461 Matching Annotations
- Jul 2019
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Harvest of germinated seed
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
ROS assay
-
Harvest of germinated seeds
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Tests for Tannins
-
Harvest of germinated seeds
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Determination of the yield
-
Determination of the yield
-
Photography, evaluation and documentation
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Oxidative-Fermentative test
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Active site prediction and docking study
-
Reaction resuspension
-
Transformation of ligated product in chemically competent E. coli host cells (DH5αααα strain)
-
Ligation reactions
-
Cycling condition
-
Spectrophotometric quantification of genomic DNA
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Solutions used for cytokine assay
-
Assessment of Cytokine levels- IFN--12/IL-10 in lymphocytes of cured/endemic patients
-
Preparation of soluble L. donovani promastigote antigen
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Polyclonal antibody generation
-
Recombinant protein Expression
-
Sequencing of ADHT gene
-
Restriction Digestion of Plasmid DNA
-
Colony PCR
-
Preparation of master plate and isolation of plasmid DNA from transformed E. coli (Mini Prep)
-
Confirmation of positive clone(s)
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Assay for reduced glutathione(GSH)
-
Acridine orange/ethidium bromide (AO –EB) staining
-
Superoxide radical scavenging activity
-
FTIR analysis
-
GC-MS analysis
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Algorithm
-
EM Procedure
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Empirical Bayesian Smoothing
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
. Statistical analysis
-
Inhibition of haemocytes spreading behavior
-
. Inhibition of haemocytes aggregation behavior
-
Haemolymph protein profiling
-
Total haemocyte count (THC)
-
Haemolymph collection
-
Immunomodulatory
-
Lactate dehydrogenase
-
Asparate (AAT) and Alanine aminotransferase (ALT)
-
Gut enzyme profile
-
Oral toxicity bioassay
-
Microinjection bioassay
-
VS preparation
-
Insect collection
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Venomous saliva utilization
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Morphometry of head and stylet
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Lactic dehydrogenase
-
Cholesterol content
-
Characteristic features ofLabeo rohita
-
Animal model for the study-Labeo rohita
-
- Jun 2019
-
krishikosh.egranth.ac.in krishikosh.egranth.ac.in
-
Organic carbon
-
Soil sampling
-
-
krishikosh.egranth.ac.in krishikosh.egranth.ac.in
-
Statistical analysis
-
Kernel hardness
-
Coleoptile length(cm)
-
Plant height (cm)
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
pH
-
Identification of the strains
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
HBV vaccination of the newborn
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
1X TBST
-
Immunoprecipitation and western Blotting
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Cell Viability and IC50determination byMTT assay
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Cell Lines
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.inThesis11
-
Procedure
-
Estimation
-
Calculation
-
Extraction and determination of sugar
-
Standard curve of sugar
-
Reagents
-
Estimation of total sugar
-
Extraction and determination of protein
-
Extraction and determination of ascorbic acid
-
LC 50 value
-
Dilution Formula
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Plasmid mini preparation by alkaline lysis
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Flow Cytometric analysis of variant erythrocytes
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Aortic ring assay
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
Procedure
-
Reagent
-
Superoxide anion scavenging activit
-
Procedure
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Physical Characterizatio
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Dissolved oxygen and Biological oxygen demand
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
. Extraction and isolation of embelin from E. ribes
-
High Performance Thin Layer Chromatography (HPTLC) analysis
-
pH values
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Estimation of soluble proteins
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Balanced ectomorph:
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
The a-PMB chain was subjected to acid-acetone treatment to separate the heme from the a globin. Briefly, a solution of concentrated a-PMB chain (5 ml; 30 mg/ml) was added dropwise to I 00 ml of thoroughly chilled acid-acetone solution (0.5% v/v HCI in acetone) with constant shaking, and then incubated at -20°C for 30 min to allow complete precipitation of the globin. The precipitated globin was isolated by centrifugation at 7000 rpm (4°C) for 15 min and the supernatant containing soluble heme was discarded
-
Preparation of heme-free a chain
-
- May 2019
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Cells growing in culture medium were harvested by trypsinization and washed twice with ice cold PBS. Cells were fixed by adding ice cold 70% ethanol and stored at 4°C. Before harvesting cells were washed twice with PBS and re-suspended in adequate amount of PBS containing Propidium Iodide (PI) to a final concentration of 50μg/ml and RNase to a final concentration of 10μg/ml. Thereby the cell suspension was incubated at 37°C for 30 minutes in dark. Analysis was done by running the samples in BD FACS Vantage System according to the standard procedures after calibration of instrument with Calibrite beads
-
Flow Cytometry
-
The plates were kept in incubator gently and the colony formation was monitored every week. Media (500μl) was added to the plates every 4th-5th day to avoid drying. Colonies formed in soft agar photographed were taken without staining, under a microscope in light field
-
Agar solution was prepared in a sterile 50ml Schott Duran Bottle and boiled in microwave until fully dissolved and kept at 55°C to 65°C. Master Mix with the rest of the components of bottom agar was made in a sterile corning 50ml tube prewarmed at 55°C and agar solution was added. The solution was once vortex briefly and then added (2ml) carefully to each well avoiding air bubbles. The plates were left undisturbed in laminar flow hood until the agar set fully. Two days before final assay, the bottom agar plates were kept in tissue culture incubator for equilibration. On the day of assay the following mix was prepared for Top Agar 4 dishes 5 dishes1.media with FBS, L-glutamine and Pen-Strep 4.8 ml 6 ml 2.fetal bovine serum 1.8 ml 2.5 ml 3.sterile water 1.8 ml 2.5 ml 4.agar 1.8% (1.8 g/100mLs) 1.8 ml 2.5 ml 5. cell suspension 1.0 X 105/ dish 100 to 350 μl 100 to 350 μl 6. Total 10.2 ml 13.5 ml Top agar mix without cells was first prepared and kept at 42°C. The cells were then trypsinized and re-suspended after counting in final volume of 100μl to 200 μl. Cells were then mixed with top agar and solution was quickly poured over the bottom agar.
