10,000 Matching Annotations
  1. May 2025
    1. Reviewer #1 (Public review):

      Summary:

      Even though mutations in LRRK2 and GBA1 (which encodes the protein GCase) increase the risk of developing Parkinson's disease (PD), the specific mechanisms driving neurodegeneration remain unclear. Given their known roles in lysosomal function, the authors investigate how LRRK2 and GCase activity influence the exocytosis of the lysosomal lipid BMP via extracellular vesicles (EVs). They use fibroblasts carrying the PD-associated LRRK2-R1441G mutation and pharmacologically modulate LRRK2 and GCase activity.

      Strengths:

      The authors examine both proteins at endogenous levels, using MEFs instead of cancer cells. The study's scope is potentially interesting and could yield relevant insights into PD disease mechanisms.

      Weaknesses:

      Many of the authors' conclusions are overstated and not sufficiently supported by the data. Several statistical errors undermine their claims. Pharmacological treatment is very long, leading to potential off-target effects. Additionally, the authors should be more rigorous when using EV markers.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors used MEFs expressing the R1441G mutant of leucine-rich repeat kinase 2 (LRRK2), a mutant associated with the early onset of Parkinson's disease. They report that in these cells LAMP2 fluorescence is higher but BMP fluorescence is lower, MVE size is reduced, and that MVEs contain less ILVs. They also report that LAMP2-positive EVs are increased in mutant cells in a process sensitive to LRRK2 kinase inhibition but are further increased by glucocerebrosidase (GCase) inhibition, and that total di-22:6-BMP and total di-18:1-BMP are increased in mutant LRRK2 MEFs compared to WT cells by mass spectrometry. They also report that LRRK2 kinase inhibition partially restores cellular BMP levels, and that GCase inhibition further increases BMP levels, and that in EVs from the LRRK2 mutant, LRRK2 inhibition decreases BMP while GCase inhibition has the opposite effect. Moreover, they report that the BMP increase is not due to increased BMP synthesis, although the authors observe that CLN5 is increased in LRRK2 mutant cells. Finally, they report that GW4869 decreases EV release and exosomal BMP, while bafilomycin A1 increases EV release. They conclude that LRRK2 regulates BMP levels (in cells) and release (via EVs). They also conclude that the process is modulated by GCase in LRRK2 mutant cells, and that these studies may contribute to the use of BMP-positive EVs as a biomarker for Parkinson's disease and associated treatments.

      Strengths:

      This is an interesting paper, which provides novel insights into the biogenesis of exosomes with exciting biomedical potential. However, I have comments that authors need to address to clarify some aspects of their study.

      Weaknesses:

      (1) The intensity of LAMP2 staining is increased significantly in cells expressing the R1441G mutant of LRRK2 when compared to WT cells (Figure 1C). Yet mutant cells contain significantly smaller MVEs with fewer ILVs, and the MVE surface area is reduced (Figure 1D-F). This is quite surprising since LAMP2 is a major component of the limiting membrane of late endosomes. Are other proteins of endo-lysosomes (eg, LAMP1, CD63, RAB7) or markers (lysotracker) also decreased (see also below)?

      (2) LRRK2 has been reported to interact with endolysosomal membranes. Does the R1441G mutant bind LAMP2- and/or BMP-positive membranes? Does the mutant affect endolysosomes?

      (3) Immunofluorescence data indicate that BMP is decreased in mutant LRRK2-expressing cells compared to WT (Figure 1A-B), but mass spec data indicate that di-22:6-BMP and di-18:1-BMP are increased (Figure 3). Authors conclude that the BMP pool detected by mass spec in mutant cells is less antibody-accessible than that present in wt cells, or that the anti-BMP antibody is less specific and that it detects other analytes. This is an awkward conclusion, since the IF signal with the antibody is lower (not higher): why would the antibody be less specific? Could it be that the antibody does not see all BMP isoforms equally well? Moreover, the observations that mutant cells contain smaller MVEs (Figure 1D-F) with fewer ILVs are consistent with the IF data and reduced BMP amounts. This needs to be clarified.

      Mass spectrometry data are only shown for two BMP species (di-22:6, di-18:1). What are the major BMP isoforms in WT cells? The authors should show the complete analysis for all BMP species if they wish to draw quantitative conclusions about the amounts of BMP in wt and mutant cells. Finally, BMP and PG are isobaric lipids. Fragmentation of BMPs or PGs results in characteristic fingerprints, but the presence of each daughter ion is not absolutely specific for either lipid. This should be clarified, e.g., were BMP and PG separated before mass spec analysis? Was PG affected? The authors should also compare the BMP data with mass spec data obtained with a control lipid, e.g., PC.

      (4) It is quite surprising that the amounts of labeled BMP continue to increase for up to 24h after a short 25min pulse with heavy BMP precursors (Figure 4B).

      (5) It is argued that upregulation of CLN5 may be due to an overall upregulation of lysosomal enzymes, as LAMP2 levels were also increased (Figure 2A, C, E). Again, this is not consistent with the observed decrease in MVE size and number (Figure 1D-F). As mentioned above, other independent markers of endo-lysosomes should be analyzed (eg, LAMP1, CD63, RAB7), and/or other lysosomal enzymes (e.g. cathepsin. D).

      (6) The authors report that the increase in BMP is not due to an increase in BMP synthesis (Figure 4), although they observe a significant increase in CLN5 (Figure 5A) in LRRK2 mutant cells. Some clarification is needed.

      (7) Authors observe that both LAMP2 and BMP are decreased in EVs by GW4869 and increased by bafilomycin (Figure 6). Given my comments above on Figure 1, it would also be nice to illustrate/quantify the effects of these compounds on cells by immunofluorescence.

    1. Reviewer #1 (Public review):

      Summary:

      This paper seeks to understand the upstream regulation and downstream effectors of glycolysis in retinal progenitor cells, using mouse retinal explants as the main model system. The paper presents evidence that high glycolysis in retinal progenitor cells is required for their proliferation and timely differentiation into photoreceptors. Retinal glycolysis increases after deletion of Pten. The authors suggest that high glycolysis controls cell proliferation and differentiation by promoting intracellular alkalinization, beta-catenin acetylation and stabilization and consequent activation of the canonical Wnt pathway.

      Strengths:

      - The experiments showing that PFKFB3 overexpression is sufficient to increase proliferation of retinal progenitors (which are already highly dividing cells) and photoreceptor differentiation are striking and the result unanticipated. It suggests that glycolytic flux is normally limiting for proliferation in embryos.<br /> - Likewise the result that an increase in pH from 7.4 to 8.0 is sufficient to increase proliferation implies that pH regulation may have instructive roles in setting the tempo of retinal development and embryonic cell proliferation. Similarly for the results showing that acetate supplementation increases proliferation (I think this result should be moved to the main figures).

      Weaknesses:

      - Epistatic experiments to test if changes in pH mediate the effects of glycolysis on photoreceptor differentiation, or if Wnt activation is the main downstream effector of glycolysis in controlling differentiation are not presented.<br /> - It is likely that metabolism changes ex vivo vs in vivo, and therefore stable isotope tracing experiments in the explants may not reflect in vivo metabolism.<br /> - The retina at P0 is composed of both progenitors and differentiated cells. It is not clear if the results of the RNA-seq and metabolic analysis reflect changes in the metabolism of progenitors, or of mature cells, or changes in cell type composition rather than direct metabolic changes in a specific cell type.<br /> - The biochemical links between elevated glycolysis and pH and beta-catenin stability are unclear. White et al found that higher pH decreased beta-catenin stability (JCB 217: 3965) in contrast to the results here. Oginuma et al found that inhibition of glycolysis or beta-catenin acetylation does not affect beta-catenin stability (Nature 584:98), again in contrast to these results. Another paper showed that acidification inhibits Wnt signaling by promoting the expression of a transcriptional repressor and not via beta-catenin stability (Cell Discovery 4:37). There are also additional papers showing increased pH can promote cell proliferation via other mechanisms (e.g. Nat Metab 2:1212). It is possible that there is organ-specificity in these signaling pathways however some clarification of these divergent results is warranted.<br /> - The gene expression analysis is not completely convincing. E.g. expression of additional glycolytic genes should be shown in Fig. 1. It is not clear why Hk1 and Pgk1 are specifically shown, and conclusions about changes in glycolysis are difficult to draw from expression of these two genes. The increase in glycolytic gene expression in the Pten-deficient retina is generally small.<br /> - Is it possible that glycolytic inhibition with 2DG slows down development and production of most new differentiated cells rather than specifically affecting photoreceptor differentiation?<br /> - Are the prematurely-born cells caused by PFKFB3 overexpression photoreceptors as assessed by morphology or markers (in addition to position)?

    2. Reviewer #3 (Public review):

      Summary:

      This study examines the metabolic regulation of progenitor proliferation and differentiation in the developing retina. The authors observe dynamic changes in glycolytic gene expression in retinal progenitors and use various strategies to test the role of glycolysis. They find that elevated glycolysis in Pten-cKO retinas results in alteration of RPC fate, while inhibition of glycolysis has converse effects. They specifically test the role of elevated glycolysis using dominant active cytoPFKB3, which demonstrates the selective effects of elevated glycolysis on progenitor proliferation and rod differentiation. They then show that elevated glycolysis modulates both pHi and Wnt signaling, and provide evidence that these pathways impact proliferation and differentiation of progenitors, particularly affecting rod photoreceptor differentiation.

      Strengths:

      This is a compelling and rigorous study that provides an important advance in our understanding of metabolic regulation of retina development, addressing a major gap in knowledge. A key strength is that the study utilizes multiple genetic and pharmacological approaches to address how both increased or decreased glycolytic flux affect retinal progenitor proliferation and differentiation. They discover elevated Wnt signaling pathway genes in Pten cKO retina, revealing a potential link between glycolysis and Wnt pathway activation. Altogether the study is comprehensive and adds to the growing body of evidence that regulation of glycolysis plays a key role in tissue development.

      Weaknesses:

      (1) Following expression of cytoPFKB3, which results in increased glycolytic flux, BrDU labeling was performed at e12.5 and increased labeled cells were detected in the outer nuclear layer. But whether these are cones or rods is not established. The rest of the analysis is focused on the precocious maturation of rhodopsin-labelled outer segments, and the major conclusions emphasize rod photoreceptor differentiation. Therefore it is unclear whether there is an effect on cone differentiation for either Pten cKO or cytoPFKB3 transgenic retina. It is also not established whether rods are born precociously. Presumably this would be best detected by BrDU labeling at later embryonic stages.

      (2) The authors find that there is upregulation of multiple Wnt pathway components in Pten cKO retina. They further show that inhibiting Wnt signaling phenocopies the effects of reducing glycolysis. However, they do not test whether pharmacological inhibition of Wnt signaling reverses the effects of high glycolytic activity in Pten cKO retinas. Thus the argument that Wnt is a key downstream effector pathway regulating rod photoreceptor differentiation is weak.

      (3) The use of sodium acetate to force protein acetylation is quite non-specific and will have effects beyond beta-catenin acetylation (which the authors acknowledge). Thus it is a stretch to state that "forced activation of beta-catenin acetylation" mimics the impact of Pten<br /> loss/high glycolytic activity in RPCs since the effects could be due to acetylation of other proteins.

    1. Reviewer #1 (Public review):

      Summary:

      The paper describes the cryoEM structure of RAD51 filament on the recombination intermediate. In the RAD51 filament, the insertion of a DNA-binding loop called the L2 loop stabilizes the separation of the complementary strand for the base-pairing with an incoming ssDNA and the non-complementary strand, which is captured by the second DNA-binding channel called the site II. The molecular structure of the RAD51 filament with a recombination intermediate provides a new insight into the mechanism of homology search and strand exchange between ssDNA and dsDNA.

      Strengths:

      This is the first human RAD51 filament structure with a recombination intermediate called the D-loop. The work has been done with great care, and the results shown in the paper are compelling based on cryo-EM and biochemical analyses. The paper is really nice and important for researchers in the field of homologous recombination, which gives a new view on the molecular mechanism of RAD51-mediated homology search and strand exchange.

      Weaknesses:

      The authors need more careful text writing. Without page and line numbers, it is hard to give comments.

    2. Reviewer #2 (Public review):

      Summary:

      Homologous recombination (HR) is a critical pathway for repairing double-strand DNA breaks and ensuring genomic stability. At the core of HR is the RAD51-mediated strand-exchange process, in which the RAD51-ssDNA filament binds to homologous double-stranded DNA (dsDNA) to form a characteristic D-loop structure. While decades of biochemical, genetic, and single-molecule studies have elucidated many aspects of this mechanism, the atomic-level details of the strand-exchange process remained unresolved due to a lack of atomic-resolution structure of RAD51 D-loop complex.<br /> In this study, the authors achieved this by reconstituting a RAD51 mini-filament, allowing them to solve the RAD51 D-loop complex at 2.64 Å resolution using a single particle approach. The atomic resolution structure reveals how specific residues of RAD51 facilitate the strand exchange reaction. Ultimately, this work provides unprecedented structural insight into the eukaryotic HR process and deepens the understanding of RAD51 function at the atomic level, advancing the broader knowledge of DNA repair mechanisms.

      Strengths:

      The authors overcame the challenge of RAD51's helical symmetry by designing a minifilament system suitable for single-particle cryo-EM, enabling them to resolve the RAD51 D-loop structure at 2.64 Å without imposed symmetry. This high resolution revealed precise roles of key residues, including F279 in Loop 2, which facilitates strand separation, and basic residues on site II that capture the displaced strand. Their findings were supported by mutagenesis, strand exchange assays, and single-molecule analysis, providing strong validation of the structural insights.

      Weaknesses:

      Despite the detailed structural data, some structure-based mutagenesis data interpretation lacks clarity. Additionally, the proposed 3′-to-5′ polarity of strand exchange relies on assumptions from static structural features, such as stronger binding of the 5′-arm-which are not directly supported by other experiments. This makes the directional model compelling but contradicts several well-established biochemical studies that support a 5'-to-3' polarity relative to the complementary strand (e.g., Cell 1995, PMID: 7634335; JBC 1996, PMID: 8910403; Nature 2008, PMID: 18256600).

      Overall:

      The 2.6 Å resolution cryoEM structure of the RAD51 D-loop complex provides remarkably detailed insights into the residues involved in D-loop formation. The high-quality cryoEM density enables precise placement of each nucleotide, which is essential for interpreting the molecular interactions between RAD51 and DNA. Particularly, the structural analysis highlights specific roles for key domains, such as the N-terminal domain (NTD), in engaging the donor DNA duplex.

      This structural interpretation is further substantiated by single-molecule fluorescence experiments using the KK39,40AA NTD mutant. The data clearly show a significant reduction in D-loop formation by the mutant compared to wild-type, supporting the proposed functional role of the NTD observed in the cryoEM model.

      However, the strand exchange activity interpretation presented in Figure 5B could benefit from a more rigorous experimental design. The current assay measures an increase in fluorescence intensity, which depends heavily on the formation of RAD51-ssDNA filaments. As shown in Figure S6A, several mutants exhibit reduced ability to form such filaments, which could confound the interpretation of strand exchange efficiency. To address this, the assay should either: (1) normalize for equivalent levels of RAD51-ssDNA filaments across samples, or (2) compare the initial rates of fluorescence increase (i.e., the slope of the reaction curve), rather than endpoint fluorescence, to better isolate the strand exchange activity itself.

      Based on the structural features of the D-loop, the authors propose that strand pairing and exchange initiate at the 3'-end of the complementary strand in the donor DNA and proceed with a 3'-to-5' polarity. This conclusion, drawn from static structural observations, contrasts with several well-established biochemical studies that support a 5'-to-3' polarity relative to the complementary strand (e.g., Cell 1995, PMID: 7634335; JBC 1996, PMID: 8910403; Nature 2008, PMID: 18256600). While the structural model is compelling and methodologically robust, this discrepancy underscores the need for further experiments.

    3. Reviewer #3 (Public review):

      Summary:

      Built on their previous pioneer expertise in studying RAD51 biology, in this paper, the authors aim to capture and investigate the structural mechanism of human RAD51 filament bound with a displacement loop (D-loop), which occurs during the dynamic synaptic state of the homologous recombination (HR) strand-exchange step. As the structures of both pre- and post-synaptic RAD51 filaments were previously determined, a complex structure of RAD51 filaments during strand exchange is one of the key missing pieces of information for a complete understanding of how RAD51 functions in the HR pathway. This paper aims to determine the high-resolution cryo-EM structure of RAD51 filament bound with the D-loop. Combined with mutagenesis analysis and biophysical assays, the authors aim to investigate the D-loop DNA structure, RAD51-mediated strand separation and polarity, and a working model of RAD51 during HR strand invasion in comparison with RecA.

      Strengths:

      (1) The structural work and associated biophysical assays in this paper are solid, elegantly designed, and interpreted.  These results provide novel insights into RAD51's function in HR.

      (2) The DNA substrate used was well designed, taking into consideration the nucleotide number requirement of RAD51 for stable capture of donor DNA. This DNA substrate choice lays the foundation for successfully determining the structure of the RAD51 filament on D-loop DNA using single-particle cryo-EM.

      (3) The authors utilised their previous expertise in capping DNA ends using monomeric streptavidin and combined their careful data collection and processing to determine the cryo-EM structure of full-length human RAD51 bound at the D-loop in high resolution. This interesting structure forms the core part of this work and allows detailed mapping of DNA-DNA and DNA-protein interaction among RAD51, invading strands, and donor DNA arms (Figures 1, 2, 3, 4). The geometric analysis of D-loop DNA bound with RAD51 and EM density for homologous DNA pairing is also impressive (Figure S5). The previously disordered RAD51's L2-loop is now ordered and traceable in the density map and functions as a physical spacer when bound with D-loop DNA. Interestingly, the authors identified that the side chain position of F279 in the L2_loop of RAD51_H differs from other F279 residues in L2-loops of E, F, and G protomers. This asymmetric binding of L2 loops and RAD51_NTD binding with donor DNA arms forms the basis of the proposed working model about the polarity of csDNA during RAD51-mediated strand exchange.

      (4) This work also includes mutagenesis analysis and biophysical experiments, especially EMSA, single-molecule fluorescence imaging using an optical tweezer, and DNA strand exchange assay, which are all suitable methods to study the key residues of RAD51 for strand exchange and D-loop formation (Figure 5).

      Weaknesses:

      (1) The proposed model for the 3'-5' polarity of RAD51-mediated strand invasion is based on the structural observations in the cryo-EM structure. This study lacks follow-up biochemical/biophysical experiments to validate the proposed model compared to RecA or developing methods to capture structures of any intermediate states with different polarity models.

      (2) The functional impact of key mutants designed based on structure has not been tested in cells to evaluate how these mutants impact the HR pathway.

      The significance of the work for the DNA repair field and beyond:

      Homologous recombination (HR) is a key pathway for repairing DNA double-strand breaks and involves multiple steps. RAD51 forms nucleoprotein filaments first with 3' overhang single-strand DNA (ssDNA), followed by a search and exchange with a homologous strand. This function serves as the basis of an accurate template-based DNA repair during HR. This research addressed a long-standing challenge of capturing RAD51 bound with the dynamic synaptic DNA and provided the first structural insight into how RAD51 performs this function. The significance of this work extends beyond the discovery of biology for the DNA repair field, into its medical relevance. RAD51 is a potential drug target for inhibiting DNA repair in cancer cells to overcome drug resistance. This work offers a structural understanding of RAD51's function with the D-loop and provides new strategies for targeting RAD51 to improve cancer therapies.

    1. Reviewer #1 (Public review):

      Summary:

      This work contributes several important and interesting observations regarding the heterotolerance of non-growing Escherichia coli and Pseudomonas aeruginosa to the antimicrobial peptide tachyplesin. The primary mechanism of action of tachyplesin is thought to be disruption of the bacterial cell envelope, leading to leakage of cellular contents after a threshold level of accumulation. Although the MIC for tachyplesin in exponentially growing E. coli is just 1 ug/ml, the authors observe that a substantial fraction of a stationary phase population of bacteria survives much higher concentrations, up to 64 ug/ml. By using a fluorescently labelled analogue of tachyplesin, the authors show that the amount of per-cell intracellular accumulation of tachyplesin displays a bimodal distribution, and that the fraction of "low accumulators" correlates with the fraction of survivors. Using a microfluidic device, they show that low accumulators exclude propidium iodide, suggesting that their cell envelopes remain largely intact, while high accumulators of tachyplesin also stain with propidium iodide. They show that this phenomenon holds for several clinical isolates of E. coli with different genetic determinants of antibiotic resistance, and for a strain of Pseudomonas aeruginosa. However, the bimodal distribution does not occur in these organisms for several other antimicrobial peptides, or for tachyplesin in Klebsiella pneumoniae or Staphylococcus aureus, indicating some degree of specificity in the interaction between AMP and bacterial cell envelope. They next explore the dynamics of the fluorescent tachyplesin accumulation and show interestingly that a high degree of accumulation is initially seen in all cells, but that the "low accumulator" subpopulation manages to decrease the amount of intracellular fluorescence over time, while the "high accumulator"subpopulation continues to increase its intracellular fluorescence. Focusing on increased efflux as a hypothesised mechanism for the "low accumulator" phenotype, based on transcriptomic analysis of the two subpopulations, the authors screen putative efflux inhibitors to see if they can block the formation of the low accumulator subpopulation. They find that both the protonophore CCCP and the SSRI sertraline can block the formation of this subpopulation and that a combination of sertraline plus tachyplesin kills a greater fraction of the stationary phase cells than either agent alone, similar to the killing observed when growing cells are treated with tachyplesin.

      Strengths:

      This study provides new insight into the heterogeneous behaviours of non-growing bacteria when exposed to an antimicrobial peptide, and into the dynamics of their response. The single-cell analysis by FACS and microscopy is compelling. The results provide a much-needed single cell perspective on the phenomenon of tolerance to AMPs and a good starting point for further exploration.

      Weaknesses:

      The authors have substantially improved the clarity of the manuscript and have added additional experiments to probe further the location of the AMP relative to low and high accumulators, and the physiological states of these sub-populations. These experiments strengthen the assertion that low accumulators keep the AMP at the cell surface while high accumulators permit intracellular access to the AMP.

      However, many questions still remain about the physiological characterisation of the "low accumulator" cells. While the evidence presented does support an induced response that removes the AMP from the interior of the cell, no clear mechanism for this is favoured by the experiments presented.

      A double deletion of acrA and tolC (two out of the three components of the major constitutive RND efflux pump) reduces the appearance of the low accumulator phenotype, but interestingly, the single deletions have no effect, and a well-characterised inhibitor of RND efflux pumps also has no effect. The authors identify a two-component system, qseCB, that appears necessary for the appearance of low accumulators, but this system has pleiotropic effects on many cellular systems, with only tenuous connections to efflux. The selected pharmacological agents that could prevent the appearance of low accumulators do not offer clear insight into the mechanism by which low accumulators arise, because they have diverse modes of action.

      The transcriptomics data collected for low and high accumulator sub-populations are interesting, but in my opinion, the conclusions that can be drawn from these data remain overstated. It is not possible to make any claims about the total amount of "protein synthesis, energy production, and gene expression" on the basis of RNA-Seq data. The reads from each sample are normalised, so there is no information about the total amount of transcript. Many elements of total cellular activity are post-transcriptionally regulated, so it is impossible to assess from transcriptomics alone. Finally, the transcriptomic data are analysed in aggregated clusters of genes that are enriched for biological processes, for example: "Cluster 2 included processes involved in protein synthesis, energy production, and gene expression that were downregulated to a greater extent in low accumulators than high accumulators". However, this obscures the fact that these clusters include genes that are generally inhibitory of the process named, as well as genes that facilitate the process.

      The authors have added an experiment to attempt to assess overall metabolic activity in the low accumulator and high accumulator populations, which is a welcome addition. They apply the redox dye resazurin and observe lower resorufin (reduced form) fluorescence in the low accumulator population, which they take to indicate a lower respiration rate. This seems possible, however, an important caveat is that they have shown the low accumulator population to retain substantially lower amounts of multiple different fluorescent molecules (tachyplesin-NBD, propidium iodide, ethidium bromide) intracellularly compared to the high accumulator population. It seems possible that the low accumulator population is also capable of removing resazurin or resorufin from the intracellular space, regardless of metabolic rate. Indeed, it has previously been shown that efflux by RND efflux pumps influences resazurin reduction to resorufin in both P. aeruginosa and E. coli. By measuring only the retained redox dye using flow cytometry, the results may be confounded by the demonstrated ability of the low accumulator population to remove various fluorescent dyes. More work is needed to strongly support broad conclusions about the physiological states of the low and high accumulator populations.

      The phenomenon of the emergence of low accumulators, which are phenotypically tolerant to the antimicrobial peptide tachyplesin, is interesting and important even if there is still work to be done to understand the mechanism by which it occurs.

    2. Reviewer #2 (Public review):

      Summary:

      This study reports on the existence of subpopulations of isogenic E. coli and P. aeruginosa cells that are tolerant to the antimicrobial peptide tachyplesin and are characterized by accumulation of low levels of a fluorescent tachyplesin-NBD conjugate. The authors then set out to address the molecular mechanisms, providing interesting insights even though the mechanism remains incompletely defined: The work demonstrates that increased efflux may cause this phenotype, putatively together with other changes in membrane lipid composition. The authors further demonstrate that pharmacological manipulation can prevent generation of tolerance. The authors are cautious in their interpretation and the claims made are largely justified by the data.

      Strengths:

      Going beyond the commonly used bulk techniques for studying susceptibility to AMPs , Lee et al. used of fluorescent antibiotic conjugates in combination with flow cytometry analysis to study variability in drug accumulation at the single cell level. This powerful approach enabled the authors to expose bimodal drug accumulation pattern that were condition dependent, but conserved across a variety of E. coli clinical isolates. Using cell sorting in combination with colony-forming unit assays as well as quantitative fluorescence microscopic analysis in a microfludics-setup the authors compellingly demonstrate that low accumulators (where fluorescence signal is mostly restricted to the membrane), can survive antibiotic treatment, whereas high accumulators (with high intracellular fluorescence) were killed.

      The relevance of efflux for the ´low accumulator´ phenotype and its survival is convincingly demonstrated by the following lines of evidence: i) A time-course experiment on tachyplesin-NBD pre-loaded cells revealed that all cells initially were high accumulators, before a subpopulation of cells subsequently managed to reduce signal intensity, demonstrating that the ´low accumulator´ phenotype is an induced response and not a pre-existing property. Ii) Double-mutants deficient in the delta acrA delta tolC double-KO, which showed reduced levels of low accumulators´. Interestingly, ´low accumulator´populations were nearly abrogated in bacteria deficient in the qse quorum sensing system, suggesting its centrality for the tachyplesin response. Even though this system may control acrA, the strength of the phenotype may suggest that it may control additional as-of-yet unidenitified factors relevant in the response to tachyplesin. Iii) treatment with efflux pump inhibitor sertraline and verapamil (even though some caution needs to be taken since it is not perfectly selective, see weakness) prevents generation of low accumulators. The observation that sertraline enhances tachyplesin-based killing is an important basis for developing combination therapies.

      The study convincingly illustrates how susceptibility to tachyplesin adaptively changes in a heterogeneous way dependent on the growth phases and nutrient availability. This is highly relevant also beyond the presented example of tachyplesin and similar subpopulation-based adaptive changes to the susceptibility towards antimicrobial peptides or other drugs may occur during infections in vivo and they would likely be missed by standardized in vitro susceptibility testing.

      Weaknesses:

      Some mechanistic questions regarding tachyplesin-accumulation and survival remain. One general shortcoming of the setup of the transcriptomics experiment is that the tachyplesin-NBD probe itself has antibiotic efficacy and induces phenotypes (and eventually cell death) in the ´high accumulator´ cells. As the authors state themselves, this makes it challenging to interpret whether any differences seen between the two groups are causative for the observed accumulation pattern of if they are a consequence of differential accumulation and downstream phenotypic effects.

      I have a few minor concerns regarding new data that was added during the revision:

      - The statement ´ Moreover, we found that the fluorescence of low accumulators decreased over time when bacteria were treated with 20 μg mL´ is, in my opinion, not supported by the data shown in Figure S4C. That figure shows that the abundance of ´low accumulator´ cells decreases over time. Following the rationale that protease K treatment may cleave surface-associated/extracellular tachyplesin-NDB, this should lead to a shift of ´low accumulator´population to the left, indicating reduced fluorescence intensity per cell. This is not so case, but the population just disappears. However, after 120 min of treatment more cells appear in the ´high accumulator´ state. This result is somewhat puzzling.

      - The authors used the metabolic dye resazurin to measure the metabolic activity of low vs. high accumulators. I am not entirely convinced that the lower fluorescence resorufin-fluorescence in tachyplesin-NBD accumulators really indicates lower metabolic activity, since a cell's fluorescence levels would also be affected by the cellular uptake and efflux. It appears plausible that the lower resorufin-fluorescence may result from reduced accumulation/increased efflux in the´low-tachyplesin NBD´ population.

      Comment on revisions: All my previous comments have been satisfactorily addressed by the authors.

    3. Reviewer #3 (Public review):

      Summary:

      This important study shows that stationary phase bacteria survive antimicrobial peptide treatment by switching on efflux pumps, generating low accumulating subpopulations that evade killing-a finding with clear implications for the design of peptide based antibiotics and for researchers studying antimicrobial resistance. The evidence is solid and frequently convincing, as diverse single cell assays, genetics and chemical inhibition coherently link reduced intracellular peptide to survival, even though a few mechanistic details warrant further exploration.

      Strengths:

      The authors investigate how Escherichia coli (and, to a lesser extent, Pseudomonas aeruginosa) survive exposure to the antimicrobial peptide (AMP) tachyplesin. Because resistance to AMPs is thought to rely heavily on non genetic adaptations rather than on classical mutation based mechanisms, the study focuses on phenotypic heterogeneity and seeks to pinpoint the cellular processes that protect a subset of cells. Using fluorescently labelled tachyplesin, single cell imaging, flow cytometry, transcriptomics, targeted genetics, and chemical perturbations, the authors report that stationary phase cultures harbor two phenotypic states: high accumulating cells that die and low accumulating cells that survive. They further propose and show that inducible efflux activity is the primary driver of survival and show that either efflux inhibition (sertraline, verapamil) or nutrient supplementation prevents the emergence of low accumulators and boosts killing.<br /> The experiments unambiguously reveal that the cells respond to stress heterogeneously, with two distinct subpopulations - one with better survival than the other. This primary phenotype is convincingly shown across various E. coli strains, including clinical isolates. The authors probed the underlying mechanism from several angles, with important additional experiments in the revised version that strengthens the original conclusions in several ways. Newly added efflux assays with ethidium bromide, together with proteinase treatment experiments and ΔacrAΔtolC and ΔqseB/qseC mutant data, illustrate that the low accumulating subpopulation can actively export intracellular compounds. The authors took great care to temper their language to acknowledge other potential alternatives that could explain some of the data such as altered influx, vesicle release or proteolysis, metabolic activity of the cells, indirect effects of sertraline treatment, etc. Additional metabolic dye measurements confirm that low accumulators are less metabolically active, and a new data on nutrient supplementation shows that forcing growth increases peptide uptake and lethality. The authors clarify the crucial point of where antimicrobial peptides actually bind on the cell within the broader survival mechanism and present their conclusions, along with potential caveats, with commendable clarity.

      Weaknesses:

      Despite these advances, the contribution of efflux may require more direct evidence to further dissect whether efflux is necessary, sufficient, or contributory. The facts that the key low-efflux mutant still retains a small fraction of survivors and that the inhibitors used may cause other physiological changes leading to higher efflux are still unaccounted for. The lipidomic and vesicle findings, while intriguing, remain descriptive, and direct tests of their functional relevance would further solidify the mechanistic models.

      Conclusion:

      Even with these limitations, the study provides valuable insight into non genetic resistance mechanisms to AMPs and highlights inducible heterogeneity as a critical obstacle to peptide therapeutics. In a much broader context, this study also underscores the importance of efflux physiology even for those antimicrobials that seemingly would not have intracellular targets.

    1. Reviewer #1 (Public review):

      Summary:

      This is a very well-written paper presenting interesting findings related to the recovery following the end-Permian event in continental settings, from N China. The finding is timely as the topic is actively discussed in the scientific community. The data provides additional insights into the faunal, and partly, floral global recovery following the EPE, adding to the global picture.

      Strengths:

      The conclusions are supported by an impressive amount of sedimentological and paleontological data (mainly trace fossils) and illustrations.

    2. Reviewer #2 (Public review):

      Summary:

      The authors made a thorough revision of the manuscript, strengthening the message. They also considered all the comments made by the reviewers and provided appropriate and convincing arguments.

      Strengths:

      The revised manuscript clarifies all the major points raised by the reviewers, and the way the information is presented (in the text, figures and tables) is clear.

      Weaknesses:

      The authors provided an appropriate and convincing rebuttal regarding the potential weakness I pointed out in the first review of the manuscript. Therefore, I do not see any major issue in their work.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Guo and colleagues features the documentation and interpretation of three successions of continental to marginal marine deposits spanning the P/T transition and their respective ichnofaunas. Based on these new data inferences concerning end-Permian mass extinction and Triassic recovery in the tropical realm are discussed.

      Strengths:

      The manuscript is well written and organized and includes a large amount of new lithological and ichnological data that illuminate ecosystem evolution in a time of large scale transition. The lithological documentations, facies interpretations and ichnotaxonomic assignments look alright (with few exceptions).

    1. Reviewer #1 (Public review):

      Summary:

      The authors found that IL-1b signaling is pivotal for hypoxemia development and can modulate NETs formation in LPS+HVV ALI model.

      Strengths:

      They used IL1R1 ko mice and proved that IL1R1 is involved in ALI model proving that IL1b signalling leads towards ARDS. In addition, hypothermia reduces this effect, suggesting a therapeutic option.

      Comments on revised version:

      The authors have addressed this Reviewer's concerns. The manuscript is much stronger in the current form and can be published.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Nosaka et al is a comprehensive study exploring the involvement of IL1beta signaling in a 2-hit model of lung injury + ventilation, with a focus on modulation by hypothermia.

      Strengths:

      The authors demonstrate quite convincingly that interleukin 1 beta plays a role in the development of ventilator-induced lung injury in this model, and that this role includes the regulation of neutrophil extracellular trap formation. The authors use a variety of in vivo animal-based and in vitro cell culture work, and interventions including global gene knockout, cell-targeted knockout and pharmacological inhibition, which greatly strengthen the ability to make clear biological interpretations.

      Comments on revised version:

      The authors have addressed my concerns/queries.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a significant and rigorous investigation into the role of CHMP5 in regulating bone formation and cellular senescence. The study provides compelling evidence that CHMP5 is essential for maintaining endolysosomal function and controlling mitochondrial ROS levels, thereby preventing the senescence of skeletal progenitor cells.

      Strengths:

      The authors demonstrate that the deletion of Chmp5 results in endolysosomal dysfunction, elevated mitochondrial ROS, and ultimately enhanced bone formation through both autonomous and paracrine mechanisms. The innovative use of senolytic drugs to ameliorate musculoskeletal abnormalities in Chmp5-deficient mice is a novel and critical finding, suggesting potential therapeutic strategies for musculoskeletal disorders linked to endolysosomal dysfunction.

      Comments on the latest version:

      My concerns were addressed.

    2. Reviewer #3 (Public review):

      Summary:

      In this study, Zhang et al., reported that CHMP5 restricts bone formation by controlling endolysosome-mitochondrion-mediated cell senescence. Zhang et al., report a novel role of CHMP5 on osteogenesis through affecting cell senescence. Overall, it is an interesting study and provides new insights in the field of cells senescence and bone.

      Strengths:

      Analyzed the bone phenotype OF CHMP5-periskeletal progenitor-CKO mouse model and found the novel role of senescent cells on osteogenesis and migration.

      Weaknesses:

      (1) The role and mechanism of CHMP5 gene deletion in enhancing osteogenesis via cellular senescence remain insufficiently elucidated.

      (2) The use of the ADTC5 cell line as a skeletal precursor/progenitor model is suboptimal.

      Overall, the results support their conclusions.

      The impact of this work on the field is its proposal that cellular senescence may exert either inhibitory or promotive effects on osteogenic capacity, depending on cell type and context.

      The revised manuscript has addressed most of the concerns raised during the initial review.

    1. Reviewer #1 (Public review):

      Summary:

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is constrained by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral structural proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which have struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death. Unfortunately, though, the model shows little improvement over neutral models in predicting protein evolution, and this ultimately appears to be due to fundamental conceptual problems with how fitness is modeled and linked to the phylodynamic birth-death model.

      Major concerns:

      (1) Fitness model: All lineages have the same growth rate r = b-d because the authors assume b+d=1. But under a birth-death model, the growth r is equivalent to fitness, so this is essentially assuming all lineages have the same absolute fitness since increases in reproductive fitness (b) will simply trade off with decreases in survival (d). Thus, even if the SCS model constrains sequence evolution, the birth-death model does not really allow for non-neutral evolution such that mutations can feed back and alter the structure of the phylogeny.

      (2) Predictive performance: Similar performance in predicting amino acid frequencies is observed under both the SCS model and the neutral model. I suspect that this rather disappointing result owes to the fact that the absolute fitness of different viral variants could not actually change during the simulations (see comment #1).

      (3) Model assessment: It would be interesting to know how much the predictions were informed by the structurally constrained sequence evolution model versus the birth-death model. To explore this, the authors could consider three different models: 1) neutral, 2) SCS, and 3) SCS + BD. Simulations under the SCS model could be performed by simulating molecular evolution along just one hypothetical lineage. Seeing if the SCS + BD model improves over the SCS model alone would be another way of testing whether mutations could actually impact the evolutionary dynamics of lineages in the phylogeny.

      (4) Background fitness effects: The model ignores background genetic variation in fitness. I think this is particularly important as the fitness effects of mutations in any one protein may be overshadowed by the fitness effects of mutations elsewhere in the genome. The model also ignores background changes in fitness due to the environment, but I acknowledge that might be beyond the scope of the current work.

      (5) In contrast to the model explored here, recent work on multi-type birth-death processes has considered models where lineages have type-specific birth and/or death rates and therefore also type-specific growth rates and fitness (Stadler and Bonhoeffer, 2013; Kunhert et al., 2017; Barido-Sottani, 2023). Rasmussen & Stadler (eLife, 2019) even consider a multi-type birth-death model where the fitness effects of multiple mutations in a protein or viral genome collectively determine the overall fitness of a lineage. The key difference with this work presented here is that these models allow lineages to have different growth rates and fitness, so these models truly allow for non-neutral evolutionary dynamics. It would appear the authors might need to adopt a similar approach to successfully predict protein evolution.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, "Forecasting protein evolution by integrating birth-death population models with structurally constrained substitution models", David Ferreiro and co-authors present a forward-in-time evolutionary simulation framework that integrates a birth-death population model with a fitness function based on protein folding stability. By incorporating structurally constrained substitution models and estimating fitness from ΔG values using homology-modeled structures, the authors aim to capture biophysically realistic evolutionary dynamics. The approach is implemented in a new version of their open-source software, ProteinEvolver2, and is applied to four viral proteins from HIV-1 and SARS-CoV-2.

      Overall, the study presents a compelling rationale for using folding stability as a constraint in evolutionary simulations and offers a novel framework and software to explore such dynamics. While the results are promising, particularly for predicting biophysical properties, the current analysis provides only partial evidence for true evolutionary forecasting, especially at the sequence level. The work offers a meaningful conceptual advance and a useful simulation tool, and sets the stage for more extensive validation in future studies.

      Strengths:

      The results demonstrate that fitness constraints based on protein stability can prevent the emergence of unrealistic, destabilized variants - a limitation of traditional, neutral substitution models. In particular, the predicted folding stabilities of simulated protein variants closely match those observed in real variants, suggesting that the model captures relevant biophysical constraints.

      Weaknesses:

      The predictive scope of the method remains limited. While the model effectively preserves folding stability, its ability to forecast specific sequence content is not well supported. Only one dataset (HIV-1 MA) is evaluated for sequence-level divergence using KL divergence; this analysis is absent for the other proteins. The authors use a consensus Omicron sequence as a representative endpoint for SARS-CoV-2, which overlooks the rich longitudinal sequence data available from GISAID. The use of just one consensus from a single time point is not fully justified, given the extensive temporal and geographical sampling available. Extending the analysis to include multiple timepoints, particularly for SARS-CoV-2, would strengthen the predictive claims. Similarly, applying the model to other well-sampled viral proteins, such as those from influenza or RSV, would broaden its relevance and test its generalizability.

      It would also be informative to include a retrospective analysis of the evolution of protein stability along known historical trajectories. This would allow the authors to assess whether folding stability is indeed preserved in real-world evolution, as assumed in their model.

      Finally, a discussion on the impact of structural templates - and whether the fixed template remains valid across divergent sequences - would be valuable. Addressing the possibility of structural remodeling or template switching during evolution would improve confidence in the model's applicability to more divergent evolutionary scenarios.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. I appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Weaknesses:

      (1) The broader significance of the findings needs to be better articulated. While the authors emphasize that comparing adaptive traits in sympatry and allopatry provides insights into selective processes shaping reproductive isolation and coexistence, it is unclear what key conceptual or theoretical questions are being addressed. Are these patterns expected under certain evolutionary scenarios? Have they been empirically demonstrated in other systems? The authors should explicitly state the overarching research question, incorporate some predictions, and better contextualize their findings within the existing literature. If the results challenge or support previous work, that should be highlighted to strengthen the study's importance in a broader context.

      (2) The motivation for studying visual signals and mate choice in allopatric populations (i.e., at the intraspecific level) is not well articulated, leaving their role in the broader narrative unclear. In particular, the rationale behind experiments 1, 2, and 3 is not well defined, as the authors have not made a strong case for the need for these intraspecific comparisons in the introduction. This issue is further compounded by the authors' primary focus on signal evolution in sympatry throughout both the results and the discussion. For instance, the divergence of iridescence in allopatry is a potentially interesting result. But the authors have not discussed its implications.

      Overall, given that the primary conclusions are based on results and analyses in sympatry, the role of allopatric populations in shaping these conclusions needs to be better integrated and justified. Without a stronger link between the comparative framework and the study's key takeaways, the use of allopatric populations feels somewhat peripheral rather than central to the study's aim. Since the primary conclusions remain valid even without the allopatric comparisons, their inclusion requires a clearer rationale.

      (3) While the authors demonstrate that iridescence is indistinguishable to predators in sympatry, they overstate the role of predation in driving convergence. The present study does not experimentally demonstrate that iridescence in this species has a confusion effect or contributes to evasive mimicry. Alternatively, convergence could result from other selective forces, such as signal efficacy due to environmental conditions, rather than being solely driven by predation.

    2. Reviewer #2 (Public review):

      This study presents an investigation of the visual and chemical properties and mating behaviour in Morpho butterflies, aimed at addressing the nature of divergence between closely related species in sympatry. The study species consists of three subspecies of Morpho helenor (bristowi, theodorus, and helenor), and the conspecific Morpho achilles achilles. The authors postulate that whereas the iridescent blue signals of all (sub)species should function as a predator reduction signal (similar to aposematism) and therefore exhibit convergence, the same signals should indicate divergence if used as a mating signal, particularly in sympatric populations. They also assess chemical profiles among the species to assess the potential utility of scent in mediating species/sex discrimination.

      The authors first used reflectance spectrometry to calculate hue, brightness, and chroma, plus two measures of "iridescence" (perhaps better phrased as angular dependence) in each (sub)species. This indicated the ubiquitous presence of sexual dimorphism in brightness (males brighter), which also appears to be the case for iridescence (Figure 3A-B). Analysis of these data also indicated that whereas there is evidence for divergence among subspecies in allopatry, the same evidence is lacking for species in sympatry (P = 0.084). This was supported further by visual modelling, which showed that both conspecifics and birds should be (theoretically) capable of perceiving the colour difference among allopatric populations of M. helenor, whereas the same is not true for the sympatric species.

      The authors then conducted mate choice trials, first using live individuals and second using female dummies. The live experiments indicated the presence of assortative mating among the two subspecies of M. helenor (bristowi and theodorus). The dummy presentations indicated (a) bristowi males prefer conspecific wings, whereas theodorus have no preference, (b) bristowi males prefer the con(sub)specific colour pattern, (c) theodorus prefer the con(sub)specific iridescence when the pattern is manipulated to be similar among female dummies. A fourth experiment, using sympatric M. achilles and M. helenor, indicated no preference for conspecific female dummies. Finally, chemical analysis indicated substantial differences between these two species in putative pheromone compounds, and especially so in the males.

      The authors conclude that the similarity of iridescence among species in sympatry is suggestive of convergence upon a common anti-predation signal. Despite some behavioural evidence in favour of colour (iridescence)-based mate discrimination, chemical differences between Achilles and Helenor are posed as more likely to function for species isolation than visual differences.

      Overall, I enjoyed reading this manuscript, which presents a valiant attempt at studying visual, chemical and behavioural divergence in this iconic group of butterflies.

      Major comments

      My only major comment concerns the authors' favoured explanation for aposematism (or evasive mimicry) for convergence among species, which is based upon the you-can't-catch-me hypothesis first presented by Young 1971. Although there is supporting work showing that iridescent-like stimuli are more difficult to precisely localize by a range of viewers, most of the evidence as applied to the Morpho system is circumstantial, and I'm not certain that there is widespread acceptance of this hypothesis. Given that the present study deals with closely-related (sub)species, one alternative explanation - a "null" hypothesis of sorts - is for a lack of divergence (from a common starting point) as opposed to evolutionary convergence per se. in other words, two subspecies are likely to retain ancestral character states unless there is selection that causes them to diverge. I feel that the manuscript would benefit from a discussion of this alternative, if not others. Signalling to predators could very well be involved in constraining the extent of convergence, but this seems a little premature to state as an up-front conclusion of this work. There is also the result of a *dorsal* wing manipulation by Vieira-Silva et al. 2024 (https://doi.org/10.1111/eth.13517), which seems difficult to reconcile in light of this explanation. Whereas this paper is cited by the authors, a more nuanced discussion of their experimental results would seem appropriate here.

    3. Reviewer #3 (Public review):

      The authors investigated differences in iridescence wing colouration of allopatric (geographically separated) and sympatric (coexisting) Morpho butterfly (sub)species. Their aim was to assess if iridescence wing colouration of Morpho (sub)species converged or diverged depending on coexistence and if iridescence wing colouration was involved in mating behaviour and reproductive isolation. The authors hypothesize that iridescence wing colouration of different (sub)species should converge in sympatry and diverge in allopatry. In sympatry, iridescence wing colouration can act as an effective antipredator defence with shared benefits if multiple (sub)species share the same colouration. However, shared wing colouration can have potential costs in terms of reproductive interference since wing colouration is often involved in mate recognition. If the benefits of a shared antipredator defence outweigh the costs of reproductive interference, iridescence wing colouration will show convergence and alternative mate recognition strategies might evolve, such as chemical mate recognition. In allopatry, iridescence wing colouration is expected to diverge due to adaptation to different local conditions and no alternative mate recognition is expected.

      Strengths:

      (1) Using allopatric and sympatric (sub)species that are closely related is a powerful way to test evolutionary hypotheses.

      (2) By clearly defining iridescence and measuring colour spectra from a variety of angles, applying different methods, a very comprehensive dataset of iridescence wing colouration is achieved.

      (3) By experimentally manipulating wing coloration patterns, the authors show visual mate recognition for M. h. bristowi and could, in theory, separate different visual aspects of colouration (patterns VS iridescence strength).

      (4) Measurements of chemical profiles to investigate alternative mate recognition strategies in case of convergence of visual signals.

      Weaknesses:

      In my opinion, studies should be judged on the methods and data included, and not on additional measurements that could have been taken or additional treatments/species that should be included, since in most ecological and evolutionary studies, more measurements or treatments/species can always be included. However, studies do need to ensure appropriate replication and appropriate measurements to test their hypothesis AND support their conclusions. The current study failed to ensure appropriate replication, and in various cases, the results do not support the conclusions.

      First, when using allopatric and sympatric (sub)species pairs to test evolutionary hypotheses, replication is important. Ideally, multiple allopatric and sympatric (sub)species pairs are compared to avoid outlier (sub)species or pairs that lead to biased conclusions. Unfortunately, the current study compares 1 allopatric and 1 sympatric (sub)species pair, hence having poor (no) replication on the level of allopatric and sympatric (sub)species pairs.

      Second, chemical profiles were only measured for sympatric species and not for allopatric (sub)species, which limits the interpretation of this data. The allopatric (sub)species could have been measured as non-coexistence "control". If coexistence and convergence in wing colouration drives the evolution of alternative mate recognition signals, such alternative signals should not evolve/diverge for allopatric (sub)species where wing colouration is still a reliable mate recognition cue. More importantly, no details are provided on the quantification of butterfly chemical profiles, which is essential to understand such data. It is unclear how the chemical profiles were quantified and what data (concentrations, ratios, proportions) were used to perform NDMS and generate Figure 5 and the associated statistical tests.

      Third, throughout the discussion, the authors mention that their results support natural selection by predators on iridescent wing colouration, without measuring natural selection by predators or any other measure related to predation. It is unclear by what predators any of the butterfly species are predated on at this point.

