- Aug 2024
-
osf.io osf.io
-
Reviewer #2 (Public Review):
Summary:
The study combines computational modeling of choice behavior with an economic, effort-based decision-making task to assess how willingness to exert physical effort for a reward varies as a function of individual differences in apathy and anhedonia, or depression, as well as chronotype. They find an overall reduction in effort selection that scales with apathy, anhedonia and depression. They also find that later chronotypes are less likely to choose effort than earlier chronotypes and, interestingly, an interaction whereby later chronotypes are especially unwilling to exert effort in the morning versus the evening.
Strengths:
This study uses state-of-the-art tools for model fitting and validation and regression methods which rule out multicollinearity among symptom measures and Bayesian methods which estimate effects and uncertainty about those estimates. The replication of results across two different kinds of samples is another strength. Finally, the study provides new information about the effects not only of chronotype but also chronotype by timepoint interactions which are previously unknown in the subfield of effort-based decision-making.
Weaknesses:
The study has few weaknesses. The biggest drawback is that it does not provide evidence for the idea that a match between chronotype and delay matters is especially relevant for people with depression or continuous measures like anhedonia and apathy. It is unclear whether disorders further interact with chronotype and time of day to determine a bias against effort. On the other hand, the study does provide evidence that future studies should consider such interactions when examining questions about effort expenditure in psychiatric disorders.
-
Reviewer #3 (Public Review):
Summary:
In this manuscript, Mehrhof and Nord study a large dataset of participants collected online (n=958 after exclusions) who performed a simple effort-based choice task. They report that the level of effort and reward influence choices in a way that is expected from prior work. They then relate choice preferences to neuropsychiatric syndromes and, in a smaller sample (n<200), to people's circadian preferences, i.e., whether they are a morning-preferring or evening-preferring chronotype. They find relationships between the choice bias (a model parameter capturing the likelihood to accept effort-reward challenges, like an intercept) and anhedonia and apathy, as well as chronotype. People with higher anhedonia and apathy and an evening chronotype are less likely to accept challenges (more negative choice bias). People with an evening chronotype are also more reward sensitive and more likely to accept challenges in the evening, compared to the morning.
Strengths:
This is an interesting and well-written manuscript which replicates some known results and introduces a new consideration related to chronotype relationships which have not been explored before. It uses a large sample size and includes analyses related to transdiagnostic as well as diagnostic criteria.
Weaknesses:
The authors do not explore how chronotype and depression are related (does one mediate the effect of the other etc). Both variables are included in the same model in the revised article now which is a great improvement, but it also means psychopathology and circadian rhythms are treated as distinct phenomena and their relationship in predicting effort-reward preferences is not examined.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The work in the manuscript utilized patch-clamp techniques to explore the electrophysiological characteristics of VIP interneurons in the early stages of AD using the 3xTg mouse model. The study revealed that VIP interneurons exhibited prolonged action potentials and reduced firing rates. These changes could not be attributed to modifications in input signals or morphological transformations. The authors attributed aberrant VIP activity to the accumulation of beta-amyloid in those interneurons.
The decreased frequency of VIP inhibitory events were associated with no observed changes in excitatory drive to these interneurons. Consequently, heightened activity in the general population of CA1 interneurons was observed during a decision-making task and an object recognition test. In light of these findings, the authors concluded that the altered firing patterns of VIP interneurons may initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.
Strengths:
Overall the work is novel and moves the field of Alzheimer's disease forward in a significant way. The manuscript reports a novel concept of aberrant activity in VIP interneurons during the early stages of AD thus contributing to dysfunctions of the CA1 microcircuit. This results in enhancement of the inhibitory tone on the primary cells of CA1. Thus, the disinhibition by VIP interneurons of Principal Cells is dampened. The manuscript was skillfully composed, the study was of strong scientific rigor featuring well-designed experiments. Necessary controls were present. Both sexes were included.