-
For soft agar assays 2x104, (A549) or 1x105 cells (E-10) were used in 1.5ml top agar. For preparing bottom agar plates (0.64% final con. of agar), a following mix was prepared for five dishes. 1.2X media with FBS, L-glutamine and Pen-Strep 10 ml 2.fetal bovine serum 5 ml 3.sterile water 1 ml 4.noble agar 1.8% (1.8 g/100mLs) 9 ml 5.Total 25 m
-
Soft Agar Assay
-
For clonogenic assays, 1x103 (A549) or 2x103 (E-10) cells were seeded per well of a six well tissue culture plate and grown for 15 days. For identification of signaling pathways various inhibitors were used viz, PI3K inhibitor LY294002 (10μM), MEK inhibitor PD98059 (10μM) or p38 inhibitor SB203580 (10μM). Cells were grown in the presence of inhibitor for seven days following which fresh medium was added. For staining, cells were washed twice with PBS and fixed in 10% formalin for 10 minutes, washed extensively with water and stained with 0.25% crystal violet prepared in 25% methanol for 4hrs at 4°C. Plates were then washed with milli Q water and dried before scanning
-
Clonogenic Assay
-
and fixed with 100μl of fixative solution per well, for 10 minutes at room temperature. The cells were then washed twice with PBS and 100μl of staining solution was added to each well. The plate was kept at 37° C, until the color development.
-
4x103-5x103 cells were plated in 96 well plate, well. Cells were transfected with reporter plasmid 18 -24 hrs after plating. After 48 hrs, cells were washed once with PBS
-
Procedure:
-
ml 1X PBS
-
This protocol is for the detection of β-gal expression in fixed cells. It was performed on 96-well plates for initial screening of tTA transfected clone, and is a modification of Sanes et al., 1986
-
In situβ-gal staining of Transfected Cells
-
Procedure:
-
β- galactosidase assay was performed in a 96 well format. Briefly, 4000-5000 cells were plated in 96 well tissue culture coated plate. Cells were transfected with reporter plasmid after 18 -24 hrs and after 48 hrs the cells were washed once with D-PBS. 50μl of lysis buffer was added to the well and cells were lysed by freezing plate at -70°C and thawing at 37°C. Cells were pipette up and down and then the plate was centrifuged at 9000 X g for 5 minutes. The supernatant from each plate was transferred to clean eppendorf tube. Immediately prior to assay the ONPG cocktail was prepared as below: 47 μl 0.1 M sodium phosphate (pH 7.5)22 μl 4 mg/ml ONPG1 μl 100X Mg solution30μl of each well extract was added to microtitre well plate and70μl of ONPG cocktail was added to each well. The plate was kept on ice throughout the procedure. After addition of ONPG cocktail the plate was transferred to 37°C and the development of colour was monitored every 10 minutes for development of color. After development of yellow colour, the reaction was stopped by addition of 150μl of 1M sodium carbonate to each well
-
Lysis Buffer: 0.1% Triton X-100/0.1 M Tris-HCl (pH 8.0). 450 ml distilled water 50 ml 1M Tris-HCl (pH 8.0) 0.5 ml Triton X-100 detergent • 100X Mg++ solution: 0.1 M magnesium chloride 4.5 M 2-mercaptoethanol Stored at 4°C. • 0.1 M sodium phosphate (pH 7.5)41 ml 0.2 M Na2HPO4 9 ml 0.2 M Na H2PO4 50 ml distilled water • 4 mg/ml ONPG (o-nitrophenyl-β-D-galactopyranoside) in 0.1 M sodium phosphate (pH 7.5) containing 2 mM β-mercaptoethanol, Stored at –20°C. • 0.1 mg/ml β-gal standard: 0.1 mg/ml β-gal in 0.1 M sodium phosphate (pH 7.5) containing 2 mM 2-mercaptoethanol Stored at 4°C. • 1 M sodium carbonate in water
-
Solutions:
-
β-gal assay in transfected cells
-
normalized to the optical density at day 0 for the appropriate cell type. Growth curve was determined twice
-
Growth curves were prepared for various cell lines using the modified method adopted by Serrano et al, 1997. Briefly, 10, 000 cells were seeded in a 24 well plate in quadruples. At the indicated times, cells were washed once with PBS and fixed in 10% formalin for 20 minutes and rinsed with distilled water. Cells were stained with 0.05% crystal violet for 30 minutes, rinsed extensively and dried. Cell associated dye was extracted with 1.0ml acetic acid. Aliquots were diluted 1:4 with water and transferred to 96 well microtitre plates and the optical density at 590nm determined. Values were
-
Growth Curves:
-
After PCR, 1 μl of Dpn1 enzyme (10U/μl) was added to the amplification mix and incubated at 37°C for 6hours. After that, 10ml of the amplification mix was taken to transform Dh5a cells. Positive clones were selected after confirming the sequence of plasmid DNA
-
The PCR parameters were as follows
-
The reaction mix included 2ml of PSKll(39+) (50ng) containing wild type K-Ras cDNA , 5ml 10x buffer, 20pmoles of primers , 1ml of 10mM dNTP mix and 1ml of deep vent polymerase (NEB).