      To continue on the interpretation of the data related to selection on specific traits by specific selection agents: This study did not measure any form of selection or any selection agent. Hence, it is not known if iridescent wing colouration is actually under selection by predators and/or mates, if maybe other selection agents are involved or if these traits converge due to genetic correlations with other traits under selection. For example, Iridescent colouration in ground beetles has functions as antipredator defence but also thermo- and water regulation. None of these issues are recognized or discussed.

      Finally, some of the results are weakly supported by statistics or questionable methodology.

      Most notably, the perception of the iridescence coloration of allopatric subspecies by bird visual systems. Although for females, means and errors (not indicated what exactly, SD, SE or CI) are clearly above the 1 JND line, for males, means are only slightly above this line and errors or CIs clearly overlap with the 1 JND line. Since there is no additional statistical support, higher means but overlap of SD, SE or CI with the baseline provides weak statistical support for differences.

      Regarding the assortative mating experiment, the results are clearly driven by M. bristowi. For M. theodorus, females mate equally often with conspecifics (6 times) as with M. bristowi (5 times). For males, the ratio is slightly better (6 vs 3), but with such low numbers, I doubt this is statistically testable. Overall low mating for M. bristowi could indicate suboptimal experimental conditions, and hence results should be interpreted with care.

      Regarding the wing manipulation experiment, M. theodorus does not show a preference when dummies with non-modified wings are presented and prefers non-modified dummies over modified dummies. This is acknowledged by the authors but not further discussed. Certainly, some control treatment for wing modification could have been added.

      Overall, the fact that certain measurements only provide evidence for 1 of the 2 (sub)species (assortative mating, wing manipulation) or one sex of one of the species (bird visual systems) means overall interpretation and overgeneralization of the results to both allopatric or sympatric species should be done with care, and such nuances should ideally be discussed.

      The aim of the authors, "to investigate the antagonistic effects of selective pressures generated by mate recognition and shared predation" has not been achieved, and the conclusions regarding this aim are not supported by the results. Nevertheless, the iridescence colour measurements are solid, and some of the behavioural experiments and chemical profile measurements seem to yield interesting results. The study would benefit from less overinterpretation of the results in the framework of predation and more careful consideration of methodological difficulties, statistical insecurities, and nuances in the results.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, the authors have developed SPLASH+, a micro-assembly and biological interpretation framework that expands on their previously published reference-free statistical approach (SPLASH) for sequencing data analysis.

      Strengths:

      (1) The methodology developed by the authors seems like a promising approach to overcome many of the challenges posed by reference-based single-cell RNA-seq analysis methods.

      (2) The analysis of the RNU6 repetitive small nuclear RNA provides a very compelling example of a type of transcript that is very challenging to analyze with standard reference-based methods (e.g., most reads from this gene fail to align with STAR, if I understood the result correctly).

      Weaknesses:

      (1) The manuscript presents a number of case studies from very diverse domains of single-cell RNA-seq analysis. As a result, the manuscript has been challenging to review, because it requires domain expertise in centromere biology, RNA splicing, RNA editing, V(D)J transcript diversity, and repeat polymorphisms.

      (2) Although the paper focuses on SmartSeq2 full-length single-cell RNA-seq data analysis, the vast majority of single-cell RNA-seq data that is currently being generated comes from droplet-based methods (e.g., 10x Genomics) that sequence only the 3' or 5' ends of transcripts. As a result, it is unclear if SPLASH+ is also applicable to these types of data.

      (3) The criteria used for the selection of the 10 'core genes' have not been sufficiently justified.

      (4) It is currently unclear how the splicing diversity discovered in this paper relates to the concept of noisy splicing (i.e., there are likely many low-frequency transcripts and splice junctions that are unlikely to have a significant functional impact beyond triggering nonsense-mediated decay).

      (5) The paper presents only a very superficial discussion of the potential weaknesses of the SPLASH+ method.

      (6) The cursory mention of metatranscriptome in the conclusion of the paper is confusing, as it might suggest the presence of microbial cells in sterile human tissues (which has recently been discredited in cancer, see e.g. https://www.science.org/content/article/journal-retracts-influential-cancer-microbiome-paper).

    2. Reviewer #2 (Public review):

      The authors extend their SPLASH framework with single-cell RNA-seq in mind, in two ways. First, they introduce "compactors", which are possible paths branching out from an anchor. Second, they introduce a workflow to classify compactors according to the type of biological sequence variation represented (splicing, SNV, etc). They focus on simulated data for fusion detection, and then focus on analyzing the Tabula sapiens Smart-seq2 data, showing extensive results on alternative splicing analysis, VDJ, and repeat elements.

      This is strong work with an impressive array of biological investigations and results for a methods paper. I have various concerns about terminology and comparisons, as follows (in a somewhat arbitrary order, apologies).

      (1) The discussion of the weaknesses of the consensus sequence approach of SPLASH is an odd way to motivate SPLASH+ in my opinion, in that SPLASH is not yet so widely used, so the baseline for SPLASH+ is really standard alignment-based approaches. It is fine to mention consensus sequence issues briefly, but it felt belabored.

      (2) Regarding compactors reducing alignment cost: the comparison should really be between compactor construction and alignment vs read alignment (and maybe vs modern contig construction algorithms and alignment).

      (3) The language around "compactors" is a bit confusing, where the authors sometimes refer to the tree of possibilities from an anchor as a "compactor", and sometimes a compactor is a single branch. Presumably, ideally, compactors should be DAGs, not trees, i.e., they can connect back together. Perhaps the authors could comment on whether this matters/would be a valuable extension.

      (4) The main oddness of the splicing analysis to me is not using cell-type/state in any way in the statistical testing. This need not be discrete cell types: psiX, for example, tested whether exonic PSI was variable with reference to a continuous gene expression embedding. Intuitively, such transcriptome-wide signal should be valuable for a) improving power and b) distinguishing cell-type intrinsic/"noisy" from cell-type specific splicing variation. A straightforward way of doing this would be pseudobulking cell types. Possibly a more sophisticated hierarchical model could be constructed also.

      (5) A secondary weakness is that some informative reads will not be used, for example, unspliced reads aligning to an alterantive exons. This relates to the broader weakness of SPLASH that it is blind to changes in coverage that are not linked to a specific anchor (which should be acknowledged somewhere, maybe in the Discussion). In the deeply sequenced SS2 data, this is likely not an issue, but might be more limiting in sparser data. A related issue is that coverage change indicative of, e.g., alternative TSS or TES (that do not also include a change in splice junction use) will not be detected. In fairness, all these weaknesses are shared by LeafCutter. It would be valuable to have a comparison to a more "traditional" splicing analysis approach (pick your favorite of rMATS, MISO, SUPPA).

      (6) "We should note that there is no difference between gene fusions and other RNA variants (e.g., RNA splicing) from a sequence assembly viewpoint". Maybe this is true in an abstract sense, but I don't think it is in reality. AS can produce hundreds of isoforms from the same gene, and be variable across individual cells. Gene fusions are generally less numerous/varied and will be shared across clonal populations, so the complexity is lower. That simplicity is balanced against the challenge that any genes could, in principle, fuse.

      (7) For the fusion detection assessment, SPLASH+ is given the correct anchor for detection. This feels like cheating since this information wouldn't usually be available. Can the authors motivate this? Are the other methods given comparable information? Also, TPM>100 seems like a very high expression threshold for the assessment.

      (8) Why are only 3'UTRs considered and not 5'? Is this because the analysis is asymmetric, i.e., only considering upstream anchors and downstream variation? If so, that seems like a limitation: how much additional variation would you find if including the other direction?

      (9) I don't find the theoretical results very meaningful. Assuming independent reads (equivalently binomial counts) has been repeatedly shown to be a poor assumption in sequencing data, likely due to various biases, including PCR. This has motivated the use of overdispersed distributions such as the negative Binomial and beta binomial. The theory would be valuable if it could say something at a specified level of overdispersion. If not, the caveat of assuming no overdispersion should be clearly stated.

    1. Reviewer #1 (Public review):

      Nielsen et al have identified a new disease mechanism underlying hypoplastic left heart syndrome due to variants in ribosomal protein genes that lead to impaired cardiomyocyte proliferation. This detailed study starts with an elegant screen in stem-cell-derived cardiomyocytes and whole genome sequencing of human patients and extends to careful functional analysis of RP gene variants in fly and fish models. Striking phenotypic rescue is seen by modulating known regulators of proliferation, including the p53 and Hippo pathways. Additional experiments suggest that the cell type specificity of the variants in these ubiquitously expressed genes may result from genetic interactions with cardiac transcription factors. This work positions RPs as important regulators of cardiomyocyte proliferation and differentiation involved in the etiology of HLHS, although the downstream mechanisms are unclear.

    2. Reviewer #2 (Public review):

      Tanja Nielsen et al. present a novel strategy for the identification of candidate genes in Congenital Heart Disease (CHD). Their methodology, which is based on comprehensive experiments across cell models, Drosophila and zebrafish models, represents an innovative, refreshing and very useful set of tools for the identification of disease genes, in a field which are struggling with exactly this problem. The authors have applied their methodology to investigate the pathomechanisms of Hypoplastic Left Heart Syndrome (HLHS) - a severe and rare subphenotype in the large spectrum of CHD malformations. Their data convincingly implicates ribosomal proteins (RPs) in growth and proliferation defects of cardiomyocytes, a mechanism which is suspected to be associated with HLHS.

      By whole genome sequencing analysis of a small cohort of trios (25 HLHS patients and their parents), the authors investigated a possible association between RP encoding genes and HLHS. Although the possible association between defective RPs and HLHS needs to be verified, the results suggest a novel disease mechanism in HLHS, which is a potentially substantial advance in our understanding of HLHS and CHD. The conclusions of the paper are based on solid experimental evidence from appropriate high- to medium-throughput models, while additional genetic results from an independent patient cohort are needed to verify an association between RP encoding genes and HLHS in patients.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript assesses the differences between young and aged chondrocytes. Through transcriptomic analysis and further assessments in chondrocytes, GATA4 was found to be increased in aged chondrocyte donors compared to young donors. Subsequent mechanistic analysis with lentiviral vectors, siRNAs, and a small molecule was used to study the role of GATA4 in young and old chondrocytes. Lastly, an in vivo study was used to assess the effect of GATA4 expression on osteoarthritis progression in a DMM mouse model.

      Strengths:

      This work linked the overexpression of GATA4 to NF-kB signaling pathway activation, alterations to the TGF-b signaling pathway, and found that GATA4 increased the progression of OA compared to the DMM control group. This indicates that GATA4 contributes to the onset and progression of OA in aged individuals.

      Weaknesses:

      (1) A couple of sentences should be added to the introduction, to emphasize the role GATA4 plays, such as the alterations to the TGF-b signaling pathway and the increased activation of the NF-kB pathway.

      (2) Figure 1F, the GATA4 histology image should be bigger.

      (3) Further discussion should be conducted regarding the reasoning as to why GATA4 increases the phosphorylation of SMAD1/5.

      (4) More information should be included to clarify why GATA4 is thought to be linked to DNA damage and the pathway that is associated with that.

      (5) Please add further information regarding the limitations of the animal study conducted in this work and future plans to assess this.

      (6) In Figure 5, GATA4 should be changed to Gata4 in the graphed portions for consistency.

    2. Reviewer #2 (Public review):

      Summary:

      This study elucidated the impact of GATA4 on aging- and injury-induced cartilage degradation and osteoarthritis (OA) progression, based on the team's finding that GATA expression is positively correlated with aging in human chondrocytes. By integrating cell culture of human chondrocytes, gene manipulation tools (siRNA, lentivirus), biological/biochemical analyses and murine models of post-traumatic OA, the team found that increasing GATA4 levels reduced anabolism and increased catabolism of chondrocytes from young donors, likely through upregulation of the BMP pathway, and that this impact is not correlated with TGF-β stimulation. Conversely, silencing GATA4 by siRNA attenuated catabolism and elevated aggrecan/collagen II biosynthesis of chondrocytes from old donors. The physiological relevance of GATA4 was further validated by the accelerated OA progression observed in lentivirus-infected mice in the DMM model.

      Strengths:

      This is a highly significant and innovative study that provides new molecular insights into cartilage homeostasis and pathology in the context of aging and disease. The experiments were performed in a comprehensive and rigorous manner. The data were interpreted thoroughly in the context of the current literature.

      Weaknesses:

      (1) While it is convincing that GATA4 expression is elevated in elderly individuals, and that it has a detrimental impact on cartilage health, the authors might want to add further discussion on the variability among individual human donors, especially given the finding that the elevation of GATA4 was not observed in chondrocytes from donor O1 (Figure 1G).

      (2) It might also be worth adding additional discussion on the interplay between senescent chondrocytes and the dysfunctional ECM during aging. As noted by the authors, aging is associated with decreased sGAG content and likely degenerative changes in the collagen II network, so the microniche of chondrocytes, and thus cell-matrix crosstalk through the pericellular matrix, is also altered or impaired.

    3. Reviewer #3 (Public review):

      Summary:

      This is an exciting, comprehensive paper that demonstrates the role of GATA4 on OA-like changes in chondrocytes. The authors present elegant reverse translational experiments that justify this mechanism and demonstrate the sufficiency of GATA4 in a mouse model of osteoarthritis (DMM), where GATA4 drove cartilage degeneration and pain in a manner that was significantly worse than DMM alone. This could pave the way for new therapies for OA that account for both structural changes and pain.

      Strengths:

      (1) GATA4 was identified in human chondrocytes.

      (2) IHC and sequencing confirmed GATA4 presence.

      (3) Activation of SMADs is clearly shown in vitro with GATA4 overexpression.

      (4) The role of GATA4 was functionally assessed in vivo using the mouse DMM model, where the authors uncovered that GATA4 worsens OA structure and hyperalgesia in male mice.

      (5) It is interesting that GATA4 is largely known to be found in cardiac cells and to have a role in cardiac repair, metabolism, and inflammation, among other things listed by the authors in the discussion (in liver, lung, pancreas). What could this new knowledge of GATA4 mean for OA as a potentially systemically mediated disease, where cardiac disease and metabolic syndrome are often co-morbid?

      Weaknesses:

      (1) It would be useful to explain why GATA4 was chosen over HIF1a, which was the most differentially expressed.

      (2) In Figure 5, it would be useful to demonstrate the non-surgical or naive limbs to help contextualize OARSI scores and knee hyperalgesia changes.

      (3) While there appear to be GATA4 small-molecule inhibitors in various stages of development that could be used to assess the effects in age-related OA, those experiments are out of scope for the current study.

    1. Reviewer #1 (Public review):

      Summary:

      This foundational study builds on prior work from this group to reveal the complexities underlying ligand-dependent RXRγ-Nur77 heterodimer formation, offering a compelling re-evaluation of their earlier conclusions. The authors examine how a library of RXR ligands influences the biophysical, structural, and functional properties of Nur77. They find that although the Nur77-RXRγ heterodimer shares notable functional similarities with the Nurr1-RXRα complex, it also exhibits unique features, notably, both dimer dissociation and classical agonist-driven activities. This work advances our understanding of the nuanced behaviors of nuclear receptor heterodimers, which have important implications for health and disease.

      Strengths:

      (1) Builds on previous work by providing a comprehensive analysis that examines whether Nur77-RXRγ heterodimer formation parallels that of the Nurr1-RXRα complex.

      (2) Systematic evaluation of a library of RXR ligands provides a broad survey of functional outputs.

      (3) Careful reanalysis of previous work sheds new light on how NR4A heterodimers function.

      Weaknesses:

      (1) Some conclusions appear overstated or are not well substantiated by the work presented. It's unclear how the data support a non-classical mode of agonism, for example, based on the data shown.

      (2) Some assays have relatively few replicates, with only two in some cases.

    2. Reviewer #1 (Public review):

      Summary:

      This foundational study builds on prior work from this group to reveal the complexities underlying ligand-dependent RXRγ-Nur77 heterodimer formation, offering a compelling re-evaluation of their earlier conclusions. The authors examine how a library of RXR ligands influences the biophysical, structural, and functional properties of Nur77. They find that although the Nur77-RXRγ heterodimer shares notable functional similarities with the Nurr1-RXRα complex, it also exhibits unique features, notably, both dimer dissociation and classical agonist-driven activities. This work advances our understanding of the nuanced behaviors of nuclear receptor heterodimers, which have important implications for health and disease.

      Strengths:

      (1) Builds on previous work by providing a comprehensive analysis that examines whether Nur77-RXRγ heterodimer formation parallels that of the Nurr1-RXRα complex.

      (2) Systematic evaluation of a library of RXR ligands provides a broad survey of functional outputs.

      (3) Careful reanalysis of previous work sheds new light on how NR4A heterodimers function.

      Weaknesses:

      (1) Some conclusions appear overstated or are not well substantiated by the work presented. It's unclear how the data support a non-classical mode of agonism, for example, based on the data shown.

      (2) Some assays have relatively few replicates, with only two in some cases.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors take a closer look at whether AID-mediated SHM occurs at stalled RNA polII complexes. Through experimental and bioinformatic overlaps, authors observe that AID target sites really do not overlap with RNA polII stalling, convergent transcription, or H3K27Ac marks. Rather, AID target sites just exist around transcription start sites. The authors thus bring up an important argument, that RNA poll II stalling is not the driving mechanism for AID targeting. This is important since research groups work with the assumption that transcription stalling drives AID access to single-strand DNA. The authors are also clarifying their previous studies, where they suggested that stalled Spt5-associated RNA polII recruits AID DNA deamination activity.

      Comments:

      Transcription start sites (TSS) of promoter genes. Most AID mutations occur at the first 500 pbs to 1 kb from the TSS of promoters or enhancers, but not in the rest of the transcription module or gene body. To this end, existing literature (including work done by the author(s)) has suggested that transcription stalling or pausing of elongating RNA polymerase and/or chromatin modifications such as H3K27Ac (markers of promoters and enhancers) have something to do with helping AID see single-strand DNA substrates for SHM. These conclusions, initially being drawn from AID's functional interaction with Spt5 and RNA exosome -two factors involved in the resolution of stalled RNA polII - and further supported through co-relative data of AID SHM sites overlapping S2-P RNA polII. As with genomics data, these observations were drawn through the bioinformatic window of overlap by the respective authors of the previously published studies.

      In this study, the authors take a closer look at these overlaps and observe that AID target sites really do not overlap with RNA polII stalling, convergent transcription, or H3K27Ac marks. Rather, AID target sites just exist around transcription start sites that accumulate promoter-proximal terminated transcripts. The authors thus bring up an important argument, that RNA poll II stalling is not the driving mechanism for AID targeting. This is important since research groups work with the assumption that transcription stalling drives AID access to single-strand DNA.

      The authors are clarifying the models and literature that they themselves had set earlier, and are doing this with quite detailed analyses, with some well-done experiments. I feel they need to be heard. The experiments are well done, and the text is well written. Since the study is associative (versus being directly mechanistic) due to constant use of bioinformatics overlaps of SHM genomics data with ChIP data, some concerns will remain (and have been outlined by the authors), but that will be future work.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Pavri and colleagues examine in-depth how the local transcriptional landscape affects somatic hypermutation (SHM) of variable region genes. They use the human Burkitt lymphoma Ramos cell line as a model system to examine AID-induced SHM.

      The authors delete Emu and demonstrate that the epigenetic marks at the Ig loci do not correlate with their mutability. They define algorithms to map the V gene promoters and their mutational load in Ramos cells overexpressing AID and failed to find a correlation between mutation frequency and nascent transcription or transcription strength or between mutation frequency and polII stalling. Additionally, the authors show that convergent transcription may not be a major player for SHM. The authors additionally knock-in two other human V genes into the endogenous Vh gene in Ramos cells, and again failed to observe any significant correlation between PolII stalling and SHM. The authors also observe a similar lack of correlation between SHM (at the B-18 gene) and nascent transcription features in germinal center B cells. Overall, the authors conclude that mutation patterns in V genes are not linked to transcriptional features but are rather hard-wired into the sequence. The authors propose that premature transcription termination might have a role in promoting AID recruitment and activity at Ig genes.

      Strengths:

      The mechanisms that allow AID recruitment to Ig genes during SHM are very poorly understood. Many mechanisms have been proposed, with most invoking transcriptional features, including stalling, convergent transcription, etc. This work, demonstrating the lack of correlation with the proposed models, is of much importance to the field. The experiments are well done, and even though the results are generally "negative", they are highly relevant to our current understanding of SHM.

      Weaknesses:

      The authors propose premature transcription termination as a possible mechanism to determine V gene mutability, but the study does not experimentally address such possibilities.

      Comments:

      (1) It would be important for the authors to compare their results in Figure S1 at the B1-8 locus with those reported several years ago by Schatz and colleagues (Odegard et al, Immunity, 2005) and discuss if the results are different from what the authors report here. This is important as the first two figures essentially corroborate previous results that the Emu enhancer is important for transcription through the V genes.

      (2) The authors mention that AID recruitment is facilitated by Ig enhancers. Is endogenous AID recruited to the V genes in the absence of Emu in the Ramos cells?

      (3) The authors should explain how their results are different from those reported by the Schatz lab in their recent study (Wu et al, Mol Cell, 2025), demonstrating that ELOF1-mediated transcriptional pausing might promote SHM.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Schoeberlet et al. aims to elucidate the relationship between somatic transcription and nascent transcription. Using PRO-seq data across V regions and 275 non-immunoglobulin targets, the authors show that there is no statistically significant correlation with SHM hotspots and localized Pol II enrichment within V regions. They further confirm this conclusion by comparing SHM levels with reduced transcription and reduced activating epigenetic marks. They have revised the model for SHM regulation to emphasize transcription-independent targeting.

      Comments:

      (1) The sum of the mutation class percentages in Figure 3G should be one hundred percent.

      (2) A quantitative bar of transcription and mutation levels could be added to make it clear across these V regions.

      (3) The authors propose that transcriptional termination may contribute to the boundaries of the SHM (e.g., the ~2 kb from the V promoters). If this is the case, the slowing of Pol II velocity prior to termination would theoretically provide more opportunities for AID to access ssDNA, which should lead to higher mutation rates in regions upstream of termination sites (3-4 kb from TSSs). However, the observed SHM peaks in the V(D)J region, and declines exponentially within 1-2 kb downstream, which seems contradictory. The related statement could be revised.

      (4) Recent ELOF1 stories published by the Schatz and Meng labs should be discussed. ELOF1 could be listed in the model in Figure 7.

    1. Reviewer #1 (Public review):

      This paper investigates the dynamics of excitatory synaptic weights under a calcium-based plasticity rule, in long (up to 10 minutes) simulations of a 211,000-neuron biophysically detailed model of a rat cortical network.

      Strengths

      (1) A very detailed network model, with a large number of neurons, connections, synapses, etc., and with a huge number of biological considerations implemented in the model.

      (2) A carefully developed calcium-based plasticity rule, which operates with biologically relevant variables like calcium concentration and NMDA conductances.

      (3) The study itself is detailed and thorough, covering many aspects of the cellular and network anatomy and properties and investigating their relationships to plasticity.

      (4) The model remains stable over long periods of simulations, with the plasticity rule maintaining reasonable synaptic weights and not pushing the network to extremes.

      (5) The variety of insights the authors derive in terms of relationships between the cellular and network properties and dynamics of the synaptic weights are potentially interesting for the field.

      (6) Sharing the model and the associated methods and tools is a big plus.

      Weaknesses

      (1) Conceptually, there seems to be a missed opportunity here in that it is not clear what the network learns to do. The authors present 10 different input patterns, the network does some plasticity, which is then analyzed, but we do not know whether the learning resulted in anything functionally significant. Did the network learn to discriminate the patterns much better than at the beginning, to capture or anticipate the timing of pattern presentation, detect similarities between patterns, etc.? This is important to understand if one wants to assess the significance of synaptic changes due to plasticity. For example, if the network did not learn much new functionally, relative to its initial state, then the observed plasticity could be considered minor and possibly insufficient. In that case, were the network to learn something substantial, one would potentially observe much more extensive plasticity, and the results of the whole study could change, possibly including the stability of the network. While this could be a whole separate study, this issue is of central importance, and it is hard to judge the value of the results when we do not know what the network learned to do, if anything.

      (2) In this study, plasticity occurs only at E-to-E connections but not at others. However, it is well known that inhibitory connections in the cortex exhibit at the very least a substantial short-term plasticity. One would expect that not including these phenomena would have substantial consequences on the results.

      (3) Lines 134-135: "We calibrated layer-wise spontaneous firing rates and evoked activity to brief VPM inputs matching in vivo data from Reyes-Puerta et al. (2015)."

      (4) Can the authors show these results? It is an important comparison, and so it would be great to see firing rates (ideally, their distributions) for all the cell types and layers vs. experimental data, for the evoked and spontaneous conditions.

      (5) That being said, the Reyes-Puerta et al. paper reports firing rates for the barrel cortex, doesn't it? Whereas here, the authors are simulating a non-barrel cortex. Is such a comparison appropriate?

      (6) Comparison with STDP on pages 5-7 and Figure 2: if I got this right, the authors applied STDP to already generated spikes, that is, did not run a simulation with STDP. That seems strange. The spikes they use here were generated by the system utilizing their calcium-based plasticity rule. Obviously, the spikes would be different if STDP was utilized instead. The traces of synaptic weights would then also be different. The comparison therefore is not quite appropriate, is it?

      (7) Section 2.3 and Figure 5: I am not sure this analysis adds much. The main finding is that plasticity occurs more among cells in assemblies than among all cells. But isn't that expected given what was shown in the previous figures? Specifically, the authors showed that for cells that fire more, plasticity is more prominent. Obviously, cells that fire little or not at all won't belong to any assemblies. Therefore, we expect more plasticity in assemblies.

      (8) Section 2.4 and Figure 6: It is not clear that the results truly support the formulation of the section's title ("Synapse clustering contributes to the emergence of cell assemblies, and facilitates plasticity across them") and some of the text in the section. What I can see is that the effect on rho is strong for non-clustered synapses (Figure 6C and Figure S8A). In some cases, it is substantially higher than what is seen for clustered synapses. Furthermore, the wording "synapse clustering contributes to the emergence of cell assemblies" suggests some kind of causal role of clustered synapses in determining which neurons form specific cell assemblies. I do not see how the data presented supports that. Overall, it appears that the story about clustered synapses is quite complicated, with both clustered and non-clustered synapses driving changes in rho across the board.

      (9) Section 2.5 and Figure 7: Can we be certain that it is the edge participation that is a particularly good predictor of synaptic changes and/or strength, as opposed to something simpler? For example, could it be the overall number of synapses, excitatory synapses, or something along these lines, that the source and/or target neurons receive, that determine the rho dynamics? And then, I do not understand the claim that edge participation allows one to "delineate potentiation from depression". The only related data I can find is in Figure 7A3, about which the authors write "this effect was stronger for potentiation than depression". But I don't see what they mean. For both depression and facilitation, the changes observed are in the range of ~12% of probability values. And even if the effect is stronger, does it mean one can "delineate" potentiation from depression better? What does it mean, to "delineate"? If it is some kind of decoding based on the edge participation, then the authors did not show that.

      (10) "test novel predictions in the MICrONS (2021) dataset, which while pushing the boundaries of big data neuroscience, was so far only analyzed with single cells in focus instead of the network as a whole (Ding et al., 2023; Wang et al., 2023)." That is incorrect. For example, the whole work of Ding et al. analyzes connectivity and its relation to the neuron's functional properties at the network level.

      Comments on revisions:

      The authors addressed all my concerns from the previous review, primarily via textual changes such as improved Discussion. Thus, most of the weaknesses raised in the original review are not eliminated - in particular, points 1, and 5-9 - but they are acknowledged and described better. This remains a useful study that should be of interest to researchers in the field.

    2. Reviewer #2 (Public review):

      Summary:

      This paper aims at understanding the effects of plasticity in shaping dynamics and structure of cortical circuits, as well as on how that depends on aspects as network structure and dendritic processing.

      Strengths:

      The level of biological detail included is impressive, and the numerical simulations appear to be well executed. Additionally, they have done a commendable job in open-sourcing the model.

      Weaknesses (after revision):

      - As noted in my initial review, the observation that network activity remains stable without an explicit homeostatic mechanism-while acknowledged by the authors as consistent with previous findings (e.g., Higgins et al., 2014)-is not clearly framed as a replication or validation step in the current manuscript. For instance, the abstract states: "In our exploratory simulations, plasticity acted sparsely and specifically, firing rates and weight distributions remained stable without additional homeostatic mechanisms," without noting that this outcome has been previously reported, albeit in models with different levels of biological detail. Furthermore, in the general response to reviewers, the authors list this as the first item in their summary of phenomena accounted for by the model, which gives the impression that it is being presented as a primary result.<br /> If this finding is instead meant to serve as a necessary validation that prior results continue to hold under the authors' extended modeling framework-including multicompartmental neurons, stochastic synaptic transmission, and a modified calcium-based plasticity rule-this should be made more explicit in both the abstract and main text. Unless there were specific reasons to suspect that these model extensions might disrupt previously observed stability, the conceptual contribution of this validation step remains unclear.<br /> I would encourage the authors to revise the manuscript to clarify the role and novelty of this result in the context of existing literature and to briefly motivate why confirming this property in their model was an important step.

      - While the revised manuscript includes improvements in the discussion of the generality and specificity of the findings, it still offers limited interpretability and mechanistic insight. As it stands, the simulations provide limited understanding of the underlying principles or mechanisms at play, which constrains the broader conclusions that can be drawn from the work.

      - In my first review, I suggested that the comparison with the MICrONS dataset could be made more informative-specifically by showing the same quantification of Figure 7D (7B in the previous version) in a version of the model without plasticity and clarifying the interpretation of Figure 8B, where the data appears to align closely with the model before plasticity.<br /> In their response, the authors explain that several of these features remain largely unchanged before and after plasticity. For example, they note that total $g_{\text{AMPA}}$ increases with $k$-edge indegree even in the initial model configuration. I appreciate this clarification, but it highlights a conceptual point that should be more clearly addressed in the manuscript. If the aspects of the model that align with MICrONS data are already present before plasticity, then these similarities reflect properties of the initial network architecture or baseline dynamics, rather than outcomes shaped by the plasticity process itself.<br /> If this interpretation is correct, it represents an interesting and potentially important finding. However, it is not currently articulated in the text. The manuscript places strong emphasis on the role of plasticity in shaping network structure and dynamics, yet the comparisons with MICrONS data appear to reflect features that do not depend on plasticity. Clarifying this distinction would help readers better appreciate the implications of the model-data comparison and discern which conclusions are genuinely supported by the data.

    3. Reviewer #3 (Public review):

      Summary:

      Ecker et al. utilized a biologically realistic, large-scale cortical model of the rat's non-barrel somatosensory cortex, incorporating a calcium-dependent plasticity rule to examine how various factors influence synaptic plasticity under in vivo-like conditions. Their analysis characterized the resulting plastic changes and revealed that key factors, including the co-firing of stimulus-evoked neuronal ensembles, the spatial organization of synaptic clusters, and the overall network topology, play an important role in affecting the extent of synaptic plasticity.

      Strengths:

      The detailed, large-scale model employed in this study enables the evaluation of diverse factors across various levels that influence the extent of plastic changes. Specifically, it facilitates the assessment of synaptic organization at the subcellular level, network topology at the macroscopic level, and the co-activation of neuronal ensembles at the activity level. Moreover, modeling plasticity under in vivo-like conditions enhances the model's relevance to experiments.

      Weaknesses:

      The paper lacks mechanistic insights into the observed phenomena, particularly regarding aspects that are typically inaccessible in traditional simplified models, such as layer-specific and layer-to-layer pathway-specific plasticity changes.

    1. Reviewer #1 (Public review):

      In this study, the authors conducted a single-cell RNA sequencing analysis of the cellular and transcriptional landscape of the gastric cancer tumor microenvironment, stratifying patients according to their H. pylori status into currently infected, previously infected and non-infected patients. The authors comprehensively dissect various cellular compartments, including epithelial, stromal and immune cells and describe specific cell types and signatures to be associated with H. pylori infection, including i) inflammatory and EMT signatures in malignant epithelial cells, ii) inflammatory CAFs in stromal cells, iii) Angio-TAMs, TREM2+ TAMs, exhausted and suppressive T cells in immune cells. Looking at ligand-receptor interactions as well as correlations between cell type abundances, they suggest that iCAFs interact with immunosuppressive T cells via a NECTIN2-TIGIT axis, as well as Angio-TAMs through a VEGFA/B-VEGFR1 axis and thereby promote immune escape, tumor angiogenesis and resistance to immunotherapy.

      The authors conduct a comprehensive and thorough analysis of the complex tumor microenvironment of gastric cancer, both single-cell RNA sequencing data as well as the analysis seem of high quality and according to best practices. The authors validate their findings using external datasets and include some prognostic value of the identified signatures and cell types. Furthermore, they validate some of their findings using immunofluorescence. While the authors confirm key transcriptional signatures in external cohorts comparing HP infected and non-infected cases, the main conclusions drawn from their own patient cohort are based on the comparison between HPGC and healthy controls. This approach does not fully resolve which signatures and cell types are specifically driven by H. pylori infection. As the authors also acknowledge in the limitations of their studies, their conclusions would benefit from functional validation.

      In summary, this study provides a valuable resource of the cellular and transcriptional heterogeneity of the tumor microenvironment in gastric cancers, distinguishing between positive, negative and previously positive HP infected gastric cancer patients. Given that HP is the main risk factor for gastric cancer development, the study provides valuable insights into potential HP driven transcriptional signatures and how these might contribute to this increased risk. However, the study would highly benefit from a clearer and more systematic comparison between HPGC and non-HPGC to better delineate infection-specific effects.

    2. Reviewer #2 (Public review):

      Summary:

      This study aims the describe the single-cell transcriptomes of H pylori-associated (Hp) gastric cancers and tumour microenvironment (TME), as a starting point to understand TME diversity stratified by Hp status.<br /> RNAseq was performed for gastric cancers with current Hp+ (from N=9 people), ex-Hp+ (N=6), non-Hp (N=6), and healthy gastric tissue (N=6).<br /> The study expands on previous single-cell transcriptomic studies of gastric cancers and was motivated by previous observations about the effect of H pylori status on therapeutic outcomes. The study includes a brief review of previous work and provides valuable context for this study.

      Strengths:

      The observations are supported by solid RNAseq study design and analysis. The authors describe correlations between Hp status and inferred molecular characteristics including cell lineages, enrichment for cell subclusters identifed as tumour-infiltrating lyphocyte cell types, tumour-infiltrating myeloid cells and cancer-associated fibroblasts.<br /> The observed correlations between Hp status and enrichment of cell subclusters were broadly corroborated using comparisons to deconvolved bulk RNAseq from publicly available gastric cancer data, providing a convincing starting point for understanding the diversity of tumour microenvironment by Hp-status.

      Weaknesses:

      The authors acknowledge several limitations of this study.<br /> The correlations with HP-status are based on a small number of participants per Hp category (N=9 with current Hp+; N=6 for ex-HP+ and non-HP), and would benefit from further validation to establish reproducibility in other cohorts.<br /> The ligand-receptor cross-talk analysis and the suggestion that suppressive T cells could interact with the malignant epithelium through TIGIT-NECTIN2/PVR pairs, are preliminary findings based on transcriptomic analysis and immunostaining and will require further validation.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further consideration.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Comments on revisions:

      This study, through a systematic experimental design, reveals the crucial role of pUb in forming a positive feedback loop by inhibiting proteasome activity in neurodegenerative diseases. The data are comprehensive and highly innovative. However, some of the results are not entirely convincing, particularly the staining results in Figure 1.

      In Figure 1A, the density of DAPI staining differs significantly between the control patient and the AD patient, making it difficult to conclusively demonstrate a clear increase in PINK1 in AD patients. Quantitative analysis is needed. In Fig 1C, the PINK1 staining in the mouse brain appears to resemble non-specific staining.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript entitled "Phosphodiesterase 1A Physically Interacts with YTHDF2 and Reinforces the Progression of Non-Small Cell Lung Cancer" explores the role of PDE1A in promoting NSCLC progression by binding to the m6A reader YTHDF2 and regulating the mRNA stability of several novel target genes, consequently activating the STAT3 pathway and leading to metastasis and drug resistance.

      Strengths:

      The study addresses a novel mechanism involving PDE1A and YTHDF2 interaction in NSCLC, contributing to our understanding of cancer progression.

    2. Reviewer #2 (Public review):

      Summary:

      This revised manuscript investigates the role and the mechanism by which PDE1 impacts NSCLC progression, providing solid data to demonstrate that PDE1 binds to m6A reader YTHDF2, in turn, regulating STAT3 signaling pathway through its interaction, promoting metastasis and angiogenesis. The study provides a valuable information to lung cancer field.

      Strength:

      The study uncovers a novel PDE1A/YTHDF2/SOCS2/STAT3 pathway in NSCLC progression and the findings provide a potential treatment strategy for NSCLC patients with metastasis.

      Weakness:

      Given that physical interaction of PDE1A and YTHDF2 plays a critical role in PDE1A-mediated NSCLC metastasis, the in vivo data to show that YTHDF2 mimics the effect of PDE1A in metastasis will strength the manuscript although this point was mentioned in the revised manuscript.

    1. Reviewer #1 (Public review):

      IKK is the key signaling node for inflammatory signaling. Despite the availability of molecular structures, how the kinase achieves its specificity remains unclear. This paper describes a dynamic sequence of events in which autophosphorylation of a tyrosine near the activate site facilitates phosphorylation of the serine on the substrate via a phosphor-transfer reaction. The proposed mechanism is conceptually novel in several ways, suggesting that the kinase is dual specificity (tyrosine and serine) and that it mediates a phospho-transfer reaction. While bacteria contain phosphorylation-transfer enzymes, this is unheard of for mammalian kinases. However, what the functional significance of this enzymatic activity might remain unaddressed.

      The revised manuscript adequately addresses all the points I suggested in the review of the first submission.

    2. Reviewer #2 (Public review):

      The authors investigate the phosphotransfer capacity of Ser/Thr kinase IκB kinase (IKK), a mediator of cellular inflammation signaling. Canonically, IKK activity is promoted by activation loop phosphorylation at Ser177/Ser181. Active IKK can then unleash NF-κB signaling by phosphorylating repressor IκBα at residues Ser32/Ser26. Noting the reports of other IKK phosphorylation sites, the authors explore the extent of autophosphorylation.

      Semi-phosphorylated IKK purified from Sf9 cells, exhibits the capacity for further autophosphorylation. Anti-phosphotyrosine immunoblotting indicated unexpected tyrosine phosphorylation. Contaminating kinase activity was tested by generating a kinase-dead K44M variant, supporting the notion that the unexpected phosphorylation was IKK-dependent. In addition, the observed phosphotyrosine signal required phosphorylated IKK activation loop serines.

      Two candidate IKK tyrosines were examined as the source of the phosphotyrosine immunoblotting signal. Activation loop residues Tyr169 and Tyr188 were each rendered non-phosphorylatable by mutation to Phe. The Tyr variants decreased both autophosphorylation and phosphotransfer to IκBα. Likewise, Y169F and Y188F IKK2 variants immunoprecipitated from TNFa-stimulated cells also exhibited reduced activity in vitro.

      The authors further focus on Tyr169 phosphorylation, proposing a role as a phospho-sink capable of phosphotransfer to IκBα substrate. This model is reminiscent of the bacterial two-component signaling phosphotransfer from phosphohistidine to aspartate. Efforts are made to phosphorylate IKK2 and remove ATP to assess the capacity for phosphotransfer. Phosphorylation of IκBα is observed after ATP removal, although there are ambiguous requirements for ADP.

      Strengths:

      Ultimately, the authors draw together the lines of evidence for IKK2 phosphotyrosine and ATP-independent phosphotransfer to develop a novel model for IKK2-mediated phosphorylation of IκBα. The model suggests that IKK activation loop Ser phosphorylation primes the kinase for tyrosine autophosphorylation. With the assumption that IKK retains the bound ADP, the phosphotyrosine is conformationally available to relay the phosphate to IκBα substrate. The authors are clearly aware of the high burden of evidence required for this unusual proposed mechanism. Indeed, many possible artifacts (e.g., contaminating kinases or ATP) are anticipated and control experiments are included to address many of these concerns. The analysis hinges on the fidelity of pan-specific phosphotyrosine antibodies, and the authors have probed with two different anti-phosphotyrosine antibody clones. Taken together, the observations are thought-provoking, and I look forward to seeing this model tested in a cellular system.

      Weaknesses:

      Multiple phosphorylated tyrosines in IKK2 were apparently identified by mass spectrometric analyses. LC-MS/MS spectra are presented, but fragments supporting phospho-Y188 and Y325 are difficult to distinguish from noise. It is common to find non-physiological post-translational modifications in over-expressed proteins from recombinant sources. Are these IKK2 phosphotyrosines evident by MS in IKK2 immunoprecipitated from TNFa-stimulated cells? Identifying IKK2 phosphotyrosine sites from cells would be especially helpful in supporting the proposed model.

    3. Reviewer #3 (Public review):

      Summary:

      The authors investigate the kinase activity of IKK2, a crucial regulator of inflammatory cell signaling. They describe a novel tyrosine kinase activity of this well-studied enzyme and a highly unusual phosphotransfer from phosphorylated IKK2 onto substrate proteins in the absence of ATP as a substrate.

      Strengths:

      The authors provide an extensive biochemical characterization of the processes with recombinant protein, western blot, autoradiography, protein engineering and provide MS data now.

      Weaknesses:

      The identity and purity of the used proteins has improved in the revised work. Since the findings are so unexpected and potentially of wide-reaching interest - this is important. Similar specific detection of phospho-Ser/Thr vs phospho-Tyr relies largely on antibodies which can have varying degrees of specificity. Using multiple antibodies and MS improves the quality of the data.

    1. Reviewer #1 (Public review):

      In this study, Brickwedde et al. leveraged a cross-modal task where visual cues indicated whether upcoming targets required visual or auditory discrimination. Visual and auditory targets were paired with auditory and visual distractors, respectively. The authors found that during the cue-to-target interval, posterior alpha activity increased along with auditory and visual frequency-tagged activity when subjects were anticipating auditory targets. The authors conclude that their results disprove the alpha inhibition hypothesis, and instead implies that alpha "regulates downstream information transfer." However, as I detail below, I do not think the presented data irrefutably disproves the alpha inhibition hypothesis. Moreover, the evidence for the alternative hypothesis of alpha as an orchestrator for downstream signal transmission is weak. Their data serves to refute only the most extreme and physiologically implausible version of the alpha inhibition hypothesis, which assumes that alpha completely disengages the entire brain area, inhibiting all neuronal activity.

      (1) Authors assign specific meanings to specific frequencies (8-12 Hz alpha, 4 Hz intermodulation frequency, 36 Hz visual tagging activity, 40 Hz auditory tagging activity), but the results show that spectral power increases in all of these frequencies towards the end of the cue-to-target interval. This result is consistent with a broadband increase, which could simply be due to additional attention required when anticipating auditory target (since behavioral performance was lower with auditory targets, we can say auditory discrimination was more difficult). To rule this out, authors will need to show a power spectral density curve with specific increases around each frequency band of interest. In addition, it would be more convincing if there was a bump in the alpha band, and distinct bumps for 4 vs 36 vs 40 Hz band.<br /> (2) For visual target discrimination, behavioral performance with and without the distractor is not statistically different. Moreover, the reaction time is faster with distractor. Is there any evidence that the added auditory signal was actually distracting?<br /> (3) It is possible that alpha does suppress task-irrelevant stimuli, but only when it is distracting. In other words, perhaps alpha only suppresses distractors that are presented simultaneously with the target. Since the authors did not test this, they cannot irrefutably reject the alpha inhibition hypothesis.<br /> (4) In the abstract and Figure 1, the authors claim an alternative function for alpha oscillations; that alpha "orchestrates signal transmission to later stages of the processing stream." In support, the authors cite their result showing that increased alpha activity originating from early visual cortex is related to enhanced visual processing in higher visual areas and association areas. This does not constitute a strong support for the alternative hypothesis. The correlation between posterior alpha power and frequency-tagged activity was not specific in any way; Fig. 10 shows that the correlation appeared on both 1) anticipating-auditory and anticipating-visual trials, 2) the visual tagged frequency and the auditory tagged activity, and 3) was not specific to the visual processing stream. Thus, the data is more parsimonious with a correlation than a causal relationship between posterior alpha and visual processing.

    2. Reviewer #2 (Public review):

      Brickwedde et al. investigate the role of alpha oscillations in allocating intermodal attention. A first EEG study is followed up with an MEG study that largely replicates the pattern of results (with small to be expected differences). They conclude that a brief increase in the amplitude of auditory and visual stimulus-driven continuous (steady-state) brain responses prior to the presentation of an auditory - but not visual - target speaks to the modulating role of alpha that leads them to revise a prevalent model of gating-by-inhibition.

      Overall, this is an interesting study on a timely question, conducted with methods and analysis that are state-of-the-art. I am particularly impressed by the author's decision to replicate the earlier EEG experiment in MEG following the reviewer's comments on the original submission. Evidently, great care was taken to accommodate the reviewers suggestions.

      In an earlier version, I was struggling with the report for two main reasons: It was difficult to follow the rationale of the study, due to structural issues with the narrative and missing information or justifications for design and analysis decisions, and I was not convinced that the evidence is strong, or even relevant enough for revising the mentioned alpha inhibition theory.

      The authors have addressed my concerns through extensive revisions, and I find that it is now easier to follow, and makes a better case for rethinking how alpha may influence sensory processing through a clearer presentation of results and additional arguments.

    3. Reviewer #3 (Public review):

      Brickwedde et al. attempt to clarify the role of alpha in sensory gain modulation by exploring the relationship between attention-related changes in alpha and attention-related changes in sensory-evoked responses, which surprisingly few studies have explicitly examined. The authors find evidence against the alpha-inhibition account, at least in early sensory processing, adding valuable data to the field to support our understanding of the alpha-inhibition hypothesis.

      Due to task and measurement considerations, the EEG task is not sufficiently compelling to support the authors' claims that alpha inhibition does not occur in early sensory processing. However, the findings are bolstered by the additional MEG study which included changes in task design and a source-localization analysis. Importantly, the MEG results are aligned with the EEG study's key findings and support the authors' initial results, making a stronger case for their claims.

      It is important to note that task designs can have great implications for the assessment of alpha inhibition, particularly with the use of stimuli that evoke a steady-state response, and the authors review these considerations during their discussion and interpretation of the theory. Overall, this paper is an excellent contribution to the alpha-inhibition literature and will hopefully motivate additional research on the specific relationship between these attention-related changes using both frequency-tagged and non-frequency-tagged stimuli in different task contexts.

    1. Reviewer #1 (Public review):

      Hearing and balance rely on specialized ribbon synapses that transmit sensory stimuli between hair cells and afferent neurons. Synaptic adhesion molecules that form and regulate transsynaptic interactions between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are crucial for maintaining auditory synaptic integrity and, consequently, for auditory signaling. Synaptic adhesion molecules such as neurexin-3 and neuroligin-1 and -3 have recently been shown to play vital roles in establishing and maintaining these synaptic connections ( doi: 10.1242/dev.202723 and DOI: 10.1016/j.isci.2022.104803). However, the full set of molecules required for synapse assembly remains unclear.

      Karagulan et al. highlight the critical role of the synaptic adhesion molecule RTN4RL2 in the development and function of auditory afferent synapses between IHCs and SGNs, particularly regarding how RTN4RL2 may influence synaptic integrity and receptor localization. Their study shows that deletion of RTN4RL2 in mice leads to enlarged presynaptic ribbons and smaller postsynaptic densities (PSDs) in SGNs, indicating that RTN4RL2 is vital for synaptic structure. Additionally, the presence of "orphan" PSDs-those not directly associated with IHCs-in RTN4RL2 knockout mice suggests a developmental defect in which some SGN neurites fail to form appropriate synaptic contacts, highlighting potential issues in synaptic pruning or guidance. The study also observed a depolarized shift in the activation of CaV1.3 calcium channels in IHCs, indicating altered presynaptic functionality that may lead to impaired neurotransmitter release. Furthermore, postsynaptic SGNs exhibited a deficiency in GluA2/3 AMPA receptor subunits, despite normal Gria2 mRNA levels, pointing to a disruption in receptor localization that could compromise synaptic transmission. Auditory brainstem responses showed increased sound thresholds in RTN4RL2 knockout mice, indicating impaired hearing related to these synaptic dysfunctions.

      The findings reported here significantly enhance our understanding of synaptic organization in the auditory system, particularly concerning the molecular mechanisms underlying IHC-SGN connectivity. The implications are far-reaching, as they not only inform auditory neuroscience but also provide insights into potential therapeutic targets for hearing loss related to synaptic dysfunction.