Major limitations were not adequately addressed in the revised manuscript
(1) The authors attributed aberrant circuit activity to accumulation of "Abeta intracellularly" inside IS-3 cells. That is problematic. 6E10 antibody recognizes amyloid plaques in addition to Amyloid Precursor Protein (APP) as well as the C99 fragment. There are no plaques at the ages 3xTg mice were examined. Lack of plaques was addressed in revised manuscript. The staining shown in Fig. 1a is of APP/C99 inside neurons, not abeta accumulations in neurons. At the ages of 3-6 months, 3xTg mice start producing and releasing extracellular abeta oligomers and potentially tau oligomers as well (Takeda et al., 2013 PMID: 23640054; Takeda et al., 2015 PMID: 26458742 and others). Emerging literature suggests that extracellular not intracellular abeta and tau oligomers disrupt circuit function. Thus, a more likely explanation of extracellular abeta and tau oligomers disrupting the activity of VIP neurons is plausible. Presence of intracellular abeta is currently controversial in the field and needs to be discussed as such. Some of the references added in the revised version of the manuscript are erroneously cited. The authors provide no original data in support of "intracellular" abeta.
(2) Authors suggest that their animals do not exhibit loss of synaptic connections and show Fig. 3d in support of that suggestion. However, imaging with confocal microscopy of 70 micron thick sections would not allow resolution of pre- and post-synaptic terminals. More sensitive measures such as electron microscopy or array tomography are the appropriate techniques to pursue. It is important for the authors to either remove that data from the manuscript or address/discuss the limitations of their technique in the discussion section. There is a possibility of loss of synaptic connections in their mouse model at the ages examined. Discussion of that possibility and of the limitations of the methodology used is missing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors address a fundamental unresolved question in cerebellar physiology: do synapses between granule cells (GCs) and Purkinje cells (PCs) made by the ascending part of the axon (AA) have different synaptic properties to those made by parallel fibers? This is an important question because GCs integrate sensorimotor information from many brain areas with a precise and complex topography.
The authors argue that GCs located close to the PCs essentially contact PC dendrites through the ascending part of their axon. They demonstrate that high-frequency (100 Hz) joint stimulation of distant parallel fibers and local GCs potentiates AA-PC synapses, while parallel fiber-PC synapses are depressed. On the basis of paired pulse ratio analysis, they concluded that evoked plasticity was postsynaptic. When individual pathways are stimulated alone, no LTP is observed. This associative plasticity appears to be sensitive to timing, as stimulation of parallel fibers first results in depression, while stimulation of the AA pathway has no effect. NMDA, mGluR1 and GABAA receptors are involved in this plasticity.
Overall, associative modulation of synaptic transmission is convincing, and the experiments carried out support this conclusion.
One of its weaknesses is that it contradicts the numerous experiments conducted by many groups that have studied plasticity at this connection (e.g. Bouvier et al 2016, Piochon et al 2016, Binda et al, 2016, Schonewille et al 2021). According to the literature, high-frequency stimulation of parallel fibers leads to postsynaptic potentiation under many different experimental conditions (blocked or unblocked inhibition, stimulation protocols, internal solution composition). This discrepancy was not investigated experimentally.
Another weakness is the lack of evidence that AAs have been stimulated. Indeed, without filling the PC with fluorescent dye or biocytin during the experiment, and without reconstructing the anatomical organization, it is difficult to assess whether the stimulating pipette is actually positioned in the GC cluster that potentially contacts the PC with AAs. Although the idea that AAs repeatedly contact the same Purkinje cell has been propagated, to the reviewer's knowledge, no direct demonstration of this hypothesis has yet been published. In fact, what has been demonstrated (Walter et al 2009; Spaeth et al 2022) is that GCs have a higher probability of being connected to nearby PCs, but not necessarily associated with AAs.
-
Reviewer #2 (Public Review):
Summary:
The authors describe a form of synaptic plasticity at synapses from granule cells onto Purkinje cells in the mouse cerebellum, which is specific to synapses from granule cells close to the cell body but not to distal ones. This plasticity is induced by the paired or associative stimulation of the two types of synapses because it is not observed with stimulation of one type of synapse alone. In addition, this form of plasticity is dependent on the order in which the stimuli are presented and is dependent on NMDA receptors, metabotropic glutamate receptors and to some degree on GABAA receptors.
Strengths:
The focus of the authors on the properties of two different synapse-types on cerebellar Purkinje cells is interesting and relevant, given previous results that ascending and parallel fiber synapses might be functionally different and undergo different forms of plasticity (although it hasn't been proven here that the two types of synapses are indeed ascending vs parallel fiber synapses). Nevertheless, the interaction between proximal vs. distal stimulation driven synapse types during plasticity is important for understanding cerebellar function. The demonstration of timing and order-dependent potentiation of only one pathway, and not another, after associative stimulation of both pathways, changes our understanding of potential plasticity mechanisms. In addition, this observation opens up many new questions on underlying intracellular mechanisms as well as on its relevance for cerebellar learning.
