10,681 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public Review):

      In this manuscript, the authors described a computational method catELMo for embedding TCR CDR3 sequences into numeric vectors using a deep-learning-based approach, ELMo. The authors applied catELMo to two applications: supervised TCR-epitope binding affinity prediction and unsupervised epitope-specific TCR clustering. In both applications, the authors showed that catELMo generated significantly better binding prediction and clustering performance than other established TCR embedding methods.

      The authors have addressed all of my concerns except for one as following:

      5. GIANA's result is like

      ## TIME:2020-12-14 14:45:14|cmd: GIANA4.py|COVID_test/rawData/hc10s10.txt|IsometricDistance_Thr=7.0|thr_v=3.7|thr_s=3.3|exact=True|Vgene=True|ST=3

      ## Column Info: CDR3 aa sequence, cluster id, other information in the input file<br /> CAISDGTAASSTDTQYF 1 TRBV10-3*01 6.00384245917387e-05 0.930103216755186 COVID19:BS-EQ-0002-T1-replacement_TCRB.tsv<br /> CAISDGTAASSTDTQYF 1 TRBV10-3*01 4.34559031223066e-05 0.918135389545364 COVID19:BS-EQ-0002-T2-replacement_TCRB.tsv<br /> CANATLLQVLSTDTQYF 2 TRBV21-1*01 3.00192122958694e-05 0.878695260046097 COVID19:BS-EQ-0002-T1-replacement_TCRB.tsv<br /> CANATLLQVLSTDTQYF 2 TRBV21-1*01 1.44853010407689e-05 0.768125375525736 COVID19:BS-EQ-0002-T2-replacement_TCRB.ts<br /> ...

      as in its example file at: https://raw.githubusercontent.com/s175573/GIANA/master/data/hc10s10--RotationEncodingBL62.txt

      The results directly give the clustering results in the second column, and there is no direct distance metric for hierarchical clustering. Therefore, it is still not clear how the authors conducted the hierarchical clustering on GIANA's results. Did the hierarchical clustering apply to each of the original clusters on the CDR3 distances within the same original cluster?

    2. Reviewer #2 (Public Review):

      In the manuscript, the authors highlighted the importance of T-cell receptor (TCR) analysis and the lack of amino acid embedding methods specific to this domain. The authors proposed a novel bi-directional context-aware amino acid embedding method, catELMo, adapted from ELMo (Embeddings from Language Models), specifically designed for TCR analysis. The model is trained on TCR sequences from seven projects in the ImmunoSEQ database, instead of the generic protein sequences. They assessed the effectiveness of the proposed method in both TCR-epitope binding affinity prediction, a supervised task, and the unsupervised TCR clustering task. The results demonstrate significant performance improvements compared to existing embedding models. The authors also aimed to provide and discuss their observations on embedding model design for TCR analysis: 1) Models specifically trained on TCR sequences have better performance than models trained on general protein sequences for the TCR-related tasks; and 2) The proposed ELMo-based method outperforms TCR embedding models with BERT-based architecture. The authors also provided a comprehensive introduction and investigation of existing amino acid embedding methods. Overall, the paper is well-written and well-organized.

      The work has originality and has potential prospects for immune response analysis and immunotherapy exploration. TCR-epitope pair binding plays a significant role in T cell regulation. Accurate prediction and analysis of TCR sequences are crucial for comprehending the biological foundations of binding mechanisms and advancing immunotherapy approaches. The proposed embedding method presents an efficient context-aware mathematical representation for TCR sequences, enabling the capture and analysis of their structural and functional characteristics. This method serves as a valuable tool for various downstream analyses and is essential for a wide range of applications.

    3. Reviewer #3 (Public Review):

      In this study, Zhang and colleagues proposed an ELMo-based embedding model (catELMo) for TCRβ CDR3 amino acid sequences. They showed the effectiveness of catELMo in both supervised TCR binding prediction and unsupervised clustering, surpassing existing methods in accuracy and reducing annotation costs. The study provides insights on the effect of model architectures to TCR specificity prediction and clustering tasks.

      The authors have addressed our prior critiques of the manuscript.

    1. Reviewer #1 (Public Review):

      In their manuscript "Spindle assembly checkpoint-dependent mitotic delay is required for cell division in absence of centrosomes," Farrell and colleagues employ carefully chosen approaches to assay mitotic timeliness in the absence of centrosomes in mammalian culture cells, namely the mechanism behind it and its function. The authors acknowledge prior work well and present their data succinctly, clearly, and with a clear logical flow of experiments. The experiments are thoughtfully designed and presented, with appropriate controls in place.

      The authors' model whereby centrosome separation and its early definition of poles mediates timely mitosis without relying on a SAC-dependent delay is compelling, and the authors' data are consistent with it. They show using two different MPS1 inhibitors that acentrosomal cell division fails, supporting their claims that a SAC-dependent delay is required in these instances. Furthermore, they show that reintroducing a time delay is sufficient to restore cell division, but inhibiting a different aspect of SAC function does not restore cell division. Next, the authors rule out polyploidy as a potential confounding factor for requiring a SAC-dependent delay, and instead demonstrate that inhibiting centrosome separation by Eg5 inhibition is sufficient to require this delay for mitotic progression. The authors' findings overall support their proposed model.

      Probing what aspects of centrosomes protect against a requirement for SAC-dependent delays would strengthen the work and specifically the conclusion that centrosomes provide "two-ness". For example, the authors could examine division in a population of cells with only one centrosome. Seeing some restoration of mitotic progression in the absence of SAC-dependent delays would suggest that even one centrosome with uninhibited Eg5 is sufficient to negate SAC-dependent delays, and would limit models for what exactly centrosomes contribute. This would help disentangle the roles of actual centrosomes and their biochemical cues, Eg5-driven centrosome separation, and early definition of poles on mitotic progression in the absence of SAC-dependent delays. Making a high fraction of cells with one centrosome could be achieved by using centrinone for a shorter time.

      Comments on revised version:

      The main point from the initial review does not appear to be addressed in the revised version. As such, the comments on the revised version remain the same.

    2. Reviewer #2 (Public Review):

      Centrosomes are an integral part of cell division in most animal cells. There are notable exceptions, however, such as oocytes and plants. In addition, some animal cells can be engineered to lack centrosomes yet they can still manage to complete mitosis. This paper uses a couple of methods (PLK4 inhibition and deletion of SASS6) to remove centrosomes from an immortalized cell line. Indeed, a strength of the paper is that similar results are obtained using both protocols to generate acentrosomal cells. The authors find acentrosomal cells take longer to divide, mostly due to a longer metaphase. The paper is based on the finding that inhibition of MPS1 results in a failure to divide, and the hypothesis that a SAC - dependent delay is required for these acentrosomal cells to divide.

      The finding that MPS1 inhibition results in a failure to division is interesting. This is investigated by analyzing cells where AurB, APC or Eg5 (to generate monastral spindles) have been inhibited. My concerns are that the results are not conclusive that the effect of MPS1 is on cell cycle regulation. There is not enough data to make a conclusion as to why inhibition of MPS1 results in cell division failure.

      1) An example is how to interpret the effect of Aurora B inhibition, which does not block acentrosomal cell division. If Aurora B is required for SAC activity, it suggests this effect of MPS1 may be a function other than SAC. Given the complexity of the SAC, it would be informative to test other SAC components. Instead, the authors conclude that the mitotic delay caused by MPS is required for acentrosomal cell division. I don't think they have ruled out, or even addressed other functions of MPS1.

      2) The authors find that when both the APC and MPS1 are inhibited, the cells eventually divide. These results are intriguing, but hard to interpret. The authors suggest that the failure to divide in MPS1-inhibited cells is because they enter anaphase, and then must back out. This is hard to understand and there is not data supporting some kind of aborted anaphase. Is the division observed with double inhibition some sort of bypass of the block caused by MPS1 inhibition alone? It is not clear why inhibition of APC causes increased cell division when MPS1 is inhibited.

      3) The authors characterize MTOC formation in these cells, which is also interesting. MTOCs are established after NEB in acentrosomal cells. Indeed, forming these MTOCs is probably a key mechanism for how these cells complete a division, like mouse oocytes.

      Following this, the results with inhibiting Eg5 are interesting. The double inhibition of MPS1 and Eg5 results in division failure, like MPS1 inhibition in acentrosomal cells. Thus, there is a cell division block when the centrioles fail to divide. This result raises the possibility that failure to make a bipolar spindle, or the presence of a monopolar spindle, is the problem. In the absence of a bipolar spindle, a SAC induced delay is required for spindle assembly. This is a possibility but there are multiple interpretations of these results. Primarily, these results do not show the MPS1 effect on acentrosomal cells is SAC related. That a SAC mediated delay is required for acentrosmomal spindle assembly is not the only conclusion.

      Comments on revised version:

      It appears that very few changes have been made. These are all suggestions in the writing and interpretation.

      It's disappointing the most of the readouts are cell division success. There is a lack of data about what happens in the MPS1 knockdowns, such as microtubule attachment to KTs and localization/ activity of checkpoint proteins or downstream factors. More mechanistic insights may be found by testing other checkpoint proteins or assaying more metrics for spindle assembly and cell cycle progression. Or if inducing cell cycle delay suppresses the MPS1 effect. These experiments would implicate cell cycle factors as being required for acentrosomal spindle assembly while ruling out a requirement for MPS1 in spindle assembly.

      The paper is well written. But some of the terminology could be improved and some descriptions of the cytology are confusing. Some clear definitions of terms may help. The authors refer to an "extended mitosis" (line 73) and then "exit in the absence of cell division" (line 96) when MPS1 is inhibited. Both are misleading and don't tell the full story. These cells attempt to divide and then fail, resulting in one cell. Use of terms like "spread back out", "rounding up", and "sitting down" seems like jargon and should at least be defined. The term "timely two-ness" (line 23-24) is also not helpful. A brief discussion of data on MPS1 function in mouse and fly acentrosomal meiosis might be appropriate. A comparison would be interesting since loss of MPS1 in acentrosomal oocytes does not have such a drastic block in cell division.

    1. Reviewer #3 (Public Review):

      Summary:

      Day et al. introduced high-throughput expansion microscopy (HiExM), a method facilitating the simultaneous adaptation of expansion microscopy for cells cultured in a 96-well plate format. The distinctive features of this method include 1) the use of a specialized device for delivering a minimal amount (~230 nL) of gel solution to each well of a conventional 96-well plate, and 2) the application of the photochemical initiator, Irgacure 2959, to successfully form and expand the toroidal gel within each well.

      Strengths:

      This configuration eliminates the need for transferring gels to other dishes or wells, thereby enhancing the throughput and reproducibility of parallel expansion microscopy. This methodological uniqueness indicates the applicability of HiExM in detecting subtle cellular changes on a large scale.

      Weaknesses:

      To demonstrate the potential utility of HiExM in cell phenotyping, drug studies, and toxicology investigations, the authors treated hiPS-derived cardiomyocytes with a low dose of doxycycline (dox) and quantitatively assessed changes in nuclear morphology. However, this reviewer is not fully convinced of the validity of this specific application. Furthermore, some data about the effect of expansion require reconsideration.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful, and the data generally support the conclusions.

      Strengths:

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.

      Weaknesses:

      (1) Based on the exceedingly small volume of solution used to form the hydrogel in the well, there may be many unexpanded cells in the well and possibly underneath the expanded hydrogel at the end of this. How would this affect the image acquisition, analysis, and interpretation of HiExM data?

      (2) It is unclear why the expansion factor is so variable between plates (e.g., Figure 2H). This should be discussed in more detail.

      (3) The authors claim that CF dyes are more resistant to bleaching than other dyes. However, in Figure. S3, it appears that half of the CF dyes tested still show bleaching, and no data is shown supporting the claim that Alexa dyes bleach. It would be helpful to include data supporting the claim that Alexa dyes bleach more than CF dyes and the claim that CF dyes in general are resistant to bleaching should be modified to more accurately reflect the data shown.

      (4) Related to the above point, it appears that Figure S11 may be missing the figure legend. This makes it hard to understand how HiExM can use other photo-inducible polymerization methods and dyes other than CF dyes.

      (5) The use of automated high-content imaging is impressive. However, it is unclear to me how the increased search space across the extended planar area and focal depths in expanded samples is overcome. It would be helpful to explain this automated imaging strategy in more detail.

      (6) The general method of imaging pre- and post-expansion is not entirely clear to me. For example, on page 5 the authors state that pre-expansion imaging was done at the center of each gel. Is pre-expansion imaging done after the initial gel polymerization? If so, this would assume that the gelation itself has no effect on cell size and shape if these gelled but not yet expanded cells are used as the reference for calculating expansion factor and isotropy.

      (7) In the dox experiments, are only 4 expanded nuclei analyzed? It is unclear in the Figure 3 legend what the replicates are because for the unexpanded cells, it says the number of nuclei but for expanded it only says n=4. If only 4 nuclei are analyzed, this does not play to the strengths of HiExM by having high throughput.

      (8) I am not sure if the analysis of dox-treated cells is accurate for the overall phenotype because only a single slice at the midplane is analyzed. It would be helpful to show, at least in one or two example cases, that this trend of changing edge intensity occurs across the whole 3D nucleus.

      (9) It would be helpful to provide an actual benchmark of imaging speed or throughput to support the claims on page 8 that HiExM can be combined with autonomous imaging to capture thousands of cells a day. What is the highest throughput you have achieved so far?

    3. Reviewer #2 (Public Review):

      Summary:

      In the present work, the authors present an engineering solution to sample preparation in 96-well plates for high-throughput super-resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit the expansion of the gel. A device was engineered that can spot a small droplet of hydrogel solution and keep it in place as it polymerizes. It occupies only a small portion of space at the center of each well, the gel can expand into all directions, and imaging and staining can proceed by liquid handling robots and an automated microscope.

      Strengths:

      In contrast to Reference 8, the authors' system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high-throughput exM and high-throughout super-resolution microscopy, which is a timely and important goal.

      Weaknesses:

      The assay they chose to demonstrate what high-throughput ExM could be useful for, is not very convincing. But for this reviewer that is not important.

    1. Reviewer #1 (Public Review):

      Summary:

      Zanetti et al. use biophysical and cellular assays to investigate the interaction of the birnavirus VP3 protein with the early endosome lipid PI3P. The major novel finding is that the association of the VP3 protein with an anionic lipid (PI3P) appears to be important for viral replication, as evidenced through a cellular assay on FFUs.

      Strengths:

      Supports previously published claims that VP3 may associate with early endosomes and bind to PI3P-containing membranes. The claim that mutating a single residue (R200) critically affects early endosome binding and that the same mutation also inhibits viral replication suggests a very important role for this binding in the viral life cycle.

      Weaknesses:

      The manuscript is relatively narrowly focused: one bimolecular interaction between a host cell lipid and one protein of an unusual avian virus (VP3-PI3P). Aspects of this interaction have been described previously. Additional data would strengthen claims about the specificity and some technical issues should be addressed. Many of the core claims would benefit from additional experimental support to improve consistency.

    2. Reviewer #2 (Public Review):

      Summary:

      Birnavirus replication factories form alongside early endosomes (EEs) in the host cell cytoplasm. Previous work from the Delgui lab has shown that the VP3 protein of the birnavirus strain infectious bursal disease virus (IBDV) interacts with phosphatidylinositol-3-phosphate (PI3P) within the EE membrane (Gimenez et al., 2018, 2020). Here, Zanetti et al. extend this previous work by biochemically mapping the specific determinants within IBDV VP3 that are required for PI3P binding in vitro, and they employ in silico simulations to propose a biophysical model for VP3-PI3P interactions.

      Strengths:

      The manuscript is generally well-written, and much of the data is rigorous and solid. The results provide deep knowledge into how birnaviruses might nucleate factories in association with EEs. The combination of approaches (biochemical, imaging, and computational) employed to investigate VP3-PI3P interactions is deemed a strength.

      Weaknesses:

      (1) Concerns about the sources, sizes, and amounts of recombinant proteins used for co-flotation: Figures 1A, 1B, 1G, and 4A show the results of co-flotation experiments in which recombinant proteins (control His-FYVE v. either full length or mutant His VP3) were either found to be associated with membranes (top) or non-associated (bottom). However, in some experiments, the total amounts of protein in the top + bottom fractions do not appear to be consistent in control v. experimental conditions. For instance, the Figure 4A western blot of His-2xFYVE following co-flotation with PI3P+ membranes shows almost no detectable protein in either top or bottom fractions. Reading the paper, it was difficult to understand which source of protein was used for each experiment (i.e., E. coli or baculovirus-expressed), and this information is contradicted in several places (see lines 358-359 v. 383-384). Also, both the control protein and the His-VP3-FL proteins show up as several bands in the western blots, but they don't appear to be consistent with the sizes of the proteins stated on lines 383-384. For example, line 383 states that His-VP3-FL is ~43 kDa, but the blots show triplet bands that are all below the 35 kDa marker (Figures 1B and 1G). Mass spectrometry information is shown in the supplemental data (describing the different bands for His-VP3-FL) but this is not mentioned in the actual manuscript, causing confusion. Finally, the results appear to differ throughout the paper (see Figures 1B v. 1G and 1A v. 4A).

      (2) Possible "other" effects of the R200D mutation on the VP3 protein. The authors performed mutagenesis to identify which residues within patch 2 on VP3 are important for association with PI3P. They found that a VP3 mutant with an engineered R200D change (i) did not associate with PI3P membranes in co-floatation assays, and (ii) did not co-localize with EE markers in transfected cells. Moreover, this mutation resulted in the loss of IBDV viability in reverse genetics studies. The authors interpret these results to indicate that this residue is important for "mediating VP3-PI3P interaction" (line 211) and that this interaction is essential for viral replication. However, it seems possible that this mutation abrogated other aspects of VP3 function (e.g., dimerization or other protein/RNA interactions) aside from or in addition to PI3P binding. Such possibilities are not mentioned by the authors.

      (3) Interpretations from computational simulations. The authors performed computational simulations on the VP3 structure to infer how the protein might interact with membranes. Such computational approaches are powerful hypothesis-generating tools. However, additional biochemical evidence beyond what is presented would be required to support the authors' claims that they "unveiled a two-stage modular mechanism" for VP3-PI3P interactions (see lines 55-59). Moreover, given the biochemical data presented for R200D VP3, it was surprising that the authors did not perform computational simulations on this mutant. The inclusion of such an experiment would help tie together the in vitro and in silico data and strengthen the manuscript.

    3. Reviewer #3 (Public Review):

      Summary:

      infectious bursal disease virus (IBDV) is a birnavirus and an important avian pathogen. Interestingly, IBDV appears to be a unique dsRNA virus that uses early endosomes for RNA replication that is more common for +ssRNA viruses such as for example SARS-CoV-2.

      This work builds on previous studies showing that IBDV VP3 interacts with PIP3 during virus replication. The authors provide further biophysical evidence for the interaction and map the interacting domain on VP3.

      Strengths:

      Detailed characterization of the interaction between VP3 and PIP3 identified R200D mutation as critical for the interaction. Cryo-EM data show that VP3 leads to membrane deformation.

      Weaknesses:

      The work does not directly show that the identified R200 residues are directly involved in VP3-early endosome recruitment during infection. The majority of work is done with transfected VP3 protein (or in vitro) and not in virus-infected cells.

      Additional controls such as the use of PIP3 antagonizing drugs in infected cells together with a colocalization study of VP3 with early endosomes would strengthen the study.

      In addition, it would be advisable to include a control for cryo-EM using liposomes that do not contain PIP3 but are incubated with HIS-VP3-FL. This would allow ruling out any unspecific binding that might not be detected on WB.

      The authors also do not propose how their findings could be translated into drug development that could be applied to protect poultry during an outbreak. The title of the manuscript is broad and would improve with rewording so that it captures what the authors achieved.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an important work showing that loss of LRRK function causes late-onset dopaminergic neurodegeneration in a cell-autonomous manner. One of the LRRK members, LRRK2, is of significant translational importance as mutations in LRRK2 cause late-onset autosomal dominant Parkinson's disease (PD). While many in the field assume that LRRK2 mutant causes PD via increased LRRK2 activity (i.e., kinase activity), it is not a settled issue as not all disease-causing mutant LRRK2 exhibits increased activity. Further, while LRRK2 inhibitors are under clinical trials for PD, the consequence of chronic, long-term LRRK2 inhibition is unknown. Thus, studies evaluating the long-term impact of LRRK deficit have important translational implications. Moreover, because LRRK proteins, particularly LRRK2, are known to modulate immune response and intracellular membrane trafficking, the study's results and the reagents will be valuable for others interested in LRRK function.

      Strengths:

      This report describes a mouse model where LRRK1 and LRRK2 genes are conditionally deleted in dopaminergic neurons. Previously, this group showed that while loss of LRRK2 expression does not cause brain phenotype, loss of both LRRK1 and LRRK2 causes a later onset, progressive degeneration of catecholaminergic neurons, dopaminergic (DAergic) neurons in the substantia nigra (SN) and noradrenergic neurons in the Locus Coeruleus (LC). However, because LRRK genes are widely expressed with some peripheral phenotypes, it was unknown if the neurodegeneration in LRRK double Knock Out (DKO) was cell autonomous. To rigorously test this question, the authors generated a double conditional KO allele where both LRRK1 and LRRK2 genes were targeted to contain loxP sites. This was beyond what is usually required as most investigators might just have combined one KO allele with another floxed allele. The authors provide a rigorous validation showing that the Driver (DAT-Cre) is expressed in most DAergic neurons in SN and that LRRK levels are decreased selectively in the ventral midbrain. Using these mice, the authors show that the number of DA neurons is average at 15 but significantly decreased at 20 months of age. Moreover, the authors show that the number of apoptotic neurons is increased by ~2X in aged SN, demonstrating increased ongoing cell death and activated microglia. The degeneration is limited to DA neurons as LC neurons are not lost, and this population does not express DAT. Overall, the mouse genetics and experimental analysis were performed rigorously, and the results were statistically sound and compelling.

      Weakness:

      I only have a few minor comments. First, in PD and other degenerative conditions, axon and terminal loss occur prior to cell bodies. It might be beneficial to show the status of DAergic markers in the striatum. Second, previous studies indicate that very little, if any, LRRK1 is expressed in SN DAergic neurons. This also the case with the Allen Brain Atlas profile. Thus, the authors should discuss the discrepancy, as they imply significant LRRK1 expression in DA neurons.

      Revision:

      I appreciate the authors revising the manuscript with additional data that have clarified my prior comments. They now show that TH levels in the striatum decrease with SNpc neurons. Further, while there is some disagreement regarding the expression LRRK1 in SNpc, the authors provide a convincing case that LRRK1 function is important in SNpc DA neurons.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Shen and collaborators described the generation of conditional double knockout (cDKO) mice lacking LRRK1 and LRRK2 selectively in DAT-positive dopaminergic neurons. The Authors asked whether selective deletion of both LRRK isoforms could lead to a Parkinsonian phenotype, as previously reported by the same group in germline double LRRK1 and LRRK2 knockout mice (PMID: 29056298). Indeed, cDKO mice developed a late reduction of TH+ neurons in SNpc that partially correlated with the reduction of NeuN+ cells. This was associated with increased apoptotic cell and microglial cell numbers in SNpc. Unlike the constitutive DKO mice described earlier, cDKO mice did not replicate the dramatic increase in autophagic vacuole numbers. The study supports the authors' hypothesis that loss of function rather than gain of function of LRRK2 leads to Parkinson's Disease.

      Strengths:

      For the first time, the study described a model in which both the Parkinson's disease-associated gene LRRK2 and its homolog LRRK1 are deleted selectively in dopaminergic neurons. This offers a new tool to understand the physiopathological role of LRRK2 and the compensating role of LRRK1 in modulating dopaminergic cell function.

      Weaknesses:

      The model has no construct validity since loss of function mutations of LRRK2 are well tolerated in humans and do not lead to Parkinson's disease. The evidence of a Parkinsonian phenotype in these conditional knockout mice is limited and should be considered preliminary.

    3. Reviewer #3 (Public Review):

      Kang, Huang, and colleagues have provided new data to address concerns regarding confirmation of LRRK1 and LRRK2 deletion in their mouse model and the functional impact of the modest loss of TH+ neurons observed in the substantia nigra of their double KO mice. In the revised manuscript, the new data around the characterization of the germline-deleted LRRK1 and LRRK2 mice add confidence that LRRK1 and LRRK2 can be deleted using the genetic approach. They have also added new text to the discussion to try and address some of the comments and questions raised regarding how LRRK1/2 loss may impact cell survival and the implications of this work for PD-linked variants in LRRK2 and therapeutic approaches targeting LRRK2. The new data provides additional support for the author's claims.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors present a detailed study of a nearly complete Entomophthora muscae genome assembly and annotation, along with comparative analyses among related and non-related entomopathogenic fungi. The genome is one of the largest fungal genomes sequenced, and the authors document the proliferation and evolution of transposons and presence/absence of related genetic machinery to explore how this may have occurred. There has also been an expansion in gene number, which appears to contain many "novel" genes unique to E. muscae. Functionally, the authors were interested in CAZymes, proteases, circadian clock related genes (due to entomopathogenicity/ host manipulation), other insect pathogen specific genes, and secondary metabolites. There are many interesting findings including expansions in trahalases, unique insulinase and another peptidase, and some evidence for RIP in Entomophthoralean fungi. The authors performed a separate study examining E. muscae species complex and related strains. Specifically, morphological traits were measured for strains and then compared to the 28S+ITS-based phylogeny, showing little informativeness of these morpho characters with high levels of overlap.

      This work represents a big leap forward in genomics of non-Dikarya fungi and large fungal genomes. Most of the gene homologs have been studied in species that diverged hundreds of millions of years ago, and therefore using standard comparative genomic approaches are not trivial and still relatively little is known. This paper provides many new hypotheses and potential avenues of research about fungal genome size expansion, entomopathogenesis in zygomycetes, and cellular functions like RIP and circadian mechanisms.

      Strengths:

      There are many strengths to this study. It represents a massive amount of work and a very thorough functional analysis of the gene content in these fungi (which are largely unsequenced and definitely understudied). Too often comparative genomic work will focus on one aspect and leave the reader wondering about all the other ways genome(s) are unique or different from others. This study really dove in and explored the relevant aspects of the E. muscae genome.

      The authors used both a priori and emergent properties to shape their analyses (by searching for specific genes of interest and by analyzing genes underrepresented, expanded, or unique to their chosen taxa), enabling a detailed review of the genomic architecture and content. Specifically, I'm impressed by the analysis of missing genes (pFAMs) in E. muscae, none of which are enriched in relatives, suggesting this fungus is really different not by gene loss, but by its gene expansions.

      Analyzing species-level boundaries and the data underlying those (genetic or morphological) is not something frequently presented in comparative genomic studies, however, here it is a welcome addition as the target species of the study is part of a species complex where morphology can be misleading and genetic data is infrequently collected in conjunction with the morphological data.

      Weaknesses:

      The conclusions of this paper are well supported, and I think the clarifications and improvements made to the manuscript in the revision process have greatly improved the paper.

    1. Reviewer #2 (Public Review):

      Summary:

      This study reveals that short-term social isolation increases social behavior at a reunion, and a population of hypothalamic preoptic area neurons become active after social interaction following short-term isolation (POAiso neurons). Effectively utilizing a TRAP activity-dependent labeling method, the authors inhibit or activate the POAiso neurons and find that these neurons are involved in controlling various social behaviors, including ultrasonic vocalization, investigation, and mounting in both male and female mice. This work suggests a complex role for the POA in regulating multiple aspects of social behavior, beyond solely controlling male sexual behaviors.

      Strengths:

      A few studies have shown that optogenetic activation of the POA in females promotes vocalization and mounting behavior, similar to the effects observed in males. However, those were the results of artificially stimulating POA neurons, and it was unknown whether POA neurons play a role in naturally occurring female social behaviors. This paper clearly demonstrates that there exists a population of POA neurons that are necessary for naturally evoked female social vocalizations and mounting behaviors.

      Weaknesses:

      The authors conclude that "In the current study, we identify and characterize a population of preoptic hypothalamic neurons that contribute to the effects of short-term social isolation on the social behaviors of mice." This is an interesting hypothesis, but in my opinion, critical control experiments are missing to support this claim.

      All the activity-dependent labeling experiments with TRAP mice, including the subsequent neural activity manipulation experiments (Figures 2, 3, 4, 5E-F), were conducted by labeling neurons only in socially isolated animals, not group-housed animals. The authors labeled neurons after 30-minute social interactions, raising the possibility that the labeled neurons simply represent a "social interaction/behavior population" (mediating mounting and USVs in females and males) rather than a set of neurons specific to social isolation.

      I strongly recommend including experimental groups that involve labeling neurons after 30-minute social interactions in group-housed female or male mice and inhibit TRAPed neurons after social isolation or activate TRAPed neurons after group housing. If manipulating the group-housed TRAP neurons has similar effects to manipulating the isolated TRAP neurons, it would suggest the current labeling paradigm is not isolating neurons specific to the effect of social isolation per se. Rather, the neurons may mediate more general social interaction or motivation-related activities. Given the known role of POA in male mating behavior, a group-housed TRAP experiment in males with a female visitor is especially important for understanding the selectivity of the labeled cells.

      Without proper controls, referring to the labeled neurons as "POAiso" neurons is potentially misleading. The data thus far suggests these neurons may predominantly reflect a "POA social behavior" population rather than a set of cells distinctly responsive to isolated housing.

      Overall, this paper is well-written and provides valuable new data on the neural circuit for female social behaviors and the potentially complex role of POA in social behavior control.

    2. Reviewer #1 (Public Review):

      Summary:

      Zhao et al. perform a series of experiments aimed at identifying the role of the preoptic area (POA) in controlling the impact of social isolation on same-sex female social behavior. They focus their manuscript on the effects of short-term (3d) isolation and females, both of which have been relatively understudied, making the overall topic of the manuscript exciting and important.

      Strengths:

      The work highlighted is well designed, the experiments original, and the manuscript is elegant and clearly written. The strengths of the manuscript lie in the attention to multiple facets of social behavior (investigation, mounting, USVs), sex differences, and the use of multiple loss- and gain-of-function approaches.

      Weaknesses:

      The main weaknesses of the paper are a lack of significance in key findings, and relatedly, concluding effects from insignificant findings. Additional elements could be improved to help strengthen this overall well-rounded and intriguing set of results.

    3. Reviewer #3 (Public Review):

      Summary:

      How short-term isolation acts on the brain to promote social behavior remains incompletely understood. The authors found that social interactions after a period of acute isolation increased investigation promoted mounting, and increased the production of ultrasonic vocalizations (USVs). This was true for females during same-sex interactions as well as for males interacting with females. Concomitant with these increased behavioral readouts, cFos expression in the preoptic area of the hypothalamus (POA) was found to increase selectively in single-housed females. Chemogenetic silencing of these POA neurons attenuated all three behavioral measures in socially isolated females. Surprisingly, ablation of the same POA neurons decreased mounting duration without impacting social investigation or USV production. While optogenetic activation was sufficient to evoke USV production, it did not affect either mounting or social investigation. In males, chemogenetic silencing of POA neurons decreased mounting but not other behaviors. Together, these data point towards a role of POA neurons in mediating social behaviors after acute isolation but the exact nature of that control appears to depend on the choice of perturbation method, sex, and social context in complex ways that are hard to parse. This study is an essential first step; additional experiments will be needed to explain the apparent discrepancy between the various circuit perturbation results and to gain a more comprehensive understanding of the role of POA in social isolation.

      Strengths:

      The goal of understanding the neural circuit mechanisms underlying acute social isolation is clearly important and topical. Using a state-of-the-art technique to tag specific neurons that were active during certain behavioral epochs, the authors managed to identify the POA as a critical circuit locus for the effects of social isolation. The experimental design is perfectly reasonable and the quality of the data is good. The control experiments (Figures 2B-D) showing that chemogenetic inactivation of other hypothalamic regions (AH and VMH) do not affect social behavior is indeed quite satisfying and points towards a specific role of POA within the hypothalamus. Using a combination of behavioral assays, activity-dependent neural tagging, and circuit manipulation techniques, the authors present convincing evidence for the role of the preoptic area of the hypothalamus in mediating certain behaviors following social isolation. These data are likely to be a valuable resource for understanding how hypothalamic circuits adjust to the challenges of social isolation.

      Weaknesses:

      While the authors should be commended for performing and reporting multiple circuit perturbation experiments (e.g., chemogenetics, ablation), the conflicting effects on behavior are hard to interpret without additional experiments. For example, chemogenetic silencing of the POA neurons (using DREADDs) attenuated all three behavioral measures but the ablation of the same POA neurons (using CASPACE) decreased mounting duration without impacting social investigation or USV production. Similarly, optogenetic activation of POA neurons was sufficient to generate USV production as reported in earlier studies but mounting or social investigation remained unaffected. Do these discrepancies arise due to the efficiency differences between DREADD-mediated silencing vs. Casp3 ablation? Or does the chemogenetic result reflect off-manifold effects on downstream circuitry whereas a more permanent ablation strategy allows other brain regions to compensate due to redundancy? It is important to resolve whether these arise due to technical reasons or whether these reflect the underlying (perhaps messy) logic of neural circuitry. Therefore, while it is clear that POA neurons likely contribute to multiple behavioral readouts of social isolation, understanding their exact roles in any greater detail will require further experiments.

    1. Reviewer #2 (Public Review):

      The paper has two main merits. Firstly, it documents a new and important characteristic of the re-organization of the brains of the deaf, namely its variability. The search for a well-defined set of functions for the deprived auditory cortex of the deaf has been largely unsuccessful, with several task-based approaches failing to deliver unanimous results. Now, one can understand why this was the case: most likely there isn't a fixed one well-defined set of functions supported by an identical set of areas in every subject, but rather a variety of functions supported by various regions. In addition, the paper extends the authors' previous findings from blind subjects to the deaf population. It demonstrates that the heightened variability of connectivity in the deprived brain is not exclusive to blindness, but rather a general principle that applies to other forms of deprivation. On a more general level, this paper shows how sensory input is a driver of the brain's reproducible organization.

      The method and the statistics are sound, the figures are clear, and the paper is well-written. The sample size is impressively large for this kind of study.

      The main weakness of the paper is not a weakness, but rather a suggestion on how to provide a stronger basis for the authors' claims and conclusions. I believe this paper could be strengthened by including in the analysis at least one of the already published deaf/hearing resting-state fMRI datasets (e.g. Andin and Holmer, Bonna et al., Ding et al.) to see if the effects hold across different deaf populations. The addition of a second dataset could strengthen the evidence and convincingly resolve the issue of whether delayed sign language acquisition causes an increase in individual differences in functional connectivity to/from Broca's area. Currently, the authors may not have enough statistical power to support their findings.

      Secondly, the authors could more explicitly discuss the broad implications of what their results mean for our understanding of how the architecture of the brain is determined by the genetic blueprint vs. how it is determined by learning (page 9). There is currently a wave of strong evidence favoring a more "nativist" view of brain architecture, for example, face- and object- sensitive regions seem to be in place practically from birth (see e.g. Kosakowski et al., Current Biology, 2022). The current results show what is the role played by experience.

    2. Reviewer #1 (Public Review):

      This experiment sought to determine what effect congenital/early-onset hearing loss (and associated delay in language onset) has on the degree of inter-individual variability in functional connectivity to the auditory cortex. Looking at differences in variability rather than group differences in mean connectivity itself represents an interesting addition to the existing literature. The sample of deaf individuals was large, and quite homogeneous in terms of age of hearing loss onset, which are considerable strengths of the work. The experiment appears well conducted and the results are certainly of interest. I do have some concerns with the way that the project has been conceptualized, which I share below.

      The authors should provide careful working definitions of what exactly they think is occurring in the brain following sensory deprivation. Characterizing these changes as 'large-scale neural reorganization' and 'compensatory adaptation' gives the impression that the authors believe that there is good evidence in support of significant structural changes in the pathways between brain areas - a viewpoint that is not broadly supported (see Makin and Krakauer, 2023). The authors report changes in connectivity that amount to differences in coordinated patterns of BOLD signal across voxels in the brain; accordingly, their data could just as easily (and more parsimoniously) be explained by the unmasking of connections to the auditory cortex that are present in typically hearing individuals, but which are more obvious via MR in the absence of auditory inputs.

      I found the argument that the deaf use a single modality to compensate for hearing loss, and that this might predict a more confined pattern of differential connectivity than had been previously observed in the blind to be poorly grounded. The authors themselves suggest throughout that hearing loss, per se, is likely to be driving the differences observed between deaf and typically-hearing individuals; accordingly, the suggestion that the modality in which intentional behavioral compensation takes place would have such a large-scale effect on observed patterns of connectivity seems out of line.

      The analyses highlighting the areas observed to be differentially connected to the auditory cortex and areas observed to be more variable in their connectivity to the auditory cortex seem somewhat circular. If the authors propose hearing loss as a mechanism that drives this variability in connectivity, then it is reasonable to propose hypotheses about the directionality of these changes. One would anticipate this directionality to be common across participants and thus, these areas would emerge as the ones that are differently connected when compared to typically hearing folks.

      While the authors describe collecting data on the etiology of hearing loss, hearing thresholds, device use, and rehabilitative strategies, these data do not appear in the manuscript, nor do they appear to have been included in models during data analysis. Since many of these factors might reasonably explain differences in connectivity to the auditory cortex, this seems like an omission.

    3. Reviewer #3 (Public Review):

      Summary:

      This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      - The manuscript is well written.

      - The methods are clearly described and appropriate.

      - Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes.

      - The results are interesting and novel.

      Weaknesses:

      - Analyses were conducted for task-based data rather than resting-state data. It was unclear whether groups differed in task performance. If congenitally deaf individuals found the task more difficult this could lead to changes in FC.

      - No differences in overall activation between groups were reported. Activation differences between groups could lead to differences in FC. For example, lower activation may be associated with more noise in the data, which could translate to reduced FC.

      - Figure 2B shows higher FC for congenitally deaf individuals than normal-hearing individuals in the insula, supplementary motor area, and cingulate. These regions are all associated with task effort. If congenitally deaf individuals found the task harder (lower performance), then activation in these regions could be higher, in turn, leading to FC. A study using resting-state data could possibly have provided a clearer picture.

      - The correlation between the FC map and the FC variability map is 0.3. While significant using permutation testing, the correlation is low, and it is not clear how great the overlap is.

    1. Reviewer #1 (Public Review):

      Summary:

      Zheng and colleagues assessed the real-world efficacy of SARS-CoV-2 vaccination against re-infection following the large omicron wave in Shanghai in April 2022. The study was performed among previously vaccinated individuals. The study successfully documents a small but real added protective benefit of re-vaccination, though this diminishes in previously boosted individuals. Unsurprisingly, vaccine preventative efficacy was higher if the vaccine was given in the month before the 2nd large wave in Shanghai. The re-infection rate of 24% suggests that long-term anti-COVID immunity is very difficult to achieve. The conclusions are largely supported by the analyses. These results may be useful for planning the timing of subsequent vaccine rollouts.

      Strengths:

      The strengths of the study are a very large and unique cohort based on synchronously timed single infection among individuals with well-documented vaccine histories. Statistical analyses seem appropriate. As with any cohort study, there are potential confounders and the possibility of misclassification and the authors outline limitations nicely in the discussion.

      Weaknesses:

      (1) Partially and fully vaccinated are never defined and it is difficult to understand how this differs from single, and double, booster vaccines. The figures including all of these groups are a bit confusing for this reason.

      (2) Figure 3 is a bit challenging to interpret because it is a bit atypical to compare each group to a different baseline (ie 2V-I-V vs 2V-I). I would label the y-axis 2V-I-V vs 2V-I (change all of the labels) to make this easier to understand.

      (3) A 15% reduction in infection is quite low. It would be helpful to discuss if any quantitative or qualitative signals suggest at least a reduction in severe outcomes such as death, hospitalization, ER visits, or long COVID. I am not sure that a 15% reduction in cases supports extra vaccination without some other evidence of added benefit.

      (4) Why exclude the 74962 unvaccinated from the analysis. it would be interesting to see if getting vaccinated post-infection provides benefits to this group

      (5) Pudong should be defined for those who do not live in China.

      (6) The discussion about healthcare utilization bias is welcomed and well done. It would be great to speculate on whether this bias might favor the null or alternative hypothesis.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper evaluates the effect of COVID-19 booster vaccination on reinfection in Shanghai, China among individuals who received primary COVID-19 vaccination followed by initial infection, during an Omicron wave.

      Strengths:

      A large database is collated from electronic vaccination and infection records. Nearly 200,000 individuals are included in the analysis and 24% became reinfected.

      Weaknesses:

      The article is difficult to follow in terms of the objectives and individuals included in various analyses. There appear to be important gaps in the analysis. The electronic data are limited in their ability to draw causal conclusions.

      More detailed comments:

      In multiple places (abstract, introduction), the authors frame the work in terms of understanding the benefit of booster vaccination among individuals with hybrid immunity (vaccination + infection). However, their analysis population does not completely align with this framing. As best as I can tell, only individuals who first received COVID-19 vaccination, and subsequently experienced infection, were included. Why the analysis does not also consider individuals who were infected and then vaccinated is not clear.

      In vaccine effectiveness analyses, why was time since initial infection not examined as a modifier of the booster effect? Time since the onset of the Omicron wave is only loosely tied to the immune status of the individual.

      The effect of booster vaccination on preventing symptomatic vs. asymptomatic reinfection does not appear to have been evaluated; this is a key gap in the analysis and it would seem the data would support it.

      In lines 105-108, the demographic description of the analysis population is incomplete. Is sex or gender identity being described? Are any individuals non-binary? What is the age distribution? (Only the proportions 20-39 and under 6 are stated.)

      Figure 1 consort diagram is confusing. In the last row, are the two boxes independent or overlapping sets of individuals? Are all included in secondary analyses?

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Franke et al. explore and characterize color response properties across primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake 2P imaging to define the spectral response properties of visual interneurons in layer 2/3. They find that opponent responses are more pronounced at photopic light levels, and that diversity in color opponent responses exists across the visual field, with green ON/ UV OFF responses more strongly represented in the upper visual field. This is argued to be relevant for the detection of certain features that are more salient when using chromatic space, possibly due to noise reduction. In the revised version, Franke et al. have addressed the potential pitfalls in the discussion, which is an important point for the non-expert reader. Thus, this study provides a solid characterization of the color properties of V1 and is a valuable addition to visual neuroscience research.

      My remaining concerns are based more on the interpretation. I'm still not convinced by the statement "This type of color-opponency in the receptive field center of V1 neurons was not present in the receptive field center of retinal ganglion cells and, therefore, is likely computed by integrating center and surround information downstream of the retina." and I would suggest rewording it in the abstract.

      As discussed previously and now nicely added to the discussion, it is difficult to make a direct comparison given the different stimulus types used to characterize the retina and V1 recordings and the different levels of adaptation in both tissues. I will leave this point to the discussion, which allows for a more nuanced description of the phenomenon. Why do I think this is important? In the introduction, the authors argue that "the discrepancy [of previous studies] may be due to differences in stimulus design or light levels." However, while different light levels can be tested in V1, this cannot be done properly in the retina with 2P experiments. To address this, one would have to examine color-opponency in RGC terminals in vivo, which is beyond the scope of this study. Addressing these latter points directly in the discussion would, in my opinion, only strengthen the study.

    2. Reviewer #2 (Public Review):

      Summary:

      Franke et al. characterize the representation of color in the primary visual cortex of mice, highlighting how this changes across the visual field. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet colors were presented in random combinations. Clustering of responses revealed a set of functional cell-types based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have different spatial distributions across V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths:

      The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      Weaknesses:

      While the study presents convincing evidence about the asymmetric distribution of color-opponent neurons in V1, the paper would greatly benefit from a more in-depth discussion of the caveats related to the conclusions drawn about their origin. This is particularly relevant regarding the conclusion drawn about the contribution of color opponent neurons in the retina. The mismatch between retinal color opponency and V1 color opponency could imply that this feature is not solely inherited from the retina, however, there are other plausible explanations that are not discussed here. Direct evidence for this statement remains weak.

      In addition, the paper would benefit from adding explicit neuron counts or percentages to the quadrants of each of the density plots in Figures 2-5. The variance explained by the principal components does not capture the percentage of color opponent cells. Additionally, there appear to be some remaining errors in the figure legend and labels that have not been addressed (e.g. '??' in Fig 2 legend).

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

    3. Reviewer #3 (Public Review):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. The results are interesting and many aspects of the experiments and conclusions are well done; several technical concerns, however, limit the support for several main conclusions,

      Limitations of stimulus choice<br /> The paper relies on responses to a large (37.5 degree diameter) modulated spot and surround region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells (it is twice the area of the average V1 receptive field). As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot (and, e.g., how much of the true neural surround samples the center spot vs the surround region). Most importantly, the surrounds of most of the recorded cells will be strongly activated by the central spot. This brings into question statements in the paper about selective activation of center and surround (e.g. page 2, right column). This in turn raises questions about several subsequent analyses that rely on selective center and surround activation.

      Comparison with retina<br /> A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. For example, the stimulus used for the V1 experiments almost certainly strongly stimulates both center and surround of retinal ganglion cells. The text focuses on color opponency in the receptive field centers of retinal ganglion cells, but center-surround opponency seems at least as relevant for such large spots. This issue needs to be described more clearly and earlier in the paper.

      Limitations associated with ETA analysis<br /> One of the reviewers in the previous round of reviews raised the concern that the ETA analysis may not accurately capture responses of cells with nonlinear receptive field properties such as On/Off cells. This possibility and whether it is a concern should be discussed.

      Discrimination performance poor<br /> Discriminability of color or luminance is used as a measure of population coding. The discrimination performance appears to be quite poor - with 500-1000 neurons needed to reliably distinguish light from dark or green from UV. Intuitively I would expect that a single cell would provide such discrimination. Is this intuition wrong? If not, how do we interpret the discrimination analyses?

    1. Reviewer #1 (Public Review):

      Summary:

      Willems and colleagues test whether unexpected shock omissions are associated with reward-related prediction errors by using an axiomatic approach to investigate brain activation in response to unexpected shock omission. Using an elegant design that parametrically varies shock expectancy through verbal instructions, they see a variety of responses in reward-related networks, only some of which adhere to the axioms necessary for prediction error. In addition, there were associations between omission-related responses and subjective relief. They also use machine learning to predict relief-related pleasantness, and find that none of the a priori "reward" regions were predictive of relief, which is an interesting finding that can be validated and pursued in future work.

      Strengths:

      The authors pre-registered their approach and the analyses are sound. In particular, the axiomatic approach tests whether a given region can truly be called a reward prediction error. Although several a priori regions of interest satisfied a subset of axioms, no ROI satisfied all three axioms, and the authors were candid about this. A second strength was their use of machine learning to identify a relief-related classifier. Interestingly, none of the ROIs that have been traditionally implicated in reward prediction error reliably predicted relief, which opens important questions for future research.

      Weaknesses:

      To ensure that the number of omissions is similar across conditions, the task employs inaccurate verbal instructions; i.e. 25% of shocks are omitted, regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, or 0%. Given previous findings on interactions between verbal instruction and experiential learning (Doll et al., 2009; Li et al., 2011; Atlas et al., 2016), it seems problematic a) to treat the instructions as veridical and b) average responses over time. Based on these prior work, it seems reasonable to assume that participants would learn to downweight the instructions over time through learning (particularly in the 100% and 0% cases); this would be the purpose of prediction errors as a teaching signal. The authors do recognize this and perform a subset analysis in the 21 participants who showed parametric increases in anticipatory SCR as a function of instructed shock probability, which strengthened findings in the VTA/SN; however given that one third of participants (n=10) did not show parametric SCR in response to instructions, it seems like some learning did occur. As prediction error is so important to such learning, a weakness of the paper is that conclusions about prediction error might differ if dynamic learning were taken into account.

    2. Reviewer #2 (Public Review):

      The question of whether the neural mechanisms for reward and punishment learning are similar has been a constant debate over the last two decades. Numerous studies have shown that the midbrain dopamine neurons respond to both negative and salient stimuli, some of which can't be well accounted for by the classic RL theory (Delgado et al., 2007). Other research even proposed that aversive learning can be viewed as reward learning, by treating the omission of aversive stimuli as a negative PE (Seymour et al., 2004).

      Although the current study took an axiomatic approach to search for the PE encoding brain regions, which I like, I have major concerns regarding their experimental design and hence the results they obtained. My biggest concern comes from the false description of their task to the participants. To increase the number of "valid" trials for data analysis, the instructed and actual probabilities were different. Under such a circumstance, testing axiom 2 seems completely artificial. How does the experimenter know that the participants truly believe that the 75% is more probable than, say, the 25% stimulation? The potential confusion of the subjects may explain why the SCR and relief report were rather flat across the instructed probability range, and some of the canonical PE encoding regions showed a rather mixed activity pattern across different probabilities. Also for the post-hoc selection criteria, why pick the larger SCR in the 75% compared to the 25% instructions? How would the results change if other criteria were used?