      Comments on the Latest Version:

      In the revised manuscript, the authors have addressed my previous comments and incorporated my recommendations by adding missing experimental details, using color-blind-friendly figure colors, and discussing the differences between GluA3 KO and RTN4RL2 KO phenotypes. They also clarified why the animals needed for additional experiments are no longer available. Although these specific animals are unavailable, the authors made an effort to address my concerns by performing

    2. Reviewer #3 (Public review):

      In this study, the authors used RNAscope to explore the expression of RTN4RL2 RNA in hair cells and spiral ganglia. Through RTN4RL2 gene knockout mice, they demonstrated that the absence of RTN4RL2 leads to pre-synaptic changes of an increase in the size of presynaptic ribbons and a depolarized shift in the activation of calcium channels in inner hair cells. Additionally, they observed a post-synaptic reduction in GluA2-4 AMPA receptors and identified additional "orphan PSDs" not paired with presynaptic ribbons via immunostaining and an increased number of type I SGNs that are not connected with a ribbon synapse via serial block face imaging. These synaptic alterations ultimately resulted in an increased hearing threshold in mice, confirming that the RTN4RL2 gene is essential for normal hearing. These data are intriguing as they suggest that RTN4RL2 contributes to the proper formation and function of auditory afferent synapses and is critical for normal hearing. Most strikingly, the post-synaptic changes and hearing threshold changes are similar to recently published results by Carlton et al, 2024 on a mutation in Bai1, which is a potential binding partner for RTN4RL2. Overall this work provides some clues to the function of RTN4RL2 in the cochlea, but further studies are required to elucidate the function.

      A few points would improve the manuscript and the strength of the data presented.

      (1) A quantitative assessment is necessary in Figure 1 when discussing RNA scope data. It would be beneficial to show that expression levels are quantitatively reduced in KO mice compared to wild-type mice. This suggestion also applies to Figure 3D, which examines expression levels of Gria2. Data is provided for KO reduction in SGN, but not showing that hair cell labeling is specific. If slides are not available for the young ages, showing hair cell expression at P40 would be sufficient along with a loss of labeling at in the KO at P40.

      (2) In Figure 2, the authors present a morphological analysis of synapses and discuss the presence of "orphan PSDs." I agree that Homer1 not juxtaposed with Ctbp2 is increased in KO mice compared to the control group. However, in quantifying this, they opted to measure the number of Ctbp2 puncta with Homer 1 juxtaposed, which indicates the percentages of orphan ribbons rather than directly quantifying the number of Homer1 not juxtaposed with Ctbp2. Quantifying the number of Homer1 not juxtaposed with Ctbp2 would more clearly represent "orphan PSDs" and provide stronger support for the discussion surrounding their presence. A measurement of these was provided in the rebuttal letter, and while this number much more clearly demonstrates the increase in the number of orphan puncta, this analysis is not provided in the manuscript. This number also suggests the number of orphan receptors may be quite high, outnumbering ribbons 2:1.

      (3) In Figure 3, the authors discuss GluA2/3 puncta reduction and note that Gria2 RNA expression remains unchanged. However, the GluA2/3 labeling is done at 1-1.5 months, whereas the Gria2 RNAscope is done at P4. Additionally, there is a lack of quantification for Gria2 RNA expression due to their tissue being processed separately. RNA scope at a comparable age to the GluA2/3 would be stronger support for their statement that Gria2 expression is comparable despite a reduction in GluA2/3 puncta.

      (4) In Figure 4, the authors indicate that RTN4RL2 deficiency reduces the number of type 1 SGNs connected to ribbons. Given that the number of ribbons remains unchanged (Figure 2), it is important to clearly explain the implications of this finding. It is already known that each type I SGN forms a single synaptic contact with a single IHC. The fact that the number of ribbons remains constant while additional "orphan PSDs" are present suggests that the overall number of SGNs might need to increase to account for these findings, however, the authors noted no change in the number of SGN soma. This discrepancy is important to point out.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors used a multi-alternative decision task and a multidimensional signal-detection model to gain further insight into the cause of perceptual impairments during the attentional blink. The model-based analyses of behavioural and EEG data show that such perceptual failures can be unpacked into distinct deficits in visual detection and discrimination, with visual detection being linked to the amplitude of late ERP components (N2P and P3) and discrimination being linked to coherence of fronto-parietal brain activity.

      Strengths:

      The strength of this paper lies in the fact that it presents a novel perspective on the cause of perceptual failures during the attentional blink. The multidimensional signal-detection modelling approach is explained clearly, and the results of the study show that this approach offers a powerful method to unpack behavioural and EEG data into distinct processes of detection and discrimination. The discussion of the paper addresses how the findings of separable neural processes involved in detection and discrimination might be linked to extant findings on object recognition and the question of whether the attentional blink involves an all-or-none or gradual impairment in perception.

      Weakness:

      A minor, unnecessary weakness of the paper is that the authors introduce their study with the aim of determining whether the attentional blink might be due to a criterion shift or to reduced sensitivity in the perceptual process. The criterion shift account remains to be no more than a strawman as the argumentation for this account is weak and easily refuted based on many previous findings. Specifically, the authors suggest that criterion shift might explain the lag-dependent AB effect because participants might be able to infer the lag of a specific trial, thus raising their criterion in case of a short-lag trial, based on factors such as the length of the trial sequence. Importantly, however, attentional blinks have also been observed in many studies in which the sequence length was not indicative of the T1-T2 lag, including - for instance - the many experiments reported in the seminal study by Chun and Potter (1995). The criterion shift account was and remains, therefore, highly implausible and should not have deserved such a prominent role in describing the theoretical motivation for the study.

    2. Reviewer #2 (Public review):

      Summary:

      The authors had two aims: First, to decompose the attentional blink (AB) deficit into the two components of signal detection theory: sensitivity and bias. Second, the authors aimed to assess the two subcomponents of sensitivity: detection and discrimination. They observed that the AB is only expressed in sensitivity. Furthermore, detection and discrimination were doubly dissociated. Detection modulated N2p and P3 ERP amplitude, but not frontoparietal beta-band coherence, whereas this pattern was reversed for discrimination.

      Strengths:

      The experiment is elegantly designed, and the data -both behavioral and electrophysiological- are aptly analyzed. The outcomes, in particular the dissociation between detection and discrimination blinks, are very consistently and clearly supported by the results. The discussion of the results is also appropriately balanced.

      Weaknesses:

      The lack of an effect of stimulus contrast does not seem very surprising from what we know of the nature of AB already. Low-level perceptual factors are not thought to cause the AB. This is fine, as there are also other, novel findings reported. In their revision, the authors have bolstered the importance of these (null) findings by referring to AB-specific papers that would have predicted different outcomes in this regard.

      The ERP analyses are extended in the revised manuscript, including those of the N1 component, which is now more appropriately analyzed at more lateral electrode sites.

      Impact & Context:<br /> The results of this study will likely influence how we think about selective attention in the context of the AB phenomenon. In their revision, the authors have further extended their theoretical framing by referring to recent work on the nature of the AB deficit, showing that it can be discrete (all-or-none) and gradual.

    3. Reviewer #3 (Public review):

      In the present study, the authors aimed to achieve a better understanding of the mechanisms underlying the attentional blink, that is, a deficit in processing the second of two target stimuli when they appear in rapid succession. Specifically, they used a concurrent detection and identification task in- and outside of the attentional blink and decoupled effects of perceptual sensitivity and response bias using a novel signal detection model. They conclude that the attentional blink selectively impairs perceptual sensitivity but not response bias, and link established EEG markers of the attentional blink to deficits in stimulus detection (N2p, P3) and discrimination (fronto-parietal high-beta coherence), respectively. Taken together, their study suggests distinct mechanisms mediating detection and discrimination deficits in the attentional blink.

      This innovative study appears to have been carefully conducted and the overall conclusions seem warranted given the results. In my opinion, the manuscript is a valuable contribution to the current literature on the attentional blink. Moreover, the novel paradigm and signal detection model are likely to stimulate future research.

      Major strengths of the present study include its innovative approach to investigating the mechanisms underlying the attentional blink, an elegant, carefully calibrated experimental paradigm, a novel signal detection model, multifaceted data analyses using state-of-the-art model comparisons and robust statistical tests, and an interesting discussion on the neural mechanisms underlying detection versus identification.

      Weaknesses concern a lack of clarity regarding specific statistical hypotheses and correction for multiple comparisons (e.g., across or within the multiple classes of tests) in the Methods, relatively low statistical power (N = 24/18 for behavioral/ERP data, respectively), unusual and heavy EEG filtering (0.5-18 Hz bandpass and 9-11 Hz bandstop), data-driven analyses (e.g., pooling of lag 1 and 3 trials a posteriori), and the absence of a discussion of limitations.

    1. Reviewer #2 (Public review):

      Summary:

      Chromosomal inversions have been predicted to play a role in adaptive evolution and speciation because of their ability to "lock" together adaptive alleles in genomic regions of low recombination. In this study, the authors use a combination of cutting-edge genomic methods, including BioNano and PacBio HiFi sequencing, to identify six large chromosomal inversions segregating in over 100 species of Lake Malawi cichlids, a classic example of adaptive radiation and rapid speciation. By examining the frequencies of these inversions present in species from six different linages, the authors show that there is an association between the presence of specific inversions with specific lineages/habitats. Using a combination of phylogenetic analyses and sequencing data, they demonstrate that three of the inversions have been introduced to one lineage via hybridization. Finally, genotyping of laboratory crosses suggests that two inversions are associated with XY sex determination systems in a subset of species. The data add to a growing number of systems in which inversions have been associated with adaptation to divergent environments. However, like most of the other recent studies in the field, this study does not go beyond describing the presence of the inversions to demonstrate that the inversions are under sexual or natural selection or that they contribute to adaptation or speciation in this system.

      Strengths:

      All analyses are very well done, and the conclusions about the presence of the six inversions in Lake Malawi cichlids, the frequencies of the inversions in different species, and the presence of three inversions in the benthic lineages due to hybridization are well-supported. Genotyping of 48 individuals resulting from laboratory crosses provides strong support that the chromosome 10 inversion is associated with a sex-determination locus.

      Weaknesses:

      The evidence supporting a role for the chromosome 11 inversion is based on relatively few individuals and therefore remains suggestive. The authors are mostly cautious in their interpretations of the data, although there are places where the language is imprecise and therefore a little misleading.

    1. Reviewer #1 (Public review):

      Summary:

      The current work explored the link between the pulvinar intrinsic organisation and its functional and structural connectivity patterns of the cortex using different dimensional reduction techniques. Overall they find relationships between pulvinar-cortical organization and cortico-cortical organization, and little evidence for clustered organization. Moreover they investigate PET maps to understand how neurotransmitter/receptor distributions vary within the pulvinar and along its structural and functional connectivity axes.

      Strengths:

      (1) There is a replication dataset and different modalities are compared against each other to understand the structural and functional organisation of the pulvinar complex

      In their revision, the authors further detailed the motivation of their study and performed various robustness checks, answering my concerns. Nevertheless, further work is needed to fully understand the role of the pulvinar nuclei and the rest of the thalamic nuclei as well as the rest of the brain, including more diverse datasets and techniques.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to explore and better understand the complex topographical organization of the human pulvinar, a brain region crucial for various high-order functions such as perception and attention. They sought to move beyond traditional histological subdivisions by investigating continuous 'gradients' of cortical connections along the dorsoventral and mediolateral axes. Using advanced imaging techniques and a comprehensive PET atlas of neurotransmitter receptors, the study aimed to identify and characterize these gradients in terms of structural connections, functional coactivation, and molecular binding patterns. Ultimately, the authors targeted to provide a more nuanced understanding of pulvinar anatomy and its implications for brain function in both healthy and diseased states.

      Strengths:

      A key strength of this study lies in the authors' effort to comprehensively combine multimodal data, encompassing both functional and structural connectomics, alongside the analysis of major neurotransmitter distributions. This approach enabled a more nuanced understanding of the overarching organizational principles of the pulvinar nucleus within the broader context of whole-brain connectivity. By employing cortex-wide correlation analyses of multimodal embedding patterns derived from 'gradients,' which provide spatial maps reflecting the underlying connectomic and molecular similarities across voxels, the study offers a thorough characterization of the functional neuroanatomy of the pulvinar.

      Weaknesses:

      Despite its strengths, the current manuscript falls short in presenting the authors' unique perspectives on integrating the diverse biological principles derived from the various neuroimaging modalities. The findings are predominantly reported as correlations between different gradient maps, without providing the in-depth interpretations that would allow for a more comprehensive understanding of the pulvinar's role as a central hub in the brain's network.

    1. Reviewer #1 (Public review):

      In the revision of their paper, N'Guessan et al have improved the report of their study of expression QTL (eQTL) mapping in yeast using single cells. The authors make use of advances in single cell RNAseq (scRNAseq) in yeast to increase the efficiency with which this type of analysis can be undertaken. Building on prior research led by the senior author that entailed genotyping and fitness profiling of almost 100,000 cells derived from a cross between two yeast strains (BY and RM) they performed scRNAseq on a subset of ~5% (n = 4,489) individual cells. To address the sparsity of genotype data in the expression profiling they used a Hidden Markov Model (HMM) to infer genotypes and then identify the most likely known lineage genotype from the original dataset. To address the relationship between variance in fitness and gene expression the authors partition the variance to investigate the sources of variation. They then perform eQTL mapping and study the relationship between eQTL and fitness QTL identified in the earlier study.

      This paper seeks to address the question of how quantitative trait variation and expression variation are related. scRNAseq represents an appealing approach to eQTL mapping as it is possible to simultaneously genotype individual cells and measure expression in the same cell. As eQTL mapping requires large sample sizes to identify statistical relationships, the use of scRNAseq is likely to dramatically increase the statistical power of such studies. However, there are several technical challenges associated with scRNAseq and the authors' study is focused on addressing those challenges. My main suggestion from my review of the revised version of the manuscript has been addressed in the revised figure 3. I agree with the authors that they have successfully demonstrated their stated goal of developing, and illustrating the benefit of, a one-pot scRNA-seq experiment and analysis for eQTL mapping.

    2. Reviewer #2 (Public review):

      This work describes the single-cell expression profiling of thousands of cells of recombinant genotypes from a model natural-variation system, a cross between two divergent yeast strains.

      I appreciate the addition of lines 282-291, which now makes the authors' point about one advantage of the single-cell technique for eQTL mapping clearly: the authors don't need to normalize for culture-to-culture variation the way standard bulk methods do (e.g. in Albert et al., 2018 for the current yeast cross), and without this normalization, they can integrate analyses of expression with those of estimates of growth behaviors from the abundance of a genotype in the pool. The main question the manuscript addresses with the latter, in Figure 3, is how much variation in growth appears to have nothing to do with expression, for which the answer the authors given is 30%. I agree that this represents a novel finding. The caveats are (1) the particular point will perhaps only be interesting to a small slice of the eQTL research community; (2) the authors provide no statistical controls/error estimate or independent validation of the variance partitioning analysis in Figure 3, and (3) the authors don't seem to use the single-cell growth/fitness estimates for anything else, as Figure 4 uses loci mapped to growth from a previously published, standard culture-by-culture approach. It would be appropriate for the manuscript to mention these caveats.

      I also think it is not appropriate for the manuscript to avoid a comparison between the current work and Boocock et al., which reports single-cell eQTL mapping in the same yeast system. I recommend a citation and statement of the similarities and differences between the papers.

      I appreciate the new statement about the single-cell technique affording better power in eQTL mapping (lines 445-453).

    1. Reviewer #1 (Public review):

      This work provides a new Python toolkit for combining generative modeling of neural dynamics and inversion methods to infer likely model parameters that explain empirical neuroimaging data. The authors provided tests to show the toolkit's broad applicability and accuracy; hence, it will be very useful for people interested in using computational approaches to better understand the brain.

      Strengths:

      The work's primary strength is the tool's integrative nature, which seamlessly combines forward modelling with backward inference. This is important as available tools in the literature can only do one and not the other, which limits their accessibility to neuroscientists with limited computational expertise. Another strength of the paper is the demonstration of how the tool can be applied to a broad range of computational models popularly used in the field to interrogate diverse neuroimaging data, ensuring that the methodology is not optimal to only one model. Moreover, through extensive in-silico testing, the work provided evidence that the tool can accurately infer ground-truth parameters, which is important to ensure results from future hypothesis testing are meaningful.

      Weaknesses:

      Although the tool itself is the main strength of the work, the paper lacked a thorough analysis of issues concerning robustness and benchmarking relative to existing tools.

      The first issue is the robustness to the choice of features to be included in the objective function. This choice significantly affects the training and changes the results, as the authors even acknowledged themselves multiple times (e.g., Page 17 last sentence of first paragraph or Page 19 first sentence of second paragraph). This brings the question of whether the accurate results found in the various demonstrations are due to the biased selection of features (possibly from priors on what worked in previous works). The robustness of the neural estimator and the inference method to noise was also not demonstrated. This is important as most neuroimaging measurements are inherently noisy to various degrees.

      The second issue is on benchmarking. Because the tool developed is, in principle, only a combination of existing tools specific to modeling or Bayesian inference, the work failed to provide a more compelling demonstration of its added value. This could have been demonstrated through appropriate benchmarking relative to existing methodologies, specifically in terms of accuracy and computational efficiency.

    2. Reviewer #2 (Public review):

      Summary:

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strengths:

      (1) Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.

      (2) Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.

      (3) The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of model. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.

      (4) In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network if well-trained.

      Weaknesses:

      (1) While the posterior estimator was trained with a large quantity of simulated data, the testing/validation is only demonstrated with a single case study (one point in parameter space) per model. This is not sufficient to demonstrate the method's accuracy and reliability, but only its feasibility. Demonstrating the accuracy and reliability of the posterior estimation in large test sets would inspire more confidence.

      (2) The authors have only demonstrated validation of the method using simulated data, but not features derived from actual EEG/MEG or fMRI data. So, it is unclear if the posterior estimator, when applied to real data, would produce results as sensible as using simulated data. Human data can often look quite different from the simulated data, which may be considered out of distribution. Thus, the authors should consider using simulated test data with out-of-distribution parameters to validate the method and using real human data to demonstrate, e.g., the reliability of the method across sessions.

      (3) The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy.

      (4) A lot of simulations are required to train the posterior estimator, which seems much more than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. Although once the estimator is well-trained, the parameter inverse given new data will be very fast, it is not clear to me how often such use cases would be encountered. Because the estimator is trained based on an individual connectome, it can only be used to do parameter inversion for the same subject. Typically, we only have one session of resting state data from each participant, while longitudinal resting state data where we can assume the structural connectome remains constant, is rare. Thus, the cost-efficiency and practical utility of training such a posterior estimator remains unclear.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Donofrio et al. investigated cerebellar Purkinje cell (PC) degeneration during normal aging using both mouse and human samples. They found that PC loss followed a stripe pattern rather than occurring randomly. Although this pattern resembled the pattern of zebrin II expression in the anterior cerebellum, the overall pattern was different from zebrin II expression. Surviving PCs exhibited severe degeneration, including thickened axons, axonal torpedoes, and shrunken dendrites. These structural changes were accompanied by functional deficits in motor coordination and tremor. Understanding why certain PC subpopulations are more vulnerable than others may provide insight into regional susceptibility (or resilience) to aging and inform potential therapeutic strategies for age-related neurological disorders. Overall, the findings are novel and significant, supported by compelling evidence from structural and functional analyses. However, I have several concerns about the results and hope that my comments will help improve the clarity and impact of this paper.

      Strengths:

      The cerebellum is often overlooked in aging research, despite its increasingly recognized role in motor and non-motor functions. This study, which examines the pattern of PC loss during normal aging, offers a new perspective on the aging process.

      The finding that PC loss follows a stripe pattern is a major conceptual advance, challenging the previous assumption that PC loss occurs uniformly in the cerebellum.

      The analyses using wholemount immunohistochemistry, PC-specific reporter mice, and light-sheet imaging of cleared brain tissue are meticulous. By visualizing PCs in three dimensions, this study provides strong evidence for the patterned loss of PCs across different cerebellar subdivisions during aging.

      The inclusion of human samples along with the animal model strengthens the impact and translational relevance of these findings.

      The data are clearly presented, and the manuscript is very well written.

      Weaknesses:

      While the authors have largely ruled out zebrin II as the key protein underlying PC vulnerability or resistance to age-related loss, the molecular basis of this phenomenon remains unidentified. This reviewer acknowledges the complexity of this investigation and considers it a minor issue, as the manuscript thoughtfully discusses the gap and highlights it as a future direction.

      In cases where no PC loss is observed in aged mice (Figure 1F), it is unclear whether these PCs undergo morphological degeneration, such as thickened axons and shrunken dendrites. Further characterization of these resilient PCs would help understand why the aged mice without PC loss still exhibit motor deficits (Figure 7).

      The histologic analysis is based on mice with different genetic backgrounds. For example, the PC-specific reporter mice include two strains: Pcp2-Cre; Ai32 and Pcp2-Cre; Ai40D. These genetic variations may contribute to the heterogeneity of PC loss (Figure 1). To improve clarity, please add the genetic background details to Table 1.

      Please indicate from which lobule in the anterior or posterior human cerebellum the images in Figure 8 were taken.

    2. Reviewer #2 (Public review):

      Summary:

      The cerebellum is known to be vulnerable to aging, yet specific cell type vulnerability remains understudied. This important study convincingly demonstrates that the normal aged mouse cerebellum exhibits Purkinje cell loss, and that the vulnerable PCs to age are arranged on the basis of the known zebrin stripe pattern that represents a particular subtype of the PCs. Although the patterns of PC loss were analyzed qualitatively, the phenotype is robust enough to clearly appreciate that PC loss occurs predominantly in zebrin-negative regions when combined with zebrin immunohistochemistry. Interestingly, the authors demonstrate that this phenotype appears stochastically even within the inbred C57BL/6J mouse strain examined, though the mechanisms behind this individual variability remain unexplored. In contrast to the expectation that the PC loss could account for age-related motor decline, the authors did not find any correlation between them. While the authors attempt to draw parallels with normal human aging, the human phenotypes have not been conclusively shown to match those in mice beyond the occurrence of potentially age-related PC loss. Future studies should investigate why this PC loss phenotype occurs stochastically across the population and whether these findings parallel human cerebellar aging.

      Strength:

      (1) Banding pattern of PC loss is very clearly demonstrated by combining immunostaining for zebrin.

      (2) A critical methodological concern that a standard PC marker, calbindin, could be compromised in aging has been addressed by performing control experiments with appropriate counterstaining.

      (3) Parallels with neurodegenerative phenotype would be helpful to understand the mechanisms of PC loss in the future.

      Weakness:

      (1) Limited strain diversity: The study exclusively uses C57BL/6J mice despite known genetic and motor differences even the closely related strains like C57BL/6N.

      (2) No correlation quantified between the degree of PC loss, aging, and motor performance.

      (3) It has not been demonstrated whether the neurodegenerative changes are indeed observed in zebrin-negative PCs.

      (4) The mechanisms of why only a subset of mice show PC loss remain unexplored and not discussed.

      (5) Linkages with normal human aging and cerebellar function are not well supported. While motor behavioral assays captured phenotypes that mimic aged people, correlation with PC loss is demonstrated to be absent in mice. It remains unclear whether this PC loss phenomenon is universal or specific to a particular individual; and whether specific to a human PC subtype.

      (6) Analyses in the paraflocculus are currently not easy to understand. This lobule has heterogeneous PC subtypes, developmentally or molecularly. Zebrin-weak and Zebrin-intense PCs are known to be arranged in stripes, which resembles the pattern of developmentally defined PC subsets (Fujita et al., 2014, Plos one; Fujita et al., 2012, J Neurosci). In the data presented, it is hard to appreciate whether the viewing angle is consistent relative to the angle of the paraflocculus. This may be a limitation of the analysis of the paraflocculus in general, that the orientation of this lobule is so susceptible to fixation and dissection. Discrepancy between PC loss stripe and zebrin pattern may be an overstatement, because appropriate analyses on the paraflocculus would require a rigorously standardized analytic method.

    3. Reviewer #3 (Public review):

      Summary:

      Donofrio et al. report a new observation that in normal aging mice, anti-calbindin wholemount staining and coronal immunohistochemistry in the cerebellum often show a sagittally patterned loss of Purkinje cells with age. The authors address a central concern that calbindin antibody staining alone is not sufficient to definitively assess Purkinje cell loss, and corroborate their antibody staining data with transgenic Pcp2-CRE x flox-GFP reporter mice and Neutral Red staining. The authors then investigate whether this patterned Purkinje loss correlates with the known parasagittal expression of zebrin-II, finding a strong but imperfect correlation with zebrin-II antibody staining. They next draw a connection between this age-related Purkinje loss to the age-related decline in motor function in mice, with a trending but non-significant statistical association between the severity/patterning of Purkinje loss and motor phenotypes within cohorts of aged mice. Finally, the authors look at post-mortem human cerebellar tissues from deceased healthy donors between 21 and 74 years of age, finding a positive correlation between Purkinje degeneration and age, but with unknown spatial patterning.

      Strengths:

      The conclusions drawn from this study are well supported by the data provided. The authors highlight several examples of parasagittal patterning of Purkinje cell degeneration in disease, and show that proper methodologies must be used to account for these patterns to avoid highly variable data in the sagittal plane. The authors aptly point out that additional work is needed to investigate the spatial patterns of Purkinje cell loss in the human cerebellum.

      Weaknesses:

      (1) In Figure 3, the authors use Pcp2-CRE mice to drive GFP expression in Purkinje cells in order to avoid the confounding variable of loss of calbindin expression in aging Purkinje cells. The authors go on to say, "we argue that calbindin expression alone is not a reliable, sufficient indicator of Purkinje cell loss". However, in Figure 4, the authors return to calbindin staining alone to assess the correlation of Purkinje cell loss with zebrin-II expression. Could the authors comment on why zebrin-II co-staining experiments were not performed in GFP reporter mice to avoid potential confounds of calbindin expression? Without this experiment, should readers accept the data presented in Figure 4 as a "reliable, sufficient indicator of Purkinje cell loss", given the author's prior claim?

      (2) Throughout the manuscript, there is a considerable reliance on the authors' interpretation of imaging data with no accompanying quantification (categorization of "striped" or "non-striped" PC loss, correlation of GFP/calbindin/zebrin-II staining, etc.). While this may be difficult to obtain, the results would be much stronger with a quantitative approach to support the stated categorizations/observations.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that there is a large corpus of research establishing the importance of LC-NE projections to the medial prefrontal cortex (mPFC) of rats and mice in attentional set or 'rule' shifting behaviours. However, this is complex behavior, and the authors were attempting to gain an understanding of how locus coeruleus modulation of the mPFC contributes to set shifting.

      The authors replicated the ED-shift impairment following NE denervation of mPFC by chemogenetic inhibition of the LC. They further showed that LC inhibition changed the way neurons in mPFC responded to the cues, with a greater proportion of individual neurons responsive to 'switching', but the individual neurons also had broader tuning, responding to other aspects of the task (i.e., response choice and response history). The population dynamics were also changed by LC inhibition, with reduced separation of population vectors between early-post-switch trials, when responding was at chance, and later trials when responding was correct. This was what they set out to demonstrate, and so one can conclude they achieved their aims.

      The authors concluded that LC inhibition disrupted mPFC "encoding capacity for switching" and suggest that this "underlie the behavioral deficits."

      Strengths:

      The principal strength is the combination of inactivation of LC with calcium imaging in the mPFC. This enabled detailed consideration of the change in behavior (i.e., defining epochs of learning, with an 'early phase' when responding is at chance being compared to a 'later phase' when the behavioral switch has occurred) and how these are reflected in neuronal activity in the mPFC, with and without LC-NE input.

      Weaknesses:

      Methodologically, some improvement could be made in terms of the statistical descriptions. Supplementary Figure 2: For the peripheral CNO, the 'control group' (saline) was n=4 and the test group (CNO), n=5. For the central CNO, the test group was n = 8 and the control was n = 7. The authors explain that the group sizes were not statistically determined and mice were assigned to groups 'arbitrarily', but why did they not at least make the group sizes equal?

      In Figure 1 (e), given the small sample size, it would be helpful if all the data points were included on the bar charts. As a t-test was performed on only the ED stage of the test, seeing all the data points would reassure that there would not have been a statistically significant 'improvement' in the ID stage in the group given mPFC CNO. It would also be helpful to give effect sizes for all statistical tests.

    2. Reviewer #2 (Public review):

      Summary:

      The authors were building on prior research linking cortical norepinephrine in a test of attentional set shifting. They extended prior research by assessing the effects of excitatory or inhibitory DREADDs prior to the test of attentional set shifting.

      Strengths:

      The use of DREADDs in the previously validated test of attentional set shifting improves temporal control of corticopetal, noradrenergic pathways during behavior. While mice typically require multiple intradimensional shifts to form an attentional set, the subjects in the current study perform a variant of the task similar to that used in humans, improving the translational validity of the work.

      Weaknesses:

      A critical piece of evidence needed to support the behavioral claim that mice form an attentional set is a statistically significant difference between the number of trials to reach criterion at the intradimensional vs. the extradimensional stage of the task. Based on prior literature, this could be done as a planned comparison, which would improve the power to detect differences beyond that found using an HSD test. An additional methodological ambiguity is the amount of time between the administration of CNO and the performance of the ED. As reported, it seems likely that the DREADDS were impacting performance at multiple stages of the test.

      Overall, the authors seem to have achieved their aims, but have failed to provide critical statistical support for claims made.

      The work is likely to be of interest to the burgeoning number of scientists investigating the role of cortical norepinephrine in cognitive flexibility.

    3. Reviewer #3 (Public review):

      Summary:

      Nigro et al examine how the locus coeruleus (LC) influences the medial prefrontal cortex (mPFC) during attentional shifts required for behavioral flexibility. Specifically, they propose that LC-mPFC inputs enable mice to shift attention effectively from texture to odor cues to optimize behavior. The LC and its noradrenergic projections to the mPFC have previously been implicated in this behavior. The authors further establish this by using chemogenetics to inhibit LC terminals in mPFC and show a selective deficit in extradimensional set-shifting behavior. However, the study's primary innovation is the simultaneous inhibition of LC while recording multineuron patterns of activity in mPFC. Analysis at the single neuron and population levels revealed broadened tuning properties, less distinct population dynamics, and disrupted predictive encoding when LC is inhibited. These findings add to our understanding of how neuromodulatory inputs shape attentional encoding in mPFC. However, several issues somewhat limit the overall impact and interpretation of the results.

      Strengths:

      The more naturalistic set-shifting task used in the study is a major strength, and its implementation in freely-moving animals is very useful. The inclusion of localized suppression of LC-mPFC terminals is also a strength that builds confidence in the specificity of their behavioral effect. Moreover, the combination of chemogenetic inhibition of LC while simultaneously recording neural activity in mPFC with miniscopes is state-of-the-art. The authors apply analyses to population dynamics, in particular, that can advance our understanding of how the LC modifies patterns of mPFC neural activity. The authors show that neural encoding at both the single-cell level and the population level is disrupted when LC is inhibited. They also show that activity is less able to predict key aspects of the behavior when the influence of LC is disrupted. This is quite interesting and adds to a growing understanding of how neuromodulatory systems sharpen the tuning of mPFC activity.

      Weaknesses:

      There are some concerns about tying the results to noradrenergic circuit activity. The authors use a DBH-Cre mouse line, but the histology images provided are low resolution, and surprisingly, there appears to be little overlap between HM4Di expression and TH immunostaining. It is unclear what explains this, but without further confirmation, it is hard to be sure whether the manipulation selectively impacts a specific LC population. While the authors are generally conservative in relating their findings to norepinephrine (NE) signaling, it is still implied that this is likely. But even if HM4Di is expressed specifically in DBH+ LC neurons, there is no confirmation that NE release is suppressed, and these neurons may release other neurotransmitters, including glutamate and dopamine. In the absence of careful controls, it is important to recognize that effects may or may not be due to LC-mPFC NE.

      Another weakness is that the behavior of miniscope mice is not shown. These experiments make up the bulk of the study, including the most significant results (Figures 2-4). Interpreting the chemogenetics + imaging results without this data is more challenging and relies on the assumption that they were affected similarly to an animal from Figure 1. More fundamentally, the imaging analyses are entirely from the extradimensional shift session. Showing similar analyses from the intradimensional shift (IDS) session would confirm that test group mice do not exhibit broadened tuning prior to injecting CNO and would help to establish whether the observed changes are to some feature of activity that is specific to extradimensional shifts. The ideal experiment would also include a separate group of animals with LC suppression during the IDS, which would show whether the observed effects are specific to an extradimensional shift and might explain behavioral effects.

      There are also some weaknesses in how the single neuron encoding data is analyzed and presented. First, the corresponding methods section is insufficient to fully understand how selectively tuned neurons were classified. The authors perform ROC analysis for the period 0 - 5s before choice to reveal choice-tuned neurons. It would be useful to know what proportion of the total neurons this represents, and whether this includes neurons with activity that is significantly increased, decreased, or both. Further, insufficient detail is provided to be able to understand how neurons are further classified into 'choice', 'history', and 'switch' categories, or what percentage of ROC-identified neurons fall into each category (only % of total neurons is provided).

      Finally, there are some concerns about lumping all the identified neurons together (as in Figure 2F). The miniscope experiments include very few mice (n=4 controls, n=5 test), and effects may be driven by only 1 or 2 subjects. Also, plotting the data on a per-animal basis would help to better understand the effects in greater detail. Overall, the results are interesting, but these weaknesses limit the strength and specificity of the claims that can be made.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents compelling evidence for a novel treatment approach in a challenging patient population with MSS/pMMR mCRC, where traditional immunotherapy has often fallen short. The combination of SBRT and tislelizumab not only yielded a high disease control rate but also indicated significant improvements in the tumor's immune landscape. The safety profile appears favorable, which is crucial for patients who have already undergone multiple lines of therapy.

      Strengths:

      The results underscore the potential of leveraging radiation therapy to enhance the effectiveness of immunotherapy, especially in tumor environments previously deemed hostile to immune interventions. Future research should focus on larger cohorts to validate these findings and explore the underlying mechanisms of immune modulation post-treatment.

      Comments on revisions:

      The author provided satisfactory responses to my queries, offering clarifications and additional explanations to address potential points of confusion. The supplementary experimental data further corroborate the author's conclusions. Although a more in-depth and detailed analysis did not yield significant results, this does not undermine the overall integrity of the article's structure or the reliability of its conclusions. Based on the content and the supporting evidence presented, I believe this article meets the necessary criteria for publication.

    2. Reviewer #2 (Public review):

      Summary:

      This Phase II clinical trial investigates the combination of Gamma Knife Stereotactic Body Radiation Therapy (SBRT) with Tislelizumab for the treatment of metastatic colorectal cancer (mCRC) in patients with proficient mismatch repair (pMMR). The study addresses a critical clinical challenge in the management of pMMR CRC, focusing on the selection of appropriate candidates. The results suggest that the combination of Gamma Knife SBRT and Tislelizumab provides a safe and potent treatment option for patients with pMMR/MSS/MSI-L mCRC who have become refractory to first- and second-line chemotherapy. The study design is rigorous, and the outcomes are promising.

      Advantage:

      The trial design was meticulously structured, and appropriate statistical methods were employed to rigorously analyze the results. Bioinformatics approaches were utilized to further elucidate alterations in the patient's tumor microenvironment and to explore the underlying factors contributing to the observed differences in treatment efficacy. The conclusions drawn from this trial offer valuable insights for managing advanced colorectal cancer in patients who have not responded to first- and second-line therapies.

      Weakness:

      (1) Clarity and Structure of the Abstract<br /> - Results Section: The results section should contain important data, I suggest some important sequencing data should be shown to enhance understanding.<br /> (2) As the author using the NanoString assay for transcriptome analysis, more detail should be shown such as the version of R, and the bioinformatics analysis methods.<br /> (3) It is interesting for included patients that PD-L1 increase expression after Gamma Knife Stereotactic Body Radiation Therapy (SBRT) treatment, How to explain it?<br /> (4) It would be helpful to include a brief discussion of the limitations of the study, such as sample size constraints and their impact on the generalizability of the results. This will give readers a more comprehensive understanding of the findings.<br /> (5) Language Accuracy: There are a few instances where wording could be more professional or precise.

      Revision comment:

      The author had responded to all questions and improved the manuscript. The author's answers and revisions are very satisfactory to me. I believe it is an important study for the immunotherapy of colorectal cancer.

    1. Reviewer #1 (Public review):

      Summary:

      The Authors investigated the anatomical features of the excitatory synaptic boutons in layer 1 of the human temporal neocortex. They examined the size of the synapse, the macular or the perforated appearance and the size of the synaptic active zone, the number and volume of the mitochondria, the number of the synaptic and the dense core vesicles, also differentiating between the readily releasable, the recycling and the resting pool of synaptic vesicles. The coverage of the synapse by astrocytic processes was also assessed, and all the above parameters were compared to other layers of the human temporal neocortex. The Authors conclude that the subcellular morphology of the layer 1 synapses is suitable for the functions of the neocortical layer, i.e. the synaptic integration within the cortical column. The low glial coverage of the synapses might allow the glutamate spillover from the synapses enhancing synpatic crosstalk within this cortical layer.

      Strengths:

      The strengths of this paper are the abundant and very precious data about the fine structure of the human neocortical layer 1. Quantitative electron microscopy data (especially that derived from the human brain) are very valuable, since this is a highly time- and energy consuming work. The techniques used to obtain the data, as well as the analyses and the statistics performed by the Authors are all solid, strengthen this manuscript, and support the conclusions drawn in the discussion.

      Comments on latest version:

      The third version of this paper has been substantially improved. The English is significantly better, there are only few paragraphs and sentences which are hard to understand (see my comments and suggestions below). Almost all of my suggestions were incorporated.

      Remaining minor concerns:<br /> About epileptic and non-epileptic (non-affected) tissue. I am aware that temporal lobe neocortical tissue derived from epileptic patients is regarded as non-affected by many groups, and they are quite similar to the cortex of non-epileptic (tumour) patients in their electrophysiological properties and synaptic physiology. But please, note, that one paper you cited did not use samples from epileptic patients, but only tissue from non-epileptic tumor patients (Molnár et al. PLOS 2008).<br /> When you look deeper, and make thorough comparison of tissues derived from epileptic and non-epileptic patients, there are differences in the fine structure, as well as in several electrophysiological features. See for example Tóth et al., J Physiol, 2018, where higher density of excitatory synapses were found in L2 of neocortical samples derived from epileptic patients compared to non-epileptic (tumor) patients. Furthermore, the appearance of population bursts is similar, but their occurrence is more frequent and their amplitude is higher in tissue from epileptic compared to non-epileptic patients. So, I still cannot agree, that temporal neocortex of epileptic patients with the seizure focus in the hippocampus would be non-affected. Therefore I suggested to use the term biopsy tissue.

      It is still not emphasized in the first paragraph of the Discussion, that only excitatory axon terminals were investigated.

      The text in the Results and the Discussion are somewhat inconsistent.<br /> The last two paragraphs of the Results section ends with several sentences which should be part of the discussion, such as line 328: This finding strongly supports multivesicular release... or line 344: --- pointing towards a layer-specific regulation of the putative RRP. Moreover, the results suggest that... and line 370: ... it is most likely... Please, correct this.<br /> The first paragraph of the Discussion summarizes the work of the quantitative EM work and gives one conclusion about the astrocytic coverage. This last sentence is inconsistent with the other parts of the paragraph. I would either write that "astrocytic coverage was also investigated" (or something similar), or move this sentence to the paragraph which discusses the astrocytic coverage.<br /> Results line 180-183. "Special connections" between astrocytic processes and synaptic boutons are mentioned, but not shown. Either show these (but then prove with staining!), or leave out this paragraph.

    2. Reviewer #2 (Public review):

      Summary:

      The study of Rollenhagen et al examines the ultrastructural features of Layer 1 of human temporal cortex. The tissue was derived from drug-resistant epileptic patients undergoing surgery, and was selected as further from the epilepsy focus, and as such considered to be non-epileptic. The analyses has included 4 patients with different age, sex, medication and onset of epilepsy. The manuscript is a follow-on study with 3 previous publications from the same authors on different layers of the temporal cortex:

      Layer 4 - Yakoubi et al 2019 eLife<br /> Layer 5 - Yakoubi et al 2019 Cerebral Cortex,<br /> Layer 6 - Schmuhl-Giesen et al 2022 Cerebral Cortex

      They find, the L1 synaptic boutons mainly have single active zone a very large pool of synaptic vesicles and are mostly devoid of astrocytic coverage.

      Strengths:

      The MS is well written easy to read. Result section gives a detailed set of figures showing many morphological parameters of synaptic boutons and surrounding glial elements. The authors provide comparative data of all the layers examined by them so far in the Discussion. Given that anatomical data in human brain are still very limited, the current MS has substantial relevance.<br /> The work appears to be generally well done, the EM and EM tomography images are of very good quality. The analyses is clear and precise.

      Weaknesses:

      The authors made all the corrections required and answered all of my concerns, included additional data sets, and clarified statements where needed.

    1. Reviewer #1 (Public review):

      Summary:

      Fecal virome transfer (FVT) has the potential to take advantage of microbiome-associated phages to treat diseases such as NEC. However, FVT is also associated with toxicity due to the presence of eukaryotic viruses in the mixture, which are difficult to filter out. The authors use a chemostat propagation system to reduce the presence of eukaryotic viruses (these become lost over time during culture). They show in pig models of NEC that chemostat propagation reduces the incidence of diarrhea induced by FVTs.

      Strengths:

      The authors report an innovative yet simple approach that has the potential to be useful for future applications. Most of the experiments are easy to follow and are performed well.

      Weaknesses:

      The biggest weakness is that the authors show that their technique addresses safety, but they are unable to demonstrate that they retain efficacy in their NEC model. This could be due to technical issues or perhaps the efficacy of FVT reported in the literature is not robust. If they cannot demonstrate the efficacy of the chemostat-propagated virome mixture, the value of the study is compromised.

      The above issue is especially concerning because the chemostat propagation selected for bacteria that may not necessarily be the ones that harbor the beneficial phages. Without an understanding of exactly how FVT works, is it possible to make any conclusion about the usefulness of the chemostat approach?

      Finally, can the authors rule out that their observations in THP-1 cells are driven by LPS or some other bacterial product in the media?

    2. Reviewer #2 (Public review):

      The authors hypothesized that chemostat propagated viromes could modulate the GM and reduce NEC lesions while avoiding potential side effects, such as the earlier onset of diarrhea. This is interesting.

      Major Comments:

      (1) As the authors state that the aim of the research is 'We hypothesized that chemostat propagated viromes could modulate the GM and reduce NEC lesions while avoiding potential side effects, such as earlier onset of diarrhea'.<br /> a) For the efficacy, in Figure 5, there is no significance in stomach pathology and enterocolitis between groups, even between the control group and experimental groups, is it because of the low incidence of NEC? This may affect the statistical power of the conclusions. Therefore, it is unclear how one can draw the conclusion that chemostat can reduce NEC lesions?<br /> b) Convincing pathology images would be helpful.<br /> c) For the safety, such as body weight development, FVT had no statistical significance difference from control, CVT, and CVT-MO. So how can the authors draw the conclusion that chemostat can avoid potential side effects?<br /> d) There is a lack of evidence to convince the reader that there is a decrease in eukaryotic viruses. More quantitative data here would be useful.

      (2) Questions regarding Figure 3F:<br /> a) How can the medium have 'the baseline viral content'?<br /> b) What is the statistical significance of the relative abundance of specific eukaryotic viruses?<br /> c) The hosts for some of the listed eukaryotic viruses are neither pigs or humans, as such, the significance of a decrease in these viruses to humans is unclear.

      (3) In this study, pH 6.5 was selected as the pH value for chemostat cultivation, but considering the different adaptability of different bacteria to pH, it is recommended to further explore the effect of pH on bacteria and virus groups. In particular, it was optimized to maintain the growth of beneficial bacteria such as Lactobacillaceae and Bacteroides in order to improve the effect of chemostat cultivation.

      (4) Please improve the quality of the images, charts, error bars, and statistical significance markers throughout and mark the n's. used in each experiment.

    3. Reviewer #3 (Public review):

      This study investigated the in vitro amplification of donor fecal virus using chemostat culturing technology, aiming to reduce eukaryotic virus load while preserving bacteriophage community diversity, thereby optimizing the safety and efficacy of FVT. The research employed a preterm pig model to evaluate the effects of chemostat-propagated viromes (CVT) in preventing necrotizing enterocolitis (NEC) and mitigating adverse effects such as diarrhea.

      Strengths:

      (1) Enhanced Safety Profile:<br /> Chemostat cultivation effectively reduced eukaryotic virus load, thereby minimizing the potential infection risks associated with virome transplantation and offering a safer virome preparation method for clinical applications.

      (2) Process Reproducibility:<br /> The chemostat system achieved stable amplification of bacteriophage communities (Bray-Curtis similarity >70%), mitigating the impact of donor fecal variability on therapeutic efficacy.

      Weaknesses:

      (1) Loss of Phage Functionality:<br /> The chemostat cultivation resulted in a reduction in phage diversity (e.g., the loss of Lactobacillaceae phages), which may compromise their protective effects against NEC (potentially linked to the immunomodulatory functions of Lactobacilli). The authors should explicitly address this limitation in the discussion section, particularly if additional experiments cannot be conducted to resolve it within the current study.

      (2) Limitations in Experimental Design:<br /> The low incidence of NEC lesions in the control group reduced the statistical power of the study. This limitation undermines the ability to conclusively evaluate the efficacy and safety of the chemostat-propagated virome as a novel intervention for NEC. Future studies should optimize experimental conditions (e.g., using a more NEC-susceptible model or diet) to ensure adequate disease incidence for robust statistical comparisons.

    1. Reviewer #1 (Public review):

      Summary:

      Mackie and colleagues compare chemosensory preferences between C. elegans and P. pacificus, and the cellular and molecular mechanisms underlying them. The nematodes have overlapping and distinct preferences for different salts. Although P. pacificus lacks the lsy-6 miRNA important for establishing asymmetry of the left/right ASE salt sensing neurons in C. elegans, the authors find that P. pacificus ASE homologs achieve molecular (receptor expression) and functional (calcium response) asymmetry by alternative means. This work contributes an important comparison of how these two nematodes sense salts and highlights that evolution can find different ways to establish asymmetry in small nervous systems to optimize the processing of chemosensory cues in the environment.

      Strengths:

      The authors use clear and established methods to record the response of neurons to chemosensory cues. They were able to show clearly that ASEL/R are functionally asymmetric in P. pacificus, and combined with genetic perturbation establish a role for che-1-dependent gcy-22.3 in the asymmetric response to NH4Cl.

      Weaknesses:

      The mechanism of lsy-6-independent establishment of ASEL/R asymmetry in P. pacificus remains uncharacterized.

      Comments on revisions: Looks good - all the best

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors sequenced emm89 serotype genomes of clinical isolates from patients in Japan, where the number of invasive Group A Streptococcus (GAS), especially those of the emm89 serotype, has drastically increased over the past 10-15 years. The sequences from this cohort were compared against a large collection of publicly available global isolates, yielding a total of almost 1000 genomes in the analysis. Because the researchers focused on the emm89 serotype, they could construct a common core genome, with subsequent ability to analyze genomic differences in accessory genes and intergenic regions that contributed to the invasive phenotype using multiple types of GWAS analysis (SNP, k-mer). Their analysis demonstrates some mutations responsible for invasiveness are specific to the Japanese strains, and that multiple independent virulence factors can contribute to invasiveness. None of the invasive phenotypes were correlated with new gene acquisition. Together, the data support that synergy between bacterial survival and upregulation of virulence factors contribute to the development of severe infection.

      Strengths:

      • The authors verify their analysis by confirming that covS is one of the more frequently mutated genes in invasive strains of GAS, as has been shown in other publications.

      • A mutation in one of the SNPs attributed to invasiveness (SNP fhuB) was introduced into an invasive strain. The authors demonstrate that this mutant strain survives less well in human blood. Therefore, the authors have experimental data to support their claims that their analysis uncovered a new mutation/SNP that contributed to invasiveness.

      Weaknesses:

      • It would be helpful for the authors to highlight why their technique (large scale analysis of one emm type) can yield more information than a typical GWAS analysis of invasive vs. non-invasive strains. Are SNPs easier to identify using a large-scale core genome? Is it more likely evolutionarily to find mutations in non-coding regions as opposed to the core genome and accessory genes, and this is what this technique allows? Did the analysis yield unexpected genes or new genes that had not been previously identified in other GWAS analyses? These points may need to be made more apparent in the results and deserves some thought in the discussion section.

      • The Alpha-fold data does not demonstrate why the mutations the authors identified could contribute to the invasive phenotype. It would be helpful to show an overlay of the predicted structures containing the different SNPs to demonstrate the potential structural differences that can occur due to the SNP. This would make the data more convincing that the SNP has a potential impact on the function of the protein. Similarly, the authors discuss modification of the hydrophobicity of the side chain in the ferrichrome transporter (lines 317-318) due to a SNP, but this is not immediately obvious in the figure (Fig. 5).

      Comments on revisions:

      The authors have addressed the concerns from reviewers. The implemented revisions have improved the manuscript's clarity.

    1. Reviewer #1 (Public review):

      The authors introduces DIPx, a deep learning framework for predicting synergistic drug combinations for cancer treatment using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset. While the approach is innovative, I have following concerns and comments, and hopefully will improve the study's rigor and applicability, making it a more powerful tool in real clinical world.

      (1) The model struggles with predicting synergies for drug combinations not included in its training data (showing only Spearman correlation 0.26 in Test Set 2). This limits its potential for discovering new therapeutic strategies. Utilizing techniques such as transfer learning or expanding the training dataset to encompass a wider range of drug pairs could help to address this issue.