Weaknesses:
A concern with this study is that all recordings demonstrate "rundown", a progressive decrease in the amplitude of the EPSC, starting during the baseline period and continuing after the plasticity-induction stimulus. The issues that are causing rundown are not known and may or may not be related to the cellular processes involved in synaptic plasticity. This concern applies in particular to all the experiments where there is a decrease in synaptic strength. However, a key finding of this paper is the associative potentiation of one pathway, which is clearly different from all conditions where there is a decrease in synaptic strength and raises confidence in the authors' conclusions.
In addition, there is some inconsistency with previous results; specifically, that no PF-LTP was induced by PF-alone repeated stimulation.
It remains for future work to identify what these two synapse types, distinguished by the stimulation location, actually are, and where they are on the Purkinje cell dendritic tree. What this specific timing rule is important for is also something that remains to be discovered. Its potential relevance for plasticity and learning will depend on what information these AA vs PF synapses carry, and why their association is meaningful for the circuit and for a behavior. Overall, this study opens up many new questions for the field.
-
Reviewer #3 (Public Review):
Summary:
Granule cells' axons bifurcate to form parallel fibers (PFs) and ascending axons (AAs). While the significance of PFs on cerebellar plasticity is widely acknowledged, the importance of AAs remains unclear. In the current paper, Conti and Auger conducted electrophysiological experiments in rat cerebellar slices and identified a new form of synaptic plasticity in the AA-Purkinje cell (PC) synapses.
Strengths:
The authors applied simultaneous stimulation of AAs and PFs and recorded from PCs and discovered that the strength of AA-PC synapses and PF-PC synapses change in opposite directions: while AA-PC EPSCs increased, PFs-EPSCs decreased. This finding suggests that synaptic responses to AAs and PFs in PCs are jointly regulated, working as an additional mechanism to integrate motor/sensory input. The existence of such plasticity mechanisms may offer new perspectives in studying and modeling cerebellum-dependent behavior. Overall, the experiments are performed well.
Weaknesses:
There are two weaknesses. First, the baseline of electrophysiological recordings is influenced significantly by run-down, limiting the interpretability of the data. Because the amplitude of AA-EPSCs is relatively small, the run-down may have masked some of the changes in EPSCs. However, the authors managed this difficulty using appropriate controls and statistical analysis. Second, while the authors show AA-LTP depends on mGluR, NMDA receptors, and GABA-A receptors, which cell types express these receptors and how they contribute to plasticity is not clarified. Cell-type-specific knockdown of these receptors may clarify this point in future studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head restrained mice running down a virtual linear path. Mice were trained to collect water reward at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile, and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.
The revised manuscript included additional evidence of increased (but transient) signal in LC axons after a transition to a novel environment during periods of immobility, and also that a change from dark to familiar environment induces a peak in LC axon activity, showing that LC input to dCA1 may not solely signal novelty.
Strengths:
The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis at the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.
Weaknesses:
Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.
The LC axonal recordings are well powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compare to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data
The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.
The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.
The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.
AFTER REVISIONS:
The authors have addressed my concerns in a thorough manner. The reviewer also appreciates the increased transparency of reporting in the revised manuscript.
Listed below are some remaining comments.<br /> The increase in LC activity with any change in environment (from familiar to novel or from dark to familiar) suggests that LC input acts not solely as a novelty signal, but as a general arousal or salience signal in response to environmental changes. Based on this, I have a couple of questions:
• Is the overall claim that LC input to the dHC signals novelty still valid based on observed findings - as claimed throughout the manuscript?<br /> • Would the omission of a reward be considered a salient change in the environment that activates LC signals, or is the LC not involved with processing reward-related information? Has the activity of LC and VTA axons been analysed in the seconds following reward presentation and/or omission?
-
Reviewer #2 (Public Review):
Summary:
The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.
The main findings were as follows:<br /> - In a familiar environment, activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, activity of LC axons ramped up before initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.
Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected approach of a learned reward and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.
I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.
Strengths:
(1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.
(2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.
Comments on revised version:
I thank the authors for including a sample size justification.
The justification is based on previous studies using similar sample sizes to characterize behavioral correlates of LC and VTA activity and on practical reasons. I note that to improve reproducibility, it would be preferable to have predefined target sample sizes based on predefined plans for statistical analysis.
-
Reviewer #3 (Public Review):
Summary:
Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength to their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches to accommodate their unequal LC-CA1 and VTA-CA1 sample sizes. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of navigation and memory.