      To test axiom 3, which was to compare the 100% stimulation to the 0% stimulation conditions, how did the actual shock delivery affect the fMRI contrast result? It would be more reasonable if this analysis could control for the shock delivery, which itself could contaminate the fMRI signal, with extra confound that subjects may engage certain behavioral strategies to "prepare for" the aversive outcome in the 100% stimulation condition. Therefore, I agree with the authors that this contrast may not be a good way to test axiom 3, not only because of the arguments made in the discussion but also the technical complexities involved in the contrast.

      Comments on revised version:

      I want to thank the authors for their thorough and comprehensive work in revising this manuscript. I agree with the authors that learning paradigms might not be a necessity when it comes to study the PE signals, but I don't particularly agree with some of the responses in the rebuttal letter ("Furthermore, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted."). This is of course correct description for the conditioning paradigm, but the same can be said for an instructed design: the aversive outcome was either delivered or not. That being said, adopting the instructed design itself is legitimate in my opinion.

      My main concern, which the authors spent quite some length in the rebuttal letter to address, still remains about the validity for different instructed probabilities. Although subjects were told that the trials were independent, the big difference between 75% and 25% would more than likely confuse the subjects, especially given that most of us would fall prey to the Gambler's fallacy (or the law of small numbers) to some degree. When the instruction and subjective experience collides, some form of inference or learning must have occurred, making the otherwise straightforward analysis more complex. Therefore, I believe that a more rigorous/quantitative learning modeling work can dramatically improve the validity of the results. Of course, I also realize how much extra work is needed to append the computational part but without it there is always a theoretical loophole in the current experimental design.

      As the authors mentioned in the rebuttal letter, "selecting participants only if their anticipatory SCR monotonically increased with each increase in instructed probability 0% < 25% < 50% < 75% < 100%, N = 11 participants", only ~1/3 of the subjects actually showed strong evidence for the validity of the instructions. This further raises the question of whether the instructed design, due to the interference of false instruction and the dynamic learning among trials, is solid enough to test the hypothesis.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors conducted a human fMRI study investigating the omission of expected electrical shocks with varying probabilities. Participants were informed of the probability of shock and shock intensity trial-by-trial. The time point corresponding to the absence of the expected shock (with varying probability) was framed as a prediction error producing the cognitive state of relief/pleasure for the participant. fMRI activity in the VTA/SN and ventral putamen corresponded to the surprising omission of a high probability shock. Participants' subjective relief at having not been shocked correlated with activity in brain regions typically associated with reward-prediction errors. The overall conclusion of the manuscript was that the absence of an expected aversive outcome in human fMRI looks like a reward-prediction error seen in other studies that use positive outcomes.

      Strengths:

      Overall, I found this to be a well-written human neuroimaging study investigating an often overlooked question on the role of aversive prediction errors, and how they may differ from reward-related prediction errors. The paper is well-written and the fMRI methods seem mostly rigorous and solid.

      Comments on revised version:

      The authors were extremely responsive to the comments and provided a comprehensive rebuttal letter with a lot of detail to address the comments. The authors clarified their methodology, and rationale for their task design, which required some more explanation (at least for me) to understand. Some of the design elements were not clear to me in the original paper.

      The initial framing for their study is still in the domain of learning. The paper starts off with a description of extinction as the prime example of when threat is omitted. This could lead a reader to think the paper would speak to the role of prediction errors in extinction learning processes. But this is not their goal, as they emphasize repeatedly in their rebuttal letter. The revision also now details how using a conditioning/extinction framework doesn't suit their experimental needs.

      It is reasonable to develop a new task to answer their experimental questions. By no means is there a requirement to use a conditioning/extinction paradigm to address their questions. As they say, "it is not necessary to adopt a learning paradigm to study omission responses", which I agree with.

      But the authors seem to want to have it both ways: they frame their paper around how important prediction errors are to extinction processes, but then go out of their way to say how they can't test their hypotheses with a learning paradigm.

      Part of their argument that they needed to develop their own task "outside of a learning context" goes as follows:<br /> (1) "...conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, the magnitude-related axiom cannot be tested."<br /> (2) "....in conditioning tasks people generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intra-individual variability in the PE responses"<br /> (3) "...because of the relatively low signal to noise ratio in fMRI measures, fear extinction studies often pool across trials to compare omission-related activity between early and late extinction, which further reduces the necessary variability to properly evaluate the probability axiom"

      These points seem to hinge on how tasks are "generally" constructed. However, there are many adaptations to learning tasks:<br /> (1) There is no rule that conditioning can't include different levels of aversive outcomes following different cues. In fact, their own design uses multiple cues that signal different intensities and probabilities. Saying that conditioning "generally only include one level of aversive outcome" is not an explanation for why "these paradigms are not tailored" for their research purposes. There are also several conditioning studies that have used different cues to signal different outcome probabilities. This is not uncommon, and in fact is what they use in their study, only with an instruction rather than through learning through experience, per se.<br /> (2) Conditioning/extinction doesn't have to occur fast. Just because people "generally learn fast" doesn't mean this has to be the case. Experiments can be designed to make learning more challenging or take longer (e.g., partial reinforcement). And there can be intra-individual differences in conditioning and extinction, especially if some cues have a lower probability of predicting the US than others. Again, because most conditioning tasks are usually constructed in a fairly simplistic manner doesn't negate the utility of learning paradigms to address PE-axioms.<br /> (3) Many studies have tracked trial-by-trial BOLD signal in learning studies (e.g., using parametric modulation). Again, just because other studies "often pool across trials" is not an explanation for these paradigms being ill-suited to study prediction errors. Indeed, most computational models used in fMRI are predicated on analyzing data at the trial level.

      Again, the authors are free to develop their own task design that they think is best suited to address their experimental questions. For instance, if they truly believe that omission-related responses should be studied independent of updating. The question I'm still left puzzling is why the paper is so strongly framed around extinction (the word appears several times in the main body of the paper), which is a learning process, and yet the authors go out of their way to say that they can only test their hypotheses outside of a learning paradigm.

      The authors did address other areas of concern, to varying extents. Some of these issues were somewhat glossed over in the rebuttal letter by noting them as limitations. For example, the issue with comparing 100% stimulation to 0% stimulation, when the shock contaminates the fMRI signal. This was noted as a limitation that should be addressed in future studies, bypassing the critical point.

    1. Reviewer #1 (Public Review):

      Summary:

      The process of taste perception is significantly more intricate and complex in Lepidopteran insects. This investigation provides valuable insights into the role of Gustatory receptors and their dynamics in the sensation of sucrose, which serves as a crucial feeding cue for insects. The article highlights the differential sensitivity of Grs to sucrose and their involvement in feeding and insect behavior.

      Strengths:

      To support the notion of the differential specificity of Gr to sucrose, this study employed electrophysiology, ectopic expression of Grs in Xenopus, genome editing, and behavioral studies on insects. This investigation offers a fundamental understanding of the gustation process in lepidopteran insects and its regulation of feeding and other gustation-related physiological responses. This study holds significant importance in advancing our comprehension of lepidopteran insect biology, gustation, and feeding behavior.

      Weaknesses:

      While this manuscript demonstrates technical proficiency, there exists an opportunity for additional refinement to optimize comprehensibility for the intended audience. Several crucial sugars have been overlooked in the context of electrophysiology studies and should be incorporated. Furthermore, it is imperative to consider the potential off-target effects of Gr knock-out on other Gr expressions. This investigation focuses exclusively on Gr6 and Gr10, while neglecting a comprehensive narrative regarding other Grs involved in sucrose sensation.

    2. Reviewer #2 (Public Review):

      Summary:

      To identify sugar receptors and assess the capacity of these genes the authors first set out to identify behavioral responses in larva and adult as well as physiological response. They used phylogenetics and gene expression (RNAseq) to identify candidates for sugar reception. Using first an in vitro oocyte system they assess the responses to distinct sugars. A subsequent genetic analysis shows that the Gr10 and Gr6 genes provide stage specific functions in sugar perception.

      Strengths:

      A clear strength of the manuscript is the breadth of techniques employed allowing a comprehensive study in a non-canonical model species.

      Weaknesses:

      There are no major weaknesses in the study for the current state of knowledge in this species. Since it is much basic work to establish a broader knowledge, context with other modalities remain unknown. It might have been possible to probe certain context known from the fruit fly, which would have strengthened the manuscript.

    1. Reviewer #1 (Public Review):

      Summary

      This study identifies a family of solute transports in the enteric protist, Blastocystis, that may mediate the transport of glycolytic intermediates across the mitochondrial membrane. The study builds on previous observations suggesting that Blastocystis (and other Stramenopiles) are unusual in having a compartmentalized glycolytic pathway with enzymes involved in upper and lower glycolysis being located in the cytosol and mitochondria, respectively. In this study, the authors identified two putative Stamenopile metabolite transporters that are related to plant di/tricarboxylic acid transporters that might mediate the transport of glycolytic intermediates across the mitochondrial membrane. These GIC-transporters were localized to the Blastocystis mitochondrion using specific rabbit antibodies and shown to bind several glycolytic intermediates (including GAP, DHAP and PEP) based on thermostability shift assays. Direct evidence for transport activity was obtained by reconstituting native proteins in proteoliposomes and measuring uptake of 14C-malate or 35S-sulphate against unlabelled substrates. This assay showed that GIC-2 transported DHAP, GAP and PEP. However, significant transport activity was not observed for bGIC-2. Overall, the study provides strong, but not conclusive evidence that bGIC-2 is involved in transporting glycolytic intermediates across the inner membrane of the mitochondria, while the function of GIC-1 remains unclear, despite exhibiting the same metabolite binding properties as bGIC-2 n thermostability assays.

      Strengths:

      Overall, the findings are of interest in the context of understanding the diversity of core metabolic pathways in evolutionarily diverse eukaryotes, as well as the process by which cytosolic glycolysis evolved in most eukaryotes. The experiments are carefully performed and clearly described.

      Weaknesses:

      The main weakness of the study is the lack of direct evidence that either bGIC-1 and/or bGIC2 are active in vivo. While it is appreciated that the genetic tools for disrupting GIC genes in Blastocystis are limited/lacking, are there opportunities to ectopically express or delete these genes in other genetically tractable Stamenopiles, such as Phaeodactylum triconuteum?

      The authors demonstrate that both bGIC-1 and bGIC-2 are targeted to the mitochondrion, based on immunofluorescence studies. However, the precise localization and topology of these carriers in the inner or outer membrane is not defined. The conclusions of the study would be strengthened if the authors could show that one/both transporters are present in the inner membrane using protease protection experiments following differential solubilization of the outer and inner mitochondrial membranes.

      It is not clear why hetero-exchange reactions were not performed for bGIC-1 (only for bGIC-2).

      In both their previous study (Bartulos et al (2018) and the current study, the authors have shown that Blastocystis express a TPI-GAPDH fusion protein which is located to the mitochondrion. The presence of the TPI domain in the mitochondrial matrix would obviate the need for bGIC-1/2 triose transporters and decrease their value as drug targets. It is noted that Blastocystis still retains some TPI activity in the cytosol, presumably due to expression of a second cytoplasmic isoform, which could account for the presence of the bGIC transporters. However, some discussion on the role of this mitochondrial TPI-GAPDG fusion protein in Blastocystis and other Stramenopiles would be useful.

      The summary slide (Fig 7) in the revised manuscript no longer shows PEP being used as a countersolute for the import of G3P and DHAP. Although it complicates the story, the role of PEP as a counter solute should be shown for completeness and also to make sense of some of the statements in the discussion. In particular, as noted by the authors, mitochondrial PEP could be exported back to the cytsol and converted to pyruvate and/or lactate to generate ATP and NAD, although at the expense of ATP synthesis in the mitochondria.

    2. Reviewer #2 (Public Review):

      In this manuscript, the authors set out to identify transporters that must exist in Stramenophiles due to the fact that the second half of glycolysis appears to be conducted in the mitochondria. They hypothesize that a Stramenophile-specific clade of transporters related to the dicarboxylate carriers are likely the relevant family and then go on to test two proteins from Blastocystis due to the infectious disease relevance of this organism. They show rather convincingly that these two proteins are expressed and are localized to the mitochondria in the native organism. The purified proteins bind to glycolytic intermediates and one of them, GIC-2, transports several glycolytic intermediates in vitro. This is a very solid and well-executed study that clearly demonstrates that bCIC-2 can transport glycolytic intermediates.

      (1) The major weakness is that the authors aren't able to show that this protein actually has this function in the native organism. This could be impossible due to the lack of genetic tools in Blastocystis, but it leaves us without absolute confidence that bGIC-2 is the important glycolytic intermediate mitochondrial transporter (or even that it has this function in vivo).

      (2) My impression is that the authors under-emphasize the fact that the hDIC also binds (and is stabilized by) glycolytic intermediates (G3P and 3PG). In the opinion of this reviewer, this might change my interpretation about the uniqueness of the bGIC proteins. They act on additional glycolytic intermediates, but it's not unique.

    3. Reviewer #3 (Public Review):

      Summary:

      Unlike most eukaryotes Blastocystis has a branched glycolysis pathway, which is split between the cytoplasm and the mitochondrial matrix. An outstanding question was how the glycolytic intermediates generated in the 'preparatory' phase' are transported into the mitochondrial matrix for the 'pay off' phase. Here, the authors use bioinformatic analysis to identify two candidate solute carrier genes, bGIC-1 and bGIC-2, and use biochemical and biophysical methods to characterise their substrate specificity and transport properties. The authors demonstrate that bGIC-2 can transport dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate and phosphoenolpyruvate, establishing this protein as the 'missing link' connecting the two split branches of glycolysis in this branch of single celled eukaryotes. The authors also present their data on bGIC-1, which suggests a role in anion transport and bOGC, which is a close functional homologue of the human oxoglutarate carrier (hOGC, SLC25A11) and human dicarboxylate carrier (hDIC, SLC25A10).

      Strengths:

      The results are presented in a clear and logical arrangement, which nicely leads the reader through the process of gene identification and subsequent ligand screening and functional reconstitution. The results are compelling and well supported - the thermal stabilisation data is supported by the exchange studies. Caveats, where apparent, are discussed and rational explanations given.

      Weaknesses:

      The study does not contain any significant weaknesses in my view. I would like to see the authors include the initial rate plots used in the main figures (possibly as insets), so we can observe the data points used for these calculations. It would also have been interesting to include the AlphaFold models for bGIC-1 and bGIC-2 and a discussion/rationalisation for the substrate specificity discussed in the study.

    1. Reviewer #1 (Public Review):

      Summary:

      Previous work demonstrated a strong bias in the percept of an ambiguous Shepard tone as either ascending or descending in pitch, depending on the preceding contextual stimulus. The authors recorded human MEG and ferret A1 single-unit activity during presentation of stimuli identical to those used in the behavioral studies. They used multiple neural decoding methods to test if context-dependent neural responses to ambiguous stimulus replicated the behavioral results. Strikingly, a decoder trained to report stimulus pitch produced biases opposite to the perceptual reports. These biases could be explained robustly by a feed-forward adaptation model. Instead, a decoder that took into account direction selectivity of neurons in the population was able to replicate the change in perceptual bias.

      Strengths:

      This study explores an interesting and important link between neural activity and sensory percepts, and it demonstrates convincingly that traditional neural decoding models cannot explain percepts. Experimental design and data collection appear to have been executed carefully. Subsequent analysis and modeling appear rigorous. The conclusion that traditional decoding models cannot explain the contextual effects on percepts is quite strong.

      Weaknesses:

      Beyond the very convincing negative results, it is less clear exactly what the conclusion is or what readers should take away from this study. The presentation of the alternative, "direction aware" models is unclear, making it difficult to determine if they are presented as realistic possibilities or simply novel concepts. Does this study make predictions about how information from auditory cortex must be read out by downstream areas? There are several places where the thinking of the authors should be clarified, in particular, around how this idea of specialized readout of direction-selective neurons should be integrated with a broader understanding of auditory cortex.

    2. Reviewer #2 (Public Review):

      The authors aim to better understand the neural responses to Shepard tones in auditory cortex. This is an interesting question as Shepard tones can evoke an ambiguous pitch that is manipulated by a proceeding adapting stimulus, therefore it nicely disentangles pitch perception from simple stimulus acoustics.

      The authors use a combination of computational modelling, ferret A1 recordings of single neurons, and human EEG measurements.

      Their results provide new insights into neural correlates of these stimuli. However, the manuscript submitted is poorly organized, to the point where it is near impossible to review. We have provided Major Concerns below. We will only be able to understand and critique the manuscript fully after these issues have been addressed to improve the readability of the manuscript. Therefore, we have not yet reviewed the Discussion section.

      Major concerns

      Organization/presentation<br /> The manuscript is disorganized and therefore difficult to follow. The biggest issue is that in many figures, the figure subpanels often do not correspond to the legend, the main body, or both. Subpanels described in the text are missing in several cases. Many figure axes are unlabelled. There is an inconsistent style of in-text citation between figures and the main text. The manuscript contains typos and grammatical errors. My suggestions for edits below therefore should not be taken as an exhaustive list. I ask the authors to consider the following only a "first pass" review, and I will hopefully be able to think more deeply about the science in the second round of revisions after the manuscript is better organized.

      Frequency and pitch<br /> The terms "frequency" and "pitch" seem to be used interchangeably at times, which can lead to major misconceptions in a manuscript on Shepard tones. It is possible that the authors confuse these concepts themselves at times (e.g. Fig 5), although this would be surprising given their expertise in this field. Please check through every use of "frequency" and "pitch" in this manuscript and make sure you are using the right term in the right place. In many places, "frequency" should actually be "fundamental frequency" to avoid misunderstanding.

      Insufficient detail or lack of clarity in descriptions<br /> There seems to be insufficient information provided to evaluate parts of these analysis, most critically the final pitch-direction decoder (Fig 6), which is a major finding. Please clarify.

    3. Reviewer #3 (Public Review):

      Summary:

      This is an elegant study investigating possible mechanisms underlying the hysteresis effect in the perception of perceptually ambiguous Shepard tones. The authors make a fairly convincing case that the adaptation of pitch direction sensitive cells in auditory cortex is likely responsible for this phenomenon.

      Strengths:

      The manuscript is overall well written. My only slight criticism is that, in places, particularly for non-expert readers, it might be helpful to work a little bit more methods detail into the results section, so readers don't have to work quite so hard jumping from results to methods and back.

      The methods seem sound and the conclusions warranted and carefully stated. Overall I would rate the quality of this study as very high, and I do not have any major issues to raise.

      Weaknesses:

      I think this study is about as good as it can be with the current state of the art. Generally speaking, one has to bear in mind that this is an observational, rather than an interventional study, and therefore only able to identify plausible candidate mechanisms rather than making definitive identifications. However, the study nevertheless represents a significant advance over the current state of knowledge, and about as good as it can be with the techniques that are currently widely available.

    1. Reviewer #1 (Public Review):

      In this manuscript, by using simulation, in vitro and in vivo electrophysiology, and behavioral tests, Peng et al. nicely showed a new approach for the treatment of neuropathic pain in mice. They found that terahertz (THz) waves increased Kv conductance and decreased the frequency of action potentials in pyramidal neurons in the ACC region. Behaviorally, terahertz (THz) waves alleviated neuropathic pain in the mouse model. Overall, this is an interesting study. The experimental design is clear, the data is presented well, and the paper is well-written. I have a few suggestions.

      (1) The authors provide strong theoretical and experimental evidence for the impact of voltage-gated potassium channels by terahertz wave frequency. However, the modulation of action potential also relies on non-voltage-dependent ion channels. For example, I noticed that the RMP was affected by THz application (Figure 3F) as well. As the RMP is largely regulated by the leak potassium channels (Tandem-pore potassium channels), I would suggest testing whether terahertz wave photons have also any impact on the Kleak channels as well.

      (2) The activation curves of the Kv currents in Figure 2h seem to be not well-fitted. I would suggest testing a higher voltage (>100 mV) to collect more data to achieve a better fitting.

      (3) In the part of behavior tests, the pain threshold increased after THz application and lasted within 60 mins. I suggest conducting prolonged tests to determine the end of the analgesic effect of terahertz waves.

      (4) Regarding in vivo electrophysiological recordings, the post-HFTS recordings were acquired from a time window of up to 20 min. It seems that the HFTS effect lasted for minutes, but this was not tested in vitro where they looked at potassium currents. This long-lasting effect of HFTS is interesting. Can the authors discuss it and its possible mechanisms, or test it in slice electrophysiological experiments?

      (5) How did the authors arrange the fiber for HFTS delivery and the electrode for in vivo multi-channel recordings? Providing a schematic illustration in Figure 4 would be useful.

      (6) Some grammatical errors should be corrected.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Peng et al., reported that 36THz high-frequency terahertz stimulation (HFTS) can suppress the activity of pyramidal neurons by enhancing the conductance of voltage-gated potassium channel. The authors also demonstrated the effectiveness of using 36THz HFTS for treating neuropathic pain.

      Strengths:

      The manuscript is well written and the conclusions are supported by robust results. This study highlighted the potential of using 36THz HFTS for neuromodulation.

      Weaknesses:

      More characterization of HFTS is needed, so the readers can have a better assessment of the potential usage of HFTS in their own applications.

      (1) It would be very helpful to estimate the volume of tissue that can be influenced by HFTS. It is not clear how 15 mins HFTS was chosen for this functional study. Does a longer time have a stronger effect? A better characterization of the relationship between the stimulus duration of HFTS and its beneficial effects would be very useful.

      (2) How long does the behavioral effect last after 15 minutes of HFTS? Figure 5b only presents the behavioral effect for one hour, but the pain level is still effectively reduced at this time point. The behavioral measurement should last until pain sensitization drops back to pre-stim level.

      (3) Although the manuscript only tested in ACC, it will also be useful to demonstrate the neural modulation effect on other brain regions. Would 36THz HFTS also robustly modulate activities in other brain regions? Or are different frequencies needed for different brain regions?

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript by Peng et al. presents intriguing data indicating that high-frequency terahertz stimulation (HFTS) of the anterior cingulate cortex (ACC) can alleviate neuropathic pain behaviors in mice. Specifically, the investigators report that terahertz (THz) frequency stimulation widens the selectivity filter of potassium channels thereby increasing potassium conductance and leading to a reduction in the excitability of cortical neurons. In voltage clamp recordings from layer 5 ACC pyramidal neurons in acute brain slice, Peng et al. show that HFTS enhances K current while showing minimal effects on Na current. Current clamp recording analyses show that the spared nerve injury model of neuropathic pain decreases the current threshold for action potential (AP) generation and increases evoked AP frequency in layer 5 ACC pyramidal neurons, which is consistent with previous studies. Data are presented showing that ex-vivo treatment with HFTS in slice reduces these SNI-induced changes to excitability in layer 5 ACC pyramidal neurons. The authors also confirm that HFTS reduces the excitability of layer 5 ACC pyramidal neurons via in vivo multi-channel recordings from SNI mice. Lastly, the authors show that HFTS is effective at reducing mechanical allodynia in SNI using both the von Frey and Catwalk analyses. Overall, there is considerable enthusiasm for the findings presented in this manuscript given the need for non-pharmacological treatments for pain in the clinical setting.

      Strengths:

      The authors use a multifaceted approach that includes modeling, ex-vivo and in-vivo electrophysiological recordings, and behavioral analyses. Interpretation of the findings is consistent with the data presented. This preclinical work in mice provides new insight into the potential use of directed high-frequency stimulation to the cortex as a primary or adjunctive treatment for chronic pain.

      Weaknesses:

      There are a few concerns noted that if addressed, would significantly increase enthusiasm for the study.

      (1) The left Na current trace for SNI + HFTS in Figure 2B looks to have a significant series resistance error. Time constants (tau) for the rate of activation and inactivation for Na currents would be informative.

      (2) It is unclear why an unpaired t-test was performed for paired data in Figure 2. Also, statistical methods and values for non-significant data should be presented.

      (3) It would seem logical to perform HFTS on ACC-Pyr neurons in acute slices from sham mice (i.e. Figure 3 scenario). These experiments would be informative given the data presented in Figure 4.

      (4) As the data are presented in Figure 4g, it does not seem as if SNI significantly increased the mean firing rate for ACC-Pyr neurons, which is observed in the slice. The data were analyzed using a paired t-test within each group (sham and SNI), but there is no indication that statistical comparisons across groups were performed. If the argument is that HFTS can restore normal activity of ACC-Pyr neurons following SNI, this is a bit concerning if no significant increase in ACC-Pyr activity is observed in in-vivo recordings from SNI mice.

      (5) The authors indicate that the effects of HFTS are due to changes in Kv1.2. However, they do not directly test this. A blocking peptide or dendrotoxin could be used in voltage clamp recordings to eliminate Kv1.2 current and then test if this eliminates the effects of HFTS. If K current is completely blocked in VC recordings then the authors can claim that currents they are recording are Kv1.1 or 1.2.

      (6) The ACC is implicated in modulating the aversive aspect of pain. It would be interesting to know whether HFTS could induce conditioned place preference in SNI mice via negative reinforcement (i.e. alleviation of spontaneous pain due to the injury). This would strengthen the clinical relevance of using HFTS in treating pain.

    1. Reviewer #1 (Public Review):

      Summary:

      In their paper, Hou and co-workers explored the use of a FRET sensor for endogenous g-sec activity in vivo in the mouse brain. They used AAV to deliver the sensor to the brain for neuron specific expression and applied NIR in cranial windows to assess FRET activity; optimizing as well an imaging and segmentation protocol. In brief they observe clustered g-sec activity in neighboring cells arguing for a cell non-autonomous regulation of endogenous g-sec activity in vivo.

      Weaknesses:

      Overall the authors provide a very limited data set and in fact only a proof of concept that their sensor can be applied in vivo. This is not really a research paper, but a technical note. With respect to their observation of clustered activity, the images do not convince me as they show only limited areas of interest: from these examples (for instance fig 5) one sees that merely all neurons in the field show variable activity and a clustering is not really evident from these examples. Even within a cluster, there is variability. With r values between 0.23 to .36, the correlation is not that striking. The authors herein do not control for expression levels of the sensor: for instance, can they show that in all neurons in the field, the sensor is equally expressed, but FRET activity is correlated in sets of neurons? Or are the FRET activities that are measured only in positively transduced neurons, while neighboring neurons are not expressing the sensor? Without such validation, it is difficult to make this conclusion.

      Secondly, I am lacking some more physiological relevance for this observation. The experiments are performed in wild-type mice, but it would be more relevant to compare this with a fadPSEN1 KI or a PSEN1cKO model to investigate the contribution of a gain of toxic function or LOF to the claimed cell non-autonomous activations. Or what would be the outcome if the sensor was targeted to glial cells?

      For this reviewer it is not clear what resolution they are measuring activity, at cellular or subcellular level? In other words are the intensity spots neuronal cell bodies? Given g-sec activity are in all endosomal compartments and at the cell surface, including in the synapse, does NIR imaging have the resolution to distinguish subcellular or surface localized activities? If cells 'communicate' g-sec activities, I would expect to see hot spots of activity at synapses between neurons: is this possible to assess with the current setup?

      Without some more validation and physiological relevant studies, it remains a single observation and rather a technical note paper, instead of a true research paper.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Hou et al is a short technical report which details the potential use of a recently developed FRET based biosensor for gamma-secretase activity (Houser et al 2020) for in vivo imaging in the mouse brain. Gamma-secretase plays a crucial role in Alzheimer disease pathology and therefore developing methodologies for precise in vivo measurements would be highly valuable to better understand AD pathophysiology in animal models.

      The current version of the sensor utilizes a pair of far-red fluorescent proteins fused to a substrate of the enzyme. Using live imaging, it was previously demonstrated it is possible to monitor gamma-secretase activity in cultured cells. Notably, this is a variant of a biosensor that was previously described using CFP-YFP variants FRET pair (Maesako et al, iScience. 2020). The main claim and hypothesis for the MS is that IR excitation and emission has considerable advantages in terms of depth of penetration, as well as reduction in autofluorescence. These properties would make this approach potentially suitable to monitor cellular level dynamics of Gama-secretase in vivo.

      The authors use confocal microscopy and show it is possible to detect fluorescence from single cortical cells. The paper described in detail technical information regarding imaging and analysis. The data presented in figures 5-8 details analysis of FRET ratio (FR) measurements within populations of cells. The authors claim it is possible to obtain reliable measurements at the level of individual cells. They compare the FR values across cells and mice and find a spatial correlation among neighboring cells. This is compared with data obtained after inhibition of endogenous gamma-secretase activity, which abolishes this correlation.

      Strengths:

      The authors describe in detail their experimental design and analysis for in vivo imaging of the reporter. The idea of using a far-red FRET sensor for in vivo imaging is novel and potentially useful to circumvent many of the pitfalls associated with intensity-based FRET imaging in complex biological environments (such as autofluorescence and scattering).

      Weaknesses:

      There are several critical points regarding validation of this approach and concerns with the data presented that must be addressed:

      (1) Regarding the variability and spatial correlation- the dynamic range of the sensor previously reported in vitro is in the range of 20-30% change (Houser et al 2020) whereas the range of FR detected in vivo is between cells is significantly larger (Fig. 3). This raises considerable doubts for specific detection of cellular activity (see point 3).<br /> (2) One direct way to test the dynamic range of the sensor in vivo, is to increase or decrease endogenous gamma-secretase activity and to ensure this experimental design allows to accurately monitor gamma-secretase activity. In the previous characterization of the reporter (Hauser et al 2020), DAPT application and inhibition of gamma-secretase activity results in increased FR (Figures 2 and 3 of Houser et al). This is in agreement with the design of the biosensor, since FR should be inversely correlated with enzymatic activity. Here, while the authors repeat the same manipulation and apply DAPT to block gamma-secretase activity, it seems to induce the opposite effect and reduces FR (comparing figures 8 with figures 5,6,7). First, there is no quantification comparing FR with and without DAPT. Moreover, it is possible to conduct this experiment in the same animals, meaning comparing FR before and after DAPT in the same mouse and cell populations. This point is absolutely critical- if indeed FR is reduced following DAPT application, this needs to be explained since this contradicts the basic design and interpretation of the biosensor.<br /> (3) For further validation, I would suggest including in vivo measurements with a sensor version with no biological activity as a negative control, for example, a mutation that prevents enzymatic cleavage and FRET changes. This should be used to showcase instrumental variability and would help to validate the variability of FR is indeed biological in origin. This would significantly strengthen the claims regarding spatial correlation within population of cells.<br /> (4) In general, confocal microcopy is not ideal for in vivo imaging. Although the authors demonstrate data collected using IR imaging increases penetration depth, out of focus fluorescence is still evident (Figure 4). Many previous papers have primarily used FLIM based analysis in combination with 2p microscopy for in vivo FRET imaging (Some examples: Ma et al, Neuron, 2018; Massengil et al, Nature methods, 2022; DIaz-Garcia et al, Cell Metabolism, 2017; Laviv et al, Neuron, 2020). This technique does not rely on absolute photon number and therefore has several advantage sin terms of quantification of FRET signals in vivo.<br /> It is therefore likely that use of previously developed sensors of gamma-secretase with conventional FRET pairs, might be better suited for in vivo imaging. This point should be at least discussed as an alternative.

    3. Reviewer #3 (Public Review):

      This paper builds on the authors' original development of a near infrared (NIR) FRET sensor by reporting in vivo real-time measurements for gamma-secretase activity in the mouse cortex. The in vivo application of the sensor using state of the art techniques is supported by a clear description and straightforward data, and the project represents significant progress because so few biosensors work in vivo. Notably, the NIR biosensor is detectable to ~ 100 µm depth in the cortex. A minor limitation is that this sensor has a relatively modest ΔF as reported in Houser et al, which is an additional challenge for its use in vivo. Thus, the data is fully dependent on post-capture processing and computational analyses. This can unintentionally introduce biases but is not an insurmountable issue with the proper controls that the authors have performed here.

      The observation of gamma-secretase signaling that spreads across cells is potentially quite interesting, but it can be better supported. An alternative interpretation is that there exist pre-formed and clustered hubs of high gamma-secretase activity, and that DAPT has stochastic or differential accessibility to cells within the cluster. This could be resolved by an experiment of induction, for example, if gamma-secretase activity is induced or activated at a specific locale and there was observed coordinated spreading to neighboring neurons with their sensor.

      Furthermore, to rule out the possibility that uneven viral transduction was not simply responsible for the observed clustering, it would be helpful to see an analysis of 670nm fluorescence alone.

    1. Reviewer #1 (Public Review):

      Summary:

      Zhang et al. demonstrate that CD4+ single positive (SP) thymocytes, CD4+ recent thymic emigrants (RTE), and CD4+ T naive (Tn) cells from Cd11c-p28-flox mice, which lack IL-27p28 selectively in Cd11c+ cells, exhibit a hyper-Th1 phenotype instead of the expected hyper Th2 phenotype. Using IL-27R-deficient mice, the authors confirm that this hyper-Th1 phenotype is due to IL-27 signaling via IL-27R, rather than the effects of monomeric IL-27p28. They also crossed Cd11c-p28-flox mice with autoimmune-prone Aire-deficient mice and showed that both T cell responses and tissue pathology are enhanced, suggesting that SP, RTE, and Tn cells from Cd11c-p28-flox mice are poised to become Th1 cells in response to self-antigens. Regarding mechanism, the authors demonstrate that SP, RTE, and Tn cells from Cd11c-p28-flox mice have reduced DNA methylation at the IFN-g and Tbx21 loci, indicating 'de-repression', along with enhanced histone tri-methylation at H3K4, indicating a 'permissive' transcriptional state. They also find evidence for enhanced STAT1 activity, which is relevant given the well-established role of STAT1 in promoting Th1 responses, and surprising given IL-27 is a potent STAT1 activator. This latter finding suggests that the Th1-inhibiting property of thymic IL-27 may not be due to direct effects on the T cells themselves.

      Strengths:

      Overall the data presented are high quality and the manuscript is well-reasoned and composed. The basic finding - that thymic IL-27 production limits the Th1 potential of SP, RTE, and Tn cells - is both unexpected and well described.

      Weaknesses:

      A credible mechanistic explanation, cellular or molecular, is lacking. The authors convincingly affirm the hyper-Th1 phenotype at epigenetic level but it remains unclear whether the observed changes reflect the capacity of IL-27 to directly elicit epigenetic remodeling in developing thymocytes or knock-on effects from other cell types which, in turn, elicit the epigenetic changes (presumably via cytokines). The authors propose that increased STAT1 activity is a driving force for the epigenetic changes and resultant hyper-Th1 phenotype. That conclusion is logical given the data at hand but the alternative hypothesis - that the hyper-STAT1 response is just a downstream consequence of the hyper-Th1 phenotype - remains equally likely. Thus, while the discovery of a new anti-inflammatory function for IL-27 within the thymus is compelling, further mechanistic studies are needed to advance the finding beyond phenomenology.

    2. Reviewer #2 (Public Review):

      Summary:

      Naïve CD4 T cells in CD11c-Cre p28-floxed mice express highly elevated levels of proinflammatory IFNg and the transcription factor T-bet. This phenotype turned out to be imposed by thymic dendritic cells (DCs) during CD4SP T cell development in the thymus [PMID: 23175475]. The current study affirms these observations, first, by developmentally mapping the IFNg dysregulation to newly generated thymic CD4SP cells [PMID: 23175475], second, by demonstrating increased STAT1 activation being associated with increased T-bet expression in CD11c-Cre p28-floxed CD4 T cells [PMID: 36109504], and lastly, by confirming IL-27 as the key cytokine in this process [PMID: 27469302]. The authors further demonstrate that such dysregulated cytokine expression is specific to the Th1 cytokine IFNg, without affecting the expression of the Th2 cytokine IL-4, thus proposing a role for thymic DC-derived p28 in shaping the cytokine response of newly generated CD4 helper T cells. Mechanistically, CD4SP cells of CD11c-Cre p28-floxed mice were found to display epigenetic changes in the Ifng and Tbx21 gene loci that were consistent with increased transcriptional activities of IFNg and T-bet mRNA expression. Moreover, in autoimmune Aire-deficiency settings, CD11c-Cre p28-floxed CD4 T cells still expressed significantly increased amounts of IFNg, exacerbating the autoimmune response and disease severity. Based on these results, the investigators propose a model where thymic DC-derived IL-27 is necessary to suppress IFNg expression by CD4SP cells and thus would impose a Th2-skewed predisposition of newly generated CD4 T cells in the thymus, potentially relevant in autoimmunity.

      Strengths:

      Experiments are well-designed and executed. The conclusions are convincing and supported by the experimental results.

      Weaknesses:

      The premise of the current study is confusing as it tries to use the CD11c-p28 floxed mouse model to explain the Th2-prone immune profile of newly generated CD4SP thymocytes. Instead, it would be more helpful to (1) give full credit to the original study which already described the proinflammatory IFNg+ phenotype of CD4 T cells in CD11c-p28 floxed mice to be mediated by thymic dendritic cells [PMID: 23175475], and then, (2) build on that to explain that this study is aimed to understand the molecular basis of the original finding.

      In its essence, this study mostly rediscovers and reaffirms previously reported findings, but with different tools. While the mapping of epigenetic changes in the IFNg and T-bet gene loci and the STAT1 gene signature in CD4SP cells are interesting, these are expected results, and they only reaffirm what would be assumed from the literature. Thus, there is only incremental gain in new insights and information on the role of DC-derived IL-27 in driving the Th1 phenotype of CD4SP cells in CD11c-p28 floxed mice.

      Altogether, the major issues of this study remain unresolved:

      (1) It is still unclear why the p28-deficiency in thymic dendritic cells would result in increased STAT1 activation in CD4SP cells. Based on their in vitro experiments with blocking anti-IFNg antibodies, the authors conclude that it is unlikely that the constitutive activation of STAT1 would be a secondary effect due to autocrine IFNg production by CD4SP cells. However, this possibility should be further tested with in vivo models, such as Ifng-deficient CD11c-p28 floxed mice. Alternatively, is this an indirect effect by other IFNg producers in the thymus, such as iNKT cells? It is necessary to explain what drives the STAT1 activation in CD11c-p28 floxed CD4SP cells in the first place.

      (2) It is also unclear whether CD4SP cells are the direct targets of IL-27 p28. The cell-intrinsic effects of IL-27 p28 signaling in CD4SP cells should be assessed and demonstrated, ideally by CD4SP-specific deletion of IL-27Ra, or by establishing bone marrow chimeras of IL-27Ra germline KO mice.

    1. Reviewer #1 (Public Review):

      Summary:

      Inflammatory T cells have been recognized to play an important role in human COPD lung tissue and animal models of emphysema. The authors have previously identified that Th17 cells regulate chronic inflammatory diseases, including in mice exposed to smoke or nanoparticulate carbon black (nCB). Here, the authors interrogate the role of Tc17 cells using similar mouse models. Investigating let-7 miRNA, which induces antigen-presenting cell activation and T cell-mediated Th17a inflammation, they show that the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), is a direct target of let-7 miRNA in T cells. Because RORγt expression is elevated in COPD patients and in mouse models of COPD, the authors generate a Let-7 overexpressing mouse in T cells and reduce RORγt expression and Th17 and Tc17 cell recruitment in nCB-exposed mice.

      Strengths:

      The authors use a previously published RNA-seq dataset (GSE57148) from lungs of control and COPD subjects to explore the involvement of Let-7 in emphysema. They further evaluate Let-7a expression by qPCR in lung tissue samples of smokers with emphysema and non-emphysema controls. Moreover, expression of Let-7a, Let-7b, Let-7d, and Let-7f in purified CD4+ T cells were inversely correlated with emphysema severity lungs. Similar findings were found in their mouse models (CS or nCB) in both lung tissue and isolated lung CD4+ and CD8+ T cells, with reduced let-7afd and let-7bc2 expression.

      Using mice harboring a conditional deletion of the let-7bc2 cluster in all T cells (let-7bc2LOF) derived from the CD4+CD8+ double-positive stage, the authors show enhanced emphysema in nCB- or CS-exposed mice with enhanced recruitment of macrophages and neutrophils to the lung. While CD8+IL17a+ Tc17 cells and CD4+ IL17a+ Th17 cells were increased in nCB-exposed control animals, only let-7bc2LOF mice showed an increase in CD8+IL17a+ Tc17 cells. Further, unexposed let-7bc2LOF and let-7afdLOF mice expressed greater RORγt expression in both CD8+ and CD4+ T cells.

      Generating a let-7 gain of function mouse with overexpression of let-7g in thymic double-positive-derived T cells, protein levels of RORγt were suppressed in CD8+ and CD4+ T cells of let-7GOF mice relative to controls. Let-7GOF mice treated with nCB showed similar lung alveolar distension as controls suggesting that increased let-7 expression does not protect the lung from emphysema. However, let-7GOF mice showed reduced lung Tc17 and Th17 cell populations and were resistant to the induction of RORγt after nCB exposure.

      Weaknesses:

      Limited data is shown on the let-7afdLOF mice. Does this mouse respond similarly to nCB as the let-7bc2LOF.<br /> Because the authors validate their findings from a previously published RNA-seq dataset in subjects with and without emphysema, the authors should include patient demographics from the data presented in Figure 1C-D.<br /> To validate their mouse models, the absence of Let-7 or enhanced Let-7 expression needs to be shown in isolated T cells from exposed mice.<br /> In Figure 3, the authors are missing the unexposed let-7bc2LOF group from all panels. This is again an issue in Figure 6 with the let-7GOF.<br /> Because the GOF mouse enhances Let-7g within T cells, the importance of Let-7g should be determined in human subjects. Why did the authors choose to overexpress Let-7g, the rationale is not clear.<br /> The purity of the CD4+ and CD8+ T cells is not shown and the full gating strategy should be included.<br /> The authors indicate that Tc17 and Th17 T cells were reduced in the GOF mouse, it remains unclear if macrophage or neutrophil recruitment is altered in GOF mice.

    2. Reviewer #2 (Public Review):

      Summary:

      This valuable study characterizes the requirement for individual let-7 clusters to limit the generation of IL-17 producing CD8 T cells and the severity of emphysema in mouse models. Mature let-7 family miRNAs originate from multiple loci, several of which have been reported and/or are reported here to be downregulated in emphysematous lung tissue and/or lung T cells. The results provided are convincing but incomplete, as the let-7 cluster with the most convincing effects on T cell cytokine production is not tested for effects on disease pathogenesis.

      Let-7 family miRNAs are largely redundant in function and originate from multiple genomic loci ("clusters"). Erice et al demonstrate that two individual clusters (let7afd and let7bc2) in mice regulate the generation of IL-17 producing CD8 T cells in vitro and in vivo in a model of emphysema. These cells also express higher levels of the IL-17-inducing transcription factor RORgt, encoded by Rorc, which the authors demonstrate to be a direct target of let-7. Since multiple let-7 family miRNAs are downregulated in T cells and lung tissue in emphysema, these data support a model in which reduced let-7 allows increased IL-17 production by T cells, contributing to disease pathogenesis.

      Strengths:

      The inclusion of miRNA and pri-miRNA expression data from sorted human lung T cells as well as mouse T cells from an emphysema model is a strength.

      The study includes complementary loss of function and gain of function experimental systems to test the effect of altered let-7 function, though it should be noted that these involved different let-7 family members and did not yield simple, complementary results for all experimental outcomes.

      The most important finding is that deletion of just one let-7 cluster ("Let7bc2") is sufficient to exacerbate emphysema in the nCB and CS models.

      Weaknesses:

      The human miRNA expression data that motivate functional analyses used sorted CD4+ T cells. The authors note that prior work on let-7 showed that it regulates Th17 (CD4) responses, yet this study's functional analyses are all focused on Tc17 (CD8) T cells. Data in this paper show that Tc17 cells are far less numerous than Th17 cells in the nCB and CS models of emphysema.

      Compared with Let7bc2 deletion, Let7afd deletion had a much larger effect on IL17 production by CD8 T cells in vitro, and it also had a larger effect on RORgt expression in untreated mice in vivo, especially in the lung. In the revised manuscript, the authors show that let7afdLOF mice have normal numbers of CD4 and CD8 T cells in the thymus and peripheral lymphoid organs and do not exhibit lung histopathology or inflammatory changes at baseline at least up to 6 months of age. As such, they are set up perfectly to test the requirement for Let7afd in the nCB and/or CS models. These experiments would add strength to the core novelty of this work - demonstration of the functional importance of individual let-7 clusters.

      The authors could do more to explain the complexity of the let7 miRNA family and the genomic clusters examined in this study. In particular, it would help to know the relationship between mouse Let7bc2 and corresponding human Let7 clusters. It would also be very helpful to know the relative expression of each mature let-7 family member in Tc17 cells. Are mature miRNAs derived from the Let7afd cluster more or less abundant?

      The provided evidence for the effect of Let7GOF has an important caveat that came to light during review. Let7g overexpression caused a marked reduction in Rorgt expression in T cells at baseline and in the setting of nCB challenge, and it reduced the frequency of IL17+ producing CD8 T cells in the lung to baseline levels. Yet there was no change in the MLI measurement of histopathology. However, the responses in the experiment shown in Fig. 6C-D are quite muted compared to those shown in Figure 2. In the response to reviewers, the authors speculate that an anti-inflammatory of doxycycline, required for induction of Let7g in this model, "could account for the differences in the magnitude of emphysemic response".

      Although RORgt is a great candidate to have direct effects on IL-17 expression, the mechanistic understanding of let-7 action on T cell differentiation and cytokine production is limited to this single target. As noted in the discussion, others have identified cytokine receptor targets that may play a role, but it is also likely others among the many targets of let-7 also contribute.

    1. Reviewer #1 (Public Review):

      Olszyński and colleagues present data showing variability from canonical "aversive calls", typically described as long 22 kHz calls rodents emit in aversive situations. Similarly long but higher-frequency (44 kHz) calls are presented as a distinct call type, including analyses both of their acoustic properties and animals' responses to hearing playback of these calls. While this work adds an intriguing and important reminder, namely that animal behavior is often more variable and complex than perhaps we would like it to be, there is some caution warranted in the interpretation of these data.

      The exclusive use of males is a major concern lacking adequate justification and should be disclosed in the title and abstract to ensure readers are aware of this limitation. With several reported sex differences in rat vocal behaviors this means caution should be exercised when generalizing from these findings. The occurrence of an estrus cycle in typical female rats is not justification for their exclusion. Note also that male rodents experience great variability in hormonal states as well, distinguishing between individuals and within individuals across time. The study of endocrinological influences on behavior can be separated from the study of said behavior itself, across all sexes. Similarly, concerns about needing to increase the number of animals when including all sexes are usually unwarranted (see Shansky [2019] and Phillips et al. [2023]).

      Regarding the analysis where calls were sorted using DBSCAN based on peak frequency and duration, my comment on the originally reviewed version stands. It seems that the calls are sorted by an (unbiased) algorithm into categories based on their frequency and duration, and because 44kHz calls differ by definition on frequency and duration the fact that the algorithm sorts them as a distinct category is not evidence that they are "new calls [that] form a separate, distinct group". I appreciate that the authors have softened their language regarding the novelty and distinctness of these calls, but the manuscript contains several instances where claims of novelty and specificity (e.g. the subtitle on line 193) is emphasized beyond what the data justifies.

      The behavioral response to call playback is intriguing, although again more in line with the hypothesis that these are not a distinct type of call but merely represent expected variation in vocalization parameters. Across the board animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls. This does raise interesting questions about how, ethologically, animals may interpret such variation and integrate this interpretation in their responses. However, the categorical approach employed here does not address these questions fully.

      I appreciate the amendment in discussing the idea of arousal being the key determinant for the increased emission of 44kHz, and the addition of other factors. Some of the items in this list, such as annoyance/anger and disgust/boredom, don't really seem to fit the data. I'm not sure I find the idea that rats become annoyed or disgusted during fear conditioning to be a particularly compelling argument. As such the list appears to be a collection of emotion-related words, with unclear potential associations with the 44kHz calls.

      Later in the Discussion the authors argue that the 44kHz aversive calls signal an increased intensity of a negative valence emotional state. It is not clear how the presented arguments actually support this. For example, what does the elongation of fear conditioning to 10 trials have to do with increased negative emotionality? Is there data supporting this relationship between duration and emotion, outside anthropomorphism? Each of the 6 arguments presented seems quite distant from being able to support this conclusion.

      In sum, rather than describing the 44kHz long calls as a new call type, it may be more accurate to say that sometimes aversive calls can occur at frequencies above 22 kHz. Individual and situational variability in vocalization parameters seems to be expected, much more so than all members of a species strictly adhering to extremely non-variable behavioral outputs.

    1. Reviewer #1 (Public Review):

      Klupt, Fam, Zhang, Hang and colleagues present a novel study examining the function of sagA in E. faecium, including impacts on growth, peptidoglycan cleavage, cell separation, antibiotic sensitivity, NOD2 activation and modulation of cancer immunotherapy. This manuscript represents a substantial advance over their prior work, where they found that sagA-expressing strains (including naturally-expressing strains and versions of non-expressing strains forced to overexpress sagA) were superior in activating NOD2 and improving cancer immunotherapy. Prior to the current study, an examination of sagA mutant E. faecium was not possible and sagA was thought to be an essential gene.

      The study is overall very carefully performed with appropriate controls and experimental checks, including confirmation of similar densities of ΔsagA throughout. Results are overall interpreted cautiously and appropriately.