      (2) The use of pan-cancer datasets, while offering broad applicability, may not be optimal for specific cancer subtypes with distinct biological mechanisms. Developing subtype-specific models or adjusting the current model to account for these differences could improve prediction accuracy for individual cancer types.

      (3) Line 127, "Since DIPx uses only molecular data, to make a fair comparison, we trained TAJI using only molecular features and referred to it as TAJI-M.". TAJI was designed to use both monotherapy drug-response and molecular data, and likely won't be able to reach maximum potential if removing monotherapy drug-response from the training model. It would be critical to use the same training datasets and then compare the performances. From Figure 6 of TAJI's paper (Li et al., 2018, PMID: 30054332) , i.e., the mean Pearson correlation for breast cancer and lung cancer are around 0.5 - 0.6.

      The following 2 concerns have been included in the Discussion section which are great:

      (1) Training and validating the model using cell lines may not fully capture the heterogeneity and complexity of in vivo tumors. To increase clinical relevance, it would be beneficial to validate the model using primary tumor samples or patient-derived xenografts.

      (2) The Pathway Activation Score (PAS) is derived exclusively from primary target genes, potentially overlooking critical interactions involving non-primary targets. Including these secondary effects could enhance the model's predictive accuracy and comprehensiveness.

    2. Reviewer #2 (Public review):

      Trac, Huang, et al used the AZ Drug Combination Prediction DREAM challenge data to make a new random forest-based model for drug synergy. They make comparisons to the winning method and also show that their model has some predictive capacity for a completely different dataset. They highlight the ability of the model to be interpretable in terms of pathway and target interactions for synergistic effects.

      In their revised manuscript and response, the authors have tried to address all points. I do not fully agree with them about the definition of overfitting still. If the objective it to identify synergies given any 2 drugs, not just those in a dataset at different doses, then the results certainly appear overfit to the training set given the performance degradation. However, at this time, I cannot add any useful suggestions to improve performance.

    3. Reviewer #3 (Public review):

      Summary:

      Predicting how two different drugs act together by looking at their specific gene targets and pathways is crucial for understanding the biological significance of drug combinations. This study incorporates drug-specific pathway activation scores (PASs) to estimate synergy scores as one of the key advancements for synergy prediction. The new algorithm, Drug synergy Interaction Prediction (DIPx), developed in this study, uses gene expression, mutation profiles, and drug synergy data to train the model and predict synergy between two drugs. Comprehensive comparisons with another best-performing algorithm, TAIJI-M, highlight the potential of its capabilities.

      Strengths:

      DIPx uses target and driver genes to elucidate pathway activation scores (PASs) to predict drug synergy. Its performance was tested using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset, especially in Test Set 1, where the Spearman correlation coefficient between predicted and observed drug synergy was 0.50 (95% CI: 0.47-0.53). DIPx's ability to handle novel combinations, as evidenced by its performance in test set 2, indicates the potential for predicting new and untested drug combinations, even though it's lower than that of the test set 1.

      Weaknesses:

      While the DIPx algorithm shows promise in predicting drug synergy based on pathway activation scores, it's essential to consider its limitations. One limitation is that the availability of training data for specific drug combinations may influence its predictive capability. Further testing and experimental validation of the predictions in future studies would be necessary to assess the algorithm's generalizability and robustness.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed bidirectional two-sample Mendelian randomization using publicly available GWAS summary data to assess the directional causal association between atherosclerosis and intracranial aneurysms. They have used a similar strategy to identify the role of matrix metalloproteinases (MMP), especially MMP12, in mediating the above causal association. They finally substantiated these results by measuring and comparing the MMP12 levels in the plasma samples collected from carotid atherosclerosis and intracranial aneurysm patients with those of healthy controls. Local tissue levels of MMP12 were also measured in experimental mouse models.

      Strengths:

      The authors have chosen to address an important problem that could be of interest to many researchers and clinicians in the subfield.

      Weaknesses:

      Mendelian Randomization (MR) is a powerful approach to explore the directional causal relationship between comorbid conditions using genetic variants as instrumental variables. The validity of causal inference derived from MR strongly depends on genetic instruments satisfying the three core assumptions- relevance, independence, and exclusion restriction. The violation of these assumptions is hard to verify in many real-world situations and may result in spurious results. Rigorous sensitivity analysis is essential to ensure the robustness of the results. The sensitivity analysis presented in the current manuscript is incomplete. The key points are as follows:

      (1) The GWAS summary datasets used by the authors for assessing the causal relationship between atherosclerosis and intracranial aneurysms were all from the FinnGen study and thus may have overlapping samples which is known to introduce bias into the causal estimates and inflate type 1 error rates.

      (2) Both atherosclerosis and aneurysms share common risk factors (mentioned by the authors as well) such as hypertension, cholesterol, diabetes, smoking, etc., which could lead to correlated pleiotropy while performing Mendelian randomization. MR-PRESSO may not effectively account for the same.

      (3) The authors explored the role of matrix metalloproteinases as intermediate biomarkers mediating the risk of atherosclerosis in the intracranial aneurysms. Separating the exposure to biomarker MR from biomarker to outcome MR limits the interpretation of the results. The effect size of the indirect effect cannot be assessed.

      (4) The scatter plots presented in Supplementary Figures 1-3 are neither cited nor discussed in the manuscript. Some of the plots show variability in the direction and magnitude of the causal estimates from MR-Egger and MR-IVW methods, indicating either masking of the causal estimates or directional pleiotropy. Discussing these results is crucial to inform the readers of the limitations of the derived causal estimates.

      (5) When there is substantial evidence available for the frequent coexistence of atherosclerosis and aneurysms, the additional value of the cross-sectional data showing the increased prevalence of atherosclerosis in patients with intracranial aneurysms without adjusting for confounding risk factors is not clear.

      (6) It is also not clear from the manuscript whether the authors are projecting the MMP12 as a shared biomarker or as a mediator between atherosclerosis and intracranial aneurysms. As also noted by the authors, assessment of plasma MMP12 levels in a cross-sectional sample is not sufficient to substantiate the role of MMP12 as an intermediate biomarker connecting atherosclerosis to the increased risk of intracranial aneurysms.

      Impact:

      The findings from this study can form the basis for a more systematic analysis towards identifying molecular intermediates mediating the risk of atherosclerosis in patients with intracranial aneurysms or vice versa, which in turn helps develop novel strategies to manage these comorbid conditions.

    2. Reviewer #2 (Public review):

      The manuscript by Liu and colleagues applied Mendelian Randomization (MR) techniques to study the causal relationship of atherosclerosis (categorized into four subtypes) and intracranial aneurysms (classified as unruptured or ruptured), as well as the potential mediation by 12 plasma matrix metalloproteinase (MMP) levels. The authors have followed rigorous MR analysis guidelines by using multiple analytical approaches, implementing strict selection criteria, and employing comprehensive sensitivity analyses. One of the strengths is the lack of overlapping samples in their two-sample MR analysis. This approach helps mitigate potential biases and increases the reliability of their causal inference. The analysis is fundamentally sound, but there are still several nuanced areas where the methodology could be strengthened. Given that most of the identified causal associations do not hold after correcting for multiple tests, the conclusions should be carefully reviewed to be fully supported by the results.

      The recommendations below are meant to enhance the already robust approach.

      (1) The selection of 12 MMPs lacks a clear, explicit rationale in the provided excerpt. A more detailed explanation of why these specific MMPs were chosen would strengthen the methodological rigor.

      (2) Adjusting p-value for multiple testing using Bonferroni correction needs to be elucidated better.

      (3) The authors should provide a more robust explanation of why they shifted from 5×10-9 to 5×10-6 to select genomic instruments.

      (4) Egger's intercept may be a more robust approach for this study to test horizontal pleiotropy rather than MR-PRESSO.

    1. Reviewer #1 (Public review):

      Summary:

      The authors, Dalal, et. al., determined cryo-EM structures of open, closed, and desensitized states of the pentameric ligand-gated ion channel ELIC reconstituted in liposomes, and compared them to structures determined in varying nanodisc diameters. They argue that the liposomal reconstitution method is more representative of functional ELIC channels, as they were able to test and recapitulate channel kinetics through stopped-flow thallium flux liposomal assay. The authors and others have described channel interactions with membrane scaffold proteins (MSP), initially thought to be in a size-dependent manner. However, the authors reported that their cryo-EM ELIC structure interacts with the large nanodisc spNW25, contrary to their original hypotheses. This suggests that the channel's interactions with MSPs might alter its structure, possibly not accurately representing/reflecting functional states of the channel.

      Strengths:

      Cryo-EM structural determination from proteoliposomes is a promising methodology within the ion channel field due to their large surface area and lack of MSP or other membrane mimetics that could alter channel structure. Comparing liposomal ELIC to structures in various-sized nanodiscs gives rise to important discussions for other membrane protein structural studies when deciding the best method for individual circumstances.

      Weaknesses:

      The overarching goal of the study was to determine structural differences of ELIC in detergent nanodiscs and liposomes. Including comparisons of the results to the native bacterial lipid environment would provide a more encompassing discussion of how the determined liposome structures might or might not relate to the native receptor in its native environment. The authors stated they determined open, closed, and desensitized states of ELIC reconstituted in liposomes and suggest the desensitization gate is at the 9' region of the pore. However, no functional studies were performed to validate this statement.

    2. Reviewer #2 (Public review):

      Summary

      The report by Dalas and colleagues introduces a significant novelty in the field of pentameric ligand-gated ion channels (pLGICs). Within this family of receptors, numerous structures are available, but a widely recognised problem remains in assigning structures to functional states observed in biological membranes. Here, the authors obtain both structural and functional information of a pLGIC in a liposome environment. The model receptor ELIC is captured in the resting, desensitized, and open states. Structures in large nanodiscs, possibly biased by receptor-scaffold protein interactions, are also reported. Altogether, these results set the stage for the adoption of liposomes as a proxy for the biological membranes, for cryoEM studies of pLGICs and membrane proteins in general.

      Strengths

      The structural data is comprehensive, with structures in liposomes in the 3 main states (and for each, both inward-facing and outward-facing), and an agonist-bound structure in the large spNW25 nanodisc (and a retreatment of previous data obtained in a smaller disc). It adds up to a series of work from the same team that constitutes a much-needed exploration of various types of environment for the transmembrane domain of pLGICs. The structural analysis is thorough.

      The tone of the report is particularly pleasant, in the sense that the authors' claims are not inflated. For instance, a sentence such as "By performing structural and functional characterization under the same reconstitution conditions, we increase our confidence in the functional annotation of these structures." is exemplary.

      Weaknesses

      Core parts of the method are not described and/or discussed in enough detail. While I do believe that liposomes will be, in most cases, better than, say, nanodiscs, the process that leads from the protein in its membrane down to the liposome will play a big role in preserving the native structure, and should be an integral part of the report. Therefore, I strongly felt that biochemistry should be better described and discussed. The results section starts with "Optimal reconstitution of ELIC in liposomes [...] was achieved by dialysis". There is no information on why dialysis is optimal, what it was compared to, the distribution of liposome sizes using different preparation techniques, etc... Reading the title, I would have expected a couple of paragraphs and figure panels on liposome reconstitution. Similarly, potential biochemical challenges are not discussed. The methods section mentions that the sample was "dialyzed [...] over 5-7 days". In such a time window, most of the members of this protein family would aggregate, and it is therefore a protocol that can not be directly generalised. This has to be mentioned explicitly, and a discussion on why this can't be done in two days, what else the authors tested (biobeads? ... ?) would strengthen the manuscript.

      To a lesser extent, the relative lack of both technical details and of a broad discussion also pertains to the cryoEM and thallium flux results. Regarding the cryoEM part, the authors focus their analysis on reconstructions from outward-facing particles on the basis of their better resolutions, yet there was little discussion about it. Is it common for liposome-based structures? Are inward-facing reconstructions worse because of the increased background due to electrons going through two membranes? Are there often impurities inside the liposomes (we see some in the figures)? The influence of the membrane mimetics on conformation could be discussed by referring to other families of proteins where it has been explored (for instance, ABC transporters, but I'm sure there are many other examples). If there are studies in other families of channels in liposomes that were inspirational, those could be mentioned. Regarding thallium flux assays, one argument is that they give access to kinetics and set the stage for time-resolved cryoEM, but if I did not miss it, no comparison of kinetics with other techniques, such as electrophysiology, nor references to eventual pioneer time-resolved studies are provided.

      Altogether, in my view, an updated version would benefit from insisting on every aspect of the methodological development. I may well be wrong, but I see this paper more like a milestone on sample prep for cryoEM imaging than being about the details of the ELIC conformations.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents compelling evidence for a novel treatment approach in a challenging patient population with MSS/pMMR mCRC, where traditional immunotherapy has often fallen short. The combination of SBRT and tislelizumab not only yielded a high disease control rate but also indicated significant improvements in the tumor's immune landscape. The safety profile appears favorable, which is crucial for patients who have already undergone multiple lines of therapy.

      Strengths:

      The results underscore the potential of leveraging radiation therapy to enhance the effectiveness of immunotherapy, especially in tumor environments previously deemed hostile to immune interventions. Future research should focus on larger cohorts to validate these findings and explore the underlying mechanisms of immune modulation post-treatment.

      Weaknesses:

      I believe the author's work is commendable and should be considered with some minor modifications:

      (1) While the author categorized patients based on the type of RAS mutation and the location of colorectal cancer metastasis, the article does not adequately address how these classifications influence treatment outcomes. Such as whether KRAS or NRAS mutations, as well as the type of metastatic lesions, affect the sensitivity to gamma-ray treatment and lead to varying responses.

      (2) In Figure 2, clarification is needed on how the author differentiated between on-target and off-target lesions. I observed that some images depicted both lesion types at the same level, which could lead to confusion.

      (3) The author performed only a basic difference analysis. A more comprehensive analysis, including calculations of markers related to treatment efficacy, could offer additional insights for clinical practice.

      (4) The transcriptome sequencing analysis provides insights into how stereotactic radiotherapy sensitizes immunotherapy; however, it currently relies on a simple pre- and post-treatment group comparison. It would be beneficial to include additional subgroups to explore more nuanced findings.

      (5) The author briefly discusses the effects of changes in tumor fibrosis and angiogenesis on treatment outcomes. Further experiments may be necessary to validate these findings and investigate the underlying mechanisms of immune regulation following treatment.

    2. Reviewer #2 (Public review):

      Summary:

      This Phase II clinical trial investigates the combination of Gamma Knife Stereotactic Body Radiation Therapy (SBRT) with Tislelizumab for the treatment of metastatic colorectal cancer (mCRC) in patients with proficient mismatch repair (pMMR). The study addresses a critical clinical challenge in the management of pMMR CRC, focusing on the selection of appropriate candidates. The results suggest that the combination of Gamma Knife SBRT and Tislelizumab provides a safe and potent treatment option for patients with pMMR/MSS/MSI-L mCRC who have become refractory to first- and second-line chemotherapy. The study design is rigorous, and the outcomes are promising.

      Advantage:

      The trial design was meticulously structured, and appropriate statistical methods were employed to rigorously analyze the results. Bioinformatics approaches were utilized to further elucidate alterations in the patient's tumor microenvironment and to explore the underlying factors contributing to the observed differences in treatment efficacy. The conclusions drawn from this trial offer valuable insights for managing advanced colorectal cancer in patients who have not responded to first- and second-line therapies.

      Weakness:

      (1) Clarity and Structure of the Abstract<br /> - Results Section: The results section should contain important data, I suggest some important sequencing data should be shown to enhance understanding.<br /> (2) As the author using the NanoString assay for transcriptome analysis, more detail should be shown such as the version of R, and the bioinformatics analysis methods.<br /> (3) It is interesting for included patients that PD-L1 increase expression after Gamma Knife Stereotactic Body Radiation Therapy (SBRT) treatment, How to explain it?<br /> (4) It would be helpful to include a brief discussion of the limitations of the study, such as sample size constraints and their impact on the generalizability of the results. This will give readers a more comprehensive understanding of the findings.<br /> (5) Language Accuracy: There are a few instances where wording could be more professional or precise.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Ning et al. reported that Bcas2 played an indispensable role in zebrafish primitive hematopoiesis via sequestering β-catenin in the nucleus. The authors showed that loss of Bcas2 caused primitive hematopoietic defects in zebrafish. They unraveled that Bcas2 deficiency promoted β-catenin nuclear export via a CRM1-dependent manner in vivo and in vitro. They further validated that BCAS2 directly interacted with β-catenin in the nucleus and enhanced β-catenin accumulation through its CC domains. They unveil a novel insight into Bcas2, which is critical for zebrafish primitive hematopoiesis via regulating nuclear β-catenin stabilization rather than its canonical pre-mRNA splicing functions. Overall, the study is impressive and well-performed, although there are also some issues to address.

      Strengths:

      The study unveils a novel function of Bcas2, which is critical for zebrafish primitive hematopoiesis by sequestering β-catenin. The authors validated the results in vivo and in vitro. Most of the figures are clear and convincing. This study nicely complements the function of Bcas2 in primitive hematopoiesis.

      Comments on revisions:

      The authors have nicely answered all my questions, I have no problem.

    2. Reviewer #2 (Public review):

      Summary:

      Ning and colleagues present studies supporting a role for breast carcinoma amplified sequence 2 (Bcas2) in positively regulating primitive wave hematopoiesis through amplification of beta-catenin-dependent (canonical) Wnt signaling. The authors present compelling evidence that zebrafish bcas2 is expressed at the right time and place to be involved in primitive hematopoiesis, that there are primitive hematopoietic defects in hetero- and homozygous mutant and knockdown embryos, that Bcas2 mechanistically positively regulates canonical Wnt signaling, and that Bcas2 is required for nuclear retention of B-cat through physical interaction involving armadillo repeats 9-12 of B-cat and the coiled-coil domains of Bcas2. Overall, the data and writing are clean, clear, and compelling. This study is a first rate analysis of a strong phenotype with highly supportive mechanistic data. The findings shed light on the controversial question of whether, when, and how canonical Wnt signaling may be involved in hematopoietic development.

      In the revised version of their previous work, they have included responses to some of our suggestions for minor experiments and edits. We previously suggested they examine the structural compatibility of a Bcas2/beta-catenin dimer with binding to the DNA-binding protein Tcf7l1 (previously Tcf3), which would be expected for a beta-catenin nuclear-retention factor that potentiates canonical Wnt signaling responses. Although the authors did not test compatibility of Bcas2 with Tcf3 binding to beta-catenin, they show that a three-way complex with the family member Tcf4 is possible (Fig. S12), which suggests that Lef/Tcf family binding in general is plausible.

      The authors' acceptance of our suggestion to evaluate cdx and hox gene expression is welcome, as these genes have previously been defined as canonical Wnt targets (Lengerke et al., 2009) that regionalize the lateral plate mesoderm (LPM) and confer pre-hematopoietic identity there (Davidson et al., 2003; Davidson and Zon, 2004). The authors' finding that cdx4 and hoxa9a are diminished in the bcas2 mutants (Fig. S7) validates this suggestion and seem to imply that the primary defect here is specification of the early hematopoietic field in the LPM, however the results are a little confusing or surprising given that scl - which is unaffected in the bcas2 mutant (Fig. 2A) - is a downstream target of Cdx4 (Davidson et al., 2003, Fig. 1b, 3d). The results in the current submission imply that early maintenance of pre-hematopoietic competence in the LPM is a canonical-Wnt-directed phenomenon separable from the earliest specification of the hematopoietic field. We believe it would be of value to further evaluate regulation of cdx1, which has been shown to cooperate with cdx4 in regulation of the LPM hematopoietic field, as well as analyze some of the putative downstream hox family targets.

      We previously reviewed the article as suitable for publication and we continue to support our prior assessment. The authors have presented strong data supporting a role for Bcas2 in hematopoietic development across phyla and a mechanistic involvement in promoting canonical Wnt signaling.

      Strengths:

      (1) The study features clear and compelling phenotypes and results.<br /> (2) The manuscript narrative exposition and writing are clear and compelling.<br /> (3) The authors have attended to important technical nuances sometimes overlooked, for example, focusing on different pools of cytosolic or nuclear b-catenin.<br /> (4) The study sheds light on a controversial subject: regulation of hematopoietic development by canonical Wnt signaling and presents clear evidence of a role.<br /> (5) The authors present evidence of phylogenetic conservation of the pathway.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript utilized zebrafish bcas2 mutants to study the role of bcas2 in primitive hematopoiesis, and further confirms that it has a similar function in mice. Moreover, they showed that bcas2 regulates the transition of hematopoietic differentiation from angioblasts via activating Wnt signaling. By performing a series of biochemical experiments, they also showed that bcas2 accomplishes this by sequestering b-catenin within the nucleus, rather than through its known function in pre-mRNA splicing.

      Strengths:

      The work is well-performed, and the manuscript is well-written.

      Comments on revisions:

      The revised manuscript is substantially improved, and all my previous questions are now well addressed.

    1. Reviewer #1 (Public review):

      Du et al. address the cell cycle-dependent clearance of misfolded protein aggregates mediated by the endoplasmic reticulum (ER) associated Hsp70 chaperone family and ER reorganisation. The observations are interesting and impactful to the field.

      Strength:

      The manuscript addresses the connection between the clearance of misfolded protein aggregates and the cell cycle using a proteostasis reporter targeted to ER in multiple cell lines. Through imaging and some biochemical assays, they establish the role of BiP, an Hsp70 family chaperone, and Cdk1 inactivation in aggregate clearance upon mitotic exit. Furthermore, the authors present an initial analysis of the role of ER reorganisation in this clearance. These are important correlations and could have implications for ageing-associated pathologies. Overall, the results are convincing and impactful to the field.

      Weakness:

      The manuscript still lacks a mechanistic understanding of aggregate clearance. Even though the authors have provided the role of different cellular components, such as BiP, Cdk1 and ATL2/3 through specific inhibitors, at least an outline establishing the sequence of events leading to clearance is missing. Moreover, the authors show that the levels of ER-FlucDM-eGFP do not change significantly throughout the cell cycle, indicating that protein degradation is not in play. Therefore, addressing/elaborating on the mechanism of disassembly can add value to the work. Also, the physiological relevance of aggregate clearance upon mitotic exit has not been tested, nor have the cellular targets of this mode of clearance been identified or discussed.

    2. Reviewer #2 (Public review):

      This paper describes an interesting observation that ER-targeted misfolded proteins are trapped within vesicles inside nucleus to facilitate quality control during cell division. This work supports the concept that transient sequestration of misfolded proteins is a fundamental mechanism of protein quality control. The authors satisfactorily addressed several points asked in the review of first submission. The manuscript is improved but still unable to fully address the mechanisms.

      Strengths:

      The observations in this manuscript are very interesting and open up many questions on proteostasis biology.

      Weaknesses:

      Despite inclusions of several protein-level experiments, the manuscript remained a microscopy-driven work and missed the opportunity to work out the mechanisms behind the observations.

    3. Reviewer #3 (Public review):

      This paper describes a new mechanism for the clearance of protein aggregates associated to endoplasmic reticulum re-organization that occurs during mitosis.

      Experimental data showing clearance of protein aggregates during mitosis is solid, statistically significant, and very interesting. The authors made several new experiments included in the revised version to address the concerns raised by reviewers. A new proteomic analysis, co-localization of the aggregates with the ER membrane Sec61beta protein, expression of the aggregate-prone protein in the nucleus does not result in accumulation of aggregates, detection of protein aggregates in the insoluble faction after cell disruption and mostly importantly knockdown of ATL proteins involved in the organization of ER shape and structure impaired the clearance mechanism. This last observation addresses one of the weakest points of the original version which was the lack of experimental correlation between ER structure capability to re-shape and the clearance mechanism.

      In conclusion, this new mechanism of protein aggregate clearance from the ER was not completely understood in this work but the manuscript presented, particularly in the revised version, an ensemble of solid observations and mechanistic information to scaffold future studies that clarify more details of this mechanism. As stated by the authors: "How protein aggregates are targeted and assembled into the intranuclear membranous structure waits for future investigation". This new mechanism of aggregate clearance from the ER is not expected to be fully understood in a single work but this paper may constitute one step to better comprehend the cell capability to resolve protein aggregates in different cell compartments.

      [Editors' note: The authors have appropriately addressed the previous reviewers' concerns.]

    1. Reviewer #1 (Public review):

      Summary:

      The authors quantified information in gesture and speech, and investigated the neural processing of speech and gestures in pMTG and LIFG, depending on their informational content, in 8 different time-windows, and using three different methods (EEG, HD-tDCS and TMS). They found that there is a time-sensitive and staged progression of neural engagement that is correlated with the informational content of the signal (speech/gesture).

      Strengths:

      A strength of the paper is that the authors attempted to combine three different methods to investigate speech-gesture processing.

      Comments on revisions:

      I thank the authors for their careful responses to my comments. However, I remain not convinced by their argumentation regarding the specificity of their spatial targeting and the time-windows that they used.

      The authors write that since they included a sham TMS condition, that the TMS selectively disrupted the IFG-pMTG interaction during specific time windows of the task related to gesture-speech semantic congruency. This to me does not show anything about the specificity of the time-windows itself, nor the selectivity of targeting in the TMS condition.

      It could still equally well be the case that other regions or networks relevant for gesture-speech integration are targeted, and it can still be the case that these timewindows are not specific, and effects bleed into other time periods. There seems to be no experimental evidence here that this is not the case.

      To be more specific, the authors write that double-pulse TMS has been widely used in previous studies (as found in their table). However, the studies cited in the table do not necessarily demonstrate the level of spatial and temporal specificity required to disentangle the contributions of tightly-coupled brain regions like the IFG and pMTG during the speech-gesture integration process. pMTG and IFG are located in very close proximity, and are known to be functionally and structurally interconnected, something that is not necessarily the case for the relatively large and/or anatomically distinct areas that the authors mention in their table.

      But also more in general: The mere fact that these methods have been used in other contexts does not necessarily mean they are appropriate or sufficient for investigating the current research question. Likewise, the cognitive processes involved in these studies are quite different from the complex, multimodal integration of gesture and speech. The authors have not provided a strong theoretical justification for why the temporal dynamics observed in these previous studies should generalize to the specific mechanisms of gesture-speech integration.

      Moreover, the studies cited in the table provided by the authors have used a wide range of interpulse intervals, from 20 ms to 100 ms, suggesting that the temporal precision required to capture the dynamics of gesture-speech integration (which is believed to occur within 200-300 ms; Obermeier & Gunter, 2015) may not even be achievable with their 40 ms time windows.

      I do appreciate the extra analyses that the authors mention. However, my 5th comment is still unanswered: why not use entropy scores as a continous measure?

      In light of these concerns, I do not believe the authors have adequately demonstrated the spatial and temporal specificity required to disentangle the contributions of the IFG and pMTG during the gesture-speech integration process. While the authors have made a sincere effort to address the concerns raised by the reviewers, and have done so with a lot of new analyses, I remain doubtful that the current methodological approach is sufficient to draw conclusions about the causal roles of the IFG and pMTG in gesture-speech integration.

      Reference:<br /> Obermeier, C., & Gunter, T. C. (2015). Multisensory Integration: The Case of a Time Window of Gesture-Speech Integration. Journal of Cognitive Neuroscience, 27(2), 292-307. https://doi.org/10.1162/jocn_a_00688

    2. Reviewer #2 (Public review):

      Summary

      The study is an innovative and fundamental study that clarified important aspects of brain processes for integration of information from speech and iconic gesture (i.e., gesture that depicts action, movement, and shape), based on tDCS, TMS and EEG experiments. They evaluated their speech and gesture stimuli in information-theoretic ways and calculated how informative speech is (i.e., entropy), how informative gesture is, and how much shared information speech and gesture encode. The tDCS and TMS studies found that the left IFG and pMTG, the two areas that were activated in fMRI studies on speech-gesture integration in the previous literature, are causally implicated in speech-gesture integration. The size of tDC and TMS effects are correlated with entropy of the stimuli or mutual information, which indicates that the effects stems from the modulation of information decoding/integration processes. The EEG study showed that various ERP (event-related potential, e.g., N1-P2, N400, LPC) effects that have been observed in speech-gesture integration experiments in the previous literature are modulated by the entropy of speech/gesture and mutual information. This makes it clear that these effects are related to information decoding processes. The authors propose a model of how speech-gesture integration process unfolds in time, and how IFG and pMTG interact with each other in that process.

      Strengths

      The key strength of this study is that the authors used information-theoretic measures of their stimuli (i.e., entropy and mutual information between speech and gesture) in all of their analyses. This made it clear that the neuro-modulation (tDCS, TMS) affected information decoding/integration and ERP effects reflect information decoding/integration. This study used tDCS and TMS methods to demonstrate that left IFG and pMTG are causally involved in speech-gesture integration. The size of tDCS and TMS effects are correlated with information-theoretic measures of the stimuli, which indicate that the effects indeed stem from disruption/facilitation of information decoding/integration process (rather than generic excitation/inhibition). The authors' results also showed correlation between information-theoretic measures of stimuli with various ERP effects. This indicates that these ERP effects reflect the information decoding/integration process.

      Weakness

      The "mutual information" cannot capture all types of interplay of the meaning of speech and gesture. The mutual information is calculated based on what information can be decoded from speech alone and what information can be decoded from gesture alone. However, when speech and gesture are combined, a novel meaning can emerge, which cannot be decoded from a single modality alone. When example, a person produce a gesture of writing something with a pen, while saying "He paid". The speech-gesture combination can be interpreted as "paying by signing a cheque". It is highly unlikely that this meaning is decoded when people hear speech only or see gestures only. The current study cannot address how such speech-gesture integration occur in the brain, and what ERP effects may reflect such a process. The future studies can classify different types of speech-gesture integration and investigate neural processes that underlie each type. Another important topic for future studies is to investigate how the neural processes of speech-gesture integration change when the relative timing between the speech stimulus and the gesture stimulus changes.

      Comments on revisions: The authors addressed my concerns well.

    1. Reviewer #1 (Public review):

      Summary:

      This is a significant study because it adapts current methods to develop an approach for identifying promising targets for therapeutics in viral genomic RNA. The authors provide a wide array of data from different methods to help support their findings.

      Strengths:

      There are a number of strengths to highlight in this manuscript.

      (1) The study uses a sophisticated technique (SHAPE-MaP) to analyze the PEDV RNA genome in situ, providing valuable insights into its structural features.

      (2) The authors provide a strong rationale for targeting specific RNA structures for antiviral development.

      (3) The study includes a range of experiments, including structural analysis, compound screening, siRNA design, and viral proliferation assays, to support their conclusions.

      (4) Finally, the findings have potential implications for the development of new antiviral therapies against PEDV and other RNA viruses.

      Overall, this interesting study highlights the importance of considering RNA structure when designing antiviral therapies and provides a compelling strategy for identifying promising RNA targets in viral genomes.

    2. Reviewer #2 (Public review):

      Summary:

      Luo et. al. use SHAPE-MaP to find suitable RNA targets in Porcine Epidemic Diarrhoea Virus. Results show that dynamic and transient structures are good targets for small molecules, and that exposed strand regions are adequate targets for siRNA. This work is important to segment the RNA targeting.

      Strengths:

      This work is well done and the data supports its findings and conclusions. When possible, more than one technique was used to confirm some of the findings.

      Weaknesses:

      The study uses a cell line that is not porcine (not the natural target of the virus). That being said, authors used a widely used cell line that has been used in similar studies.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript by Luo et al. applied SHAPE-Map to analyze the secondary structure of the Porcine Epidemic Diarrhoea Virus (PEDV) RNA genome in infected cells. By combining SHAPE reactivity and Shannon entropy, the study indicated that the folding of the PEDV genomic RNA was nonuniform, with the 5' and 3' untranslated regions being more compactly structured, which revealed potentially antiviral targetable RNA regions. Interestingly, the study also suggested that compounds bound to well-folded RNA structures in vitro did not necessarily exhibit antiviral activity in cells, because the binding of these compounds did not necessarily alter the functions of the well-folded RNA regions. Later in the manuscript, the authors focus on guanine-rich regions, which may form G-quadruplexes and be potential targets for small interfering RNA (siRNA). The manuscript shows the binding effect of Braco-19 (a G-quadruplex-binding ligand) to a predicted G4 region in vitro, along with the inhibition of PEDV proliferation in cells. This suggests that targeting high SHAPE-high Shannon G4 regions could be a promising approach against RNA viruses. Lastly, the manuscript identifies 73 single-stranded regions with high SHAPE and low Shannon entropy, which demonstrated high success in antiviral siRNA targeting.

      Strengths:

      The paper presents valuable data for the community. Additionally, the experimental design and data analysis are well documented.

      Weaknesses:

      I have no further comments after the authors validated their concept by adding the ThT fluorescence assay in the revised version.

    1. Reviewer #1 (Public review):

      This is a very interesting paper addressing the hierarchical nature of the mammalian auditory system. The authors use an unconventional technique to assess brain responses -- functional ultrasound imaging (fUSI). This measures blood volume in the cortex at a relatively high spatial resolution. They present dynamic and stationary sounds in isolation and together, and show that the effect of the stationary sounds (relative to the dynamic sounds) on blood volume measurements decreases as one ascends the auditory hierarchy. Since the dynamic/stationary nature of sounds is related to their perception as foreground/background sounds (see below for more details), this suggests that neurons in higher levels of the cortex may be increasingly invariant to background sounds.

      The study is interesting, well conducted, and well written. I am broadly convinced by the results. However, I do have some concerns about the validity of the results, given the unconventional technique. fUSI is convenient because it is much less invasive than electrophysiology, and can image a large region of the cortex in one go. However, the relationship between blood volume and neuronal activity is unclear, and blood volume measurements are heavily temporally averaged relative to the underlying neuronal responses. I am particularly concerned about the implications of this for a study on dynamic/stationary stimuli in auditory cortical hierarchy, because the time scale of the dynamic sounds is such that much of the dynamic structure may be affected by this temporal averaging. Also, there is a well-known decrease in temporal following rate that is exhibited by neurons at higher levels of the auditory system. This means that results in different areas will be differently affected by the temporal averaging. I would like to see additional control models to investigate the impact of this.

      I also think that the authors should address several caveats: the fact that their measurements heavily spatially average neuronal responses, and therefore may not accurately reflect the underlying neuronal coding; that the perceptual background/foreground distinction is not identical to the dynamic/stationary distinction used here; and that ferret background/foreground perception may be very different from that in humans.

      Major points

      (1) Changes in blood volume due to brain activity are indirectly related to neuronal responses. The exact relationship is not clear, however, we do know two things for certain: (a) each measurable unit of blood volume change depends on the response of hundreds or thousands of neurons, and (b) the time course of the volume changes are are slow compared to the potential time course of the underlying neuronal responses. Both of these mean that important variability in neuronal responses will be averaged out when measuring blood changes. For example, if two neighbouring neurons have opposite responses to a given stimulus, this will produce opposite changes in blood volume, which will cancel each other out in the blood volume measurement due to (a). This is important in the present study because blood volume changes are implicitly being used as a measure of coding in the underlying neuronal population. The authors need to acknowledge that this is a coarse measure of neuronal responses and that important aspects of neuronal responses may be missing from the blood volume measure.

      (2) More importantly for the present study, however, the effect of (b) is that any rapid changes in the response of a single neuron will be cancelled out by temporal averaging. Imagine a neuron whose response is transient, consisting of rapid excitation followed by rapid inhibition. Temporal averaging of these two responses will tend to cancel out both of them. As a result, blood volume measurements will tend to smooth out any fast, dynamic responses in the underlying neuronal population. In the present study, this temporal averaging is likely to be particularly important because the authors are comparing responses to dynamic (nonstationary) stimuli with responses to more constant stimuli. To a first approximation, neuronal responses to dynamic stimuli are themselves dynamic, and responses to constant stimuli are themselves constant. Therefore, the averaging will mean that the responses to dynamic stimuli are suppressed relative to the real responses in the underlying neurons, whereas the responses to constant stimuli are more veridical. On top of this, temporal following rates tend to decrease as one ascends the auditory hierarchy, meaning that the comparison between dynamic and stationary responses will be differently affected in different brain areas. As a result, the dynamic/stationary balance is expected to change as you ascend the hierarchy, and I would expect this to directly affect the results observed in this study.

      It is not trivial to extrapolate from what we know about temporal following in the cortex to know exactly what the expected effect would be on the authors' results. As a first-pass control, I would strongly suggest incorporating into the authors' filterbank model a range of realistic temporal following rates (decreasing at higher levels), and spatially and temporally average these responses to get modelled cerebral blood flow measurements. I would want to know whether this model showed similar effects as in Figure 2. From my guess about what this model would show, I think it would not predict the effects shown by the authors in Figure 2. Nevertheless, this is an important issue to address and to provide control for.

      (3) I do not agree with the equivalence that the authors draw between the statistical stationarity of sounds and their classification as foreground or background sounds. It is true that, in a common foreground/background situation - speech against a background of white noise - the foreground is non-stationary and the background is stationary. However, it is easy to come up with examples where this relationship is reversed. For example, a continuous pure tone is perfectly stationary, but will be perceived as a foreground sound if played loudly. Background music may be very non-stationary but still easily ignored as a background sound when listening to overlaid speech. Ultimately, the foreground/background distinction is a perceptual one that is not exclusively determined by physical characteristics of the sounds, and certainly not by a simple measure of stationarity. I understand that the use of foreground/background in the present study increases the likely reach of the paper, but I don't think it is appropriate to use this subjective/imprecise terminology in the results section of the paper.

      (4) Related to the above, I think further caveats need to be acknowledged in the study. We do not know what sounds are perceived as foreground or background sounds by ferrets, or indeed whether they make this distinction reliably to the degree that humans do. Furthermore, the individual sounds used here have not been tested for their foreground/background-ness. Thus, the analysis relies on two logical jumps - first, that the stationarity of these sounds predicts their foreground/background perception in humans, and second, that this perceptual distinction is similar in ferrets and humans. I don't think it is known to what degree these jumps are justified. These issues do not directly affect the results, but I think it is essential to address these issues in the Discussion, because they are potentially major caveats to our understanding of the work.

    2. Reviewer #2 (Public review):

      Summary:

      Noise invariance is an essential computation in sensory systems for stable perception across a wide range of contexts. In this paper, Landemard et al. perform functional ultrasound imaging across primary, secondary, and tertiary auditory cortex in ferrets to uncover the mesoscale organization of background invariance in auditory cortex. Consistent with previous work, they find that background invariance increases throughout the cortical hierarchy. Importantly, they find that background invariance is largely explained by progressive changes in spectrotemporal tuning across cortical stations, which are biased towards foreground sound features. To test if these results are broadly relevant, they then re-analyze human fMRI data and find that spectro-temporal tuning fails to explain background invariance in human auditory cortex.

      Strengths:

      (1) Novelty of approach: Though the authors have published on this technique previously, functional ultrasound imaging offers unprecedented temporal and spatial resolution in a species where large-scale calcium imaging is not possible and electrophysiological mapping would take weeks or months. Combining mesoscale imaging with a clever stimulus paradigm, they address a fundamental question in sensory coding.

      (2) Quantification and execution: The results are generally clear and well supported by statistical quantification.

      (3) Elegance of modeling: The spectrotemporal model presented here is explained clearly and, most importantly, provides a compelling framework for understanding differences in background invariance across cortical areas.

      Weaknesses:

      (1) Interpretation of the cerebral blood volume signal: While the results are compelling, more caution should be exercised by the authors in framing their results, given that they are measuring an indirect measure of neural activity, this is the difference between stating "CBV in area MEG was less background invariant than in higher areas" vs. saying "MEG was less background invariant than other areas". Beyond framing, the basic properties of the CBV signal should be better explored:

      a) Cortical vasculature is highly structured (e.g. Kirst et al.( 2020) Cell). One potential explanation for the results is simply differences in vasculature and blood flow between primary and secondary areas of auditory cortex, even if fUS is sensitive to changes in blood flow, changes in capillary beds, etc (Mace et al., 2011) Nat. Methods.. This concern could be addressed by either analyzing spontaneous fluctuations in the CBV signal during silent periods or computing a signal-to-noise ratio of voxels across areas across all sound types. This is especially important given the complex 3D geometry of gyri and sulci in the ferret brain.

      b) Figure 1 leaves the reader uncertain what exactly is being encoded by the CBV signal, as temporal responses to different stimuli look very similar in the examples shown. One possibility is that the CBV is an acoustic change signal. In that case, sounds that are farther apart in acoustic space from previous sounds would elicit larger responses, which is straightforward to test. Another possibility is that the fUS signal reflects time-varying features in the acoustic signal (e.g. the low-frequency envelope). This could be addressed by cross-correlating the stimulus envelope with fUS waveform. The third possibility, which the authors argue, is that the magnitude of the fUS signal encodes the stimulus ID. A better understanding of the justification for only looking at the fUS magnitude in a short time window (2-4.8 s re: stimulus onset) would increase my confidence in the results.

      (2) Interpretation of the human data: The authors acknowledge in the discussion that there are several differences between fMRI and fUS. The results would be more compelling if they performed a control analysis where they downsampled the Ferret fUS data spatially and temporally to match the resolution of fMRI and demonstrated that their ferret results hold with lower spatiotemporal resolution.

    3. Reviewer #3 (Public review):

      This paper investigates invariance to natural background noise in the auditory cortex of ferrets and humans. The authors first replicate, in ferrets, a finding from human neuroimaging showing that invariance to background noise increases along the cortical hierarchy (i.e., from primary to non-primary auditory cortex). Next, the authors ask whether this pattern of invariance could be explained by differences in tuning to low-level acoustic features across primary and non-primary regions. The authors conclude that this tuning can explain the spatial organization of background invariance in ferrets, but not in humans. The conclusions of the paper are generally well supported by the data, but additional control analyses are needed to fully substantiate the paper's claims. Finally, additional discussion and potentially analysis, are needed to reconcile these findings with similar work in the literature (particularly that of Hamersky et al. 2025 J. Neurosci.).

      The paper is very straightforwardly written, with a generally clear presentation including well-designed and visually appealing figures. Not only does this paper provide an important replication in a non-human animal model commonly used in auditory neuroscience, but it also extends the original findings in three ways. First, the authors reveal a more fine-grained gradient of background invariance by showing that background invariance increases across primary, secondary, and tertiary cortical regions. Second, the authors address a potential mechanism that might underlie this pattern of invariance by considering whether differences in tuning to frequency and spectrotemporal modulations across regions could account for the observed pattern of invariance. The spectrotemporal modulation encoding model used here is a well-established approach in auditory neuroscience and seems appropriate for exploring potential mechanisms underlying invariance in auditory cortex, particularly in ferrets. However, as discussed below, the analyses based on this simple encoding model are only informative to the extent that the model accurately captures neural responses. Thus, its limitations in modeling non-primary human auditory cortex should be considered when interpreting cross-species comparisons. Third, the authors provide a more complete picture of invariance by additionally analyzing foreground invariance, a complementary measure not explored in the original study. While this analysis feels like a natural extension and its inclusion is appreciated, the interpretation of these foreground invariance findings remains somewhat unclear, as the authors offer limited discussion of their significance or relation to existing literature.

      As mentioned above, interpretation of the invariance analyses using predictions from the spectrotemporal modulation encoding model hinges on the model's ability to accurately predict neural responses. Although Figure S5 suggests the encoding model was generally able to predict voxel responses accurately, the authors note in the introduction that, in human auditory cortex, this kind of tuning can explain responses in primary areas but not in non-primary areas (Norman-Haignere & McDermott, PLOS Biol. 2018). Indeed, the prediction accuracy histograms in Figure S5C suggest a slight difference in the model's ability to predict responses in primary versus non-primary voxels. Additional analyses should be done to a) determine whether the prediction accuracies are meaningfully different across regions and b) examine whether controlling for prediction accuracy across regions (i.e., sub-selecting voxels across regions with matched prediction accuracy) affects the outcomes of the invariance analyses.

      A related concern is the procedure used to train the encoding model. From the methods, it appears that the model may have been fit using responses to both isolated and mixture sounds. If so, this raises questions about the interpretability of the invariance analyses. In particular, fitting the model to all stimuli, including mixtures, may inflate the apparent ability of the model to "explain" invariance, since it is effectively trained on the phenomenon it is later evaluated on. Put another way, if a voxel exhibits invariance, and the model is trained to predict the voxel's responses to all types of stimuli (both isolated sounds and mixtures), then the model must also show invariance to the extent it can accurately predict voxel responses, making the result somewhat circular. A more informative approach would be to train the encoding model only on responses to isolated sounds (or even better, a completely independent set of sounds), as this would help clarify whether any observed invariance is emergent from the model (i.e., truly a result of low-level tuning to spectrotemporal features) or simply reflects what it was trained to reproduce.

      Finally, the interpretation of the foreground invariance results remains somewhat unclear. In ferrets (Figure 2I), the authors report relatively little foreground invariance, whereas in humans (Figure 5G), most participants appear to show relatively high levels of foreground invariance in primary auditory cortex (around 0.6 or greater). However, the paper does not explicitly address these apparent cross-species differences. Moreover, the findings in ferrets seem at odds with other recent work in ferrets (Hamersky et al. 2025 J. Neurosci.), which shows that background sounds tend to dominate responses to mixtures, suggesting a prevalence of foreground invariance at the neuronal level. Although this comparison comes with the caveat that the methods differ substantially from those used in the current study, given the contrast with the findings of this paper, further discussion would nonetheless be valuable to help contextualize the current findings and clarify how they relate to prior work.

    1. Reviewer #1 (Public review):

      The ventral nerve cord (VNC) of organisms like Drosophila is an invaluable model for studying neural development and organisation in more complex organisms. Its well-defined structure allows researchers to investigate how neurons develop, differentiate, and organise into functional circuits. As a critical central nervous system component, the VNC plays a key role in controlling motor functions, reflexes, and sensory integration.

      Particularly relevant to this work, the VNC provides a unique opportunity to explore neuronal hemilineages-groups of neurons that share molecular, genetic, and functional identities. Understanding these hemilineages is crucial for elucidating how neurons cooperate to form specialized circuits, essential for comprehending normal brain function and dysfunction.

      A significant challenge in the field has been the lack of developmentally stable, hemilineage-specific driver lines that enable precise tracking and measurement of individual VNC hemilineages. The authors address this need by generating and validating a comprehensive, lineage-specific split-GAL4 driver library.

      Strengths and weaknesses:

      The authors select new marker genes for hemilineages from previously published single-cell data of the VNC. They generate and validate specific and temporally stable lines for almost all the hemilineages in the VNC. They successfully achieved their aims, and their results support their conclusions. This will be a valuable resource for investigating neural circuit formation and function.

      Comments on revisions:

      The manuscript has been amended, and the points raised by the reviewers have been addressed.

    2. Reviewer #2 (Public review):

      It is my pleasure to review this manuscript from Stoffers, Lacin, and colleagues, in which they identify pairs of transcription factors unique to (almost) every ventral nerve cord hemilineage in Drosophila and use these pairs to create reagents to label and manipulate these cells. The advance is sold as largely technical-as a pipeline for identifying durably expressed transcription factor codes in postmitotic neurons from single cell RNAseq data, generating knock-in alleles in the relevant genes, using these to match transcriptional cell types to anatomic cell types, and then using the alleles as a genetic handle on the cells for downstream explication of their function. Yet I think the work is gorgeous in linking expression of genes that are causal for neuron-type-specific characteristics to the anatomic instantiations of those neurons. It is astounding that the authors are able to use their deep collective knowledge of hemilineage anatomy and gene expression to match 33 of 34 to transcriptional profiles. Together with other recent studies, this work drives a major course correction in developmental biology, away from empirically identified cell type "markers" (in Drosophila neuroscience, often genomic DNA fragments that contain enhancers found to be expressed in specific neurons at specific times), and towards methods in which the genes that generate neuronal type identity are actually used to study those neurons. Because the relationship between fate and form/function are built into the tools, I believe that this approach will be a trojan horse to integrate the fields of neural development and systems neuroscience.

      Comments on revisions:

      The authors have addressed my (minor) suggestions.

    3. Reviewer #3 (Public review):

      Summary:

      Soffers et al. developed a comprehensive genetic toolkit that enables researchers to access neuronal hemilineages during developmental and adult time points using scRNA-seq analysis to guide gene cassette exchange-based or CRISPR-based tool building. Currently, research groups studying neural circuit development are challenged with tying together findings in the development and mature circuit function of hemilineage related neurons. Here, authors leverage publicly available scRNA-seq datasets to inform the development of a split-Gal4 library that targets 32 of 34 hemilineages in development and adult stages. The authors demonstrated that the split-Gal4 library, or genetic toolkit, can be used to assess the functional roles, neurotransmitter identity, and morphological changes in targeted cells. The tools presented in this study should prove to be incredibly useful to Drosophila neurobiologists seeking to link neural developmental changes to circuit assembly and mature circuit function. Additionally, some hemilineages have more than one split-Gal4 combination that will be advantageous for studies seeking to disrupt associated upstream genes.

      Strengths:

      Informing genetic tool development with publicly available scRNA-seq datasets is a powerful approach to creating specific driver lines. Additionally, this approach can be easily replicated by other researchers looking to generate similar driver lines for more specific subpopulations of cells, as mentioned in the Discussion.