-
The following K-Ras-ras mutants were generated by site directed mutagenesis according to the protocol described in QuickChange site directed mutagenesis kit (Stratagene). The primers used are shown in the following table
-
appropriate secondary antibody (conjugated with horse-radish peroxidase) diluted in 5% fat free milk solution (in PBST) and incubated for 45 minutes at room temperature. After incubation the membrane was washed and processed for the detection of protein bands using ECL-plus detection reagent (Amersham Biosciences) followed by detection of signal on X-ray film (Hyperfilm-ECL, Amersham Biosciences)
-
Site Directed Mutagenesis
-
The proteins were resolved using denaturing SDS-PAGE gel and after completion of the run, the gel was over laid on a nitrocellulose paper cut to the size of gel and kept in the blotting cassette in the presence of blotting buffer. Finally the cassette was put in the mini transblot apparatus (Bio Rad) and blotting was done for 4 hours at a constant voltage of 60 V. Then the membrane was taken out and rinsed in PBS containing 0.1% Tween - 20 (PBST) for 5 minutes by gentle shaking. Later the membrane was immersed in 5% non-fat milk solution in PBST with gentle shaking for 1 hour at 37°C. The membrane was washed off from the traces of the fat free milk with PBST and the membrane was over laid with primary antibody diluted in PBST for 3 hours at 4°C with shaking. After incubation the membrane was washed with PBST and layered with
-
Immunobloting
-
For adherent cells from which lysates have to be prepared , culture medium was removed and cells were washed with ice cold 1X PBS twice and then scraped with cell scraper in Cell Lysis buffer. Cells were rotated at 4°C for 30min at cold room and centrifuged at 13000 rpm for 10min at 4°C. The supernatant was collected and protein concentration was estimated using BCA assay. For standard western, 50-70μg of protein was loaded on to the gel
-
Lysate Preparation for Immuno- blotting
-
DTT. Then contents were then mixed and 1μl (200 units) of M-MLV was added. The mixture was then incubated at 37°C for 50 minutes. The reaction was stopped by incubating the mixture at 70°C for 15 minutes. The cDNA thus prepared was then used as a template for PCR. The expression of the investigated genes was determined by normalizing their expression against the expression of actin or GAPDH gene
-
Semi-quantitative RT-PCR
-
μg of total RNA was reverse-transcribed using poly-T oligonucleotide and M-MLV reverse transcriptase (Invitrogen) according to manufacturer’s protocol. Briefly, a 20μl reaction volume was made for 1μg of RNA. In a microcentrifuge tube, 1μl oligo (dT)(500μg/ml) , 1μg total RNA, 1μl 10mM dNTP mix and sterile water was added to afinal volume of 13μl. The mixture was then incubated at 65°C for 5 minutes ad quickly chilled on ice. To this mixture were added 4μl of 5X first strand buffer and 2μl of 0.1M
1
-
Total RNA was isolated by TRIzol method using the manufacturer’s protocol. Briefly, medium was removed, from 35mm dish and 1ml to TRIzol was added directly to the dish and kept at room temperature for 5 minutes. The cells were harvested by pipetting up and down three four times and transferred to a 1.5ml microfuge tube. For each 1mlTRIzol, 200μl of chloroform was added and tubes were shaken vigorously for 10 seconds to completely dissociate the nucleoprotein complexes, followed by vortexing for about 30 seconds. The mixture was kept for 3-5 minutes at room temperature and then centrifuged at maximum speed for 10 minutes. The upper aqueous phase was transferred into a fresh microcentrifuge tube and 500 μl of isopropanol was added and this was incubated at -20°C for 1 hour. The RNA was pelleted by centrifugation at maximum speed for 30 minutes at 4°C. The supernatant was decanted and the pellet washed with 1ml of 70% ethanol followed by a second wash with 1ml of 90% ethanol and centrifugation at maximum speed for 10 minutes. The supernatant was removed and the pellet air-dried for about 5 minutes and re-solubilized in 30-50 μl RNase free deionized (DEPC-treated Milli-Q) water and aliquots were stored at -70°C
-
Total RNA isolation from cultured mammalian cells
-
Transient transfection of plasmid DNA in culture cells was performed using Lipofectamine 2000 according to manufacturer’s protocol. Briefly, forty million cells were seeded in a 35mm tissue culture dish, one day before transfection. Transfection was performed 18-24 hrs after seeding the cells. 4μg DNA was mixed in 50μl of Opti-MEM in one eppendorf tube. In another tube, 5μl of Lipofectamine 2000 was diluted in 50μl Opti-MEM and incubated at room temperature for 5 minutes. After five minutes, DNA and Lipofectamine 2000 were mixed together and complexes, incubated for 30 minutes at room temperature. Meanwhile, the adherent cells were washed twice with PBS and 1ml of Opti-MEM was added. 100μl of complexes were then added to each dish containing cells and medium. After 6hrs, the medium containing complexes was removed and complete medium was added and transgene expression was accessed 24-48 hrs after transfection
-
Transient transfections in adherent cells
-
The quantity and purity of nucleic acids was determined by measuring the absorbance at 260 and 280 nm. The concentration of nucleic acids was calculated by taking 1 OD 260= 50 μg/ml for DNA, 40 μg/ml for RNA and 33 μg/ml for single stranded oligonucleotides. The purity of nucleic acids was checked by their A260/A280 ratio
-
Spectro-photometric estimation of nucleic acids
-
ethanol has dried. The pellet was resuspended in 20 μl of milliQ water and 20 μg/ml RNase added. The tube was incubated at 50°C for 45 min. the tube was vortexed for few seconds. Quality of the plasmid DNA was then accessed by running 1% agarose gel.