    1. Reviewer #1 (Public Review):

      This study presents a genetic and molecular analysis of the role of the cytoplasmic ub ligase Deltex (Dx) in regulating the Drosophila Wingless (Wg) pathway in the larval wing disc. The study exploits the strength of the fly system to uncover a series of genetic interactions between dx and wg and fz allele that support a role for Dx upstream of the Wg pathway. These are paired with molecular evidence that dx lof alleles lower Wg protein in 'source' cells at the DV margin, and that Dx associates with Arm and lowers its levels in a manner that can be rescued by pharmacological inhibition of the proteasome. The genetic data are solid but subject to alternative explanations based on the authors' model that Dx both inhibits and activates the pathway. The molecular data are suggestive, but need follow up tests of how Dx affects Wg spread, and how Dx mediates poly-ub of Arm, and the degree to which Dx shares this role with the validated Arm E3 ligase Slmb. Overall, the story is very interesting but has mechanistic gaps that lead to speculative models that require more rigorous study to clarify mechanism. Dx sharing a role in Arm degradation with the Slmb/APC destruction would have important implications for the many Wg/Wnt regulated processes in development and disease.

    2. Reviewer #2 (Public Review):

      The manuscript investigates the connections between the ubiquitin ligase protein deltex and the wingless pathway. Two different connections are proposed, one is function of deltex to modulate the gradient of wingless diffusion and hence modulate the spatial patter of wingless pathway targets, which regulate at different thresholds of wingless concentration. The second is a direct interaction between deltex and armadillo, a downstream component of the wingless pathway. Deltex is proposed to cause the degradation of armadillo resulting in suppression of wingless pathway activity. The results and conclusions of the manuscript are interesting and for the most part novel, although previously published work linking Notch and deltex to wingless signal regulation, and endocytosis to wingless gradient formation could be more extensively discussed. However neither of the two parts to the manuscript seem, in themselves sufficiently complete, and combining both parts together therefore seems to lack focus.

      The main issue with the manuscript is that much of the conclusions are inferred from genetic interactions in vivo between loss of function mutants and overexpression. While providing useful in vivo physiological context, this type of approach struggles to be able to make definitive conclusions on whether an interaction is due to direct or indirect mechanism, as the authors themselves conclude at the end of section 2.3. The problem is confounded by the fact that there is already documented much cross talk between the Notch signaling pathway and wingless at the transcriptional level, and deltex is already a Notch modulator that can alter wingless mRNA expression (See Hori et al 2004). Deltex in addition to promoting a ligand-independent Notch signal can also induce expression of Notch ligand, allowing further non-autonomous Notch activation and subsequent cell autonomous cis-inhibition of the initial deltex-induced signal. The dynamics and outcomes of the Notch signal response to deltex in vivo is therefore already very complicated to interpret before even considering to unravel indirect (via Notch) and direct interactions with wingless, although the two possibilities are not mutually exclusive. Whilst the revised manuscript does not completely overcome these limitations, further data and quantification have improved the support for the conclusions and there is a wider discussion of the relevant literature. The conclusions are interesting and add significantly to our understanding of the intersections between Wingless, Notch and trafficking regulators in an in vivo context.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an interesting study that utilizes a novel epigenome profiling technology (single molecule imaging) in order to demonstrate its utility as a readout of therapeutic response in multiple DIPG cell lines. Two different drugs were evaluated, singly and in combination. Sulfopin, an inhibitor of a component upstream of the MYC pathway, and Vorinostat, an HDAC inhibitor. Both drugs sensitised DIPG cells, but high (>10 micromolar) concentrations were needed to achieve half-maximal effects. The combination seemed to have some efficacy in vivo, but also produced debilitating side-effects that precluded the measurement of any survival benefit.

      Strengths:

      Interesting use of a novel epigenome profiling technology (single molecule imaging).

      Weaknesses:

      The use of this novel imaging technology ultimately makes up only a minor part of the study. The rest of the results, i.e. DIPG sensitivity to HDAC and MYC pathway inhibition, have already been demonstrated by others (Grasso Monje 2015; Pajovic Hawkins 2020, among others). The drugs have some interesting opposing effects at the level of the epigenome, demonstrated through CUT&RUN, but this is not unexpected in any way. The drugs evaluated here also didn't have higher efficacy, or efficacy at especially low concentrations, than inhibitors used in previous reports. The combination therapy attempted here also caused severe side effects in mice (dehydration/deterioration), such that an effect on survival could not be determined. I'm not sure this study advances knowledge of targeted therapy approaches in DIPGs, or if it iterates on previous findings to deliver new, or more efficient, mechanistic or therapeutic/pharmaclogic insights. It is a translational report evaluating two drugs singly and in combination, finding that although they sensitise cells in vitro, efficacy in vivo is limited at best, as this particular combination cannot progress to human translation.

    2. Reviewer #2 (Public Review):

      Summary:

      The study by Algranati et al. introduces an exciting and promising therapeutic approach for the treatment of H3-K27M pediatric gliomas, a particularly aggressive brain cancer predominantly affecting children. By exploring the dual targeting of histone deacetylases (HDACs) and MYC activation, the research presents a novel strategy that significantly reduces cell viability and tumor growth in patient-derived glioma cells and xenograft mouse models. This approach, supported by transcriptomic and epigenomic profiling, unveils the potential of combining Sulfopin and Vorinostat to downregulate oncogenic pathways, including the mTOR signaling pathway. While the study offers valuable insights, it would benefit from additional clarification on several points, such as the rationale behind the dosing decisions for the compounds tested, the specific contributions of MYC amplification and H3K27me3 alterations to the observed therapeutic effects, and the details of the treatment protocols employed in both in-vitro and in-vivo experiments.

      Clarification is needed on how doses were selected for the compounds in Figure S2A and throughout the study. Understanding the basis for these choices is crucial for interpreting the results and their potential clinical relevance. IC50s are calculated for specific patient derived lines, but it is not clear how these are used for selecting the dose.

      The introduction mentions MYC amplification in high-grade gliomas. It would be beneficial if the authors could delineate whether the models used exhibit varying degrees of MYC amplification and how this factor, alongside differences in H3K27me3, contributes to the observed effects of the treatment.

      In Figure 2A, the authors outline an optimal treatment timing for their in vitro models, which appears to be used throughout the figure. It would be helpful to know how this treatment timing was selected and also why Sulfopin is dosed first (and twice) before the vorinostat. Was this optimized?

      It should be clarified whether the dosing timeline for the combination drug experiments in Figure 3 aligns with that of Figure 2. This information is also important for interpreting the epigenetic and transcriptional profiling and the timing should be discussed if they are administered sequentially (also shown in Figure 2A).I have the same question for the mouse experiments in Figure 4.

      The authors mention that the mice all had severe dehydration and deterioration after 18 days. It would be helpful to know if there were differences in the side effects for different treatment groups? I would expect the combination to be the most severe. This is important in considering the combination treatment.

      Minor Points:

      (1) For Figure 1F, reorganizing the bars to directly compare the K27M and KO cell lines at each dose would improve readability of this figure.

      (2) In Figure 4D, it would be helpful to know how many cells were included (or a minimum included) to calculate the percentages.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors use in vitro grown cells and mouse xenografts to show that a combination of drugs, Sulfopin and Vorinostat, can impact the growth of cells derived from Diffuse midline gliomas, in particular the ones carrying the H3 K27M-mutations (clinically classified as DMG, H3 K27M-mutant). The authors use gene expression studies, and chromatin profiling to attempt to better understand how these drugs exert an effect on genome regulation. Their main findings are that the drugs reduce cell growth in vitro and in mouse xenografts of patient tumours, that DMG, H3 K27M-mutant tumours are particularly sensitive, identify potential markers of gene expression underlying this sensitivity, and broadly characterize the correlations between chromatin modification changes and gene expression upon treatment, identifying putative pathways that may be affected and underlie the sensitive (and thus how the drugs may affect the tumour cell biology).

      Strengths:

      It is a neat, mostly to-the-point work without exploring too many options and possibilities. The authors do a good job not overinterpreting data and speculating too much about the mechanisms, which is a very good thing since the causes and consequences of perturbing such broad epigenetic landscapes of chromatin may be very hard to disentangle. Instead, the authors go straight after testing the performance of the drugs, identifying potential markers and characterizing consequences.

      Weaknesses:

      If anything, the experiments done on Figure 3 could benefit from an additional replicate.

    1. Reviewer #1 (Public Review):

      The study provides strong evidence that some genes are conditionally essential in urine because of iron limitation.

      The authors raise the intriguing possibility that some mutants can "cheat" by benefitting from the surrounding cells that are phenotypically wild-type. The authors make it clear that the proposed cheating mechanism is speculation, but there is a missed opportunity to test this hypothesis. I did not understand the authors' rationale for not doing this experiment.

      In cases where there are disparities between studies, e.g., for genes inferred to be essential for serum resistance, it would be informative to test individual deletions for genes described as essential in only one study. The authors argue this is beyond the scope of the study. Their conclusions of the study are not impacted by the absence of these experiments, but readers will be left wondering which lists of conditionally essential genes are correct, or whether there are strain-dependent or condition-dependent contexts that influence conditional essentiality.

    2. Reviewer #3 (Public Review):

      In this study Gray and coworkers use a transposon mutant library in order to define: (i) essential genes for K. pneumoniae growth in LB medium, (ii) genes required for growth in urine, (iii) genes required for resistance to serum and complement mediated killing. Although there are previous studies, using a similar strategy, to describe essential genes for K. pneumoniae growth and genes required for serum resistance, this is the first work to perform such a study in urine. This is important because these types of pathogens can cause urinary tract infections. Moreover, the authors performed the work using a highly saturated library of mutants, which makes the results more robust, and used a clinically relevant strain from a pathotype for which similar studies have not been performed yet. Besides applying the transposon mutant library coupled with high-throughput sequencing, the authors validate some of the most relevant genes required for each condition using targeted mutagenesis. This is an important step to confirm that the results obtained from the library are reliable. Although this was done for only a small subset of the most significant genes. In addition, in vitro experiments involving complementation of urine with iron provide additional support to the results obtained with the mutants suggesting the importance of genes required for iron acquisition in a limiting-iron environment such as urine. Overall, the study is well-designed and written, and the methodology and analysis performed are adequate. The study would have benefited from in vivo experiments, including a mouse model of bacterial sepsis or urinary tract infections which could have demonstrated the role of some of the identified genes in the infection process. Nevertheless, the results obtained are informative for the scientific community since they pinpoint genes potentially more relevant in infections caused by K. pneumoniae. The identified genes could represent future targets for developing new therapies against a type of pathogen that is acquiring resistance to all available antibiotics. Although, as mentioned above, these potential targets should be confirmed using in vivo models.

      One potential weakness of the work is that the TnSeq analysis only included two replicates per condition, thus it is possible that some of the differences detected may not be reproducible in future studies, first of all those that are less significant. In this sense, hundreds of genes were detected to be theoretically relevant for bacterial resistance to complement in serum. It is possible that some of these genes represent false positives. Thus, confirmation of the relevance of these genes in resistance to complement should be performed in future studies.

    1. Reviewer #2 (Public Review):

      This manuscript illustrates the power of "combined" research, incorporating a range of tools, both old and new to answer a question. This thorough approach identifies a novel target in a well-established signalling pathway and characterises a new player in Drosophila CNS development.

      Largely, the experiments are carried out with precision, meeting the aims of the project, and setting new targets for future research in the field. It was particularly refreshing to see the use of multi-omics data integration and Targeted DamID (TaDa) findings to triage scRNA-seq data. Some of the TaDa methodology was unorthodox, however, this does not affect the main finding of the study. The authors (in the revised manuscript) have appropriately justified their TaDa approaches and mentioned the caveats in the main text.

      Their discovery of Spar as a neuropeptide precursor downstream of Alk is novel, as well as its ability to regulate activity and circadian clock function in the fly. Spar was just one of the downstream factors identified from this study, therefore, the potential impact goes beyond this one Alk downstream effector.

    2. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith. Yet, some small concerns remain around the behavioural analysis.

      In Fig. 8H and H' average sleep/day is ~100. Is this minutes of sleep? 100 min/day is far too low, is it a typo?

      The numbers for sleep bouts are also too low to me e.g. in Fig 9 number of sleep bouts avg around 4.

      In their response to reviewers the authors say these errors were fixed, yet the figures appear not to have been changed. Perhaps the old figures were left in inadvertently?

      The circadian anticipatory activity analyses could also be improved. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). This typically computed as the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition.

      In their response to reviewers, the authors have revised their anticipation analyses by quantifying the mean activity in the 6 hrs preceding light transition. However, in the method of Harrisingh et al., anticipation is the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition. Simply computing the activity in the 6hrs preceding light transition does not give a measure of anticipation, determining the ratio is key.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper explores the contribution of transgenerational effects to phenotypic variation in twenty-five phenotypes and transcript variation in the heart, liver, pituitary, whole embryo, and placenta. The authors use a powerful design, exploiting the use of consomics, and argue that there are no observable changes attributable to the differences in the parental origin of the four chromosomes they examine.

      Strengths:<br /> It's good to see a use for consomics. This is a powerful and useful design to address the problem they are tackling.

      Weaknesses:<br /> The difficulty faced by the authors is that they have interrogated only a small portion of the genome, using bulk RNA sequencing and a set of correlated phenotypes, thus restricting the conclusions they can draw from the absence of significant findings.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Gularte-Merida et al investigate the occurrence of transgenerational effects of non-transmitted parental alleles outside of the well-described effect of "genetic nurture." To achieve this they employed consomic male mice to generate an N2 and N3 population, allowing for the observation of effects due to non-transmitted paternal alleles while controlling for maternal care by using isogenic B6 dams. The authors conduct RNAseq, qPCR validation, and anatomical phenotyping measures to investigate the presence of non-genetic nurture TGE. The author's findings challenge the frequency of non-genetic nurture TGE, a meaningful contribution to the field. Overall, this is an ambitious study with important negative data. The authors are to be commended on this. This greatly strengthens the negative findings within the paper.

      The paper, however, is written extremely technically, with little detail, and is not currently suitable for the lay audience. The authors need to greatly increase the clarity of the writing and data presentation.

      Strengths:

      Elegant experimental design using consomic mouse populations.

      The use of a second replication cohort using the same genetic founders as the first study.

      Weaknesses:

      While much of the explanation of the methods is understandable by geneticists, the paper has implications outside of the genetics field. Overall, I suggest expanding the explanation and language for non-geneticists. This will allow the paper to reach a wider audience.

    3. Reviewer #3 (Public Review):

      Summary:

      Gularte-Mérida and colleagues took advantage of the existence of so-called consomic strains in the mouse, which result from the substitution of one of their chromosomes by that of another strain, to ask through appropriate crosses whether information carried by this substitution chromosome impacts progeny that do not inherit it. With one exception, the authors did not detect any significant effect for any of the four non-transmitted chromosomes tested. Given these results, the authors conclude that such effects, if they exist, must be extremely rare in the mouse.

      Strengths:

      This is a very convincing and impressive study, with effects assessed in almost 2500 mice. The negative results obtained should put to rest once and for all the notion that intergenerational, let alone transgenerational, non-DNA sequence-based inheritance via the male germline could be substantial in the mouse.

      Weaknesses:

      The terminology used (epigenetics, nurture-independent TGE, etc. ) is somewhat confusing and unnecessary.

    1. Joint Public Review:

      This manuscript by Yue et al. aims to understand the molecular mechanisms underlying the better reproductive outcomes of Tibetans at high altitude by characterizing the transcriptome and histology of full-term placenta of Tibetans and compare them to those Han Chinese at high elevations.

      The approach is innovative, and the data collected are valuable for testing hypotheses regarding the contribution of the placenta to better reproductive success of populations that adapted to hypoxia. The authors identified hundreds of differentially expressed genes (DEGs) between Tibetans and Han, including the EPAS1 gene that harbors the strongest signals of genetic adaptation. The authors also found that such differential expression is more prevalent and pronounced in the placentas of male fetuses than those of female fetuses, which is particularly interesting, as it echoes with the more severe reduction in birth weight of male neonates at high elevation observed by the same group of researchers (He et al., 2022).

      This revised manuscript addressed several concerns raised by reviewers in last round. However, we still find the evidence for natural selection on the identified DEGs--as a group--to be very weak, despite more convincing evidence on a few individual genes, such as EPAS1 and EGLN1.

      The authors first examined the overlap between DEGs and genes showing signals of positive selection in Tibetans and evaluated the significance of a larger overlap than expected with a permutation analysis. A minor issue related to this analysis is that the p-value is inflated, as the authors are counting permutation replicates with MORE genes in overlap than observed, yet the more appropriate way is counting replicates with EQUAL or MORE overlapping genes. Using the latter method of p-value calculation, the "sex-combined" and "female-only" DEGs will become non-significantly enriched in genes with evidence of selection, and the signal appears to solely come from male-specific DEGs. A thornier issue with this type of enrichment analysis is whether the condition on placental expression is sufficient, as other genomic or transcriptomic features (e.g., expression level, local sequence divergence level) may also confound the analysis.

      The authors next aimed to detect polygenic signals of adaptation of gene expression by applying the PolyGraph method to eQTLs of genes expressed in the placenta (Racimo et al 2018). This approach is ambitious but problematic, as the method is designed for testing evidence of selection on single polygenic traits. The expression levels of different genes should be considered as "different traits" with differential impacts on downstream phenotypic traits (such as birth weight). As a result, the eQTLs of different genes cannot be naively aggregated in the calculation of the polygenic score, unless the authors have a specific, oversimplified hypothesis that the expression increase of all genes with identified eQTL will improve pregnancy outcome and that they are equally important to downstream phenotypes. In general, PolyGraph method is inapplicable to eQTL data, especially those of different genes (but see Colbran et al 2023 Genetics for an example where the polygenic score is used for testing selection on the expression of individual genes).

      We would recommend removal of these analyses and focus on the discussion of individual genes with more compelling evidence of selection (e.g., EPAS1, EGLN1)

    1. Reviewer #1 (Public Review):

      In the study described in the manuscript, the authors identified Mecp2, a methyl-CpG binding protein, as a key regulator involved in the transcriptional shift during the exit of quiescent cells into the cell cycle. Their data show that Mecp2 levels were remarkably reduced during the priming/initiation stage of partial hepatectomy-induced liver regeneration and that altered Mecp2 expression affected the quiescence exit. Additionally, the authors identified Nedd4 E3 ligase that is required for downregulation of Mecp2 during quiescence exit. This is an interesting study with well-presented data that supports the authors' conclusions regarding the role of Mecp2 in transcription regulation during the G0/G1 transition. However, the significance of the study is limited by a lack of mechanistic insights into the function of Mecp2 in the process. This weakness can be addressed by identifying the signaling pathway(s) that trigger Mecp2 degradation during the quiescence exit.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors reported that miR-199b-5p is elevated in osteoarthritis (OA) patients. They also found that overexpression of miR-199b-5p induced OA-like pathological changes in normal mice and inhibiting miR-199b-5p alleviated symptoms in knee OA mice. They concluded that miR-199b-5p is not only a potential micro target for knee OA, but also provides a potential strategy for future identification of new molecular drugs.

      Strengths:

      The data are generated from both human patients and animal models. The data presented in this revised manuscript is solid and support their conclusions. The questions from reviewers are also properly addressed and the quality of this manuscript has been significantly improved.

      There are no significant weaknesses identified in this revised manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      The Authors identified miR-199b-5p is a potential OA target gene using serum exosomal small RNA-seq from human healthy and OA patients. Their RNA-seq results were further compared with publicly available datasets to validate their finding of miR-199b-5p. In vitro chondrocyte culture with miR-199b-5p mimic/inhibitor and in vivo animal models were used to evaluate the function of miR-199b-5p in OA. The possible genes that were potentially regulated by miR-199b-5p were also predicted (i.e., Fzd6 and Gcnt2) and then validated by using Luciferase assays.

      Strengths:

      (1) Strong in vivo animal models including pain tests.<br /> (2) Validate the binding of miR-199b-5p with Fzd6 and binding of miR-199b-5p with Gcnt2

      The authors have addressed my concerns.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Chen et al. investigate the statistical structure of social interactions among mice living together in the ECO-Hab. They use maximum entropy models (MEM) from statistical physics that include individual preferences and pair-wise interactions among mice to describe their collective behavior. They also use this model to track the evolution of these preferences and interactions across time and in one group of mice injected with TIMP-1, an enzyme regulating synaptic plasticity. The main result is that they can explain group behavior (the probability of being together in one compartment) by a MEM that only includes pair-wise interactions. Moreover, the impact of TIMP-1 is to increase the variance of the couplings J_ij, the preference for the compartment containing food, as well as the dissatisfaction triplet index (DTI).

      Strengths:

      The ECO-Hab is a really nice system to ask questions about the sociability of mice and to tease apart sociability from individual preference. Moreover, combining the ECO-Hab with the use of MEM is a powerful and elegant approach that can help statistically characterize complex interactions between groups of mice -- an important question that requires fine quantitative analysis.

      Weaknesses:

      However, there is a risk in interpreting these models. In my view, several of the comparisons established in the current study would require finer and more in-depth analysis to be able to establish firmer conclusions (see below). Also, the current study, which closely resembles previous work by Shemesh et al., finds a different result but does not provide the same quantitative model comparison included there, nor a conclusive explanation of why their results are different. In total, I felt that some of the results required more solid statistical testing and that some of the conclusions of the paper were not entirely justified. In particular, the results from TIMP-1 require proper interaction tests (group x drug) which I couldn't find. This is particularly important when the control group has a smaller N than the drug groups.

    1. Reviewer #1 (Public review):

      The key discovery of the manuscript is that the authors found that genetically wild type females descended from Khdc3 mutants shows abnormal gene expression relating to hepatic metabolism, which persist over multiple generations and pass through both female and male lineages. They also find dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with Khdc3 mutant ancestry. These data provide solid evidence further support that phenotype can be transmitted to multiple generations without altering DNA sequence, supporting the involvement of epigenetic mechanisms. The authors further performed exploratory studies on the small RNA profiles in the oocytes of Khdc3-null females, and their wild type descendants, suggesting that altered small RNA expression could be a contributor of the observed phenotype transmission, although this has not been functionally validated.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript aimed to investigate the non-genetic impact of KHDC3 mutation on the liver metabolism. To do that they analyzed the female liver transcriptome of genetically wild type mice descended from female ancestors with a mutation in the Khdc3 gene. They found that genetically wild type females descended from Khdc3 mutants have hepatic transcriptional dysregulation which persist over multiple generations in the progenies descended from female ancestors with a mutation in the Khdc3 gene. This transcriptomic deregulation was associated with dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with female mutational ancestry. Furthermore, to determine whether small non-coding RNA could be involved in the maternal non-genetic transmission of the hepatic transcriptomic deregulation, they performed small RNA-seq of oocytes from Khdc3-/- mice and genetically wild type female mice descended from female ancestors with a Khdc3 mutation and claimed that oocytes of wild type female offspring from Khdc3-null females has dysregulation of multiple small RNAs.

      Finally, they claimed that their data demonstrates that ancestral mutation in Khdc3 can produce transgenerational inherited phenotypes.

      However, at this stage and considering the information provided in the paper, I think that these conclusions are too preliminary. Indeed, several controls/experiments need to be added to reach those conclusions.

      Additional context you think would help readers interpret or understand the significance of the work<br /> • Line 25: this first sentence is very strong and needs to be documented in the introduction.<br /> • Line 48: Reference 5 is not appropriate since the paper shows the remodeling of small RNA during post-testicular maturation of mammalian sperm and their sensibility to environment. Please, change it<br /> • Line 51: "implies" is too strong and should be replaced by « suggests »<br /> • Line 67: reference is missing<br /> Database, the accession numbers are lacking.<br /> • References showing the maternal transmission of non-genetically inherited phenotypes in mice via small RNA need to be added<br /> • Line 378: All RNA-Seq and small RNA-Seq data are available in the NCBI GEO

    1. Reviewer #1 (Public Review):

      Summary:

      In their article entitled "Formin-like 1 beta phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse", Javier Ruiz-Navarro and co-workers address the question of the mechanisms regulating the polarization of the microtubule organizing center (MTOC) and of the multivesicular bodies (MVB) at the immunological synapse (IS) in T lymphocytes.

      This work is a follow-up of previous studies published by the same team showing that TCR-stimulated protein kinase C delta(PKCdelta) phosphorylates FMNL1beta, which plays a crucial role in cortical actin reorganization at the IS, and controls MTOC/MVB polarization and thus exosome secretion by T lymphocytes at the IS.

      The authors first compare the amino acid sequences of FMNL2 and of FMNL1beta, to seek similarities in the DID-DAD auto-inhibition sequences and find that the sequence surrounding S1086 in the arginine-rich DAD of FMNL1beta displays high similarity to that around S1072 in FMNL2 which is phosphorylated by PKCdelta. They then interrogate the role of the phosphorylation of S1086 in the arginine-rich DAD of FMNL1betaby introducing S1086A and S1086D mutations that, respectively, cannot be phosphorylated or mimic the phosphorylated form of FMNL1beta, in cells expressing an FMNL1 shRNA.

      Using these tools, they show that:

      - FMNL1beta is phosphorylated by PMA an activator of PKCs.

      - The S1086A mutant of FMNL1beta does not restore the defect in MTOC and MVB polarization at the IS present in FMNL1 deficient T cells, whereas the phosphomimetic mutant does.

      - Although FMNL1betaphosphorylation at S1086 is necessary, it is not sufficient for MTOC polarization, since it does not restore the defect of polarization observed in PKCdelta deficient T cells.

      - FMNL1b translocates to the IS. This neither requires PKC expression nor phosphorylation of S1086.

      - Phosphorylation of FMNL1betaon S1086 regulates actin remodeling at the immune synapse.

      - Phosphorylation of FMNL1betaon S1086 regulates secretion of extracellular vesicles containing CD63 by T lymphocytes.

      Strengths:

      This work shows for the first time the role of the phosphorylation of FMNL1beta on S1086 on the regulation of the IS formation and secretion of extracellular vesicles by T lymphocytes.

      Weaknesses:

      Although of interest, this work has several weaknesses. First, all the experiments are performed in Jurkat T cells that may not recapitulate the regulation of polarization in primary T cells. Moreover, all the experiments analyzing the role of PKCdelta are performed in one clone of wt or PKCdelta KO Jurkat cells. This is problematic since clonal variation has been reported in Jurkat T cells. Moreover, the remodeling of F-actin at the IS lacks careful quantification as well as detailed analysis of the actin structure in mutant cells. Finally, although convincing, the defect in the secretion of vesicles by T cells lacking phosphorylation of FMNL1beta on S1086 is preliminary. It would be interesting to analyze more precisely this defect. The expression of the CD63-GFP in mutants by WB is not completely convincing. Are other markers of extracellular vesicles affected, e.g. CD3 positive?

    2. Reviewer #2 (Public Review):

      Summary:

      The authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization, and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. This is based on:<br /> (1) the documented role of FMNL1 proteins in IS formation;<br /> (2) their ability to regulate F-actin dynamics;<br /> (3) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation;<br /> (4) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified.

      They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance, and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      The data on F-actin clearance in Jurkat T cells knocked down for FMNL1 and expressing wild-type FMNL1 or the non-phosphorylatable or phosphomimetic mutants thereof would need to be further strengthened, as this is a key message of the manuscript. Also, the entire work has been carried out on Jurkat cells. Although this is an excellent model easily amenable to genetic manipulation and biochemical studies, the key finding should be validated on primary T cells.

    1. Reviewer #3 (Public Review):

      In this important work, the authors show compelling evidence that the Rapid Alkalinisation Factor1 (RALF1) peptide acts as an interlink between pectin methyl esterification status and FERONIA receptor-like kinase in mediating extracellular sensing. Moreover, the RALF1-mediated pectin perception is surprisingly independent of LRX-mediated extracellular sensing in roots. The authors also show that the peptide directly binds demethylated pectin and the positively charged amino acids are required for pectin binding as well as for its physiological activity.

      Some present findings are surprising; previously, the FERONIA extracellular domain was shown to bind pectin directly, and the mode of operation in the pollen tube involves the LRX8-RALF4 complex, which seems not the case for RALF1 in the present study. Although some aspects remain controversial, this work is a very valuable addition to the ongoing debate about this elusive complex regulation and signaling.

      The authors drafted the manuscript well, so I do not have a lot of criticism or suggestions. The experiments are well-designed, executed, and presented, and they solidly support the authors' claims.

    2. Reviewer #1 (Public Review):

      Summary:

      Rößling et al., report in this study that the perception of RALF1 by the FER receptor is mediated by the association of RALF1 with deesterified pectin, contributing to the regulation of the cell wall matrix and plasma membrane dynamics. In addition, they report that this mode of action is independent from the previously reported cell wall sensing mechanism mediated by the FER-LRX complex.

      This manuscript reproduces and aligns with the results from a recently published study (Liu et al., Cell) where they also report that RALF1 can interact with deesterified pectin, forming coacervates and promoting the recruitment of LLG-FER at the membrane.

    3. Reviewer #2 (Public Review):

      Summary:

      The study by Rößling et al. addresses the link between the biochemical constitution of the cell wall, in particular the methylesterification state of pectin with signalling induced by the extracellular RALF peptide. The work suggests that only in the presence of demethylesterifies pectin, RALF is able to trigger activation of its receptor FERONIA (FER).

      Remarkably, the application of RALF peptides leads to rather dramatic FER-dependent changes in wall integrity and plasma membrane invaginations not observed before. Interestingly, RALF can be out-titrated from the wall by short pectin fragments. In addition, the study provides further evidence for multiple FER-dependent pathways by showing the presence of LRX proteins is not required for the pectin/RALF mediated signalling.

      Strengths:

      This work provides fundamental insight into a complex emerging pathway, or perhaps several pathways, linking pectin sensing, pectin structure and RALF/FER signalling. The study provides convincing evidence that pectin methylesterase activity is required for RALF sensing, indicating that the physical interaction of RALFs with the cell wall is important for signalling. Beyond that, the study documents very clearly how profoundly RALF signalling can affect cell wall integrity and membrane topology.

      Weaknesses:

      The genetic material used by the authors to strengthen the connection of RALF signalling and PME activity might not be as suitable as an acute inhibition of PME activity.

      The PMEI3ox line generated by Peaucelle et al., 2008 is alcohol-inducible. Was expression of the PMEI induced during the experiments? As ethanol inducible systems can be rather leaky, it would not be surprising if PME activity would be reduced even without induction, but maybe this would warrant testing whether PMEI3 is actually overexpressed and/or whether PME activity is decreased. On a similar note, the PMEI5ox plants do not appear to show the typical phenotype described for this line. I personally don't think these lines are necessary to support the study. Short-term interference with PME activity (such as with EGCG) might be more meaningful than life-long PMEI overexpression, in light of the numerous feedback pathways and their associated potential secondary effects. This might also explain why EGCG leads to an increase in pH, as one would expect from decreased PME activity, while PMEI expression (caveats from above apply) apparently does not (Fig 3A-D).

      At least at first sight, the observation that OGs are able to titrate RALF from pectin binding seems at odds with the idea of cooperative binding with low affinity, leading to high avidity oligomers. Perhaps the can provide a speculative conceptual model of these interactions?

      I could not find a description of the OG treatment/titration experiments, but I think it would be important to understand how these were performed with respect to OG concentration, timing of the application, etc.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors report evidence for a microprotein of AtHB2-miP. The authors came across HB2 in a screen for alternative transcription start sites in Arabidopsis in response to white light or a white light followed by a far red light representative of shade. Out of 337 potential microproteins, authors selected AtHB2. At the beginning of the manuscript, it is investigated that an alternative transcription start site of HB2 gene can be used in response to far red light. The resulting shorter protein form seems to interact with HB2 protein forms, altering the localization of HB2 in transient expression assays. The functionality of HB2-miP overexpression has been addressed in transgenic Arabidopsis lines using a 35S promoter. The responses and phenotypes were compared with either WT or various types of athb2 mutant lines with disrupted HB2 gene. Such mutants and the 35S promoter-driven AtHB2-miP line showed various types of phenotypes versus each other that can be classified as mild or none, e.g. small effects on root growth, iron homeostasis gene expression, and iron contents.

      Strengths:

      The authors performed an interesting screen for alternative transcription start sites which resulted in 337 candidates (Figure 1A). Principally, it can be interesting to find that plants may use alternative start sites for HB2 in response to shading light. The authors provide evidence that alternative transcription start sites of HB2 can be present and used in response to FR. The possibility that potentially resulting small protein may have effects under FR light, causing alteration of root growth and physiology, is an interesting idea.

      Weaknesses:

      In the present manuscript, there are several signs of incomplete analysis.

      (1) The transient expression experiments are not conducted with much detail to demonstrate that indeed HB2 miP is produced and can interact with regular protein. The localization of HB2 was found to be linked with condensates, but perhaps not in the presence of HB2 miP. Clearly, the lack of quantitative and qualitative analysis hampers a clear assessment of this point.

      (2) The authors, unfortunately, did not provide the data of the screen to demonstrate which concrete candidates may have miPs and whether there is enrichment of certain functions. There is no supplemental table accompanying Figure 1A.

      (3) One of the major unclear points that is also not addressed in the discussion is that the function of miR is studied in overexpression plants (35S promoter::miP). The effects are only compared to wild type and various lines of HB2 knockouts or knockdowns, partly with fairly uncharacterized phenotypes. It can now not be clearly determined whether the miP effects are due to a regular function of miP or due to overexpression of it. A needed control would be a 35S::AtHB2 line, or better at least two different lines (only a single miP overexpression line investigated). Since it has not been assessed by deletion mutant analysis to determine which protein parts of miP are involved in the protein regulation, it cannot be ruled out that the observed miP effects are not naturally occurring but the result of ectopic expression of a protein. Clearly, the effect of miP would be ideally studied in an environment where the levels can be controlled and the resulting phenotypes and protein levels quantified.

      (4) It is not shown that the microprotein is generated in Arabidopsis in response to shade, e.g. through Western or fluorescence protein detection. The main idea that authors want to claim, namely that miP binds with regular protein and thereby controls its localization or activity has not been addressed in Arabidopsis. There are no localization experiments of HB2 protein data in the presence of miP in Arabidopsis.

      (5) The plants with altered HB2 forms seem to grow well and the recorded phenotypes are rather minor. Photos are not shown. At some point, the authors discuss that there could be redundancy or that HB miP might interact with other HB proteins. However, such protein interactions have not been experimentally investigated.

    2. Reviewer #2 (Public Review):

      The first portion of the manuscript centered on identifying and confirming the ATHB2 microprotein (ATHB2miP), which constitutes the core message of this study. Overall, I find no issue with the selection criteria employed for identifying alternative microprotein mRNA transcripts. However, I do have some queries that I hope the authors can address for clarity.

      (1) Upon reviewing the supplemental dataset where the authors listed the 377 unique novel miPs, along with those specifically in WL or shade treatments, I sought to comprehend the rationale behind focusing on ATHB2. Have the authors examined the shade response of all 377 potential microprotein candidates? Readers may be intrigued to learn how many of these candidates exhibit induction or repression under shade conditions, and whether such changes correlate positively or negatively with alterations in the full-length TSSs in response to shade. Essentially, I aim to discern the prevalence of microprotein production during shade responses and any shared characteristics among these microprotein transcripts. This inquiry also aims to uncover the existence of a common mechanism regulating microprotein transcription.

      (2) To confirm that ATHB2miP stems from an independent transcription event, the authors sequenced full-length cDNAs using PacBio isoseq. However, I find the information regarding isoseq missing from the manuscript. My assumption is that the full-length cDNAs were reverse transcribed from mRNAs isolated from whole seedlings, where mature mRNAs in the cytoplasm predominate, making it challenging to evaluate whether a specific mRNA undergoes post-transcriptional processing. One approach to confirming ATHB2miP as a product of independent transcription involves examining nascent mRNA produced in the nucleus. The authors may need to isolate nascent mRNAs associated with RNA Polymerase II in the nucleus from seedlings treated with shade for 45 min, and then perform reverse transcription and PacBio isoseq.

      (3) The authors noted the identification of two potential start codons, TTG and CTG, in the alternative TSS of ATHB2 using TISpredictor. Yet, it's imperative to identify the actual translation initiation site and the full-length sequence of ATHB2miP. I suggest the authors fuse an epitope tag (e.g., 3xFLAG) to the C-terminus of ATHB2 (utilizing the genomic sequence of ATHB2) and generate transgenic lines to be treated with shade to induce ATHB2miP-3xFLAG production. Affinity purification (anti-FLAG beads) and mass spectrometry can then identify the actual start site of ATHB2miP. This step is crucial, as the current ATHB2miP used may not be the exact sequence, and any observed phenotype could be artifacts arising from these lines.

      (4) My confusion arose when analyzing the results in Figures 1E - G. The authors didn't specify whether these plants were subjected to shade treatment. What are the sequences within the second intron and third exon excluded from pATHB2control::GUS that promote transcription and translation? Have the authors examined the sequence features? This information is pivotal and related to the above question #1 because it may tell us whether the sequence feature is shared by other miP candidates.

      The latter part of the manuscript focused on the functional characterization of ATHB2miP. The approaches adopted by the authors resemble those used in studying antimorphic (dominant negative) alleles. However, I have several concerns regarding the approaches and conclusions.

      (5) Firstly, as mentioned in question #3, the authors did not map the actual translation initiation site of ATHB2miP. Therefore, all constructs involving ATHB2miP, such as eGFP-ATHB2miP, BD-ATHB2miP, and mCherry-ATHB2miP in Figure 2, and 35S::miP in Figures 3-5, may contain extra amino acids in the N-terminus, given that epitope tags were all added to the N terminus. These additional amino acids could potentially impact the behavior of ATHB2miP and lead to artifacts. Identifying the translation initiation site in ATHB2miP would facilitate the development of tools to disrupt ATHB2miP expression without affecting full-length ATHB2 expression. For instance, if the "CTG" before the leucine zipper domain is confirmed as the translation initiation site, mutating it to another Leu codon (e.g., TTA) could generate transgenic lines using the genomic sequence of ATHB2, including this mutation, to evaluate the impact of losing ATHB2miP on shade responses.

      (6) Another concern pertains to the 35S::miP line utilized in Figures 3-5. The authors only presented results from one 35S::miP line, raising the possibility of T-DNA insertion disrupting an endogenous gene in the transgenic plant genome. It is essential to clarify how many individual T1 plants were generated and how many of them showed the same phenotype as the line used in the manuscript. Additionally, the use of the constitutive CaMV35S promoter could generate artifacts akin to neomorphic mutations. For example, the authors identified Cluster 1 genes that were only induced in 35S::miP, but not in t-athb2 or WT plants (Figure 3B); moreover, they found an overrepresentation of genes involved in root development in this cluster. This observation correlated well with the root phenotype of 35S::miP under the proximity shade (Figure 4D), in which the short-root phenotype was only observed in lines expressing 35S::miP. These data could be artifacts due to the constitutive expression of ATHB2miP in roots but didn't necessarily reflect the natural function of ATHB2miP.

      (7) Furthermore, I seek clarification regarding the rationale behind employing different shade conditions, including deep shade, canopy shade, and proximity shade, and the significance of treating plants with these conditions. The results were challenging to interpret, and I have reservations about some statements made. The authors claimed that ATHB2 acts as a growth repressor in deep shade but a growth promoter in the canopy and proximity shade (Lines 366-368). However, it appears that regardless of the shade conditions, most mutant and transgenic lines were not significantly different from WT (Figure 4C). Additionally, the definition of proximity shade in this manuscript (R:FR = 0.06) differs from that in Roig-Villanova & Martinez-Garcia (Front. Plant Sci., 2016; R:FR, 0.5-0.3). Clarity on this disparity would be appreciated.

      (8) In Figure 5, no statistical analyses were presented in Figure 5C. It remains unclear whether the differences observed are statistically significant. Moreover, the values appear quite similar among all three genotypes. Even if statistically significant, do these minor differences in Fe concentrations significantly impact plant physiology? Additionally, some statements related to Figure 5 do not align with the data presented. For instance, claims about longer hypocotyls in t-athb2, athb2∆, and atbh2∆LZ mutants compared to wild type under shade conditions on high iron media (lines 453-455) were not supported by the data in Figure 5D. Similarly, statements about the differences between mutants (lines 458-460) were not substantiated by the data.

    3. Reviewer #3 (Public Review):

      Summary and Strengths:

      In this interesting manuscript, the authors identify a large number of alternative transcription start sites (TSS) and focus their functional analysis on an alternative TSS that is expected to produce a micro-protein (miP) encoding the C-terminus of ATHB2 (ATHB2miP). ATHB2miP is expected to comprise the leucine zipper part of ATHB2 and hence interact with the full-length protein through this dimerization motif. Such interactions are shown using yeast two-hybrid and FRET-FLIM assays. ATHB2 is a well-known shade-induced gene that has been implicated in shade-regulated growth responses. The authors then test the potential role for ATHB2miP genetically by comparing several athb2 loss-of-function (LOF) alleles: one does not express either full-length ATHB2 or the short ATHB2miP (t-ATHB2), two CRISPR alleles give rise to frameshift mutations in the full-length transcript but still express a potentially functional short ATHB2miP (athb2deltaLZ and athb2delta). The authors also use plants that over and ectopically express ATHB2miP (35S:miP). Overall, the results are consistent with the hypothesis that ATHB2miP inhibits the function of ATHB2, which constitutes a novel negative feedback loop. Potentially ATHB2miP may also inhibit the activity of other related HD ZIP proteins (based on 35S:miP). The effects of these genetic alterations on shade-regulated hypocotyl growth are relatively modest. Effects on root growth are also investigated and in one intriguing case, the negative feedback model does not appear to explain the data (Figure 4D, effect on lateral roots, because for this phenotype 35S:miP is very different from the lof alleles). The authors also identify a potentially interesting link between shade-regulated hypocotyl growth and iron uptake. A number of text changes and corrections to the figures would be important for clarity. They primarily concern three issues: names of the alleles, names of the studied shade conditions, and statements about significant differences between genotypes. Also, it would be interesting to know whether the effects of ATHB2 on iron uptake are due to local effects of ATHB2. Is ATHB2 expressed in roots?

      Weaknesses:

      (1) The naming of the different shade conditions is difficult to follow and not consistent with the way most authors in the field call such conditions. Deep shade is ok (low PAR and low R/FR, WL, PAR 13microE, R/FR 0.13). This condition is clearly defined for experiments in Figure 4. However, data in Figure 1 also use Deep shade (line 174) but PAR is not defined there. I suggest that all light conditions are clearly defined in the figure legends and in the M&M (not the case in this ms). Regarding Canopy shade (WL, PAR 45microE, R/FR 0.15) and proximity shade (WL, PAR 45microE, R/FR 0.06), see lines 355-357, this nomenclature is unclear. First proximity shade has a higher R/FR ratio than canopy shade. Second for canopy shade (compared to the WL control) PAR should decrease which is not what is done here. What is called proximity shade and canopy shade are 2 WL conditions with different R/FR ratios, which are compared to WL controls with the same PAR. It would make more sense to call them proximity shade and indicate the different R/FR ratios. Finally, extensive literature from many plant species and numerous labs has shown that hypocotyl elongation increases with R/FR decreasing. In the data shown in Figure 4, it is the opposite. Hypocotyls in Canopy shade (WL, PAR 45microE, R/FR 0.15) are longer than those in proximity shade (WL, PAR 45microE, R/FR 0.06), while with these R/FR ratios the opposite is expected. Could this be a mistake in the text? Please check.

      (2) In several instances (in particular regarding data from Figures 4 and 5), the authors write that 2 genotypes are significantly different while the statistical analysis of the data does not support such statements. For example lines 392-395, the authors write that in WL the t-DNA mutant, both CRISPR mutants and 35S:miP lines all had significantly lower number of lateral roots than the WT. This is true for the t-DNA mutant (group bc, while the WT is in group a), however, all other genotypes are in group ab, hence not significantly different from the WT. Please carefully check all such statements about significant differences.

      (3) The naming of the CRISPR mutants is problematic. In particular athb2delta, such a name suggests that the gene is deleted (also suggested by Figure 4A), which is not the case in this CRISPR allele leading to a frameshift early in the coding sequence. This is particularly problematic because in this allele ATHB2miP is still expressed, while based on such a name one would expect that in this mutant both the full length and the miP are lost. Both CRISPR alleles lead to a frameshift and this should be clarified in Figure 4A and in the text.

      (4) Overall hypocotyl growth phenotypes of athb2 lof mutants and 35S:miP are similar and consistent with a model according to which ATHB2miP inhibits the full-length protein. However, this is not the case for the root phenotype described in 4D. It would be interesting to discuss this.

      (5) The authors propose a role for ATHB2 in the root, in particular linked to iron uptake. Is this due to a local effect of ATHB2 in the roots? Is ATHB2 expressed in roots? It would be very informative if the authors would show such data, e.g. using the reporter lines used in Figure 1. Are both the FL and the miP expressed in roots?

      (6) From the description regarding 5'PEAT.seq data presented in Figure 1 (see lines 174-177) it is not clear in which light conditions the seedlings were grown. It appears that samples were collected in 3 conditions. WL and after 45 and 90 minutes of low R/FR treatment. However, then the data is discussed collectively. Does the 12398 TSS correspond to what was found in all three conditions together? Are the authors showing shade-regulation of TSS? This is clearly the case for ATHB2miP. This needs to be clarified.

      (7) The way gene expression of low F/FR effects is done might conflate circadian effects and low R/FR effects because the samples from different light conditions are not collected at the same ZT. This is how I understood the text. If I'm wrong please clarify the text. If I am right, this potential problem should be mentioned in the text.

      (8) Could the authors envisage a way to genetically test the role of ATHB2miP by using an allele that makes the full length but not the miP? Currently, the authors use lof alleles that either make none of the transcripts (t-DNA) or potentially only the miP (CRISPR alleles). Overall, these alleles do not appear to differ in their phenotypes, suggesting that most of the effect of ATHB2miP is through ATHB2 FL. Having an allele only producing the FL would be nice (but technically I'm not sure how one could do that).

    1. Reviewer #1 (Public Review):

      Summary:

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon.

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.

      Strengths:

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.

      Weaknesses:

      Suggestions for refinement:

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1.

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing.

    2. Reviewer #2 (Public Review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Thronlow Lamson et al., the authors develop a "beads-on-a-string" or BOAS strategy to link diverse hemagglutinin head domains, to elicit broadly protective antibody responses. The authors are able to generate varying formulations and lengths of the BOAS and immunization of mice shows induction of antibodies against a broad range of influenza subtypes. However, several major concerns are raised, including the stability of the BOAS, that only 3 mice were used for most immunization experiments, and that important controls and analyses related to how the BOAS alone, and not the inclusion of diverse heads, impacts humoral immunity.

      Strengths:

      Vaccine strategy is new and exciting.

      Analyses were performed to support conclusions and improve paper quality.

      Weaknesses:

      Controls for how different hemagglutinin heads impact immunity versus the multivalency of the BOAS.

      Only 3 mice were used for most experiments.

      There were limited details on size exclusion data.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors describe a "beads-on-a-string" (BOAS) immunogen, where they link, using a non-flexible glycine linker, up to eight distinct hemagglutinin (HA) head domains from circulating and non-circulating influenzas and assess their immunogenicity. They also display some of their immunogens on ferritin NP and compare the immunogenicity. They conclude that this new platform can be useful to elicit robust immune responses to multiple influenza subtypes using one immunogen and that it can also be used for other viral proteins.

      Strengths:

      The paper is clearly written. While the use of flexible linkers has been used many times, this particular approach (linking different HA subtypes in the same construct resembling adding beads on a string, as the authors describe their display platform) is novel and could be of interest.

      Weaknesses:

      The authors did not compare to individuals HA ionized as cocktails and did not compare to other mosaic NP published earlier. It is thus difficult to assess how their BOAS compare.

      Other weaknesses include the rationale as to why these subtypes were chosen and also an explanation of why there are different sizes of the HA1 construct (apart from expression). Have the authors tried other lengths? Have they expressed all of them as FL HA1?

    3. Reviewer #3 (Public Review):

      This work describes the tandem linkage of influenza hemagglutinin (HA) receptor binding domains of diverse subtypes to create 'beads on a string' (BOAS) immunogens. They show that these immunogens elicit ELISA binding titers against full-length HA trimers in mice, as well as varying degrees of vaccine mismatched responses and neutralization titers. They also compare these to BOAS conjugated on ferritin nanoparticles and find that this did not largely improve immune responses. This work offers a new type of vaccine platform for influenza vaccines, and this could be useful for further studies on the effects of conformation and immunodominance on the resulting immune response. 

      Overall, the central claims of immunogenicity in a murine model of the BOAS immunogens described here are supported by the data. 

      Strengths included the adaptability of the approach to include several, diverse subtypes of HAs. The determination of the optimal composition of strains in the 5-BOAS that overall yielded the best immune responses was an interesting finding and one that could also be adapted to other vaccine platforms. Lastly, as the authors discuss, the ease of translation to an mRNA vaccine is indeed a strength of this platform. 