      The unification of optogenetic stimulation data of 8B neurons and connectomic analysis of the Giant-Fiber-induced take-off circuit was an excellent example of the utility of this study. The link between hemilineage-specific functional assays and circuit assembly has been limited by insufficient genetic tools. The tools and data present in this study will help better understand how collections of hemilineages develop in a genetically constrained manner to form circuits amongst each other selectively.

    1. Reviewer #1 (Public review):

      Summary:

      Oor et al. report the potentially independent effects of the spatial and feature-based selection history on visuomotor choices. They outline compelling evidence, tracking the dynamic history effects based on their clever experimental design (urgent version of the search task). Their finding broadens the framework to identify variables contributing to choice behavior and their neural correlates in future studies.

      Strengths:

      In their urgent search task, the variable processing time of the visual cue leads to a dichotomy in choice performance-uninformed guesses vs. informed choices. Oor et al. did rigorous analyses to find a stronger influence of the location-based selection history on the uninformed guesses and a stronger influence of the feature-based selection history on the informed choices. It is a fundamental finding that contributes to understanding the drivers of behavioral variance. The results are clear, and the authors convincingly addressed all previously raised concerns, strengthening their conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      This is a clear and systematic study on trial history influences on the performance of monkeys in a target selection paradigm. The primary contribution of the paper is to add a twist in which the target information is revealed after, rather than before, the cue to make a foveating eye movement. This twist results in a kind of countermanding of an earlier "uninformed" saccade plan by a new one occurring right after the visual information is provided. As with countermanding tasks in general, time now plays a key factor in success in this task, and it is time that allows the authors to quantitatively assess the parametric influences of things like previous target location, previous target identity, and previous correctness rate on choice performance. The results are logical and consistent with the prior literature, but the authors also highlight novelties in the interpretation of prior-trial effects that they argue are enabled by the use of their paradigm.

      Strengths:

      Careful analysis of a multitude of variables influencing behavior

      Weaknesses:

      Results appear largely confirmatory

      Comments on revisions:

      The authors have addressed the previous comments.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Guo and colleagues features the documentation and interpretation of three successions of continental to marginal marine deposits spanning the P/T transition and their respective ichnofaunas. Based on these new data inferences concerning end-Permian mass extinction and Triassic recovery in the tropical realm are discussed.

      Strengths:

      The manuscript is well written and organized and includes a large amount of new lithological and ichnological data that illuminate ecosystem evolution in a time of large scale transition. The lithological documentations, facies interpretations and ichnotaxonomic assignments look alright (with few exceptions).

      Weaknesses: [all eliminated in revision]

    2. Reviewer #2 (Public review):

      Summary:

      The authors made a thorough revision of the manuscript, strengthening the message. They also considered all the comments made by the reviewers and provided appropriate and convincing arguments.

      Strengths:

      The revised manuscript clarifies all the major points raised by the reviewers, and the way the information is presented (in the text, figures and tables) is clear.

      Weaknesses:

      The authors provided an appropriate and convincing rebuttal regarding the potential weakness I pointed out in the first review of the manuscript. Therefore, I do not see any major issue in their work.

    3. Reviewer #1 (Public review):

      Summary:

      This is a very well-written paper presenting interesting findings related to the recovery following the end-Permian event in continental settings, from N China. The finding is timely as the topic is actively discussed in the scientific community. The data provides additional insights into the faunal, and partly, floral global recovery following the EPE, adding to the global picture.

      Strengths: The conclusions are supported by an impressive amount of sedimentological and paleontological data (mainly trace fossils) and illustrations.

      Weaknesses: [eliminated in revision]

    1. Reviewer #1 (Public review):

      Summary:

      The paper by Papagiannakis et al is an elegant, mostly observational work detailing observations that polysome accumulation appears to drive nucleoid splitting and segregation. Overall I think this is an insightful work with solid observations.

      Strengths:

      The strengths of this paper are the careful and rigorous observational work that leads to their hypothesis. They find the accumulation of polysomes correlates with nucleoid splitting, and that the nucleoid segregation occurring right after splitting correlates with polysome segregation. These correlations are also backed up by other observations:

      (1) Faster polysome accumulation and DNA segregation at faster growth rates.<br /> (2) Polysome distribution negatively correlating with DNA positioning near asymmetric nucleoids.<br /> (3) Polysomes form in regions inaccessible to similarly sized particles.

      These above points are observational, I have no comments on these observations leading to their hypothesis.

      Comments on revisions:

      The authors have satisfied all of my concerns.

    2. Reviewer #2 (Public review):

      Summary:

      The authors perform a remarkably comprehensive, rigorous, and extensive investigation into the spatiotemporal dynamics between ribosomal accumulation, nucleoid segregation, and cell division. Using detailed experimental characterization and rigorous physical models, they offer a compelling argument that nucleoid segregation rates are determined at least in part by the accumulation of ribosomes in the center of the cell, exerting a steric force to drive nucleoid segregation prior to cell division. This evolutionarily ingenious mechanism means cells can rely on ribosomal biogenesis as the sole determinant for the growth rate and cell division rate, avoiding the need for two separate 'sensors,' which would require careful coupling.

      Strengths:

      In terms of strengths; the paper is very well written, the data are of extremely high quality, and the work is of fundamental importance to the field of cell growth and division. This is an important and innovative discovery enabled through the combination of rigorous experimental work and innovative conceptual, statistical, and physical modeling.

      Weaknesses:

      The authors have reasonably addressed by minor weaknesses raised in the first round of reviews, and I see no other weaknesses at this point worth raising.

    3. Reviewer #3 (Public review):

      Summary:

      Papagiannakis et al. present a detailed study exploring the relationship between DNA/polysome phase separation and nucleoid segregation in Escherichia coli. Using a combination of experiments and modelling, the authors aim to link physical principles with biological processes to better understand nucleoid organisation and segregation during cell growth.

      Strengths:

      The authors have a conducted a large number of experiments under different growth conditions and physiological perturbations (using antibiotics) to analyse the biophysical factors underlying the spatial organisation of nucleoids within growing E. coli cells. A simple model of ribosome-nucleoid segregation has been developed to explain the observations and tested with cleverly designed perturbation experiments.

      The model and explanation presented in the original version have been strengthened with additional results and consideration of new factors. In particular, the radial attachment of the nucleoid, supported by previous studies and the A22 treatment data in this study, provides a plausible mechanism that prevents ribosomes from diffusing between and around the nucleoid lobes through the radial shells surrounding the nucleoid. The revised version of the paper incorporates this effect, resulting in model predictions that align well with the drug treatment outcomes and the observed mid-cell accumulation and confinement of ribosomes.

      Furthermore, experiments involving plasmid-based gene expression, designed to redirect transcription away from chromosomal loci, offer compelling validation of the model's predictions. Overall, this is a robust and insightful study that will be of significant value to the quantitative microbiology community.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript is a focused investigation of the phosphor-regulation of a C. elegans kinesin-2 motor protein, OSM-3. In C-elegans sensory ciliary, kinesin-2 motor proteins Kinesin-II complex and OSM-3 homodimer transport IFT trains anterogradely to the ciliary tip. Kinesin-II carries OSM-3 as an inactive passenger from the ciliary base to the middle segment, where kinesin-II dissociates from IFT trains and OSM-3 gets activated and transports IFT trains to the distal segment. Therefore, activation/inactivation of OSM-3 plays an essential role in its ciliary function.

      Strengths:

      In this study, using mass spectrometry, the authors have shown that the NEKL-3 kinase phosphorylates a serine/threonine patch at the hinge region between coiled coils 1 and 2 of an OSM-3 dimer, referred to as the elbow region in ubiquitous kinesin-1. Phosphomimic mutants of these sites inhibit OSM-3 motility both in vitro and in vivo, suggesting that this phosphorylation is critical for the autoinhibition of the motor. Conversely, phospho-dead mutants of these sites hyperactivate OSM-3 motility in vitro and affect the localization of OSM3 in C. elegans. The authors also showed that Alanine to Tyrosine mutation of one of the phosphorylation rescues OS-3 function in live worms.

      Weaknesses:

      Collectively, this study presents evidence for the physiological role of OSM-3 elbow phosphorylation in its autoregulation, which affects ciliary localization and function of this motor. Overall, the work is well performed, and the results mostly support the conclusions of this manuscript. During revision, the authors further supported conclusions and ruled out alternative explanations by filling some logical gaps with new experimental evidence and in-text clarifications.

      Comments on revisions: I have no additional comments or concerns.

    2. Reviewer #2 (Public review):

      Summary:

      The regulation of kinesin is fundamental to cellular morphogenesis. Previously, it has been shown that OSM-3, a kinesin required for intraflagellar transport (IFT), is regulated by autoinhibition. However, it remains totally elusive how the autoinhibition of OSM-3 is released. In this study, the authors have shown that NEKL-3 phosphorylates OSM-3 and release its autoinhibition.

      The authors found NEKL-3 directly phosphorylates OSM-3 (Figure 1). The phophorylated residue is the "elbow" of OSM-3. The authors introduced phospho-dead (PD) and phospho-mimic (PM) mutations by genome editing and found that the OSM-3(PD) protein does not form cilia, and instead, accumulates to the axonal tips. The phenotype is similar to another constitutive active mutant of OSM-3, OSM-3(G444A) (Imanishi et al., 2006; Xie et al., 2024). osm-3(PM) has shorter cilia, which resembles with loss of function mutants of osm-3 (Figure 2). The authors did structural prediction and shows that G444E and PD mutations change the conformation of OSM-3 protein (Figure 3). In the single molecule assays G444E and PD mutations exhibited increased landing rate (Figure 4). By unbiased genetic screening, the authors identified a suppressor mutant of osm-3(PD), in which A489T occurs. The result confirms the importance of this residue. Based on these results, the authors suggest that NEKL-3 induces phosphorylation of the elbow domain and inactivates OSM-3 motor when the motor is synthesized in the cell body. This regulation is essential for the proper cilia formation.

      Strengths:

      The finding is interesting and gives new insight into how IFT motor is regulated.

      Comments on revisions: In the revised manuscript, the authors describe why they focused on NEKL-3 and detailed experimental procedures are presented.

      My only minor concern is the title, which appears to be too general. Researchers in the motor protein field may firstly assume this paper focuses on kinesin-1, because the "elbow" domain was originally suggested in kinesin-1. This paper newly determines the elbow region of OSM-3 and shows its crucial role in autoinhibition. Therefore, a more specific title, "Kinesin-2 Autoinhibition Requires Elbow Phosphorylation" or "OSM-3 Autoinhibition Requires Elbow phosphorylation" may be better.

    1. Reviewer #1 (Public review):

      Summary:

      Ma & Yang et al. report a new investigation aimed at elucidating one of the key nutrients S. Typhimurium (STM) utilizes with the nutrient-poor intracellular niche within macrophage, focusing on the amino acid beta-alanine. From these data, the authors report that beta-alanine plays important roles in mediating STM infection and virulence. The authors employ a multidisciplinary approach that includes some mouse studies, and ultimately propose a mechanism by which panD, involved in B-Ala synthesis, mediates regulation of zinc homeostasis in Salmonella.

      Strengths and weaknesses:

      The results and model are adequately supported by the authors' data. Further work will need to be performed to learn whether the Zn2+ functions as proposed in their mechanism. By performing a small set of confirmatory experiments in S. Typhi, the authors provide some evidence of relevance to human infections.

      Impact:

      This work adds to the body of literature on the metabolic flexibility of Salmonella during infection that enable pathogenesis.

    2. Reviewer #3 (Public review):

      Salmonella is interesting due to its life within a compact compartment, which we call SCV or Salmonella containing vacuole in the field of Salmonella. SCV is a tight-fitting vacuole where the acquisition of nutrients is a key factor by Salmonella. The authors among many nutrients, focused on beta-alanine. It is also known that Salmonella requires beta-alanine from many other studies. The authors have done in vitro RAW macrophage infection assays and In vivo mouse infection assays to see the life of Salmonella in the presence of beta-alanine. They concluded by comprehending that beta-alanine modulates the expression of many genes including zinc transporters which is required for pathogenesis.

      [Editors' note: The authors have appropriately addressed the previous reviewers' concerns.]

    1. Reviewer #2 (Public review):

      Summary:

      In contrast to the recent findings reported by Schuster S et al., this brief paper presents evidence suggesting that the stumpy form of T. brucei is likely the most pre-adapted form to progress through the life cycle of this parasite in the tsetse vector.

      Strengths:

      One significant experimental point is that all fly infection experiments are conducted in the absence of "boosting" metabolites like GlcNAc or S-glutathione. As a result, flies infected with slender trypanosomes present very low or nonexistent infection rates. This provides important experimental evidence that the findings of Schuster S and colleagues may need to be revisited.

      In the revised submission the authors also compared trypanosome midgut infection levels in tsetse flies when either young (teneral) or mature adult flies received infected bloodmeals, with or without 60 mM GlcNAc. The data clearly show that, unlike in teneral flies, the addition of GlcNAc to the trypanosome-infected bloodmeal does not enhance midgut infection in mature adult flies. This is now convincingly demonstrated in Figure 2 and provides strong experimental support for the suggestion that the effect reported by Schuster S. et al. may have been influenced by both fly age and the inclusion of metabolic "boosters" in the bloodmeal.

    2. Reviewer #3 (Public review):

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al. ), who showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent. The authors observed that most stumpy forms infections with teneral and adult flies were successful while only 1 out of 24 slender form infections were successful.

      The comparison of midgut infection in adult vs teneral flies was significant in most of the conditions. However, the critical comparison is still missing: within each type of fly (adult or teneral), was the MG infection significantly different between slender and stumpy forms?

      Figure 2 convincingly demonstrates the effect of the metabolite N-acetylglucosamine on Tsetse infection. This addition helps better integrate the study with previous work. I thank the authors for their effort in performing this experiment.

      It is still remains unknown why this work and Schuster et al. reached different conclusions. As a result it remains unclear in which conditions slender forms could be important for transmission. Several variables could explain differences between the two groups: the strain used, the presence or absence of glutathione, how Tsetse colonies were maintained, thorough molecular and cellular characterisation of slender and stumpy forms (to avoid using intermediate forms as slender forms), comparison to recent field parasite strains.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors performed an integration of 48 scRNA-seq public datasets and created a single-cell transcriptomic atlas for AML (222 samples comprising 748,679 cells). This is important since most AML scRNA-seq studies suffer from small sample size coupled with high heterogeneity. They used this atlas to further dissect AML with t(8;21) (AML-ETO/RUNX1-RUNX1T1), which is one of the most frequent AML subtypes in young people. In particular, they were able to predict Gene Regulatory Networks in this AML subtype using pySCENIC, which identified the paediatric regulon defined by a distinct group of hematopoietic transcription factors (TFs) and the adult regulon for t(8;21). They further validated this in bulk RNA-seq with AUCell algorithm and inferred prenatal signature to 5 key TFs (KDM5A, REST, BCLAF1, YY1, and RAD21), and the postnatal signature to 9 TFs (ENO1, TFDP1, MYBL2, KLF1, TAGLN2, KLF2, IRF7, SPI1, and YXB1). They also used SCENIC+ to identify enhancer-driven regulons (eRegulons), forming an eGRN, and found that prenatal origin shows a specific HSC eRegulon profile, while a postnatal origin shows a GMP profile. They also did an in silico perturbation and found AP-1 complex (JUN, ATF4, FOSL2), P300, and BCLAF1 as important TFs to induce differentiation. Overall, I found this study very important in creating a comprehensive resource for AML research.

      Strengths:

      (1) The generation of an AML atlas integrating multiple datasets with almost 750K cells will further support the community working on AML.

      (2) Characterisation of t(8;21) AML proposes new interesting leads.

      Weaknesses:

      Were these t(8;21) TFs/regulons identified from any of the single datasets? For example, if the authors apply pySCENIC to any dataset, would they find the same TFs, or is it the increase in the number of cells that allows identification of these?

    2. Reviewer #2 (Public review):

      Summary:

      The authors assemble 222 publicly available bone marrow single-cell RNA sequencing samples from healthy donors and primary AML, including pediatric, adolescent, and adult patients at diagnosis. Focusing on one specific subtype, t(8;21), which, despite affecting all age classes, is associated with better prognosis and drug response for younger patients, the authors investigate if this difference is reflected also in the transcriptomic signal. Specifically, they hypothesize that the pediatric and part of the young population acquires leukemic mutations in utero, which leads to a different leukemogenic transformation and ultimately to differently regulated leukemic stem cells with respect to the adult counterpart. The analysis in this work heavily relies on regulatory network inference and clustering (via SCENIC tools), which identifies regulatory modules believed to distinguish the pre-, respectively, post-natal leukemic transformation. Bulk RNA-seq and scATAC-seq datasets displaying the same signatures are subsequently used for extending the pool of putative signature-specific TFs and enhancer elements. Through gene set enrichment, ontology, and perturbation simulation, the authors aim to interpret the regulatory signatures and translate them into potential onset-specific therapeutic targets. The putative pre-natal signature is associated with increased chemosensitivity, RNA splicing, histone modification, stem-ness marker SMARCA2, and potentially maintained by EP300 and BCLAF1.

      Strengths:

      The main strength of this work is the compilation of a pediatric AML atlas using the efficient Cellxgene interface. Also, the idea of identifying markers for different disease onsets, interpreting them from a developmental angle, and connecting this to the different therapy and relapse observations, is interesting. The results obtained, the set of putative up-regulated TFs, are biologically coherent with the mechanisms and the conclusions drawn. I also appreciate that the analysis code was made available and is well documented.

      Weaknesses:

      There were fundamental flaws in how methods and samples were applied, a general lack of critical examination of both the results and the appropriateness of the methods for the data at hand, and in how results were presented. In particular:

      (1) Cell type annotation:

      a) The 2-phase cell type annotation process employed for the scRNA-seq sample collection raised concerns. Initially annotated cells are re-labeled after a second round with the same cell types from the initial label pool (Figure 1E). The automatic annotation tools were used without specifying the database and tissue atlases used as a reference, and no information was shown regarding the consensus across these tools.

      b) Expression of the CD34 marker is only reported as a selection method for HSPCs, which is not in line with common practice. The use of only is admitted as a surface marker, while robust annotation of HSPCs should be done on the basis of expression of gene sets.

      c) During several analyses, the cell types used were either not well defined or contradictory, such as in Figure 2D, where it is not clear if pySCENIC and AUC scores were computed on HSPCs alone or merged with CMPs. In other cases, different cell type populations are compared and used interchangeably: comparing the HSPC-derived regulons with bulk (probably not enriched for CD34+ cells) RNA samples could be an issue if there are no valid assumptions on the cell composition of the bulk sample.

      (2) Method selection:

      a) The authors should explain why they use pySCENIC and not any other approach. They should briefly explain how pySCENIC works and what they get out in the main text. In addition they should explain the AUCell algorithm and motivate its usage.

      b) The obtained GRN signatures were not critically challenged on an external dataset. Therefore, the evidence that supports these signatures to be reliable and significant to the investigated setting is weak.

      (3) There are some issues with the analysis & visualization of the data.

      (4) Discussion:

      a) What exactly is the 'regulon signature' that the authors infer? How can it be useful for insights into disease mechanisms?

      b) The authors write 'Together this indicates that EP300 inhibition may be particularly effective in t(8;21) AML, and that BCLAF1 may present a new therapeutic target for t(8;21) AML, particularly in children with inferred pre-natal origin of the driver translocation.' I am missing a critical discussion of what is needed to further test the two targets. Put differently: Would the authors take the risk of a clinical study given the evidence from their analysis?

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use gene functional analysis, pharmacology and live imaging to develop a proposed model of diverse G protein family signalling that takes place in the papillae during the ascidian Ciona larval adhesion to regulate the timing of initiation of the morphological changes of metamorphosis. Their experiments provide solid evidence that antagonistic G protein signalling regulates cAMP levels in the papillae, which provides a threshold for triggering metamorphosis that is reflective of a larva keeping a strong and sustained level of contact with a substrate for a minimum period of approximately half an hour. The authors discuss their reasoning and address different specific aspects of their proposed timing mechanism to provide a logical flow to the manuscript. The results are nicely linked to the ecology of Ciona larval settlement and will be of interest to developmental biologists, neurobiologists, molecular biologists, marine biologists as well as provide information relevant to antifouling and aquaculture sectors.

      First, the authors knock down the G proteins Gaq and Gas to show that these genes are important for Ciona larval metamorphosis. They then provide evidence that the Gaq protein acts through a Ca2+ pathway mediated by phospholipase C and inositol triphosphate by showing that inositol phosphate and phospholipase C gene knockdown also inhibits metamorphosis, while overexpression of Gaq or phospholipase C allows larvae to undergo metamorphosis even in the absence of their mechanosensory cue, which is deprived by removing the posterior half of the tail and culturing the larvae on agar-coated dishes. The authors used calcium imaging with a genetically encoded fluorescent calcium sensor to show that Gq knockdown larvae lack a Ca2+ spike in their papillae after mechanostimulation, confirming that Gaq acts through a Ca2+ pathway. Similarly the authors show that overexpression of Gas also enables larvae to metamorphose in the absence of mechanostimulation, suggesting a role for both Gaq and Gas in this process.

      To confirm that Gas acts through cAMP signalling, the authors use pharmacological treatment or overexpression of a photoactivating adenylate cyclase to increase cAMP, and show that this also enables larvae to metamorphose in the absence of mechanostimulation, but only when their adhesive papillae are still present. Transcriptome data indicate that both Gs and Gq pathway genes are expressed in the adhesive papillae of the Ciona larva. The authors use a fluorescent cAMP indicator, Pink Flamindo, to show that cAMP increases in the papillae upon adhesion to a substrate, and this increase is lost in Gs and Gq knockdown larvae. Complementary to this, larvae that fail to undergo metamorphosis lack a cAMP increase in papillae.

      The authors then provide evidence that GABA signalling within the papillae is acting downstream of the G proteins to induce metamorphosis. Transcriptome data shows that the genes for the GABA-producing enzyme (GAD), and for GABAb receptors, are both expressed in papillae. Pharmacological experiments show that GABA induces metamorphosis in the absence of mechanosensory cues, but only in larvae that retain their papillae. To show that GABA signalling within the papillae, rather than from the brain of the larva is important, the authors also demonstrate that anterior segments of larvae lacking the brain, can also be stimulated to metamorphose by GABA, and show changes in gene expression caused by GABA.

      The authors then use a combination of pharmacology and knockdown experiments in the presence or absence of mechanosensory cues to show that Gq/Ca2+ signalling acts upstream of Gs/cAMP signalling. As elevation of cAMP by pharmacology or photoactivating adenylate cyclase rescued GABA pathway mutant larvae, the Gq and Gs pathways were concluded to be downstream of GABA signaling. However, as GABA treatment could still induce Gaq- and Gas-knockdown larvae to metamorphose, suggesting an alternative pathway to metamorphosis, which the authors deduce to be through a third G protein, Gai. They identify an unusual Gai protein that based on transcriptome data is strongly expressed in the papillae. Gai knockdown larvae fail to metamorphose but are rescued by GABA treatment, which can be explained by a potential additional Gai protein being still present (this is confirmed experimentally with MO knockdown experiments). The authors then use overexpression and knockdown experiments to show that the Gai protein acts through Gβγi complex to activate phospholipase C. Their experiments also indicate potential for a complementary or compensatory role for Gai and Gaq signalling through Gβγi. By inhibiting the potassium channel GIRK through knockdown, and the MAPK pathway gene MEK1/2 by pharmacology, the authors also establish a role for these in their proposed model of signalling, allowing GABA and cAMP to compensate or interact with each other.

      The strength of this paper is the meticulous and extensive experiments, which are carefully designed to be able to precisely target specific genes in the putative signalling pathway to build step by step a complex model that can demonstrate how metamorphosis of the ascidian larva is timed so as to only occur when strongly attached to a suitable substrate. The unique possibility of inhibiting mechanosensory-induced metamorphosis by removing some of the tail and smoothing the attachment substrate allows the authors to investigate potential effects on both activation and inhibition of metamorphosis, and to confirm that specific signalling pathways are clearly downstream of the initial mechanosensory stimulation. The study is also clear about which aspects of the model still remain unknown, such as which ligands and receptors may be responsible for the binding and activation of Gaq and Gas. Experiments testing metamorphosis of just the anterior region of the larvae nicely demonstrate the need for signalling in the region of the papillae, as do experiments where the papillae are removed, which then block metamorphosis in treatments that would otherwise stimulate it. The final model makes a clear summary of how the extensive experiments all fit together into a cohesive potential signalling network, which can be built upon in the future to potentially integrate the role of sensory cues additional to mechanosensation.

    2. Reviewer #2 (Public review):

      Summary:

      This work aims to characterize the neural signaling cascade underlying the initiation of metamorphosis in Ciona larvae. Combining gene-specific functional analyses, pharmacological experiments, and live imaging approaches, the authors identify the molecular players downstream of GABA to initiate Ciona metamorphosis. The results of this study will serve as a useful framework for future research on animal metamorphosis.

      Strengths:

      Taking advantage of the Ciona model system, the authors meticulously conducted genetic manipulation and pharmacological experiments to test the epistatic relationships among the signaling players controlling the initiation of Ciona metamorphosis. The experiments were well designed, and the results were convincing. Based on the experimental data, the final working model proposed by the authors will server as an important foundation for further investigation on metamorphosis controls in Ciona and other marine invertebrate larvae.

      Weaknesses:

      In this revised manuscript, the authors have greatly improved the descriptions of their experimental results, and have clarified my previous concerns. I do not have further comments on "weaknesses".

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript details the results of a small pilot study of neoadjuvant radiotherapy followed by combination treatment with hormone therapy and dalpiciclib for early stage HR+/HER2-negative breast cancer.

      Strengths:

      The strengths of the manuscript include the scientific rationale behind the approach, and the inclusion of some simple translational studies.

      Weaknesses:

      The main weakness of the manuscript is that a study this small is not powered to fully characterize efficacy or safety of a treatment approach, and can, at best, can demonstrate feasibility. These data need validation in a larger cohort before they can have any implications for clinical practice, and the treatment approach outlined should not yet be considered a true alternative to standard evidence-based approaches.

      I would urge the readers exercise caution when comparing results of this 12-patient pilot study to historical studies, many of which were much larger, and had different treatment protocols and baseline patient characteristics. Cross-trial comparisons like this are prone to mislead, even when comparing well powered studies. With such a small sample size, the risk of statistical error is very high, and comparisons like this have little meaning.

    1. Reviewer #1 (Public review):

      Summary

      In their paper Zhan et al. have used Pf genetic data from simulated data and Ghanaian field samples to elucidate a relationship between multiplicity of infection (MOI) (the number of distinct parasite clones in a single host infection) and force of infection (FOI). Specifically, they use sequencing data from the var genes of Pf along with Bayesian modeling to estimate MOI individual infections and use these values along with methods from queueing theory that rely on various assumptions to estimate FOI. They compare these estimates to known FOIs in a simulated scenario and describe the relationship between these estimated FOI values and another commonly used metric of transmission EIR (entomological inoculation rate).

      This approach does fill an important gap in malaria epidemiology, namely estimating force of infection, which is currently complicated by several factors including superinfection, unknown duration of infection, and highly genetically diverse parasite populations. The authors use a new approach borrowing from other fields of statistics and modeling and make extensive efforts to evaluate their approach under a range of realistic sampling scenarios. However, the write-up would greatly benefit from added clarity both in the description of methods, and in the presentation of the results. Without these clarifications, rigorously evaluating whether the author's proposed method of estimating FOI is sound remains difficult. Additionally, there are several limitations that call into question the stated generalizability of this method that should at minimum be further discussed by authors and in some cases require a more thorough evaluation.

      Major comments:

      (1) Description and evaluation of FOI estimation procedure.

      a. The methods section describing the two-moment approximation and accompanying appendix is lacking several important details. Equations on line 891 and 892 are only a small part of the equations in Choi et al. and do not adequately describe the procedure notably several quantities in those equations are never defined some of them are important to understand the method (e.g. A, S as the main random variables for inter-arrival times and service times, aR and bR which are the known time average quantities, and these also rely on the squared coefficient of variation of the random variable which is also never introduced in the paper). Without going back to the Choi paper to understand these quantities, and to understand the assumptions of this method it was not possible to follow how this works in the paper. At minimum, all variables used in the equations should be clearly defined.

      b. Additionally, the description in the main text of how queueing procedure can be used to describe malaria infections would benefit from a diagram currently as written it's very difficult to follow.

      c. Just observing the box plots of mean and 95% CI on a plot with the FOI estimate (Figures 1, 2 and 10-14) is not sufficient to adequately assess the performance of this estimator. First, it is not clear whether authors are displaying the bootstrapped 95%Cis or whether they are just showing the distribution of the mean FOI taken over multiple simulations, and then it seems that they are also estimating mean FOI per host on an annual basis. Showing a distribution of those per host estimates would also be helpful. Second, a more quantitative assessment of the ability of the estimator to recover the truth across simulations (e.g. proportion of simulations where the truth is captured in the 95% CI or something like this) is important in many cases it seems that the estimator is always underestimating the true FOI and may not even contain the true value in the FOI distribution (e.g. figure 10, figure 1 under the mid IRS panel). But it's not possible to conclude on way or the other based on this visualization. This is a major issue since it calls into question whether there is in fact data to support that these methods give good and consistent FOI estimates.

      d. Furthermore authors state in the methods that the choice of mean and variance (and thus second moment) parameters for inter arrival times are varied widely, however, it's not clear what those ranges are there needs to be a clear table or figure caption showing what combinations of values were tested and which results are produced from them, this is an essential component of the method and it's impossible to fully evaluate its performance without this information. This relates to the issue of selecting the mean and variance values that maximize the likelihood of observing a given distribution of MOI estimates, this is very unclear since no likelihoods have been written down in the methods section of the main text, which likelihood are the authors referring to, is this the probability distribution of the steady state queue length distribution? At other places the authors refer to these quantities as Maximum Likelihood estimators, how do they know they have found the MLE? There are no derivations in the manuscript to support this. The authors should specify and likelihood and include in an appendix why their estimation procedure is in fact maximizing this likelihood preferably with evidence of the shape of the likelihood, and how fine the grid of values they tested are for their mean and variance since this could influence the overall quality of the estimation procedure.

      (2) Limitation of FOI estimation procedure.

      a. The authors discuss the importance of duration of infection to this problem. While I agree that empirically estimating this is not possible, there are other options besides assuming that all 1-5 year olds have the same duration of infection distribution as naïve adults co-infected with syphilis. E.g. it would be useful to test a wide range of assumed infection duration and assess their impact on the estimation procedure. Furthermore, if the authors are going to stick to the described method for duration of infection, the potentially limited generalizability of this method needs to be further highlighted in both the introduction, and the discussion. In particular, for an estimated mean FOI of about 5 per host per year in the pre-IRS season as estimated in Ghana (Figure 3) it seems that this would not translate to 4 year old being immune naïve, and certainly this would not necessarily generalize well to a school-aged child population or an adult population.

      b. The evaluation of the capacity parameter c seems to be quite important, and is set at 30, however, the authors only describe trying values of 25 and 30, and claim that this does not impact FOI inference, however it is not clear that this is the case. What happens if carrying capacity is increased substantially? Alternatively, this would be more convincing if the authors provided a mathematical explanation of why the carrying capacity increasing will not influence the FOI inference, but absent that, this should be mentioned and discussed as a limitation.

      Comments on revisions:

      The authors have adequately responded to all comments.

    2. Reviewer #2 (Public review):

      Summary:

      The authors combine a clever use of historical clinical data on infection duration in immunologically naive individuals and queuing theory to infer the force of infection (FOI) from measured multiplicity of infection (MOI) in a sparsely sampled setting. They conduct extensive simulations using agent based modeling to recapitulate realistic population dynamics and successfully apply their method to recover FOI from measured MOI. They then go on to apply their method to real world data from Ghana before and after an indoor residual spraying campaign.

      Strengths:

      - The use of historical clinical data is very clever in this context<br /> - The simulations are very sophisticated with respect to trying to capture realistic population dynamics<br /> - The mathematical approach is simple and elegant, and thus easy to understand

      Weaknesses:

      - The assumptions of the approach are quite strong, and the authors have made clear that applicability is constrained to individuals with immune profiles that are similar to malaria naive patients with neurosyphilis. While the historical clinical data is a unique resource and likely directionally correct, it remains somewhat dubious to use the exact estimated values as inputs to other models without extensive sensitivity analysis.

    3. Reviewer #3 (Public review):

      Summary:

      It has been proposed that the FOI is a method of using parasite genetics to determine changes in transmission in areas with high asymptomatic infection. The manuscript attempts to use queuing theory to convert multiplicity of infection estimates (MOI) into estimates of the force of infection (FOI), which they define as the number of genetically distinct blood-stage strains. They look to validate the method by applying them to simulated results from a previously published agent based model. They then apply these queuing theory methods to previously published and analysed genetic data from Ghana. They then compare their results to previous estimates of FOI.

      Strengths:

      It would be great to be able to infer FOI from cross sectional surveys which are easier and cheaper than current FOI estimates which require longitudinal studies. This work proposes a method to convert MOI to FOI for cross sectional studies. They attempt to validate this process using a previously published agent based model which helps us understand the complexity of parasite population genetics.

      Weaknesses:

      (1) I fear that the work could be easily over-interpreted as no true validation was done as no field estimates of FOI (I think considered true validation) were measured. You have developed a method of estimating FOI from MOI which makes a number of biological and structural assumptions. I would not call being able to recreate model results that were generated using a model that makes its own (probably similar) defined set of biological and structural assumptions acts as a validation of what is going on in the field. The authors claim this at times (for example, Line 153 ) and I feel it would be appropriate to differentiate this in the discussion.

      (2) Another aspect of the paper is adding greater realism to the previous agent based model, by including assumptions on missing data and under sampling. This takes prominence in the figures and results section, but I would imagine is generally not as interesting to the less specialised reader. The apparent lack of impact of drug treatment on MOI is interesting and counterintuitive, though it is not really mentioned in the results or discussion sufficiently to allay my confusion. I would have been interested in understanding the relationship between MOI and FOI as generated by your queuing theory method and the model. It isn't clear to me why these more standard results are not presented, as I would imagine they are outputs of the model (though happy to stand corrected - it isn't entirely clear to me what the model is doing in this manuscript alone).

      (3) I would suggest that outside of malaria geneticists, the force of infection is considered to be the entomological inoculation rate, not the number of genetically distinct blood-stage strains. I appreciate that FOI has been used to explain the later before by others, though the authors could avoid confusion by stating this clearly throughout the manuscript. For example, the abstract says FOI is "the number of new infections acquired by an individual host over a given time interval" which suggests the former, please consider clarifying.

      (4) Line 319 says "Nevertheless, overall, our paired EIR (directly measured by the entomological team in Ghana (Tiedje et al., 2022)) and FOI values are reasonably consistent with the data points from previous studies, suggesting the robustness of our proposed methods". I would agree that the results are consistent, given that there is huge variation in Figure 4 despite the transformed scales, but I would not say this suggests a robustness of the method.

      (5) The text is a little difficult to follow at times, and sometimes requires multiple reads to understand. Greater precision is needed with the language in a few situations and some of the assumptions made in the modelling process are not referenced, making it unclear whether it is a true representation of the biology.

      Comments on revisions:

      I think the authors gave a robust but thorough response to our reviews and made some important changes to the manuscript which certainly clarify things for me.

    1. Reviewer #1 (Public review):

      Cellulose is the major component of the plant cell wall and as such is a major component of all plant biomass on the planet. It is made at the cell surface by a large membrane-bound complex known as the cellular synthase complex. It is the structure of the cellulose synthase complex that determines the structure of the cellulose microfibril, the unit of cellulose found in nature. Consequently, while understanding the molecular structure of individual catalytic subunits that synthesise individual beta 1-4 glucose chains is important, to really understand cellulose synthesis it is necessary to understand the structure of the entire complex.

      In higher plants cellulose is synthesised by a large membrane-bound complex composed of three different CESA proteins. During cellulose synthesis in the primary cell wall this is composed of members of groups CESA1, CESA3 and CESA6. While the authors have previously presented structural data on CESA8, required for cellulose synthesis in the secondary cell wall, here they provide structural and enzymatic analysis of CESA1, CESA3 and CESA6 from soybean.

      The authors have utilised their established protocol to purify trimers for all three classes of CESA proteins and obtain structural information using electron microscopy. The structures reveal some subtle, but interesting differences between the structures obtained in this study and that previously obtained for CESA8. In particular, they identify a change in the position of transmembrane helices 7 that in previous structures formed part of the transmembrane channel. In the structure of CESA1 TM7 is shifted laterally to a position more towards the periphery of the protomer where is stabilised by inter protomer interactions. This creates a large lipid exposed channel opening that is likely encountered by the growing cellulose chain. In the discussion the authors speculate this channel might facilitate lateral movement of cellulose chains in the membrane what would allow them to associate to form the microfibril. There is, however, no explanation for why this might be different for CESA proteins involved in primary and secondary cell wall CESA proteins.

      Interactions within the trimer as stabilised by the plant conserved regions (PCR), while in common with previous studies that class-specific regions (CSR) is not resolved, likely of it being highly disordered as has been suggested in previous studies. As the name suggests these regions are likely to be important for determining how different CESA proteins interact, but it remains to be seen how they achieve this. Similarly, the N-terminal domain (NTD) remains rather intriguing. In the CESA3 structure, the NTD forms a stalk that protrudes into the cytoplasm that was previously observed for CESA8, while it remains unresolved in CESA1 and CESA6. The authors suggest the inability to resolve this region is likely the result of the NTD being able to form multiple conformations. Loss of the NTD does not prevent the formation of trimers and CESA1 and CESA3 are still able to interact. Previous bioinformatic studies suggest that the CSR part of the NTD is also highly class-specific (Carrol et al. 2011 Frontiers in Plant Science 2, 5-5) suggesting it is also likely to participate in interactions between different CESA proteins. This analysis provides little new information on the structure of the NTD or how it functions as part of the cellulose synthase complex.

      The other important point regarding cellulose synthesis is how the different CESA trimers function during cellulose synthesis and complex assembly. The authors provide biochemical evidence that mixed complexes of two different CESA proteins are able to synergistically increase the rate of cellulose synthesis. This increase is not dramatic, around 2-fold as it is unclear what brings about this increase and whether it results from the ability to form larger complexes favouring greater rates of cellulose synthesis.

      It is clear however from electron microscopy that mixing of CESA proteins can lead to the formation of large aggregates not seen with single CESA proteins. The aggregates observed do not form rosette type shapes but appear to be much more random aggregates of different CESA trimers. The authors suggest that this is likely a result of the fact that the complexes are not constrained in two dimensions by the membrane, however if these are biologically relevant interactions that form aggregates is somewhat surprising that they do not form hexameric structures, particularly since that are essentially forming as a single layer.

      Overall the study provides some important data and raises a number of important questions.

    2. Reviewer #3 (Public review):

      Cellulose is a major component of the primary cell wall of growing cells and it is made by cellulose synthases (CESAs) organized into multi-subunit complexes in the plasma membrane. Previous results have resolved the structure of secondary cell wall CESAs, which are only active in a subset of cells. Here, the authors evaluate the structure of CESAs from soybean (Glycine max, Gm) via cryo-EM and compare these structures to secondary cell wall CESAs. First, they express a select member of the GmCESA1, GmCESA3, or GmCESA6 families in insect cells, purified these proteins as both monomers and homotrimers, and demonstrated their capacity to incorporate 3H-labelled glucose into cellulase-sensitive product in a pH and divalent cation (e.g., Mg2+) -dependant fashion (Figure 2). Although CESA1, CESA3, and a CESA6-like isoforms are essential for cellulose synthesis in Arabidopsis, in this study, monomers and homotrimers both showed catalytic activity, and there was more variation between individual isoforms than between their oligomerization states (i.e., CESA3 monomers and trimers showed similar activities, which were substantially different from CESA1 monomers or trimers).

      They next use cryo-EM to solve the structure of each homotrimer to ~3.0 to 3.3 A (Figure 3). They compare this with PttCESA8 and find important similarities, such as the unidentified density at a positively-charged region near Arg449, Lys452, and Arg453; and differences, such as the position and relatively low resolution (suggesting higher flexibility) of TM7, which presumably creates a large lateral lipid-exposed channel opening, rather than the transmembrane pore in PttCESA8. Like PttCESA8, an oligosaccharide in the translocation channel was co-resolved with the protein structure. Neither the N-terminal domains nor the CSRs (a plant-specific insert into the cytosolic loop between TM2 and TM3) are resolved well.

      Several previous models have proposed that the cellulose synthase complexes may be composed of multiple heterotrimers, but since the authors were able to isolate beta-glucan-synthesizing homotrimers, their results challenge this model. Using the purified trimers, the authors investigated how the CESA homotrimers might assemble into higher order complexes. They detected interactions between each pair of CESA homotrimers via pull down assays (Figure 4), although these same interactions were also detected among monomers (Supplemental Figure 4). Neither catalytic activity nor these inter-homotrimer interactions required the N-terminal domain (Figure 5). When populations of homotrimers were mixed, they formed larger aggregations in vitro (Figure 6) and displayed increased activity, compared to the predicted additive activity of each enzyme alone (Figure 7). Intriguingly, this synergistic behavior is observed even when one trimer is chemically inactivated before mixing (supplemental figure 7), suggesting that the synergistic effects are due to structural interactions.

      The main strength of this manuscript is its detailed characterization of the structure of multiple CESAs implicated in primary cell wall synthesis, which complements previous studies of secondary cell wall CESAs. They provide a comprehensive comparison of these new structures with previously resolved CESA structures and discuss several intriguing similarities and differences. The synergistic activity observed when different homotrimers are mixed is a particularly interesting result. These results provide fundamental in vitro support for a cellulose synthase complex comprised of a hexamer of CESA homotrimers.

      The main weakness of the manuscript is that the authors' evidence that these proteins make cellulose in vitro is limited to beta-glucanase-sensitive digestion of the product. Previous reports characterizing CESA structures have used multiple independent methods: sensitivity and resistance of the product to various enzymes, linkage analysis, and importantly, TEM of the product to ensure that it makes genuine cellulose microfibrils, rather than amorphous beta-glucan.

    1. Reviewer #1 (Public review):

      Summary:

      Using lineage tracing and single-cell RNA sequencing, Li et al. reported brain ECs can differentiate into pericytes after stroke. This finding is novel and important to the field.

      Strengths:

      Detailed characterization of each time point and genetic manipulation of genes for study role of ECs and E-pericyte.

      Weaknesses:

      Genetic evidence for lineage tracing of ECs and E-pericytes requires more convincing data that include staining, FACS, and scRNA-seq analysis.

      Comments on revisions:

      Authors have addressed some of my concerns and questions, and also plan to include more convincing data to support the conclusion. Some unpublished data should be included in the online supporting files.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Li and colleagues study the fate of endothelial cells in a mouse model of ischemic stroke. Using genetic lineage tracing approaches, they find that endothelial cells give rise to non-endothelial cells, which they term "E-pericytes." They further show that depleting these cells exacerbates blood-brain barrier leakage and worsens functional recovery. The authors also provide evidence that endothelial-to-mesenchymal transition, myeloid cell-derived TGFβ1, and endothelial TGFβRII are involved in this process. These are potentially interesting findings, however, the experimental evidence that endothelial cells undergo transdifferentiation to non-endothelial cells is weak, as is the evidence that these cells are pericytes. Addressing this foundational weakness will facilitate interpretation of the other findings.

      In this revised manuscript, the authors corrected labeling errors and included negative controls for flow cytometry and immunohistochemistry data. They did not, however, substantively address the major weaknesses below related to rigorously demonstrating the cellular origin and identity of "E-pericytes."

      Strengths:

      (1) The authors address an important question about blood vessel function and plasticity in the context of stroke.

      (2) The authors use a variety of genetic approaches to understand cell fate in the context of stroke. Particularly commendable is the use of several complementary lineage tracing strategies, including an intersectional strategy requiring both endothelial Cre activity and subsequent mural cell NG2 promoter activity.

      (3) The authors address upstream cellular and molecular mechanisms, including roles for myeloid-derived TGFβ.

      Weaknesses:

      (1) The authors use Cdh5-CreERT2; Ai47 mice to permanently label endothelial cells and their progeny with eGFP. They then isolate eGFP+ cells from control and MCAO RP7D and RP34D brains, and use single cell RNA-seq to identify the resulting cell types. Theoretically, all eGFP+ cells should be endothelial cells or their progeny. This is a very powerful and well-conceived experiment. The authors use the presence of a pericyte cluster as evidence that endothelial to pericyte transdifferentiation occurs. However, pericytes are also present in the scRNA-seq data from sham mice, as are several other cell types such as fibroblasts and microglia. This suggests that pericytes and these other cell types might have been co-purified (e.g., as doublets) with eGFP+ endothelial cells during FACS and may not themselves be eGFP+. Pericyte-endothelial doublets are common in scRNA-seq given that these cell types are closely and tightly associated. Additionally, tight association (e.g., via peg-socket junctions) can cause fragments of endothelial cells to be retained on pericytes (and vice-versa) during dissociation. Finally, it is possible that after stroke or during the dissociation process, endothelial cells lyse and release eGFP that could be taken up by other cell types. All of these scenarios could lead to purification of cells that were not derived (transdifferentiated) from endothelial cells. Authors note that the proportion of pericytes increased in the stroke groups, but it does not appear this experiment was replicated and thus this conclusion is not supported by statistical analysis. The results of pseudotime and trajectory analyses rely on the foundation that the pericytes in this dataset are endothelial-derived, which, as discussed above, has not been rigorously demonstrated.

      (2) I have the same concern regarding inadvertent purification of cells that were not derived from endothelial cells in the context of the bulk RNA-seq experiment (Fig. S4), especially given the sample-to-sample variability in gene expression in the RP34D, eGFP+ non-ECs group (e.g., only 2/5 samples are enriched for mesenchymal transcription factor Tbx18, only 1/5 samples are enriched for mural cell TF Heyl). If the sorted eGFP+ non-ECs were pericytes, I would expect a strong and consistent pericyte-like gene expression profile.

      (3) Authors use immunohistochemistry to understand localization, morphology, and marker expression of eGFP+ cells in situ. The representative "E-pericytes" shown in Fig. 3A-D are not associated with blood vessels, and the authors' quantification also shows that the majority of such cells are not vessel-associated ("avascular"). By definition, pericytes are a component of blood vessels and are embedded within the vascular basement membrane. Thus, concluding that these cells are pericytes ("E-pericytes") may be erroneous.

      (4) CD13 flow cytometry and immunohistochemistry are used extensively to identify pericytes. In the context of several complementary lineage tracing strategies noted in Strength #2, CD13 immunohistochemistry is the only marker used to identify putative pericytes (Fig. S3J-M). In stroke, CD13 is not specific to pericytes; dendritic cells and other monocyte-derived cells express CD13 (Anpep) in mouse brain after stroke (PMID: 38177281, https://anratherlab.shinyapps.io/strokevis/).

      (5) Authors conclude that "EC-specific overexpression of the Tgfbr2 protein by a virus (Tgfbr2) decreases Evans blue leakage, promotes CBF recovery, alleviates neurological deficits and facilitates spontaneous behavioral recovery after stroke by increasing the number of E-pericytes." All data in Fig. 10, however, compare endothelial Tgfbr2 overexpression to a DsRed overexpression control. There is no group in which Tgfbr2 is overexpressed but "E-pericytes" are eliminated with DTA (this is done in Fig. 9B, but this experiment lacks the Tgfbr2 overexpression-only control). Thus, the observed functional outcomes cannot be ascribed to "E-pericytes"; it remains possible that endothelial Tgfbr2 overexpression affects EB leakage, CBF, and behavior through alternative mechanisms.

      In response to this comment, authors wrote: "in Figures 9A-B, we observed no significant difference in Evans blue leakage between the Tgfbr2 overexpression group and the Tgfbr2 overexpression + DTA group (P=0.8153), this suggests that the impact of Tgfbr2 overexpression on the blood-brain barrier (BBB) is primarily attributed from the E-pericytes generated by Tgfbr2 expression."

      I do not see data from a Tgfbr2 overexpression-only group in Fig. 9B. Further, I do not understand authors' logic: If the mechanism by which EC Tgfbr2 overexpression acts to reduce BBB leakage is by increasing the number of "E-pericytes," depleting "E-pericytes" with DTA in this context should increase BBB leakage.

      (6) Single-cell and bulk RNA-seq data are not available in a public repository (such as GEO). Depositing these data would facilitate their independent reevaluation and reuse.

      In response to this comment, authors indicated they submitted data to GEO, but did not provide an accession number.

    3. Reviewer #3 (Public review):

      Summary:

      The data and experiments presented in that study convincingly show that a subpopulation of endothelial cells undergo transformation into pericyte-like cells after stroke in mice. These so-called "E-pericytes" are protective and might present a new target for stroke recovery. The authors used a huge battery of different techniques and modified signaling pathways and cellular interactions using several genetic and pharmacological tools to show that TGFbeta and EndoMT are causes of this transformation.

      Strengths:

      The amount of different genetic and pharmacological approaches in combination with sophisticated techniques such as single-cell RNAseq is impressive and convincing. The results support their conclusions and the authors achieved their aims. The findings will strongly impact the field of cerebrovascular recovery after stroke and might open up new therapeutic targets.

