think most readers would like to see raw single trial LFP traces in Figure 3, single unit rasters in Figure 4, and spike-field records in Figure 5.

      (3) What limitations are there to this work? I wonder if readers might benefit from some contextualization - the sample size, heterogenous behavior - lack of cell-type specificity - using PC3 to define spectral relationships - I might suggest pointing these out.

      (4) I still wasn't sure what 4 Hz vs. theta 6-12 Hz meant - is it all based on PC3's pos/neg correlation? I wonder if showing a scatter plot with the y-axis being PC3 and the x-axis being theta 4 Hz power would help distinguish these? Is this the first time this sort of analysis has been done? If so, it requires clearer definitions.