Weaknesses:
The conclusions of this manuscript are mostly well supported by the data. However, increasing the sample size of the VTA-CA1 group and using experimental methods that are identical among LC-CA1 and VTA-CA1 groups would help to fully support the author's conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a pothential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critially, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.
Strengths:<br /> New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provide a wealth of information for taxonmic and phylogenic analyses.
Weaknesses:<br /> The weaknesses of this work is obvious in a number of aspects. Technically, ventral morphlogy is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphomitric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by author's description of free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of cephalic shield, e.g. hypostome and fixgena. Critically, homology of cephalic slits (eye slits, eye notch, doral suture, facial suture) not extensivlely discussed either morphologically or functionally. Finally, authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can be explain a deep homology of cephalic suture in molecular level and multiple co-options within the Atiopoda.
Comments on the revised version:
I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.
(1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.<br /> (2) There are also imprecise descriptions of features.<br /> (3) Ontogeny of the cephalon was not described.<br /> (3) The critical head element is the so called "ventral plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives an indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.
-
Reviewer #3 (Public Review):
Summary:
Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are proposed be associated with ventral plates that the authors homologise with the free cheeks of trilobites (although also testing alternative homologies). An update of a published phylogenetic dataset permits reconsideration of whether dorsal ecdysial sutures have a single or multiple origins in trilobites and their relatives.
Strengths:
Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variation within a single species. New microtomographic data shed light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.
I think the revision does a satisfactory job of reconciling the data and analyses with the conclusions drawn from them. Referee 1's valid concerns about whether a synonymy of Acanthomeridion anacanthus is justified have been addressed by the addition of a length/width scatterplot in Figure 6. Referee 2's doubts about homology between the librigenae of trilobites and ventral plates of Acanthomeridion have been taken on board by re-running the phylogenetic analyses with a coding for possible homology between the ventral plates and the doublure of olenelloid trilobites. The authors sensibly added more trilobite terminals to the matrix (including Olenellus) and did analyses with and without constraints for olenelloids being a grade at the base of Trilobita. My concerns about counting how many times dorsal sutures evolved on a consensus tree have been addressed (the authors now play it safe and say "multiple" rather than attempting to count them on a bushy topology). The treespace visualisation (Figure 9) is a really good addition to the revised paper.
Weaknesses:
The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion and Trilobita. The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites). This paper is not a game-changer because these questions have been asked several times over the past seven years, but there are solid, worthy advances made here.
I'd like to see some of the most significant figures from the Supplementary Information included in the main paper so they will be maximally accessed. The "stick-like" exopods are not best illustrated in the main paper; their best imagery is in Figure S1. Why not move that figure (or at least its non-redundant panels) as well as the reconstruction (Figure S7) to the main paper? The latter summarises the authors' interpretation that a large axe-shaped hypostome appears to be contiguous with ventral plates. The specimens depict evidence for three pairs of post-antennal cephalic appendages but it's a bit hard to picture how they functioned if there's no room between the hypostome and ventral plates. Also, a comment is required on the reconstruction involving all cephalic appendages originating against/under the hypostome rather the first pair being paroral near the posterior end of the hypostome and the rest being post-hypostomal as in trilobites.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper the authors provide a characterisation of auditory responses (tones, noise, and amplitude modulated sounds) and bimodal (somatosensory-auditory) responses and interactions in the higher order lateral cortex (LC) of the inferior colliculus (IC) and compare these characteristic with the higher order dorsal cortex (DC) of the IC - in awake and anaesthetised mice. Dan Llano's group have previously identified gaba'ergic patches (modules) in the LC distinctly receiving inputs from somatosensory structures, surrounded by matrix regions receiving inputs from auditory cortex. They here use 2P calcium imaging combined with an implanted prism to - for the first time - get functional optical access to these subregions (modules and matrix) in the lateral cortex of IC in vivo, in order to also characterise the functional difference in these subparts of LC. They find that both DC and LC of both awake and anaesthetised appears to be more responsive to more complex sounds (amplitude modulated noise) compared to pure tones and that under anesthesia the matrix of LC is more modulated by specific frequency and temporal content compared to the gaba'ergic modules in LC. However, while both LC and DC appears to have low frequency preferences, this preference for low frequencies is more pronounced in DC. Furthermore, in both awake and anesthetized mice somatosensory inputs are capable of driving responses on its own in the modules of LC, but very little in the matrix. The authors now compare bimodal interactions under anaesthesia and awake states and find that effects are different in some cases under awake and anesthesia - particularly related to bimodal suppression and enhancement in the modules.