      Weaknesses:

      In addition to improving the written and graphical presentation of the results, there is only one point I would like to see clarified: the inclusion of additional experiments, even if they have already been performed but are not applicable due to methodological difficulties regarding the role of Procr+ cells. Negative results also help the scientific community avoid unnecessary experiments and advance understanding.

    1. Reviewer #1 (Public review):

      Summary:

      The paper by Tolossa et al. presents classification studies that aim to predict the anatomical location of a neuron from the statistics of its in-vivo firing pattern. They study two types of statistics (ISI distribution, PSTH) and try to predict the location at different resolutions (region, subregion, cortical layer).

      Strengths:

      This paper provides a systematic quantification of the single-neuron firing vs location relationship.

      The quality of the classification setup seems high.

      The paper uncovers that, at the single neuron level, the firing pattern of a neuron carries some information on the neuron's anatomical location, although the predictive accuracy is not high enough to rely on this relationship in most cases.

      Weaknesses:

      As the authors mention in the Discussion, it is not clear whether the observed differences in firing is epiphenomenal. If the anatomical location information is useful to the neuron, to what extent can this be inferred from the vicinity of the synaptic site, based on the neurotransmitter and neuromodulator identities? Why would the neuron need to dynamically update its prediction of the anatomical location of its pre-synaptic partner based on activity when that location is static, and if that information is genetically encoded in synaptic proteins, etc (e.g., the type of the synaptic site)? Note that the neuron does not need to classify all possible locations to guess the location of its pre-synaptic partner because it may only receive input from a subset of locations. Ultimately, the inability to dissect whether the paper's findings point to a mechanism utilized by neurons or merely represent an epiphenomenon is the main weakness of the curious, though somewhat weak, observations described in this paper.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Tolossa et al. analyze Inter-spike intervals from various freely available datasets from the Allen Institute and from a dataset from Steinmetz et al.. They show that they can modestly decode between gross brain regions (Visual vs. Hippocampus vs. Thalamus), and modestly separate sub areas within brain regions (DG vs. CA1 or various visual brain areas). The core result is that a multi-layer perceptron trained on the ISI distributions can modestly classify different brain areas and perhaps in a reasonably compelling way generalize across animals. The result is interesting but the exact problem formulation still feels a tad murky to me because I am worried the null is a strawman and I'm unsure if anyone has ever argued for this null hypothesis ("the impact of anatomy on a neuron's activity is either nonexistent or unremarkable"). Given the patterns of inputs to different brain areas and the existence of different developmental origin and different cell types within these areas, I am unclear why this would be a good null hypothesis. Nevertheless, the machine learning is reasonable, and the authors demonstrate that a nonlinear population based classifier can pull out reasonable information about the brain area and layer.

      Strengths:

      The paper is reasonably well written, and the definitions are quite well done. For example, the authors clearly explained transductive vs. inductive inference in their decoders. E.g., transductive learning allows the decoder to learn features from each animal, whereas inductive inference focuses on withheld animals and prioritizes the learning of generalizable features. The authors walk the reader through various analyses starting as simply as PCA, then finally showing a MLP trained on ISI distributions and PSTHs performs modestly well in decoding brain area. The key is ISI distributions work well in inductive settings for generalizing from one mouse to the other.

      Weaknesses:

      As articulated in my overall summary, I still found the null hypothesis a tad underwhelming. I am not sure this is really a valid null hypothesis ("the impact of anatomy on a neuron's activity is either nonexistent or unremarkable"), although in the statistical sense it is fine. The authors took on board some of the advice from the first review and clarified the paper but there are portions that are unnecessarily verbose (e.g., "Beyond fundamental scientific insight, our findings may be of benefit in various practical applications, such as the continued development of brain-machine interfaces and neuroprosthetics"). Also, given that ISIs cannot separate between visual areas, why is the statement that these are conserved. I still find it somewhat underwhelming that the thalamus, hippocampus , and visual cortex have different ISI distributions. Multiple researchers have reported similar things in cortex perhaps without the focus on decoding area from these ISI distributions.

      All in all, it is an interesting paper with the notion that ISI distributions can modestly predict brain area and layer. It could have some potential for a tool for neuropixels, although this needs to be developed further for this use case.

    1. Joint Public Review:

      This study presents novel insights into the formation and characterization of a penetration ring during host infection by Magnaporthe oryzae. Based on the solid genetic evidence and localization data, the authors demonstrate the structural presence of the penetration ring and the contribution of Ppe1 to fungal virulence. Nevertheless, the mechanisms through which the penetration ring influences host-pathogen interaction, including its potential function in effector translocation, remain only partially resolved. Further work using higher-resolution imaging and functional assays will help address this knowledge gap. Overall, the findings are valuable for advancing our understanding of plant-pathogen interactions, though important mechanistic questions remain open.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a neural mechanism underlying the perception of ambiguous images: neuromodulation changes the gain of neural circuits promoting a switch between two possible percepts. Converging evidence for this is provided by indirect measurements of neuromodulatory activity and large-scale brain dynamics which are linked by a neural network model. However, both the data analysis as well as the computational modeling are incomplete and would benefit from a more rigorous approach.

      This is a revised version of the manuscript which, in my view, is a considerable step forward compared to the original submission.

      In particular, the authors now model phasic gain changes in the RNN, based on the network's uncertainty. This is original and much closer to what is suggested by the phasic pupil responses. They also show that switching is actually a network effect because switching times depend on network configuration (Fig 2). This resolves my main comments 1 and 2 about the model.

      The mechanism, as I understand it, is different from what the authors described before in the RNN with tonic gain changes. As uncertainty increases, the network enters a regime in which the two excitatory populations start to oscillate. My intuition is that this oscillation arises from the feedback loop created by the new gain control mechanism. If my intuition is correct, I think it would be worth to explain this mechanism in the paper more explicitly.

      Comments on revisions:

      This is a second revision. I have no further comments. The authors have not answered the question that I had in the previous round (about the origin of oscillations in the RNN). I think this topic deserves to be explored in more detail but perhaps that is beyond the scope of the current paper.

    2. Reviewer #2 (Public review):

      This paper tests the hypothesis that perceptual switches during the presentation of ambiguous stimuli are accompanied by changes in neuromodulation that alter neural gain and trigger abrupt changes in brain activity. To test this hypothesis, the study combines pupillometry, artificial recurrent network (RNN) analysis and fMRI recording. In particular, the study uses methods of energy landscape analysis inspired by physics, which is particularly interesting.

      Strengths<br /> - The authors should be commended for combining different methods (pupillometry, RNNs, fMRI) to test their hypothesis. This combination provides a mechanistic insight into perceptual switches in the brain and artificial neural networks.<br /> - The study combines different viewpoints and fields of scientific literature, including neuroscience, psychology, physics, dynamical systems. In order to make this combination more accessible to the reader, the different aspects are presented in a pedagogical way to be accessible to all fields.<br /> - This combination of methods and viewpoints is rarely done, so it is very useful.<br /> - The authors introduce dynamic gain modulation in their recurrent neural network, which is novel. They devote a section of the paper to studying the dynamics, fixed points and convergence of this type of network.

      Weaknesses<br /> - The study may not be specific to perceptual switches. This is because the study relies on a paradigm in which participants report when they identify a switch in the item category. Therefore, it is unclear whether the effects reported in the paper are related to the perceptual switch itself, to attention, or to the detection of behaviourally relevant events. The authors are cautious and explicitly acknowledge this point in their study.<br /> - The demonstration of the causal role of gain modulation in perceptual switches is partial. This causality is clearly demonstrated in the simulation work with the RNN. However, it is not fully demonstrated in the pupil analysis and the fMRI analysis. One reason is that this work is correlative (which is already very informative).<br /> - Some effects may reflect the expectation of a perceptual switch rather than the perceptual switch itself. To mitigate this risk, the design of the fMRI task included catch trials, in which no switch occurs, to reduce the expectation of a switch. The pupil study, however, did not include such catch trials.<br /> - The paper uses RNN-based modelling to provide mechanistic insight into the role of gain modulation in perceptual switches. However, the RNN solves a task that differs from that performed by human participants, which may limit the explanatory value of the model. The RNN is provided with two inputs characterising the sensory evidence supporting the first and last image category in the sequence (e.g. plane and shark). In contrast, observers in the task don't know in advance the identity of the last image at the beginning of the sequence. The brain first receives sensory evidence about the image category (e.g. plane) with which the sequence begins, which is very easy to recognise, then it sees a sequence of morphed images and has to discover what the final image category will be. To discover the final image category, the brain considers several possibilities for the second images (it is a shark?, a frog?, a bird?, etc.), rather than comparing the likelihood of just two categories. This search process among many alternatives and the perceptual switch in the task is therefore different from the competition between only two inputs in the RNN.<br /> - Another aspect of the motivation for the RNN model remains unclear. The authors introduce dynamic gain modulation in the RNN, but it is not clear what the added value of dynamic gain modulation is. Both static (Fig. S1) and dynamic (Fig. 2F) gain modulation lead to the predicted effect: faster switching when the gain is larger.<br /> - The authors are to be commended for addressing their research questions with multiple tools and approaches. There are links between the different parts of the study. The RNN and the pupil are linked by the notion of gain modulation, the RNN and the fMRI analysis are linked by the study of the energy landscape, the fMRI study and the pupil study are indirectly linked by previous work for this group showing that the peak in LC fMRI activity precedes a flattening of the energy landscape. These links are very interesting but could have been stronger and more complete.

      Comments on revisions:

      I thank the authors for their responses.<br /> My review presents points that the authors themselves present as weaknesses or limitations. It also includes points that cannot be addressed in a revision (e.g. causality).<br /> Regarding the fact that the RNN only considers two categories, whereas subjects consider more categories (because they don't know the final image), I have toned down my remark (removing "markedly" different, removing the fact that the hypothesis space is vast given that participants have some priors). I also removed the qualifier "mechanistically" different, because it can be understood in different ways. The point remains that the proposed model has 2 inputs, the corresponding network in the brain has >2 inputs (because it considers more categories than the RNN), which is different, and which is the point of my remark. I think it may limit the value of the model, but I don't think it is not "sensible".

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript reports that expression of the E. coli operon topAI/yjhQ/yjhP is controlled by the translation status of a small open reading frame, that authors have discovered and named toiL, located in the leader region upstream of the operon. Authors propose the following model for topAI activation: Under normal conditions, toiL is translated but topAI is not expressed because of Rho-dependent transcription termination within the topAI ORF and because its ribosome binding site and start codon are trapped in an mRNA hairpin. Ribosome stalling at various codons of the toiL ORF, prompted in this work by some ribosome-targeting antibiotics, triggers an mRNA conformational switch which allows translation of topAI and, in addition, activation of the operon's transcription because presence of translating ribosomes at the topAI ORF blocks Rho from terminating transcription. The model is appealing and several of the experimental data mainly support it. However, it remains unanswered what is the true trigger of the translation arrest at toiL and what is the physiological role of the induced expression of the topAI/yjhQ/yjhP operon.

    2. Reviewer #2 (Public review):

      Summary:

      Baniulyte and Wade describe how translation of an 8-codon uORF denoted toiL upstream of the topAI-yjhQP operon is responsive to different ribosome-targeting antibiotics, consequently controlling translation of the TopAI toxin as well as Rho-dependent termination with the gene.

      Strengths:

      The authors used multiple different approaches such as a genetic screen to identify factors such as 23S rRNA mutations that affect topA1 expression and ribosome profiling to examine the consequences of various antibiotics on toiL-mediated regulation.

      Weaknesses: Future experiments will be needed to better understand the physiological role of the toiL-mediated regulation and elucidate the mechanism of specific antibiotic sensing.

      The results are clearly described, and the revisions have helped to improve the presentation of the data.

    3. Reviewer #3 (Public review):

      The authors provide convincing data to support an elegant model in which ribosome stalling by ToiL promotes downstream topAI translation and prevents premature Rho-dependent transcription termination. However, the physiological consequences of activating topAI-yjhQP expression upon exposure to various ribosome-targeting antibiotics remain unresolved. The authors have satisfactorily addressed all major concerns raised by the reviewers, particularly regarding the SHAPE-seq data. Overall, this study underscores the diversity of regulatory ribosome-stalling peptides in nature, highlighting ToiL's uniqueness in sensing multiple antibiotics and offering significant insights into bacterial gene regulation coordinated by transcription and translation.

      [Editors' note: The earlier public reviews are included. No additional reviews were requested.]

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors reveal that GIF/MT-3 regulates the zinc homeostasis depending on the cellular redox status. The manuscript technically sounds, and their data concretely suggest that the recombinant MTs, not only GIF/MT-3 but also canonical MTs such as MT-1 and MT-2, contain sulfane sulfur atoms for the Zn-binding. The scenario proposed by the authors seems to be reasonable to explain the Zn homeostasis by the cellular redox balance.

      Strengths:

      The data presented in the manuscript solidly reveal that recombinant GIF/MT-3 contains sulfane sulfur.

      Weaknesses:

      It remains unclear whether native MTs, in particular induced MTs in vivo contain sulfane sulfur or not.

      Comments on revisions:

      Although the authors have revealed the sulfane sulfur content in native MT-3, my question, namely, whether canonical MT-1 and MT-2 contained sulfane sulfur after the induction has been left.<br /> The authors argue that the biological significance of sulfane sulfur in MTs lies in its ability to contribute to metal binding affinity, provide a sensing mechanism against oxidative stress, and aid in the regulation of the protein. Due to their biological roles, induced MT-1 and MT-2 could contain sulfane sulfur in their molecules. Thus, I expect the authors to evaluate or explain the sulfane sulfur content in induced MT-1 and MT-2.

    2. Reviewer #3 (Public review):

      Summary:

      The authors were trying to show that a novel neuronal metallothionein of poorly defined function, GIF/MT3, is actually heavily persulfidated in both the Zn-bound and apo (metal-free) forms of the molecule as purified from a heterologous (bacterial) or native host. Evidence in support of this conclusion is strong, with both spectroscopic and mass spectrometry evidence strongly consistent with this general conclusion. The authors would appear to have achieved their aims.

      Strengths:

      The analytical data in support of the author's primary conclusions are strong. The authors also provide some modeling evidence that supports the contention that MT3 (and other MTs) can readily accommodate a sulfane sulfur on each of the 20 cysteines in the Zn-bound structure, with little perturbation of the overall structure. This is not the case with Cys trisulfides, which suggests that the persulfide-metallated state is clearly positioned at lower energy relative to the immediately adjacent thiolate- or trisulfidated metal coordination complexes.

      Weaknesses:

      The biological significance of the findings is not entirely clear. On the one hand, the analytical data are solid (albeit using a protein derived from a bacterial over-expression experiment), and yes, it's true that sulfane S can protect Cys from overoxidation, but everything shown in the summary figure (Fig. 9D) can be done with Zn release from a thiol by ROS, and subsequent reduction by the Trx/TR system. In addition, it's long been known that Zn itself can protect Cys from oxidation. I view this as a minor shortcoming that will motivate follow-up studies.

      Impact:

      The impact will be high since the finding is potentially disruptive to the MT field for sure. The sulfane sulfur counting experiment (the HPE-IAM electrophile trapping experiment) may well be widely adopted by the field. Those in the metals field always knew that this was a possibility, and it will interesting to see the extent to which metal binding thiolates broadly incorporate sulfane sulfur into their first coordination shells.

      Comments on revisions:

      The revised manuscript is only slightly changed from the original, with the inclusion of a supplementary figure (Fig. S2) and minor changes in the text. The authors did not choose to carry out the quantitative Zn binding experiment (which I really wanted to see), but given the complexities of the experiment, I'll let it go.

    1. Reviewer #1 (Public review):

      Summary:

      Laura Morano and colleagues have performed a screen to identify compounds that interfere with the formation of TopBP1 condensates. TopBP1 plays a crucial role in the DNA damage response, and specifically the activation of ATR. They found that the GSK-3b inhibitor AZD2858 reduced the formation of TopBP1 condensates and activation of ATR and its downstream target CHK1 in colorectal cancer cell lines treated with the clinically relevant irinotecan active metabolite SN-38. This inhibition of TopBP1 condensates by AZD2858 was independent from its effect on GSK-3b enzymatic activity. Mechanistically, they show that AZD2858 thus can interfere with intra-S-phase checkpoint signaling, resulting in enhanced cytostatic and cytotoxic effects of SN-38 (or SN-38+Fluoracil aka FOLFIRI) in vitro in colorectal carcinoma cell lines.

      Major comments from the first round of peer review:

      Overall the work is rigorous and the main conclusions are convincing. However, they only show the effects of their combination treatments on colorectal cancer cell lines. I'm worried that blocking the formation of TopB1 condensates will also be detrimental in non-transformed cells. Furthermore it is somewhat disappointing that it remains unclear how AZD2858 blocks self-assembly of TopBP1 condensates, although I understand that unraveling this would be complex and somewhat out-of-reach for now. Here are some specific points for improvement:

      1) The authors conclude that "These data supports [sic] the feasibility of targeting condensates formed in response to DNA damage to improve chemotherapy-based cancer treatments". To support this conclusion the authors need to show that proliferating non-transformed cells (e.g. primary cell cultures or organoids) can tolerate the combination of AZD2858 + SN-38 (or FOLFIRI) better than colorectal cancer cells.

      2) Page 19 "This suggests that the combination... arrests the cell cycle before mitosis in a DNA-PKsc-dependent manner." I find the remark that this arrest would be DNA-PKcs-dependent too speculative. I suppose that the authors base this claim on reference 55 but if they want to support this claim they need to prove this by adding DNA-PKcs inhibitors to their treated cells.

      3) When discussing Figure S5B the authors claim that SN-38 + AZD2858 progressively increases the fractions of BrdU positive cells, but this is not supported by statistical analysis. The fractions are still very small, so I would like to see statistics on these data. Alternatively, the authors could take out this conclusion.

      Comments on revised version:

      I have reviewed the revised manuscript and read the rebuttal. The authors have carefully addressed my concerns. There is however one point that needs further work:

      This follows up on my major point #1 in my initial review. I had I asked the authors to demonstrate that FOLFIRI + AZD are less toxic to untransformed colorectal cells than colorectal cancer cell lines.

      It is good to see that the authors took my advice and show effects of the drug treatments on the untransformed colorectal cell line CCD841. It seems to be less sensitive to AZD and FOLFIRI in the figure in the rebuttal. What surprises me is that I cannot find these new figures anywhere in the revised manuscript. Also, the data seem preliminary, because I do not see any standard errors in the graphs, and I cannot find a description of the time of drug incubation. I ask the authors to make sure that the CCD841 data are reproducible, and make sure they incorporate the data in the revised manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      In 2021 (PMID: 33503405) and 2024 (PMID: 38578830) Constantinou and colleagues published two elegant papers in which they demonstrated that the Topbp1 checkpoint adaptor protein could assemble into mesoscale phase-separated condensates that were essential to amplify activation of the PIKK, ATR, and its downstream effector kinase, Chk1, during DNA damage signalling. A key tool that made these studies possible was the use of a chimeric Topbp1 protein bearing a cryptochrome domain, Cry2, which triggered condensation of the chimeric Topbp1 protein, and thus activation of ATR and Chk1, in response to irradiation with blue light without the myriad complications associated with actually exposing cells to DNA damage.

      In this current report Morano and co-workers utilise the same optogenetic Topbp1 system to investigate a different question, namely whether Topbp1 phase-condensation can be inhibited pharmacologically to manipulate downstream ATR-Chk1 signalling. This is of interest, as the therapeutic potential of the ATR-Chk1 pathway is an area of active investigation, albeit generally using more conventional kinase inhibitor approaches.

      The starting point is a high throughput screen of 4730 existing or candidate small molecule anti-cancer drugs for compounds capable of inhibiting the condensation of the Topbp1-Cry2-mCherry reporter molecule in vivo. A surprisingly large number of putative hits (>300) were recorded, from which 131 of the most potent were selected for secondary screening using activation of Chk1 in response to DNA damage induced by SN-38, a topoisomerase inhibitor, as a surrogate marker for Topbp1 condensation. From this the 10 most potent compounds were tested for interactions with a clinically used combination of SN-38 and 5-FU (FOLFIRI) in terms of cytotoxicity in HCT116 cells. The compound that synergised most potently with FOLFIRI, the GSK3-beta inhibitor drug AZD2858, was selected for all subsequent experiments.

      AZD2858 is shown to suppress the formation of Topbp1 (endogenous) condensates in cells exposed to SN-38, and to inhibit activation of Chk1 without interfering with activation of ATM or other endpoints of damage signalling such as formation of gamma-H2AX or activation of Chk2 (generally considered to be downstream of ATM). AZD2858 therefore seems to selectively inhibit the Topbp1-ATR-Chk1 pathway without interfering with parallel branches of the DNA damage signalling system, consistent with Topbp1 condensation being the primary target. Importantly, neither siRNA depletion of GSK3-beta, or other GSK3-beta inhibitors were able to recapitulate this effect, suggesting it was a specific non-canonical effect of AZD2858 and not a consequence of GSK3-beta inhibition per se.

      To understand the basis for synergism between AZD2858 and SN-38 in terms of cell killing, the effect of AZD2858 on the replication checkpoint was assessed. This is a response, mediated via ATR-Chk1, that modulates replication origin firing and fork progression in S-phase cell under conditions of DNA damage or when replication is impeded. SN-38 treatment of HCT116 cells markedly suppresses DNA replication, however this was partially reversed by co-treatment with AZD2858, consistent with the failure to activate ATR-Chk1 conferring a defect in replication checkpoint function.

      Figures 4 and 5 demonstrate that AZD2858 can markedly enhance the cytotoxic and cytostatic effects of SN-38 and FOLFIRI through a combination of increased apoptosis and growth arrest according to dosage and treatment conditions. Figure 6 extends this analysis to cells cultured as spheroids, sometimes considered to better represent tumor responses compared to single cell cultures.

      Significance:

      Liquid phase separation of protein complexes is increasingly recognised as a fundamental mechanism in signal transduction and other cellular processes. One recent and important example was that of Topbp1, whose condensation in response to DNA damage is required for efficient activation of the ATR-Chk1 pathway. The current study asks a related but distinct question; can protein condensation be targeted by drugs to manipulate signalling pathways which in the main rely on protein kinase cascades?

      Here, the authors identify an inhibitor of GSK3-beta as a novel inhibitor of DNA damage-induced Topbp1 condensation and thus of ATR-Chk1 signalling.

      This work will be of interest to researchers in the fields of DNA damage signalling, biophysics of protein condensation, and cancer chemotherapy.

      Comments on latest version:

      Morano et al. have revised their manuscript in response to the points raised by reviewer #3 as follows.

      1) Fig. 2E: Correcting the previously erroneous labelling of this Fig. makes it match the textual description.

      2) Figs 3A and B: The revised textual description of the flow cytometry BrdU incorporation is now precise.

      3) Fig. 3E: Removing the suspect WB images is a pragmatic decision that does not significantly affect the overall conclusions of the paper.

      4) Fig. 3D: Despite its puzzling appearance this data is now described accurately in the text as "DSBs remained elevated after the combined treatment" rather than "increased after the combined treatment. A more convincing increase in the presumed damaged DNA band is evident in Fig. 4D when AZD2858 is combined with a much lower concentration of SN38 (1.5nM) which could mean that the concentration used in Fig. 3D (300nM) induced maximal damage that could not be further enhanced.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have extended their previous research to develop TOPBP1 as a potential drug target for colorectal cancer by inhibiting its condensation. Utilizing an optogenetic approach, they identified the small molecule AZD2858, which inhibits TOPBP1 condensation and works synergistically with first-line chemotherapy to suppress colorectal cancer cell growth. The authors investigated the mechanism and discovered that disrupting TOPBP1 assembly inhibits the ATR/Chk1 signaling pathway, leading to increased DNA damage and apoptosis, even in drug-resistant colorectal cancer cell lines.

      Comments on latest version:

      The authors have addressed most of the concerns that I raised in the first round of revision and I have no further questions. I appreciate the authors's efforts in carrying out an preliminary in vivo work, although as the authors pointed out the compound seems to be not effective in vivo. Future work is desired to address this to clarify the significance of the work.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors present a thorough mechanistic study of the J-domain protein Apj1 in Saccharomyces cerevisiae, establishing it as a key repressor of Hsf1 during the attenuation phase of the heat shock response (HSR). The authors integrate genetic, transcriptomic (ribosome profiling), biochemical (ChIP, Western), and imaging data to dissect how Apj1, Ydj1, and Sis1 modulate Hsf1 activity under stress and non-stress conditions. The work proposes a model where Apj1 specifically promotes displacement of Hsf1 from DNA-bound heat shock elements, linking nuclear PQC to transcriptional control.

      Strengths:

      Overall, the work is highly novel - this is the first detailed functional dissection of Apj1 in Hsf1 attenuation. It fills an important gap in our understanding of how Hsf1 activity is fine-tuned after stress induction, with implications for broader eukaryotic systems. I really appreciate the use of innovative techniques, including ribosome profiling and time-resolved localization of proteins (and tagged loci) to probe the Hsf1 mechanism. The overall proposed mechanism is compelling and clear - the discussion proposes a phased control model for Hsf1 by distinct JDPs, with Apj1 acting post-activation, while Sis1 and Ydj1 suppress basal activity.

      The manuscript is well-written and will be exciting for the proteostasis field and beyond.

    2. Reviewer #2 (Public review):

      Despite over 50 years of investigation, our understanding of how the ubiquitous heat shock response, governed by the transcription factor HSF1, was regulated was minimal. In recent years, a coordinated yet simple negative feedback circuit has been elucidated in high detail that centers on the chaperone Hsp70 as a direct-binding inhibitor of HSF1 transcriptional activation. However, roles for the obligatory Hsp70 J-domain partner co-chaperones are currently poorly understood. The present study applies several orthogonal techniques to the question and uncovers an unexpected role for the nuclear JDP Apj1 in attenuation of the heat shock response (HSR) via removal of Hsf1 from HSEs in heat shock gene promoter regions. Interestingly, Apj1 appears to play no role in initiating repression of Hsf1, as null mutants do not exhibit constitutive derepression of the HSR. This role is likely filled by the general nucleo/cytoplasmic JDP Ydj1, as previously reported. These results enhance understanding of HSR regulation and underscore the pivotal role that chaperones play in controlling pro-survival gene expression.

      Overall, the work is exceptionally well done and controlled, and the results are properly and appropriately interpreted. Several of the approaches, while powerful, are somewhat indirect (i.e., following gene expression via ribosomal profiling) but ultimately provide a compelling answer to the main question being asked. However, at the end of the day, there is really only one major finding here: Apj1 regulates Hsf1 attenuation via Hsp70. That finding is strongly supported by the experimental data but lacks the one piece of mechanistic evidence found in other recent papers - differential binding of Ssa1/2 to Hsf1 at either the N- or C-terminal binding sites.

    3. Reviewer #3 (Public review):

      Summary:

      The heat shock response (HSR) is an inducible transcriptional program that has provided paradigmatic insight into how stress cues feed information into the control of gene expression. The recent elucidation that the chaperone Hsp70 controls the DNA binding activity of the central HSR transcription factor Hsf1 by direct binding has spurred the question of how such a general chaperone obtains specificity. This study has addressed the next logical question: how J-domain proteins execute this task in budding yeast, the leading cell model for studying the HSR. While an involvement and in part overlapping function of general class A and B J-domain proteins, Ydj1 and Sis1 are indicated by the genetic analysis, a highly specific role for the class A Apj1 in displacing Hsf1 from the promoters is found, unveiling specificity in the system.

      Strengths

      The central strong point of the paper is the identification of class A J-domain protein Apj1 as a specific regulator of the attenuation of the HSR by removing Hsf1 from HSEs at the promoters. The genetic evidence and the ChIP data strongly support this claim. This identification of a specific role for a lowly expressed nuclear J-domain protein changes how the wiring of the HSR should be viewed. It also raises important questions regarding the model of chaperone titration, the concept that a chaperone with limited availability is involved in a tug of war involving competing interactions with misfolded protein substrates and regulatory interactions with Hsf1. Perhaps Apj1, with its low levels and interactions with misfolded and aggregated proteins in the nucleus, is the titrated Hsp70 (co)chaperone that determines the extent of the HSR? This would mean that Apj1 is at the nexus of the chaperone titration mechanism. Although Apj1 is not a highly conserved J domain protein among eukaryotes the strength of the study is that is provides a conceptual framework for what may be required for chaperone titration in other eukaryotes: One or more nuclear J-domain proteins with low nuclear levels that has an affinity for Hsf1 and that can become limiting due to interactions with misfolded Hsp70 proteins. The provides a pathway for how these may be identified using, for example, ChIP-seq.

      Weaknesses

      A built-in challenge when studying the mechanism of the HSR is the general role of the Hsp70 chaperone system and its J domain proteins. Indeed, a weakness of the study is that it is unclear which of the phenotypic effects have to do with directly recruiting Hsp70 to Hsf1 dependent on a J domain protein and what instead is an indirect effect of protein misfolding caused by the mutation. This interpretation problem is clearly and appropriately dealt with in the manuscript text and in experiments, but is of such fundamental nature that it cannot easily be fully ruled out. One way forward is a reconstituted biochemical system that monitors how Hsf1 DNA binding is affected by the Hsp70 system, misfolded proteins, and the various J domain proteins. Yet this approach is clearly beyond the scope of this study.

    1. Reviewer #1 (Public review):

      Strengths:

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The Methods are detailed and well described and written in such a fashion that they are transparent and repeatable.

      Weaknesses:

      I only have one major issue, which is possibly a product of the structure requirements of the paper/journal. With the Results and Discussion, line 91 onwards. I understand the structure of the paper necessitates delving immediately into the results, but it is quite hard to follow due to lack of background information. In comparison to the Methods, which are incredibly detailed, the Results in the main section read quite superficial. They provide broad overviews of broad findings but I found it very hard to actually get a picture of the main results in its current form. For example, how the different species factor in, etc.

      The authors have done a good job of responding to the reviewer's comments, and the paper is now much improved.

    2. Reviewer #2 (Public review):

      I would like to thank the authors for the revision and the input they invested in this study.

      With the revised text of the study, my earlier criticism holds, and your arguments about the counterfactual approach are irrelevant to that. The recent rise of the counterfactual approach might likely mirror the fact that there are too many scientists behind their computers, and few go into the field to collect in situ data. Studies like the one presented here are a good intellectual exercise but the real impact is questionable. All your main conclusions are inferred from published studies on 7! bird species. In addition, spatial sampling in those seven species was not ideal in relation to your target questions. Thus, no matter how fancy your findings look, the basic fact remains that your input data were for 7 bird species only! Your conclusion, „our study provides a novel understanding of how QTP shapes migration patterns of birds, " is simply overstretching.

      The way you respond to my criticism on L 81-93 is something different than what you admit in the rebuttal letter. The text of the ms is silent about the drawbacks and instead highlights your perspective. I understand you; you are trying to sell the story in a nice wrapper. In the rebuttal you state: „we assume species' responses to environments are conservative and their evolution should not discount our findings." But I do not see that clearly stated in the main text.

      In your rebuttal, you respond to my criticism of "No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites" when you responded: ... "we can track the movement of species every week, and capture the breeding and wintering areas for specific populations" I am having a feeling that you either play with words with me or do not understand that from eBird data nobody will be ever able to estimate population-specific teleconnections between breeding and wintering areas. It is simply impossible as you do not track individuals. eBird gives you a global picture per species but not for particular populations. You cannot resolve this critical drawback of your study. I am sorry that you invested so much energy into this study, but I see it as a very limited contribution to understanding the role of a major barrier in shaping migration.

      My modest suggestion for you is: go into the field. Ideally use bird radars along the plateau to document whether the birds shift the directions when facing the barrier.

    1. Reviewer #1 (Public review):

      Summary:

      This study considers learning with brain-computer interfaces (BCIs) in nonhuman primates, and in particular, the high speed and flexibility with which subjects learn to control these BCIs.

      The authors raise the hypothesis that such learning is based on controlling a small number of input or control variables, rather than directly adapting neural connectivity within the network of neurons that drive the BCI. Adapting a small number of input variables would circumvent the issue of credit assignment in high dimensions and allow for quick learning, potentially using cognitive strategies ("re-aiming"). Based on a computational model, the authors show that such a strategy is viable in a number of experimental settings and reproduces previous experimental observations:

      (1) Differences in learning with decoders either within or outside of the neural manifold (the space spanned by the dominant modes of neural activity).

      (2) A novel, theory-based prediction on biases in BCI learning due to the positivity of neural firing rates, which is then confirmed in data from previous experiments.

      (3) An example of "illusory credit assignment": Changes in neurons' tuning curves depending on whether these neurons are affected by changes in the BCI decoder, even though learning only happens on the level of low-dimensional control variables.

      (4) A reproduction of results from operant conditioning of individual neurons, in particular, the observation that it is difficult to change the firing rates of neurons strongly correlated before learning in different directions (up vs down).

      Taken together, these observations yield strong evidence for the plausibility that subjects use such a learning strategy, at least during short-term learning.

      Strengths:

      Text and figures are clearly structured and allow readers to understand the main concepts well. The study presents a very clear and simple model that explains a number of seemingly disparate or even contradictory observations (neuron-specific credit assignment vs. low-dimensional, cognitive control). The predicted and tested bias due to positivity of firing rates provides a neat example of how such a theory can help understand experimental results. The idea that subjects first use a small number of command variables (those sufficient in the calibration task) and later, during learning, add more variables provides a nice illustration of the idea that learning takes place on multiple time scales, potentially with different mechanisms at play. On a more detailed level, the study is a nice example of closely matching the theory to the experiment, in particular regarding the modeling of BCI perturbations.

      Weaknesses:

      Overall, I find only two minor weaknesses. First, the insights of this study are, first and foremost, of feed-forward nature, and a feed-forward network would have been enough (and the more parsimonious model) to illustrate the results. While using a recurrent neural network (RNN) shows that the results are, in general, compatible with recurrent dynamics, the specific limitations imposed by RNNs (e.g., dynamical stability, low-dimensional internal dynamics) are not the focus of this study. Indeed, the additional RNN models in the supplementary material show that under more constrained conditions for the RNN (low-dimensional dynamics), using the input control alone runs into difficulties.

      Second, explaining the quantitative differences between the model and data for shifts in tuning curves seems to take the model a bit too literally. The model serves greatly for qualitative observations. I assume, however, that many of the unconstrained aspects of the model would yield quantitatively different results.

    2. Reviewer #2 (Public review):

      Summary :

      The paper proposes a model to explain the learning that occurs in brain-computer interface (BCI) tasks when animals need to adapt to novel BCI decoders. The model consists of a network formulation of the "re-aiming" learning strategy, which assumes that BCI learning does not modify the underlying neural circuitry, but instead occurs through a reorganization of existing neural activity patterns.

      The authors formalize this in a recurrent neural network (RNN) model, driven by upstream inputs that live in a low-dimensional space.

      They show that modelling BCI learning as reorganization of these upstream inputs can explain several experimental findings, such as the difference in the ability of animals to adapt to within vs outside-manifold perturbations, biases in the decoded behaviour after within-manifold perturbations, or qualitative changes in the neural responses observed during credit assignment rotation perturbations or operant conditioning of individual neurons.

      Overall, while the idea of re-aiming as a learning strategy has previously been proposed in the literature, the authors show how it can be formalized in a network model, which allows for more direct comparisons to experimental data.

      Strengths:

      The paper is very well written. The presentation of the model is clear, and the use of vanilla RNN dynamics driven by upstream inputs that are constant in time is consistent with the broader RNN modeling literature.

      The main value of the paper lies in the fact that it proposes a network implementation for a learning strategy that had been proposed previously. The network model has a simple form, but the optimization problem is performed in the space of inputs, which requires the authors to solve a nonlinear optimization problem in that space.

      While some of the results (eg the fact that the model can adapt to within but not outside-manifold perturbations) are to be expected based on the model assumptions, having a network model allows to make more direct and quantitative comparisons to experiments, to investigate analytically how much the dimension of the output is constrained by the input, and to make predictions that can be tested in data.

      The authors perform such comparisons across three different experiments. The results are clearly presented, and the authors show that they hold for various RNN connectivities.

      Weaknesses :

      The authors mention alternative models (eg, based on synaptic plasticity in the RNN and/or input weights) that can explain the same experimental data that they do, they do not provide any direct comparisons to those models.

      Thus, the main argument that the authors have in favor of their model is the fact that it is more plausible because it relies on performing the optimization in a low-dimensional space. It would be nice to see more quantitative arguments for why the re-aiming strategy may be more plausible than synaptic plasticity (either by showing that it explains data better, or explaining why it may be more optimal in the context of fast learning).

      In particular, the authors model the adaptation to outside-manifold perturbations (OMPs) through a "generalized re-aiming strategy". This assumes the existence of additional command variables, which are not used in the original decoding task, but can then be exploited to adapt to these OMPs. While this model is meant to capture the fact that optimization is occurring in a low-dimensional subspace, the fact that animals take longer to adapt to OMPs suggests that WMPs and OMPs may rely on different learning mechanisms, and that synaptic plasticity may actually be a better model of adaptation to OMPs. It would be important to discuss how exactly generalized re-aiming would differ from allowing plasticity in the input weights, or in all weights in the network. Do those models make different predictions, and could they be differentiated in future experiments?

    1. Reviewer #1 (Public review):

      In this manuscript, Kerlin et al. introduce a novel and conceptually important framework for analyzing allelic transcriptional heterogeneity using single-molecule microscopy. The authors aim to distinguish regulatory interactions occurring in cis-between genes on the same allele-from those in trans, between alleles, thereby extending classical models of transcriptional noise into the spatial and allelic domain. They apply this approach to three genes within the FOS locus in MCF7 cells, under both basal and estrogen-induced conditions, and report distinct patterns of transcriptional coordination that depend on gene proximity and chromatin insulation.

      A major strength of this work lies in its innovative methodology and the clarity with which the analytical framework is described. The authors effectively build on foundational ideas in gene expression variability and adapt them to resolve a previously underexplored question - how nearby genes on the same allele may influence each other's transcriptional activity. The imaging data are of high quality, the mathematical derivation is comprehensive, and the overall presentation is strong. The study makes a compelling argument for the value of allele-resolved analysis, highlighting that failure to account for allelic and chromatin context may lead to inaccurate or incomplete interpretations of regulatory mechanisms.

      That said, the scope of the data is currently limited to a single locus in one cell type. As such, some of the general conclusions, particularly those in the abstract and discussion, may be overstated. The evidence supports the findings within the FOS locus, but it remains unclear whether the observed patterns apply broadly across the genome. The utility and generality of the method would be significantly strengthened by additional validation.

      One specific area where the analysis could be improved is through the inclusion of randomized control comparisons. For example, the results presented in Figure 2D and analyzed in Figure 3 could be compared against randomized datasets to establish a baseline of what would be expected by chance. This would help determine the significance of the observed correlations and strengthen confidence in the model's specificity.

      Additionally, the framework should be tested on simulated datasets with a known ground truth to evaluate the robustness of its assumptions and the reliability of its outputs. Testing the approach against existing allele-specific single-cell datasets from other studies would also help assess its generalizability. While the authors suggest the framework could be extended to transcriptomics and spatial omics, these possibilities are not explored in the current study, and future work in this direction should be clearly marked as such.

      In summary, this manuscript presents a methodologically rigorous and biologically significant advance in the study of gene regulation. The approach fills an important gap by enabling allele-resolved, locus-specific analysis of transcriptional coordination, with implications for both basic science and clinical applications. The conclusions are well supported within the studied context, but further validation - particularly through randomized data comparison, simulations, and broader application - would be valuable in assessing the broader utility of the framework.

    2. Reviewer #2 (Public review):

      Summary:

      I am not familiar with mathematical modeling of gene expression, so I will evaluate this manuscript solely from a biological point of view.

      Kerlin et al. combined single-molecule RNA FISH and mathematical modeling approaches to quantitatively characterize changes in the transcriptional dynamics of three neighboring genes at the FOS locus in response to estradiol (E2) stimulation. They showed that the neighboring JDP2 and BATF genes, located on the same side of the TAD boundary, exhibit highly coordinated bursting dynamics. While FOS and JDP2/BATF are strongly insulated (~7:1 intra-to-inter-domain contact ratio) by the TAD boundary, correlated bursting dynamics were still observed between these gene pairs, suggesting that enhancers can bypass strong insulation sites. The authors proposed that burst co-occurrence arises from the activity of ERα-bound enhancers at the locus. They also proposed that the burst size correlation between two neighboring genes located on the same side of the TAD boundary results from local spreading of histone marks.

      Strengths:

      The direct visualization of coordinated transcriptional bursting across a strong insulation site is novel. This finding was carefully analyzed using the mathematical framework developed by the authors.

      Weaknesses:

      Several models were proposed based on single-molecule RNA FISH analysis of the FOS locus, but the generality of these findings remains uncertain. The proposed models were not directly tested through follow-up experiments, leaving the authors' conclusions largely speculative.

    3. Reviewer #3 (Public review):

      Summary

      Kerlin et.al combined single-molecule RNA FISH with oligonucleotide-based DNA FISH to directly examine the transcriptional activities of three adjacent genes at individual alleles in MCF7 cells. Importantly, they provided quantitative methods to resolve allele-specific (cis) and cell-to-cell (trans) variation and quantified the contribution of burst co-occurrence and burst size, which may help to more accurately analyze transcription coregulation. They found that transcriptional variability is largely gene-autonomous, and by disentangling burst co-occurrence and burst size after E2 induction, they proposed two distinct mechanisms of local gene regulation.

      Strengths:

      (1) Innovative Research Methods: Successfully integrates single-molecule RNA FISH with oligonucleotide-based DNA FISH to directly image the transcriptional activities of three adjacent genes at individual alleles. This enables the observation of transcriptional dynamics more precisely and provides a powerful tool for studying gene regulation.

      (2) Novel Data Analysis Approaches: Develops two new analysis methods to dissect the sources of gene activity (co)variation. One approach separates allele-extrinsic, allele-intrinsic, and gene-autonomous components, and the other quantifies the contributions of burst co-occurrence and burst size correlations. These methods help to more accurately analyze transcriptional correlations between genes and reveal potential regulatory mechanisms.

      Weaknesses:

      Biological Insights: The findings challenge the traditional view of contact insulation sites as strict regulators of gene coregulation and suggest two distinct coregulatory mechanisms influenced by local chromosome folding. However, expression activity of multiple genes is differentially correlated at the population-level or cell-level versus single-allele-level. More in-depth analysis is needed for further biological insights.

    1. Reviewer #1 (Public review):

      Summary:

      The authors hypothesized that the lung immune landscape in mice with diabetes and TB comorbidity is different from that of mice with DM-only or TB-only, or healthy mice. Systematically, the authors established the 'basal' lung immune landscape in DM or healthy animals before infection with Mycobacterium tuberculosis, allowing them to tease out changes in cell types with TB infection and focused subsequent studies on DM-TB and TB comparisons. The authors chose day 21 post-Mtb infection as the point of analysis since this is the peak of immune responses to Mtb infection as per an earlier study (Das et al. 2021). As expected, the authors found differences in the cellular composition of the DM mice with or without TB or TB-only mice, including reduced IFNg response, elevated Th17 cells, increased IL-16 signaling, and altered naive CD4+ and naive CD8+ T cell numbers. The authors have used a series of techniques for methodological and analytical approaches to identify potential pathways that can be targeted for therapies against DM-TB. However, the authors have failed to propose a model that could explain their observations at the time point tested, lowering enthusiasm for the conclusions of the study.

      Strengths:

      The strength of the study is the use of a validated model of mouse DM-TB and a meticulous approach to establish and define a 'baseline" lung cellular landscape in DM and healthy mice before Mtb infection. The use of an up-to-date analytical pipeline by the authors is commendable.

      The literature review is exhaustive, and the authors have put considerable effort into borrowing from other conditions where the identified genes of pathways have been implicated.

      Weaknesses:

      The key limitations of the study include:

      (1) The authors have failed to link a specific cell type, that is, Th17 cell activation, to or with IL-16 signaling as the drivers regulating conditions that contribute significantly to the dysregulated immune responses in DM-TB. For context, naive CD4+ and naive CD8+ T cells cannot be considered "specific cell types" because they have no determined cell fate; they could mature to any other cell type - cytotoxic T cells, Th1, or even Th17 or Tc17 cells.

      (2) Since day 21 post-Mtb infection is an earlier timepoint, the authors should have provided data on cellular composition in the experiments in Figure 7. From the work of Kornfeld and colleagues, there is delayed cell recruitment in DM-TB, but it is likely that later on, due to persistent inflammation (from chronic hyperglycemia), DM-TB mice have more or equal cell numbers in the lung. Anecdotally, the authors found differences in CFU at a later time point but not at 21 days post-infection. This fits with human studies where there is a higher prevalence of cavities in DM-TB compared to TB-only patients. The authors missed the opportunity to clarify this important point by excluding cellular data from the 56-day post-infection experiments.

      (3) The power of the study would be improved by the direct comparisons of three groups: DM vs DM-TB vs TB to recapitulate the human populations and allow the authors to address the question of 'why does DM worsen TB outcome?'. The current analysis of DM-TB vs TB is not fit for this because the TB is on a healthy background, while DM-TB is a result of two conditions that independently perturb immune homeostasis.

    2. Reviewer #2 (Public review):

      Summary:

      While immune cell distribution in tuberculosis (TB) is well documented, research on its disruption in diabetes-tuberculosis (DM-TB) comorbidity remains limited. In this study, Chaudhary et al. explore immune cell perturbations in DM-TB using single-cell RNA sequencing (scRNA-seq), providing key insights into the impaired host immune response. By elucidating the molecular mechanisms underlying immune dysfunction in DM-TB, this study addresses an important knowledge gap. The study demonstrates that diabetes impairs lung immune cell infiltration and contributes to a dampened immune response against Mycobacterium tuberculosis. Reduced Th1 and M1 macrophage populations indicate a compromised ability to mount an effective pro-inflammatory response, which is essential for TB control. The observed increase in IL-16 signaling and reduction in TNF and IFN-II responses suggest a shift toward a more immunosuppressive or dysregulated inflammatory state. The interplay between chronic inflammation, hyperglycemia, and dyslipidemia in diabetes further exacerbates immune dysfunction, reinforcing the idea that metabolic disorders significantly impact TB pathogenesis.

      Strengths:

      This well-designed study employs robust methodology, well-executed experiments, and a well-written manuscript. The use of scRNA-seq is a notable strength, offering high-resolution analysis of immune cell heterogeneity in the lung environment. Additionally, the study corroborates its findings in a long-term infection model, demonstrating that chronic M. tuberculosis (H37Rv) infection in diabetic mice leads to increased bacterial burden and worsened tissue pathology.

      Weaknesses:

      (1) The study focuses on CD3⁺ and CD11c⁺ cells but does not extensively examine other key immune players that may contribute to DM-TB pathogenesis. Given that diabetes affects multiple immune compartments, a broader immune profiling approach would provide a more comprehensive understanding.

      (2) While the study identifies increased IL-16 signaling and reduced TNF/IFN-II responses, the precise molecular mechanisms driving these changes remain unclear. Further investigation into metabolic-immune crosstalk (e.g., how hyperglycemia affects immune cell differentiation and cytokine secretion) would strengthen the mechanistic depth of the findings.

      (3) The study suggests targeting IL-16 and Th17 cells as potential therapeutic strategies; however, no experimental validation (e.g., testing IL-16 inhibitors in DM-TB models) is provided. Validating these interventions would enhance their translational relevance.

      (4) Incorporating clinical samples (e.g., PBMCs from DM-TB patients) could help bridge the gap between murine and human studies, offering more translational insights into disease mechanisms.

      Overall, this study provides valuable findings, but addressing these concerns would further strengthen its impact on understanding DM-TB immunopathogenesis.

    1. Reviewer #1 (Public review):

      Summary:

      The paper is well written and investigates the cross-species insemination of fish eggs with mouse sperm. I have a few major and minor comments.

      Strengths:

      The experiments are well executed and could provide valuable insights into the complex mechanisms of fertilization in both species. I found the information presented to be very interesting,

      Weaknesses:

      The rationale of some of the experiments is not well defined.

      Major Comments:

      (1) Figure 5<br /> I do not understand the rationale for performing experiments using CatSper-null sperm and CD9-null oocytes. It is well established that CatSper-null sperm are unable to penetrate the zona pellucida (ZP), so the relevance of this approach is unclear.

      (2) Micropyle penetration and sperm motility<br /> CatSper-null sperm are reportedly unable to cross the micropyle, but this could be due to their reduced motility rather than a lack of hyperactivation per se. Were these experiments conducted using capacitated or non-capacitated spermatozoa? What was the observed motility of CatSper-null sperm during these assays? Clarifying these conditions is essential to avoid drawing incorrect conclusions from the results.

      (3) Rheotaxis and micropyle navigation<br /> Previous studies have shown that CatSper-null sperm fail to undergo rheotaxis. Could this defect be related to their inability to locate and penetrate the micropyle? Exploring a potential shared mechanism could be informative.

      (4) Lines 61-74<br /> This paragraph omits important information regarding acrosomal exocytosis, which occurs prior to sperm-egg fusion. Including this detail would strengthen the discussion.