      One interesting and counter-intuitive result is the high levels of neutralization titers seen in vaccine-mismatched, group 2 H7 in the 5-BOAS group that differs from the 4-BOAS with the addition of a group 1 H5 RBD. At the same time, no H5 neutralization titers were observed for any of the BOAS immunogens, yet they were seen for the BOAS-NP. Uncovering where these immune responses are being directed and why these discrepancies are being observed would constitute informative future work. 

      There are a few caveats in the data that should be noted: 

      (1) 20 ug is a pretty high dose for a mouse and the majority of the serology presented is after 3 doses at 20 ug. By comparison, 0.5-5 ug is a more typical range (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380945/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980174/). Also, the authors state that 20 ug per immunogen was used, including for the BOAS-NP group, which would mean that the BOAS-NP group was given a lower gram dose of HA RBD relative to the BOAS groups. 

      (2) Serum was pooled from all animals per group for neutralization assays, instead of testing individual animals. This could mean that a single animal with higher immune responses than the rest in the group could dominate the signal and potentially skew the interpretation of this data. 

      (3) In Figure S2, it looks like an apparent increase in MW by changing the order of strains here, which may be due to differences in glycosylation. Further analysis would be needed to determine if there are discrepancies in glycosylation amongst the BOAS immunogens and how those differ from native HAs.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors showed that autophagy-related genes are involved in plant immunity by regulating the protein level of the salicylic acid receptor, NPR1.

      Strengths:

      The experiments are carefully designed and the data is convincing. The authors did a good job of understanding the relationship between ATG6 and NRP1.

      Weaknesses:<br /> - The authors can do a few additional experiments to test the role of ATG6 in plant immunity.<br /> I recommend the authors to test the interaction between ATGs and other NPR1 homologs (such as NPR2).

      -The concentration of SA used in the experiment (0.5-1 mM) seems pretty high. Does a lower concentration of SA induce ATG6 accumulation in the nucleus?

      -Does the silencing of ATG6 affect the cell death (or HR) triggered by AvrRPS4?

      -SA and NPR1 are also required for immunity and are activated by other NLRs (such as RPS2 and RPM1). Is ATG6 also involved in immunity activated by these NLRs?

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Zhang et al. explores the effect of autophagy regulator ATG6 on NPR1-mediated immunity. The authors propose that ATG6 directly interacts with NPR1 in the nucleus to increase its stability and promote NPR1-dependent immune gene expression and pathogen resistance. This novel role of ATG6 is proposed to be independent of its role in autophagy in the cytoplasm. The authors demonstrate through biochemical analysis that ATG6 interacts with NPR1 in yeast and very weakly in vitro. They further demonstrate using overexpression transgenic plants that in the presence of ATG6-mcherry the stability of NPR1-GFP and its nuclear pool is increased.

      However, the overall conclusions of the study are not well supported experimentally. The significance of the findings is low because of their mostly correlational nature, and lack of consistency with earlier reports on the same protein.

      Based on the integrity and quality of the data as well as the depth of analysis, it is not yet clear if ATG6 is a specific regulator of NPR1 or if it is affecting NPR1's stability indirectly, through inducing an elevation of SA levels in plants. As such, the current study demonstrates a correlation between overexpression of ATG6, SA accumulation, and NPR1 stability, however, whether and how these components work together is not yet demonstrated.

      Based on the provided biochemical data, it is not yet clear if the ATG6 functions specifically through NPR1 or through its paralogs NPR3 and NPR4, which are negative regulators of immunity. It is quite possible that interaction with NPR1 (or any NPR) is not the major regulatory step in the activity of ATG6 in plant immunity. The effect of ATG6 on NPR1 could well be indirect, through a change in the SA level and redox environment of the cell during the immune response. Both SA level and redox state of the cell were reported to induce accumulation of NPR1 in the nucleus and increase in stability.

      Another major issue is the poor quality of the subcellular analyses. In contradiction to previous studies, ATG6 in this study is not localized to autophagosome puncta, which suggests that the soluble localization pattern presented here does not reflect the true localization of ATG6. Even if the authors propose a novel, non-canonical nuclear localization for ATG6, they still should have detected the canonical autophagy-like localization of this protein.

    1. Reviewer #1 (Public Review):

      In this study, the authors reported that disruption of the X-linked ciliary protein OFD in the cranial neural crest-derived cells (CNCCs) leads to a migration defect in the CNCCs and that aberrant CNCCs abnormally differentiate into osteoblasts due to a lack of Hh signal. Furthermore, CNCC defects lead to the failure of mesoderm-derived cells to differentiate into myoblasts and instead result in abnormal differentiation of mesoderm-derived cells into adipocytes. The Ofd cko mouse model has a very striking phenotype and nicely mimics the phenotype of human patients, making it a very valuable model to understand human disease.

    2. Reviewer #2 (Public Review):

      In this study, the authors report that both mice and human patients carrying function-disrupting mutations in the OFD1 gene exhibited ectopic brown adipose tissue formation in the malformed tongue. The OFD1 gene is located on the X-chromosome and encodes a protein product required for the formation and function of the primary cilium, which is required for cells to properly receive and activate several signaling pathways, particularly the hedgehog signaling pathway. Loss of OFD1 function causes prenatal lethality of male fetuses and mosaic disruption of tissues in females due to random inactivation of the X-chromosome carrying either the mutant or wildtype allele. Using cell type-specific gene inactivation and genetic lineage labeling, the manuscript shows that the ectopic brown adipose tissue in the mutant tongue was not derived from cranial neural crest cells (CNCCs). Additional genetic and embryological studies led to the conclusion that loss of Ofd1 function in the CNCC cells in the embryonic hypoglossal cord, via which the tongue myoblast precursor cells migrate from anterior somites to the tongue primordia, caused disruption of cell-cell interactions between the CNCCs and migrating muscle precursor cells, resulting in altered differentiation of those myoblast precursor cells into brown adipocytes. The authors provided data that disruption of Smo in a subset of CNCCs also resulted in ectopic adipose tissue formation in the tongue, indicating that this phenotype in the Ofd1 mutant mice was likely caused by disruption of hedgehog signaling in CNCCs. However, no experimental evidence is provided to support a major conclusion of the manuscript regarding altered differentiation of the tongue myoblast precursor cells into brown adipocytes in the Ofd1 mutant mice. Since it is well established that hedgehog signaling in the CNCCs is required for them to direct tongue myoblast cell migration as well as for tongue muscle differentiation/organization after the myoblasts arrived in the tongue primordia, the finding of tongue muscle defects in the Ofd1 mutant mice is not surprising. However, if proven true that disruption of Ofd1 function in CNCCs caused tongue myoblast precursor cells to alter their fate and differentiate into brown adipocytes, it would be an interesting new finding. Further identification of the signals produced by the Ofd1 mutant CNCCs for directing the cell fate switch will be a highly significant new advance in understanding the cellular and molecular mechanisms regulating tongue morphogenesis.

    3. Reviewer #3 (Public Review):

      The authors observed phenotypes of ciliopathy model mice and they seem to coincide with those in human patients. They used mutants in which cilial function genes are deleted in cranial neural crest cells, and found the mutants exhibit abnormal cell differentiation in both neural crest- and mesoderm-lineage cells. The finding clearly shows the importance of tissue/cell interaction. The authors mainly observed the mouse in which Ofd1 gene that is coded on the X chromosome is deleted, therefore, Ofd1fl/WT;Wnt1Cre(HET) mice show that about one-fourth of neural crest cells can exhibit Ofd1 function whereas Ofd1fl;Wnt1Cre (HM) shows null Ofd1 function and show severer phenotypes than HET.

      For ectopic brown adipose tissue in the tongue is derived from mesoderm and the authors tried to show that the hypoglossal cord failed to obtain myogenic lineage after entering branchial arches in HET and HM due to lack of communication with neural crest cells. For ectopic bone formation, they found that it is due to the lack of Hedgehog signaling in neural crest cells, which was consistent with the reports in the Smofl/fl;Wnt1-Cre (Xu et al., 2019) and Ift88fl/fl;Wnt1Cre (Kitamura et al. 2020). The ectopic bone is connected to the original mandibular bone. The authors attribute the ectopic bone formation to the migration of mandibular bone neural crest cells into the tongue-forming area.

      For the poor tongue frenum formation, the authors found the importance of cell migration from the lateral sides of the branchial arch to the midline and its formation relies on non-canonical Wnt signaling. The authors observed similar phenotypes in the human patients as those in the mutants. The adipose tissue in the tongue area is normally found in the salivary gland region and intermuscular space, and it is intriguing to find the brown adipose tissue anterior to the cervical area in which the most anterior brown adipose tissue develops. qRT-PCR indicates that some of the marker genes are expressed in the laser micro-dissected sections of the ectopic brown adipose tissue. However, histology does not show the typical brown adipose tissue feature. In addition, brown adipose tissue is normally recognized in the sixth pharyngeal region as the cervical brown tissue from around E14.5 (Schulz and Tseng 2013), not E12 as the authors observe. Although the mutants develop under abnormal conditions, is it possible to say they are brown adipose tissue? The point has to be further investigated with more marker expression by immunohistochemical detection and other methods. Since the mutants seem to show impaired midline formation (which is consistent with the condition of human ciliopathy), is it possible to hypothesize that the adipose-like tissue is derived from the mesoderm of posterior branchial arch levels if the tissue is brown adipose tissue?

      Cranial neural crest cells start migrating around E8.0 and reach their destination by E9.5. The authors show the lack of neural crest cells in the midline, the fluorescence is absent from the midline in HM, however, they studied it in the E11 mandible (Fig. 4E), almost more than two days after neural crest migration completes. Since the mandibular arch seems to form at the beginning in the mutants, is there a failure in allocating the neural crest and mesoderm at the beginning of the mandibular arch formation?<br /> The authors tried to disturb the interaction between the hypoglossal cord and neural crest cells by making incisions in the dorsal area of the branchial arches. That area contains both neural crest and mesoderm but not the hypoglossal cord-derived mesoderm. The hypoglossal cord passed through the posterior edge of the caudal (6th) pharyngeal arch, along the lateral side of the pericardium towards the anterior, ventral to branchial arches, and then inside the 2nd and 1st branchial arches (Adachi et al., 2018). It expresses Pax3 before entering the branchial arches, then Myf5 in the branchial arches. It seems that the migration of the hypoglossal cord does not require interaction with neural crest cells but it has to be confirmed as well as neural crest migration into the branchial arches from the beginning. Although the hypoglossal cord migrates mostly in mesoderm-derived mesenchyme, we cannot exclude the possibility that hypoglossal cord migration is affected.

      The lack of Myf5 expression in Ofd1fl;Wnt1Cre (HM) was explained as a failure in the differentiation of the hypoglossal cord into myoblasts on entrance into the branchial arches. Most of the cervical brown adipose tissue is derived from either Myf5- or Pax3- expressing lineage (Sanchez-Gurmaches and Guertin, 2014). Although the authors suggest that brown adipose cells are fate-changed mesoderm in the branchial arches, how do they explain the association with Myf5- or Pax3- expression?

      In addition, the cervical brown tissue is supposed to be derived from the branchial arch mesoderm (Mo et al., 2017). Is the formation of the cervical brown tissue affected in the Ofd1fl/WT;Wnt1Cre(HET) or Ofd1fl;Wnt1Cre (HM) if dysfunction of neural crest cells results in the cell fate change of mesoderm?

      For the tongue frenum development, it is hard to understand to hypothesize that its formation is unlikely to associate with midline formation. Although Lgr5 and Tbx22 are not expressed in the midline, the defect in midline formation could cause unnecessary interaction between the right and left tissues.

      Tissue morphogenesis takes place in three dimensions, which were not considered in the data, especially in the labeling experiments. When the authors labelled the cells, which cells in which area were labelled? In the textbook, tongue formation is a result of the fusion of the midline processes derived from the branchial arches, therefore, it is important to identify which cells in which area are labelled.

      The weakest point is that the authors demonstrate many interesting phenotypes but fail to show the mechanism of altered cell differentiation and direct evidence of the tissue origin of ectopic brown tissue. Without the data, suggestion from the authors' argument is weak, which is reflected in the conclusion of the abstract.

    1. Reviewer #1 (Public Review):

      Recent work reported that the AP2-associated kinase 1 (AAK1) downregulates Wnt signaling by phosphorylating, thus activating, the µ-subunit of the AP2 complex (AP2M1), which recognizes an endocytic signal on the intracellular domain of the Wnt co-receptor LRP6 leading to its internalization (Agajanian, et al., 2018). It has also long been known that DPY-23/AP2M1 and the retromer complex, which controls trafficking between endosomes and the trans-golgi network and recycling from endosomes to the plasma membrane, regulate Wnt signaling in C. elegans, at least in part by modulating trafficking of the Wnt-secretion factor MIG-14/WLS (Pan, et al., 2008; Yan et al., 2008).

      Here the authors first set out to ask whether SEL-5/AAK1 plays a conserved role in Wnt signaling via phosphorylation of DPY-23/AP2M1 by assessing the function of SEL-5 in Wnt-regulated morphogenetic events; specifically, the well-characterized migration and polarization of several neurons and the less-understood process of excretory canal cell outgrowth.

      The authors found that the simultaneous removal of sel-5 and the retromer complex gene vps-29 resulted in synthetic neuronal and excretory canal outgrowth phenotypes, indicating that sel-5 and the retromer complex function in parallel in these processes. Genetic interactions between sel-5 and Wnt pathway components were also examined, and for QL neuroblast migration, loss of sel-5 exacerbated phenotypes caused by loss of the Wnt receptor LIN-17/FZD, but not those caused by loss of a different receptor, MIG-1/FZD. The authors assessed the site of sel-5 function in neuronal migration defects via tissue-specific rescue and identified the hypodermis, a known source of Wnt ligands, and muscles as sites where sel-5/AAK1 activity is required.

      The novelty in this work comes from the discovery of a function for sel-5/AAK1 and the retromer complex in excretory canal outgrowth, identified by phenotypes caused by simultaneous loss of sel-5 and retromer components. This synthetic phenotype is rescued by restoring sel-5 to either the excretory canal cell or the hypodermis, suggesting autonomous and non-autonomous functions for sel-5 in canal outgrowth. The authors also confirmed previous results showing that loss of LIN-17/FZD results in excretory canal overgrowth, and by carrying out an extensive survey of Wnt-pathway mutants they discovered that LIN-44/Wnt is likely the ligand that functions via LIN-17 as a "stop" signal in canal outgrowth. They also implicate a CWN-1/Wnt-CFZ-2/FZD pathway as required for canal outgrowth and find genetic interactions between sel-5/AAK1 and the lamellipodin ortholog mig-10, suggesting that these genes function in parallel to promote excretory canal outgrowth.

      The most intriguing claim in this work is the suggestion that neither DPY-23 phosphorylation nor SEL-5 kinase activity is required for their function in Wnt signaling. However, the tools used to support these conclusions are not well-characterized. First, a new dpy-23 phosphorylation site-mutant is not genetically characterized, thus it is difficult to interpret the negative results obtained with this allele. Second, although the mutations introduced into SEL-5 are expected to abolish kinase activity, this is not demonstrated biochemically, nor are the effects, if any, of mutations on protein stability/localization assessed. Finally, experiments testing the function of SEL-5 kinase mutants are reported using only one multi-copy extrachromosomal array per construct. Because these types of transgenes vastly overexpress proteins, it is likely that even proteins with reduced function will rescue, raising concerns regarding the conclusion that kinase activity is not necessary for SEL-5 function.

      In conclusion, it is not clear that the findings presented here will be of great general interest, as they mostly support previously-known functions for SEL-5/AAK1, DPY-23/AP2M1, and the retromer complex in Wnt-mediated signaling. Thus, this work will mainly be of interest to researchers studying Wnt-mediated cell outgrowth, and more specifically to those studying the C. elegans excretory canal. Moreover, the study lacks coherence: initially, there is a clear hypothesis testing a role for SEL-5/AAK1 in DPY-23/AP2M1 phosphorylation and how this impinges on Wnt signaling. This model appears to be refuted (although, as noted above the tools used to do this need to be better validated), but the authors do not explore alternative targets or functions for SEL-5/AAK1, nor do they directly assess how SEL-5 or the retromer complex impinge on Wnt signaling in excretory canal outgrowth. Thus, there is little mechanistic insight provided by this work.

    2. Reviewer #2 (Public Review):

      Summary<br /> This study by Knop, et al. defines two different developmental roles for the conserved SEL-5/AAK1 protein kinase in Caenorhabditis elegans. In other organisms, AAK1 was known to promote the recycling of the Wntless sorting receptor and endocytosis of Wnt receptors. This study establishes that SEL-5 acts in two roles in C. elegans: in Wnt-producing cells, a role that promotes migration of a neuroblast termed QL.d, and in Wnt-receiving cells, a role that promotes outgrowth of the excretory cell (EXC). Before this study, SEL-5/AAK1 was thought to regulate endocytosis through phosphorylation of AP2M1 and other endocytic adaptor proteins. This study shows convincing data that the SEL-5 makes a partial contribution to AP2M1 phosphorylation, and more surprisingly, that its roles in Wnt-producing and Wnt-receiving cells of C. elegans do not require SEL-5 catalytic activity. Human AAK1 was previously suggested to be a target of drug design efforts due to its roles in neuropathic pain, viral infection, and Alzheimer's disease. The discovery that some roles for SEL-5/AAK1 are independent of catalytic activity will be of broad interest to cell biologists and biochemists.

      Strengths<br /> (1) The data establishing the requirement for SEL-5 in QL.d migration and EXC outgrowth (Fig. 1 and Fig. 4) is rigorous and convincing. My assessment of the rigor is based on the following: First, the authors show that two independently derived sel-5 deletion mutations result in defects in QL.d and EXC. Second, the authors show that providing wild-type, GFP-tagged SEL-5 results in significant rescue of both phenotypes. Importantly, they use tissue-specific transgenes to show that the requirement for SEL-5 in QL.d migration is non-cell-autonomous, and the requirement for SEL-5 in EXC outgrowth is cell-autonomous (Fig. 2). For rescue experiments, they show that each tissue-specific transgene is indeed expressed strongly in the tissue of interest. This establishes the roles for SEL-5 in two different roles, in Wnt-producing and Wnt-receiving cells.

      (2) The authors present three lines of convincing biochemical and genetic evidence that SEL-5 kinase catalytic activity is not important for its roles in Wnt-producing and Wnt-receiving cells.

      Taking a biochemical approach, they use quantitative Westerns to assess the degree of AP2M1 phosphorylation in sel-5 mutants (Fig. 3). Their results show that AP2M1 phosphorylation is diminished, but not absent in mutants. Their results are convincing because they make use of GFP-tagged AP2M1 to probe for total and phospho-AP2M1. I note that they included uncropped Western blots in supplemental data. Furthermore, they make use of a GFP-tagged AP2M1 mutant (T160A) to confirm which residue is phosphorylated. Their results suggest that some mechanism other than AP2M1 phosphorylation may account for the sel-5 mutant phenotypes.

      Taking a genetic approach, they make use of a unique allele, dpy-23(mew25), that alters the known AP2M1 phosphorylation site. They show that animals carrying this allele do not display the QL.d and EXC phenotypes (Fig. 3 and Fig. 5). Finally, in a more direct test of whether SEL-5 requires catalytic activity, they make use of GFP-tagged SEL-5 forms mutated at either the active site or the ATP-binding site of the SEL-5 kinase domain. They show that either SEL-5 mutant form successfully rescues the QL.d and EXC defects seen in sel-5 mutants (Fig. 3), suggesting that SEL-5 catalytic activity is unnecessary.

      (3) The authors have produced an elegant GFP knock-in allele of the sel-5 gene, allowing analysis of expression and localization in living animals (Fig. 2).

      (4) The authors make use of genetic interactions with Wnt signaling mutants to show that SEL-5 acts in a role that promotes Wnt signaling for the QL.d cell (Fig. 1) and counteracts Wnt signaling for the EXC (Fig. 5).

      Weaknesses<br /> (1) Some changes to statistical analyses are needed in this study.

      Fig. 1B, 1D, 2A, 3E, and 3F report the QL.d phenotype as a percentage of animals scored that were defective in migration. The methods make it clear this data is categorical rather than quantitative. Therefore, a t-test or any test designed for quantitative data is not appropriate. I suggest that the authors should investigate using a chi-squared or Fisher's exact test.

      For the reasons mentioned above, the calculation of standard deviation (as shown in error bars) is also not appropriate for Fig. 1B, 1D, 2A, 3E, and 3F. Of course, it is excellent that the authors scored multiple trials. For experiments with mutants, I suggest the authors might combine these trials or show separate results of each trial. For experiments using RNAi (Fig. 1B), each trial should be plotted separately because RNAi effectiveness can vary. If there is not enough space to show multiple trials, then I would ask that a representative trial be shown in the main figure and additional trials in a supplement.

      In Fig. 1, 2, 3, and 5, it is not specified whether/how p-values were adjusted for multiple tests.

      (2) I felt the author's interpretation of the sel-5 mutant phenotypes in EXC, and the genetic interactions with Wnt signaling mutants, might be improved. The authors show convincing data that the sel-5 mutants display a shortened EXC outgrowth phenotype. Conversely, mutants with reduced Wnt signaling, such as the lin-17 or lin-44 mutants, displayed lengthened EXC outgrowth. The authors show that in double mutants, loss of sel-5 partially suppressed the EXC overgrowth defects of lin-17 or lin-44 mutants (Fig. 5). In my opinion, this data is consistent with a model where SEL-5 acts to inhibit Wnt signaling in EXC. An inhibitory role in a Wnt-receiving cell would be consistent with the known activity for human AAK1 in promoting negative feedback and endocytosis of LPR6. Interestingly, the authors mention in their discussion that a mutant of plr-1, which acts in the internalization of Frizzled receptors, has a shortened EXC phenotype similar to that of sel-5 mutants. These observations all seem consistent with an inhibitory role, yet the authors do not state this as their conclusion. A clarification of their interpretation is needed.

      Impact/significance<br /> (1) Among researchers using C. elegans, this study provides a foundation for further investigation of the role of endocytosis, SEL-5, and the retromer, in Wnt trafficking. It is particularly useful that the authors define two different phenotypes that arise from Wnt-producing and Wnt-receiving cells.

      (2) Among a broader community of cell biologists and biochemists, this study will be of interest in its finding that SEL-5/AAK1 kinase catalytic activity is unnecessary for the regulation of Wnt signaling.

    1. Reviewer #1 (Public Review):

      Salt-inhibited germination and growth in Arabidopsis and other plant species. Here the authors demonstrated that part of that inhibitory effect is caused by the arginine-derived urea hydrolysis, a novel mechanism. They also postulated that urea transport is involved in germination inhibition, but they do not link urea transport from cotyledons to pH changes in roots. At last, they generalized the mechanisms to other glycophytic crops and halophytic plants, but the salt concentration used is the same for the four groups, which are supposed to have very different salt tolerance ranges, questioning the validity of this generalization.<br /> Overall, the authors have provided well-organized genetic and pharmacological evidence to support most of their conclusions.

    2. Reviewer #2 (Public Review):

      Urea is widely utilized in agriculture. In this study, the authors the mechanism underlying the adverse impact of urea on seed germination and seedling growth under salt stress conditions. The results show that salt stress induces a pronounced hydrolysis of urea, resulting in an elevation of cytoplasmic pH and subsequent inhibition of seed germination. These findings challenge the previous notion that ammonium accumulation is the primary cause of salt-induced inhibition of germination, thereby offering novel insights into this process.

      The authors have provided well-organized genetic or biochemical evidence to support most of their conclusions.

    3. Reviewer #3 (Public Review):

      This work submitted by Bu et al. investigated mechanisms of how salt stress-induced arginine catabolism, which is catalyzed by arginase and urease, inhibits seed germination and seedling growth in Arabidopsis using a combination of genetic, biochemical, and live-cell imaging approaches. Their results showed that the two steps for the turnover of arginine into ammonia and the transport of urea from the cotyledon to the root are required for the salt-induced inhibition of seed germination (SISG). Further analysis showed that the cellular accumulation of the end product ammonia is not associated with SISG, but it is the cytoplasmic alkaline stress that primarily causes SISG. Interestingly, they found that the mechanism underlying SISG is conserved in other plant species. In general, this work will be valuable for plant biologists to deeply dissect the complex mechanism that controls salt stress-induced inhibition of plant growth and development in the future.

      The conclusions derived from this work are well supported by the data, but some aspects of data analysis need to be clarified and extended.

      (1) Inhibition of arginine hydrolysis by enzyme inhibitors (NOHA for arginase and PPD for urease) significantly improved seed germination and seedling growth (Figure 2). It seems that the suppressive effect of NOHA against the salt-induced inhibition of seedling growth is dose-dependent (Figure 2b). Whether NOHA effect on SISG is also dose-dependent and application of a certain level of NOHA can fully rescue the phenotype of SISG remains to be answered. The answers may help to explain the genetic data shown in Figure 3c, where either single (argah1 and argah2) or double (argah1/argah2) mutants partially rescued the phenotype of SISG. However, arginase activity, particularly in argah1 and argah2, is not closely correlated to the phenotype shown in Figure 3c and 3d.

      (2) The data shown in Figure 4b and 4e were not fully consistent. The percentage of seed germination rate was about 70% when treated with the highest concentration (7.5 μM) of PPD, but was less than 40% for the aturease mutant.

      (3) Cellular pH values detected at the seed germination stage were not convincing. In the text, they did not describe the results showing that the cytoplasmic pH values in hypocotyl and cotyledon cells were alkaline and not affected by NaCl treatment, and PPD treatment only restored the alkaline cytoplasmic pH to that of the control (Figure 7b). This raises two questions: is it true that cytoplasmic pH values are different between root and cotyledon/hypocotyl cells under normal growth conditions? and does PPD treatment alter the cytoplasmic pH only in roots?

    1. Reviewer #1 (Public Review):

      HMCV encodes various immunoevasins to inhibit being presented by MHC class I molecules to the cytotoxic cells of the immune system. Here, the authors studied the role and specificity of US10, a relatively uncharacterized immunoevasin from HCMV. They found that US10 differentially affects antigen presentation by different MHC class I allotypes. HLA-A and certain HLA-B and C alleles (so-called "tapasin-independent") were unaffected, while other HLA-B and C alleles (so-called "tapasin-dependent") as well as HLA-G were negatively affected. US10 can bind to different MHC class I allotypes, which inhibits their incorporation into peptide loading complex and slowers maturation. By comparing US10 to the other well-studied immunoevasins from HCMV, US2, US3, and US11, the authors demonstrated only partial overlap between them suggesting the cumulative action of immunoevasins in inhibiting MHC class I antigen presentation of HMCV epitopes. This work contributes to our understanding of the complex immune evasion mechanism by HCMV.

      The strengths include using a broad use of available techniques, including overexpression of US10 and US10 siRNA in the infection context that allowed comparison of its net and cumulative effects. Bioinformatic analysis of US10 and US11 to describe how transcription and expression of these two gene products contribute to the control of immunoevasion by HCMV. The conclusions are mostly supported by the experiments.

    2. Reviewer #2 (Public Review):

      The manuscript entitled " Multimodal HLA-I genotypes regulation by human cytomegalovirus US10 and resulting surface patterning" by Gerke et al describes the biochemical analysis of US10-mediated down regulation of HLA-I molecules. The authors systemically examine the surface expression of different HLA-I alleles in cells expressing US10 and interactions of US10 with HLA-I and antigen presentation machinery. Further, studies examined genotypic and allotypic differences during expression of US10/US11 transcripts suggest a different allelic class I downregulation. In general, the authors have included data supporting the major claims. Yet, the conclusions and findings of the study only marginally advance the overall understanding of HCMV viral evasion and the mechanism of US10 function.

      Strengths:<br /> The studies are well characterized and the studies utilize diverse HLA-I and HCMV viral molecules. The biochemistry is excellent and is of high quality. Importantly, the study describes HLA-I allelic specific HCMV down regulation at the cell surface and molecular levels.

      Weaknesses:<br /> (1) The authors use over expressive language such as "strong binding" that does not have a quantitative value and it is relative to the specific assay with only small differences among the factors.<br /> (2) The US10 binding to the HLA-I did not correlate with class I surface levels suggesting that binding to the APC machinery (Figure 1); hence, why does the binding of US10 to the APC define its mechanism of action.<br /> (3) The innovative and significant aspects of the study are limited. The study does not delineate the US10 mechanism of action or show data in which US10-mediated MHC class I down regulation impacts adaptive or innate immune function.

    3. Reviewer #3 (Public Review):

      Correlation of the HLA-B effects with previously demonstrated allelic differences in dependence on the peptide loading complex (PLC) component chaperone/editor tapasin and demonstration that US10 does not bind the PLC reflect on possible mechanisms of US10 function. Thus, this paper adds new information that may be integrated into evolving models of the steps of MHC-I dependent antigen presentation and how viruses counter immune recognition for their own benefit. Clearer focus on the proposed models for the function of US10 and its mechanism--i.e. what experiments address the mechanism and what additional finding might clarify the mechanism would be helpful.

    1. Reviewer #2 (Public Review):

      Summary:

      The interplay between environmental factors and cognitive performance has been a focal point of neuroscientific research, with illuminance emerging as a significant variable of interest. The hypothalamus, a brain region integral to regulating circadian rhythms, sleep, and alertness, has been posited to mediate the effects of light exposure on cognitive functions. Previous studies have illuminated the role of the hypothalamus in orchestrating bodily responses to light, implicating specific neural pathways such as the orexin and histamine systems, which are crucial for maintaining wakefulness and processing environmental cues. Despite advancements in our understanding, the specific mechanisms through which varying levels of light exposure influence hypothalamic activity and, in turn, cognitive performance, remain inadequately explored. This gap in knowledge underscores the need for high-resolution investigations that can dissect the nuanced impacts of illuminance on different hypothalamic regions. Utilizing state-of-the-art 7 Tesla functional magnetic resonance imaging (fMRI), the present study aims to elucidate the differential effects of light on the hypothalamic dynamics and establish a link between regional hypothalamic activity and cognitive outcomes in healthy young adults. By shedding light on these complex interactions, this research endeavors to contribute to the foundational knowledge necessary for developing innovative therapeutic strategies aimed at enhancing cognitive function through environmental modulation.

      Strengths:

      (1) Considerable Sample Size and Detailed Analysis:<br /> The study leverages a robust sample size and conducts a thorough analysis of hypothalamic dynamics, which enhances the reliability and depth of the findings.

      (2) Use of High-Resolution Imaging:<br /> Utilizing 7 Tesla fMRI to analyze brain activity during cognitive tasks offers high-resolution insights into the differential effects of illuminance on hypothalamic activity, showcasing the methodological rigor of the study.

      (3) Novel Insights into Illuminance Effects:<br /> The manuscript reveals new understandings of how different regions of the hypothalamus respond to varying illuminance levels, contributing valuable knowledge to the field.

      (4) Exploration of Potential Therapeutic Applications:<br /> Discussing the potential therapeutic applications of light modulation based on the findings suggests practical implications and future research directions.

      Weaknesses:

      (1) Foundation for Claims about Orexin and Histamine Systems:<br /> The manuscript needs to provide a clearer theoretical or empirical foundation for claims regarding the impact of light on the orexin and histamine systems in the abstract.

      (2) Inclusion of Cortical Correlates:<br /> While focused on the hypothalamus, the manuscript may benefit from discussing the role of cortical activation in cognitive performance, suggesting an opportunity to expand the scope of the manuscript.

      (3) Details of Light Exposure Control:<br /> More detailed information about how light exposure was controlled and standardized is needed to ensure the replicability and validity of the experimental conditions.

      (4) Rationale Behind Different Exposure Protocols:<br /> To clarify methodological choices, the manuscript should include more in-depth reasoning behind using different protocols of light exposure for executive and emotional tasks.

    2. Reviewer #1 (Public Review):

      Summary:

      Campbell et al investigated the effects of light on the human brain, in particular the subcortical part of the hypothalamus during auditory cognitive tasks. The mechanisms and neuronal circuits underlying light effects in non-image forming responses are so far mostly studied in rodents but are not easily translated in humans. Therefore, this is a fundamental study aiming to establish the impact light illuminance has on the subcortical structures using the high-resolution 7T fMRI. The authors found that parts of the hypothalamus are differently responding to illuminance. In particular, they found that the activity of the posterior hypothalamus increases while the activity of the anterior and ventral parts of the hypothalamus decreases under high illuminance. The authors also report that the performance of the 2-back executive task was significantly better in higher illuminance conditions. However, it seems that the activity of the posterior hypothalamus subpart is negatively related to the performance of the executive task, implying that it is unlikely that this part of the hypothalamus is directly involved in the positive impact of light on performance observed. Interestingly, the activity of the posterior hypothalamus was, however, associated with an increased behavioural response to emotional stimuli. This suggests that the role of this posterior part of the hypothalamus is not as simple regarding light effects on cognitive and emotional responses. This study is a fundamental step towards our better understanding of the mechanisms underlying light effects on cognition and consequently optimising lighting standards.

      Strengths:

      While it is still impossible to distinguish individual hypothalamic nuclei, even with the high-resolution fMRI, the authors split the hypothalamus into five areas encompassing five groups of hypothalamic nuclei. This allowed them to reveal that different parts of the hypothalamus respond differently to an increase in illuminance. They found that higher illuminance increased the activity of the posterior part of the hypothalamus encompassing the MB and parts of the LH and TMN, while decreasing the activity of the anterior parts encompassing the SCN and another part of TMN. These findings are somewhat in line with studies in animals. It was shown that parts of the hypothalamus such as SCN, LH, and PVN receive direct retinal input in particular from ipRGCs. Also, acute chemogenetic activation of ipRGCs was shown to induce activation of LH and also increased arousal in mice.

      Weaknesses:

      While the light characteristics are well documented and EDI calculated for all of the photoreceptors, it is not very clear why these irradiances and spectra were chosen. It would be helpful if the authors explained the logic behind the four chosen light conditions tested. Also, the lights chosen have cone-opic EDI values in a high correlation with the melanopic EDI, therefore we can't distinguish if the effects seen here are driven by melanopsin and/or other photoreceptors. In order to provide a more mechanistic insight into the light-driven effects on cognition ideally one would use a silent substitution approach to distinguish between different photoreceptors. This may be something to consider when designing the follow-up studies.

    3. Reviewer #3 (Public Review):

      Summary:

      Campbell and colleagues use a combination of high-resolution fMRI, cognitive tasks, and different intensities of light illumination to test the hypothesis that the intensity of illumination differentially impacts hypothalamic substructures that, in turn, promote alterations in arousal that affect cognitive and affective performance. The authors find evidence in support of a posterior-to-anterior gradient of increased blood flow in the hypothalamus during task performance that they later relate to performance on two different tasks. The results provide an enticing link between light levels, hypothalamic activity, and cognitive/affective function, however, clarification of some methodological choices will help to improve confidence in the findings.

      Strengths:

      * The authors' focus on the hypothalamus and its relationship to light intensity is an important and understudied question in neuroscience.

      Weaknesses:

      * I found it challenging to relate the authors' hypotheses, which I found to be quite compelling, to the apparatus used to test the hypotheses - namely, the use of orange light vs. different light intensities; and the specific choice of the executive and emotional tasks, which differed in key features (e.g., block-related vs. event-related designs) that were orthogonal to the psychological constructs being challenged in each task.

      * Given the small size of the hypothalamus and the irregular size of the hypothalamic parcels, I wondered whether a more data-driven examination of the hypothalamic time series would have provided a more parsimonious test of their hypothesis.

    1. Reviewer #3 (Public Review):

      Summary:

      In this study, Han and co-authors showed that implantation of Pik3ca deficient KPC cells (aKO) induced clonal expansion of CD8 T cells in the tumor microenvironment. Using aKO cells, they conducted an in vivo genome-wide gene-deletion screen, which showed that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (p-aKO) leads to immune evasion and tumor progression. Eventually, mice injected with p-aKO but not aKO succumbed to their tumors. Similar to the parental aKO cell line, p-aKO tumors were still infiltrated with clonally expanded CD8+ and CD4+ T cells, as shown by the IHC. Further analyses showed that T cells infiltrating p-aKO tumors expressed high levels of exhaustion markers (PD-1, CTLA-4, TIM3, and TIGIT). Furthermore, PD-1 signaling blockade using PD-1 mAb or genetic depletion of PD-1 reactivated the infiltrated T cells, controlling tumor progression and improving the overall mice survival. Thus, the authors concluded in the abstract that "Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers." Although the data clearly showed that the loss of Pccb facilitated the immune evasion of pancreatic cancer cells, there is no clear evidence provided that Pccb deletion can actually modulate the activity of CD8 T cells. One may argue that the deletion of Pccb reduces the immunogenicity of the p-aKO cancer cells, making them less susceptible to killing by normally functional CD8+ T cells.

      Strengths:

      In vivo, Crisper-Cas-9 screen using tumor cell lines.

      Identify a gene that could reduce the immunogenicity of cancer cells.

      Weaknesses:

      The IHC technique that was used to stain and characterize the exhaustion status of the tumor-infiltrating T cells.

    2. Reviewer #1 (Public Review):

      Summary:

      Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that does not respond to immunotherapy. This work represents an extension of the authors' prior observation that PI3Ka deletion in an orthotopic KPC pancreatic tumor model confers susceptibility to immune-mediated elimination. The authors' major claims in the present manuscript are as follows:

      (1) PI3Ka (Pik3ca) knockout in KPC pancreatic tumor cells induces clonal T cell expansion.

      (2) Genome-wide LOF screen in aKPC cells to identify tumor-intrinsic determinants of PI3Ka-KO-enhanced T cell response identified Pccb.

      (3) When Pccb is knocked out in the context of Pi3ka knockout KPC, anti-tumor T cell response is reduced as measured by<br /> a. Increased tumor progression<br /> b. Decreased survival<br /> c. T cells are still clonally expanded but less functional

      (4) ICB is able to "reactivate" clonally expanded T cells.

      (5) Conclusion: Pccb modulates the activity of T cells in PDAC.

      Overall, the experiments were appropriately executed and technically sound, albeit underpowered for single-cell analyses. Upon careful consideration of the data, the biggest weakness of the paper is the authors' interpretations of results, particularly for claims 1 and 4 (see below for details). Much of the data is correlative and does not delve into causation, leaving this reviewer wishing for experiments that would clearly demonstrate that Pccb in tumor cells directly impacts T cell anti-tumor activity.

      Strengths:

      (1) Tumor intrinsic determinants of intratumoral T cell infiltration in PDAC are less commonly evaluated as combination therapies for ICB. This is a point of conceptual innovation and importance.

      (2) A sensitized CRISPR screen to identify mutations that rescue KPC/PI3Ka-KO tumors from immune-mediated killing is an elegant method to better understand the molecular mechanisms contributing to KPC immunosurveillance. Further, one screen candidate (Pccb) was experimentally validated.

      (3) Single-cell clonotype analyses hold promise for identifying tumor-reactive T cells (though authors never demonstrated that specific clones were tumor antigen specific).

      Weaknesses:

      (1) "Clonal expansion of cytotoxic T cells infiltrating the pancreatic αKO tumors"<br /> a. Only two tumor-bearing hosts were evaluated by single-cell TCR sequencing, thus limiting conclusions that may be drawn regarding repertoire diversity and expansion.<br /> b. High abundance clones in the TME do not necessarily have tumor specificity, nor are they necessarily clonally expanded. They may be clones which are tissue-resident or highly chemokine-responsive and accumulate in larger numbers independent of clonal expansion. Please consider softening language to clonal enrichment or refer to clone size as clonal abundance throughout the paper.<br /> c. The whole story would be greatly strengthened by cytotoxicity assays of abundant TCR clones to show tumor antigen specificity.

      (2) "A genome-wide CRISPR gene-deletion screen to identify molecules contributing to Pik3ca-mediated pancreatic tumor immune evasion"<br /> a. CRISPR mutagenesis yielded outgrowth of only 2/8 tumors. A more complete screen with an increased total number of tumors would yield much stronger gene candidates with better statistical power. It is unsurprising that candidates were observed in only one of the two tumors. Nevertheless, the authors moved forward successfully with Pccb.

      (3) T cells infiltrate p-αKO tumors with increased expression of immune checkpoints<br /> a. In Figure 4D, cell counts are not normalized to totalCD8+ T cell counts making it difficult to directly compare aKO to p-aKO tumors. Based on quantifications from Figure 4D, I suspect normalization will strengthen the conclusion that CD8+ infiltrate is more exhausted in p-aKO tumors.<br /> b. Flow cytometric analysis to further characterize the myeloid compartment is incomplete (single replicate) and does not strengthen the argument that p-aKO TME is more immunosuppressive.<br /> c. It could, however, strengthen the argument that TIL has less anti-tumor potential if effector molecule expression in CD8+ infiltrating cells were quantified.

      (4) Inhibition of PD1/PD-L1 checkpoint leads to elimination of most p-αKO tumors<br /> a. It is reasonable to conclude that p-aKO tumors are responsive to immune checkpoint blockade. However, there is no data presented to support the statement that checkpoint blockade reactivates an existing anti-tumor CD8+ T cell response and does not instead induce a de novo response.<br /> b. The discussion of these data implies that anti-PD-1 would not improve aKO tumor control, but these data are not included. As such, it is difficult to compare the therapeutic response in aKO versus p-aKO. Further, these data are at best an indirect comparison of the T cell responsiveness against tumor, as the only direct comparison is infiltrating cell count in Figure 4 and there are no public TCR clones with confirmed anti-tumor specificity to follow in the aKO versus p-aKO response.

    3. Reviewer #2 (Public Review):

      Summary:

      Pancreatic ductal adenocarcinoma is generally considered a "cold" tumor type with little T cell infiltration. This group demonstrated previously that deletion of the PIK3CA isoform of PI3K in the orthotopic pancreatic ductal adenocarcinoma KPC mouse tumor model led to the elimination of tumors by T cells. Here they performed a genome-wide gene-deletion screen in this tumor using CRISPR to determine what was required for this T cell-mediated infiltration and tumor rejection. Deletion of Pccb in the tumors, which encodes propionyl-CoA carboxylase subunit B, allowed for the outgrowth of the PIK3CA-deleted KPC tumors. This was confirmed with the specific deletion of Pccb in the tumor cells. Demonstrating a likely role in tumor progression in human patients as well, high expression of PCCB in pancreatic ductal adenocarcinoma correlated with lower patient survival. T cells still infiltrated these tumors, but had much higher expression of exhaustion markers. Blockade of PD-1 signaling allowed for the rejection of these tumors. While these are intriguing data demonstrating that loss of PCCB by pancreatic ductal adenocarcinoma is a mechanism to escape T cell immunity, the mechanism by which this occurs is not determined. In addition, there are a few issues that suggest the conclusions of the manuscript should be tempered.

      Strengths:

      In vivo analysis of tumor CRISPR deletion screen.

      The study describes a possible novel mechanism by which a tumor maintains a "cold" microenvironment.

      Weaknesses:

      (1) A major issue is that it seems these data are based on the use of a single tumor cell clone with PIK3CA deleted. Therefore, there could be other changes in this clone in addition to the deletion of PIK3CA that could contribute to the phenotype.

      (2) The conclusion that the change in the PCCB-deficient tumor cell line is unrelated to mitochondrial metabolic changes may be incorrect based on the data provided. While it is true that in the experiments performed, there was no statistically significant change in the oxygen consumption rate or metabolite levels, this could be due to experimental error. There is a trend in the OCR being higher in the PCCB-deficient cells, although due to a high standard deviation, the change is not statistically significant. There is also a trend for there being more aKG in this cell line, but because there were only 3 samples per cell line, there is no statistically significant difference.

      (3) More data are required to make the authors' conclusion that there are myeloid changes in the PCCB-deficient tumor cells. There is only flow data from shown from one tumor of each type.

      (4) The previous published study demonstrated increased MHC and CD80 expression in the PIK3CA-deficient tumors and these differences were suggested to be the reason the tumors were rejected. However, no data concerning the levels of these proteins were provided in the current manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors delineate the crucial role of the SIRT2-ACSS2 axis in ACSS2 degradation. They demonstrate that SIRT2 acts as an ACSS2 deacetylase specifically under nutrient stress conditions, notably during amino acid deficiency. The SIRT2-mediated deacetylation of ACSS2 at K271 consequently triggers its proteasomal degradation. Additionally, they illustrate that acetylation of ACSS2 at K271 enhances ACSS2 protein levels, thereby promoting De Novo lipogenesis.

      Strengths:

      The findings presented in this manuscript are clearly interesting.

      Weaknesses:

      Further support is required for the model put forward by the authors.

    2. Reviewer #2 (Public Review):

      Summary:

      Karim et al investigated the regulation of ACSS2 by SIRT2. The authors identified a previously undescribed acetylation that they then show is important for the regulation and stability of ACSS2 in cells. The authors show that ACSS2 ubiquitination and degradation by the proteasome is regulated by SIRT2-mediated deacetylation of ACSS2 and that stabilizing ACSS2 by blocking SIRT2 can alter lipid accumulation in adipocytes.

      Strengths:

      Identification of a novel acetylation site on ACSS2 that regulates its protein stability and that has consequences on its activity in adipocytes. Multiple standard approaches were used to manipulate the expression and function of SIRT2 and ACSS2 (i.e., overexpression, knockdown, inhibitors).

      Weaknesses:

      The authors do not show direct deacetylation of ACSS2 by SIRT2 in an in vitro biochemical assay.

      It would have been nice to have included a bona-fide SIRT2 target as a control throughout the study.

      Throughout the manuscript, normalizing the data to 1 and then comparing the fold-change using a t-test is not the best statistical approach in that situation since every normalized value for control is 1 with zero standard deviation. The authors should consider an alternative statistical approach.

      Though not necessary, using 13C-acetate or D3-acetate tracing would be better for understanding the impact of acetylation on the activity of ACSS2 and its impact on lipogenesis.

      Did the authors also consider investigating SIRT1 in their assays? SIRT1 activates ACSS2 while SIRT2 leads to degradation of ACSS2. They should at least discuss these seemingly opposing roles of SIRT1 and SIRT2 in the regulation of ACSS2 and acetate metabolism in more depth, particularly as it concerns situations (i.e., diseases, pathologies) where either SIRT1, SIRT2, or both sirtuins, are active. This would enhance the significance of the findings to the broader research community.

      In Figure 3, the authors should consider immunoblotting for endogenous ACSS2 throughout the differentiation and lipogenesis study since the total ACSS2 levels is the crucial aspect to affecting acetate-dependent promotion of lipogenesis in adipocytes, and to confirm TM-dependent stabilization of ACSS2 in that assay.

      Do the authors have any data proving the K271 mutants of ACSS2 are still functional? Or that K271 ACSS2 protein is folded correctly?

    3. Reviewer #3 (Public Review):

      Summary:

      The manuscript shows SIRT2 can regulate acetylation of ACSS2 at residue 271, acetylation of 271 protects ACSS2 from proteasomal degradation in a SIRT2-dependent manner. Lastly, authors show that ACSS2 acetylation at K271 promotes lipid accumulation.

      Strengths:

      The author provides solid data showing ACSS2 acetylation can be regulated by targeting SIRT2 and that SIRT2 regulates ACSS2 ubiquitination. They identify K271 as a site of acetylation and show this is a site when mutated alters SIRT2-mediated ubiquitination.

      Weaknesses:

      However, data for this manuscript seems preliminary as nearly all data is performed in one cell line, some of the conclusions are not well supported by data and the overall role of ACSS2 K271 acetylation is not well characterized.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Bell et al. provide an exhaustive and clear description of the diversity of a new class of predicted type IV restriction systems that the authors denote as CoCoNuTs, for their characteristic presence of coiled-coil segments and nuclease tandems. Along with a comprehensive analysis that includes phylogenetics, protein structure prediction, extensive protein domain annotations, and in-depth investigation of encoding genomic contexts, they also provide detailed hypothesis about the biological activity and molecular functions of the members of this class of predicted systems. This work is highly relevant, it underscores the wide diversity of defence systems that are used by prokaryotes and demonstrates that there are still many systems to be discovered. The work is sound and backed up by a clear and reasonable bioinformatics approach.

      Strengths:

      The analysis provided by the authors is extensive and covers the three most important aspects that can be covered computationally when analysing a new family/superfamily: phylogenetics, genomic context analysis, and protein-structure-based domain content annotation. With this, one can directly have an idea about the superfamily of the predicted system and infer about their biological role. The bioinformatics approach is sound and makes use of the most current advances in the fields of protein evolution and structural bioinformatics.

      Weaknesses:

      It is not clear how coiled-coil segments were assigned if only based on AF2-predicted models or also backed by sequence analysis, as no description is provided in the methods. The structure prediction quality assessment is based solely on the average pLDDT of the obtained models (with a threshold of 80 or better). However, this is not enough, particularly when multimeric models were used. The PAE matrix should be used to evaluate relative orientations, particularly in the case where there is a prediction that parts from 2 proteins are interacting. In the case of multimers, interface quality scores, as the ipTM or pDockQ, should also be considered and, at minimum, reported.