The paper provides new information about how subregions with different inputs and neurochemical profiles in the higher order auditory midbrain process auditory and multisensory information, and is useful for the auditory and multisensory circuits neuroscience community.
-
Reviewer #2 (Public Review):
Summary:
The study describes differences in responses to sounds and whisker deflections as well as combinations of these stimuli in different neurochemically defined subsections of the lateral and dorsal cortex of the inferior colliculus in anesthetised and awake mice.
Strengths:
A major achievement of the work lies in obtaining the data in the first place as this required establishing and refining a challenging surgical procedure to insert a prism that enabled the authors to visualise the lateral surface of the inferior colliculus. Using this approach, the authors were then able to provide the first functional comparison of neural responses inside and outside of the GABA-rich modules of the lateral cortex. The strongest and most interesting aspects of the results, in my opinion, concern the interactions of auditory and somatosensory stimulation. For instance, the authors find that a) somatosensory-responses are strongest inside the modules and b) somatosensory-auditory suppression is stronger in the matrix than in the modules. This suggests that, while somatosensory inputs preferentially target the GABA-rich modules, they do not exclusively target GABAergic neurons within the modules (given that the authors record exclusively from excitatory neurons we wouldn't expect to see somatosensory responses if they targeted exclusively GABAergic neurons) and that the GABAergic neurons of the modules (consistent with previous work) preferentially impact neurons outside the modules, i.e. via long-range connections.
-
Reviewer #3 (Public Review):
The lateral cortex of the inferior colliculus (LC) is a region of the auditory midbrain noted for receiving both auditory and somatosensory input. Anatomical studies have established that somatosensory input primarily impinges on "modular" regions of the LC, which are characterized by high densities of GABAergic neurons, while auditory input is more prominent in the "matrix" regions that surround the modules. However, how auditory and somatosensory stimuli shape activity, both individually and when combined, in the modular and matrix regions of the LC has remained unknown.
The major obstacle to progress has been the location of the LC on the lateral edge of the inferior colliculus where it cannot be accessed in vivo using conventional imaging approaches. The authors overcame this obstacle by developing methods to implant a microprism adjacent to the LC. By redirecting light from the lateral surface of the LC to the dorsal surface of the microprism, the microprism enabled two-photon imaging of the LC via a dorsal approach in anesthetized and awake mice. Then, by crossing GAD-67-GFP mice with Thy1-jRGECO1a mice, the authors showed that they could identify LC modules in vivo using GFP fluorescence while assessing neural responses to auditory, somatosensory, and multimodal stimuli using Ca2+ imaging. Critically, the authors also validated the accuracy of the microprism technique by directly comparing results obtained with a microprism to data collected using conventional imaging of the dorsal-most LC modules, which are directly visible on the dorsal IC surface, finding good correlations between the approaches.
Through this innovative combination of techniques, the authors found that matrix neurons were more sensitive to auditory stimuli than modular neurons, modular neurons were more sensitive to somatosensory stimuli than matrix neurons, and bimodal, auditory-somatosensory stimuli were more likely to suppress activity in matrix neurons and enhance activity in modular neurons. Interestingly, despite their higher sensitivity to somatosensory stimuli than matrix neurons, modular neurons in the anesthetized prep were overall more responsive to auditory stimuli than somatosensory stimuli (albeit with a tendency to have offset responses to sounds). This suggests that modular neurons should not be thought of as primarily representing somatosensory input, but rather as being more prone to having their auditory responses modified by somatosensory input. However, this trend was different in the awake prep, where modular neurons became more responsive to somatosensory stimuli. Thus, to this reviewer, one of the most intriguing results of the present study is the extent to which neural responses in the LC changed in the awake preparation. While this is not entirely unexpected, the magnitude and stimulus specificity of the changes caused by anesthesia highlight the extent to which higher-level sensory processing is affected by anesthesia and strongly suggests that future studies of LC function should be conducted in awake animals.