    2. Reviewer #2 (Public review):

      Summary:

      Garibova et al. investigated the conservation of sperm recognition and interaction with the egg envelope in two groups of distantly related animals: mammals (mouse) and fish (zebrafish). Previous work and key physiological differences between these two animal groups strongly suggest that mouse sperm would be incapable of interaction with the zebrafish egg envelope (chorion) and its constituent proteins, though homologous to the mammalian zona pellucida (ZP). Indeed, the authors showed that mouse sperm do not bind recombinant zebrafish ZP proteins nor the intact chorion. Surprisingly, however, mouse sperm are able to locate and bind to the zebrafish micropyle, a specialized canal within the chorion that serves as the egg's entry point for sperm. This study suggests that sperm attraction to the egg might be highly conserved from fish to mammals and depends on the presence of a still unknown glycosylated protein within the micropyle. The authors further demonstrate that mouse sperm are able to enter the micropyle and accumulate within the intrachorionic space, potentially through a CatSper-dependent mechanism.

      Strengths:

      The authors convincingly demonstrate that mouse sperm do not bind zebrafish ZP proteins or the chorion. Furthermore, they make the interesting observation that mouse sperm are able to locate and enter the zebrafish micropyle in an MP-dependent manner, which is quite unexpected given the large evolutionary distance between these species, the many physiological differences between mouse and zebrafish gametes, and the largely different modes of both fertilization and reproduction in these species. This may indicate that the sperm chemoattractant in the egg is conserved between mammals and fish; however, whether zebrafish sperm are attracted to mouse eggs was not tested.

      Weaknesses:

      The key weakness of this study lies in the rationale behind the overall investigation. In mammals, the zona pellucida (ZP) has been implicated in binding sperm in a taxon-specific manner, such that human sperm are incapable of binding the mouse ZP. Indeed, work by the corresponding author showed that this specificity is mediated by the N-terminal region of the ZP protein ZP2 (Avella et al., 2014). The N-termini of human and mouse ZP2 share 48% identity, which is higher than the overall identity between mouse and zebrafish ZP2, with the latter ortholog entirely lacking the N-terminal domain that is essential for sperm binding to the ZP. Given this known specificity for mouse vs. human sperm-ZP binding, it does not follow that mouse sperm would bind ZP proteins from not only a species that is much more distantly related, but also one that is not even a mammal, the zebrafish. Furthermore, the fish chorion does not play a role in sperm binding at all, while the mammalian ZP can bind sperm at any location. On the contrary, the zebrafish chorion prevents polyspermy by limiting sperm entry to the single micropyle.

      In addition, though able to provide some information regarding the broad conservation of sperm-egg interaction mechanisms, the biological relevance of these findings is difficult to describe. Fish and mammals are not only two very distinct and distantly related animal groups, but also employ opposite modes of fertilization and reproduction (external vs. internal, oviparous vs viviparous). Fish gametes interact in a very different environment compared to mammals and lack many typically mammalian features of fertilization (e.g., sperm capacitation, presence of an acrosome, interaction with the female reproductive tract), making it difficult to make any physiologically relevant claims from this study. While this study may indicate conserved mechanisms of sperm attraction to the egg, the identity of the molecular players involved is not investigated. With this knowledge, the reader is forced to question the motivation behind much of the study.

      During fertilization in fish, the sperm enters the micropyle and subsequently, the egg, as it is simultaneously activated by exposure to water. During egg activation, the chorion lifts as it separates from the egg and fills with water. This mechanism prevents supernumerary sperm from entering the egg after the successfully fertilizing sperm has bound and fused. In this study, the authors show that mouse sperm enter the micropyle and accumulate in the intrachorionic space. Whether any sperm successfully entered the egg is not addressed, and the status of egg activation is not reported. In Supplementary Videos 3-4, the egg shown has been activated for some time, as evident by the separation of yolk and cytoplasm, yet the chorion is only partially expanded (likely due to mouse IVF conditions). How multiple sperm were able to enter the micropyle but presumably not the egg is not addressed, yet this suggests that the zebrafish mechanism of blocking polyspermy (fertilization by multiple sperm) is not effective for mouse sperm or is rendered ineffective due to mouse IVF conditions. The authors do not discuss these observations in the context of either species' physiological process of fertilization, highlighting the lack of biological context in interpreting the results.

      The authors further show that the zebrafish micropyle does not trigger the acrosome reaction in mouse sperm. Whether the acrosome reacts is not correlated with a sperm's ability to cross the micropyle opening, as both acrosome-intact and acrosome-reacted sperm were observed within the intrachorionic space. While the acrosome reaction is a key event during mammalian fertilization and is required for sperm to fertilize the egg, zebrafish sperm do not contain an acrosome. Thus, these results are particularly difficult to interpret biologically, bringing into question whether this observation has biological relevance or is a byproduct of egg activation/chorion lifting that indirectly draws sperm into the chorion.

      The final experiments regarding CatSper1's role in mediating mouse sperm entry into the micropyle/chorion are not convincing. As no molecular interactions are described or perturbed, the reader cannot be sure whether the sperm's failure to enter is due to signaling via CatSper1 or whether the overall failure to undergo hyperactivation limits sperm motility such that the mutant sperm can no longer find and enter the zebrafish micropyle. Indeed, in Figure 5E, no CatSper1 mutant sperm are visible near any part of the egg, suggesting that overall motility is impaired, and this is not a phenotype specific to interactions with the micropyle.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how chronic stress may contribute to LC dysfunction in AD by examining the mechanisms underlying NA accumulation and α2A-AR internalization. Using electrophysiological recordings and molecular analyses, the authors propose that stress-induced receptor internalization impairs autoinhibition, leading to excessive NA accumulation and increased MAO-A activity. The findings have potential implications for understanding the progression of AD-related neurodegeneration and targeting noradrenergic dysfunction as a therapeutic strategy.

      Strengths:

      (1) The study integrates electrophysiology and molecular approaches to explore the mechanistic effects of chronic stress on LC neurons.

      (2) The evidence supporting NA accumulation and α2A-AR internalization as contributing factors to LC dysfunction is novel and relevant to AD pathology.

      (3) The electrophysiological findings, particularly the loss of spike-frequency adaptation and reduction in GIRK currents, provide functional insights into stress-induced changes in LC activity.

      Weaknesses:

      (1) The manuscript's logical flow is challenging and hard to follow, and key arguments could be more clearly structured, particularly in transitions between mechanistic components.

      (2) The causality between stress-induced α2A-AR internalization and the enhanced MAO-A remains unclear. Direct experimental evidence is needed to determine whether α2A-AR internalization itself or Ca2+ drives MAO-A activation, and how they activate MAO-A should be considered.

      (3) The connection between α2A-AR internalization and increased cytosolic NA levels lacks direct quantification, which is necessary to validate the proposed mechanism.

      (4) The chronic stress model needs further validation, including measurements of stress-induced physiological changes (e.g., corticosterone levels) to rule out systemic effects that may influence LC activity. Additional behavioral assays for spatial memory impairment should also be included, as a single behavioral test is insufficient to confirm memory dysfunction.

      (5) Beyond b-arrestin binding, the role of alternative internalization pathways (e.g., phosphorylation, ubiquitination) in α2A-AR desensitization should be considered, as current evidence is insufficient to establish a purely Ca²⁺-dependent mechanism.

      (6) NA leakage for free NA accumulation is also influenced by NAT or VMAT2. Please discuss the potential role of VMAT2 in NA accumulation within the LC in AD.

      (7) Since the LC is a small brain region, proper staining is required to differentiate it from surrounding areas. Please provide a detailed explanation of the methodology used to define LC regions and how LC neurons were selected among different cell types in brain slices for whole-cell recordings.

      Impact:

      This study provides valuable insights into the impact of chronic stress on LC function and its relevance to AD pathogenesis. The proposed mechanism linking NA dysregulation and receptor internalization may have implications for developing therapeutic strategies targeting the noradrenergic system in neurodegenerative diseases. However, additional validation is needed to strengthen the mechanistic claims before the findings can be fully integrated into the field.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the mechanism by which chronic stress induces locus coeruleus (LC) neuron degeneration. The authors demonstrate that chronic stress leads to internalization of α2A-adrenergic receptors (α2A-ARs) on LC-neurons, causing increased cytosolic noradrenaline (NA) accumulation and subsequent production of the neurotoxic metabolite DOPEGAL via monoamine oxidase A (MAO-A). The study suggests a mechanistic link between stress-induced α2A-AR internalization, disrupted autoinhibition, elevated NA metabolism, asparagine endopeptidase (AEP) activation, and Tau pathology relevant to Alzheimer's disease (AD). The conclusions of this paper are mostly well supported by data, but some aspects of image acquisition need to be extended.

      Strengths:

      This study clearly demonstrates the effects of chronic stimulation on the excitability of LC neurons using electrophysiological techniques. It also elucidates the role of α2-adrenergic receptor (α2-AR) internalization and the associated upstream and downstream signaling pathways of GIRK1 using a range of pharmacological agents, highlighting the innovative nature of the work.

      Additionally, the study identifies the involvement of the MAO-A-DOPEGAL-AEP pathway in this process. The topic is timely, the proposed mechanistic pathway is compelling, and the findings have translational relevance, particularly regarding therapeutic strategies targeting α2A-AR internalization in neurodegenerative diseases.

      Weaknesses:

      (1) The manuscript reports that chronic stress for 5 days increases MAO-A levels in LC neurons, leading to the production of DOPEGAL, activation of AEP, and subsequent tau cleavage into the tau N368 fragment, ultimately contributing to neuronal damage. However, the authors used wild-type C57BL/6 mice, and previous literature has indicated that AEP-mediated tau cleavage in wild-type mice is minimal and generally insufficient to cause significant behavioral alterations. Please clarify and discuss this apparent discrepancy.

      (2) It is recommended that the authors include additional experiments to examine the effects of different durations and intensities of stress on MAO-A expression and AEP activity. This would strengthen the understanding of stress-induced biochemical changes and their thresholds.

      (3) Please clarify the rationale for the inconsistent stress durations used across Figures 3, 4, and 5. In some cases, a 3-day stress protocol is used, while in others, a 5-day protocol is applied. This discrepancy should be addressed to ensure clarity and experimental consistency.

      (4) The abbreviation "vMAT2" is incorrectly formatted. It should be "VMAT2," and the full name (vesicular monoamine transporter 2) should be provided at first mention.

    3. Reviewer #3 (Public review):

      Summary:

      The authors present a technically impressive data set showing that repeated excitation or restraint stress internalises somato dendritic α2A adrenergic autoreceptors (α2A ARs) in locus coeruleus (LC) neurons. Loss of these receptors weakens GIRK-dependent autoinhibition, raises neuronal excitability, and is accompanied by higher MAO-A, DOPEGAL, AEP, and tau N368 levels. The work combines rigorous whole-cell electrophysiology with barbadin-based trafficking assays, qPCR, Western blotting, and immunohistochemistry. The final schematic is appealing and could, in principle, explain early LC hyperactivity followed by degeneration in ageing and Alzheimer's disease.

      Strengths:

      (1) Multi-level approach - The study integrates electrophysiology, pharmacology, mRNA quantification, and protein-level analysis.

      (2) The use of barbadin to block β-arrestin/AP-2-dependent internalisation is both technically precise and mechanistically informative.

      (3) Well-executed electrophysiology.

      (4) Translation relevance - converges to a model that can be discussed by peers (scientists can only discuss models - not data!).

      Weaknesses:

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain. Below, I outline the key points that should be addressed to make the model convincing.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Kostanjevec et al. investigates the mechanism behind spiral pattern formation in the cornea. The authors demonstrate that the spiral motion pattern on the mammalian corneal surface emerges from the interaction between the limbus position, cell division, extrusion, and collective cell migration. Using LacZ mosaic murine corneas, they reveal a tightening spiral flow pattern and show that their cell-based, in silico model accurately reproduces these patterns without global guidance cues. Additionally, they present a continuum model that extends the XYZ hypothesis to describe cell flux on the cornea, offering a quantitative explanation for tissue-scale processes on curved surfaces.

      Strengths:

      The manuscript is well-written, with a systematic approach that clearly explains experimental setups, model construction, assumptions, parameter selection, and predictions. The discussion also provides insightful perspectives on the broader implications of the results for both physics and biology.

      Weaknesses:

      The central premise of the manuscript, that the spiral patterning of epithelial corneal cells occurs without guidance cues, is not fully supported. The authors overlook the potential role of axons in guiding epithelial cells, despite clear evidence of spiral axon patterns in their own Fig. 1b. Previous literature indicates that axon patterning precedes epithelial cell patterning, suggesting that epithelial migration might be influenced by pre-existing neural structures (e.g., Leiper et al. 2002, IOVS 2013). The authors need to address this point, possibly by exploring whether axonal patterns serve as a template for epithelial cell migration, or by providing experimental evidence to rule out axon-based guidance.

      While the model is well-constructed, it currently falls short of its stated goal of elucidating the mechanisms of spiral formation. Key questions remain unanswered:<br /> Is the curvature of the cornea necessary for spiral formation, or would a simpler disk geometry suffice?<br /> What role do boundary conditions play?<br /> How well do the model's predictions quantitatively match experimental data?<br /> The current comparisons in Fig. 4c-f lack quantitative agreement, and this discrepancy should be discussed with possible explanations.

      The authors emphasize polar alignment as a key feature of the spiral pattern based on simulation results. However, they do not provide experimental evidence for this polar alignment. The manuscript includes discussions of polar and nematic symmetries that, without supporting data, feel somewhat distracting. If direct experimental evidence for polar alignment is not available, the authors could instead quantify nematic alignment as the spiral forms. This would also allow them to explore potential crosstalk between nematic cell orientation and the polar alignment of self-propulsion, especially considering recent studies showing alternative mechanisms for vortex formation in similar systems.

    2. Reviewer #2 (Public review):

      In K. Kostanjevec et.al, the authors study a possible mechanism for the formation of spiral patterns in the cornea. First the authors analyze an inferred velocity field, which is deduced from images of fixed corneas, and then determine the position-dependent spiral angle of this velocity fields. Next, the authors analysed two possible markers of cell polarity: the direction of the centrosome-nuclei and the axis of mitosis. Then the authors introduce a stochastic agent-based model of self-propelled particles with over-damped dynamics and with aligning interactions to the orientation of the nearest neighbors and to the particle's velocity. The authors claim to be able to reproduce the equal-time autocorrelation function and the velocity Fourier spectrum. Then the authors introduce the geometry of the cornea by constraining the dynamics on a spherical cap and show that their model can reproduce a typical trajectory in experiments. Finally, the authors produce a phase diagram of the states at a fixed time point as a function of the spherical cap radius and the strength of the coupling aligning constant. Finally, the authors propose an interpretation of the cell fluxes based on the equation of mass conservation.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript from Azeroglu et al. presents the application of END-Seq to examine the sequence composition of chromosome termini, i.e., telomeres. END-seq is a powerful genome sequencing strategy developed in Andre Nussesweig's lab to examine the sequences at DNA break sites. Here, END-Seq is applied to explore the nucleotide sequences at telomeres and to ascertain (i) whether the terminal end sequence is conserved in cells that activate the ALT telomere elongation mechanism and (ii) whether the processes responsible for telomere end sequence regulation are conserved. With these aims clearly articulated, the authors convincingly show the power of this technique to examine telomere end-processing.

      Strengths:

      (1) The authors effectively demonstrate the application of END-seq for these purposes. They verify prior data that 5'terminal sequences of telomeres in HeLa and RPE cells end in a canonical ATC sequence motif. They verify that the same sequence is present at the 5' ends of telomeres by performing END-seq across a panel of ALT cancer cells. As in non-ALT cells, the established role of POT1, a ssDNA telomere binding protein, in coordinating the mechanism that maintains the canonical ATC motif is likewise verified. However, by performing END-Seq in mouse cells lacking POT1 isoforms, POT1a and POT1b, the authors uncover that POT1b is dispensable for this process. This reveals a novel, important insight relating to the evolution of POT1 as a telomere regulatory factor.

      (2) The authors then demonstrate the utility of S1-END-seq, a variation of END-Seq, to explore the purported abundance of single-stranded DNA at telomeres within telomeres of ALT cancer cells. Here, they demonstrate that ssDNA abundance is an intrinsic aspect of ALT telomeres and is dependent on the activity of BLM, a crucial mediator of ALT.

      Overall, the authors have effectively shown that END-seq can be applied to examine processes maintaining telomeres in normal and cancerous cells across multiple species. Using END-Seq, the authors confirm prior cell biological and sequencing data and the role of POT1 and BLM in regulating telomere termini sequences and ssDNA abundance. The study is nice and well-written, with the experimental rationale and outcomes clearly explained.

      Weaknesses:

      This reviewer finds little to argue with in this study. It is timely and highly valuable for the telomere field. One minor question would be whether the authors could expand more on the application of END-Seq to examine the processive steps of the ALT mechanism? Can they speculate if the ssDNA detected in ALT cells might be an intermediate generated during BIR (i.e., is the ssDNA displaced strand during BIR) or a lesion? Furthermore, have the authors assessed whether ssDNA lesions are due to the loss of ATRX or DAXX, either of which can be mutated in the ALT setting?

    2. Reviewer #2 (Public review):

      This is a short yet very clear manuscript demonstrating that two methods (END-seq and S1-END-seq), previously developed in the Nussenzweig laboratory to study DSBs in the genome, can also be applied to the 5' ends of mammalian telomeres and the accumulation of telomeric single-stranded DNA.

      The authors first validate the applicability of END-seq using different approaches and confirm that mammalian telomeres preferentially end with an ATC 5' end through a mechanism that requires intact POT1 (POT1a in mice). They then extend their analysis to cells that maintain telomeres through the ALT mechanism and demonstrate that, in these cells as well, telomeres frequently end in an ATC 5' sequence via a POT1-dependent mechanism. Using S1-END-seq, the authors further show that ALT telomeres contain single-stranded DNA and estimate that each telomere in ALT cells harbors at least five regions of ssDNA.

      I find this work very interesting and incisive. It clearly demonstrates that END-seq can be applied with unprecedented depth and precision to the study of telomeric features such as the 5' end and ssDNA. The data are very clear and thoroughly interpreted, and the manuscript is well written. The results are carefully analyzed and effectively presented. Overall, I find this manuscript worthy of publication, as the optimized END-seq methods described here will likely be widely utilized in the telomere field.

      I only have a few minor suggestions:

      How can we be sure that all telomeres are equally represented? The authors seem to assume that END-seq captures all chromosome ends equally, but can we be certain of this? While I do not see an obvious way to resolve this experimentally, I recommend discussing this potential bias more extensively in the manuscript.

      I believe Figures 1 and 2 should be merged.

      Scale bars should be added to all microscopy figures.

    3. Reviewer #3 (Public review):

      Summary:

      A subset of cancer cells attain replicative immortality by activating the ALT mechanism of telomere maintenance, which is currently the subject of intense research due to its potential for novel targeted therapies. Key questions remain in the field, such as whether ALT telomeres adhere to the same end-protection rules as telomeres in telomerase-expressing cells, or if ALT telomeres possess unique properties that could be targeted with new, less toxic cancer therapies. Both questions, along with the approaches developed by the authors to address them, are highly relevant.

      Strengths:

      Since chromosome ends resemble one-ended DSBs, the authors hypothesized that the previously described END-SEQ protocol could be used to accurately sequence the 5' end of telomeres on the C-rich strand. As expected, most reads corresponded to the C-rich strand and, confirming a previous observation by de Lange's group, most chromosomes end with the ATC-5' sequence, a feature that was found to be dependent on POT1 and to be conserved in both human ALT cells and mouse cells. Through a complementary method, S1-END-SEQ, the authors further explored ssDNA regions at telomeres, providing new insights into the characteristics of ALT telomeres. The study is original, the experiments were well-controlled and excellently executed.

      Weaknesses:

      Overall, the discussion section is lacking depth and should be expanded and a few additional experiments should be performed to clarify the results.

      (1) The finding that the abundance of variant telomeric repeats (VTRs) within the final 30 nucleotides of the telomeric 5' ends is similar in both telomerase-expressing and ALT cells is intriguing, but the authors do not address this result. Could the authors provide more insight into this observation and suggest potential explanations? As the frequency of VTRs does not seem to be upregulated in POT1-depleted cells, what then drives the appearance of VTRs on the C-strand at the very end of telomeres? Is CST-Pola complex responsible?

      (2) The authors also note that, in ALT cells, the frequency of VTRs in the first 30 nucleotides of the S1-END-SEQ reads is higher compared to END-SEQ, but this finding is not discussed either. Do the authors think that the presence of ssDNA regions is associated with the VTRs? Along this line, what is the frequency of VTRs in the END-SEQ analysis of TRF1-FokI-expressing ALT cells? Is it also increased? Has TRF1-FokI been applied to telomerase-expressing cells to compare VTR frequencies at internal sites between ALT and telomerase-expressing cells?

      Finally, in these experiments (S1-END-SEQ or END-SEQ in TRF1-Fok1), is the frequency of VTRs the same on both the C- and the G-rich strands? It is possible that the sequences are not fully complementary in regions where G4 structures form.

      (3) Based on the ratio of C-rich to G-rich reads in the S1-END-SEQ experiment, the authors estimate that ALT cells contain at least 3-5 ssDNA regions per chromosome end. While the calculation is understandable, this number could be discussed further to consider the possibility that the observed ratios (of roughly 0.5) might result from the presence of extrachromosomal DNA species, such as C-circles. The observed increase in the ratio of C-rich to G-rich reads in BLM-depleted cells supports this hypothesis, as BLM depletion suppresses C-circle formation in U2OS cells. To test this, the authors should examine the impact of POLD3 depletion on the C-rich/G-rich read ratio. Alternatively, they could separate high-molecular-weight (HMW) DNA from low-molecular-weight DNA in ALT cells and repeat the S1-END-SEQ in the HMW fraction.

      (4) What is the authors' perspective on the presence of ssDNA at ALT telomeres? Do they attribute this to replication stress? It would be helpful for the authors to repeat the S1-END-SEQ in telomerase-expressing cells with very long telomeres, such as HeLa1.3 cells, to determine if ssDNA is a specific feature of ALT cells or a result of replication stress. The increased abundance of G4 structures at telomeres in HeLa1.3 cells (as shown in J. Wong's lab) may indicate that replication stress is a factor. Similar to Wong's work, it would be valuable to compare the C-rich/G-rich read ratios in HeLa1.3 cells to those in ALT cells with similar telomeric DNA content.

      Minor Points:

      (1) The Y-axes of Figure 4 should be relabeled to account for the G-strand reads. Additionally, statistical analyses are absent in Figure 4 and Figure S3.

      (2) A careful proofreading of the manuscript is necessary.

    1. Reviewer #1 (Public review):

      Summary:

      The study investigates the role of asymptomatic pertussis carriage in transmission between mothers and their infants, in particular. The authors used a longitudinal cohort study that involved 1,315 mother-infant dyads in Lusaka, Zambia, and they utilized qPCR-based detection of IS481 to track Bordetella pertussis transmission over time. Insights from the study suggest that minimally symptomatic or asymptomatic mothers may act as a reservoir for B. pertussis transmission in the infants, thus challenging the traditional surveillance methods that focus on symptomatic cases. Additionally, the study also identified a subgroup of persistently colonized individuals where mothers were majorly asymptomatic despite sustained bacterial presence.

      The authors aimed to improve comprehension of pertussis transmission dynamics in high-burden low-resource settings, and they advocated for enhanced molecular surveillance strategies to capture full pertussis infection, including those that might have gone undetected.

      Strengths:

      The strengths are the use of innovative study design, especially the longitudinal approach and routine sampling, rather than symptom-driven testing that minimizes bias in the study. The methodology was also rigorous and transparent by evaluating the IS481 signal strength to classify pertussis detection and conducting retesting to assess qPCR reliability. There were also important epidemiological insights, and the findings challenge the traditional wisdom by suggesting that pertussis transmission may frequently occur outside of symptomatic cases. The findings also showed its relevance to global health and policy by arguing for the incorporation of molecular tools like qPCR for surveillance of pertussis in low-resource settings.

      Weaknesses:

      These include reliability on qPCR-based detection without additional validation measures like confirmatory culture or serology. There are also potential alternate explanations for transmission patterns observed in the study such as shared environmental exposure or household transmission. Additionally, there is limited generalizability as the study was done in a single urban site in Zambia. There is also a lack of functional immune data.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors describe the results of a longitudinal study of pertussis infection in mother/infant dyads in Lusaka, Zambia. Unlike many past studies, the authors assessed the infection status of individuals independently of whether they were symptomatic for a respiratory infection. As a result, this work represents one of the first studies specifically designed to assess asymptomatic transmission of pertussis. Using qPCR, the authors find strong evidence for the role of asymptomatic transmission from mothers to infants and also evidence for long-term bacterial carriage. This work represents an important contribution to our understanding of the global burden of pertussis. Also, it highlights the still under-appreciated role of asymptomatic transmission across many infectious diseases (including vaccine-preventable ones).

      Strengths:

      Unlike many past studies, the authors assessed the infection status of individuals independently of whether they were symptomatic for a respiratory infection. As a result, this work represents one of the first studies specifically designed to assess asymptomatic transmission of pertussis. Using qPCR, the authors find strong evidence for the role of asymptomatic transmission from mothers to infants and also evidence for long-term bacterial carriage.

      Weaknesses:

      While I am quite enthusiastic about the work, I am concerned that a number of likely relevant confounders were not discussed and that the broader implications of their findings were not well grounded in the existing literature. For example, I could not find information on the vaccination status of the mothers in the study. Given the conclusions about asymptomatic transmission and the durability of immunity, it is important to know the vaccination status of the mothers. Moreover, did the authors have other metadata on the mother/infant dyads, e.g., household size, vaccination status of household members, etc.? Given the potential implications of more widespread asymptomatic transmission associated with pertussis infection, I believe the authors should better couch their results in the context of the broader debate around asymptomatic transmission.

    1. Reviewer #1 (Public review):

      This study uses structural and functional approaches to investigate regulation of the Na/Ca exchanger NCX1 by an activator, PIP2 and an inhibitor, SEA0400. Previous functional studies suggest both of these compounds interact with the Na-dependent inactivation process to mediate their effects.

      State of the art methods are employed here, and the data are of high quality and presented very clearly. While there is merit in combining structural studies on both compounds as they relate to Na-dependent activation, in the end it is somewhat disappointing that neither is explored in further depth.

      The novel aspect of this work is the study on PIP2. Unfortunately, technical limitations precluded structural data on binding of the native PIP2, and so an unnatural short-chained analog, di-C8 PIP2, was used instead. This raises the question of whether these two molecules, which have similar but very distinctly different profiles of activation, actually share the same binding pocket and mode of action. The authors conduct a "competition" experiment, arguing the effect of di-C8-PIP2 addition subsequent to PIP2 suggests competition for a single binding site. In this scenario, PIP2 would need to vacate the binding site prior to di-C8-PIP2 occupying it. However, the lack of an effect of washout alone, suggests PIP2 does not easily unbind. This raises the possibility (probability?) of a non-competitive effect of di-C8-PIP2 at a different site. An additionally informative experiment would be to determine if a saturating concentration of di-C8-PIP2 could prevent the full activation induced by subsequent PIP2 addition. However, the relative affinities of the two ligands might make such an experiment challenging in practice.

      In an effort to address the binding site directly, the authors mutate key residues predicted to be important in liganding the phosphorylated head group of PIP2. However, the only mutations that have a significant effect in PIP2 activation also influence the Na-dependent inactivation process independently of PIP2. While these data are consistent with altering PIP2 binding (which cannot be easily untangled from its functional effect on Na-dependent inactivation), a primary effect on Na-inactivation, rather than PIP2 binding, cannot be fully ruled out. A more extensive mutagenic study, based on other regions of the di-C8 PIP2 binding site, would have given more depth to this work and might have been more revealing mechanistically.

      The SEA0400 aspect of the work does not integrate particularly well with the rest of the manuscript. This study confirms the previously reported structure and binding site for SEA0400 but provides little further information. While interesting speculation is presented regarding the connection between SEA0400 inhibition and Na-dependent inactivation, further experiments to test this idea are not included here.

      Comments on revisions:

      (1) The competition assay data for di-C8-PIP2 and PIP2 is a nice addition, but in its description in the text, the authors should be a bit more circumspect about their conclusions, based on the possibility/probability that the effect observed is actually non-competitive (as detailed above).<br /> (2) The authors should acknowledge the formal possibility that the functional effects of the mutations studies are a consequence of a direct effect on Na-dependent inactivation, independent of PIP2 binding.<br /> (3) The authors might strengthen their arguments for combining studies on PIP2 and SEA0400.<br /> (4) The authors could be clearer where their work on SEA0400 extends beyond the previously published observations.

    2. Reviewer #3 (Public review):

      NCXs are key Ca2+ transporters located on the plasma membrane, essential for maintaining cellular Ca2+ homeostasis and signaling. The activities of NCX are tightly regulated in response to cellular conditions, ensuring precise control of intracellular Ca2+ levels, with profound physiological implications. Building upon their recent breakthrough in determining the structure of human NCX1, the authors obtained cryo-EM structures of NCX1 in complex with its modulators, including the cellular activator PIP2 and the small molecule inhibitor SEA0400. Structural analyses revealed mechanistically informative conformational changes induced by PIP2 and elucidated the molecular basis of inhibition by SEA0400. These findings underscore the critical role of the interface between the transmembrane and cytosolic domains in NCX regulation and small molecule modulation. Overall, the results provide key insights into NCX regulation, with important implications for cellular Ca2+ homeostasis.

      Comments on revisions:

      The authors have adequately addressed my previous comments.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors present the repurposing of cipargamin (CIP), a known drug against plasmodium and toxoplasma against babesia. They proved the efficacy of CIP on babesia in the nanomolar range. In silico analyses revealed the drug resistance mechanism through a single amino acid mutation at amino acid position 921 on the ATP4 gene of babesia. Overall, the conclusions drawn by the authors are well justified by the data presented. I believe this study opens up a novel therapeutic strategy against babesiosis.

      Strengths:

      The authors have carried out a comprehensive study. All the experiments performed were carried out methodically and logically.

    2. Reviewer #3 (Public review):

      Summary:

      The authors aim to establish that cipargamin can be used for the treatment of infection caused by Babesia organisms.

      Strengths:

      The study provides strong evidence that cipargamin is effective against various Babesia species. In vitro growth assays were used to establish that cipargamin is effective against Babesia bovis and Babesia gibsoni. Infection of mice with Babesia microti demonstrated that cipargamin is as effective as the combination of atovaquone plus azithromycin. Cipargamin protected mice from lethal infection with Babesia rodhaini. Mutations that confer resistance to cipargamin were identified in the gene encoding ATP4, a P-type Na ATPase that is found in other apicomplexan parasites, thereby validating ATP4 as the target of cipargamin. A 7-day treatment of cipagarmin, when combined with a single dose of tafenoquine, was sufficient to eradicate Babesia microti in a mouse model of severe babesiosis caused by a lack of adaptive immunity.

      Weaknesses:

      Cipargamin was tested in vivo at a single dose administered daily for 7 days. Despite the prospect of using cipargamin for the treatment of human babesiosis, there was no attempt to identify the lowest dose of cipagarmin that protects mice from Babesia microti infection.

      Comments on revisions:

      The authors have edited the manuscript and, in doing so, have addressed all queries pertaining to experimental design. The authors have decided to keep the discussion unchanged, but have replied to this reviewer regarding comments on interpretation of some data. The reader could have benefited from the authors' explanation. Nonetheless, the manuscript in its present form describes a valuable and significant body of work.

    1. Reviewer #1 (Public review):

      This study examined the interaction between two key cortical regions in the mouse brain involved in goal-directed movements, the rostral forelimb area (RFA) - considered a premotor region involved in movement planning, and the caudal forelimb area (CFA) - considered a primary motor region that more directly influences movement execution. The authors ask whether there exists a hierarchical interaction between these regions, as previously hypothesized, and focus on a specific definition of hierarchy - examining whether the neural activity in the premotor region exerts a larger functional influence on the activity in the primary motor area, than vice versa. They examine this question using advanced experimental and analytical methods, including localized optogenetic manipulation of neural activity in either region while measuring both the neural activity in the other region and EMG signals from several muscles involved in the reaching movement, as well as simultaneous electrophysiology recordings from both regions in a separate cohort of animals.

      The findings presented show that localized optogenetic manipulation of neural activity in either RFA or CFA resulted in similarly short-latency changes of the muscle output and in firing rate changes in the other region. However, perturbation of RFA led to a larger absolute change in the neural activity of CFA neurons. The authors interpret these findings as evidence for reciprocal, but asymmetrical, influence between the regions, suggesting some degree of hierarchy in which RFA has a greater effect on the neural activity in CFA. They go on to examine whether this asymmetry can also be observed in simultaneously recorded neural activity patterns from both regions. They use multiple advanced analysis methods that either identify latent components in the population level or measure the predictability of firing rates of single neurons in one region using firing rates of single neurons in the other region. Interestingly, the main finding across these analyses seems to be that both regions share highly similar components that capture a high degree of the variability of the neural activity patterns in each region. Single units' activity from either region could be predicted to a similar degree from the activity of single units in the other region, without a clear division into a leading area and a lagging area, as one might expect to find in a simple hierarchical interaction. However, the authors find some evidence showing a slight bias towards leading activity in RFA. Using a two-region neural network model that is fit to the summed neural activity recorded in the different experiments and to the summed muscle output, the authors show that a network with constrained (balanced) weights between the regions can still output the observed measured activities and the observed asymmetrical effects of the optogenetic manipulations, by having different within-region local weights. These results emphasize the challenges in studying interactions between brain regions with reciprocal interactions, multiple external inputs, and recurrent within-region connections.

      Strengths:

      The experiments and analyses performed in this study are comprehensive and provide a detailed examination and comparison of neural activity recorded simultaneously using dense electrophysiology probes from two main motor regions that have been the focus of studies examining goal-directed movements. The findings showing reciprocal effects from each region to the other, similar short-latency modulation of muscle output by both regions, and similarity of neural activity patterns, are convincing and add to the growing body of evidence that highlight the complexity of the interactions between multiple regions in the motor system and go against a simple feedforward-like hierarchy.

      The neural network model complements these findings and adds an important demonstration that the observed asymmetry can, in theory, also arise from differences in local recurrent connections and not necessarily from different input projections from one region to the other. This sheds an important light on the multiple factors that should be considered when studying the interaction between any two brain regions, with a specific emphasis on the role of local recurrent connections, that should be of interest to the general neuroscience community.

      Weaknesses:

      While the reciprocal interaction and similarity in neural activity across RFA and CFA is an important observation that is supported by the authors' findings, the evidence for a hierarchical interaction between the two regions appears to be weaker. The primary evidence for a hierarchical interaction comes from a causal optogenetic manipulation, carried out at the onset of the reaching movement and conducted with n = 3 in each experimental group, which shows an effect in both regions, yet the effect is greater when silencing the activity in RFA and examining the resulting change in CFA, than vice versa. Analysis of the simultaneously recorded neural activity, on the other hand, reveals mostly no clear hierarchy with leading or lagging dynamics between the regions. The findings of the optogenetic manipulation might be more compelling if similar effects were observed when the same manipulation was applied at different stages of movement preparation and execution, indicating a consistent interaction that is independent from the movement phase.

      The methods used to investigate hierarchical interactions through analysis of simultaneously recorded activity yielded inconsistent results. For instance, CCA and PLS showed no clear lead-lag relationship, while DLAG provided some evidence suggesting RFA leads CFA. Overall, these methods largely failed to demonstrate a clear hierarchical interaction. Assuming a partial hierarchy exists, this inconsistency may indicate that the hierarchy is not reflected in the activity patterns or that these analytical methods are inadequate for detecting such interactions within complex neural networks that are influenced by multiple external inputs, reciprocal inter-regional connections, and dominant intra-regional recurrent activity.

      As is also argued by the authors, these inconsistent findings underscore the need for caution when interpreting results from similar analyses used to infer inter-regional interactions from neural activity patterns alone. However, the study lacks sufficient explanation for why different methods yielded different results and more elaborate clarification is needed for the findings presented. For example, in the population-level analyses using CCA and PLS, the authors show that both techniques reveal components that are highly similar across regions and explain a substantial portion of each region's variance. Yet, shifting the activity of one region relative to the other to explore potential lead-lag relationships does not alter the results of these analyses. If the regions' activities were better aligned at some unknown true lead-lag time (or aligned at zero), one would expect a peak in alignment within the tested range, as is observed when these same analyses are applied to activity within a single region. It is thus unclear why shifting one region's activity relative to the other does not change the outcome. The interpretation of these results therefore, remains ambiguous and would benefit from further clarification.

    2. Reviewer #2 (Public review):

      Summary:

      While technical advances have enabled large-scale, multi-site neural recordings, characterizing inter-regional communication and its behavioral relevance remains challenging due to intrinsic properties of the brain such as shared inputs, network complexity, and external noise. This work by Saiki-Ishkawa et al. examines the functional hierarchy between premotor (PM) and primary motor (M1) cortices in mice during a directional reaching task. The authors find some evidence consistent with an asymmetric reciprocal influence between the regions, but overall, activity patterns were highly similar and equally predictive of one another. These results suggest that motor cortical hierarchy, though present, is not fully reflected in firing patterns alone.

      Strengths:

      Inferring functional hierarchies between brain regions, given the complexity of reciprocal and local connectivity, dynamic interactions, and the influence of both shared and independent external inputs, is a challenging task. It requires careful analysis of simultaneous recording data, combined with cross-validation across multiple metrics, to accurately assess the functional relationships between regions. The authors have generated a valuable dataset simultaneously recording from both regions at scale from mice performing a cortex-dependent directional reaching task.

      Using electrophysiological and silencing data, the authors found evidence supporting the traditionally assumed asymmetric influence from PM to M1. While earlier studies inferred a functional hierarchy based on partial temporal relationships in firing patterns, the authors applied a series of complementary analyses to rigorously test this hierarchy at both individual neuron and population levels, with robust statistical validation of significance.

      In addition, recording combined with brief optogenetic silencing of the other region allowed authors to infer the asymmetric functional influence in a more causal manner. This experiment is well designed to focus on the effect of inactivation manifesting through oligosynaptic connections to support the existence of a premotor to primary motor functional hierarchy.

      Subsequent analyses revealed a more complex picture. CCA, PLS, and three measures of predictivity (Granger causality, transfer entropy, and convergent cross mapping) emphasized similarities in firing patterns and cross-region predictability. However, DLAG suggested an imbalance, with RFA capturing CFA variance at a negative time lag, indicating that RFA 'leads' CFA. Taken together these results provide useful insights for current studies of functional hierarchy about potential limitations in inferring hierarchy solely based on firing rates.

      While I would detail some questions and issues on specifics of data analyses and modeling below, I appreciate the authors' effort in training RNNs that match some behavioral and recorded neural activity patterns including the inactivation result. The authors point out two components that can determine the across-region influence - 1) the amount of inputs received and 2) the dependence on across-region input, i.e., relative importance of local dynamics, providing useful insights in inferring functional relationships across regions.

      Weaknesses:

      (1) Trial-averaging was applied in CCA and PLS analyses. While trial-averaging can be appropriate in certain cases, it leads to the loss of trial-to-trial variance, potentially inflating the perceived similarities between the activity in the two regions (Figure 4). Do authors observe comparable degrees of similarity, e.g., variance explained by canonical variables? Also, the authors report conflicting findings regarding the temporal relationship between RFA and CFA when using CCA/PLS versus DLAG. Could this discrepancy be due to the use of trial-averaging in former analyses but not in the latter?

      (2) A key strength of the current study is the precise tracking of forelimb muscle activity during a complex motor task involving reaching for four different targets. This rich behavioral data is rarely collected in mice and offers a valuable opportunity to investigate the behavioral relevance of the PM-M1 functional interaction, yet little has been done to explore this aspect in depth. For example, single-trial time courses of inter-regional latent variables acquired from DLAG analysis can be correlated with single-trial muscle activity and/or reach trajectories to examine the behavioral relevance of inter-regional dynamics. Namely, can trial-by-trial change in inter-regional dynamics explain behavioral variability across trials and/or targets? Does the inter-areal interaction change in error trials? Furthermore, the authors could quantify the relative contribution of across-area versus within area dynamics to behavioral variability. It would also be interesting to assess the degree to which across-area and within-area dynamics are correlated. Specifically, can across-area dynamics vary independently from within-area dynamics across trials, potentially operating through a distinct communication subspace?

      (3) While network modeling of RFA and CFA activity captured some aspects of behavioral and neural data, I wonder if certain findings such as the connection weight distribution (Figure 7C), across-region input (Figure 7F), and the within-region weights (Figure 7G), primarily resulted from fitting the different overall firing rates between the two regions with CFA exhibiting higher average firing rates. Did the authors account for this firing rate disparity when training the RNNs?

      (4) Another way to assess the functional hierarchy is by comparing the time courses of movement representation between the two regions. For example, a linear decoder could be used to compare the amount of information about muscle activity and/or target location as well as time courses thereof between the two regions. This approach is advantageous because it incorporates behavior rather than focusing solely on neural activity. Since one of the main claims of this study is the limitation of inferring functional hierarchy from firing rate data alone, the authors should use the behavior as a lens for examining inter-areal interactions.

      Comments on revisions:

      I appreciate the authors' thoughtful revisions in response to prior reviews, which I believe have substantially improved the manuscript. In particular, I found the addition of the new section "Manifestations of hierarchy in firing patterns" to be valuable, as it begins to address some of the more complex and potentially conflicting observations

    3. Reviewer #3 (Public review):

      This study investigates how two cortical regions which are central to the study of rodent motor control (rostral forelimb area, RFA, and caudal forelimb area, CFA) interact during directional forelimb reaching in mice. The authors investigate this interaction using (1) optogenetic manipulations in one area while recording extracellularly from the other, (2) statistical analyses of simultaneous CFA/RFA extracellular recordings, and (3) network modeling. The authors provide solid evidence that asymmetry between RFA and CFA can be observed, although such asymmetry is only observed in certain experimental and analytical contexts.

      The authors find asymmetry when applying optogenetic perturbations, reporting a greater impact of RFA inactivation on CFA activity than vice-versa. The authors then investigate asymmetry in endogenous activity during forelimb movements and find asymmetry with some analytical methods but not others. Asymmetry was observed in the onset timing of movement-related deviations of local latent components with RFA leading CFA (computed with PCA) and in a relatively higher proportion and importance of cross-area latent components with RFA leading than CFA leading (computed with DLAG). However, no asymmetry was observed using several other methods that compute cross-area latent dynamics, nor with methods computed on individual neuron pairs across regions. The authors follow up this experimental work by developing a two-area model with asymmetric dependence on cross-area input. This model is used to show that differences in local connectivity can drive asymmetry between two areas with equal amounts of across-region input.

      Overall, this work provides a useful demonstration that different cross-area analysis methods result in different conclusions regarding asymmetric interactions between brain areas and suggests careful consideration of methods when analyzing such networks is critical. A deeper examination of why different analytical methods result in observed asymmetry or no asymmetry, analyses that specifically examine neural dynamics informative about details of the movement, or a biological investigation of the hypothesis provided by the model would provide greater clarity regarding the interaction between RFA and CFA.

      Strengths:

      The authors are rigorous in their experimental and analytical methods, carefully monitoring the impact of their perturbations with simultaneous recordings and providing valid controls for their analytical methods. They cite relevant previous literature that largely agrees with the current work, highlighting the continued ambiguity regarding the extent to which there exists an asymmetry in endogenous activity between RFA and CFA.

      A strength of the paper is the evidence for asymmetry provided by optogenetic manipulation. They show that RFA inactivation causes a greater absolute difference in muscle activity than CFA interaction (deviations begin 25-50 ms after laser onset, Figure 1) and that RFA inactivation causes a relatively larger decrease in CFA firing rate than CFA inactivation causes in RFA (deviations begin <25ms after laser onset, Figure 3). The timescales of these changes provide solid evidence for an asymmetry in impact of inactivating RFA/CFA on the other region that could not be driven by differences in feedback from disrupted movement (which would appear with a ~50ms delay).

      The authors also utilize a range of different analytical methods, showing an interesting difference between some population-based methods (PCA, DLAG) that observe asymmetry, and single neuron pair methods (granger causality, transfer entropy, and convergent cross mapping) that do not. Moreover, the modeling work presents an interesting potential cause of "hierarchy" or "asymmetry" between brain areas: local connectivity that impacts dependence on across-region input, rather than the amount of across-region input actually present.

      Weaknesses:

      There is no attempt to examine neural dynamics that are specifically relevant/informative about the details of the ongoing forelimb movement (e.g., kinematics, reach direction). Thus, it may be preemptive to claim that firing patterns alone do not reflect functional influence between RFA/CFA. For example, given evidence that the largest component of motor cortical activity doesn't reflect details of ongoing movement (reach direction or path; Kaufman, et al. PMID: 27761519) and that the analytical tools the authors use likely include this component (PCA, CCA), it may not be surprising that CFA and RFA do not show asymmetry if such asymmetry is related to control of movement details. An asymmetry may still exist in the components of neural activity that encode information about movement details, and thus it may be necessary to isolate and examine the interaction of behaviorally-relevant dynamics (e.g., Sani, et al. PMID: 33169030).

      The idea that local circuit dynamics play a central role in determining the asymmetry between RFA and CFA is not supported by experimental data in this paper. The plausibility of this hypothesis is supported by the model but is not explored in any analyses of the experimental data collected. Further experimental investigation is needed to separate this hypothesis from other possibilities.

      Comments on revisions:

      The authors have improved the manuscript by reviewing several aspects of the text and the addition of supplemental materials. I believe these revisions have clarified some important aspects of the results.

    1. Reviewer #1 (Public review):

      In this paper, the authors reveal that the MK2 inhibitor CMPD1 can inhibit the growth, migration and invasion of breast cancer cells both in vitro and in vivo by inducing microtubule depolymerization, preferentially at the microtubule plus-end, leading to cell division arrest, mitotic defects, and apoptotic cell death. They also showed that CMPD1 treatment upregulates genes associated with cell migration and cell death, and downregulates genes related to mitosis and chromosome segregation in breast cancer cells, suggesting a potential mechanism of CMPD1 inhibition in breast cancer. Besides, they used the combination of an MK2-specific inhibitor, MK2-IN-3, with the microtubule depolymerizer vinblastine to simultaneously disrupt both the MK2 signaling pathway and microtubule dynamics, and they claim that inhibiting the p38-MK2 pathway may help to enhance the efficacy of MTAs in the treatment of breast cancer.

    2. Reviewer #2 (Public review):

      Summary:

      This study explores the potential of inhibiting the p38-MK2 signaling pathway to enhance the efficacy of microtubule-targeting agents (MTAs) in breast cancer treatment using a dual-target inhibitor.

      Strengths:

      The study identifies the p38-MK2 pathway as a promising target to enhance the efficacy of microtubule-targeting agents (MTAs), offering a novel therapeutic strategy for breast cancer treatment. The study also employs a wide range of techniques, especially live-cell imaging, to assess the microtubule dynamics in TNBC cells. The revised manuscript added new in vitro and in vivo evidence that furtherly supported the conclusions.

      Comments on revisions:

      The authors have appropriately addressed all of my comments and concerns. Specifically, they performed additional in vitro experiments using MCF10A cells and p53 knockout cells to determine the IC50 of CMPD1. They also repeated the in vivo treatment experiment and evaluated the toxicity of the drug treatment in the CAL-51 model. Furthermore, they provided genetic evidence for the combination treatment. I'm satisfied with the revision and have no further major comments. Minor comment: make sure the name of the chemo drug shown in Fig. 3 is consistent.

    3. Reviewer #3 (Public review):

      Summary:

      The authors demonstrated MK2i could enhance the therapeutic efficacy of MTAs. With the tumour xenograft and migration assay, the author suggested that the p38-MK2 pathway may serve as a promising therapeutic target in combination with MTAs in cancer treatment.

      Strengths:

      The authors provided a potential treatment for breast cancer.

      Comments on revisions:

      A xenograft experiment should be included to evaluate the synergistic effect of MK2i and vinblastine.

    1. Reviewer #1 (Public review):

      In this study, Marocco and colleages perform a deep characterization of the complex molecular mechanism guiding the recognition of a particular CELLmotif previously identified in hepatocytes in another publication. Having miR-155-3p with or without this CELLmotif as initial focus, authors identify 21 proteins differentially binding to these two miRNA versions. From these, they decided to focus on PCBP2. They elegantly demonstrate PCBP2 binding to miR-155-3p WT version but not to CELLmotif-mutated version. miR-155-3p contains a hEXOmotif identified in a different report, whose recognition is largely mediated by another RNA-binding protein called SYNCRIP. Interestingly, mutation of the hEXOmotif contained in miR-155-3p did not only blunt SYNCRIP binding, but also PCBP2 binding despite the maintenance of the CELLmotif. This indicates that somehow SYNCRIP binding is a pre-requisite for PCBP2 binding. EMSA assay confirms that SYNCRIP is necessary for PCBP2 binding to miR-155-3p, while PCBP2 is not needed for SYNCRIP binding. Then authors aim to extend these finding to other miRNAs containing both motifs. For that, they perform a small-RNA-Seq of EVs released from cells knockdown for PCBP2 versus control cells, identifying a subset of miRNAs whose expression either increases or decreases. The assumption is that those miRNAs containing PCBP2-binding CELLmotif should now be less retained in the cell and go more to extracellular vesicles, thus reflecting a higher EV expression. The specific subset of miRNAs having both the CELLmotif and hEXOmotif (9 miRNAs) whose expressions increase in EVs due to PCBP2 reduction is also affected by knocking-down SYNCRIP in the sense that reduction of SYNCRIP leads to lower EV sorting. Further experiments confirm that PCBP2 and SYNCRIP bind to these 9 miRNAs and that knocking down SYNCRIP impairs their EV sorting.