      These weaknesses were addressed during revision, and the results provided by the authors support their conclusions. The data resulting from this work will be useful for the general life sciences community, particularly the prokaryotic defense and microbiology communities. It also underscores the high range of functionally unknowns in sequenced genomes that are now much easier to find and interpret due to the success of deep-learning based methods and automated robust bioinformatics pipelines.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, using in-depth computational analysis, Bell et al. explore the diverse repertoire of type IV McrBC modification dependent restriction systems. The prototypical two-component McrBC system has been structurally and functionally characterised and is known to act as a defence by restricting phage and foreign DNA containing methylated cytosines. Here, the authors find previously unanticipated complexity and versatility of these systems and focus on detailed analysis and classification of a distinct branch, the so-called CoCoNut, named after its composition of coiled-coil structures and tandem nucleases. These CoCoNut systems are predicted to target RNA as well as DNA and to utilise defence mechanisms with some similarity to type III CRISPR-Cas systems.

      Strengths:

      This work is enriched with a plethora of ideas and a myriad of compelling hypotheses that now will await experimental verification. The study comes from the group that was amongst the first to describe, characterise, and classify CRISPR-Cas systems. By analogy, the findings described here can similarly promote ingenious experimental and conceptual research that could further drive technological advances. It could also instigate vigorous scientific debates that will ultimately benefit the community.

      Weaknesses:

      The multi-component systems described here function in the context of large oligomeric complexes similarly to the prototypical McrBC system. While the AlphaFold2 (AF2) multimer predictions are provided in this work, these are not compared with the known McrBC structures. These comparisons could have been helpful not only for providing insights into these multimeric protein systems but also for giving more sound explanations of the differences observed amongst different McrBC types.

    1. Reviewer #1 (Public Review):

      Summary:

      Major findings or outcomes include a genome for the wasp, characterization of the venom constituents and teratocyte and ovipositor expression profiles, as well as information about Trichopria ecology and parasitism strategies. It was found that Trichopria cannot discriminate among hosts by age, but can identify previously parasitized hosts. The authors also investigated whether superparasitism by Trichopria wasps improved parasitism outcomes (it did), presumably by increasing venom and teratocyte concentrations/densities. Elegant use of Drosophila ectopic expression tools allowed for functional characterization of venom components (Timps), and showed that these proteins are responsible for parasitoid-induced delays in host development. After finding that teratocytes produce a large number of proteases, experiments showed that these contribute to digestion of host tissues for parasite consumption.<br /> The discussion ties these elements together by suggesting that genes used for aiding in parasitism via different parts of the parasitism arsenal arise from gene duplication and shifts in tissue of expression (to venom glands or teratocytes).

      Strengths:

      The strength of this manuscript is that it describes the parasitism strategies used by Trichopria wasps at a molecular and behavioral level with broad strokes. It represents a large amount of work that in previous decades might have been published in several different papers. Including all of these data in a manuscript together makes for a comprehensive and interesting study.

      Weaknesses:

      The weakness is that the breadth of the study results in fairly shallow mechanistic or functional results for any given facet of Trichopria's biology. Although none of the findings are especially novel given results from other parasitoid species in previous publications, integrating results together provides significant information about Trichopria biology.

    2. Reviewer #2 (Public Review):

      Summary:

      Key findings of this research include the sequencing of the wasp's genome, identification of venom constituents and teratocytes, and examination of Trichopria drosophilae (Td)'s ecology and parasitic strategies. It was observed that Td doesn't distinguish between hosts based on age but can recognize previously parasitized hosts. The study also explored whether multiple parasitisms by Td improved outcomes, which indeed it did, possibly by increasing venom and teratocyte levels. Utilizing Drosophila ectopic expression tools, the authors functionally characterized venom components, specifically tissue inhibitors of metalloproteinases (Timps), which were found to cause delays in host development. Additionally, experiments revealed that teratocytes produce numerous proteases, aiding in the digestion of host tissues for parasite consumption. The discussion suggests that genes involved in different aspects of parasitism may arise from gene duplication and shifts in tissue expression to venom glands or teratocytes.

      Strengths:

      This manuscript provides an in-depth and detailed depiction of the parasitic strategies employed by Td wasps, spanning both molecular and behavioral aspects. It consolidates a significant amount of research that, in the past, might have been distributed across multiple papers. By presenting all this data in a single manuscript, it delivers a comprehensive and engaging study that could help future developments in the field of biological control against a major insect pest.

      Weaknesses:

      While none of the findings are particularly groundbreaking, as similar results have been reported for other parasitoid species in prior research, the integration of these results into one comprehensive overview offers valuable biological insights into an interesting new potential biocontrol species.

    1. Reviewer #1 (Public Review):

      Summary:

      This study has as its goal to determine how the structure and function of the circuit that stabilizes gaze in the larval zebrafish depends on the presence of the output cells, the motor neurons. A major model of neural circuit development posits that the wiring of neurons is instructed by their postsynaptic cells, transmitting signals retrogradely on which cells to contact and, by extension, where to project their axons. Goldblatt et al. remove the motor neurons from the circuit by generating null mutants for the phox2a gene. The study then shows that, in this mutant that lacks the isl1-labelled extraocular motor neurons, the central projection neurons have 1) largely normal responses to vestibular input; 2) normal gross morphology; 3) minimally changed transcriptional profiles. From this, the authors conclude that the wiring of the circuit is not instructed by the output neurons, refuting the major model.

      Strengths:

      I found the manuscript to be exceptionally well-written and presented, with clear and concise writing and effective figures that highlight key concepts. The topic of neural circuit wiring is central to neuroscience, and the paper's findings will interest researchers across the field, and especially those focused on motor systems.

      The experiments conducted are clever and of a very high standard, and I liked the systematic progression of methods to assess the different potential effects of removing phox2a on circuit structure and function. Analyses (including statistics) are comprehensive and appropriate and show the authors are meticulous and balanced in most of the conclusions that they draw. Overall, the findings are interesting, and with a few tweaks, should leave little doubt about the paper's main conclusions.

      Weaknesses:

      The main point is the incomplete characterisation of the effects of removing phox2a on the extra-ocular motor neurons. Are these cells no longer there, or are they there but no longer labelled by isl1:GFP? If they are indeed removed, might they have developed early on, and subsequently lost? These questions matter as the central focus of the manuscript is whether the presence of these cells influences the connectivity and function of their presynaptic projection neurons. Therefore, for the main conclusions to be fully supported by the data, the authors would need to test whether 1) the motor neurons that otherwise would have been labelled by the isl1:GFP line are physically no longer there; 2) that this removal (if, indeed, it is that) is developmental. If these experiments are not feasible, then the text should be adjusted to take this into account. A further point to address is the context of the manipulation. If the phox2a removal does indeed take out the extra-ocular motor neurons, what percentage of postsynaptic neurons to the projection neurons are still present? In other words, how does the postsynaptic nMLF output relate to the motor neurons? If, for instance, the nMLF (which, as the authors state, are likely still innervated by the projection neurons) are the main output of the projections neurons, then this would affect the interpretation of the results.

    2. Reviewer #2 (Public Review):

      Summary:

      This study was designed to test the hypothesis that motor neurons play a causal role in circuit assembly of the vestibulo-ocular reflex circuit, which is based on the retrograde model proposed by Hans Straka. This circuit consists of peripheral sensory neurons, central projection neurons, and motor neurons. The authors hypothesize that loss of extraocular motor neurons, through CRISPR/Cas9 mutagenesis of the phox2a gene, will disrupt sensory selectivity in presynaptic projection neurons if the retrograde model is correct.

      Account of the major strengths and weaknesses of the methods and results:

      The work presented is impressive in both breadth and depth, including the experimental paradigms. Overall, the main results were that the loss of function paradigm to eliminate extraocular motor neurons did not 1) alter the normal functional connections between peripheral sensory neurons and central projection neurons, 2) affect the position of central projection neurons in the sensorimotor circuit, or 3) significantly alter the transcriptional profiles of central projection neurons. Together, these results strongly indicate that retrograde signals from motor neurons are not required for the development of the sensorimotor architecture of the vestibulo-ocular circuit.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The results of this study showed that extraocular motor neurons were not required for central projection neuron specification in the vestibulo-ocular circuit, which countered the prevailing retrograde hypothesis proposed for circuit assembly. A concern is that the results presented may be limited to this specific circuit and may not be generalizable to other circuit assemblies, even to other sensorimotor circuits.

      Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      As mentioned above, this study sheds valuable new insights into the developmental organization of the vestibulo-ocular circuit. However, different circuits likely utilize various mechanisms, extrinsic or intrinsic (or both), to establish proper functional connectivity. So, the results shown here, although begin to explain the developmental organization of the vestibulo-ocular circuit, are not likely to be generalizable to other circuits; though this remains to be seen. At a minimum, this study provides a starting point for the examination of patterning of connections in this and other sensorimotor circuits.

    3. Reviewer #3 (Public Review):

      In this manuscript by Goldblatt et al. the authors study the development of a well-known sensorimotor system, the vestibulo-ocular reflex circuit, using Danio rerio as a model. The authors address whether motor neurons within this circuit are required to determine the identity, upstream connectivity and function of their presynaptic partners, central projection neurons. They approach this by generating a CRISPR-mediated knockout line for the transcription factor phox2a, which specifies the fate of extraocular muscle motor neurons. After showing that phox2a knockout ablates these motor neurons, the authors show that functionally, morphologically, and transcriptionally, projection neurons develop relatively normally.

      Overall, the authors present a convincing argument for the dispensability of motor neurons in the wiring of this circuit, although their claims about the generalizability of their findings to other sensorimotor circuits should be tempered. The study is comprehensive and employs multiple methods to examine the function, connectivity and identity of projection neurons.

      Specific comments:

      (1) In the introduction the authors set up the controversy on whether or not motor neurons play an instructive role in determining "pre-motor fate". This statement is somewhat generic and a bit misleading as it is generally accepted that many aspects of interneuron identity are motor neuron-independent. The authors might want to expand on these studies and better define what they mean by "fate", as it is not clear whether the studies they are citing in support of this hypothesis actually make that claim.

      (2) Although it appears unchanged from their images, the authors do not explicitly quantitate the number of total projection neurons in phox2a knockouts.

      (3) For figures 2C and 3C, please report the proportion of neurons in each animal, either showing individual data points here or in a separate supplementary figure; and please perform and report the results of an appropriate statistical test.

      (4) In the topographical mapping of calcium responses (figures 2D, E and 3D), the authors say they see no differences but this is hard to appreciate based on the 3D plotting of the data. Quantitating the strength of the responses across the 3-axes shown individually and including statistical analyses would help make this point, especially since the plots look somewhat qualitatively different.

      (5) The transcriptional analysis is very interesting, however, it is not clear why it was performed at 72 hpf, while functional experiments were performed at 5 days. Is it possible that early aspects of projection neuron identity are preserved, while motor neuron-dependent changes occur later? The authors should better justify and discuss their choice of timepoint. The inclusion of heterozygotes as controls is problematic, given that the authors show there are notable differences between phox2a+/+ and phox2a+/- animals; pooling these two genotypes could potentially flatten differences between controls and phox2a-/-.

      (6) Projection neurons appear to be topographically organized and this organization is maintained in the absence of motor neurons. Are there specific genes that delineate ventral and dorsal projection neurons? If so, the authors should look at those as candidate genes as they might be selectively involved in connectivity. Showing that generic synaptic markers (Figure 4E) are maintained in the entire population is not convincing evidence that these neurons would choose the correct synaptic partners.

    1. Reviewer #1 (Public Review):

      Though the Norrin protein is structurally unrelated to the Wnt ligands, it can activate the Wnt/β-catenin pathway by binding to the canonical Wnt receptors Fzd4 and Lrp5/6, as well as the tetraspanin Tspan12 co-receptor. Understanding the biochemical mechanisms by which Norrin engages Tspan12 to initiate signaling is important, as this pathway plays an important role in regulating retinal angiogenesis and maintaining the blood-retina-barrier. Numerous mutations in this signaling pathway have also been found in human patients with ocular diseases. The overarching goal of the study is to define the biochemical mechanisms by which Tspan12 mediates Norrin signaling. Using purified Tspan12 reconstituted in lipid nanodiscs, the authors conducted detailed binding experiments to document the direct, high-affinity interactions between purified Tspan12 and Norrin. To further model this binding event, they used AlphaFold to dock Norrin and Tspan12 and identified four putative binding sites. They went on to validate these sites through mutagenesis experiments. Using the information obtained from the AlphaFold modeling and through additional binding competition experiments, it was further demonstrated that Tspan12 and Fzd4 can bind Norrin simultaneously, but Tspan12 binding to Norrin is competitive with other known co-receptors, such as HSPGs and Lrp5/6. Collectively, the authors proposed that the main function of Tspan12 is to capture low concentrations of Norrin at the early stage of signaling, and then "hand over" Norrin to Fzd4 and Lrp5/6 for further signal propagation. Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data.

      Strengths:

      • Biochemical reconstitution of Tspan12 and Fzd4 in lipid nanodiscs is an elegant approach for testing the direct binding interaction between Norrin and its co-receptors. The proteins used for the study seem to be of high purity and quality.

      • The various binding experiments presented throughout the study were carried out rigorously. In particular, BLI allows accurate measurement of equilibrium binding constants as well as on and off rates.

      • It is nice to see that the authors followed up on their AlphaFold modeling with an extensive series of mutagenesis studies to experimentally validate the potential binding sites. This adds credence to the AlphaFold models.

      • Table S1 is a further testament to the rigor of the study.

      • Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data.

      Suggestions for improvement:

      • It would be helpful to show Coomassie-stained gels of the key mutant Norrin and Tspan12 proteins presented in Figures 2E and 2F.

      • Many Norrin and Tspan12 mutations have been identified in human patients with FEVR. It would be interesting to comment on whether any of the mutations might affect the Norrin-Tspan12 binding sites described in this study.

      • Some of the negative conclusions (e.g. the lack of involvement of Tspan12 in the formation of the Norrin-Lrp5/6-Fzd4-Dvl signaling complex) can be difficult to interpret. There are many possible reasons as to why certain biological effects are not recapitulated in a reconstitution experiment. For instance, the recombinant proteins used in the experiment may not be presented in the correct configurations, and certain biochemical modifications, such as phosphorylation, may also be missing.

    2. Reviewer #2 (Public Review):

      This is an interesting study of high quality with important and novel findings. Bruguera et al. report a biochemical and structural analysis of the Tspan12 co-receptor for norrin. Major findings are that Norrin directly binds Tspan12 with high affinity (this is consistent with a report on BioRxiv: Antibody Display of cell surface receptor Tetraspanin12 and SARS-CoV-2 spike protein) and a predicted structure of Tspan12 alone or in complex with Norrin. The Norrin/Tspan12 binding interface is largely verified by mutational analysis. An interaction of the Tspan12 large extracellular loop (LEL) with Fzd4 cannot be detected and interactions of full-length Tspan12 and Fzd4 cannot be tested using nano-disc based BLI, however, Fzd4/Tspan12 heterodimers can be purified and inserted into nanodiscs when aided by split GFP tags. An analysis of a potential composite binding site of a Fzd4/Tspan12 complex is somewhat inconclusive, as no major increase in affinity is detected for the complex compared to the individual components. A caveat to this data is that affinity measurements were performed for complexes with approximately 1 molecule Tspan12 and FZD4 per nanodisc, while the composite binding site could potentially be formed only in higher order complexes, e.g., 2:2 Fzd4/Tspan12 complexes. Interestingly, the authors find that the Norrin/Tspan12 binding site and the Norrin/Lrp6 binding site partially overlap and that the Lrp6 ectodomain competes with Tspan12 for Norrin binding. This result leads the authors to propose a model according to which Tspan12 captures Norrin and then has to "hand it off" to allow for Fzd4/Lrp6 formation. By increasing the local concentration of Norrin, Tspan12 would enhance the formation of the Fzd4/Lrp5 or Fzd4/Lrp6 complex.

      The experiments based on membrane proteins inserted into nano-discs and the structure prediction using AlphaFold yield important new insights into a protein complex that has critical roles in normal CNS vascular biology, retinal vascular disease, and is a target for therapeutic intervention. However, it remains unclear how Norrin would be "handed off" from Tspan12 or Tspan12/Fzd4 complexes to Fzd4/Lrp6 complexes, as the relatively high affinity of Norrin to Fzd4/Tspan12 dimers likely does not favor the "handing off" to Fzd4/Lrp6 complexes.

      Areas that would benefit from further experiments, or a discussion, include:

      - The authors test a potential composite binding site of Fzd4/Tspan12 heterodimers for norrin using nanodiscs that contain on average about 1 molecule Fzd4 and 1 molecule Tspan12. The Fzd4/Tspan12 heterodimer is co-inserted into the nanodiscs supported by split-GFP tags on Fzd4 and Tspan12. The authors find no major increase in affinity, although they find changes to the Hill slope, reflecting better binding of norrin at low norrin concentrations. In 293F cells overexpressing Fzd4 and Tspan12 (which may result in a different stoichiometry) they find more pronounced effects of norrin binding to Fzd4/Tspan12. This raises the possibility that the formation of a composite binding requires Fzd4/Tspan12 complexes of higher order, for example, 2:2 Fzd4/Tspan12 complexes, where the composite binding site may involve residues of each Fzd4 and Tspan12 molecule in the complex. This could be tested in nanodiscs in which Fzd4 and Tspan12 are inserted at higher concentrations or using Fzd4 and Tspan12 that contain additional tags for oligomerization.

      - While Tspan12 LEL does not bind to Fzd4, the successful reconstitution of GFP from Tspan12 and Fzd4 tagged with split GFP components provides evidence for Fzd4/Tspan12 complex formation. As a negative control, e.g., Fzd5, or Tspan11 with split GFP tags (Fzd5/Tspan12 or Fzd4/Tspan11) would clarify if FZD4/Tspan12 heterodimers are an artefact of the split GFP system.

      - Fzd4/Tspan12 heterodimers stabilized by split GFP may be locked into an unfavorable orientation that does not allow for the formation of a composite binding site of FZD4 and Tspan12, this is another caveat for the interpretation that Fzd4/Tspan12 do not form a composite binding site. This is not discussed.

      - Mutations that affect the affinity of norrin/fzd4 are not used to further test if Fzd4 and Tspan12 form a composite binding site. Norrin R41E or Fzd4 M105V were previously reported to reduce norrin/frizzled4 interactions and signaling, and both interaction and signaling were restored by Tspan12 (Lai et al. 2017). Whether a Fzd4/Tspan12 heterodimer has increased affinity for Norrin R41E was not tested. Similarly, affinity of FZD4 M105V vs a Fzd4 M105V/Tspan12 heterodimer were not tested.

      - An important conclusion of the study is that Tspan12 or Lrp6 binding to Norrin is mutually exclusive. This could be corroborated by an experiment in which LRP5/6 is inserted into nanodiscs for BLI binding tests with Norrin, or Tspan12 LEL, or a combination of both. Soluble LRP6 may remove norrin from equilibrium binding/unbinding to Tspan12, therefore presenting LRP6 in a non-soluble form may yield different results.

      - The authors use LRP6 instead of LRP5 for their experiments. Tspan12 is less effective in increasing the Norrin/Fzd4/Lrp6 signaling amplitude compared to Norrin/Fzd4/Lrp5 signaling, and human genetic evidence (FEVR) implicates LRP5, not LRP6, in Norrin/Frizzled4 signaling. The authors find that Norrin binding to LRP6 and Tspan12 is mutually exclusive, however this may not be the case for Lrp5.

      - The biochemical data are largely not correlated with functional data. The authors suggest that the Norrin R115L FEVR mutation could be due to reduced norrin binding to tspan12, but do not test if Tspan12-mediated enhancement of the norrin signaling amplitude is reduced by the R115L mutation. Similarly, the impressive restoration of binding by charge reversal mutations in site 3 is not corroborated in signaling assays.

    3. Reviewer #3 (Public Review):

      Brugeuera et al present an impressive series of biochemical experiments that address the question of how Tspan12 acts to promote signaling by Norrin, a highly divergent TGF-beta family member that serves as a ligand for Fzd4 and Lrp5/6 to promote canonical Wnt signaling during CNS (and especially retinal) vascular development. The present study is distinguished from those of the past 15 years by its quantitative precision and its high-quality analyses of concentration dependencies, its use of well-characterized nano-disc-incorporated membrane proteins and various soluble binding partners, and its use of structure prediction (by AlphaFold) to guide experiments. The authors start by measuring the binding affinity of Norrin to Tspan12 in nanodiscs (~10 nM), and they then model this interaction with AlphaFold and test the predicted interface with various charge and size swap mutations. The test suggests that the prediction is approximately correct, but in one region (site 1) the experimental data do not support the model. [As noted by the authors, a failure of swap mutations to support a docking model is open to various interpretations. As AlphFold docking predictions come increasingly into common use, the compendium of mutational tests and their interpretations will become an important object of study.] Next, the authors show that Tspan12 and Fzd4 can simultaneously bind Norrin, with modest negative cooperativity, and that together they enhance Norrin capture by cells expressing both Tspan12 and Fzd4 compared to Fzd4 alone, an effect that is most pronounced at low Norrin concentration. Similarly, at low Norrin concentration (~1 nM), signaling is substantially enhanced by Tspan12. By contrast, the authors show that LRP6 competes with Tspan12 for Norrin binding, implying a hand-off of Norrin from a Tspan12+Fzd4+Norrin complex to a LRP5/6+Fzd4+Norrin complex. Thanks to the authors' careful dose-response analyses, they observed that Norrin-induced signaling and Tspan12 enhancement of signaling both have bell-shaped dose-response curves, with strong inhibition at higher levels of Norrin or Tspan12. The implication is that the signaling system has been built for optimal detection of low concentrations of Norrin (most likely the situation in vivo), and that excess Tspan12 can titrate Norrin at the expense of LRP5/6 binding (i.e., reduction in the formation of the LRP5/6+Fzd4+Norrin signaling complex). In the view of this reviewer, the present work represents a foundational advance in understanding Norrin signaling and the role of Tspan12. It will also serve as an important point of comparison for thinking about signaling complexes in other ligand-receptor systems.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Bendzunas, Byrne et al. explore two highly topical areas of protein kinase regulation in this manuscript. Firstly, the idea that Cys modification could regulate kinase activity. The senior authors have published some standout papers exploring this idea of late, and the current work adds to the picture of how active site Cys might have been favoured in evolution to serve critical regulatory functions. Second, BRSK1/2 are understudied kinases listed as part of the "dark kinome" so any knowledge of their underlying regulation is of critical importance to advancing the field.

      Strengths:<br /> In this study, the author pinpoints highly-conserved, but BRSK-specific, Cys residues as key players in kinase regulation. There is a delicate balance between equating what happens in vitro with recombinant proteins relative to what the functional consequence of Cys mutation might be in cells or organisms, but the authors are very clear with the caveats relating to these connections in their descriptions and discussion. Accordingly, by extension, they present a very sound biochemical case for how Cys modification might influence kinase activity in cellular environs.

      Comments on revised version:

      The authors have satisfactorily addressed my concerns.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study by Bendzunas et al, the authors show that the formation of intra-molecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys at an unusual CPE motif at the end of the activation segment function as repressive regulatory mechanisms in BSK1 and 2. They observed that mutation of the CPE-Cys only, contrary to the double mutation of the pair, increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family. Understanding the molecular mechanisms underlying kinase regulation by redox-active Cys residues is fundamental as it appears to be widespread in signaling proteins and provides new opportunities to develop specific covalent compounds for the targeted modulation of protein kinases.

      The authors demonstrate that intramolecular cysteine disulfide bonding between conserved cysteines can function as a repressing mechanism as indicated by the effect of DTT and the consequent increase in activity by BSK-1 and -2 (WT). The cause-effect relationship of why mutation of the CPE-Cys only increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells is not clear to me. The explanation given by the authors based on molecular modeling and molecular dynamics simulations is that oxidation of the CPE-Cys (that will favor disulfide bonding) destabilizes a conserved salt bridge network critical for allosteric activation. However, no functional evidence of the impact of the salt-bridge network is provided. If you mutated the two main Cys-pairs (aE-CHRD and A-loop T+2-CPE) you lose the effect of DTT, as the disulfide pairs cannot be formed, hence no repression mechanisms take place, however when looking at individual residues I do not understand why mutating the CPE only results in the opposite effect unless it is independent of its connection with the T+2residue on the A-loop.

      Strengths:

      This is an important and interesting study providing new knowledge in the protein kinase field with important therapeutic implications for the rationale design and development of next-generation inhibitors.

      Comments on revised version:

      I have one remark related to question number 5 (my question was not clear enough). I meant if the authors did look at the functional relevance of the residues implicated in the identified salt-bridge network/tethers. What happens to the proteins functionally when you mutate those residues? (represented on Fig. 8).

      Otherwise, the authors have satisfactorily addressed my concerns.

    1. Reviewer #3 (Public Review):

      Distant metastasis is the major cause of death in patients with breast cancer. In this manuscript, Liu et al. show that RGS10 deficiency elicits distant metastasis via epithelial-mesenchymal transition in breast cancer. As a prognostic indicator of breast cancer, RGS10 regulates the progress of breast cancer and affects tumor phenotypes such as epithelial-mesenchymal transformation, invasion, and migration. The conclusions of this paper are mostly well supported by data, but some analyses need to be clarified.

      (1) Because diverse biomarkers have been identified for EMT, it is recommended to declare the advantages of using RGS10 as an EMT marker.

      (2) The authors utilized databases to study the upstream regulatory mechanisms of RSG10. It is recommended to clarify why the authors focused on miRNAs rather than other epigenetic modifications.

      (3) The role of miR-539-5p in breast cancer has been described in previous studies. Hence, it is recommended to provide detailed elaboration on how miR-539-5p regulates the expression of RSG10.

      (4) To enhance the clarity and interpretability of the Western blot results, it would be advisable to mark the specific kilodalton (kDa) values of the proteins.

    2. Reviewer #1 (Public Review):

      Strengths

      The paper has shown the expression of RGS10 is related to the molecular subtype, distant metastasis, and survival status of breast cancer. The study utilizes bioinformatic analyses, human tissue samples, and in vitro and in vivo experiments which strengthen the data. RGS10 was validated to inhibit EMT through a novel mechanism dependent on LCN2 and miR-539-5p, thereby reducing cancer cell proliferation, colony formation, invasion, and migration. The study elaborated the function of RGS10 in influencing the prognosis and biological behavior which could be considered as a potential drug target in breast cancer.

      Weakness<br /> The mechanism by which the miR-539-5p/RGS10/LCN2 axis may be related to the prognosis of cancer patients still needs to be elucidated. In addition, the sample size used is relatively limited. Especially, if further exploration of the related pathways and mechanisms of LCN2 can be carried out by using organoid models, as well as the potential of RGS10 as a biomarker for further clinical translation to verify its therapeutic target effect, which will make the data more convincing.

    3. Reviewer #2 (Public Review):

      Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.

      The conclusions of this study are mostly well supported by data. However, there is a weakness in the study that needs to be clarified.

      In Figure 2A, although some references supported that SKBR3 and MCF-7 possess poorly aggressive and less invasive abilities, examining only RGS10 expression in those cells, it could not be concluded that 'RGS10 acts as a tumor suppressor in breast cancer'. It would be better to introduce a horizontal comparison of the invasive ability of these 3 types of cells using an invasion assay.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors perform a multidisciplinary approach to describe the conformational plasticity of P-Rex1 in various states (autoinhibited, IP4 bound and PIP3 bound). Hydrogen-deuterium exchange (HDX) is used to reveal how IP4 and PIP3 binding affect intramolecular interactions. While IP4 is found to stabilize autoinhibitory interactions, PIP3 does the opposite, leading to deprotection of autoinhibitory sites. Cryo-EM of IP4 bound P-Rex1 reveals a structure in the autoinhibited conformation, very similar to the unliganded structure reported previously (Chang et al. 2022). Mutations at observed autoinhibitory interfaces result in a more open structure (as shown by SAXS), reduced thermal stability and increased GEF activity in biochemical and cellular assays. Together their work portrays a dynamic enzyme that undergoes long-range conformational changes upon activation on PIP3 membranes. The results are technically sound and the conclusions are justified. The main drawback is the limited novelty due to the recently published structure of unliganded P-Rex1, which is virtually identical to the IP4 bound structure presented here. Novel aspects suggest a regulatory role for IP4, but the exact significance and mechanism of this regulation has not been explored.

      Strengths:

      The authors use a multitude of techniques to describe the dynamic nature and conformational changes of P-Rex1 upon binding to IP4 and PIP3 membranes. The different approaches together fit well with the overall conclusion that IP4 binding negatively regulates P-Rex1, while binding to PIP3 membranes leads to conformational opening and catalytic activation. The experiments are performed very thoroughly and are technically sound. The results are clear and support the conclusions.

      Weaknesses:

      (1) The novelty of the study is compromised due to the recently published structure of unliganded P-Rex1 (Chang et al. 2022). The unliganded and IP4 bound structure of P-Rex1 appear virtually identical, however, no clear comparison is presented in the manuscript. In the same paper a very similar model of P-Rex1 activation upon binding to PIP3 membranes and Gbeta-gamma is presented.

      (2) The authors demonstrate that IP4 binding to P-Rex1 results in catalytic inhibition and increased protection of autoinhibitory interfaces, as judged by HDX. The relevance of this in a cellular setting is not clear and is not experimentally demonstrated. Further, mechanistically, it is not clear whether the biochemical inhibition by IP4 of PIP3 activated P-Rex1 is due to competition of IP4 with activating PIP3 binding to the PH domain of P-Rex1, or due to stabilizing the autoinhibited conformation, or both.

      (3) Fig.1B-C: To give a standard deviation from 2 data points has no statistical significance. In this case it would be better to define as range/difference of the 2 data points.

    2. Reviewer #2 (Public Review):

      Summary:

      In this new paper, the authors used biochemical, structural, and biophysical methods to elucidate the mechanisms by which IP4, the PIP3 headgroup, can induce an autoinhibit form of P-Rex1 and propose a model of how PIP3 can trigger long-range conformational changes of P-Rex1 to relieve this autoinhibition. The main findings of this study are that a new P-Rex1 autoinhibition is driven by an IP4-induced binding of the PH domain to the DH domain active site and that this autoinhibit form stabilized by two key interactions between DEP1 and DH and between PH and IP4P 4-helix bundle (4HB) subdomain. Moreover, they found that the binding of phospholipid PIP3 to the PH domain can disrupt these interactions to relieve P-Rex1 autoinhibition.

      Strengths:

      The study provides good evidence that binding of IP4 to the P-Rex1 PH domain can make the two long-range interactions between the catalytic DH domain and the first DEP domain, and between the PH domain and the C-terminal IP4P 4HB subdomain that generate a novel P-Rex1 autoinhibition mechanism. This valuable finding adds an extra layer of P-Rex1 regulation (perhaps in the cytoplasm) to the synergistic activation by phospholipid PIP3 and the heterotrimeric Gβγ subunits at the plasma membrane. Overall, this manuscript's goal sounds interesting, the experimental data were carried out carefully and reliably.

      Weakness:

      The set of experiments with the disulfide bond S235C/M244C caused a bit of confusion for interpretation, it should be moved into the supplement, and the text and Figure 4 were altered accordingly.

    3. Reviewer #3 (Public Review):

      Summary:

      In this report, Ravala et al demonstrate that IP4, the soluble head-group of phosphatiylinositol 3,4,5 - trisphosphate (PIP3), is an inhibitor of pREX-1, a guanine nucleotide exchange factor (GEF) for Rac1 and related small G proteins that regulate cell cell migration. This finding is perhaps unexpected since pREX-1 activity is PIP3-dependent. By way of Cryo-EM (revealing the structure of the p-REX-1/IP4 complex at 4.2Å resolution), hydrogen-deuterium mass spectrometry and small angle X-ray scattering, they deduce a mechanism for IP4 activation, and conduct mutagenic and cell-based signaling assays that support it. The major finding is that IP4 stabilizes two interdomain interfaces that block access of the DH domain, which conveys GEF activity towards small G protein substrates. One of these is the interface between the PH domain that binds to IP4 and a 4-helix bundle extension of the IP4 Phosphatase domain and the DEP1 domain. The two interfaces are connected by a long helix that extends from PH to DEP1. Although the structure of fully activated pREX-1 has not been determined, the authors propose a "jackknife" mechanism, similar to that described earlier by Chang et al (2022) (referenced in the author's manuscript) in which binding of IP3 relieves a kink in a helix that links the PH/DH modules and allows the DH-PH-DEP triad to assume an extended conformation in which the DH domain is accessible. While the structure of the activated pREX-1 has not been determined, cysteine mutagenesis that enforces the proposed kink is consistent with this hypothesis. SAXS and HDX-MS experiments suggest that IP4 acts by stiffening the inhibitory interfaces, rather than by reorganizing them. Indeed, the cryo-EM structure of ligand-free pREX-1 shows that interdomain contacts are largely retained in the absence of IP4.

      Strengths:

      The manuscript thus describes a novel regulatory role for IP4 and is thus of considerable significance to our understanding of regulatory mechanisms that control cell migration, particularly in immune cell populations. Specifically, they show how the inositol polyphosphate IP4 controls the activity of pREX-1, a guanine nucleotide exchange factor that controls the activity of small G proteins Rac and CDC42 . In their clearly-written discussion, the authors explain how PIP3, the cell membrane and the Gbeta-gamma subunits of heterotrimeric membranes together localize pREX-1 at the membrane and induce activation. The quality of experimental data is high and both in vitro and cell-based assays of site-directed mutants designed to test the author's hypotheses are confirmatory. The results strongly support the conclusions. The combination of cryo-EM data, that describe the static (if heterogeneous) structures with experiments (small angle x-ray scattering and hydrogen-deuterium exchange-mass spectrometry) that report on dynamics are well employed by the authors

      Manuscript revision:

      The reviewers noted a number of weaknesses, including error analysis of the HDX data, interpretation of the mutagenesis data, the small fraction of the total number of particles used to generate the EM reconstruction, the novelty of the findings in light of the previous report by Cheng et al, 2022, various details regarding presentation of structural results and questions regarding the interpretation of the inhibition data (Figure 1D). The authors have responded adequately to these critiques. It appears that pREX-1 is a highly dynamic molecule, and considerable heterogeneity among particles might be expected.

      While, indeed, the conformation of pREX presented in this report is not novel, the finding that this inactive conformational state is stabilized by IP4 is significant and important. The evidence for this is both structural and biochemical, as indicated by micromolar competition of IP4 with PI3-enriched vesicles resulting in the inhibition of pREX-1 GEF activity.

    1. Reviewer #3 (Public Review):

      Summary:

      Studying evolutionary trajectories provides important insight in genetic architecture of adaptation and provide potential contribution to evaluating the predictability (or unpredictability) in biological processes involving adaptation. While many papers in the field address adaptation to environmental challenges, the number of studies on how genomic contexts, such as large-scale variation, can impact evolutionary outcomes adaptation is relatively low. This research experimentally evolved a genome-reduced strain for ~1000 generations with 9 replicates and dissected their evolutionary changes. Using the fitness assay of OD measurement, the authors claimed there is a general trend of increasing growth rate and decreasing carrying capacity, despite a positive correlation among all replicates. The authors also performed genomic and transcriptomic research at the end of experimental evolution, claiming the dissimilarity in the evolution at the molecular level.

      Strengths:

      The experimental evolution approach with a high number of replicates provides a good way to reveal the generality/diversity of the evolutionary routes.

      The assay of fitness, genome, and transcriptome all together allows a more thorough understanding of the evolutionary scenarios and genetic mechanisms.

      Comments on revised version:

      5 in the last round of comments: When the authors mentioned no overlapping in single mutation level, I thought the authors would directly use this statement to support their next sentence about no bias of these mutations. As the author's responded, I was suspecting no overlapping for 65 mutation across the entire genome is likely to be not statistically significant. In the revised version, the authors emphasized and specified their simulation and argument in the following sentences, so I do not have questions on this point anymore.

      14 in the last round of comments: As what authors responded, "short-term responses" meant transcriptional or physiological changes within a few hours after environmental or genetic fluctuation. "long-term responses" involve new compensatory mutations and selection. The point was that, the authors found that "the transcriptome reorganization for fitness increase triggered by evolution differed from that for fitness decrease caused by genome reduction." That is short vs long-term responses to genetic perturbation. Some other experimental evolution did short vs long-term responses to environmental perturbation and usually also found that the short-term responses are reverted in the long-term responses (e.g., https://academic.oup.com/mbe/article/33/1/25/2579742). I hope this explanation makes more sense. And I think the authors can make their own decisions on whether they would like to add this discussion or not.

    2. Reviewer #1 (Public Review):

      In this study, the authors explored how the reduced growth fitness, resulting from genome reduction, can be compensated through evolution. They conducted an evolution experiment with a strain of Escherichia coli that carried a reduced genome, over approximately 1,000 generations. The authors carried out sequencing, and found no clear genetic signatures of evolution across replicate populations. They carry out transcriptomics and a series of analyses that lead them to conclude that there are divergent mechanisms at play in individual evolutionary lineages. The authors used gene network reconstruction to identify three gene modules functionally differentiated, correlating with changes in growth fitness, genome mutation, and gene expression, respectively, due to evolutionary changes in the reduced genome.

      I think that this study addresses an interesting question. Many microbial evolution experiments evolve by loss of function mutations, but presumably a cell that has already lost so much of its genome needs to find other mechanisms to adapt. Experiments like this have the potential to study "constructive" rather than "destructive" evolution.

      Comments on revised version:

      I think the authors have carefully gone through the manuscript and addressed all of my concerns.

    3. Reviewer #2 (Public Review):

      This manuscript describes an adaptive laboratory evolution (ALE) study with a previously constructed genome-reduced E. coli. The growth performance of the end-point lineages evolved in M63 medium was comparable to the full-length wild-type level at lower cell densities.

      Subsequent mutation profiling and RNA-Seq analysis revealed many changes on the genome and transcriptomes of the evolved lineages. The authors did a great deal on analyzing the patterns of evolutionary changes between independent lineages, such as the chromosomal periodicity of transcriptomes, pathway enrichment analysis, weight gene co-expression analysis, and so on. They observed a striking diversity in the molecular characteristics amongst the evolved lineages, which, as they suggest, reflect divergent evolutionary strategies adopted by the genome-reduced organism.

      As for the overall quality of the manuscript, I am rather torn. The manuscript leans towards elaborating observed findings, rather than explaining their biological significance. For this reason, readers are left with more questions than answers. For example, fitness assay on reconstituted (single and combinatorial) mutants was not performed, nor any supporting evidence on the proposed contributions of each mutants provided. This leaves the nature of mutations - be them beneficial, neutral or deleterious, the presence of epistatic interactions, and the magnitude of fitness contribution, largely elusive. Also, it is difficult to tell whether the RNA-Seq analysis in this study managed to draw biologically meaningful conclusions, or instill insight into the nature of genome-reduced bacteria. The analysis primarily highlighted the differences in transcriptome profiles among each lineage based on metrics such as 'DEG counts' and the 'GO enrichment'. However, I could not see any specific implications regarding the biology of the evolved minimal genome drawn. In their concluding remark, 'Multiple evolutionary paths for the reduced genome to improve growth fitness were likely all roads leading to Rome,' the authors observed the first half of the sentence, but the distinctive characteristics of 'all roads' or 'evolutionary paths', which I think should have been the key aspect in this investigation, remains elusive.

      Comments on revised version:

      I appreciate the author's responses. They responded to most of the comments, but I still think that there is room for improvement. Please refer to the following comments. Quoted below are the author's responses.

      "We agree that our study leaned towards elaborating observed findings rather than explaining the detailed biological mechanisms."<br /> - Comment: I doubt if there are scientific merits in merely elaborating observed findings. The conclusion of this study suggests that evolutionary paths in reduced genomes are highly diverse. But if you think about the nature of adaptive evolution, which relies upon the spontaneous mutation event followed by selection, certain degree of divergence is always expected. The problem with current experimental setting is that there are no ways to quantitively assess whether the degree of evolutionary divergence increases as the function of genome reduction, as the authors claimed. In addition, this notion is in direct contradiction to the prediction that genome reduction constraints evolution by reducing the number of solution space. It is more logical to think and predict that genome reduction would, in turn, lead to the loss of evolutionary divergence. We are also interested to know whether solution space to the optimization problem altered in response to the genome reduction. In this regard, a control ALE experiment on non-reduced wild-type seems to be a mandatory experimental control. I highly suggest that authors present a control experiment, as it was done for "JCVI syn3.0B vs non-minimal M. mycoides" (doi: 10.1038/s41586 023 06288 x) and "E. coli eMS57 vs MG1655" (doi: 10.1038/s41467 019 08888 6).<br /> "We focused on the genome wide biological features rather than the specific biological functions."<br /> - Comment: The 'biological features' delivered in current manuscript does not give insight as to which genomic changes translated into strain fitness improvement. Rather than explaining the genotype-phenotype relationships and/or the mechanistic basis of fitness improvement, authors merely elaborated on the observed phenotypes. I question the scientific merits of such 'findings'.<br /> "Although the reduced growth rate caused by genome reduction could be recovered by experimental evolution, it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome and how the genome wide changes occurred to match the growth fitness increase."<br /> - Comment: This response is very confusing to understand. "it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome" - what aspects remain unclear?? What assumption led the authors to believe that reduced genome's fitness cannot be evolutionarily improved?<br /> - Comment: "and how the genome wide changes occurred to match the growth fitness increase" - this is exactly the aspect that authors should deliver, instead of just elaborating the observed findings. Why don't authors select one or two fastest-growing (or the fittest) lineages and specifically analyze underlying adaptive changes (i.e. genotype-phenotype relationships)?

    1. Reviewer #1 (Public Review):

      Summary:

      Tuberculous meningitis (TBM) is one of the most severe form of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C and CD4) were identified as strong predictors of death from TBM.

      Strengths:

      This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample and analyse and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights in the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

      Weaknesses:

      The authors have addressed all the weaknesses in the revised version.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes, and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

      Strengths:

      Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.<br /> The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.<br /> The addition of a new validation cohort to evaluate the generalisability of their prognostic model in the revised manuscript is welcome.

      Weaknesses:

      The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis cannot be used to make causal inferences. In addition the functional annotations are limited to 'high-level' terms that fail to define the biology very precisely. As a result, the conclusions about the immunopathogenesis of TBM are not adequately substantiated.<br /> The lack of AUROC confidence intervals and direct comparison to the reference prognostic model in the validation cohort undermines confidence in their conclusion that their new prognostic model combing gene expression data and clinical variables performs better than the reference model.

    1. Reviewer #2 (Public Review):

      Summary:

      This study from Bamgbose et al. identifies a new and important interaction between H4K20me and Parp1 that regulates inducible genes during development and heat stress. The authors present convincing experiments that form a mostly complete manuscript that significantly contributes to our understanding of how Parp1 associates with target genes to regulate their expression.

      Strengths:

      The authors present 3 compelling experiments to support the interaction between Parp1 and H4K20me, including:

      (1) PR-Set7 mutants remove all K4K20me and phenocopy Parp mutant developmental arrest and defective heat shock protein induction.

      (2) PR-Set7 mutants have dramatically reduced Parp1 association with chromatin and reduced poly-ADP ribosylation.

      (3) Parp1 directly binds H4K20me in vitro.

    1. Reviewer #1 (Public Review):

      Summary:

      The endocannabinoid system (ECS) components are dysregulated within the lesion microenvironment and systemic circulation of endometriosis patients. Using endometriosis mouse models and genetic loss of function approaches, Lingegowda et al. report that canonical ECS receptors, CNR1 and CNR2, are required for disease initiation, progression, and T-cell dysfunction.

      Strengths:

      The approach uses genetic approaches to establish in vivo causal relationships between dysregulated ECS and endometriosis pathogenesis. The experimental design incorporates bulk RNAseq approaches, as well as imaging mass spectrometry to characterize the mouse lesions. The identification of immune-related and T-cell-specific changes in the lesion microenvironment of CNR1 and CNR2 knockout (KO) mice represents a significant advance

      Weaknesses:

      Although the mouse phenotypic analyses involve a detailed molecular characterization of the lesion microenvironment using genomic approaches, detailed measurements of lesion size/burden and histopathology would provide a better understanding of how CNR1 or CNR2 loss contributes to endometriosis initiation and progression. The cell or tissue-specific effects of the CNR1 and CNR2 are not incorporated into the experimental design of the studies. Although this aspect of the approach is recognized as a major limitation, global CNR1 and CNR2 KO may affect normal female reproductive tract function, ovarian steroid hormone levels, decidualization response, or lead to preexisting alterations in host or donor tissues, which could affect lesion establishment and development in the surgically induced, syngeneic mouse model of endometriosis.

    2. Reviewer #2 (Public Review):

      Summary:

      The endocannabinoid system (ECS) regulates many critical functions, including reproductive function. Recent evidence indicates that dysregulated ECS contributes to endometriosis pathophysiology and the microenvironment. Therefore, the authors further examined the dysregulated ECS and its mechanisms in endometriosis lesion establishment and progression using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. The authors presented differential gene expressions and altered pathways, especially those related to the adaptive immune response in CNR1 and CNR2 ko lesions. Interstingly, the T-cell population was dramatically reduced in the peritoneal cavity lacking CNR2, and the loss of proliferative activity of CD4+ T helper cells. Imaging mass cytometry analysis provided spatial profiling of cell populations and potential relationships among immune cells and other cell types. This study provided fundamental knowledge of the endocannabinoid system in endometriosis pathophysiology.

      Strengths:

      Dysregulated ECS and its mechanisms in endometriosis pathogenesis were assessed using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. Not only endometriotic lesions, but also peritoneal exudate (and splenic) cells were analyzed to understand the specific local disease environment under the dysregulated ECS.

      Providing the results of transcriptional profiles and pathways, immune cell profiles, and spatial profiles of cell populations support altered immune cell population and their disrupted functions in endometriosis pathogenesis via dysregulation of ECS.

      In line 386: Role of CNR2 in T cells. The finding that nearly absent CD3+ T cells in the peritoneal cavity of CNR2 ko mice is intriguing.

      The interpretation of the results is well-described in the Discussion.

      Weaknesses:

      The study was terminated and characterized 7 days after EM induction surgery without the details for selecting the time point to perform the experiments.

      The authors also mentioned that altered eutopic endometrium contributes to the establishment and progression of endometriosis. This reviewer agrees with lines 324-325. If so, DEGs are likely identified between eutopic endometrium (with/without endometriosis lesion induction) and ectopic lesions. It would be nice to see the data (even though using publicly available data sets).

      Figure 7 CDEF. The results of the statistical analyses and analyzed sample numbers should be added. Lines 444-450 cannot be reviewed without them.

      This reviewer agrees with lines 498-500. In contrast, retrograded menstrual debris is not decidualized. The section could be modified to avoid misunderstanding.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to explore how much two known minibinder protein domains against the Spike protein of SARS-CoV-2 can function as a binding domain of 2 sets of synthetic receptors (SNIPR and CAR); the authors also want to know how some modifications of the linkers of these new receptors affect their activation profile.

      Major strengths and weaknesses of the methods and results:

      - Strengths include: analysis of synthetic receptor function for 2 classes of synthetic receptors, with robust and appropriate assays for both kinds of receptors. The modifications of the linkers are also interesting and the types of modifications that are often used in the field.

      - Weaknesses include: none of the data analysis provides statistical interpretation of the results (that I could find). One dataset is confusing: Figures 5A and C, are said to be the same assay with the same constructs, but the results are 30% in A, and 70% in C.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      Given the open-ended nature of the goal (implicit in it being an exploration), it is hard to say if the authors have reached their aims; they have done an exploration for sure; is it big enough an exploration? This reviewer is not sure.

      The results are extremely clearly presented, both in the figures and in the text, both for the methods and the results. The claims put forward (with limited exceptions see below) are very solidly supported by the presented data.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      The work may stimulate others to consider minibinders as potential binding domains for synthetic receptors. The modifications that are presented although not novel, do provide a starting point for larger-scale analysis.

      It is not clear how much this is generalizable to other binders (the authors don't make such claims though). The claims are very focused on the tested modifications, and the 2 receptors and minibinder used, a scope that I would define as narrow; the take-home message if one wants to try it with other minibinders or other receptors seems to be: test a few things, and your results may surprise you.

      Any additional context you think would help readers interpret or understand the significance of the work:

      We are at the infancy stage of synthetic receptors optimization and next-generation derivation; there is a dearth of systematic studies, as most focus is on developing a few ones that work. This work is an interesting attempt to catalyze more research with these new minibinders. Will it be picked up based on this? Not sure.

    2. Reviewer #2 (Public Review):

      Summary:

      Weinberg et al. show that spike LCB minibinders can be used as the extracellular domain for SynNotch, SNIPR, and CAR. They evaluated their designs against cells expressing the target proteins and live virus.

      Strengths:

      This is a good fundamental demonstration of alternative use of the minibinder. The results are unsurprising but robust and solid in most cases.

      Weaknesses:

      The manuscript would benefit from better descriptions of the study's novelty. Given that LCB previously worked in SynNotch, what unexpected finding was uncovered by this study? It is well known that the extracellular domain of CAR is amendable to different types of binding domains (e.g., scFv, nanobody, DARPin, natural ligands). So, it is not surprising that a minibinder also works with CAR. We don't know if the minibinders are more or less likely to be compatible with CAR or SNIPR.