-
stored. To prepare competent cells pre-inoculum was prepared. A single bacterial colony was picked from LB agar plate, inoculated into 3 ml LB medium, and incubated overnight at 37°C temperature with shaking at 200 rpm. 1% of this pre-inoculums was sub cultured in 100 ml LB-broth and incubated at 18°C with shaking until OD at 600nm reached 0.5 - 0.6 (approx.). Culture was kept on ice for 10 min. with constant shaking.Cells were pelleted by centrifugation at 2000 g at 4°C for 8 min. Pellet was resuspended in 40 ml of ice-cold TB buffer. Bacterial suspension was kept on ice for 30 min, re-spun at 2000 g at 4°C for 8 min. Pellet was resuspended in 8 ml of TB buffer in which final concentration of DMSO was 7% and left on ice for 10 min. 100 μl aliquots were made and snap frozen in liquid nitrogen and stored at -80°C
-
All the salts (10 mM PIPES, 15 mM CaCl2.2H2O, 250 mM KCl, 55 mM MnCl2.2H2O) except MnCl2 were dissolved in milliQ water and pH was adjusted to 6.7 with 1N KOH. MnCl2 was dissolved separately in mill Q water. MnCl2 was added drop wise while stirring (MnCl2 if added directly will give a brown color to the solution and precipitate out, hence it needs to be dissolved separately). Solution was then filter sterilized and
-
Overnight Grown culture was pelleted by centrifugation at 10,000g at 4°C for 3 min and the supernatant was discarded. Pellet was resuspended in 250 μl of ice-cold alkaline lysis solution 1. 300 μl of alkaline solution 2 was then added and the tube was inverted gently 3-4 times and incubated at room temperature for 5 min. 350 μl of ice cold solution 3 was added and mixed by inverting the tube rapidly for 3 or 5 times. Suspension was incubated on ice for 10 min. Bacterial lysate was spun at 10,000g for 12 min at 4°C. Supernatant was transferred to a fresh tube. 0.4 volume of phenol: chloroform was added to the supernatant and the contents mixed. It was then spun at 10,000g at 4°C for 12 min. Aqueous phase was taken out in a fresh tube and 0.6 volume of isopropanol was added, mixed properly and incubated at room temperature for half an hour followed by spinning at 10,000g at RT for 20 min. Supernatant was discarded. Pellet was washed with 70% ethanol. The tube was stored at room temperature until the
-
Ultra Competent Cells Preparation
-
Experimental Procedures
Tags
- Md-3-Md-1-d
- Md-3-Md-8-d
- Md-3-Md-11
- Md-3-Md-12
- Md-3-Md-9-d
- Md-3-Md-15-d
- Md-3-Md-4-d
- Md-3-Md-9
- Md-3-Md-11-Md-1-d
- Md-3-Md-7-d
- Md-3-Md-13
- Md-3-Md-10
- Md-3-Md-12-Md-4-d
- Md-3-Md-13-d
- Md-3-Md-5-d
- Md-3-Md-11-Md-1
- Md-3-Md-5
- Md-3-Md-1
- Md-3-Md-6-d
- Md-3-Md-11-Md-2
- Md-3-Md-15
- Md-3-Md-14-d
- Md-3-Md-12-Md-4
- Md-3-Md-12-d
- Md-3-Md-11-Md-2-d
- Md-3-Md-10-d
- Md-3-Md-3-d
- Md-3-Md-3
- Md-3-Md-2-d
- Md-3-Md-14
- Md-3
Annotators
URL
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
12% resolving gel (for 25 ml)Water = 8.2 ml 30% Acrylamide = 10.0 ml 1.5 mM Tris (pH 8.8) = 6.3 ml 10% SDS = 0.25 ml 10% APS = 0.25 ml TEMED = 0.01 ml 5% stacking gel (for 10 ml)Water = 6.8 ml 30% Acrylamide = 1.7 ml 1.5 mM Tris (pH 6.8) = 1.25 ml 10% SDS = 0.1 ml 10% APS = 0.1 ml TEMED = 0.01 ml
-
A double cylinder gradient former was used with 12% poly acrylamide gel mix in the inner cylinder and a 3% polyacrylamide gel mix in the outer cylinder that was stirred using a magnetic bead on a magnetic stirrer. A pump was connected to the flow tube and the flow rate adjusted at 5-8 to cast a 12-3% gradient gel. A 5% stacking gel was used. After the protein samples were run on the gradient gel, it was stained in instant blue over night under shaking. 3% resolving gel (for 25 ml)Water = 15.68 ml 30% Acrylamide = 2.5 ml 1.5 mM Tris (pH 8.8) = 6.3 ml 10% SDS = 0.25 ml 10% APS = 0.25 ml TEMED = 0.02 ml
-
Casting a gradient SDS-polyacrylamide gel
-
The DNA samples were mixed with the appropriate volumes of the 6X loading dye (0.25% bromophenol blue, 0.25% xylene cyanol and 30% glycerol in water) and subjected to electrophoresis through 1-1.5% agarose gel in either 1X TBE or 1X TAE buffer. The gel was stained in 1 μg/ml of ethidium bromide solution for 30 min at room temperature and the bands were visualized by fluorescence under UV-light
-
Agarose gel electrophoresis
-
The lacZ U118 is an amber nonsense mutation(Am) that confers Lac─phenotype and also polarity of the downstream lacYA genes in the operon due to premature Rho-dependent transcription termination within the untranslated region of lacZ. Melibiose is a sugar which can only be utilized in a lacZ (Am) strain at high temperature (39 ̊C, when the native melibiose permease is inactive) if the downstream gene lacY encoded permease is transcribed and translated. Therefore, in lacZ (Am) strains, growth on minimal melibiose plates (0.2%) at 39°C reflects transcriptional polarity relief at the lac locus, and the same was scored after streaking the relevant strains on such medium
