9 Matching Annotations
  1. Sep 2023
  2. Jun 2023
    1. Examples include press releases, short reports, and analysis plans — documents that were reported as realistic for the type of writing these professionals engaged in as part of their work.

      Have in mind the genres tested.

      Looking from a perspective of "how might we use such tools in UX" we're better served by looking at documents that UX generates through the lens of identifying parallels to the study's findings for business documents.

      To use AI to generate drafts, we'll want to look at AI tools built into design tools UXers use to create drafts. Those tools are under development but still developing.

    2. the estimates of how users divided their times between different stages of document generation were based on self-reported numbers

      The numbers for how users divided their time may not be reliable as they're self-reported.

      Still leaves me curious about the accuracy of reported brainstorming time.

    3. the productivity and quality improvements are likely due to a switch in the business professionals’ time allocation: less time spent on cranking out initial draft text and more time spent polishing the final result.

      This points to AI providing the best time savings in draft generation, which fits with the idea of having the AI generate the drafts based on the professional's queries.

      For UX designers, this points to AI in a design tool being most useful when it generates drafts (sketches) that the designer then revises. Where UX deliverables don't compare easily to written deliverables is the contextual factors that influence the design, like style guides or design systems. Design too AI assistants don't yet factor those in, though it seems likely it will, if provided style guides and design systems in a format it can read.

      Given a draft of sufficient quality that it doesn't require longer to revise than a draft the designer would create on their own, getting additional time to refine sounds great.

      I'm not sure what to make of the reduced time to brainstorm when using AI. Without additional information, it's hard not to assume that the AI tool may be influencing the direction of brainstorming as professionals think through the queries they'll use to get the AI to generate the most useful draft possible.

  3. May 2023
    1. Training language models to follow instructionswith human feedback

      Original Paper for discussion of the Reinforcement Learning with Human Feedback algorithm.

  4. Apr 2023
    1. It should not be used as a primary decision-making tool, but instead as a complement to other methods of determining the source of a piece of text.

      This is true of any of these LLM models actually for any task.

  5. Mar 2023
    1. "The Age of AI has begun : Artificial intelligence is as revolutionary as mobile phones and the Internet." Bill Gates, March 21, 2023. GatesNotes

  6. Jan 2023
    1. Feng, 2022. "Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis"

      Shared and found via: Gowthami Somepalli @gowthami@sigmoid.social Mastodon > Gowthami Somepalli @gowthami StructureDiffusion: Improve the compositional generation capabilities of text-to-image #diffusion models by modifying the text guidance by using a constituency tree or a scene graph.