      The demonstrations are all done using just 1 minibinder. It is hard to conclude that minibinders, as a unique class of protein binders, are generalizable in different contexts. All it can conclude is that this specific Spike minibinder can be used in synNotch, SNIPR, and CAR. The LCB3 minibinder seems to be much weaker.

      The sensing of live viruses is interesting, but the output is very weak. It is difficult to imagine a utility for such a weak response.

    1. Reviewer #1 (Public Review):

      ⍺-synuclein (syn) is a critical protein involved in many aspects of human health and disease. Previous studies have demonstrated that post-translational modifications (PTMs) play an important role in regulating the structural dynamics of syn. However, how post-translational modifications regulate syn function remains unclear. In this manuscript, Wang et al. reported an exciting discovery that N-acetylation of syn enhances the clustering of synaptic vesicles (SVs) through its interaction with lysophosphatidylcholine (LPC). Using an array of biochemical reconstitution, single vesicle imaging, and structural approaches, the authors uncovered that N-acetylation caused distinct oligomerization of syn in the presence of LPC, which is directly related to the level of SV clustering. This work provides novel insights into the regulation of synaptic transmission by syn and might also shed light on new ways to control neurological disorders caused by syn mutations.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors provide evidence that posttranslational modification of synuclein by N-acetylation increases clustering of synaptic vesicles in vitro. When using liposomes the authors found that while clustering is enhanced by the presence of either lysophosphatidylcholine (LPC) or phosphatidylcholine in the membrane, N-acetylation enhanced clustering only in the presence of LPC. Enhancement of binding was also observed when LPC micelles were used, which was corroborated by increased intra/intermolecular cross-linking of N-acetylated synuclein in the presence of LPC.

      Strengths:

      It is known for many years that synuclein binds to synaptic vesicles but the physiological role of this interaction is still debated. The strength of this manuscript is clearly in the structural characterization of the interaction of synuclein and lipids (involving NMR-spectroscopy) showing that the N-terminal 100 residues of synuclein are involved in LPC-interaction, and the demonstration that N-acetylation enhances the interaction between synuclein and LPC.

      Weaknesses:

      Lysophosphatides form detergent-like micelles that destabilize membranes, with their steady-state concentrations in native membranes being low, questioning the significance of the findings. Oddly, no difference in binding between the N-acetylated and unmodified form was observed when the acidic phospholipid phosphatidylserine was included. It remains unclear to which extent binding to LPC is physiologically relevant, particularly in the light of recent reports from other laboratories showing that synuclein may interact with liquid-liquid phases of synapsin I that were reported to cause vesicle clustering.

    1. Reviewer #1 (Public Review):

      Summary:

      The mammalian Shieldin complex consisting of REV7 (aka MAD2L2, MAD2B) and SHLD1-3 affects pathway usage in DSB repair favoring non-homologous endjoining (NHEJ) at the expense of homologous recombination (HR) by blocking resection and/or priming fill-in DNA synthesis to maintain or generate near blunt ends suitable for NHEJ. While the budding yeast Saccharomyces cerevisiae does not have homologs to SHLD1-3, it does have Rev7, which was identified to function in conjunction with Rev3 in the translesion DNA polymerase zeta. Testing the hypothesis that Rev7 also affects DSB resection in budding yeast, the work identified a direct interaction between Rev7 and the Rad50-Mre11-Xrs2 complex by two-hybrid and direct protein interaction experiments. Deletion analysis identified that the 42 amino acid C-terminal region was necessary and sufficient for the 2-hybrid interaction. Direct biochemical analysis of the 42 aa peptide was not possible. Rev7 deficient cells were found to be sensitive to HU only in synergy with G2 tetraplex forming DNA. Importantly, the 42 aa peptide alone suppressed this phenotype. Biochemical analysis with full-length Rev7 and a C-terminal truncation lacking the 42 aa region shows G4-specific DNA binding that is abolished in the C-terminal truncation and with a substrate containing mutations to prevent G4 formation. Rev7 lacks nuclease activity but inhibits the dsDNA exonuclease activity of Mre11. The C-terminal truncation protein lacking the 42 aa region also showed some inhibition suggesting the involvement of additional binding sites besides the 42 aa region. Also, the Mre11 ssDNA endonuclease activity is inhibited by Rev7 but not the degradation of linear ssDNA. Rev7 does not affect ATP binding by Rad50 but inhibits in a concentration-dependent manner the Rad50 ATPase activity. The C-terminal truncation protein lacking the 42 aa region also showed some inhibition but significantly less than the full-length protein.

      Using an established plasmid-based NHEJ assay, the authors provide strong evidence that Rev7 affects NEHJ, showing a four-fold reduction in this assay. The mutations in the other Pol zeta subunits, Rev3 and Rev1, show a significantly smaller effect (~25% reduction). A strain expressing only the Rev7 C-terminal 42 aa peptide showed no NHEJ defect, while the truncation protein lacking this region exhibited a smaller defect than the deletion of REV7. The conclusion that Rev7 supports NHEJ mainly through the 42 aa region was validated using a chromosomal NHEJ assay. The effect on HR was assessed using a plasmid:chromosome system containing G4 forming DNA. The rev7 deletion strain showed an increase in HR in this system in the presence and absence of HU. Cells expressing the 42 aa peptide were indistinguishable from the wild type as were cells expressing the Rev7 truncation lacking the 42 aa region. The authors conclude that Rev7 suppresses HR, but the context appears to be system-specific and the conclusion that Rev7 abolished HR repair of DSBs is unwarranted and overly broad.

      Strength:

      This is a well-written manuscript with many well-executed experiments that suggest that Rev7 inhibits MRX-mediated resection to favor NEHJ during DSB repair. This finding is novel and provides insight into the potential mechanism of how the human Shieldin complex might antagonize resection.

      Weaknesses:

      The nuclease experiments were conducted using manganese as a divalent cation, and it is unclear whether there is an effect with the more physiological magnesium cation. Additional controls for the ATPase and nuclease experiments to eliminate non-specific effects would be helpful. Evidence for an effect on resection in cells is lacking. The major conclusion about the role of Rev7 in regulating the choice between HR and NHEJ is not justified, as only a highly specialized assay is used that does not warrant the broad conclusion drawn. Specifically, the results that the Rev7 C-terminal truncation lacking the 42 aa region still suppresses HR is unexpected and unexplained. The effect of Rev7 on G4 metabolism is underdeveloped and distracts from the main results that Rev7 modulated MRX activity. The authors should consider removing this part and develop a more complete story on this later.

    2. Reviewer #2 (Public Review):

      In this study, Badugu et al investigate the Rev7 roles in regulating the Mre11-Rad50-Xrs2 complex and in the metabolism of G4 structures. The authors also try to make a conclusion that REV7 can regulate the DSB repair choice between homologous recombination and non-homologous end joining.

      The major observations of this study are:

      (1) Rev7 interacts with the individual components of the MRX complex in a two-hybrid assay and in a protein-protein interaction assay (microscale thermophoresisi) in vitro.<br /> (2) Modeling using AlphaFold-Multimier also indicated that Rev7 can interact with Mre11 and Rad50.<br /> (3) Using a two-hybrid assay, a 42 C terminal domain in Rev7 responsible for the interaction with MRX was identified.<br /> (4) Rev7 inhibits Mre11 nuclease and Rad50 ATPase activities in vitro.<br /> (5) Rev 7 promotes NHEJ in plasmid cutting/relegation assay.<br /> (6) Rev7 inhibits recombination between chromosomal ura3-1 allele and plasmid ura3 allele containing G4 structure.<br /> (7) Using an assay developed in V. Zakian's lab, it was found that rev7 mutants grow poorly when both G4 is present in the genome and yeast are treated with HU.<br /> (8) In vitro, purified Rev7 binds to G4-containing substrates.

      In general, a lot of experiments have been conducted, but the major conclusion about the role of Rev7 in regulating the choice between HR and NHEJ is not justified.

      (1) Two stories that do not overlap (regulation of MRX by Rev7 and Rev7's role in G4 metabolism) are brought under one umbrella in this work. There is no connection unless the authors demonstrate that Rev7 inhibits the cleavage of G4 structures by the MRX complex.

      (2) The authors cannot conclude based on the recombination assay between G4-containing 2-micron plasmid and chromosomal ura3-1 that Rev7" completely abolishes DSB-induced HR". First of all, there is no evidence that DSBs are formed at G4. Why is there no induction of recombination when cells are treated with HU? Second, as the authors showed, Rev7 binds to G4, therefore it is not clear if the observed effects are the result of Rev7 interaction with G4 or its impact on HR. The established HO-based assays where the speed of resection can be monitored (e.g., Mimitou and Symington, 2010) have to be used to justify the conclusion that Rev7 inhibits MRX nuclease activity in vivo.

    3. Reviewer #3 (Public Review):

      Summary:

      REV7 facilitates the recruitment of Shieldin complex and thereby inhibits end resection and controls DSB repair choice in metazoan cells. Puzzlingly, Shieldin is absent in many organisms and it is unknown if and how Rev7 regulates DSB repair in these cells. The authors surmised that yeast Rev7 physically interacts with Mre11/Rad50/Xrs2 (MRX), the short-range resection nuclease complex, and tested this premise using yeast two-hybrid (Y2H) and microscale thermophoresis (MST). The results convincingly showed that the individual subunits of MRX interact robustly with Rev7. AlphaFold Multimer modelling followed by Y2H confirmed that the carboxy-terminal 42 amino acid is essential for interaction with MR and G4 DNA binding by REV7. The mutant rev7 lacking the binding interface (Rev7-C1) to MR shows moderate inhibition to the nuclease and the ATPase activity of Mre11/Rad50 in biochemical assays. Deletion of REV7 also causes a mild reduction in NHEJ using both plasmid and chromosome-based assays and increases mitotic recombination between chromosomal ura3-01 and the plasmid ura3 allele interrupted by G4. The authors concluded that Rev7 facilitates NHEJ and antagonizes HR even in budding yeast, but it achieves this by blocking Mre11 nuclease and Rad50 ATPase.

      Weaknesses:

      There are many strengths to the studies and the broad types of well-established assays were used to deduce the conclusion. Nevertheless, I have several concerns about the validity of experimental settings due to the lack of several key controls essential to interpret the experimental results. The manuscript also needs a few additional functional assays to reach the accurate conclusions as proposed.

      (1) AlphaFold model predicts that Mre11-Rev7 and Rad50-Rev7 binding interfaces overlap and Rev7 might bind only to Mre11 or Rad50 at a time. Interestingly, however, Rev7 appears dimerized (Figure 1). Since the MR complex also forms with 2M and 2R in the complex, it should still be possible if REV7 can interact with +-*both M and R in the MR complex. The author should perform MST using MR complex instead of individual MR components. The authors should also analyze if Rev7-C1 is indeed deficient in interaction with MR individually and with complex using MST assay.

      (2) The nuclease and the ATPase assays require additional controls. Does Rev7 inhibit the other nuclease or ATPase non-specifically? Are these outcomes due to the non-specific or promiscuous activity of Rev7? In Figure 6, the effect of REV7 on the ATP binding of Rad50 could be hard to assess because the maximum Rad50 level (1 uM) was used in the experiments. The author should use the suboptimal level of Rad50 to check if REV7 still does not influence ATP binding by Rad50.

      (3) The moderate deficiency in NHEJ using plasmid-based assay in REV7 deleted cells can be attributed to aberrant cell cycle or mating type in rev7 deleted cells. The authors should demonstrate that rev7 deleted cells retain largely normal cell cycle patterns and the mating type phenotypes. The author should also analyze the breakpoints in plasmid-based NHEJ assays in all mutants, especially from rev7 and rev7-C1 cells.

      (4) It is puzzling why the authors did not analyze end resection defects in rev7 deleted cells after a DSB. The author should employ the widely used resection assay after a HO break in rev3, rev7, and mre11 rev7 cells as described previously.

      (5) Is it possible that Rev7 also contributes to NHEJ as the part of TLS polymerase complex? Although NHEJ largely depends on Pol4, the authors should not rule out that the observed NHEJ defect in rev7 cells is due at least partially to its TLS defect. In fact, both rev3 or rev1 cells are partially defective in NHEJ (Figure 7). Rev7-C1 is less deficient in NHEJ than REV7 deletion. These results predict that rev7-C1 rev3 should be as defective as the rev7 deletion. Additionally, the authors should examine if Rev7-C1 might be deficient in TLS. In this regard, does rev7-C1 reduce TLS and TLS-dependent mutagenesis? Is it dominant? The authors should also check if Rev3 or Rev1 are stable in Rev7 deleted or rev7-C1 cells by immunoblot assays.

      (6) Due to the G4 DNA and G4 binding activity of REV7, it is not clear which class of events the authors are measuring in plasmid-chromosome recombination assay in Figure 9. Do they measure G4 instability or the integrity of recombination or both in rev7 deleted cells? Instead, the effect of rev7 deletion or rev7-C1 on recombination should be measured directly by more standard mitotic recombination assays like mating type switch or his3 repeat recombination.

    1. Reviewer #1 (Public Review):

      Summary:

      Extracellular ATP represents a danger-associated molecular pattern associated to tissue damage and can act also in an autocrine fashion in macrophages to promote proinflammatory responses, as observed in a previous paper by the authors in abdominal sepsis. The present study addresses an important aspect possibly conditioning the outcome of sepsis that is the release of ATP by bacteria. The authors show that sepsis-associated bacteria do in fact release ATP in a growth dependent and strain-specific manner. However, whether this bacterial derived ATP play a role in the pathogenesis of abdominal sepsis has not been determined. To address this question, a number of mutant strains of E. coli has been used first to correlate bacterial ATP release with growth and then, with outer membrane integrity and bacterial death. By using E. coli transformants expressing the ATP-degrading enzyme apyrase in the periplasmic space, the paper nicely shows that abdominal sepsis by these transformants results in significantly improved survival. This effect was associated with a reduction of peritoneal macrophages and CX3CR1+ monocytes, and an increase in neutrophils. To extrapolate the function of bacterial ATP from the systemic response to microorganisms, the authors exploited bacterial OMVs either loaded or not with ATP to investigate the systemic effects devoid of living microorganisms. This approach showed that ATP-loaded OMVs induced degranulation of neutrophils after lysosomal uptake, suggesting that this mechanism could contribute to sepsis severity.

      Strengths:

      A strong part of the study is the analysis of E. coli mutants to address different aspects of bacterial release of ATP that could be relevant during systemic dissemination of bacteria in the host.

      Weaknesses:

      As pointed out in the limitations of the study whether ATP-loaded OMVs provide a mechanistic proof of the pathogenetic role of bacteria-derived ATP independently of live microorganisms in sepsis is interesting but not definitively convincing. It could be useful to see whether degranulation of neutrophils is differentially induced by apyrase-expressing vs control E. coli transformants. Also, the increase of neutrophils in bacterial ATP-depleted abdominal sepsis, which has better outcomes than "ATP-proficient" sepsis, seems difficult to correlate to the hypothesized tissue damage induced by ATP delivered via non-infectious OMVs. Are the neutrophils counts affected by ATP delivered via OMVs? A comparison of cytokine profiles in the abdominal fluids of E. coli and OMV treated animals could be helpful in defining the different responses induced by OMV-delivered vs bacterial-released ATP. The analyses performed on OMV treated versus E. coli infected mice are not closely related and difficult to combine when trying to draw a hypothesis for bacterial ATP in sepsis. Also it was not clear why lung neutrophils were used for the RNAseq data generation and analysis.

    2. Reviewer #2 (Public Review):

      Summary:

      In their manuscript "Released Bacterial ATP Shapes Local and Systemic Inflammation during Abdominal Sepsis", Daniel Spari et al. explored the dual role of ATP in exacerbating sepsis, revealing that ATP from both host and bacteria significantly impacts immune responses and disease progression.

      Strengths:<br /> The study meticulously examines the complex relationship between ATP release and bacterial growth, membrane integrity, and how bacterial ATP potentially dampens inflammatory responses, thereby impairing survival in sepsis models. Additionally, this compelling paper implies a concept that bacterial OMVs act as vehicles for the systemic distribution of ATP, influencing neutrophil activity and exacerbating sepsis severity.

      Weaknesses:

      (1) The researchers extracted and cultivated abdominal fluid on LB agar plates, then randomly picked 25 colonies for analysis. However, they did not conduct 16S rRNA gene amplicon sequencing on the fluid itself. It is worth noting that the bacterial species present may vary depending on the individual patients. It would be beneficial if the authors could specify whether they've verified the existence of unculturable species capable of secreting high levels of Extracellular ATP.

      (2) Do mice lacking commensal bacteria show a lack of extracellular ATP following cecal ligation puncture?

      (3) The authors isolated various bacteria from abdominal fluid, encompassing both Gram-negative and Gram-positive types. Nevertheless, their emphasis appeared to be primarily on the Gram-negative E. coli. It would be beneficial to ascertain whether the mechanisms of Extracellular ATP release differ between Gram-positive and Gram-negative bacteria. This is particularly relevant given that the Gram-positive bacterium E. faecalis, also isolated from the abdominal fluid, is recognized for its propensity to release substantial amounts of Extracellular ATP.

      (4) The authors observed changes in the levels of LPM, SPM, and neutrophils in vivo. However, it remains uncertain whether the proliferation or migration of these cells is modulated or inhibited by ATP receptors like P2Y receptors. This aspect requires further investigation to establish a convincing connection.

      (5) Additionally, is it possible that the observed in vivo changes could be triggered by bacterial components other than Extracellular ATP? In this research field, a comprehensive collection of inhibitors is available, so it is desirable to utilize them to demonstrate clearer results.

      (6) Have the authors considered the role of host-derived Extracellular ATP in the context of inflammation?

      (7) The authors mention that Extracellular ATP is rapidly hydrolyzed by ectonucleotases in vivo. Are the changes of immune cells within the peritoneal cavity caused by Extracellular ATP released from bacterial death or by OMVs?

      (8) In the manuscript, the sample size (n) for the data consistently remains at 2. I would suggest expanding the sample size to enhance the robustness and rigor of the results.

    1. Joint Public Review

      This work investigates the evolutionary conservation and functional significance of FoxO transcription factors in the response of airway epithelia to diverse stressors, ranging from hypoxia to temperature fluctuations and oxidative stress. Utilizing a comprehensive approach encompassing Drosophila, murine models, and human samples, the study investigates FoxO's role across species. The authors demonstrate that hypoxia triggers a dFOXO-dependent immune response in Drosophila airways, with subsequent nuclear localization of dFOXO in response to various stressors. Transcriptomic analysis reveals differential regulation of crucial gene categories in respiratory tissues, highlighting FoxO's involvement in metabolic pathways, DNA replication, and stress resistance mechanisms.

      The study underscores FoxO's importance in maintaining homeostasis by revealing reduced stress resistance in dFOXO Drosophila mutants, shedding light on its protective role against stressors. In mammalian airway cells, FoxO exhibits nuclear translocation in response to hypoxia, accompanied by upregulation of cytokines with antimicrobial activities. Intriguingly, mouse models of asthma show FoxO downregulation, which is also observed in sputum samples from human asthma patients, implicating FoxO dysregulation in respiratory pathologies.

      Overall, the manuscript suggests that FoxO signaling plays a critical role in preserving airway epithelial cell homeostasis under stress conditions, with implications for understanding and potentially treating respiratory diseases like asthma. By providing compelling evidence of FoxO's involvement across species and its correlation with disease states, the study underscores the importance of further exploration into FoxO-mediated mechanisms in respiratory health.

      Strengths

      (1) This study shows that FoxO transcription factors are critical for regulating immune and inflammatory responses across species, and for orchestrating responses to various stressors encountered by airway epithelial cells, including hypoxia, temperature changes, and oxidative stress. Understanding the intricate regulation of FoxO transcription factors provides insights into modulating immune and inflammatory pathways, offering potential avenues for therapeutic interventions against respiratory diseases and other illnesses.

      (2) The work employs diverse model systems, including Drosophila, murine models, and human samples, thereby establishing a conserved role for FoxOs in airway epithelium and aiding translational relevance to human health.

      (3) The manuscript establishes a strong correlation between FoxO expression levels and respiratory diseases such as asthma. Through analyses of both murine models of asthma and asthmatic human samples, the study demonstrates a consistent reduction in FoxO expression, indicating its potential involvement in the pathogenesis of respiratory disorders. This correlation underscores the clinical relevance of FoxO dysregulation and opens avenues for developing treatments for respiratory conditions like asthma, COPD, and pulmonary fibrosis, addressing significant unmet clinical needs.

      (4) The study unveils intriguing mechanistic details regarding FoxO regulation and function. Particularly noteworthy is the observation of distinct regulatory mechanisms governing dFOXO translocation in response to different stressors. The independence of hypoxia-induced dFOXO translocation from JNK signaling adds complexity to our understanding of FoxO-mediated stress responses. Such mechanistic insights deepen our understanding of FoxO biology and pave the way for future investigations into the intricacies of FoxO signaling pathways in airway epithelial cells.

      Weaknesses

      (1) The manuscript does not distinguish between FoxO expression levels and FoxO activation status. While FoxO nuclear localization is observed in Drosophila and murine models, it remains unclear whether this reflects active FoxO signaling or merely FoxO expression, limiting the mechanistic understanding of FoxO regulation.

      (2) The manuscript utilizes various stressors across different experiments without providing a clear rationale for their selection. This lack of coherence in stressor choice complicates the interpretation of results and diminishes the ability to draw meaningful comparisons across experiments.

      (3) The manuscript frequently refers to "FoxO signaling" without providing specific signaling readouts. This ambiguity undermines the clarity of the conclusions drawn from the data and hinders the establishment of clear cause-and-effect relationships between FoxO activation and cellular responses to stress.

      (4) Many conclusions drawn in the manuscript rely heavily on the quantification of immunostaining images for FoxO nuclear localization. While this is an important observation, it does not provide a sufficient mechanistic understanding of FoxO expression or activation regulation.

      (5) The primary weakness in the Drosophila experiments is the analysis of dFoxO in homozygous dFoxO mutant animals, which precludes determining the specific role of dFoxO in airway cells. Despite available tools for tissue-specific gene manipulation, such as tissue-specific RNAi and CRISPR techniques, these approaches were not employed, limiting the precision of the findings.

      (6) In mammalian experiments, the results are primarily correlative, lacking causal evidence. While changes in FoxO expression are observed under pathological conditions, the absence of experiments on FoxO-deficient cells or tissues precludes establishing a causal relationship between FoxO dysregulation and respiratory pathologies.

      (7) Although the evidence suggests a critical role for FoxO in airway tissues, the precise nature of this role remains unclear. With gene expression changes analyzed only in Drosophila, the extent of conservation in downstream FoxO-mediated pathways between mammals and Drosophila remains uncertain. Additionally, the functional consequences of FoxO deficiency in airway cells were not determined, hindering comparisons between species and limiting insights into FoxO's functional roles in different contexts.

    1. Reviewer #1 (Public Review):

      In this manuscript, entitled " Merging Multi-OMICs with Proteome Integral Solubility Alteration Unveils Antibiotic Mode of Action", Dr. Maity and colleagues aim to elucidate the mechanisms of action of antibiotics through combined approaches of omics and the PISA tool to discover new targets of five drugs developed against Helicobacter pylori.

      Strengths:

      Using transcriptomics, proteomic analysis, protein stability (PISA), and integrative analysis, Dr. Maity and colleagues have identified pathways targeted by five compounds initially discovered as inhibitors against H. pylori flavodoxin. This study underscores the necessity of a global approach to comprehensively understanding the mechanisms of drug action. The experiments conducted in this paper are well-designed and the obtained results support the authors' conclusions.

      Weaknesses:

      This manuscript describes several interesting findings. A few points listed below require further clarification:

      (1) Compounds IVk exhibits markedly different behavior compared to the other compounds. The authors are encouraged to discuss these findings in the context of existing literature or chemical principles.

      (2) The incubation time for treating H. pylori with the drugs was set at 4 hours for transcriptomic and proteomic analyses, compared to 20 min for PISA analysis. The authors need to explain the reason for these differences in treatment duration.

      (3) The PISA method facilitates the identification of proteins stabilized by drug treatment. DnaJ and Trigger factor (tig), well-known molecular chaperones, prevent protein aggregation under stress. Their enrichment in the soluble fraction is expected and does not necessarily indicate direct stabilization by the drugs. The possibility that their stabilization results from binding to other proteins destabilized by the drugs should be considered. To prevent any misunderstanding, the authors should clarify that their methodology does not solely identify direct targets. Instead, the combination of their findings sheds light on various pathways affected by the treatment.

      (4) At the end of the manuscript, the authors conclude that four compounds "strongly interact with CagA". However, detailed molecule/protein interaction studies are necessary to definitively support this claim. The authors should exercise caution in their statement. As the authors mentioned, additional research (not mandated in the scope of this current paper) is necessary to determine the drug's binding affinity to the proposed targets.

      (5) The authors should clarify the PISA-Express approach over standard PISA. A detailed explanation of the differences between both methods in the main text is important.

    2. Reviewer #2 (Public Review):

      Summary:

      This work has an important and ambitious goal: understanding the effects of drugs, in this case antimicrobial molecules, from a holistic perspective. This means that the effect of drugs on a group of genes and whole metabolic pathways is unveiled, rather than its immediate effect on a protein target only. To achieve this goal the authors successfully implement the PISA-Express method (Protein Integral Solubility Alteration), using combined transcriptomics, proteomics, and drug-induced changes in protein stability to retrieve a large number of genes and proteins affected by the used compounds. The compounds used in the study (compound IVa, IVb, IVj, and IVk) were all derived from the precursors compound IV, they are effective against Helicobacter pylori, and their mode of action on clusters of genes and proteins has been compared to the one of the known pylori drug metronidazole (MNZ). Due to this comparison, and confirmed by the diversity of responses induced by these very similar compounds, it can be understood that the approach used is reliable and very informative. Notably, although all compound IV derivatives were designed to target pylori Flavodoxin (Fld), only one showed a statistically significant shift of Fld solubility (compound IVj, FIG S11). For most other compounds, instead, the involvement of other possible targets affecting diverse metabolic pathways was also observed, notably concerning a series of genes with other important functions: CagA (virulence factor), FtsY/FtsA (cell division), AtpD (ATP-synthase complex), the essential GTPase ObgE, Tig (protein export), as well as other proteins involved in ribosomal synthesis, chemotaxis/motility and DNA replication/repairs. Finally, for all tested molecules, in vivo functional data have been collected that parallel the omics predictions, comforting them and showing that compound IV derivatives differently affect cellular generation of reactive oxygen species (ROS), oxygen consumption rates (OCR), DNA damage, and ATP synthesis.

      Strengths:

      The approach used is very potent in retrieving the effects of chemically active molecules (in this case antimicrobial ones) on whole cells, evidencing protein and gene networks that are involved in cell sensitivity to the studied molecules. The choice of these compounds against H. pylori is perfect, showcasing how different the real biological response is, compared to the hypothetical one. In fact, although all molecules were retrieved based on their activity on Fld, the authors unambiguously show that large unexpected gene clusters may, and in fact are, affected by these compounds, and each of them in different manners.

      Impact:

      The present work is the first report relying on PISA-Express performed on living bacterial cells. Because of its findings, this work will certainly have a high impact on the way we design research to develop effective drugs, allowing us to understand the fine effects of a drug on gene clusters, drive molecule design towards specific metabolic pathways, and eventually better plan the combination of multiple active molecules for drug formulation. Beyond this, however, we expect this article to impact other related and unrelated fields of research as well. The same holistic approaches might also allow gaining deep, and sometimes unexpected, insight into the cellular targets involved in drug side effects, drug resistance, toxicity, and cellular adaptation, in fields beyond the medicinal one, such as cellular biology and environmental studies on pollutants.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.

    2. Reviewer #2 (Public Review):

      The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.

      The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.

      Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.

      Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.

      Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.

      Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.

    3. Reviewer #3 (Public Review):

      Summary:

      The paper attempts to model the functional significance of variants of PLCG2 in a set of patients with variable clinical manifestations.

      Strengths:

      A study attempting to use the Drosophila system to test the function of variants reported from human patients.

      Weaknesses:

      Additional experiments are needed to shore up the claims in the paper. These are listed below.

      Major Comments:

      (1) Does the pLI/ missense constraint Z score prediction algorithm take into consideration whether the gene exhibits monoallelic or biallelic expression?

      (2) Figure 1B: Include human PLCG2 in the alignment that displays the species-wide conserved variant residues.

      (3) Figure 4A:<br /> Given that<br /> (i) sl is predicted to be the fly ortholog for both mammalian PLCγ isozymes: PLCG1 and PLCG2 [Line 62]<br /> (ii) they are shown to have non-redundant roles in mammals [Line 71] and<br /> (iii) reconstituting PLCG1 is highly toxic in flies, leading to increased lethality.<br /> This raises questions about whether sl mutant phenotypes are specifically caused by the absence of PLG1 or PLCG2 functions in flies. Can hPLCG2 reconstitution in sl mutants be used as a negative control to rule out the possibility of the same?

      (4) Do slT2A/Y; UAS-PLCG1Reference flies survive when grown at 22{degree sign}C? Since transgenic fly expressing PLCG1 cDNA when driven under ubiquitous gal4s, Tubulin and Da, can result in viable progeny at 22{degree sign}C, the survival of slT2A/Y; UAS-PLCG1Reference should be possible.<br /> and similarly<br /> Does slT2A flies exhibit the phenotypes of (i) reduced eclosion rate (ii) reduced wing size and ectopic wing veins and (iii) extra R7 photoreceptor in the fly eye at 22{degree sign}C?<br /> If so, will it be possible to get a complete rescue of the slT2A mutant phenotypes with the hPLCG1 cDNA at 22{degree sign}C? This dataset is essential to establish Drosophila as an ideal model to study the PLCG1 de novo variants.

      (5) Localisation and western blot assays to check if the introduction of the de novo mutations can have an impact on the sub-cellular targeting of the protein or protein stability respectively.

      (6) Analysing the nature of the reported gain of function (experimental proof for the same is missing in the manuscript) variants:<br /> Instead of directly showing the effect of introducing the de novo variant transgenes in the Drosophila model especially when the full-length PLCG1 is not able to completely rescue the slT2A phenotype;<br /> (i) Show that the gain-of-function variants can have an impact on the protein function or signalling via one of the three signalling outputs in the mammalian cell culture system: (i) inositol-1,4,5-trisphosphate production, (ii) intracellular Ca2+ release or (iii) increased phosphorylation of extracellular signal-related kinase, p65, and p38.<br /> OR<br /> (ii) Run a molecular simulation to demonstrate how the protein's auto-inhibited state can be disrupted and basal lipase activity increased by introducing D1019G and D1165G, which destabilise the association between the C2 and cSH2 domains. The H380R variant may also exhibit characteristics similar to the previously documented H335A mutation which leaves the protein catalytically inactive as the residue is important to coordinate the incoming water molecule required for PIP2 hydrolysis.

      (7) Clarify the reason for carrying out the wing-specific and eye-specific experiments using nub-gal4 and eyless-gal4 at 29˚C despite the high gal4 toxicity at this temperature.

      (8) For the sake of completeness the authors should also report other variants identified in the genomes of these patients that could also contribute to the clinical features.

    1. Reviewer #1 (Public Review):

      Summary:

      Casas-Tinto et al. present convincing data that injury of the adult Drosophila CNS triggers transdifferentiation of glial cells and even the generation of neurons from glial cells. This observation opens up the possibility of getting a handle on the molecular basis of neuronal and glial generation in the vertebrate CNS after traumatic injury caused by Stroke or Crush injury. The authors use an array of sophisticated tools to follow the development of glial cells at the injury site in very young and mature adults. The results in mature adults revealing a remarkable plasticity in the fly CNS and dispels the notion that repair after injury may be only possible in nerve cords which are still developing. The observation of so-called VC cells which do not express the glial marker repo could point to the generation of neurons by former glial cells.

      Conclusion:

      The authors present an interesting story that is technically sound and could form the basis for an in-depth analysis of the molecular mechanism driving repair after brain injury in Drosophila and vertebrates.

      Strengths:

      The evidence for transdifferentiation of glial cells is convincing. In addition, the injury to the adult CNS shows an inherent plasticity of the mature ventral nerve cord which is unexpected.

      Weaknesses:

      Traumatic brain injury in Drosophila has been previously reported to trigger mitosis of glial cells and generation of neural stem cells in the larval CNS and the adult brain hemispheres. Therefore this report adds to but does not significantly change our current understanding. The origin and identity of VC cells is unclear.

    2. Reviewer #2 (Public Review):

      Summary:

      Casas-Tinto et al., provide new insight into glial plasticity using a crush injury paradigm in the ventral nerve cord (VNC) of adult Drosophila. The authors find that both astrocyte-like glia (ALG) and ensheating glia (EG) divide under homeostatic conditions in the adult VNC and identify ALG as the glial population that specifically ramps up proliferation in response to injury, whereas the number of EGs decreases following the insult. Using lineage-tracing tools, the authors interestingly observe the interconversion of glial subtypes, especially of EGs into ALGs, which occurs independent of injury and is dependent on the availability of the transcription factor Prospero in EGs, adding to the plasticity observed in the system. Finally, when tracing the progeny of differentiated glia, Casas-Tinto and colleagues detect cells of neuronal identity and provide evidence that such glia-derived neurogenesis is specifically favored following ventral nerve cord injury, which puts forward a remarkable way in which glia can respond to neuronal damage.

      Strengths:

      This study highlights a new facet of adult nervous system plasticity at the level of the ventral nerve cord, supporting the view that proliferative capacity is maintained in the mature CNS and stimulated upon injury.

      The injury paradigm is well chosen, as the organization of the neuromeres allows specific targeting of one segment, compared to the remaining intact, and with the potential to later link observed plasticity to behavior such as locomotion.

      Numerous experiments have been carried out in 7-day-old flies, showing that the observed plasticity is not due to residual developmental remodeling or a still immature VNC.

      By elegantly combining different genetic tools, the authors show glial divisions with mitotic-dependent tracing and find that the number of generated glia is refined by apoptosis later on.

      The work identifies Prospero in glia as an important coordinator of glial cell fate, from development to the adult context, which draws further attention to the upstream regulatory mechanisms.

      Weaknesses:

      Although the authors do use a variety of methods to show glial proliferation, the EdU data (Figure 1B) could be more informative (Figure 1B) by displaying images of non-injured animals and providing quantifications or the mention of these numbers based on results previously acquired in the system.

      The experiments relying on the FUCCI cell cycle reporter suggested considerable baseline proliferation for EGs and ALGs, but when using an independent method (Twin Spot MARCM), mitotic marking was only detected for ALGs. This discrepancy could be addressed by assessing the co-localization of the different glia subsets using the identified driver lines with mitotic markers such as PH3.

      The data in Figure 1C would be more convincing in combination with images of the FUCCI Reporter as it can provide further information on the location and proportion of glia that enter the cell cycle versus the fraction that remains quiescent.

      The analyses of inter-glia conversion in Figure 3 are complicated by the fact that Prospero RNAi is both used to suppress EG - to ALG conversion and as a marker to establish ALG nature. Clarifications if the GFP+ cells still expressed Pros or were classified as NP-like GFP cells are required here.

      The conclusion that ALG and EG glial cells can give rise to cells of neuronal lineage is based on glial lineage information (GFP+ cells from glial G-trace) and staining for the neuronal marker Elav. The use of other neuronal markers apart from Elav or morphological features would provide a more compelling case that GFP+ cells are mature neurons.

      Although the text discusses in which contexts, glial plasticity is observed or increased upon injury, the figures are less clear regarding this aspect. A more systematic comparison of injured VNCs versus homeostatic conditions, combined with clear labelling of the injury area would facilitate the understanding of the panels.

      Context/Discussion

      The study finds that glia in the ventral cord of flies have latent neurogenic potential. Such observations have not been made regarding glia in the fly brain, where injury is reported to drive glial divisions or the proliferation of undifferentiated progenitor cells with neurogenic potential.

      Discussing this different strategy for cell replacement adopted by glia in the VNC and pointing out differences to other modes seems fascinating. Highlighting differences in the<br /> the reactiveness of glia in the VNC compared to the brain also seems highly relevant as they may point to different properties to repair damage.

      Based on the assays employed, the study points to a significant amount of glial "identity" changes or interconversions, which is surprising under homeostatic conditions. The significance of this "baseline" plasticity remains undiscussed, although glia unarguably show extensive adaptations during nervous system development.

      It would be interesting to know if the "interconversion" of glia is determined by the needs in the tissue or would shift in the context of selective ablation/suppression of a glial type.

    3. Reviewer #3 (Public Review):

      In this manuscript, Casas-Tintó et al. explore the role of glial cells in the response to a neurodegenerative injury in the adult brain. They used Drosophila melanogaster as a model organism and found that glial cells are able to generate new neurons through the mechanism of transdifferentiation in response to injury.

      This paper provides a new mechanism in regeneration and gives an understanding of the role of glial cells in the process.

  2. Apr 2024
    1. Reviewer #1 (Public Review):

      In this manuscript, Huang and colleagues explored the role of iron in bacterial therapy for cancer. Using proteomics, they revealed the upregulation of bacterial genes that uptake iron, and reasoned that such regulation is an adaptation to the iron-deficient tumor microenvironment. Logically, they engineered E. Coli strains with enhanced iron-uptake efficiency, and showed that these strains, together with iron scavengers, suppress tumor growth in a mouse model. Lastly, they reported the tumor suppression by IroA-E. Coli provides immunological memory via CD8+ T cells. In general, I find the findings in the manuscript novel and the evidence convincing.

      (1) Although the genetic and proteomic data are convincing, would it be possible to directly quantify the iron concentration in (1) E. Coli in different growth environments, and (2) tumor microenvironment? This will provide functional consequence of upregulating genes that import iron into the bacteria.

      (2) Related to 1, the experiment to study the synergistic effect of CDG and VLX600 (lines 139-175) is very nice and promising, but one flaw here is a lack of the measurement of iron concentration. Therefore, a possible explanation could be that CDG acts in another manner, unrelated to iron uptake, that synergizes with VLX600's function to deplete iron from cancer cells. Here, a direct measurement of iron concentration will show the effect of CDG on iron uptake, thus complementing the missing link.

      (3) Lines 250-268: Although statistically significant, I would recommend the authors characterize the CD8+ T cells a little more, as the mechanism now seems quite elusive. What signals or memories do CD8+ T cells acquire after IroA-E. Coli treatment to confer their long-term immunogenicity?

      (4) Perhaps this goes beyond the scope of the current manuscript, but how broadly applicable is the observed iron-transport phenomenon in other tumor models? I would recommend the authors to either experimentally test it in another model, or at least discuss this question.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors provide strong evidence that bacteria, such as E. coli, compete with tumor cells for iron resources and consequently reduce tumor growth. When sequestration between LCN2 and bacterobactin is blocked by upregulating CDG(DGC-E. coli) or salmochelin(IroA-E.coli), E. coli increase iron uptake from the tumor microenvironment (TME) and restrict iron availability for tumor cells. Long-term remission in IroA-E.coli treated mice is associated with enhanced CD8+ T cell activity. Additionally, systemic delivery of IroA-E.coli shows a synergistic effect with chemotherapy reagent oxaliplatin to reduce tumor growth.

      Strengths:

      It is important to identify the iron-related crosstalk between E. coli and TME. Blocking lcn2-bacterobactin sequestration by different strategies consistently reduce tumor growth.

      Weaknesses:

      As engineered E.coli upregulate their function to uptake iron, they may increase the likelihood of escaping from nutritional immunity (LCN2 becomes insensitive to sequester iron from the bacteria). Would this raise the chance of developing sepsis? Do authors think that it is safe to administrate these engineered bacteria in mice or humans?

    3. Reviewer #3 (Public Review):

      Summary:

      Based on their observation that tumor has an iron-deficient microenvironment, and the assumption that nutritional immunity is important in bacteria-mediated tumor modulation, the authors postulate that manipulation of iron homeostasis can affect tumor growth. This paper uses straightforward in vitro and in vivo techniques to examine a specific and important question of nutritional immunity in bacteria-mediated tumor therapy. They are successful in showing that manipulation of iron regulation during nutritional immunity does affect the virulence of the bacteria, and in turn the tumor. These findings open future avenues of investigation, including the use of different bacteria, different delivery systems for therapeutics, and different tumor types. The authors were also successful in addressing the reviewer's concerns adequately.

    1. Reviewer #2 (Public Review):

      The goal of the present study is to better understand the 'control objectives' that subjects adopt in a video-game-like virtual-balancing task. In this task, the hand must move in the opposite direction from a cursor. For example, if the cursor is 2 cm to the right, the subject must move their hand 2 cm to the left to 'balance' the cursor. Any imperfection in that opposition causes the cursor to move. E.g., if the subject were to move only 1.8 cm, that would be insufficient, and the cursor would continue to move to the right. If they were to move 2.2 cm, the cursor would move back toward the center of the screen. This return to center might actually be 'good' from the subject's perspective, depending on whether their objective is to keep the cursor still or keep it near the screen's center. Both are reasonable 'objectives' because the trial fails if the cursor moves too far from the screen's center during each six-second trial.

      This task was recently developed for use in monkeys (Quick et al., 2018), with the intention of being used for the study of the cortical control of movement, and also as a task that might be used to evaluate BMI control algorithms. The purpose of the present study is to better characterize how this task is performed. What sort of control policies are used. Perhaps more deeply, what kind of errors are those policies trying to minimize? To address these questions, the authors simulate control-theory style models and compare with behavior. They do in both in monkeys and in humans.

      These goals make sense as a precursor to future recording or BMI experiments. The primate motor-control field has long been dominated by variants of reaching tasks, so introducing this new task will likely be beneficial. This is not the first non-reaching task, but it is an interesting one and it makes sense to expand the presently limited repertoire of tasks. The present task is very different from any prior task I know of. Thus, it makes sense to quantify behavior as thoroughly as possible in advance of recordings. Understanding how behavior is controlled is, as the authors note, likely to be critical to interpreting neural data.

      From this perspective - providing a basis for interpreting future neural results - the present study is fairly successful. Monkeys seem to understand the task properly, and to use control policies that are not dissimilar from humans. Also reassuring is the fact that behavior remains sensible even when task-difficulty become high. By 'sensible' I simply mean that behavior can be understood as seeking to minimize error: position, velocity, or (possibly) both, and that this remains true across a broad range of task difficulties. The authors document why minimizing position and minimizing velocity are both reasonable objectives. Minimizing velocity is reasonable, because a near-stationary cursor can't move far in six seconds. Minimizing position error is reasonable, because the trial won't fail if the cursor doesn't stray far from the center. This is formally demonstrated by simulating control policies: both objectives lead to control policies that can perform the task and produce realistic single-trial behavior. The authors also demonstrate that, via verbal instruction, they can induce human subjects to favor one objective over the other. These all seem like things that are on the 'need to know' list, and it is commendable that this amount of care is being taken before recordings begin, as it will surely aid interpretation.

      Yet as a stand-alone study, the contribution to our understanding of motor control is more limited. The task allows two different objectives (minimize velocity, minimize position) to be equally compatible with the overall goal (don't fail the trial). Or more precisely, there exists a range of objectives with those two at the extreme. So it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control, or simply that there is a natural ambiguity built into the task? If I ask you to play a game, but don't fully specify the rules, should I be surprised that different people think the rules are slightly different?

      The most interesting scientific claim of this study is not the subject-to-subject variability; the task design makes that quite likely and natural. Rather, the central scientific result is the claim that individual subjects are constantly switching objectives (and thus control policies), such that the policy guiding behavior differs dramatically even on a single-trial basis. This scientific claim is supported by a technical claim: that the authors' methods can distinguish which objective is in use, even on single trials. I am uncertain of both claims.

      Consider Figure 8B, which reprises a point made in Figure 1&3 and gives the best evidence for trial-to-trial variability in objective/policy. For every subject, there are two example trials. The top row of trials shows oscillations around the center, which could be consistent with position-error minimization. The bottom row shows tolerance of position errors so long as drift is slow, which could be consistent with velocity-error minimization. But is this really evidence that subjects were switching objectives (and thus control policies) from trial to trial? A simpler alternative would be a single control policy that does not switch, but still generates this range of behaviors. The authors don't really consider this possibility, and I'm not sure why. One can think of a variety of ways in which a unified policy could produce this variation, given noise and the natural instability of the system.

      Indeed, I found that it was remarkably easy to produce a range of reasonably realistic behaviors, including the patterns that the authors interpret as evidence for switching objectives, based on a simple fixed controller. To run the simulations, I made the simple assumption that subjects simply attempt to match their hand position to oppose the cursor position. Because subjects cannot see their hand, I assumed modest variability in the gain, with a range from -1 to -1.05. I assumed a small amount of motor noise in the outgoing motor command. The resulting (very simple) controller naturally displayed the basic range of behaviors observed across trials (see Image 1)

      Image 1.

      Some trials had oscillations around the screen center (zero), which is the pattern the authors suggest reflects position control. In other trials the cursor was allowed to drift slowly away from the center, which is the pattern the authors suggest reflects velocity control. This is true even though the controller was the same on every trial. Trial-to-trial differences were driven both by motor noise and by the modest variability in gain. In an unstable system, small differences can lead to (seemingly) qualitatively different behavior on different trials.

      This simple controller is also compatible with the ability of subjects to adapt their strategy when instructed. Anyone experienced with this task likely understands (or has learned) that moving the hand slightly more than 'one should' will tend to shepherd the cursor back to center, at the cost of briefly high velocity. Using this strategy more sparingly will tend to minimize velocity even if position errors persist. Thus, any subject using this control policy would be able to adapt their strategy via a modest change in gain (the gain linking visible cursor position to intended hand position).

      This model is simple, and there may be reasons to dislike it. But it is presumably a reasonable model. The nature of the task is that you should move your hand opposite where the cursor is. Because you can't see your hand, you will make small mistakes. Due to the instability of the system, those small mistakes have large and variable effects. This feature is likely common to other controllers as well; many may explicitly or implicitly blend position and velocity control, with different trials appearing more dominated by one versus the other. Given this, I think the study presents only weak evidence that individual subjects are switching their objective on individual trials. Indeed, the more parsimonious explanation may be that they aren't. While the study certainly does demonstrate that the control policy can be influenced by verbal instructions, this might be a small adjustment as noted above.

      I thus don't feel convinced that the authors can conclusively tell us the true control policy being used by human and monkey subjects, nor whether that policy is mostly fixed or constantly switching. The data are potentially compatible with any of these interpretations, depending on which control-style model one prefers.

      I see a few paths that the authors might take if they chose.<br /> --First, my reasoning above might be faulty, or there might be additional analyses that could rule out the possibility of a unified policy underlying variable behavior. If so, the authors may be able to reject the above concerns and retain the present conclusions. The main scientifically novel conclusion of the present study is that subjects are using a highly variable control policy, and switching on individual trials. If this is indeed the case, there may be additional analyses that could reveal that.<br /> --Second, additional trial types (e.g., with various perturbations) might be used as a probe of the control policy. As noted below, there is a long history of doing this in the pursuit system. That additional data might better disambiguate control policies both in general, and across trials.<br /> --Third, the authors might find that a unified controller is actually a good (and more parsimonious) explanation. Which might actually be a good thing from the standpoint of future experiments. Interpretation of neural data is likely to be much easier if the control policy being instantiated isn't in constant flux.

      In any case, I would recommend altering the strength of some conclusions, particularly the conclusion that the presented methods can reliably discriminate amongst objectives/policies on individual trials. This is mentioned as a major motivation on multiple occasions, but in most of these instances, the subsequent analysis infers the objective only across trial (e.g., one must observe a scatterplot of many trials). By Figure 7, they do introduce a method for inferring the control policy on individual trials, and while this seems to work considerably better than chance, it hardly appears reliable.

      In this same vein I would suggest toning down aspects of the Introduction and Discussion. The Introduction in particular is overly long, and tries to position the present study as unique in ways that seem strained. Other studies have built links between human behavior, monkey behavior, and monkey neural data (for just one example, consider the corpus of work from the Scott lab that includes Pruszynski et al. 2008 and 2011). Other studies have used highly quantitative methods to infer the objective function used by subjects (e.g. Kording and Wolpert 2004). The very issue that is of interest in the present study - velocity-error-minimization versus position-error-minimization - has been extensively addressed in the smooth pursuit system. That field has long combined quantitative analyses of behavior in humans and monkeys, along with neural recordings. Many pursuit experiments used strategies that could be fruitfully employed to address the central questions of the present study. For example, error stabilization was important for dissecting the control policy used by the pursuit system. By artificially stabilizing the error (position or velocity) at zero, or at some other value, one can determine the system's response. The classic Rashbass step (1961) put position and velocity errors in opposition, to see which dominates the response. Step and sinusoidal perturbations were useful in distinguishing between models, as was the imposition of artificially imposed delays. The authors note the 'richness' of the behavior in the present task, and while one could say the same of pursuit, it was still the case that specific and well-thought through experimental manipulations were pretty critical. It would be better if the Introduction considered at least some of the above-mentioned work (or other work in a similar vein). While most would agree with the motivations outlined by the authors - they are logical and make sense - the present Introduction runs the risk of overselling the present conclusions while underselling prior work.