-
lacZ (Am) assay
-
Strains were streaked on LBON agar plates and after an overnight incubation at 42°C growth was monitored (compared to that on LBON at 30°C as control). Absence of single colony growth was taken to reflect temperature sensitivity. Whenever needed the phenotype was also quantitatively assessed by plating dilutions of cultures on LBON agar plates and the drop in plating efficiency was scored after overnight incubation at 30°C and 42°C
-
LBON(Ts) phenotype
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Automated DNA sequencing on plasmid templates or on PCR products was carried outwith dye terminator cycle sequencing kits from Perkin-Elmer on an automatedsequencer (model 377, Applied Biosystems), following the manufacturer’s instructions.Manual sequencing was achieved using the SequenaseVersion2.0 DNASequencing Kit from USB Corp. as described in manufacturer’s instructions and thesequencing reaction products were resolved by electrophoresis on a 6% sequencing gel
-
DNA sequencing
-
Native isoelectric focusing was done using Pharmacia Phast Gel Apparatus and precast IEF gel (pH 3-9) from GE healthcare. The samples were prepared in 50 mM sodium buffer (pH 8.0) and applied in the middle portion of the gel. Gels were run as previously described(Olsson et al., 1988) that is at 15°C, pre-focusing at 2000 V (75Vh), sample loading at 200V (15Vh) and run at 2000V (500Vh). Staining was done using Coomassie Blue G-250
-
Native Isoelectric Focusing
-
Gel-filtration chromatography was performed at room temperature on a BioLogic LP protein purification system (Biorad) with an in-house packed Sephadex G-100 column of size 1.5 X 43 cm; each protein sample was loaded in 0.8-ml volume, and the buffer used for chromatography was 20 mM Tris-Cl (pH 8) with 200 mM NaCl at a flow rate of 0.1 ml per min with 1.5-ml fractions being collected for analysis. Protein elution was detected by measurement of A295.The void volume, V0was determined using blue dextran (2X 106Daltons) and theelution parameter Kavfor each proteinwas calculated from elution volume Veand total bed volumeVtusing the equation:Kav= (Ve–V0)/(Vt–V0)Initially, acalibration curve was derived froma semilogarithmic plotof Kav of protein standardsalbumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen (25 kDa) and ribonuclease A (13 kDa) on the Y-axis against log10of their molecular masses on theX-axis. The Kavof the ArgPdproteins were calculated based on their elution volume and then the molecular masses were derived from the corresponding point on the calibration curve
-
Gel-filtration chromatography
-
directly from lysed cells, log and stationary phase cultures were spun down, samplebuffer (1 X final concentration) was added to the cell pellet and boiled for 10 min,cooled to room temperature, and after a second spin, the clear supernatant was loaded.The gel run was started at constant current of 20 mA. When the dye front crossed thestacking gel the current was increased to 40 mA
-
The method followed was as described in Sambrook and Russell (2001). Gels of 1.0mmthickness were casted in the commerciallyavailable small gel apparatus. Resolving gelof 12% (15 ml) and stacking gel (4 ml) was made. Gels were polymerised by theaddition of TEMED and APS (1 % v/v of the gel mix). Sample preparation for gelloading was done as follows. Cell lysate or pure protein fractions (around 30 μg) wasmixed with the sample buffer to 1 X and heated at 95ºC for 2-min. To check expression
-
Sodium dodecyl sulphate-polyacrlyamidegel electrophoresis (SDS-PAGE)
-
Protein concentrations were estimated by the method of Bradford (1976). The A595wasmeasured after complexation with Bradford reagent. Bovine serum albumin was usedas standard against whichthe unknown protein concentrations were estimated
-
Protein estimation
-
Overexpression and purification of ArgPand ArgPdproteins
-
argP+, argPd-S94L, argPd-P108S, argPd-P274Sfragment downstream of the phage T7-promoter, such that the encoded proteins beara C-terminal His6-tag provided by the vector DNA sequence. Theresultant plasmid was transformed into strain BL21(DE3) which has the T7 RNA Polymerase under the isopropyl thio-β-D-galactoside (IPTG) inducible lacUV5promoter.The resultant strains were grownin LB (500-1000 ml) to an A600of around 0.6and were then induced with 1 mM IPTG and harvested after 4-hrs of induction.Bacterial cells were recovered by centrifugation, resuspended in 20 ml of lysis buffer(20 mM Tris-Cl, pH-8; 300 mM NaCl; 10 mM DTT and 10 mM imidazole) containing20 μg/ml lysozyme, and lysed by sonication with 30-sec pulses for 10-min. Theprotocol for His6-ArgP(ArgPds)protein purification involved (i) passing the lysate through a 5ml Ni-NTA (Qiagen) chromatographic columnequilibrated with lysis buffer, (ii) washing