1 Matching Annotations
- Sep 2018
-
192.168.199.102:5000 192.168.199.102:5000
-
Introduction
Unlabeled data: \(U\), from \(u=R\) to \(u=U+R\)
Labeled data: \(R\), from \(r=1\) to \(r=R\)
Supervised learning:
\( \{(x^r, \hat{y}^r)\}^R_{r=1}\)
Semi-supervised learning:
\( \{(x^r, \hat{y}^r)\}^R_{r=1}\) ,\(\{x^u\}^{R+U}_{u=R}\)
- U >> R
- Transductive learing: unlabeled data is the testing data.
- Inductive learning: unlabeled data is not the testing data.
直接使用 testing data 不是作弊么,李宏毅老师说,使用 label of testing data 才是作弊。
transductive learning 的典型算法是 KNN,对于 unlabeled data 我们计算其距离各个中心点的距离。然后重新计算该簇的中心点。可见我们确实使用了 unlabeled data 来学习模型。
以 kaggle 竞赛为例,有些 kaggle 竞赛是直接可以下载 testing dataset 的,只是 testing data 没有 label 而已。
Tags
Annotators
URL
-