    1. Reviewer #2 (Public Review):

      Summary

      The paper concerns the phenomenon of continuous flash suppression (CFS), relevant to questions about the extent and nature of subconscious visual processing. Whereas standard CFS studies only measure the breakthrough threshold-the contrast at which an initially suppressed target stimulus with steadily increasing contrast becomes visible-this study also measures the re-suppression threshold, the contrast at which a visible target with decreasing contrast becomes suppressed. Thus, the authors could calculate suppression depth, the ratio between the breakthrough and re-suppression thresholds. To measure both thresholds, the study introduces the tracking-CFS method, a continuous-trial design that results in faster, better controlled, and lower-variance threshold estimates compared to the discrete trials standard in the literature. The study finds that suppression depths are similar for different image categories, providing an interesting contrast to previous results that breakthrough thresholds differ for different image categories. The new finding calls for a reassessment of interpretations based solely on the breakthrough threshold that subconscious visual processing is category-specific.

      Strengths

      (1) The tCFS method quickly estimates breakthrough and re-suppression thresholds using continuous trials, which also better control for slowly varying factors such as adaptation and attention. Indeed, tCFS produces estimates with lower across-subject variance than the standard discrete-trial method (Fig. 2). The tCFS method is straightforward to adopt in future research on CFS and binocular rivalry.

      (2) The CFS literature has lacked re-suppression threshold measurements. By measuring both breakthrough and re-suppression thresholds, this work calculated suppression depth (i.e., the difference between the two thresholds), which warrants different interpretations from the breakthrough threshold alone.

      (3) The work found that different image categories show similar suppression depths, suggesting some aspects of CFS are not category-specific. This result enriches previous findings that breakthrough thresholds vary with image categories. Re-suppression thresholds vary symmetrically, such that their differences are constant.

      Weakness

      I do not follow the authors' reasoning as to why the suppression depth is a better (or fuller, superior, more informative) indication of subconscious visual processing than the breakthrough threshold alone. To my previous round of comments, the authors replied that 'breakthrough provides only half of the needed information.' I do not understand this. One cannot infer the suppression depth from the breakthrough threshold alone, but *one cannot obtain the breakthrough threshold from the suppression depth alone*, either. The two measures are complementary. (To be sure, given *both* the suppression depth and the re-suppression threshold, one can recover the breakthrough threshold. The discussion concerns the suppression depth *alone* and the breakthrough threshold *alone*.) I am fully open to being convinced that there is a good reason why the suppression depth may be more informative than the breakthrough threshold about a specific topic, e.g., inter-ocular suppression or subconscious visual processing. I only request that the authors make such an argument explicit. For example, in the significance statement, the authors write, 'all images show equal suppression when both thresholds are measured. We *thus* find no evidence of differential unconscious processing and *conclude* reliance on breakthrough thresholds is misleading' (emphasis added). Just what supports the 'thus' and the 'conclude'? Similarly, at the end of the introduction, the authors write, '[...] suppression depth was constant for faces, objects, gratings and visual noise. *In other words*, we find no evidence to support differential unconscious processing among these particular, diverse categories of suppressed images' (emphasis added). I am not sure the statements in the two sentences are equivalent.

      The authors' reply included a discussion of neural CRFs, which may explain why the bCFS thresholds differ across image categories. A further step seems necessary to explain why CRFs do not qualify as a form of subconscious processing.

    2. Reviewer #1 (Public Review):

      Summary

      A new method, tCFS, is introduced to offer richer and more efficient measurement of interocular suppression. It generates a new index, the suppression depth, based on the contrast difference between the up-ramped contrast for the target to breakthrough suppression and the down-ramped contrast for the target to disappear into suppression. A uniform suppression depth regardless of image types (e.g., faces, gratings and scrambles) was discovered in the paper, favoring an early-stage mechanism involving CFS. Discussions about claims of unconscious processing and the related mechanisms.

      Strength

      The tCFS method adds to the existing bCFS paradigms by providing the (re-)suppression threshold and thereafter the depression depth. Benefiting from adaptive procedures with continuous trials, the tCFS is able to give fast and efficient measurements. It also provides a new opportunity to test theories and models about how information is processed outside visual awareness.

      Weakness:

      This paper reports the surprising finding of uniform suppression depth over a variety of stimuli. This is novel and interesting. But given the limited samples being tested, the claim of uniformity suppression depth needs to be further examined, with respect to different complexities and semantic meanings.

      From an intuitive aspect, the results challenged previous views about "preferential processing" for certain categories, though it invites further research to explore what exactly could suppression depth tell us about unconscious visual processing.

    3. Reviewer #3 (Public Review):

      Summary:

      In the 'bCFS' paradigm, a monocular target gradually increases in contrast until it breaks interocular suppression by a rich monocular suppressor in the other eye. The present authors extend the bCFS paradigm by allowing the target to reduce back down in contrast until it becomes suppressed again. The main variable of interest is the contrast difference between breaking suppression and (re) entering suppression. The authors find this difference to be constant across a range of target types, even ones that differ substantially in the contrast at which they break interocular suppression (the variable conventionally measured in bCFS). They also measure how the difference changes as a function of other manipulations. Interpretation is in terms of the processing of unconscious visual content, as well as in terms of the mechanism of interocular suppression.

      Strengths:

      Interpretation of bCFS findings is mired in controversy, and this is an ingenuous effort to move beyond the paradigm's exclusive focus on breaking suppression. The notion of using the contrast difference between breaking and entering suppression as an index of suppression depth is interesting. The finding that this difference is similar for a range of target types that do differ in the contrast at which they break suppression, suggests a common mechanism of suppression across those target types.

    1. Reviewer #2 (Public Review):

      Summary:

      This study aims to address existing differences in the literature regarding the extent of reward versus aversive dopamine signaling in the prefrontal cortex. To do so, the authors chose to present mice with both a reward and an aversive stimulus during different trials each day. The authors used high spatial resolution two-photon calcium imaging of individual dopaminergic axons in the medial PFC to characterize the response of these axons to determine the selectivity of responses in unique axons. They also paired the reward (water) and an aversive stimulus (tail shock) with auditory tones and recorded across 12 days of associative learning.

      The authors find that some axons respond to both reward and aversive unconditioned stimuli, but overall, there is a preference to respond to aversive stimuli consistent with expectations from prior studies that used other recording methods. The authors find that both of their two auditory stimuli initially drive responses in axons, but that with training axons develop more selective responses for the shock associated tone indicating that associative learning led to changes in these axon's responses. Finally, the authors use anticipatory behaviors during the conditioned stimuli and facial expressions to determine stimulus discrimination and relate dopamine axons signals with this behavioral evidence of discrimination. This study takes advantage of cutting-edge imaging approaches to resolve the extent to which dopamine axons in PFC respond appetitive or aversive stimuli. They conclude that there is a bias to respond to the aversive tail shock in most axons and weaker more sparse representation of water reward.

      Strengths:

      The strength of this study is the imaging approach that allows for investigation of the heterogeneity of response across individual dopamine axons unlike other common approaches such as fiber photometry which provide a measure of the average population activity. The use of appetitive and aversive stimuli to probe responses across individual axons is another strength as it reveals response diversity that is often overlooked in reward-only studies.

      Weaknesses:

      A weakness of this study is the design of the associative conditioning paradigm. The use of only a single reward and single aversive stimulus makes it difficult to know whether these results are specific to the valence of the stimuli versus the specific identity of the stimuli. Further, the reward presentations are more numerous than the aversive trials making it unclear how much novelty and habituation account for results. Moreover, the training seems somewhat limited by the low number of trials and did not result in strong associative conditioning. The lack of omission responses reported may reflect weak associative conditioning. Finally, the study provides a small advance in our understanding of dopamine signaling in the PFC and lacks evidence for if and what might be the consequence of these axonal responses on PFC dopamine concentrations and PFC neuron activity.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Abe and colleagues employ in vivo 2-photon calcium imaging of dopaminergic axons in the mPFC. The study reveals that these axons primarily respond to unconditioned aversive stimuli (US) and enhance their responses to initially-neutral stimuli after classical association learning. The manuscript is well-structured and presents results clearly. The utilization of a refined prism-based imaging technique, though not entirely novel, is well-implemented. The study's significance lies in its contribution to the existing literature by offering single-axon resolution functional insights, supplementing prior bulk measurements of calcium or dopamine release. Given the current focus on neuromodulator neuron heterogeneity, the work aligns well with current research trends and will greatly interest researchers in the field.

      Comment on the revised version:

      In my opinion, the authors did a great job with the revision of the manuscript.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors image dopamine axons in medial prefrontal cortex (mPFC) using microprism-mediated two-photon calcium imaging. They image these axons as mice learn that two auditory cues predict two distinct outcomes, tailshock, or water delivery. They find that some axons show a preference for encoding of the shock and some show a preference for encoding of water. The authors report a greater number of dopamine axons in mPFC that respond to shock. Across time, the shock-preferring axons begin to respond preferentially to the cue predicting shock, while there is a less pronounced increase in the water-responsive axons that acquire a response to the water-predictive cue (these axons also increase non-significantly to the shock-predictive cue). These data lead the authors to argue that dopamine axons in mPFC preferentially encode aversive stimuli.

      Strengths:

      The experiments are beautifully executed and the authors have mastered an impressively complex technique. Specifically, they are able to image and track individual dopamine axons in mPFC across days of learning. And this technique is used the way it should be: the authors isolate distinct dopamine axons in mPFC and characterize their encoding preferences and how this evolves across learning of cue-shock and cue-water contingencies. Thus, these experiments are revealing novel information about how aversive and rewarding stimuli is encoded at the level of individual axons, in a way that has not been done before. This is timely and important.

      Weaknesses:

      The overarching conclusion of the paper is that dopamine axons preferentially encode aversive stimuli. However, this is confounded by differences in the strength of the aversive and appetitive outcomes. As the authors point out, the axonal response to stimuli is sensitive to outcome magnitude (Supp Fig 3). That is, if you increase the magnitude of water or shock that is delivered, you increase the change in fluorescence that is seen in the axons. Unsurprisingly, the change in fluorescence that is seen to shock is considerably higher than water reward. Further, over 40% of the axons respond to water early in training [yet just a few lines below the authors write: "Previous studies have demonstrated that the overall dopamine release at the mPFC or the summed activity of mPFC dopamine axons exhibits a strong response to aversive stimuli (e.g., tail shock), but little to rewards", which seems inconsistent with their own data]. Given these aspects of the data, it could be the case that the dopamine axons in mPFC encodes different types of information and delegates preferential processing to the most salient outcome across time. The use of two similar sounding tones (9Khz and 12KHz) for the reward and aversive predicting cues are likely to enhance this as it requires a fine-grained distinction between the two cues in order to learn effectively. That is not to say that the mice cannot distinguish between these cues, rather that they may require additional processes to resolve the similarity, which are known to be dependent on the mPFC.

      There is considerable literature on mPFC function across species that would support such a view. Specifically, theories of mPFC function (in particular prelimbic cortex, which is where the axon images are mostly taken) generally center around resolution of conflict in what to respond, learn about, and attend to. That is, mPFC is important for devoting the most resources (learning, behavior) to the most relevant outcomes in the environment. This data then, provides a mechanism for this to occur in mPFC. That is, dopamine axons signal to the mPFC the most salient aspects of the environment, which should be preferentially learnt about and responded towards. This is also consistent with the absence of a negative prediction error during omission: the dopamine axons show increases in responses during receipt of unexpected outcomes but do not encode negative errors. This supports a role for this projection in helping to allocate resources to the most salient outcomes and their predictors, and not learning per se. Below are a just few references from the rich literature on mPFC function (some consider rodent mPFC analogous to DLPFC, some mPFC), which advocate for a role in this region in allocating attention and cognitive resources to most relevant stimuli, and do not indicate preferential processing of aversive stimuli.

      References:<br /> 1. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.<br /> 2. Bissonette, G. B., Powell, E. M., & Roesch, M. R. (2013). Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behavioural brain research, 250, 91-101.<br /> 3. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222.<br /> 4. Sharpe, M. J., Stalnaker, T., Schuck, N. W., Killcross, S., Schoenbaum, G., & Niv, Y. (2019). An integrated model of action selection: distinct modes of cortical control of striatal decision making. Annual review of psychology, 70, 53-76.<br /> 5. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. science, 306(5695), 443-447.<br /> 6. Nee, D. E., Kastner, S., & Brown, J. W. (2011). Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex. Neuroimage, 54(1), 528-540.<br /> 7. Isoda, M., & Hikosaka, O. (2007). Switching from automatic to controlled action by monkey medial frontal cortex. Nature neuroscience, 10(2), 240-248.

    1. Reviewer #1 (Public Review):

      In this paper, the authors evaluate the utility of brain age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.

      REVISED VERSION: while the authors have partially addressed my concerns, I do not feel they have addressed them all. I do not feel they have addressed the weight instability and concerns about the stacked regression models satisfactorily. I also must say that I agree with Reviewer 3 about the limitations of the brain age and brain cognition methods conceptually. In particular that the regression model used to predict fluid cognition will by construction explain more variance in cognition than a brain age model that is trained to predict age. This suffers from the same problem the authors raise with brain age and would indeed disappear if the authors had a separate measure of cognition against which to validate and were then to regress this out as they do for age correction. I am aware that these conceptual problems are more widespread than this paper alone (in fact throughout the brain age literature), so I do not believe the authors should be penalised for that. However, I do think they can make these concerns more explicit and further tone down the comments they make about the utility of brain cognition. I have indicated the main considerations about these points in the recommendations section below.

      In this paper, the authors evaluate the utility of brain age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative that explains more unique variance in the downstream regression.

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. I have some comments that I believe the authors ought to address, which mostly relate to clarity and interpretation

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. I would suggest the authors nuance their discussion to provide broader considerations of the utility of their method and on the limits of interpretation of brain age models more generally.

      Second, from a methods perspective , there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand how the stacked regression models were constructed. I would request that the authors provide more information to enable the reader to better understand the stacked regression models used to ensure that these models are not overfit.

      Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits?

      Please provide more details about the task designs, MRI processing procedures that were employed on this sample in addition to the regression methods and bias correction methods used. For example, there are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted.

    1. Reviewer #1 (Public Review):

      Summary:

      Previous work in humans and non-human animals suggests that during offline periods following learning, the brain replays newly acquired information in a sequential manner. The present study uses an MEG-based decoding approach to investigate the nature of replay/reactivation during a cued recall task directly following a learning session, where human participants are trained on a new sequence of 10 visual images embedded in a graph structure. During retrieval, participants are then cued with two items from the learned sequence, and neural evidence is obtained for the simultaneous or sequential reactivation of future sequence items. The authors find evidence for both sequential and clustered (i.e., simultaneous) reactivation. Replicating previous work, low-performing participants tend to show sequential, temporally segregated reactivation of future items, whereas high-performing participants show more clustered reactivation. Adding to previous work, the authors show that an image's reactivation strength varies depending on its proximity to the retrieval cue within the graph structure.

      Strengths:

      As the authors point out, work on memory reactivation has largely been limited to the retrieval of single associations. Given the sequential nature of our real-life experiences, there is clearly value in extending this work to structured, sequential information. State-of-the-art decoding approaches for MEG are used to characterize the strength and timing of item reactivation. The manuscript is very well written with helpful and informative figures in the main sections. The task includes an extensive localizer with 50 repetitions per image, allowing for stable training of the decoders and the inclusion of several sanity checks demonstrating that on-screen items can be decoded with high accuracy.

      Weaknesses:

      Of major concern, the experiment is not optimally designed for analysis of the retrieval task phase, where only 4 min of recording time and a single presentation of each cue item are available for the analyses of sequential and non-sequential reactivation. In their revision, the authors include data from the learning blocks in their analysis. These blocks follow the same trial structure as the retrieval task, and apart from adding more data points could also reveal a possible shift from sequential to clustered reactivation as learning of the graph structure progresses. The new analyses are not entirely conclusive, maybe given the variability in the number of learning blocks that participants require to reach criterion. In principal, they suggest that reactivation strength increases from learning (pre-rest) to final retrieval (post-rest).

      On a more conceptual note, the main narrative of the manuscript implies that sequential and clustered reactivation are mutually exclusive, such that a single participant would show either one or the other type. With the analytic methods used here, however, it seems possible to observe both types of reactivation. For example, the observation that mean reactivation strength (across the entire trial, or in a given time window of interest) varies with graph distance does not exclude the possibility that this reactivation is also sequential. In fact, the approach of defining one peak time window of reactivation may bias towards simultaneous, graded reactivation. It would be helpful if the authors could clarify this conceptual point. A strong claim that the two types of reactivation are mutually exclusive would need to be substantiated by further evidence, for instance a suitable metric contrasting "sequenceness" vs "clusteredness".

      On the same point, the non-sequential reactivation analyses use a time window of peak decodability that is determined based on the average reactivation of all future items, irrespective of graph distance. In a sequential forward cascade of reactivations, it could be assumed that the reactivation of near items would peak earlier than the reactivation of far items. In the revised manuscript, the authors now show the "raw" timecourses of item decodability at different graph distances, clearly demonstrating their peak reactivation times, which show convincingly that reactivation for near and far items occurs at very similar time points. The question that remains, therefore, is whether the method of pre-selecting a time window of interest described above could exert a bias towards finding clustered reactivation.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors investigate replay (defined as sequential reactivation) and clustered reactivation during retrieval of an abstract cognitive map. Replay and clustered reactivation were analysed based on MEG recordings combined with a decoding approach. While the authors state to find evidence for both, replay and clustered reactivation during retrieval, replay was exclusively present in low performers. Further, the authors show that reactivation strength declined with an increasing graph distance.

      Strengths:

      The paper raises interesting research questions, i.e., replay vs. clustered reactivation and how that supports retrieval of cognitive maps. The paper is well written, well structured and easy to follow. The methodological approach is convincing and definitely suited to address the proposed research questions.

      The paper is a great combination between replicating previous findings (Wimmer et al. 2020) with a new experimental approach but at the same time presenting novel evidence (reactivation strength declines as a function of graph distance).

      What I also want to positively highlight is their general transparency. For example, they pre-registered this study but with a focus on a different part of the data and outlined this explicitly in the paper.

      The paper has very interesting findings. However, there are some shortcomings especially in the experimental design. These are shortly outlined below but are also openly and in detail discussed by the authors.

      Weaknesses:

      The individual findings are interesting. However, due to some shortcomings in the experimental design they cannot be profoundly related to each other. For example, the authors show that replay is present in low but not in high performers with the assumption that high performers tend to simultaneously reactivate items. But then, the authors do not investigate clustered reactivation (= simultaneous reactivation) as a function of performance due to a low number of retrieval trials and ceiling performance in most participants.<br /> As a consequence of the experimental design, some analyses are underpowered (very low number of trials, n = ~10, and for some analyses, very low number of participants, n = 14).

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Jellinger et al. performed engram-specific sequencing and identified genes that were selectively regulated in positive/negative engram populations. In addition, they performed chronic activation of the negative engram population over 3 months and observed several effects on fear/anxiety behavior and cellular events such as upregulation of glial cells and decreased GABA levels.

      Strengths:

      They provide useful engram-specific GSEA data and the main concept of the study, linking negative valence/memory encoding to cellular level outcomes including upregulation of glial cells, is interesting and valuable.

      Weaknesses:

      A number of experimental shortcomings make the conclusion of the study largely unsupported. In addition, the observed differences in behavioral experiments are rather small, inconsistent, and the interpretation of the differences is not compelling.

      Major points for improvement:

      (1) Lack of essential control experiments

      With the current set of experiments, it is not certain that the DREADD system they used was potent and stable throughout the 3 months of manipulations. Basic confirmatory experiments (e.g., slice physiology at 1m vs. 3m) to show that the DREADD effects on these vHP are stable would be an essential bottom line to make these manipulation experiments convincing.

      Furthermore, although the authors use the mCherry vector as a control, they did not have a vehicle/saline control for the hM3Dq AAV. Thus, the long-term effects such as the increase in glial cells could simply be due to the toxicity of DREADD expression, rather than an induced activity of these cells.

      (2) Figure 1 and the rest of the study are disconnected

      The authors used the cFos-tTA system to label positive/negative engram populations, while the TRAP2 system was used for the chronic activation experiments. Although both genetic tools are based on the same IEG Fos, the sensitivity of the tools needs to be validated. In particular, the sensitivity of the TRAP2 system can be arbitrarily altered by the amount of tamoxifen (or 4OHT) and the administration protocols. The authors should at least compare and show the percentage of labeled cells in both methods and discuss that the two experiments target (at least slightly) different populations. In addition, the use of TRAP2 for vHP is relatively new; the authors should confirm that this method actually captures negative engram populations by checking for reactivation of these cells during recall by overlap analysis of Fos staining or by artificial activation.

      (3) Interpretation of the behavior data

      In Figures 3a and b, the authors show that the experimental group showed higher anxiety based on time spent in the center/open area. However, there were no differences in distance traveled and center entries, which are often reduced in highly anxious mice. Thus, it is not clear what the exact effect of the manipulation is. The authors may want to visualize the trajectories of the mice's locomotion instead of just showing bar graphs.

      In addition, the data shown in Figure 4b is somewhat surprising - the 14MO control showed more freezing than the 6MO control, which can be interpreted as "better memory in old". As this is highly counterintuitive, the authors may want to discuss this point. The authors stated that "Mice typically display increased freezing behavior as they age, so these effects during remote recall are expected" without any reference. This is nonsense, as just above in Figure 4a, older mice actually show less freezing than young mice.

      Overall, the behavioral effects are rather small and random. I would suggest that these data be interpreted more carefully.

      (4) Lack of citation and discussion of relevant study

      Khalaf et al. 2018 from Gräff lab showed that experimental activation of recall-induced populations leads to fear attenuation. Despite the differences in experimental details, the conceptual discrepancy should be discussed.

    2. Reviewer #2 (Public Review):

      Summary:

      Jellinger, Suthard, et al. investigated the transcriptome of positive and negative valence engram cells in the ventral hippocampus, revealing anti- and pro-inflammatory signatures of these respective valences. The authors further reactivated the negative valence engram ensembles to assay the effects of chronic negative memory reactivation in young and old mice. This chronic re-activation resulted in differences in aspects of working memory, and fear memory, and caused morphological changes in glia. Such reactivation-associated changes are putatively linked to GABA changes and behavioral rumination.

      Strengths:

      Much of the content of this manuscript is of benefit to the community, such as the discovery of differential engram transcriptomes dependent on memory valence. The chronic activation of neurons, and the resultant effects on glial cells and behavior, also provide the community with important data. Laudable points of this manuscript include the comprehensiveness of behavioral experiments, as well as the cross-disciplinary approach.

      Weaknesses:

      There are several key claims made that are unsubstantiated by the data, particularly regarding the anthropomorphic framing of "rumination" on a mouse model and the role of GABA. The conclusions and inferences in these areas need to be carefully considered.

      (1) There are many issues regarding the arguments for the behavioural data's human translation as "rumination." There is no definition of rumination provided in the manuscript, nor how rumination is similar/different to intrusive thoughts (which are psychologically distinct but used relatively interchangeably in the manuscript), nor how rumination could be modelled in the rodent. The authors mention that they are attempting to model rumination behaviours by chronically reactivating the negative engram ("To understand if our experimental model of negative rumination..."), but this occurs almost at the very end of the results section, and no concrete evidence from the literature is provided to attempt to link the behavioural results (decreased working memory, increased fear extinction times) to rumination-like behaviours. The arguments in the final paragraph of the Discussion section about human rumination appear to be unrelated to the data presented in the manuscript and contain some uncited statements. Finally, the rumination claims seem to be based largely upon a single data figure that needs to be further developed (Figure 6, see also point 2 below).

      (2) The staining and analysis in Figure 6 are challenging to interpret, and require more evidence to substantiate the conclusions of these results. The histological images are zoomed out, and at this resolution, it appears that only the pyramidal cell layer is being stained. A GABA stain should also label the many sparsely spaced inhibitory interneurons existing across all hippocampal layers, yet this is not apparent here. Moreover, both example images in the treatment group appear to have lower overall fluorescence intensity in both DAPI and GABA. The analysis is also unclear: the authors mention "ROIs" used to measure normalized fluorescence intensity but do not specify what the ROI encapsulates. Presumably, the authors have segmented each DAPI-positive cell body and assessed fluorescence - however, this is not explicated nor demonstrated, making the results difficult to interpret.

      (3) A smaller point, but more specific detail is needed for how genes were selected for GSEA analysis. As GSEA relies on genes to be specified a priori, to avoid a circular analysis, these genes need to be selected in a blind/unbiased manner to avoid biasing downstream results and conclusions. It's likely the authors have done this, but explicitly noting how genes were selected is an important context for this analysis.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors note that negative ruminations can lead to pathological brain states and mood/anxiety dysregulation. They test this idea by using mouse engram-tagging technology to label dentate gyrus ensembles activated during a negative experience (fear conditioning). They show that chronic chemogenetic activation of these ensembles leads to behavioral (increased anxiety, increased fear generalization, reduced fear extinction) and neural (increases in neuroinflammation, microglia, and astrocytes).

      Strengths:

      The question the authors ask here is an intriguing one, and the engram activation approach is a powerful way to address the question. Examination of a wide range of neural and behavioral dependent measures is also a strength.

      Weaknesses:

      The major weakness is that the authors have found a range of changes that are correlates of chronic negative engram reactivation. However, they do not manipulate these outcomes to test whether microglia, astrocytes, or neuroinflammation are causally linked to the dysregulated behaviors.

    1. Reviewer #1 (Public Review):

      Summary:

      This important study investigated the role of oxytocin (OT) neurons in the paraventricular nucleus (PVN) and their projections to the medial prefrontal cortex (mPFC) in regulating pup care and infanticide behaviors in mandarin voles. The researchers used techniques like immunofluorescence, optogenetics, OT sensors, and peripheral OT administration. Activating OT neurons in the PVN reduced the time it took pup-caring male voles to approach and retrieve pups, facilitating pup-care behavior. However, this activation had no effect on females. Interestingly, this same PVN OT neuron activation also reduced the time for both male and female infanticidal voles to approach and attack pups, suggesting PVN OT neuron activity can promote pup care while inhibiting infanticide behavior. Inhibition of these neurons promoted infanticide. Stimulating PVN->mPFC OT projections facilitated pup care in males and in infanticide-prone voles, activation of these terminals prolonged latency to approach and attack. Inhibition of PVN->mPFC OT projections promoted infanticide. Peripheral OT administration increased pup care in males and reduced infanticide in both sexes. However, some results differed in females, suggesting other mechanisms may regulate female pup care.

      Strengths:

      This multi-faceted approach provides converging evidence, strengthens the conclusions drawn from the study, and makes them very convincing. Additionally, the study examines both pup care and infanticide behaviors, offering insights into the mechanisms underlying these contrasting behaviors. The inclusion of both male and female voles allows for the exploration of potential sex differences in the regulation of pup-directed behaviors. The peripheral OT administration experiments also provide valuable information for potential clinical applications and wildlife management strategies.

      Weaknesses:

      While the study presents exciting findings, there are several weaknesses that should be addressed. The sample sizes used in some experiments, such as the Fos study and optogenetic manipulations, appear to be small, which may limit the statistical power and generalizability of the results. Effect sizes are not reported, making it difficult to evaluate the practical significance of the findings. The imaging parameters and analysis details for the Fos study are not clearly described, hindering the interpretation of these results (i.e., was the entire PVN counted?). Also, does the Fos colocalization align with previous studies that look at PVN Fos and maternal/ paternal care? Additionally, the study lacks electrophysiological data to support the optogenetic findings, which could provide insights into the neural mechanisms underlying the observed behaviors.

      The study has several limitations that warrant further discussion. Firstly, the potential effects of manipulating OT neurons on the release of other neurotransmitters (or the influence of other neurochemicals or brain regions) on pup-directed behaviors, especially in females, are not fully explored. Additionally, it is unclear whether back-propagation of action potentials during optogenetic manipulations causes the same behavioral effect as direct stimulation of PVN OT cells. Moreover, the authors do not address whether the observed changes in behavior could be explained by overall increases or decreases in locomotor activity.

      The authors do not specify the percentage of PVN->mPFC neurons labeled that were OT-positive, nor do they directly compare the sexes in their behavioral analysis (or if they did, it is not clear statistically). While the authors propose that the sex difference in pup-directed behaviors is due to females having greater OT expression, they do not provide evidence to support this claim from their labeling data. It is also uncertain whether more OT neurons were manipulated in females compared to males. The study could benefit from a more comprehensive discussion of other factors that could influence the neural circuit under investigation, especially in females.

    2. Reviewer #2 (Public Review):

      Summary:

      This series of experiments studied the involvement of PVN OT neurons and their projection to the mPFC in pup-care and attack behavior in virgin male and female Mandarin voles. Using Fos visualization, optogenetics, fiber photometry, and IP injection of OT the results converge on OT regulating caregiving and attacks on pups. Some sex differences were found in the effects of the manipulations.

      Strengths:

      Major strengths are the modern multi-method approaches and involving both sexes of Mandarin vole in every experiment.

      Weaknesses:

      Weaknesses include the lack of some specific details in the methods that would help readers interpret the results. These include:

      (1) No description of diffusion of centrally injected agents.

      (2) Whether all central targets were consistent across animals included in the data analyses. This includes that is not stated if the medial prelimbic mPFC target was in all optogenetic study animals as shown in Figure 4 and if that is the case, there is no discussion of that subregion's function compared to other mPFC subregions.

      (3) How groups of pup-care and infanticidal animals were created since there was no obvious pre-test mentioned so perhaps there was the testing of a large number of animals until getting enough subjects in each group.

      (4) The apparent use of a 20-minute baseline data collection period for photometry that started right after the animals were stressed from handling and placement in the novel testing chamber.

      (5) A weakness in the results reporting is that it's unclear what statistics are reported (2 x 2 ANOVA main effect of interaction results, t-test results) and that the degrees of freedom expected for the 2 X 2 ANOVAs in some cases don't appear to match the numbers of subjects shown in the graphs; including sample sizes in each group would be helpful because the graph panels are very small and data points overlap.

      The additional context that could help readers of this study is that the authors overlook some important mPFC and pup caregiving and infanticide studies in the introduction which would help put this work in better context in terms of what is known about the mPFC and these behaviors. These previous studies include Febo et al., 2010; Febo 2012; Peirera and Morrell, 2011 and 2020; and a very relevant study by Alsina-Llanes and Olazábal, 2021 on mPFC lesions and infanticide in virgin male and female mice. The introduction states that nothing is known about the mPFC and infanticide. In the introduction and discussion, stating the species and sex of the animals tested in all the previous studies mentioned would be useful. The authors also discuss PVN OT cell stimulation findings seen in other rodents, so the work seems less conceptually novel. Overall, the findings add to the knowledge about OT regulation of pup-directed behavior in male and female rodents, especially the PVN-mPFC OT projection.

    3. Reviewer #3 (Public Review):

      Summary:

      Here Li et al. examine pup-directed behavior in virgin Mandarin voles. Some males and females tend towards infanticide, others tend towards pup care. c-Fos staining showed more oxytocin cells activated in the paraventricular nucleus (PVN) of the hypothalamus in animals expressing pup care behaviors than in infanticidal animals. Optogenetic stimulation of PVN oxytocin neurons (with an oxytocin-specific virus to express the opsin transgene) increased pup-care, or in infanticidal voles increased latency towards approach and attack.

      Suppressing the activity of PVN oxytocin neurons promoted infanticide. The use of a recent oxytocin GRAB sensor (OT1.0) showed changes in medial prefrontal cortex (mPFC) signals as measured with photometry in both sexes. Activating mPFC oxytocin projections increased latency to approach and attack in infanticidal females and males (similar to the effects of peripheral oxytocin injections), whereas in pup-caring animals only males showed a decrease in approach. Inhibiting these projections increased infanticidal behaviors in both females and males and had no effect on pup caretaking.

      Strengths:

      Adopting these methods for Mandarin voles is an impressive accomplishment, especially the valuable data provided by the oxytocin GRAB sensor. This is a major achievement and helps promote systems neuroscience in voles.

      Weaknesses:

      The study would be strengthened by an initial figure summarizing the behavioral phenotypes of voles expressing pup care vs infanticide: the percentages and behavioral scores of individual male and female nulliparous animals for the behaviors examined here. Do the authors have data about the housing or life history/experiences of these animals? How bimodal and robust are these behavioral tendencies in the population?

      Optogenetics with the oxytocin promoter virus is a nice advance here. More details about their preparation and methods should be in the main text, and not simply relegated to the methods section. For optogenetic stimulation in Figure 2, how were the stimulation parameters chosen? There is a worry that oxytocin neurons can co-release other factors- are the authors sure that oxytocin is being released by optogenetic stimulation as opposed to other transmitters or peptides, and acting through the oxytocin receptor (as opposed to a vasopressin receptor)?

      Given that they are studying changes in latency to approach/attack, having some controls for motion when oxytocin neurons are activated or suppressed might be nice. Oxytocin is reported to be an anxiolytic and a sedative at high levels.

      The OT1.0 sensor is also amazing, these data are quite remarkable. However, photometry is known to be susceptive to motion artifacts and I didn't see much in the methods about controls or correction for this. It's also surprising to see such dramatic, sudden, and large-scale suppression of oxytocin signaling in the mPFC in the infanticidal animals - does this mean there is a substantial tonic level of oxytocin release in the cortex under baseline conditions?

      Figure 5 is difficult to parse as-is, and relates to an important consideration for this study: how extensive is the oxytocin neuron projection from PVN to mPFC?

      In Figures 6 and 7, the authors use the phrase 'projection terminals'; however, to my knowledge, there have not been terminals (i.e., presynaptic formations opposed to a target postsynaptic site) observed in oxytocin neuron projections into target central regions.

      Projection-based inhibition as in Figure 7 remains a controversial issue, as it is unclear if the opsin activation can be fast enough to reduce the fast axonal/terminal action potential. Do the authors have confirmation that this works, perhaps with the oxytocin GRAB OT sensor?

      As females and males had similar GRAB OT1.0 responses in mPFC, why would the behavioral effects of increasing activity be different between the sexes?

    1. Reviewer #1 (Public Review):

      Summary:

      The present paper introduces Oscillation Component Analysis (OCA), in analogy to ICA, where source separation is underpinned by a biophysically inspired generative model. It puts the emphasis on oscillations, which is a prominent characteristic of neurophysiological data.

      Strengths:

      Overall, I find the idea of disambiguating data-driven decompositions by adding biophysical constrains useful, interesting and worth-pursuing. The model incorporates both a component modelling of oscillatory responses that is agnostic about the frequency content (e.g.. doesn't need bandpass filtering or predefinition of bands) and a component to map between sensor and latent-space. I feel these elements can be useful in practice.

      Weaknesses:

      Lack of empirical support: I am missing empirical justification of the advantages that are theoretically claimed in the paper. I feel the method needs to be compared to existing alternatives.

    1. Reviewer #3 (Public Review):

      The authors delved into an important aspect of abortifacient diseases of livestock in Tanzania. The thoughts of the authors on the topic and its significance are implied, and the methodological approach needs further clarity. The number of wards in the study area, statistical selection of wards, type of questionnaire ie open or close-ended. Statistical analyses of outcomes were not clearly elucidated in the manuscript. Fifteen wards were mentioned in the text but 13 used what were the exclusion criteria. Observations were from pastoral, agropastoral, and smallholder agroecological farmers. No sample numbers or questionnaires were attributed to the above farming systems to correlate findings with management systems. The impacts of the research investigation output are not clearly visible as to warrant intervention methods. What were the identified pathogens from laboratory investigation, particularly with the use of culture and PCR not even mentioning the zoonotic pathogens encountered if any? The public health importance of any of the abortifacient agents was not highlighted.

      In conclusion, based on the intent of the authors and the content of this research, and the weight of the research topic, there are obvious weaknesses in the critical data analysis to demonstrate cause, effect, and impact.

    2. Reviewer #2 (Public Review):

      The paper "The Value of Livestock Abortion Surveillance in Tanzania: Identifying Disease Priorities and Informing Interventions" provides a comprehensive analysis of the importance of livestock abortion surveillance in Tanzania. The authors aim to highlight the significance of this surveillance system in identifying disease priorities and guiding interventions to mitigate the impact of livestock abortions on both animal and human health.

      Summary:

      The paper begins by discussing the context of livestock farming in Tanzania and the significant economic and social impact of livestock abortions. The authors then present a detailed overview of the livestock abortion surveillance system in Tanzania, including its objectives, methods, and data collection process. They analyze the data collected from this surveillance system over a specific period to identify the major causes of livestock abortions and assess their public health implications.

      Evaluation:

      Overall, this paper provides valuable insights into the importance of livestock abortion surveillance as a tool for disease prioritization and intervention planning in Tanzania. The authors effectively demonstrate the utility of this surveillance system in identifying emerging diseases, monitoring disease trends, and informing evidence-based interventions to control and prevent livestock abortions.

      Strengths:

      (1) Clear Objective: The paper clearly articulates its objective of highlighting the value of livestock abortion surveillance in Tanzania.

      (2) Comprehensive Analysis: The authors provide a thorough analysis of the surveillance system, including its methodology, data collection process, and findings as seen in the supplementary files.

      (3) Practical Implications: The paper discusses the practical implications of the surveillance system for disease control and public health interventions in Tanzania.

      (4) Well-Structured: The paper is well-organized, with clear sections and subheadings that facilitate understanding and navigation.

      Suggestions for Improvement:

      (1) Data Presentation: While the analysis is comprehensive, the presentation of data could be enhanced with the use of more visual aids such as tables, graphs, or charts to illustrate key findings.

      (2) Discussion Section: The paper could benefit from a more in-depth discussion of the implications of the findings for disease control strategies and policy formulation in Tanzania.

      (3) Future Directions: Including recommendations for future research or areas for further investigation would add depth to the paper.

      Summary:

      This paper contains thorough analysis and valuable insights. Overall, it makes a significant contribution to the literature on livestock abortion surveillance and its implications for disease control in Tanzania.

    3. Reviewer #1 (Public Review):

      Summary:

      The paper examined livestock abortion, as it is an important disease syndrome that affects productivity and livestock economies. If livestock abortion remains unexamined it poses risks to public health.

      Several pathogens are associated with livestock abortions across Africa however the livestock disease surveillance data rarely include information from abortion events, little is known about the aetiology and impacts of livestock abortions, and data are not available to inform prioritisation of disease interventions. Therefore the current study seeks to examine the issue in detail and proposes some solutions.

      The study took place in 15 wards in northern Tanzania spanning pastoral, agropastoral, and smallholder agro-ecological systems. The key objective is to investigate the causes and impacts of livestock abortion.

      The data collection system was set up such that farmers reported abortion cases to the field officers of the Ministry of Livestock and Fisheries livestock.

      The reports were made to the investigation teams. The team only included abortion of those that the livestock field officers could attend to within 72 hours of the event occurring.

      Also, a field investigation was carried out to collect diagnostic samples from aborted materials. In addition, aborting dams and questionnaires were administered to collect data on herd/flock management. Laboratory diagnostic tests were carried out for a range of abortigenic pathogens

      Over the period of the study, 215 abortion events in cattle (n=71), sheep 48 (n=44), and goats (n=100) were investigated. All 49 investigated cases varied widely across wards. The aetiological attribution, achieved for 19.5% of cases through PCR-based diagnostics, was significantly affected by delays in the field investigation.

      The result also revealed that vaginal swabs from aborting dams provided a practical and sensitive source of diagnostic material for pathogen detection.

      Livestock abortion surveillance can generate valuable information on causes of zoonotic disease outbreaks, and livestock reproductive losses and can identify important pathogens that are not easily captured through other forms of livestock disease surveillance. The study demonstrated the feasibility of establishing an effective reporting and investigation system that could be implemented across a range of settings, including remote rural areas,

      Strengths:

      The paper combines both science and socio-economic methodology to achieve the aim of the study. The methodology was well presented and the sequence was great. The authors explain where and how the data was collected. Figure 2 was used to describe the study area which was excellently done. The section on the investigation of cases was well written. The sample analysis was also well-written. The authors devoted a section to summarizing the investigated cases and description of the livestock 221-study population. The logit model was well-presented.

    1. Reviewer #1 (Public Review):

      In this manuscript, Naseri et al. present a new strategy for identifying human genetic variants with recessive effects on disease risk by the genome-wide association of phenotype with long runs-of-homozygosity (ROH). The key step of this approach is the identification of long ROH segments shared by many individuals (termed "shared ROH diplotype clusters" by the authors), which is computationally intensive for large-scale genomic data. The authors circumvented this challenge by converting the original diploid genotype data to (pseudo-)haplotype data and modifying the existing positional Burrow-Wheeler transformation (PBWT) algorithms to enable an efficient search for haplotype blocks shared by many individuals. With this method, the authors identified over 1.8 million ROH diplotype clusters (each shared by at least 100 individuals) and 61 significant associations with various non-cancer diseases in the UK Biobank dataset.

      Overall, the study is well-motivated, highly innovative, and potentially impactful. Previous biobank-based studies of recessive genetic effects primarily focused on genome-wide aggregated ROH content, but this metric is a poor proxy for homozygosity of the recessive alleles at causal loci. Therefore, searching for the association between phenotype and specific variants in the homozygous state is a key next step towards discovering and understanding disease genes/alleles with recessive effects. That said, I have some concerns regarding the power and error rate of the methods, for both identification of ROH diplotype clusters and subsequent association mapping. In addition, some of the newly identified associations need further validation and careful consideration of potential artifacts (such as cryptic relatedness and environment sharing).

      (1) Identification of ROH diplotype clusters.<br /> The practice of randomly assigning heterozygous sites to a homozygous state is expected to introduce errors, leading to both false positives and false negatives. An advantage that the authors claim for this practice is to reduce false negatives due to occasional mismatch (possibly due to genotyping error, or mutation), but it's unclear how much the false positive rate is reduced compared to traditional ROH detection algorithm. The authors also justified the "random allele drawing" practice by arguing that "the rate of false positives should be low" for long ROH segments, which is likely true but is not backed up with quantitative analysis. As a result, it is unclear whether the trade-off between reducing FNs and introducing FPs makes the practice worthwhile (compared to calling ROHs in each individual with a standard approach first followed by scanning for shared diplotypes across individuals using BWT). I would like to see a combination of back-of-envelope calculation, simulation (with genotyping errors), and analysis of empirical data that characterize the performance of the proposed method.

      In particular, I find the high number of ROH clusters in MHC alarming, and I am not convinced that this can be fully explained by a high density of SNPs and low recombination rate in this region. The authors may provide further support for their hypothesis by examining the genome-wide relationship between ROH cluster abundance and local recombination rate (or mutation rate).

      (2) Power of ROH association. Given that the authors focused on long segments only (which is a limitation of the current method), I am concerned about the power of the association mapping strategy, because only a small fraction of causal alleles are expected to be present in long, homozygous haplotypes shared by many individuals. It would be useful to perform a power analysis to estimate what fraction of true causal variants with a given effect size can be detected with the current method. To demonstrate the general utility of this method, the authors also need to characterize the condition(s) under which this method could pick up association signals missed by standard GWAS with recessive effects considered. I suspect some variants with truly additive effects can also be picked up by the ROH association, which should be discussed in the manuscript to guide the interpretation of results.

      (3) False positives of ROH association. GWAS is notoriously prone to confounding by population and environmental stratification. Including leading principal components in association testing alleviates this issue but is not sufficient to remove the effects of recent demographic structure and local environment (Zaidi and Mathieson 2020 eLife). Similar confounding likely applies to homozygosity mapping and should be carefully considered. For example, it is possible that individuals who share a lot of ROH diplotypes tend to be remotely related and live near each other, thus sharing similar environments. Such scenarios need to be excluded to further support the association signals.

      (4) Validation of significant associations. It is reassuring that some of the top associations are indirectly corroborated by significant GWAS associations between the same disease and individual SNPs present in the ROH region (Tables 1 and 2). However, more sanity checks should be done to confirm consistency in direction of effect size (e.g., risk alleles at individual SNPs should be commonly present in risk-increasing ROH segment, and vice versa) and the presence of dominance effect.

    2. Reviewer #2 (Public Review):

      The authors have proposed a computational algorithm to identify runs of homozygosity (ROH) segments in a generally outbred population and then study the association of ROH with self-reported disorders in the UK biobank. The algorithm certainly identifies such segments. However, more work is needed to justify the importance of ROH.

    3. Reviewer #3 (Public Review):

      A classic method to detect recessive disease variants is homozygosity mapping, where affected individuals in a pedigree are scanned for the presence of runs of homozygosity (ROH) intersecting in a given region. The method could in theory be extended to biobanks with large samples of unrelated individuals; however, no efficient method was available (to the best of my knowledge) for detecting overlapping clusters of ROH in such large samples. In this paper, the authors developed such a method based on the PBWT data structure. They applied the method to the UK biobank, finding a number of associations, some of them not discovered in single SNP associations.

      Major strengths:<br /> • The method is innovative and algorithmically elegant and interesting. It achieves its purpose of efficiently and accurately detecting ROH clusters overlapping in a given region. It is therefore a major methodological advance.<br /> • The method could be very useful for many other researchers interested in detecting recessive variants associated with any phenotype.<br /> • The statistical analysis of the UK biobank data is solid and the results that were highlighted are interesting and supported by the data.

      Major weaknesses:<br /> • The positions and IDs of the ROH clusters in the UK biobank are not available for other researchers. This means that other researchers will not be able to follow up on the results of the present paper.<br /> • The vast majority of the discoveries were in regions already known to be associated with their respective phenotypes based on standard GWAS.<br /> • The running time seems rather long (at least for the UK biobank), and therefore it will be difficult for other researchers to extensively experiment with the method in very large datasets. That being said, the method has a linear running time, so it is already faster than a naïve algorithm.

    1. Reviewer #1 (Public Review):

      Summary:

      For many years, there has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, using state-of-the-art imaging techniques, they examined spike synchrony of hippocampal cells during locomotion and immobility states. In contrast to conventional understanding of the hippocampus, the authors demonstrated that hippocampal place cells exhibit prominent synchronous spikes locked to theta oscillations.

      Strengths:

      The voltage imaging used in this study is a highly novel method that allows recording not only suprathreshold-level spikes but also subthreshold-level activity. With its high frame rate, it offers time resolution comparable to electrophysiological recordings. Moreover, it enables the visualization of actual cell locations, allowing for the examination of spatial properties (e.g., Figure 4G).

      Weaknesses:

      There is a notable deviation from several observations obtained through conventional electrophysiological recordings. Particularly, as mentioned below in detail, the considerable differences in baseline firing rates and no observations of ripple-triggered firing patterns raise some concerns about potential artifacts from imaging and analsyis, such as cell toxicity, abnormal excitability, and false detection of spikes. While these findings are intriguing if the validity of these methods is properly proven, accepting the current results as new insights is challenging.

    2. Reviewer #2 (Public Review):

      Summary:

      This study employed voltage imaging in the CA1 region of the mouse hippocampus during the exploration of a novel environment. The authors report synchronous activity, involving almost half of the imaged neurons, occurred during periods of immobility. These events did not correlate with SWRs, but instead, occurred during theta oscillations and were phased-locked to the trough of theta. Moreover, pairs of neurons with high synchronization tended to display non-overlapping place fields, leading the authors to suggest these events may play a role in binding a distributed representation of the context.

      Strengths:

      Technically this is an impressive study, using an emerging approach that allows single-cell resolution voltage imaging in animals, that while head-fixed, can move through a real environment. The paper is written clearly and suggests novel observations about population-level activity in CA1.

      Weaknesses:

      The evidence provided is weak, with the authors making surprising population-level claims based on a very sparse data set (5 data sets, each with less than 20 neurons simultaneously recorded) acquired with exciting, but less tested technology. Further, while the authors link these observations to the novelty of the context, both in the title and text, they do not include data from subsequent visits to support this. Detailed comments are below:

      (1) My first question for the authors, which is not addressed in the discussion, is why these events have not been observed in the countless extracellular recording experiments conducted in rodent CA1 during the exploration of novel environments. Those data sets often have 10x the neurons simultaneously recording compared to these present data, thus the highly synchronous firing should be very hard to miss. Ideally, the authors could confirm their claims via the analysis of publicly available electrophysiology data sets. Further, the claim of high extra-SWR synchrony is complicated by the observation that their recorded neurons fail to spike during the limited number of SWRs recorded during behavior- again, not agreeing with much of the previous electrophysiological recordings.

      (2) The authors posit that these events are linked to the novelty of the context, both in the text, as well as in the title and abstract. However, they do not include any imaging data from subsequent days to demonstrate the failure to see this synchrony in a familiar environment. If these data are available it would strengthen the proposed link to novelty if they were included.

      (3) In the discussion the authors begin by speculating the theta present during these synchronous events may be slower type II or attentional theta. This can be supported by demonstrating a frequency shift in the theta recording during these events/immobility versus the theta recording during movement.

      (4) The authors mention in the discussion that they image deep-layer PCs in CA1, however, this is not mentioned in the text or methods. They should include data, such as imaging of a slice of a brain post-recording with immunohistochemistry for a layer-specific gene to support this.

    3. Reviewer #3 (Public Review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected in the other side of the brain, and the investigation is flawed due to multiple problems with the point process analyses. The synchrony terminology refers to dozens of milliseconds as opposed to the millisecond timescale referred to in prior work, and the interpretations do not take into account theta phase locking as a simple alternative explanation.