thecolumn with 100 ml of washing buffer (20 mM Tris-Cl, pH-8; 300 mM NaCl; 10 mMDTT; 30 mM imidazole), and (iii) elution of His6-ArgP(ArgPds)from the column with elutionbuffer (20 mM Tris-Cl, pH-8;300 mM NaCl; 10 mM DTT and 250 mM imidazole) andcollection of 1.5 ml eluate fractions (10 fractions). The fractions were tested forprotein by Bradford method and the protein-carrying fractions (generally tubes 2 to 5)were pooled and dialysed in a 1:200 volume ratio against 20 mM Tris-Cl, pH-8 with 10mM DTT, 300 mMNaCl for 5 hrs followedby a change to buffer of composition 20 mM Tris-Cl, pH-8 with 10 mM DTT, 300 mM NaCl and 40% glycerol for 24 hrs. The proteins were concentrated by centrifugation toaround 1 mg/ml by using Amicon filter (pore size 10-KDa) and stored at −20ºC or −70ºC
-
For preparing ArgP and ArgPd-S94L, -P108S and -P274S proteins, derivatives(designated as pHYD1705, pHYD2678, pHYD2679 and pHYD2680 respectively) of the plasmidvector pET21b (Novagen) was constructed which carries the PCR-amplified
-
Biochemical techniques
-
TheDNA samples were mixed with appropriate volumes of 6 X loading dye (0.25%bromophenol blue and 0.25% xylene cyanol and 30% glycerol in water) and subjectedto electrophoresis through 0.8 to 1 % agarose gel in TAE buffer. The gel was stained in1 μg/ml ethidium bromide solution for 15-min at room temperature and visualised byfluorescence under UV-light in a UV-transilluminator
-
Agarose gel electrophoresis
-
Test for canavanine (CAN) sensitivity
-
CAN is a toxic analog of Arg and is an inhibitor of bacterial growth. Strains were tested for sensitivity/resistance to CAN by streaking them on minimal A-glucose platessupplemented withoutand with40 μg/ml CAN(or other concentrations as indicated) and 40 μg/ml uracil
-
Competent cells for high efficiency transformations were prepared by a method ofInoue et al. (1990) with few modifications. An overnight culture of the strain (routinelyDH5α) was sub-cultured into fresh sterile LB-brothin 1:100 dilutions and grown at 18ºC to an A600of 0.55. The cells were harvested by centrifugation at 2500 rpm for 10-min at 4ºC. This was re-suspended in 0.4 volumes of INOUE buffer and incubated inice for 10 min. The cells were recovered by centrifugation at 2500 rpm at 4ºC for 10-min and finally re-suspended in 0.01 volume of the same buffer. Sterile DMSO wasadded to a final concentration of 7%. After incubating for 10-min in ice, the cells werealiquoted in 100 μl volumes, snap frozen in liquid nitrogen and stored at –70ºC
-
Preparation of high efficiency competent cells
-
For routine plasmid transformations, following method which is modification of thatdescribed by Cohen et al. (1972) was used. An overnight culture of recipient strain wassub-cultured 1:100 in fresh LB medium and grown till mid-exponential phage. Theculture was chilled on ice for 15-min, and the steps thereafter were performed at 4ºC.20 ml of culture was centrifuged and pellet was re-suspended in 10 ml of 0.1 M CaCl2.After 15-min of incubation on ice, the cells were again centrifuged and re-suspended in2 ml of 0.1 M CaCl2. The suspension was incubated on ice for 30-min. To the 200 μl aliquot of the cell suspensionplasmid DNA (20 to 200 ng in less than 10 μl volume)was added, incubated for half an hron ice and given a heat shock for 90-sec at 41ºC.The cultures was rapidly chilled, mixed with 0.8 ml of LB-broth and incubated at 37ºCfor 1-hr, and plated on an appropriate selective medium at various dilutions. An aliquotof cell suspension to which plasmid DNA was not added served as a negative control
-
A. Calcium chloride method
-
Transformation
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
For TEM, C. glabrata cells were digested with zymolyase 20T for 3 h at 30◦C, centrifuged at 1,000 g and washed with YPD medium. Cell fixation was performed as described for SEM and dehydrated samples were embedded in araldite 6005 resin. After complete polymerization at 80 ̊C for 72 h, ultra-thin (50-70 nm) sections were preparedwith a glass knife on Leica Ultra cut (UCT-GA-D/E-1/00)microtomeand mounted on copper grids. Aqueous uranyl acetate-stained and Reynolds lead citrate-counterstained samples were viewed under Hitachi H-7500 transmission electron microscope
-
Transmission electron microscopy
-
For SEM, C. glabratacells were fixed for 24 h in 2.5% glutaraldehyde in phosphate buffer (0.1 M, pH 7.2) at 4 ̊C, post-fixed in 2% aqueous osmium tetroxide for 4 h and dehydrated. After drying to critical point, mounted samples were coated with a thin layer of gold for 3 min using an automated sputter coater and visualized by SEM (JEOL-JSM 5600)
-
Scanning electron microscopy
-
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed at the Electron Microscope Facility, RUSKA LABs, Acharya N. G. Ranga Agricultural University, Hyderabad
-