      In the revised manuscript, the authors have addressed most of my concerns and questions. I believe the new experiments provide stronger support for their claims. My only remaining concern is the lack of clarity in the replicates for the EMSA experiment. The one shown in the manuscript is clear; however, the other three replicates hardly show that knocking down SYNCRIP has an effect on PCBP2 binding. Even worse is the fact that these replicates do not support at all that PCBP2 silencing has no effect on SYNCRIP binding, as the bands for those types of samples are, in most of the cases, not visible. I think the authors should work on repeating a couple of times EMSA experiment.

    2. Reviewer #2 (Public review):

      Summary:

      The author of this manuscript aimed to uncover the mechanisms behind miRNA retention within cells. They identified PCBP2 as a crucial factor in this process, revealing a novel role for RNA-binding proteins. Additionally, the study discovered that SYNCRIP is essential for PCBP2's function, demonstrating the cooperative interaction between these two proteins. This research not only sheds light on the intricate dynamics of miRNA retention but also emphasizes the importance of protein interactions in regulating miRNA behavior within cells.

      Strengths:

      This paper makes important progress in understanding how miRNAs are kept inside cells. It identifies PCBP2 as a key player in this process, showing a new role for proteins that bind RNA. The study also finds that SYNCRIP is needed for PCBP2 to work, highlighting how these proteins work together. These discoveries not only improve our knowledge of miRNA behavior but also suggest new ways to develop treatments by controlling miRNA locations to influence cell communication in diseases. The use of liver cell models and thorough experiments ensures the results are reliable and show their potential for RNA-based therapies

      Weaknesses:

      The manuscript is well-structured and presents compelling data, but I noticed a few minor corrections that could further enhance its clarity:

      Figure References: In the response to Reviewer 1, the comment states, "It's not Panel C, it's Panel A of Figure 1"-this should be cross-checked for consistency.<br /> Supplementary Figure 2 is labeled as "Panel A"-please verify if additional panels (B, C, etc.) are intended.

      Western Blot Quality: The Alix WB shows some background noise. A repeat with optimized conditions (or inclusion of a cleaner replicate) would strengthen the data. Adding statistical analysis for all WBs would also reinforce robustness.

      These are relatively small refinements, and the manuscript is already in excellent shape. With these adjustments, it will be even stronger.

    1. Reviewer #1 (Public review):

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of the naturalistic context.

      Strengths:

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.

      Weaknesses:

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. A balanced discussion of the technical strengths and limitations of the present work would be helpful and beneficial to the field. Minor issues in data presentation were also noted.

    2. Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum control movement vigor. This study has applied multiple approaches to investigate their functionality in locomotor behavior, and the obtained data largely support their conclusions. Nevertheless I have some suggestions for improvements in the manuscript and figures regarding their data interpretation, accuracy, and efficacy of data presentation.

      (1) The authors found that the activation of the striatonigral pathway in the patch compartment suppresses locomotor speed, which contradicts with canonical roles of the direct pathway. It would be great if the authors could provide mechanistic explanations in the Discussion section. One possibility is that striatal D1R patch neurons directly inhibit dopaminergic cells that regulate movement vigor (Nadal et al., Sci. Rep., 2021; Okunomiya et al., J Neurosci., 2025). Providing plausible explanations will help readers infer possible physiological processes and give them ideas for future follow-up studies.

      (2) On page 14, Line 301, the authors stated that "Cre-dependent mCheery signals were colocalized with the patch marker (MOR1) in the dorsal striatum (Fig. 1B)". But I could not find any mCherry on that panel, so please modify it.

      (3) From data shown in Figure 1, I've got the impression that mice ablated with striatal patch neurons were generally hyperactive, but this is probably not the case, as two separate experiments using LLbox and DDbox showed no difference in locomotor vigor between control and ablated mice. For the sake of better interpretation, it may be good to add a statement in Lines 365-366 that these experiments suggest the absence of hyperactive locomotion in general by ablating these specific neurons.

      (4) In Line 536, where Figure 5A was cited, the author mentioned that they used inhibitory DREADDs (AAV-DIO-hM4Di-mCherrry), but I could not find associated data on Figure 5. Please cite Figure S3, accordingly.

      (5) Personally, the Figure panel labels of "Hi" and "ii" were confusing at first glance. It would be better to have alternatives.

      (6) There is a typo on Figure 4A: tdTomata → tdTomato

    3. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues. Below are some major concerns:

      The study concludes that patch striatonigral neurons regulate locomotion speed. However, unless I missed something, very little evidence is presented to support the idea that it is specifically striatonigral neurons, rather than striatopallidal neurons, that mediate these effects. In fact, the optogenetic experiments shown in Fig. 6 suggest otherwise. What about the behavioral effects of optogenetic stimulation of striatonigral versus striatopallidal neuron somas in Sepw1-Cre mice?

      In the abstract, the authors state that patch SPNs control speed without affecting valence. This claim seems to lack sufficient data to support it. Additionally, speed, velocity, and acceleration are very distinct qualities. It is necessary to clarify precisely what patch neurons encode and control in the current study.

      One of the major results relies on chemogenetic manipulation (Figure 5). It would be helpful to demonstrate through slice electrophysiology that hM3Dq and hM4Di indeed cause changes in the activity of dorsal striatal SPNs, as intended by the DREADD system. This would support both the positive (Gq) and negative (Gi) findings, where no effects on behavior were observed.

      Finally, could the behavioral effects observed in the current study, resulting from various manipulations of patch SPNs, be due to alterations in nigrostriatal dopamine release within the dorsal striatum?

    1. Reviewer #1 (Public review):

      Summary:

      The authors use the teleost medaka as an animal model to study the effect of seasonal changes in day-length on feeding behaviour and oocyte production. They report a careful analysis how day-length affects female medakas and a thorough molecular genetic analysis of genes potentially involved in this process. They show a detailed analysis of two genes and include a mutant analysis of one gene to support their conclusions

      Strengths:

      The authors pick their animal model well and exploit the possibilities to examine in this laboratory model the effect of a key environmental influence, namely the seasonal changes of day-length. The phenotypic changes are carefully analysed and well controlled. The mutational analysis of the agrp1 by a ko-mutant provides important evidence to support the conclusions. Thus this report exceeds previous findings on the function of agrp1 and npyb as regulators of food-intake and shows how in medaka these genes are involved in regulating the organismal response to an environmental change. It thus furthers our understanding on how animals react to key exogenous stimuli for adaptation.

      Weaknesses:

      The authors are too modest when it comes to underscoring the importance of their findings. Previous animal models used to study the effect of these neuropeptides on feeding behaviour have either lost or were most likely never sensitive to seasonal changes of day-length. Considering the key importance of this parameter on many aspects of plant and animal life it could be better emphasised that a suitable animal model is at hand that permits this.<br /> The molecular characterization of the agrp1 ko-mutant that the authors have generated lacks some details that would help to appreciate the validity of the mutant phenotype. Additional data would help in this respect.

      Comments on revisions:

      The authors dealt adequately with the comments and suggestions of this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigated the mechanisms behind breeding season-dependent feeding behavior using medaka, a well-known photoperiodic species, as a model. Through a combination of molecular, cellular, and behavioral analyses, including tests with mutants, they concluded that AgRP1 plays a central role in feeding behavior, mediated by ovarian estrogenic signals.

      Strengths:

      This study offers valuable insights into the neuroendocrine mechanisms that govern breeding season-dependent feeding behavior in medaka. The multidisciplinary approach, which includes molecular and physiological analyses, enhances the scientific contribution of the research.

      Comments on revised version:

      My concerns from the first review have been addressed. The manuscript's key points are clearly presented, and the conclusions are readily comprehensible

    3. Reviewer #3 (Public review):

      Summary:

      Understanding the mechanisms whereby animals restrict the timing of their reproduction according to day length is a critical challenge given that many of the most relevant species for agriculture are strongly photoperiodic. However, the principal animal models capable of detailed genetic analysis do not respond to photoperiod so this has inevitably limited progress in this field. The fish model medaka occupies a uniquely powerful position since it's reproduction is strictly restricted to long days and it also offers a wide range of genetic tools for exploring, in depth, various molecular and cellular control mechanisms.

      For these reasons, this manuscript by Tagui and colleagues is particularly valuable. It uses the medaka to explore links bridging photoperiod, feeding behaviour and reproduction. The authors demonstrate that in female, but not male medaka, photoperiod-induced reproduction is associated with an increase in feeding, presumably explained by the high metabolic cost of producing eggs on a daily basis during the reproductive period. Using RNAseq analysis of the brain, they reveal that the expression of the neuropeptides agrp and npy that have been previously implicated in the regulation of feeding behaviour in mice, are upregulated in the medaka brain during exposure to long photoperiod conditions. Unlike the situation in mouse, these two neuropeptides are not coexpressed in medaka neurons and food deprivation in medaka led to increases in agrp but also a decrease in npy expression. Furthermore, the situation in fish may be more complicated than in mouse due to the presence of multiple gene paralogs for each neuropeptide. Exposure to long day conditions increases agrp1 expression in medaka as the result of increases in the number of neurons expressing this neuropeptide, while the increase in npyb levels results from increased levels of expression in the same population of cells. Using ovariectomized medaka and in situ hybridization assays, the authors reveal that the regulation of agrp1 involves estrogen acting via the estrogen receptor esr2a. Finally, a loss of agrp1 function mutant is generated where the female mutants fail to show the characteristic increase in feeding associated with long day enhanced reproduction as well as yielding reduced numbers of eggs during spawning.

      Strengths:

      This manuscript provides important foundational work for future investigations aiming to elucidate the coordination of photoperiod sensing, feeding activity and reproduction function. The authors have used a combination of approaches with a genetic model that is particularly well suited to studying photoperiodic dependent physiology and behaviour. The data are clear and the results are convincing and support the main conclusions drawn. The findings are relevant not only for understanding photopriodic responses but also provide more general insight into links between reproduction and feeding behaviour control.

      The manuscript has been further strengthened by the inclusion of additional information according to my advice: The analysis of ovariectomized female fish and juvenille fish has now been reported in terms of their feeding behaviour and so provide a complete view of the position of this feeding regulatory mechanism in the context of reproduction status. Furthermore, the discussion section has been expanded to speculate on the functional significance of linking feeding behaviour control with reproductive function. Modifications made in order to address technical concerns of the other 2 reviewers have also significantly strengthened the presentation of this work.

      Weaknesses:

      These have now been addressed in the revised version.

    1. Reviewer #1 (Public review):

      This paper presents a computational model of the evolution of two different kinds of helping ("work," presumably denoting provisioning, and defense tasks) in a model inspired by cooperatively breeding vertebrates. The helpers in this model are a mix of previous offspring of the breeder and floaters that might have joined the group, and can either transition between the tasks as they age or not. The two types of help have differential costs: "work" reduces "dominance value," (DV), a measure of competitiveness for breeding spots, which otherwise goes up linearly with age, but defense reduces survival probability. Both eventually might preclude the helper from becoming a breeder and reproducing. How much the helpers help, and which tasks (and whether they transition or not), as well as their propensity to disperse, are all evolving quantities. The authors consider three main scenarios: one where relatedness emerges from the model, but there is no benefit to living in groups, one where there is no relatedness, but living in larger groups gives a survival benefit (group augmentation, GA), and one where both effects operate. The main claim is that evolving defensive help or division of labor requires the group augmentation; it doesn't evolve through kin selection alone in the authors' simulations.

      This is an interesting model, and there is much to like about the complexity that is built in. Individual-based simulations like this can be a valuable tool to explore the complex interaction of life history and social traits. Yet, models like this also have to take care of both being very clear on their construction and exploring how some of the ancillary but potentially consequential assumptions affect the results, including robust exploration of the parameter space. I think the current manuscript falls short in these areas, and therefore, I am not yet convinced of the results. Much of this is a matter of clearer and more complete writing: the Materials and Methods section in particular is incomplete or vague in some important junctions. However, there are also some issues with the assumptions that are described clearly.

      Below, I describe my main issues, mostly having to do with model features that are unclear, poorly motivated (as they stand), or potentially unrealistic or underexplored.

      One of the main issues I have is that there is almost no information on what happens to dispersers in the model. Line 369-67 states dispersers might join another group or remain as floaters, but gives no further information on how this is determined. Poring through the notation table also comes up empty as there is no apparent parameter affecting this consequential life history event. At some point, I convinced myself that dispersers remain floaters until they die or become breeders, but several points in the text contradict this directly (e.g., l 107). Clearly this is a hugely important model feature since it determines fitness cost and benefits of dispersal and group size (which also affects relatedness and/or fitness depending on the model). There just isn't enough information to understand this crucial component of the model, and without it, it is hard to make sense of the model output.

      Related to that, it seems to be implied (but never stated explicitly) that floaters do no work, and therefore their DV increases linearly with age (H_work in eq.2 is zero). That means any floaters that manage to stick around long enough would have higher success in competition for breeding spots relative to existing group members. How realistic is this? I think this might be driving the kin selection-only results that defense doesn't evolve without group augmentation (one of the two main ways). Any subordinates (which are mainly zero in the no GA, according to the SI tables; this assumes N=breeder+subordinates, but this isn't explicit anywhere) would be outcompeted by floaters after a short time (since they evolve high H and floaters don't), which in turn increases the benefit of dispersal, explaining why it is so high. Is this parameter regime reasonable? My understanding is that floaters often aren't usually high resource holding potential individuals (either b/c high RHP ones would get selected out of the floater population by establishing territories or b/c floating isn't typically a thriving strategy, given that many resources are tied to territories). In this case, the assumption seems to bias things towards the floaters and against subordinates to inherit territories. This should be explored either with a higher mortality rate for floaters and/or a lower DV increase, or both.

      When it comes to floaters replacing dead breeders, the authors say a bit more, but again, the actual equation for the scramble competition (which only appears as "scramble context" in the notation table) is not given. Is it simply proportional to R_i/\sum_j R_j ? Or is there some other function used? What are the actual numbers of floaters per breeding territory that emerge under different parameter values? These are all very important quantities that have to be described clearly.

      I also think the asexual reproduction with small mutations assumption is a fairly strong one that also seems to bias the model outcomes in a particular way. I appreciate that the authors actually measured relatedness within groups (though if most groups under KS have no subordinates, that relatedness becomes a bit moot), and also eliminated it with their ingenious swapping-out-subordinates procedure. The fact remains that unless they eliminate relatedness completely, average relatedness, by design, will be very high. (Again, this is also affected by how the fate of the dispersers is determined, but clearly there isn't a lot of joining happening, just judging from mean group sizes under KS only.) This is, of course, why there is so much helping evolving (even if it's not defensive) unless they completely cut out relatedness.

      Finally, the "need for division of labor" section is also unclear, and its construction also would seem to bias things against division of labor evolving. For starters, I don't understand the rationale for the convoluted way the authors create an incentive for division of labor. Why not implement something much simpler, like a law of minimum (i.e., the total effect of helping is whatever the help amount for the lowest value task is) or more intuitively: the fecundity is simply a function of "work" help (draw Poisson number of offspring) and survival of offspring (draw binomial from the fecundity) is a function of the "defense" help. As it is, even though the authors say they require division of labor, in fact, they only make a single type of help marginally less beneficial (basically by half) if it is done more than the other. That's a fairly weak selection for division of labor, and to me it seems hard to justify. I suspect either of the alternative assumptions above would actually impose enough selection to make division of labor evolve even without group augmentation.

      Overall, this is an interesting model, but the simulation is not adequately described or explored to have confidence in the main conclusions yet. Better exposition and more exploration of alternative assumptions and parameter space are needed.

    2. Reviewer #2 (Public review):

      Summary:

      This paper formulates an individual-based model to understand the evolution of division of labor in vertebrates. A main conclusion of the paper is that direct fitness benefits are the primary factor causing the evolution of vertebrate division of labor, rather than indirect fitness benefits.

      Strengths:

      The paper formulates an individual-based model that is inspired by vertebrate life history. The model incorporates numerous biologically realistic details, including the possibility to evolve age polytheism where individuals switch from work to defence tasks as they age or vice versa, as well as the possibility of comparing the action of group augmentation alone with that of kin selection alone.

      Weaknesses:

      The model makes assumptions that restrict the possibility that kin selection leads to the evolution of helping. In particular, the model assumes that in the absence of group augmentation, subordinates can only help breeders but cannot help non-breeders or increase the survival of breeders, whereas with group augmentation, subordinates can help both breeders and non-breeders and increase the survival of breeders. This is unrealistic as subordinates in real organisms can help other subordinates and increase the survival of non-breeders, even in the absence of group augmentation, for instance, with targeted helping to dominants or allies. This restriction artificially limits the ability of kin selection alone to lead to the evolution of helping, and potentially to division of labor. Hence, the conclusion that group augmentation is the primary driving factor driving vertebrate division of labor appears forced by the imposed restrictions on kin selection. The model used is also quite particular, and so the claimed generality across vertebrates is not warranted.

      I describe some suggestions for improving the paper below, more or less in the paper's order.

      First, the introduction goes to great lengths trying to convince the reader that this model is the first in this or another way, particularly in being only for vertebrates, as illustrated in the abstract where it is stated that "we lack a theoretical framework to explore the conditions under which division of labor is likely to evolve" (line 13). However, this is a risky and unnecessary motivation. There are many models of division of labor and some of them are likely to be abstract enough to apply to vertebrates even if they are not tailored to vertebrates, so the claims for being first are not only likely to be wrong but will put many readers in an antagonistic position right from the start, which will make it harder to communicate the results. Instead of claiming to be the first or that there is a lack of theoretical frameworks for vertebrate division of labor, I think it is enough and sufficiently interesting to say that the paper formulates an individual-based model motivated by the life history of vertebrates to understand the evolution of vertebrate division of labor. You could then describe the life history properties that the model incorporates (subordinates can become reproductive, low relatedness, age polyethism, etc.) without saying this has never been done or that it is exclusive to vertebrates; indeed, the paper states that these features do not occur in eusocial insects, which is surprising as some "primitively" eusocial insects show them. So, in short, I think the introduction should be extensively revised to avoid claims of being the first and to make it focused on the question being addressed and how it is addressed. I think this could be done in 2-3 paragraphs without the rather extensive review of the literature in the current introduction.

      Second, the description of the model and results should be clarified substantially. I will give specific suggestions later, but for now, I will just say that it is unclear what the figures show. First, it is unclear what the axes in Figure 2 show, particularly for the vertical one. According to the text in the figure axis, it presumably refers to T, but T is a function of age t, so it is unclear what is being plotted. The legend explaining the triangle and circle symbols is unintelligible (lines 227-230), so again it is unclear what is being plotted; part of the reason for this unintelligibility is that the procedure that presumably underlies it (section starting on line 493) is poorly explained and not understandable (I detail why below). Second, the axes in Figure 3 are similarly unclear. The text in the vertical axis in panel A suggests this is T, however, T is a function of t and gamma_t, so something else must be being done to plot this. Similarly, in panel B, the horizontal axis is presumably R, but R is a function of t and of the helping genotype, so again some explanation is lacking. In all figures, the symbol of what is being plotted should be included.

      Third, the conclusions sound stronger than the results are. A main conclusion of the paper is that "kin selection alone is unlikely to select for the evolution of defensive tasks and division of labor in vertebrates" (lines 194-195). This conclusion is drawn from the left column in Figure 2, where only kin selection is at play, and the helping that evolves only involves work rather than defense tasks. This conclusion follows because the model assumes that without group augmentation (i.e., xn=0, the kin selection scenario), subordinates can only help breeders to reproduce but cannot help breeders or other subordinates to survive, so the only form of help that evolves is the least costly, not the most beneficial as there is no difference in the benefits given among forms of helping. This assumption is unrealistic, particularly for vertebrates where subordinates can help other group members survive even in the absence of group augmentation (e.g., with targeted help to certain group members, because of dominance hierarchies where the helping would go to the breeder, or because of alliances where the helping would go to other subordinates). I go into further details below, but in short, the model forces a narrow scope for the kin selection scenario, and then the paper concludes that kin selection alone is unlikely to be of relevance for the evolution of vertebrate division of labor. This conclusion is particular to the model used, and it is misleading to suggest that this is a general feature of such a particular model.

      Overall, I think the paper should be revised extensively to clarify its aims, model, results, and scope of its conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a practical modification of the orthogonal hybridization chain reaction (HCR) technique, a promising yet underutilized method with broad potential for future applications across various fields. The authors advance this technique by integrating peptide ligation technology and nanobody-based antibody mimetics - cost-effective and scalable alternatives to conventional antibodies - into a DNA-immunoassay framework that merges oligonucleotide-based detection with immunoassay methodologies. Notably, they demonstrate that this approach facilitates a modified ELISA platform capable of simultaneously quantifying multiple target protein expression levels within a single protein mixture sample.

      Strengths:

      The hybridization chain reaction (HCR) technique was initially developed to enable the simultaneous detection of multiple mRNA expression levels within the same tissue. This method has since evolved into immuno-HCR, which extends its application to protein detection by utilizing antibodies. A key requirement of immuno-HCR is the coupling of oligonucleotides to antibodies, a process that can be challenging due to the inherent difficulties in expressing and purifying conventional antibodies.

      In this study, the authors present an innovative approach that circumvents these limitations by employing nanobody-based antibody mimetics, which recognize antibodies, instead of directly coupling oligonucleotides to conventional antibodies. This strategy facilitates oligonucleotide conjugation - designed to target the initiator hairpin oligonucleotide of HCR -through peptide ligation and click chemistry.

      Weaknesses:

      The sandwich-format technique presented in this study, which employs a nanobody that recognizes primary IgG antibodies, may have limited scalability compared to existing methods that directly couple oligonucleotides to primary antibodies. This limitation arises because the C-region types of primary antibodies are relatively restricted, meaning that the use of nanobody-based detection may constrain the number of target proteins that can be analyzed simultaneously. In contrast, the conventional approach of directly conjugating oligonucleotides to primary antibodies allows for a broader range of protein targets to be analyzed in parallel.

      Additionally, in the context of HCR-based protein detection, the number of proteins that can be analyzed simultaneously is inherently constrained by fluorescence wavelength overlap in microscopy, which limits its multiplexing capability. By comparison, direct coupling of oligonucleotides to primary antibodies can facilitate the simultaneous measurement of a significantly greater number of protein targets than the sandwich-based nanobody approach in the barcode-ELISA/NGS-based technique.

    1. Reviewer #1 (Public review):

      Summary:

      This study puts forth the model that under IFN-B stimulation, liquid-phase WTAP coordinates with the transcription factor STAT1 to recruit MTC to the promoter region of interferon stimulated genes (ISGs), mediating the installation of m6A on newly synthesized ISG mRNAs. This model is supported by strong evidence that the phosphorylation state of WTAP, regulated by PPP4, is regulated by IFN-B stimulation, and that this results in interactions between WTAP, the m6A methyltransferase complex, and STAT1, a transcription factor that mediates activation of ISGs. This was demonstrated via a combination of microscopy, immunoprecipitations, m6A sequencing, and ChIP. These experiments converge on a set of experiments that nicely demonstrate that IFN-B stimulation increases the interaction between WTAP, METTL3, and STAT1, that this interaction is lost with knockdown of WTAP (even in the presence of IFN-B), and that this IFN-B stimulation also induces METTL3-ISG interactions.

      Strengths:

      The evidence for the IFN-B stimulated interaction between METTL3 and STAT1, mediated by WTAP, is quite strong. Removal of WTAP in this system seems to be sufficient to reduce these interactions and the concomitant m6A methylation of ISGs. The conclusion that the phosphorylation state of WTAP is important in this process is also quite well supported. The authors have now also provided substantial evidence that phase separation of WTAP upon interferon stimulation facilitates m6A-methylation of multiple interferon stimulated genes.

    2. Reviewer #2 (Public review):

      In this study, Cai and colleagues investigate how one component of the m6A methyltransferase complex, the WTAP protein, responds to IFNb stimulation. They find that viral infection or IFNb stimulation induces the transition of WTAP from aggregates to liquid droplets through dephosphorylation by PPP4. This process affects the m6A modification levels of ISG mRNAs and modulates their stability. In addition, the WTAP droplets interact with the transcription factor STAT1 to recruit the methyltransferase complex to ISG promoters and enhance m6A modification during transcription. The investigation dives into a previously unexplored area of how viral infection or IFNb stimulation affects m6A modification on ISGs. The observation that WTAP undergoes a phase transition is significant in our understanding of the mechanisms underlying m6A's function in immunity. However, there are still key gaps that should be addressed to fully accept the model presented.

      Major points:<br /> (1) More detailed analyses on the effects of WTAPsgRNA on the m6A modification of ISGs:<br /> a. A comprehensive summary of the ISGs, including the percentage of ISGs that are m6A-modified,<br /> b. The distribution of m6A modification across the ISGs, and<br /> c. A comparison of the m6A modification distribution in ISGs with non-ISGs.<br /> In addition, since the authors propose a novel mechanism where the interaction between phosphorylated STAT1 and WTAP direct the MTC to the promoter regions of ISGs to facilitate co-transcriptional m6A modification, it is critical to analyze whether the m6A modification distribution holds true in the data.

      (2) Since a key part of the model includes the cytosol-localized STAT1 protein undergoing phosphorylation to translocate to the nucleus to mediate gene expression, the authors should focus on the interaction between phosphorylated STAT1 and WTAP in Figure 4, rather than the unphosphorylated STAT1. Only phosphorylated STAT1 localizes to the nucleus, so the presence of pSTAT1 in the immunoprecipitate is critical for establishing a functional link between STAT1 activation and its interaction with WTAP.

      (3) The authors should include pSTAT1 ChIP-seq and WTAP ChIP-seq on IFNb-treated samples in Figure 5 to allow for a comprehensive and unbiased genomic analysis for comparing the overlaps of peaks from both ChIP-seq datasets. These results should further support for their hypothesis that WTAP interacts with pSTAT1 to enhance m6A modifications on ISGs.

      Minor points:<br /> (1) Since IFNb is primarily known for modulating biological processes through gene transcription, it would be informative if the authors discussed the mechanism of how IFNb would induce the interaction between WTAP and PPP4.

      (2) The authors should include mCherry alone controls in Figure 1D to demonstrate that mCherry does not contribute to the phase separation of WTAP. Does mCherry have or lack a PLD?

      (3) The authors should clarify the immunoprecipitation assays in the methods. For example, the labeling in Fig. 2A suggests that antibodies against WTAP and pan-p were used for two immunoprecipitations. Is that accurate?

      (4) The authors should include overall m6A modification levels quantified of GFPsgRNA and WTAPsgRNA cells, either by mass spectrometry (preferably) or dot blot.

      Comments on revisions:

      The authors thoroughly addressed the aforementioned points during the review process.

    3. Reviewer #3 (Public review):

      Summary:

      This study presents a valuable finding on the mechanism used by WTAP to modulate the IFN-β stimulation. It describes the phase transition of WTAP driven by IFN-β-induced dephosphorylation. The evidence supporting the claims of the authors is solid.

      Strength:

      The key finding is the revelation that WTAP undergoes phase separation during virus infection or IFN-β treatment. The authors conducted a series of precise experiments to uncover the mechanism behind WTAP phase separation and identified the regulatory role of 5 phosphorylation sites. They also succeeded in pinpointing the phosphatase involved.

    1. Reviewer #2 (Public review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain of function and loss of function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the author see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have some limitations.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example, phase separation properties and functions within complex ribonucleoprotein complexes. The authors show that normal splicing function of GFP-TDP-43 is maintained, suggesting that physiology is largely preserved, but other functions and properties of TDP-43 that were not directly tested could be altered.

      • Potential differences in splicing and micro RNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown and can differ in different batches of experiments, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance or batch effects.

    1. Reviewer #1 (Public review):

      Summary:

      This paper reports an intracranial SEEG study of speech coordination, where participants synchronize their speech output with a virtual partner that is designed to vary its synchronization behavior. This allows the authors to identify electrodes throughout the left hemisphere of the brain that have activity (both power and phase) that correlates with the degree of synchronization behavior. They find that high-frequency activity in secondary auditory cortex (superior temporal gyrus) is correlated to synchronization, in contrast to primary auditory regions. Furthermore, activity in inferior frontal gyrus shows a significant phase-amplitude coupling relationship that is interpreted as compensation for deviation from synchronized behavior with the virtual partner.

      Strengths:<br /> (1) The development of a virtual partner model trained for each individual participant, which can dynamically vary its synchronization to the participant's behavior in real time, is novel and exciting.<br /> (2) Understanding real-time temporal coordination for behaviors like speech is a critical and understudied area.<br /> (3) The use of SEEG provides the spatial and temporal resolution necessary to address the complex dynamics associated with the behavior.<br /> (4) The paper provides some results that suggest a role for regions like IFG and STG in the dynamic temporal coordination of behavior both within an individual speaker and across speakers performing a coordination task.

      Weaknesses:

      (1) The main weakness of the paper is that the results are presented in a largely descriptive and vague manner. For instance, while the interpretation about predictive coding and error correction is interesting, it is not clear how the experimental design or analyses specifically support such a model, or how they differentiate that model from the alternatives. It's possible that some greater specificity could be achieved by a more detailed examination of this rich dataset, for example by characterizing the specific phase relationships (e.g., positive vs negative lags) in areas that show correlations with synchronization behavior. However, as written, it is difficult to understand what these results tell us about how coordination behavior arises.<br /> (2) In the results section, there's a general lack of quantification. While some of the statistics reported in the figures are helpful, there are also claims that are stated without any statistical test. For example, in the paragraph starting on line 342, it is claimed that there is an inverse relationship between rho-value and frequency band, "possibly due to the reversed desynchronization/synchronization process in low and high frequency bands". Based on Figure 3, the first part of this statement appears to be true qualitatively, but is not quantified, and is therefore impossible to assess in relation to the second part of the claim. Similarly, the next paragraph on line 348 describes optimal clustering, but statistics of the clustering algorithm and silhouette metric are not provided. More importantly, it's not entirely clear what is being clustered - is the point to identify activity patterns that are similar within/across brain regions? Or to interpret the meaning of the specific patterns? If the latter, this is not explained or explored in the paper.<br /> (3) Given the design of the stimuli, it would be useful to know more about how coordination relates to specific speech units. The authors focus on the syllabic level, which is understandable. But as far as the results relate to speech planning (an explicit point in the paper), the claims could be strengthened by determining whether the coordination signal (whether error correction or otherwise) is specifically timed to e.g., the consonant vs the vowel. If the mechanism is a phase reset, does it tend to occur on one part of the syllable?<br /> (4) In the discussion the results are related to a previously described speech-induced suppression effect. However, it's not clear what the current results have to do with SIS, since the speaker's own voice is present and predictable from the forward model on every trial. Statements such as "Moreover, when the two speech signals come close enough in time, the patient possibly perceives them as its own voice" are highly speculative and apparently not supported by the data.<br /> (5) There are some seemingly arbitrary decisions made in the design and analysis that, while likely justified, need to be explained. For example, how were the cutoffs for moderate coupling vs phase-shifted coupling (k ~0.09) determined? This is noted as "rather weak" (line 212), but it's not clear where this comes from. Similarly, the ROI-based analyses are only done on regions "recorded in at least 7 patients" - how was this number chosen? How many electrodes total does this correspond to? Is there heterogeneity within each ROI?

      Comments on revisions:

      The authors have generally responded to the critiques from the first round of review, and have provided additional details that help readers to understand what was done.

      In my opinion, the paper still suffers from a lack of clarity about the interpretation, which is partly due to the fact that the results themselves are not straightforward. For example, the heterogeneity across individual electrodes that is obvious from Fig 3 makes it hard to justify the ROI-based approach. And even the electrode clustering, while more data-driven, does not substantially help the fact that the effects appear to be less spatially-organized than the authors may want to claim.

      I recognize the value of introducing this new mutual adaptation paradigm, which is the main strength of the paper. However, the conclusions that can be drawn from the data presented here seem incomplete at best.

    2. Reviewer #2 (Public review):

      Summary:

      This paper investigates the neural underpinnings of an interactive speech task requiring verbal coordination with another speaker. To achieve this, the authors recorded intracranial brain activity from the left (and to a lesser extent, the right) hemisphere in a group of drug-resistant epilepsy patients while they synchronised their speech with a 'virtual partner'. Crucially, the authors were able to manipulate the degree of success of this synchronisation by programming the virtual partner to either actively synchronise or desynchronise their speech with the participant, or else to not vary its speech in response to the participant (making the synchronisation task purely one-way). Using such a paradigm, the authors identified different brain regions that were either more sensitive to the speech of the virtual partner (primary auditory cortex), or more sensitive to the degree of verbal coordination (i.e. synchronisation success) with the virtual partner (left secondary auditory cortex and bilateral IFG). Such sensitivity was measured by (1) calculating the correlation between the index of verbal coordination and mean power within a range of frequency bands across trials, and (2) calculating the phase-amplitude coupling between the behavioural and brain signals within single trials (using the power of high-frequency neural activity only). Overall, the findings help to elucidate some of the brain areas involved in interactive speaking behaviours, particularly highlighting high-frequency activity of the bilateral IFG as a potential candidate supporting verbal coordination.

      Strengths:

      This study provides the field with a convincing demonstration of how to investigate speaking behaviours in more complex situations that share many features with real-world speaking contexts e.g. simultaneous engagement of speech perception and production processes, the presence of an interlocutor and the need for inter-speaker coordination. The findings thus go beyond previous work that has typically studied solo speech production in isolation, and represent a significant advance in our understanding of speech as a social and communicative behaviour. It is further an impressive feat to develop a paradigm in which the degree of cooperativity of the synchronisation partner can be so tightly controlled; in this way, this study combines the benefits of using pre-recorded stimuli (namely, the high degree of experimental control) with the benefits of using a live synchronisation partner (allowing the task to be truly two-way interactive, an important criticism of other work using pre-recorded stimuli). A further key strength of the study lies in its employment of stereotactic EEG to measure brain responses with both high temporal and spatial resolution, an ideal method for studying the unfolding relationship between neural processing and this dynamic coordination behaviour.

      Weaknesses:

      One limitation of the current study is the relatively sparse coverage of the right hemisphere by the implanted electrodes (91 electrodes in the right compared to 145 in the left). Of course, electrode location is solely clinically motivated, and so the authors did not have control over this. In a previous version of this article, the authors therefore chose not to include data from the right hemisphere in reported analyses. However, after highlighting previous literature suggesting that the right hemisphere likely has high relevance to verbal coordination behaviours such as those under investigation here, the authors have now added analyses of the right hemisphere data to the results. These confirm an involvement of the right hemisphere in this task, largely replicating left hemisphere results. Some hemispheric differences were found in responses within the STG; however, interpretation should be tempered by an awareness of the relatively sparse coverage of the right hemisphere meaning that some regions have very few electrodes, resulting in reduced statistical power.

    1. Reviewer #1 (Public review):

      Summary:

      The authors set out to explore the role of upstream open reading frames (uORFs) in stabilizing protein levels during Drosophila development and evolution. By utilizing a modified ICIER model for ribosome translation simulations and conducting experimental validations in Drosophila species, the study investigates how uORFs buffer translational variability of downstream coding sequences. The findings reveal that uORFs significantly reduce translational variability, which contributes to gene expression stability across different biological contexts and evolutionary timeframes.

      Strengths:

      (1) The study introduces a sophisticated adaptation of the ICIER model, enabling detailed simulation of ribosomal traffic and its implications for translation efficiency.<br /> (2) The integration of computational predictions with empirical data through knockout experiments and translatome analysis in Drosophila provides a compelling validation of the model's predictions.<br /> (3) By demonstrating the evolutionary conservation of uORFs' buffering effects, the study provides insights that are likely applicable to a wide range of eukaryotes.

      Weaknesses:

      (1) Although the study is technically sound, it does not clearly articulate the mechanisms through which uORFs buffer translational variability. A clearer hypothesis detailing the potential molecular interactions or regulatory pathways by which uORFs influence translational stability would enhance the comprehension and impact of the findings.<br /> (2) The study could be further improved by a discussion regarding the evolutionary selection of uORFs. Specifically, it would be beneficial to explore whether uORFs are favored evolutionarily primarily for their role in reducing translation efficiency or for their capability to stabilize translation variability. Such a discussion would provide deeper insights into the evolutionary dynamics and functional significance of uORFs in genetic regulation.

      Comments on revisions:

      The authors have adequately addressed my previous concerns.

    2. Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analysed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same species. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress conditions. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study significantly advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution. It would be particularly interesting to explore whether similar buffering functions are conserved in other organisms, and whether their regulatory effects could be harnessed for practical applications, such as improving crop traits or benefiting human health.

      Comments on revisions:

      The authors have fully addressed all of my concerns, and the revisions have substantially improved the manuscript. I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study aimed at replicating two previous findings that showed (1) a link between prediction tendencies and neural speech tracking, and (2) that eye movements track speech. The main findings were replicated which supports the robustness of these results. The authors also investigated interactions between prediction tendencies and ocular speech tracking, but the data did not reveal clear relationships. The authors propose a framework that integrates the findings of the study and proposes how eye movements and prediction tendencies shape perception.

      Strengths:

      This is a well-written paper that addresses interesting research questions, bringing together two subfields that are usually studied in separation: auditory speech and eye movements. The authors aimed at replicating findings from two of their previous studies, which was overall successful and speaks for the robustness of the findings. The overall approach is convincing, methods and analyses appear to be thorough, and results are compelling.

      Weaknesses:

      Eye movement behavior could have presented in more detail and the authors could have attempted to understand whether there is a particular component in eye movement behavior (e.g., blinks, microsaccades) that drives the observed effects.

    2. Reviewer #2 (Public review):

      Summary

      Schubert et al. recorded MEG and eye tracking activity while participants were listening to stories in single-speaker or multi-speaker speech. In a separate task, MEG was recorded while the same participants were listening to four types of pure tones in either structured (75% predictable) or random (25%) sequences. The MEG data from this task was used to quantify individual 'prediction tendency': the amount by which the neural signal is modulated by whether or not a repeated tone was (un)predictable, given the context. In a replication of earlier work, this prediction tendency was found to correlate with 'neural speech tracking' during the main task. Neural speech tracking is quantified as the multivariate relationship between MEG activity and speech amplitude envelope. Prediction tendency did not correlate with 'ocular speech tracking' during the main task. Neural speech tracking was further modulated by local semantic violations in the speech material and by whether or not a distracting speaker was present. The authors suggest that part of the neural speech tracking is mediated by ocular speech tracking. Story comprehension was negatively related with ocular speech tracking.

      Strengths

      This is an ambitious study, and the authors' attempt to integrate the many reported findings related to prediction and attention in one framework is laudable. The data acquisition and analyses appear to be done with great attention to methodological detail. Furthermore, the experimental paradigm used is more naturalistic than was previously done in similar setups (i.e.: stories instead of sentences).

      Weaknesses

      While the analysis pipeline is outlined in much detail, some analysis choices appear ad-hoc and could have been more uniform and/or better motivated (other than: this is what was done before).

    3. Reviewer #3 (Public review):

      I thank the authors for their extensive revision of this paper, and I found some elements greatly improved.<br /> In particular, the authors do embrace a somewhat more speculative tone in the current version, which I think is fitting for this work, as the data seem (to me) to be not fully conclusive. The data set collected here is clearly valuable and unique (and I would encourage the authors to make it publicly available!), however, my overall impression is that the specific analyses reported here might not fully

      Despite the revised description of methods, results and figures, I still have trouble understanding many of the results and the authors conclusive interpretation of them. These are my main reservations:

      (1) Regarding "individual prediction tendency" - thank you for adding clarifying methodological details and showing the data in a new Figure (#2). Honestly, however, I still can't say that I fully understand the result. For example, why is there also a significant response in the random condition as well? And how do you interpret the interesting time-course (with a peak ~200ms prior to the stimulus, and a reduction overtime from there?<br /> Also (I may have missed this, but..) what neural data was used to train the classifier and derive the "prediction tendency" index? Was it just the broadband neural response? Is there a way to know which sensors contributed to this metric (e.g., are they predominantly auditory? Frontal?)? And is there a way to establish the statistical significance of this metric (e.g., how good the decoder actually was in predicting behavioral sensitivity?). I don't see any statistics in the results section describing the individual prediction tendency.

      (2) Regarding the TRF analysis - Thanks for clarifying the approach used to obtain 2-second long "segments" of speech tracking. This is an interesting approach, however I think quite new(?) , and for me it raises a whole new set of questions, as well as additional controls and data that I would have liked to see, to be convinced that results are significant. I will elaborate:

      - Do I understand correctly that you segment the real and predicted neural response into 2-second long segments and then calculate the Pearsons' correlation between them to assess the goodness of the model? This is very unclear, since in the methods section you state only that "the same" analysis was performed as for the full data - but what exactly? Clearly, values will be very different when using such short segments. I feel that additional details are still required (and perhaps data shown) to fully understand the "semantic violation" analysis of TRFs.

      - I would like to reiterate my previous comment regarding the use of permutation tests to verify the validity of TRF-based measures derived. This would be especially important when using new approaches (such as the segmentation used here). The authors argue that this is not needed since this was not done in their previously published study. However, this sounds a bit like "two wrongs make a right" argument... why not just do it, and let us know that this 2-second segmentation approach allows estimating reliable speech tracking?

      - Following up on my previous comment that defining "clusters" as at least two neighboring channels (Figure 3) - the fact that this is a default in Fieldtrip is by no means sufficient justification!. This seems quite liberal to me, especially given the many comparisons performed. Here too, permutations can help to determine the necessary data-driven threshold for corrections. This is of course critical for interpreting the result shown in Figures 3E&G that are critical "take home messages" of the paper - i.e., that the prediction-index from the first part of the experiment is related to speech tracking in the second part of the experiment. To my eyes, this does not look extremely convincing, but perhaps the authors can show more conclusive data to support this (e.g., scatter plots of the betas across participant?).<br /> - A similar point can be made for the effect of semantic violations (though here the scalp-level result is somewhat more clustered). The authors point out that the semantic effect is a "replication" of their result reported in Schubert et al. 2023, but if I am not mistaken the results there were somewhat different (as was the manipulation). It would be nice to explicitly discuss the similarity/difference between these effects.

      (3) Regarding the ocular-TRFs -

      - Maybe this is just me, but I believe that effects that are robust should be clearly visible in the data, without the need for fancy "black-box" statistical models. In the case of the ocular TRFs, it is hard for me to see how these time-courses are not just noise (and, again, a permutation test would have helped to convince me..). The inconsistent results for horizontal and vertical eye-movements vis a vis the experimental conditions (single vs. multi-speaker conditions) don't help either, despite the authors argument that these are "independent" - but why should this be the case, especially if there is nothing really to look at in this task?<br /> - I remain with this scepticism for the mediation-portion of the analysis as well... But perhaps replications from other groups or making the data public will help shed further light on this in the future.

      Minor<br /> - Thanks for adding information about the creation of semantic-violation stimuli. Since the violations and lexical-controls were taken from different audio recordings, it would have been nice to verify that differences between neural responses cannot be attributed to differences in articulations (e.g., by comparing their spectro-temporal properties).

    1. Reviewer #1 (Public review):

      Summary:

      The study tests the conservation of imprinting of the ZBDF2 locus across mammals. ZDBF2 is known to be imprinted in mouse, human and rat. The locus has a unique mechanism of imprinting: although imprinting is conferred by a germline DMR methylated in oocytes, the DMR is upstream to ZDBF2 (at GPR1) and monoallelic methylation of the gDMR does not persist beyond early developmental stages. Instead, a lncRNA (GPR1-AS, also known as Liz in mouse) initiating at the gDMR is expressed transiently in embryos and sets up a secondary DMR (by mechanisms not fully elucidated) that then confers monoallelic expression of ZDBF2 in somatic tissues.

      In this study, the authors first interrogate existing placental RNA-seq datasets from multiple mammalian species, and detect GPR1-AS1 candidate transcripts in human, baboon, macaque and mouse, but not in about a dozen other mammals. Because of the varying depth, quality and nature of these RNA-seq libraries, the ability to definitely detect the GPR1-AS1 lncRNA is not guaranteed; therefore, they generate their own deep, directional RNA-seq data from tissues/embryos from five species, finding evidence of GPR1-AS in rabbit, chimpanzee, but not bovine, pig or opossum. From these surveys, the authors conclude that the lncRNA is present only in Euarchontoglires mammals. To test the association between GPR1-AS and ZDBF2 imprinting, they perform RT-PCR and sequencing in tissue from wallabies and cattle, finding biallelic expression of ZDBF2 in these species that also lack a detected GPR1-AS transcript. From inspection of the genomic location of the GPR1-AS first exon, the authors identify an overlap with a solo LTR of the MER21C retrotransposon family in those species in which the lncRNA is observed, except for some rodents, including mouse. However, they do detect a degree of homology (46%) to the MER21C consensus at the first exon on Liz in mouse. Finally, the authors explore public RNA-seq datasets to show that GPR1-AS is expression transiently during human preimplantation development, an expression dynamic that would be consistent with the induction of monoallelic methylation of a somatic DMR at ZDBF2 and consequent monoallelic expression.

      Strengths:

      The analysis uncovers a novel mechanism by which a retrotransposon-derived LTR may be involved in genomic imprinting.<br /> The genomic analysis is very well executed.<br /> New directional and deeply-sequenced RNA-seq datasets from placenta or trophectoderm of five mammalian species and marsupial embryos, which will be of value to the community.

      Weaknesses:

      Although the genomic analysis is very strong, the study remains entirely correlative. All of the data are descriptive, and much of the analysis is performed on RNA-seq and other datasets from the public domain; a small amount of primary data is generated by the authors.<br /> Evidence that the residual LTR in mouse is functionally relevant for Liz lncRNA expression is lacking.

      Comments on revision:

      The authors have responded very constructively to all points raised by me and the other reviewers. For example, the authors have gone to further, extensive efforts in seeking to identify an LTR at the mouse Liz locus - which is not found - but additional multiple genome alignments provide evidence for sequence conservation consistent with retention of a functional relic of the MER21C in rodent genomes. Moreover, they demonstrate the promoter activity of this mouse sequence region in transfections. They have also demonstrated imprinted expression of ZDBF2 in two additional species - rabbit and rhesus macaque - consistent with their model.

    2. Reviewer #2 (Public review):

      Summary:

      This work concerns the evolution of ZDBF2 imprinting in mammalian species via initiation of GPR1 antisense (AS) transcription from a lineage-specific long-terminal repeat (LTR) retrotransposon. It extends previous work describing the mechanism of ZDBF2 imprinting in mice and humans by demonstrating conservation of GPR1-AS transcripts in rabbits and non-human primates. By identifying the origin of GPR1-AS transcription as the LTR MER21C, the authors claim to account for how imprinting evolved in these species but not in those lacking the MER21C insertion. This illustrates the principle of LTR co-option as a means of evolving new gene regulatory mechanisms, specifically to achieve parent-of-origin allele specific expression (imprinting). Examples of this phenomenon have been described previously, but usually involve initiation of transcription during gametogenesis rather than post-fertilization, as in this work. The findings of this paper are therefore relevant to biologists studying imprinted genes or interested more generally in the evolution of gene regulatory mechanisms.

      Strengths:

      (1) The authors convincingly demonstrate the existence of GPR1-AS orthologs in specific mammalian lineages using high quality RNA-seq libraries collected from diverse mammalian species.

      (2) The authors demonstrate imprinting of the ZDBF2 locus in rabbits and Rhesus macaques using allele-specific expression analysis. The transcription of GPR1-AS orthologs therefore correlates with imprinting of the ZDBF2 locus.

      Weaknesses:

      (1) Experimental evidence directly linking GPR1-AS transcription to ZDBF2 imprinting in rabbits and non-human primates is lacking. Consideration should be given to the challenges associated with studying non-model species and manipulating repeat sequences. Further, this mechanism is established in humans and mice, so the authors' model is arguably sufficiently supported merely by the existence of GPR1-AS orthologs in other mammalian lineages.

    3. Reviewer #3 (Public review):

      Kobayashi et al identify MER21C as a common promoter of GPR1-AS/Liz in Euarchontoglires, which establishes a somatic DMR that controls ZFDB2 imprinting. In mice, MER21C appears to have diverged significantly from its primate counterparts and is no longer annotated as such.

      The authors used high-quality cross-species RNA-seq data to characterise GPR1-AS-like transcripts, which included generating new data in five different species. The association between MER21C/B elements and the promoter of GPR1-AS in most species is clear and convincing. The expression pattern of MER21C/B elements overall further supports their role in enabling correct temporal expression of GPR1-AS during embryonic development.

      In the revised version of the manuscript the authors provided additional support for the common evolutionary origin of the GPR1-AS/Liz promoter between primates and rodents. They also showed a more extensive concordance between the presence of GPR1-AS-like transcripts and ZDBF2 imprinting.

      Altogether, these findings robustly support the conclusions of the paper, shedding light into the events underlying the evolution of imprinting at the ZDBF2 locus.