      Weaknesses:

      The two main messages of the manuscript indicated in the title are not supported by the data. The title gives two messages that relate to CA1 pyramidal neurons in behaving head-fixed mice: (1) synchronous ensembles are associated with theta (2) synchronous ensembles are not associated with ripples.

      There are two main methodological problems with the work: (1) experimentally, the theta and ripple signals were recorded using electrophysiology from the opposite hemisphere to the one in which the spiking was monitored. However, both signals exhibit profound differences as a function of location: theta phase changes with the precise location along the proximo-distal and dorso-ventral axes, and importantly, even reverses with depth. And ripples are often a local phenomenon - independent ripples occur within a fraction of a millimeter within the same hemisphere, let alone different hemispheres. Ripples are very sensitive to the precise depth - 100 micrometers up or down, and only a positive deflection/sharp wave is evident. (2) The analysis of the point process data (spike trains) is entirely flawed. There are many technical issues: complex spikes ("bursts") are not accounted for; differences in spike counts between the various conditions ("locomotion" and "immobility") are not accounted for; the pooling of multiple CCGs assumes independence, whereas even conditional independence cannot be assumed; etc.

      Beyond those methodological issues, there are two main interpretational problems: (1) the "synchronous ensembles" may be completely consistent with phase locking to the intracellular theta (as even shown by the authors themselves in some of the supplementary figures). (2) The definition of "synchrony" in the present work is very loose and refers to timescales of 20-30 ms. In previous literature that relates to synchrony of point processes, the timescales discussed are 1-2 ms, and longer timescales are referred to as the "baseline" which is actually removed (using smoothing, jittering, etc.).

    1. Reviewer #1 (Public Review):

      In this study, the authors offer a fresh perspective on how visual working memory operates. They delve into the link between anticipating future events and retaining previous visual information in memory. To achieve this, the authors build upon their recent series of experiments that investigated the interplay between gaze biases and visual working memory. In this study, they introduce an innovative twist to their fundamental task. Specifically, they disentangle the location where information is initially stored from the location where it will be tested in the future. Participants are tasked with learning a novel rule that dictates how the initial storage location relates to the eventual test location. The authors leverage participants' gaze patterns as an indicator of memory selection. Intriguingly, they observe that microsaccades are directed towards both the past encoding location and the anticipated future test location. This observation is noteworthy for several reasons. Firstly, participants' gaze is biased towards the past encoding location, even though that location lacks relevance to the memory test. Secondly, there's a simultaneous occurrence of an increased gaze bias towards both the past and future locations. To explore this temporal aspect further, the authors conduct a compelling analysis that reveals the joint consideration of past and future locations during memory maintenance. Notably, microsaccades biased towards the future test location also exhibit a bias towards the past encoding location. In summary, the authors present an innovative perspective on the adaptable nature of visual working memory. They illustrate how information relevant to the future is integrated with past information to guide behavior.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Liu et al. reports a task that is designed to examine the extent to which "past" and "future" information is encoded in working memory that combines a retrocue with rules that indicate the location of an upcoming test probe. An analysis of microsaccades on a fine temporal scale shows the extent to which shifts of attention track the location of the encoded item (past) and the location of the future item (test probe). The location of the encoded grating and test probe were always on orthogonal axes (horizontal, vertical) so that biases in microsaccades could be used to track shifts of attention to one or the other axis (or mixtures of the two). The overall goal here was then to (1) create a methodology that could tease apart memory for the past and future, respectively, (2) to look at the time-course attention to past/future, and (3) to test the extent to which microsaccades might jointly encode past and future memoranda. Finally, some remarks are made about the plausibility of various accounts of working memory encoding/maintenance based on the examination of these time-courses.

      Strengths:

      This research has several notable strengths. It has a clear statement of its aims, is lucidly presented, and uses a clever experimental design that neatly orthogonalized "past" and "future" as operationalized by the authors. Figure 1b-d shows fairly clearly that saccade directions have an early peak (around 300ms) for the past and a "ramping" up of saccades moving in the forward direction. This seems to be a nice demonstration that the method can measure shifts of attention at a fine temporal resolution and differentiate past from future oriented saccades due to the orthogonal cue approach. The second analysis shown in Figure 2, reveals a dependency in saccade direction such that saccades toward the probe future were more likely also to be toward the encoded location than away from the encoded direction. This suggests saccades are jointly biased by both locations "in memory". The "central contribution" (as the authors characterize it) is that "the brain simultaneously retains the copy of both past and future-relevant locations in working memory, and (re)activates each during mnemonic selection", and that: "... while it is not surprising that the future location is considered, it is far less trivial that both past and future attributes would be retained and (re)activated together. This is our central contribution." The authors provide a nuanced analysis that offers persuasive evidence that past and future representations are jointly maintained in memory.

    1. Reviewer #1 (Public Review):

      Using A. carterae as a model system, this work investigates the properties of the trans-spliced SL leader sequences and the dinoflagellate eIF4E protein family members.

      Analysis was performed to identify the 5' cap type of the SL leader. Variation in the SL leader sequence and an abundance of modified bases was documented.

      Various aspects of the sequence and expression of the eIF4E family members were examined. This included phylogeny, mRNA, and protein expression levels in A. carterae, and the ability of eIF4E proteins to bind cap structures. Differences in expression levels and cap-binding capacity were characterized, leading to the proposition that eIF4E-1a serves as the major cap-binding protein in A. carterae.

      A major discussion point is the potential for differential eIF4E binding to specific SL leader sequences as a regulatory mechanism, which is an exciting prospect. However, despite indications of sequence variability and the presence of various nucleotide modifications in the SL, and the several eIF4E variants, direct evidence to support this hypothesis is lacking.

      It is an extensive and highly descriptive study. The work is presented clearly, although it is rather lengthy and contains repetition across the introduction, results, and discussion sections. Its style leans more towards a review format. As a non-expert in the field, I appreciated the extensive background however I do believe the paper would benefit from a more concise format.

    2. Reviewer #2 (Public Review):

      Summary:

      Jones et al. extend their previous work on the translation machinery in Dinoflagellate. In particular, they study the species Amphidium carterae. They characterize the type of cap structure mRNAs possess in this species, as well as the eight eIF4E family members A. carterae possesses and their affinity to the mRNA cap. They also establish the leader sequences of the transpliced mRNAs that A. carterae generates during gene expression.

      Strengths:

      The authors performed a solid phylogenetic and biochemical study to understand the structure of Dinoflagellate mRNAs at the 5'-UTR as well as the divergence and biochemical features of eIF4Es across Dinoflagellate. They also establish eIF4E-1a as the prototypical paralog of the eIF4E family of proteins. The scientific questions they ask are very relevant to the gene expression field across eukaryotes. The experiments and the phylogenetic analysis are performed with a very high quality. They perform a wide spectrum of experimental approaches and techniques to answer the questions.

      Weaknesses:

      The authors assume all eIF4E from Dinoflagellate are involved in translation, i.e., mRNA recruitment to the ribosome. Indeed, they think that the diverse biochemical features of all eIF4E in A. carterae have to do with the possible recruitment of different subsets of mRNAs to the ribosome for translation. I think that the biochemical differences among all paralogs also might be due to the involvement of some of them in different processes of RNA metabolism, other than translation. For instance, some of them could be involved only in RNA processing in the nucleus or mRNA storage in cytoplasmic foci.

    3. Reviewer #3 (Public Review):

      Summary:

      In this article, the authors provide an inventory of the 5' spliced leader sequences, cap structures, and eIF4E isoforms present in the model dinoflagellate species A. carterae. They provide evidence that the 5' cap structure is m7G, as it is in most characterized eukaryotes that do not employ trans-splicing for mRNA maturation, and that there are additional methylated nucleotides throughout the spliced leader RNAs. They then show that of the 8 different eIF4E species in A. carterae, only a subset of eIF4E1 and eIF4E2 proteins are detected and that the levels change according to time of day. Interestingly, while the eIF4E1 proteins bind a canonical cap nucleotide and are able to complement eIF4E-deficiency in yeast, an eIF4E2 paralog does not bind the traditional cap.

      Strengths:

      A strength of the article is that the authors have clearly presented the findings and by straying away from traditional model organisms, they have highlighted unique and interesting features of an understudied system for translational control. They provide complementary evidence for most findings using multiple techniques. E.g. the evidence that eIF4E1A binds m7GTP is supported by both pulldowns using m7GTP sepharose as well as SPR experiments to directly monitor binding of recombinant protein with affinity measurements. The methods are extremely detailed noting cell numbers, volumes, concentrations, etc. used in the experiments to be easily replicated.

      Weaknesses:

      While not necessary to support the author's conclusions, the significance of the work would be further enhanced by additional experiments to gain insights into mechanisms for translational control and to link specific SLs to organismal functions or mechanisms of mRNA recruitment.

      -Monitoring diel expression of SLs and direct sequencing of mature mRNA would yield insights into whether there is regulated expression of RNAs with different SLs or the SLs themselves. This would also allow the authors to perform gene ontology to link SL expression at different points in the diel cycle to related functions, e.g. photosynthesis.

      -In addition, the work would be strengthened by polysome sequencing or ribosome profiling as a function of the diel cycle, with analyses of when various spliced leader sequences are recruited to ribosomes in parallel with western blotting of polysome fractions to determine when various eIF4E isoforms are present on polysomes. This is a substantial expansion though from what the authors focused on in this manuscript, and not having these experiments does not undermine the findings presented. Alternatively, they could attempt to make bioinformatic comparisons with existing ribosome profiling datasets from a related dinoflagellate, Lingulodinium polyedrum, discussed briefly, if there were sufficient overlap between SL RNAs in these organisms.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to determine the role of the sperm hook of the house mouse sperm in movement through the uterus. The authors are trying to distinguish between two hypotheses put forward by others on the role of the sperm hook: (1) the sperm cooperation hypothesis (the sperm hook helps to form sperm trains) vs (2) the migration hypothesis (that the sperm hook is needed for sperm movement through the uterus). They use transgenic lines with fluorescent labels to sperm proteins, and they cross these males to C57BL/6 females in pathogen-free conditions. They use 2-photon microscopy on ex vivo uteri within 3 hours of mating and the appearance of a copulation plug. There are a total of 10 post-mating uteri that were imaged with 3 different males. They provide 10 supplementary movies that form the basis for some of the quantitative analysis in the main body figures. Their data suggest that the role of the sperm hook is to facilitate movement along the uterine wall.

      Strengths:

      Ex vivo live imaging of fluorescently labeled sperm with 2-photon microscopy is a powerful tool for studying the behavior of sperm.

      Weaknesses:

      The paper is descriptive and the data are correlations.

      The data are not properly described in the figure legends.

      When statistical analyses are performed, the authors do not comment on the trend that sperm from the three males behave differently from each other. This weakens confidence in the results. For example, in Figure 1 the sperm from male 3613 (blue squares) look different from male 838 (red circles), but all of these data are considered together. The authors should comment on why sperm across males are considered together when the individual data points appear to be different across males.

      Movies S8-S10 are single data points and no statistical analyses are performed. Therefore, it is unclear how penetrant the sperm movements are.

      Movies S1B - did the authors also track the movement of sperm located in the middle of the uterus (not close to the wall)? Without this measurement, they can't be certain that sperm close to the uterus wall travels faster.

      Movie S5A - is of lower magnitude (200 um scale bar) while the others have 50 and 20 uM scale bars. Individual sperm movement can be observed in the 20 uM (Movie 5SC). If the authors went to prove that there is no upsucking movement of sperm by the uterine contractions, they need to provide a high magnification image.

      Movie S8 - if the authors want to make the case that clustered sperm do not move faster than unclustered sperm, then they need to show Movie S8 at higher magnification. They also need to quantify these data.

      Movie S9C - what is the evidence that these sperm are dead or damaged?

      MovIe S10 - both slow- and fast-moving sperm are seen throughout the course of the movie, which does not support the authors' conclusion that sperm tails beat faster over time.

    2. Reviewer #2 (Public Review):

      Summary:

      The specific objective of this study was to determine the role of the large apical hook on the head of mouse sperm (Mus musculus) in sperm migration through the female reproductive tract. The authors used a custom-built two-photon microscope system to obtain digital videos of sperm moving within the female reproductive tract. They used sperm from genetically modified male mice that produce fluorescence in the sperm head and flagellar midpiece to enable visualization of sperm moving within the tract. Based on various observations, the authors concluded that the hook serves to facilitate sperm migration by hooking sperm onto the lining of the female reproductive tract, rather than by hooking sperm together to form a sperm train that would move them more quickly through the tract. The images and videos are excellent and inspirational to researchers in the field of mammalian sperm migration, but interpretations of the behaviors are highly speculative and not supported by controlled experimentation.

      Strengths:

      The microscope system developed by the authors could be of interest to others investigating sperm migration.

      The new behaviors shown in the images and videos could be of interest to others in the field, in terms of stimulating the development of new hypotheses to investigate.

      Weaknesses:

      The authors stated several hypotheses about the functions of the sperm behaviors they saw, but the hypotheses were not clearly stated or tested experimentally.

      The hypothesis statements were weakened by the use of hedge words, such as "may".

    1. Reviewer #1 (Public Review):

      The authors have performed all-atom MD simulations to study the working mechanism of hsPepT2. It is widely accepted that conformational transitions of proton-coupled oligopeptide transporters (POTs) are linked with gating hydrogen bonds and salt bridges involving protonatable residues, whose protonation triggers gate openings. Through unbiased MD simulations, the authors identified extra-cellular (H87 and D342) and intra-cellular (E53 and E622) triggers. The authors then validated these triggers using free energy calculations (FECs) and assessed the engagement of the substrate (Ala-Phe dipeptide). The linkage of substrate release with the protonation of the ExxER motif (E53 and E56) was confirmed using constant-pH molecular dynamics (CpHMD) simulations and cell-based transport assays. An alternating-access mechanism was proposed. The study was largely conducted properly, and the paper was well-organized. However, I have a couple of concerns for the authors to consider addressing.

      (1) As a proton-coupled membrane protein, the conformational dynamics of hsPepT2 are closely coupled to protonation events of gating residues. Instead of using semi-reactive methods like CpHMD or reactive methods such as reactive MD, where the coupling is accounted for, the authors opted for extensive non-reactive regular MD simulations to explore this coupling. Note that I am not criticizing the choice of methods, and I think those regular MD simulations were well-designed and conducted. But I do have two concerns.

      a) Ideally, proton-coupled conformational transitions should be modelled using a free energy landscape with two or more reaction coordinates (or CVs), with one describing the protonation event and the other describing the conformational transitions. The minimum free energy path then illustrates the reaction progress, such as OCC/H87D342-  OCC/H87HD342H  OF/H87HD342H as displayed in Figure 3. Without including the protonation as a CV, the authors tried to model the free energy changes from multiple FECs using different charge states of H87 and D342. This is a practical workaround, and the conclusion drawn (the OCCOF transition is downhill with protonated H87 and D342) seems valid. However, I don't think the OF states with different charge states (OF/H87D342-, OF/H87HD342-, OF/H87D342H, and OF/H87HD342H) are equally stable, as plotted in Figure 3b. The concern extends to other cases like Figures 4b, S7, S10, S12, S15, and S16. While it may be appropriate to match all four OF states in the free energy plot for comparison purposes, the authors should clarify this to ensure readers are not misled.

      b) Regarding the substrate impact, it appears that the authors assumed fixed protonation states. I am afraid this is not necessarily the case. Variations in PepT2 stoichiometry suggest that substrates likely participate in proton transport, like the Phe-Ala (2:1) and Phe-Gln (1:1) dipeptides mentioned in the introduction. And it is not rigorous to assume that the N- and C-termini of a peptide do not protonate/deprotonate when transported. I think the authors should explicitly state that the current work and the proposed mechanism (Figure 8) are based on the assumption that the substrates do not uptake/release proton(s).

      (2) I have more serious concerns about the CpHMD employed in the study.

      a) The CpHMD in AMBER is not rigorous for membrane simulations. The underlying generalized Born model fails to consider the membrane environment when updating charge states. In other words, the CpHMD places a membrane protein in a water environment to judge if changes in charge states are energetically favorable. While this might not be a big issue for peripheral residues of membrane proteins, it is likely unphysical for internal residues like the ExxER motif. As I recall, the developers have never used the method to study membrane proteins themselves. The only CpHMD variant suitable for membrane proteins is the membrane-enabled hybrid-solvent CpHMD in CHARMM. While I do not expect the authors to redo their CpHMD simulations, I do hope the authors recognize the limitations of their method.

      b) It appears that the authors did not make the substrate (Ala-Phe dipeptide) protonatable in holo-simulations. This oversight prevents a complete representation of ligand-induced protonation events, particularly given that the substrate ion pairs with hsPepT2 through its N- & C-termini. I believe it would be valuable for the authors to acknowledge this potential limitation.

    2. Reviewer #2 (Public Review):

      Summary:

      This is an interesting manuscript that describes a series of molecular dynamics studies on the peptide transporter PepT2 (SLC15A2). They examine, in particular, the effect on the transport cycle of protonation of various charged amino acids within the protein. They then validate their conclusions by mutating two of the residues that they predict to be critical for transport in cell-based transport assays. The study suggests a series of protonation steps that are necessary for transport to occur in Petp2. Comparison with bacterial proteins from the same family shows that while the overall architecture of the proteins and likely mechanism are similar, the residues involved in the mechanism may differ.

      Strengths:

      This is an interesting and rigorous study that uses various state-of-the-art molecular dynamics techniques to dissect the transport cycle of PepT2 with nearly 1ms of sampling. It gives insight into the transport mechanism, investigating how the protonation of selected residues can alter the energetic barriers between various states of the transport cycle. The authors have, in general, been very careful in their interpretation of the data.

      Weaknesses:

      Interestingly, they suggest that there is an additional protonation event that may take place as the protein goes from occluded to inward-facing but they have not identified this residue. Some things are a little unclear. For instance, where does the state that they have defined as occluded sit on the diagram in Figure 1a? - is it truly the occluded state as shown on the diagram or does it tend to inward- or outward-facing? The pKa calculations and their interpretation are a bit unclear. Firstly, it is unclear whether they are using all the data in the calculations of the histograms, or just selected data and if so on what basis was this selection done. Secondly, they dismiss the pKa calculations of E53 in the outward-facing form as not being affected by peptide binding but say that E56 is when there seems to be a similar change in profile in the histograms.

    3. Reviewer #3 (Public Review):

      Summary:

      Lichtinger et al. have used an extensive set of molecular dynamics (MD) simulations to study the conformational dynamics and transport cycle of an important member of the proton-coupled oligopeptide transporters (POTs), namely SLC15A2 or PepT2. This protein is one of the most well-studied mammalian POT transporters that provides a good model with enough insight and structural information to be studied computationally using advanced enhanced sampling methods employed in this work. The authors have used microsecond-level MD simulations, constant-PH MD, and alchemical binding free energy calculations along with cell-based transport assay measurements; however, the most important part of this work is the use of enhanced sampling techniques to study the conformational dynamics of PepT2 under different conditions.

      The study attempts to identify links between conformational dynamics and chemical events such as proton binding, ligand-protein interactions, and intramolecular interactions. The ultimate goal is of course to understand the proton-coupled peptide and drug transport by PepT2 and homologous transporters in the solute carrier family.

      Some of the key results include<br /> (1) Protonation of H87 and D342 initiate the occluded (Occ) to the outward-facing (OF) state transition.

      (2) In the OF state, through engaging R57, substrate entry increases the pKa value of E56 and thermodynamically facilitates the movement of protons further down.

      (3) E622 is not only essential for peptide recognition but also its protonation facilitates substrate release and contributes to the intracellular gate opening. In addition, cell-based transport assays show that mutation of residues such as H87 and D342 significantly decreases transport activity as expected from simulations.

      Strengths:

      (1) This is an extensive MD-based study of PepT2, which is beyond the typical MD studies both in terms of the sheer volume of simulations as well as the advanced methodology used. The authors have not limited themselves to one approach and have appropriately combined equilibrium MD with alchemical free energy calculations, constant-pH MD, and geometry-based free energy calculations. Each of these 4 methods provides a unique insight regarding the transport mechanism of PepT2.

      (2) The authors have not limited themselves to computational work and have performed experiments as well. The cell-based transport assays clearly establish the importance of the residues that have been identified as significant contributors to the transport mechanism using simulations.

      (3) The conclusions made based on the simulations are mostly convincing and provide useful information regarding the proton pathway and the role of important residues in proton binding, protein-ligand interaction, and conformational changes.

      Weaknesses:

      (1) Some of the statements made in the manuscript are not convincing and do not abide by the standards that are mostly followed in the manuscript. For instance, on page 4, it is stated that "the K64-D317 interaction is formed in only ≈ 70% of MD frames and therefore is unlikely to contribute much to extracellular gate stability." I do not agree that 70% is negligible. Particularly, Figure S3 does not include the time series so it is not clear whether the 30% of the time where the salt bridge is broken is in the beginning or the end of simulations. For instance, it is likely that the salt bridge is not initially present and then it forms very strongly. Of course, this is just one possible scenario but the point is that Figure S3 does not rule out the possibility of a significant role for the K64-D317 salt bridge.

      (2) Similarly, on page 4, it is stated that "whether by protonation or mutation - the extracellular gate only opens spontaneously when both the H87 interaction network and D342-R206 are perturbed (Figure S5)." I do not agree with this assessment. The authors need to be aware of the limitations of this approach. Consider "WT H87-prot" and "D342A H87-prot": when D342 residue is mutated, in one out of 3 simulations, we see the opening of the gate within 1 us. When D342 residue is not mutated we do not see the opening in any of the 3 simulations within 1 us. It is quite likely that if rather than 3 we have 10 simulations or rather than 1 us we have 10 us simulations, the 0/3 to 1/3 changes significantly. I do not find this argument and conclusion compelling at all.

      (3) While the MEMENTO methodology is novel and interesting, the method is presented as flawless in the manuscript, which is not true at all. It is stated on Page 5 with regards to the path generated by MEMENTO that "These paths are then by definition non-hysteretic." I think this is too big of a claim to say the paths generated by MEMENTO are non-hysteretic by definition. This claim is not even mentioned in the original MEMENTO paper. What is mentioned is that linear interpolation generates a hysteresis-free path by definition. There are two important problems here: (a) MEMENTO uses the linear interpolation as an initial step but modifies the intermediates significantly later so they are no longer linearly interpolated structures and thus the path is no longer hysteresis-free; (b) a more serious problem is the attribution of by-definition hysteresis-free features to the linearly interpolated states. This is based on conflating the hysteresis-free and unique concepts. The hysteresis in MD-based enhanced sampling is related to the presence of barriers in orthogonal space. For instance, one may use a non-linear interpolation of any type and get a unique pathway, which could be substantially different from the one coming from the linear interpolation. None of these paths will be hysteresis-free necessarily once subjected to MD-based enhanced sampling techniques.

    1. Reviewer #2 (Public Review):

      Summary:

      In this article, Kumar et al., report on a previously unappreciated mechanism of translational regulation whereby p130Cas induces LLPS condensates that then traffic out from focal adhesion into the cytoplasm to modulate mRNA translation. Specifically, the authors employed EGFP-tagged p130Cas constructs, endogenous p130Cas, and p130Cas knockouts and mutants in cell-based systems. These experiments in conjunction with various imaging techniques revealed that p130Cas drives assembly of LLPS condensates in a manner that is largely independent of tyrosine phosphorylation. This was followed by in vitro EGFP-tagged p130Cas-dependent induction of LLPS condensates and determination of their composition by mass spectrometry, which revealed enrichment of proteins involved in RNA metabolism in the condensates. The authors excluded the plausibility that p130Cas-containing condensates co-localize with stress granules or p-bodies. Next, the authors determined mRNA compendium of p130Cas-containing condensates which revealed that they are enriched in transcripts encoding proteins implicated in cell cycle progression, survival, and cell-cell communication. These findings were followed by the authors demonstrating that p130Cas-containing condensates may be implicated in the suppression of protein synthesis using puromycylation assay. Altogether, it was found that this study significantly advances the knowledge pertinent to the understanding of molecular underpinnings of the role of p130Cas and more broadly focal adhesions on cellular function, and to this end, it is likely that this report will be of interest to a broad range of scientists from a wide spectrum of biomedical disciplines including cell, molecular, developmental and cancer biologists.

      Strengths:

      Altogether, this study was found to be of potentially broad interest inasmuch as it delineates a hitherto unappreciated link between p130Cas, LLPS, and regulation of mRNA translation. More broadly, this report provides unique molecular insights into the previously unappreciated mechanisms of the role of focal adhesions in regulating protein synthesis. Overall, it was thought that the provided data sufficiently supported most of the authors' conclusions. It was also thought that this study incorporates an appropriate balance of imaging, cell and molecular biology, and biochemical techniques, whereby the methodology was found to be largely appropriate.

      Weaknesses:

      Two major weaknesses of the study were noted. The first issue is related to the experiments establishing the role of p130Cas-driven condensates in translational suppression, whereby it remained unclear whether these effects are affecting global mRNA translation or are specific to the mRNAs contained in the condensates. Moreover, some of the results in this section (e.g., experiments using cycloheximide) may be open to alternative interpretation. The second issue is the apparent lack of functional studies, and although the authors speculate that the described mechanism is likely to mediate the effects of focal adhesions on e.g., quiescence, experimental testing of this tenet was lacking.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors demonstrated the phenomenon of p130Cas, a protein primarily localized at focal adhesions, and its formation of condensates. They identified the constituents within the condensates, which include other focal adhesion proteins, paxillin, and RNAs. Furthermore, they proposed a link between p130Cas condensates and translation.

      Strengths:

      Adhesion components undergo rapid exchange with the cytoplasm for some unclear biological functions. Given that p130Cas is recognized as a prominent mechanical focal adhesion component, investigating its role in condensate formation, particularly its impact on the translation process, is intriguing and significant.

      Weaknesses:

      The authors identified the disordered region of p130Cas and investigated the formation of p130Cas condensate. They attempted to demonstrate that p130Cas condensates inhibit translation, but the results did not fully support this assertion. There are several comments below:

      (1) Despite isolating p130Cas-GFP protein using GFP-trap beads, the authors cannot conclusively eliminate the possibility of isolating p130Cas from focal adhesions. While the characterization of the GFP-tagged pulls can reveal the proteins and RNAs associated with p130Cas, they need to clarify their intramolecular mechanism of localization within p130Cas droplets. Whether the protein condensates retain their liquid phase or these GFP-p130Cas pulls represent protein aggregate remains uncertain.

      (2) The authors utilized hexanediol and ammonium acetate to highlight the phenomenon of p130Cas condensates. Although hexanediol is an inhibitor for hydrophobic interactions and ammonium acetate is a salt, a more thorough explanation of the intramolecular mechanisms underlying p130Cas protein-protein interaction is required. Additionally, given that the size of p130Cas condensates can exceed >100um2, classification is needed to differentiate between p130Cas condensates and protein aggregation.

      (3) The connection between p130Cas condensates and translation inhibition appears tenuous. The data only suggests a correlation between p130Cas expression and translation inhibition. Further evidence is required to bolster this hypothesis.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on the role of the deubiquitinating enzyme UPS-50/USP8 in endosome maturation. The authors aimed to clarify how this enzyme drives the conversion of early endosomes into late endosomes. Overall, they did achieve their aims in shedding light on the precise mechanisms by which UPS-50/USP8 regulates endosome maturation. The results support their conclusions that UPS-50 acts by disassociating RABX-5 from early endosomes to deactivate RAB-5 and by recruiting SAND-1/Mon1 to activate RAB-7. This work is commendable and will have a significant impact on the field. The methods and data presented here will be useful to the community in advancing our understanding of endosome maturation and identifying potential therapeutic targets for diseases related to endosomal dysfunction. It is worth noting that further investigation is required to fully understand the complexities of endosome maturation. However, the findings presented in this manuscript provide a solid foundation for future studies.

      Strengths:

      The major strengths of this work lie in the well-designed experiments used to examine the effects of UPS-50 loss. The authors employed confocal imaging to obtain a picture of the aftermath of the USP-50 loss. Their findings indicated enlarged early endosomes and MVB-like structures in cells deficient in USP-50/USP8.

      Weaknesses:

      Specifically, there is a need for further investigation to accurately characterize the anomalous structures detected in the ups-50 mutant. Also, the correlation between the presence of these abnormal structures and ESCRT-0 is yet to be addressed, and the current working model needs to be revised to prevent any confusion between enlarged early endosomes and MVBs.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, the authors study how the deubiquitinase USP8 regulates endosome maturation in C. elegans and mammalian cells. The authors have isolated USP8 mutant alleles in C. elegans and used multiple in vivo reporter lines to demonstrate the impact of USP8 loss-of-function on endosome morphology and maturation. They show that in USP8 mutant cells, the early endosomes and MVB-like structures are enlarged while the late endosomes and lysosomal compartments are reduced. They elucidate that USP8 interacts with Rabx5, a guanine nucleotide exchange factor (GEF) for Rab5, and show that USP8 likely targets specific lysine residue of Rabx5 to dissociate it from early endosomes. They also find that the localization of USP8 to early endosomes is disrupted in Rabx5 mutant cells. They observe that in both Rabx5 and USP8 mutant cells, the Rab7 GEF SAND-1 puncta which likely represents late endosomes are diminished, although Rabex5 is accumulated in USP8 mutant cells. The authors provide evidence that USP8 regulates endosomal maturation in a similar fashion in mammalian cells. Based on their observations they propose that USP8 dissociates Rabex5 from early endosomes and enhances the recruitment of SAND-1 to promote endosome maturation.

      Strengths:

      The major highlights of this study include the direct visualization of endosome dynamics in a living multi-cellular organism, C. elegans. The high-quality images provide clear in vivo evidence to support the main conclusions. The authors have generated valuable resources to study mechanisms involved in endosome dynamics regulation in both the worm and mammalian cells, which would benefit many members of the cell biology community. The work identifies a fascinating link between USP8 and the Rab5 guanine nucleotide exchange factor Rabx5, which expands the targets and modes of action of USP8. The findings make a solid contribution toward the understanding of how endosomal trafficking is controlled.

      Weaknesses:

      - The authors utilized multiple fluorescent protein reporters, including those generated by themselves, to label endosomal vesicles. Although these are routine and powerful tools for studying endosomal trafficking, these results cannot tell whether the endogenous proteins (Rab5, Rabex5, Rab7, etc.) are affected in the same fashion.

      - The authors clearly demonstrated a link between USP8 and Rabx5, and they showed that cells deficient in both factors displayed similar defects in late endosomes/lysosomes. However, the authors didn't confirm whether and/or to which extent USP8 regulates endosome maturation through Rabx5. Additional genetic and molecular evidence might be required to better support their working model.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors were trying to elucidate the role of USP8 in the endocytic pathway. Using C. elegans epithelial cells as a model, they observed that when USP8 function is lost, the cells have a decreased number and size in lysosomes. Since USP8 was already known to be a protein linked to ESCRT components, they looked into what role USP8 might play in connecting lysosomes and multivesicular bodies (MVB). They observed fewer ESCRT-associated vesicles but an increased number of "abnormal" enlarged vesicles when USP8 function was lost. At this specific point, it's not clear what the objective of the authors was. What would have been their hypothesis addressing whether the reduced lysosomal structures in USP8 (-) animals were linked to MVB formation? Then they observed that the abnormally enlarged vesicles, marked by the PI3P biosensor YFP-2xFYVE, are bigger but in the same number in USP8 (-) compared to wild-type animals, suggesting homotypic fusion. They confirmed this result by knocking down USP8 in a human cell line, and they observed enlarged vesicles marked by YFP-2xFYVE as well. At this point, there is quite an important issue. The use of YFP-2xFYVE to detect early endosomes requires the transfection of the cells, which has already been demonstrated to produce differences in the distribution, number, and size of PI3P-positive vesicles (doi.org/10.1080/15548627.2017.1341465). The enlarged vesicles marked by YFP-2xFYVE would not necessarily be due to the loss of UPS8. In any case, it appears relatively clear that USP8 localizes to early endosomes, and the authors claim that this localization is mediated by Rabex-5 (or Rabx-5). They finally propose that USP8 dissociates Rabx-5 from early endosomes facilitating endosome maturation.

      Weaknesses:

      The weaknesses of this study are, on one side, that the results are almost exclusively dependent on the overexpression of fusion proteins. While useful in the field, this strategy does not represent the optimal way to dissect a cell biology issue. On the other side, the way the authors construct the rationale for each approximation is somehow difficult to follow. Finally, the use of two models, C. elegans and a mammalian cell line, which would strengthen the observations, contributes to the difficulty in reading the manuscript.

      The findings are useful but do not clearly support the idea that USP8 mediates Rab5-Rab7 exchange and endosome maturation, In contrast, they appear to be incomplete and open new questions regarding the complexity of this process and the precise role of USP8 within it.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors found that the loss of cell-ECM adhesion leads to the formation of giant monocular vacuoles in mammary epithelial cells. This process takes place in a macropinocytosis-like process and involves PI3 kinase. They further identified dynamin and septin as essential machinery for this process. Interestingly, this process is reversible and appears to protect cells from cell death.

      Strengths:

      The data are clean and convincing to support the conclusions. The analysis is comprehensive, using multiple approaches such as SIM and TEM. The discussion on lactation is plausible and interesting.

      Weaknesses:

      As the first paper describing this phenomenon, it is adequate. However, the elucidation of the molecular mechanisms is not as exciting as it does not describe anything new. It is hoped that novel mechanisms will be elucidated in the future. In particular, the molecules involved in the reversing process could be quite interesting. Additionally, the relationship to conventional endocytic compartments, such as early and late endosomes, is not analyzed.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript "Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance" describes an interesting observation and provides initial steps towards understanding the underlying molecular mechanism.

      The manuscript describes that the majority of non-tumorigenic mammary gland epithelial cells (MCF-10A) in suspension initiate entosis. A smaller fraction of cells form a single giant unilocular vacuole (hereafter referred to as a GUVac). GUVac appeared to be empty and did not contain invading (entotic) cells. The formation of GUVac could be promoted by disrupting actin polymerisation with LatB and CytoD. The formation of GUVacs correlated with resistance to anoikis. GUVac formation was detected in several other epithelial cells from secretory tissues.

      The authors then use electron microscopy and super-resolution imaging to describe the biogenesis of GUVac. They find that GUVac formation is initiated by a micropinocytosis-like phenomenon (that is independent of actin polymerisation). This process leads to the formation of large plasma membrane invaginations, that pinch off from the PM to form larger vesicles that fuse with each other into GUVacs.

      Inhibition of actin polymerisation in suspended MCF-10a leads to the recruitment of Septin 6 to the PM via its amphipathic helix. Treatment with FCF (a septin polymerisation inhibitor) blocked GUVac biogenesis, as did pharmacological inhibition of dynamin-mediated membrane fission. The fusion of these vesicles in GUVacs required (perhaps not surprisingly) PI3P.

      Strengths:

      The authors have made an interesting and potentially important observation. They describe the formation of an endo-lysosomal organelle (a giant unilocular vacuole - GUVac) in suspended epithelial cells and correlate the formation of GUVacs with resistance to aniokis.

      Weaknesses:

      My major concern is the experimental strategy that is used throughout the paper to induce and study the formation GUVac. Almost every experiment is conducted in suspended cells that were treated with actin depolymerising drugs (e.g. LatB) and thus almost all key conclusions are based on the results of these experiments. I only have a few suggestions that would improve these experiments or change their outcome and interpretation.

      Yet, I believe it is essential to identify the endogenous pathway leading to the actin depolymerisation that drives the formation of GUVacs in detached epithelial cells (or alternatively to figure out how it is suppressed in most detached cells). A first step in that direction would be to investigate the polymerization status of actin in MCF-10a cells that 'spontaneously' form GUVacs and to test if these cells also become resistant to anoikis.

      Also, it would be great (and I believe reasonably easy) to better characterise molecular markers of GUVacs (LAMP's, Rab's, Cathepsins, etc....) to discriminate them from other endosomal organelles

    3. Reviewer #3 (Public Review):

      Summary:

      Loss of cell attachment to extracellular matrix (ECM) triggers aniokis (a type of programmed cell death), and resistance to aniokis plays a role in cancer development. However, mechanisms underlying anoikis resistance, and the precise role of F-actin, are not fully known.

      Here the authors describe the formation of a new organelle, giant unilocular vacuole (GUVac), in cells whose F-actin is disrupted during loss of matrix attachment. GUVac formation (diameter >500 nm) resulted from a previously unrecognised macropinocytosis-like process, characterized by inwardly curved micron-sized plasma membrane invaginations, dependent on F-actin depolymerization, septin recruitment, and PI(3)P. Finally, the authors show GUVac formation after loss of matrix attachment promotes resistance to anoikis.

      From these results, the authors conclude that GUVac formation promotes cell survival in environments where F-actin is disrupted and conditions of cell stress.

      Strengths:

      The manuscript is clear and well-written, figures are all presented at a very high level.

      A variety of cutting-edge cell biology techniques (eg time-lapse imaging, EM, super-resolution microscopy) are used to study the role of the cytoskeleton in GUVac formation. It is discovered that: (i) a macropinocytosis-like process dependent on F-actin depolymerisation, SEPT6 recruitment, and PI(3)P contributes to GUVac formation, and (ii) GUVac formation is associated with resistance to cell death.

      Weaknesses:

      The manuscript is highly reliant on the use of drugs, or combinations of drugs, for long periods of time (6hr, 18hr..). Wherever possible the authors should test conclusions drawn from experiments involving drugs also using other canonical cell biology approaches (eg siRNA, Crispr). Although suggestive as a first approach, it is not reliable to draw conclusions from experiments where only drug combinations are being advanced (eg LatB + FCF).

      F-actin is well known to play a wide variety of roles in cell death and other canonical cell death pathways (PMID: 26292640). The authors show using pharmacological inhibition that F-actin is key for GUVac formation. However, especially when testing for physiological relevance, how can these other roles for F-actin be ruled out?

      To test the role of septins in GUVac formation only recruitment studies and no direct functional work is performed. A drug forchlofeneuron (FCF) is used, but this is well known to have off-target effects (PMID: 27473917).

      Cells that possess GUVac are resistant to aniokis, but how are these cells resistant? This report is focused on mechanisms underlying GUVac formation and does not directly test for mechanisms underlying aniokis resistance.

    1. Reviewer #1 (Public Review):

      The paper 'Structural Analysis of the Dynamic Ribosome-Translocon Complex,' authored by Lewis et al., meticulously explores various conformations and states of the ribosome-translocon complex. Employing advanced techniques such as cryoEM structural determination and AlphaFold modeling, the study delves into the dynamic nature of the ribosome-translocon complex. The findings from these analyses unveil crucial insights, significantly advancing our understanding of the co-translational translocation process in cellular mechanisms.

      To begin with, the authors employed a construct comprising the first two transmembrane domains of rhodopsin as a model for studying protein translocation. They conducted in vitro translation, followed by the purification of the ribosome-translocon complex, and determined its cryoEM structures. An in-depth analysis of their ribosome-translocon complex structure revealed that the nascent chain can pass through the lateral gate of translocon Sec61, akin to the behavior of a Signaling Peptide. Additionally, Sec61 was found to interact with 28S rRNA helix 24 and the ribosomal protein uL24. In summary, their structural model aligns with the through-pore model of insertion, contradicting the sliding model.

      Secondly, the authors successfully identified RAMP4 in their ribosome-translocon complex structure. Notably, the transmembrane domain of RAMP4 mimics the binding of a Signaling Peptide at the lateral gate of Sec61, albeit without unplugging. Intriguingly, RAMP4 is exclusively present in the non-multipass translocon ribosome-translocon complex, not in those containing multipass translocon. This observation suggests that co-translational translocation specifically occurs in the Sec61 channel that includes bound RAMP4. Additionally, the authors discovered an interaction between the C-tail of ribosomal proteins uL22 and the translocon Sec61, providing valuable insights into the nascent chain's behavior.

      Moving on to the third point, the focused classification unveiled TRAP complex interactions with various components. The authors propose that the extra density observed in their novel ribosome-translocon complex can be attributed to calnexin, a major binder of TRAP according to previous studies. Furthermore, the new structure reveals a TRAP-OSTA interaction. This newly identified TRAP-OSTA interaction offers a potential explanation for why patients with TRAP delta defects exhibit congenital disorders of glycosylation.

      In conclusion, this paper presents a robust contribution to the field with its thorough structural and modeling analyses. The significance of the findings is evident, providing valuable insights into the intricate mechanisms of protein co-translational translocation. The well-crafted writing, meticulous analyses, and clear figures collectively contribute to the overall strength of the paper.

      Major points:

      (1) The identification of RAMP4 is a pivotal discovery in this paper. The sophisticated AlphaFold prediction, de novo model building of RAMP4's RBD domain, and sequence analyses provide strong evidence supporting the inclusion of RAMP4 in the ribosome-translocon complex structure.

      However, it is crucial to ensure the presence of RAMP4 in the purified sample. Particularly, a validation step such as western blotting for RAMP4 in the purified samples would strengthen the assertion that the ribosome-translocon complex indeed contains RAMP4. This is especially important given the purification steps involving stringent membrane solubilization and affinity column pull-down.

      (2) Despite the comprehensive analyses conducted by the authors, it is challenging to accept the assertion that the extra density observed in TRAP class 1 corresponds to calnexin. The additional density in TRAP class 1 appears to be less well-resolved, and the evidence for assigning it as calnexin is insufficient. The extra density there can be any proteins that bind to TRAP. It is recommended that the authors examine the density on the ER lumen side. An investigation into whether calnexin's N-globular domain and P-domain are present in the ER lumen in TRAP class 1 would provide a clearer understanding.

      (3) In the section titled 'TRAP competes and cooperates with different translocon subunits,' the authors present a compelling explanation for why TRAP delta defects can lead to congenital disorders of glycosylation. To enhance this explanation, it would be valuable if the authors could provide additional analyses based on mutations mentioned in the references. Specifically, examining whether these mutations align with the TRAP delta-OSTA structure models would strengthen the link between TRAP delta defects and the observed congenital disorders of glycosylation.

    2. Reviewer #2 (Public Review):

      Summary:

      In the manuscript 'Structural analysis of the dynamic ribosome-translocon complex' Lewis and Hegde present a structural study of the ribosome-bound multipass translocon (MPT) based on re-analysis of cryo-EM single particle data of ribosome-MPTs processing the multipass transmembrane substrate RhoTM2 from a previous publication (Smalinskaité et al, Nature 2022) and AlphaFold2 multimer modeling. Detailed analysis of the laterally open Sec61 is obtained from PAT-less particles.

      The following major claims are made:

      - TMs can bind similarly to the Sec61 lateral gate as signal peptides.

      - Ribosomal H59 is in immediate proximity to basic residues of TMs and signal peptides, suggesting it may contribute to the positive-inside rule.

      - RAMP4/SERP1 binds to the Sec61 lateral gate and the ribosome near 28S rRNA's helices 47, 57, and 59 as well as eL19, eL22, and eL31.

      - uL22 C-terminal tail binds H24/47 blocking a potential escape route for nascent peptides to the cytosol.

      - TRAP and BOS compete for binding to Sec61 hinge.

      - Calnexin TM binds to TRAPg.

      - NOMO wedges between TRAP and MPT.

      Strengths:

      The manuscript contains numerous novel new structural analyses and their potential functional implications. While all findings are exciting, the highlight is the discovery of RAMP4/SERP1 near the Sec61 lateral gate. Overall, the strength is the thorough and extensive structural analysis of the different high-resolution RTC classes as well as the expert bioinformatic evolutionary analysis.

      Weaknesses:

      A minor downside of the manuscript is the sheer volume of analyses and mechanistic hypotheses, which makes it sometimes difficult to follow. The authors might consider offloading some analyses based on weaker evidence to the supplement to maximize impact.

    1. Joint Public Review:

      Summary:

      This study presents an immunotherapeutic strategy for treating mouse cutaneous squamous cell carcinoma (mCSCC) using serum from mice inoculated with mCSCC. The author hypothesizes that antibodies in the generated serum could aid the immune system in tumor volume reduction. The study results showed a reduction in tumor volume and altered expression of several cancer markers (p53, Bcl-xL, NF-κB, Bax) suggesting the potential effectiveness of this approach.

      Strengths:

      The approach shows potential effect on preventing tumor progression, from both the tumor size and the cancer biomarker expression levels bringing attention to the potential role of antibodies and B cell responses in cancer therapy.

      Weaknesses:

      These are some of the specific things that the author could consider to strengthen the evidence supporting the claims in their study.

      (1) The study fails to provide evidence of the specific effect of mCSCC-antibodies on mCSCC. The study utilized serum which also contains many immune response factors like cytokines that could contribute to tumor reduction. There is no information on serum centrifugation conditions, which makes it unclear whether immune components like antigen-specific T cells, activated NK cells, or other immune cells were removed from the serum. The study does not provide evidence of neutralizing antibodies through isolation, analysis of B cell responses, or efficacy testing against specific cancer epitopes. To affirm the specific antibodies' role in the observed immune response, isolating antibodies rather than employing whole serum could provide more conclusive evidence. Purifying the serum to isolate mCSCC-binding antibodies, such as through protein A purification, and ELISA would have been more useful to quantify the immune response. It would be interesting to investigate the types of epitopes targeted following direct tumor cell injection. A more thorough characterization of the antibodies, including B cell isolation and/or hybridoma techniques, would strengthen the claim.

      (2) In the study design, the control group does not account for the potential immunostimulatory effects of serum injection itself. A better control would be tumor-bearing mice receiving serum from healthy non-mCSCC-exposed mice. Additionally, employing a completely random process for allocating the treatment groups would be preferable. Also, the study does not explain why intravenous injection of tumor cells would produce superior antibodies compared to those naturally generated in mCSCC-bearing mice.

      (3) In Figure 2B, it would be more helpful if the author could provide raw data/figures of the tumor than just the bar graph. Similarly in Figure 3, the author should show individual data points in addition to the error bar to visualize the actual distribution.

      (4) The author mentioned that different stages of tumor cells have different surface biomarkers. Therefore, experimenting with injecting tumor cells at various stages could reveal the most immunogenic stage. Such an approach would allow for a comparative analysis of immune responses elicited by tumor cells at different stages of development.

      (5) In the abstract the author mentioned that using mCSCC is a proof-of-concept for this potential cancer treatment strategy. The discussion session should extend to how this strategy might apply to other cancer types beyond carcinoma.

    1. Reviewer #2 (Public Review):

      Summary:

      This combined experimental-theoretical paper introduces a novel two-domain statistical thermodynamic model (primarily Equation 1) to study allostery in generic systems but focusing here on the tetracycline repressor (TetR) family of transcription factors. This model, building on a function-centric approach, accurately captures induction data, maps mutants with precision, and reveals insights into epistasis between mutations.

      Strengths:

      The study contributes innovative modeling, successful data fitting, and valuable insights into the interconnectivity of allosteric networks, establishing a flexible and detailed framework for investigating TetR allostery. The manuscript is generally well-structured and communicates key findings effectively.

      Comments on revised version:

      I am happy with the changes made by the authors

    1. Reviewer #1 (Public Review):

      Original review:<br /> The authors report here interesting data on the interactions mediated by the SH3 domain of BIN1 that expand our knowledge on the role of the SH3 domain of BIN1 in terms of mediating specific interactions with a potentially high number of proteins and how variants in this region alter or prevent these protein-protein interactions. These data provide useful information that will certainly help to further dissect the networks of proteins that are altered in some human myopathies as well as the mechanisms that govern the correct physiological activity of muscle cells.

      The work is mostly based on improved biochemical techniques to measure protein-protein interaction and provide solid evidence that the SH3 domain of BIN1 can establish an unexpectedly high number of interactions with at least a hundred cellular proteins, among which the authors underline the presence of other proteins known to be causative of skeletal muscle diseases and not known to interact with BIN1. This represents an unexpected and interesting finding relevant to better define the network of interactions established among different proteins that, if altered, can lead to muscle disease. An interesting contribution is also the detailed identification of the specific sites, namely the Proline-Rich Motifs (PRMs) that in the interacting proteins mediate binding to the BIN1 SH3 domain. Less convincing, or too preliminary in my opinion, are the data supporting BIN1 co-localization with PRC1. Indeed, the affinity of PRC1 is significantly lower than that of DNM2, an established BIN1 interacting protein. Thus, this does not provide compelling evidence to support PRC1 as a significant interactor of BIN1. Similarly, the localization data appears somewhat preliminary to substantiate a role of BIN1 in mitotic processes. These findings may necessitate additional experimental work to be more convincing.

      Comments on revision:<br /> I acknowledge the significant changes made by the authors in the revised manuscript. However, I remain puzzled by the data concerning the interaction between BIN1 and PRC1. While I agree with the authors that even weak interactions among proteins can be significant, I am hesitant to accept a priori that the lack of clear evidence of colocalization between proteins can be justified solely by their low affinity.

      Moreover, the possibility that other mitotic proteins may be potential partners of BIN1 does not inherently support an interaction between BIN1 and PRC1. I suggest that the authors present the interaction with PRC1 as a potential event and emphasize that further studies are needed to definitively establish it.