Electron Microscopy
-
Log-phase yeastcells were collected, washed and suspendedin 10 mM Tris-HCl (pH 7.5) containing 50 mg/ml zymolyase-20T. Cell suspension was incubated at room temperature and absorbance was monitored at 600 nm every10mininterval. Initial absorbance of the cultures at 0 minwas normalized to 100%and the graph was plottedas%decrease in the absorbance with respect to time
-
Zymolyasedigestion assay
-
Resultant precipitate was dissolved in 3 N HCl and reprecipitated in methanol:acetic acid (8:1) solution. Following 16 h incubation at room temperature, the precipitate was washed withmethanol:acetic acid (8:1) solution till green colour of the supernatant disappeared.Finally,pellet was washed thrice with methanol and air dried. Driedpellet was resuspended in 0.5 NHCl and total mannan content was quantified with phenol-sulphuric acid carbohydrate estimation method as described earlier.Commercially available purified glucose was used as the standard
-
Total mannan from 3% NaOH-extractable supernatant of cell wall was precipitated by Benedict’s solution.Reducing sugars(mostly mannan) from alkali-extractable supernatant reactwith copper(II) sulphate present in Benedict’s solution and forms red copper(I) oxide precipitate.Briefly, equal volume of Benedict’s solution was added to 3% NaOH-extractable cell wall supernatant fraction and heated at 99 ̊C for 10 min
-
Total mannan estimation
-
Cell wall β-glucan measurement was carried out as describedpreviously with some modifications(Kapteynet.al.,2001). Briefly, cell wall fractions were washed multiple times with 1 N NaCl. Washed cell walls were boiled twice in 50 mM Tris-HCl(pH 7.8) containing 2% SDS, 100 mM Na-EDTA and 40 mM β-mercaptoethanol for 5 min to remove non-covalently linked proteins and other contaminants. SDS-treated cell wall fraction was collected and rinsed thrice with water. For β-glucan isolation, cell wallswere extracted three times, each for 1 h, in 0.5 ml 3% NaOH at 75 ̊C and centrifuged at 1,200 g.All 3% NaOH supernatant fractions were saved for isolation of mannan as described below. 3% NaOH-extractable cell wall pelletwasneutralized twice in 100 mM Tris-HCl (pH 7.5) and once in 10 mM Tris-HCl (pH 7.5) and digested with 5 mg/ml zymolyase-20T in 10 mM Tris-HCl (pH 7.5) for 14-16 h at 37 ̊C. This treatment liberates approximately 90-95% glucose into the supernatant. Total glucan content in the cell wall was measured by estimating glucose from both the solubilised supernatant and zymolyase-20T insoluble pellet fractions with phenol-sulphuric acid carbohydrate estimation method using purified glucose as the standard
-
Total β-glucan estimation
-
min. Cells were normalized to equal OD600, resuspendedin 1 ml 50 mM Tris-HCl (pH 7.5) and transferred to 2 ml microcentrifuge tubes. Cells were lysed with glass beadsin a homogenizer (FastPrep®-24,MP Biomedicals)asdescribed earlier.Brokencells were washed from glass beadswith 500 μl Tris-HCl (50 mM, pH 7.5) and pelleteddown at 15,000 g for 10 minto obtainall cell wall and membrane content. Pellet was then boiled for 10 minin 1mlTris-HCl(50mM; pH 7.5)solutioncontaining 2%SDS. SDS-extractable material(mannoproteins)was savedand remaining pellet wasboiled again in 500 μl Tris-HCl(50 mM; pH 7.5)buffer containing 2%SDS. Cell wallwas collectedby centrifugation at 15,000 g for 10 min, washed twice with1 ml waterandresuspendedin 100 μl 67 mM potassium phosphatebuffer. This washed cell wall materialwas used for β-glucan estimation as described below
-
Yeast cell wall was isolatedas describedpreviously(De Groot et al., 2004). Briefly, cells grown underdifferent environmental conditions were harvested at 5,000 g for 5
-
Crude cell wall isolation
-
Cell wall isolation, zymolyasedigestion assay and β-glucan estimation
-
Cells grown to log-phase in YPD medium were spotted on CAAmedium and overlaid with a nitrocellulose filter. Cells were allowed to grow at 30 ̊C for 18-20 h. After incubation, the filter was washed with water to remove cells and membrane-bound CPY was detected by immunoblotting withpolyclonal anti-CPY antibody (Thermo Scientific) at a dilution of 1:15,000
-
Carboxypeptidase Ysecretion assay
-
CPY activity was measured as described previously (Jones,2002). A 2.5 mg/ml stock solution of CPY-specific substrate N-benzoyl-L-tyrosine p-nitroanilide(BTPNA, prepared in dimethyl formamide) was diluted 5 times with 0.1 M Tris-HCl (pH 7.5). 100 μl diluted substrate solution was added to a 96-well plate containing 25 μl cell suspension (5 x 107cells). After 18 h of incubation at 37 ̊C, plate contents were clarified by centrifugation and colour formation was quantified by absorbance at 405 nm. Background absorbance measured using BTPNA-free cell cultures was subtracted from BTPNA-loaded cell cultures and absorbancevalues were normalized to total number of viable cells to enumerate total cellular CPY activity
-
Carboxypeptidase Y(CPY) activity assay
-
ammonium molybdate, respectively, to the assay buffer.For specific inhibition of vacuolar membrane H+-ATPaseactivity, vacuolar membrane fractions were incubatedwith 1-2.5 μM bafilomycin for 5 minprior to the activity assay.ATPase activity was initiatedby adding ATP to the assay buffer to afinal concentration of 5 mM and incubating the reactionat 30 ̊C for 30-60 min.Reaction was stopped by adding an equal volumeof a stop-developing solution (1% (w/v)SDS, 0.6 M H2SO4, 1.2%(w/v)ammonium molybdate and 1.6%(w/v)ascorbic acid). Amount of inorganic phosphate (Pi) liberated was measured at A750nmafter 10 minincubation at room temperature. Standard curve prepared with 0-50 micromoles of KH2PO4 was used for the determination of total Pi. The ATPase activity of the vacuolarmembrane H+-ATPase was expressed in micromoles of Pireleased per milligram protein per min
-
Vacuolar membrane H+-ATPase activitywas measured inbothcrude membrane fraction and purifiedvacuolar membrane fraction asdescribed previously(Woolfordet al.,1990).Activity inthe crude membrane fractions was carried out with 2.5-10 μgprotein in 50 μl assay buffer (5 mM MgCl2, 25 mM MES/Tris-HCl(pH 6.9)and 25 mM KCl). For activity inthe purified vacuolar membrane fraction, a totalof300 μl reactionmix was setup with of 2.5-10 μgprotein samples.Residual activities from other ATPases such as mitochondrial ATPases, plasma membrane H+-ATPase and phosphataseswere inhibited by adding 2 mM NaN3, 200 μM NaVO4and 0.2 mM
-
Vacuolar H+-ATPase activity measurement
-
Vacuole membraneswere isolatedwith slight modifications of Cabrera’s method(Cabrera et.al.,2008). Log-phase, YPD medium-grown cells wereinoculated in 1 lt YPDmedium to an initialOD600of 0.1. Cells were incubated at 30 ̊C with shaking at 200 rpm till the cell density reached to OD600of 0.8-1.0.Cells were harvested by centrifugation at 5,000 g and washed once with 30 ml 2% ice-cold glucose solution. Cells were incubated in 15 ml solution containingglycine-NaOH(50 mM; pH10)andDTT(2 mM) at 30 ̊C for 10 min. After incubation, cells were normalized to adensity of1000OD600and resuspendedin 15 ml spheroplasting buffer containing 10-15mg of zymolyase20T.Cells were incubated at 30 ̊C for 45-60 minor till the spheroplasting was completed.Spheroplasts werecollected by centrifugation at 4,500 rpmfor 5 minat 4 ̊C, washed gently with15 ml 1.2 M sorbitol solutionandresuspendedin 3.5 ml 15%ficoll solution made in PS buffercontaining 1X protease inhibitor cocktail. This suspension was homogenized on ice with 20-25 strokes in a loose-fitting Dounce homogenizer. Homogenate was transferred to an ice-cold,ultra-clear Beckman ultracentrifuge tube, overlaid witha gradient of3 ml 8%ficoll solution, 2.5 ml 4%ficoll solutionand 2.5 ml PS buffer lacking ficoll and centrifuged at 1,10,000g(30,000 rpm)for 90 minat 4 ̊Cin a pre-cooled Beckman ultracentrifuge with SW41-Ti swinging bucket rotor.Centrifugation was carried out with slow acceleration and deceleration settings.White creamy vacuole membrane layer wascollected from the interfaceof 0and4% ficoll gradientwithout mixing the layers.Total protein concentration in thevacuole fraction was estimated using BCAprotein assay kit as described earlier
-
Purified vacuole membrane isolation
-
Crude fractionation of total membraneswas carried outviadifferential centrifugation asdescribed previously (Moranoand Klionsky,1994)with slight modifications. Cells grown tolog-phase in YPDmedium werecollected, washed,normalizedto 10 OD600and resuspendedin 1 ml spheroplast buffer containing 1-2mg of zymolyase20T (MP Biomedicals).Following incubation at 30 ̊Cfor 30-45 min,spherolplastswerecollected by centrifugation at 800 g for 3 minat 4 ̊C and resuspendedin 1 mlice-cold Tris-EDTA (pH 7.5). Spheroplastswere lysed with 100 μl 0.5mm glass beads on a vortex mixer with 10 secpulsegiven thricewith intermittent ice-breaks.Cellsuspension was centrifuged at 800 g for 5 minat 4 ̊C to pellet unbrokenspheroplastsdown andthesupernatant was centrifuged at 15,000 g for 5 minat 4 ̊C to obtainthemembrane fraction pellet.Pellet was washed once with ice-cold Tris-EDTA (pH 7.5), resuspendedin 50 μl of the samebuffer and stored at -20 ̊Ctill further use. Protein concentration of pellet fraction was estimated using BCAprotein assay kit with BSA as thestandard
Tags
- Md-3-Md-18-Md-3-d
- Md-3-Md-21-Md-4
- Md-3-Md-22-Md-1-d
- Md-3-Md-21-Md-4-d
- Md-3-Md-21-Md-2
- Md-3-Md-21-Md-2-d
- Md-3-Md-18-Md-3
- Md-3-Md-22-d
- Md-3-Md-21
- Md-3-Md-21-Md-1
- Md-3-Md-21-Md-1-d
- Md-3-Md-22-Md-2
- Md-3-Md-22-Md-1
- Md-3-Md-20
- Md-3-Md-18-Md-2-d
- Md-3-Md-18-Md-2
- Md-3-Md-22-Md-2-d
- Md-3-Md-19
- Md-3-Md-18-Md-1-d
- Md-3-Md-20-d
- Md-3-Md-22
- Md-3-Md-21-Md-3
- Md-3-Md-21-Md-3-d
- Md-3-Md-19-d
Annotators
URL
-