Together, the results of this study expand our understanding of the functional roles of matrix and module neurons by showing that responses in LC subregions are more complicated than might have been expected based on anatomy alone. The development of the microprism technique for imaging the LC will be a boon to the field, finally enabling much-needed studies of LC function in vivo. The experiments were well-designed and well-controlled, the limitations of two-photon imaging for tracking neural activity are acknowledged, and appropriate statistical tests were used.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Ma X. et al proposed that A. muciniphila was a key strain that promotes the proliferation and differentiation of intestinal stem cells through acting on the Wnt/b-catenin signaling pathway. They used various models, such as piglet model, mouse model and intestinal organoids to address how A. muciniphila and B. fragilis offer the protection against ETEC infection. They showed that FMT with fecal samples, A. muciniphila or B. fragilis protected piglets and/or mice from ETEC infection, and this protection is manifested as reduced intestinal inflammation/bacterial colonization, increased tight junction/Muc2 proteins, as well as proper Treg/Th17 cells. Additionally, they demonstrated that A. muciniphila protected basal-out and/or apical-out intestinal organoids against ETEC infection via Wnt signaling.
Comments on revised version:
Please add proper references to indicate the invasion of ETEC into organoids after 1 h of infection.
-
Reviewer #3 (Public Review):
Summary:
The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.
Strengths:
The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.
Weaknesses:
After an additional revision, the bioinformatics section of the methods has changed significantly from previous versions and now indicates a third sequencer was used instead: Ion S5 XL. Important parameters required to replicate analysis have still not been provided. Inspection of the SRA data indicates a mix of Illumina MiSeq and Illumina HiSeq 2500. It is now unclear which sequencing technology was used as authors have variably reported 4 different sequencers for these samples. Appropriate metadata was not provided in the SRA, although some groups may be inferred from sample names. These changing descriptions of the methodologies and ambiguity in making the data available create concerns about rigor of study and results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors originally investigated the function of p53 isoforms with an alternative C-terminus encoded by the Alternatively Spliced (AS) exon in place of exon 11 encoding the canonical "α" C-terminal domain. For this purpose, the authors create a mouse model with a specific deletion of the AS exon.
Strengths:
Interestingly, wt or p53ΔAS/ΔAS mouse embryonic fibroblasts did not differ in cell cycle control, expression of well-known p53 target genes, proliferation under hyperoxic conditions, or the growth of tumor xenografts. However, p53-AS isoforms were shown to confer male-specific protection against lymphomagenesis in Eμ-Myc transgenic mice, prone to highly penetrant B-cell lymphomas. In fact, p53ΔAS/ΔAS Eμ-Myc mice were less protected from developing B-cell lymphomas compared to WT counterparts. The important difference that the authors find between WT and p53ΔAS/ΔAS Eμ-Myc males is a higher number of immature B cells in p53ΔAS/ΔAS vs WT mice. Higher expression of Ackr4 and lower expression of Mt2 was found in p53+/+ Eμ-Myc males compared to p53ΔAS/ΔAS counterparts, suggesting that these two transcripts are in part regulators of B-cell lymphomagenesis and enrichment for immature B cells.
The manuscript integrates an elegant genetic approach with in vivo analyses providing a robust set of data which strengthens the role of p53 isoforms in leukemogenesis.
-
Reviewer #2 (Public Review):
Summary:
This manuscript provides a detailed analysis of B-cell lymphomagenesis in mice lacking an alternative exon in region encoding the C-terminal (regulatory) domain of the p53 protein and thus enable to assemble the so-called p53AS isoform. This isoform differs from canonical p53 by the replacement of roughly 30 c-terminal residues by about 10 residues encoded by the alternative exon. There is biochemical and biological evidence that p53AS retains strong transcriptional and somewhat enhanced suppressive activities, with mouse models expressing protein constructs similar to p53AS showing signs of increased p53 activity leading to rapid and lethal anemia. However, the precise role of the alternative p53AS variant has not been addressed so far in a mouse model aimed at demonstrating whether the lack of this particular p53 isoform (trp53ΔAS/ΔAS mice) may cause a specific pathological phenotype.
Results show that lack of AS expression does not noticeably affect p53 the patterns of protein expression and transcriptional activity but reveals a subtle pathogenic phenotype, with trp53ΔAS/ΔAS males, but not females, tending to develop more frequently and earlier B-cell lymphoma than WT. Next, the authors then introduced ΔAS in transgenic Eμ-Myc mice that show accelerated lymphomagenesis. They show that lack of AS caused increased lethality and larger tumor lymph nodes in p53ΔAS Eμ-Myc males compared to their p53WT Eμ-Myc male counterparts, but not in females. Comparative transcriptomics identified a small set of candidate, differentially expressed gene, including Ackr4 (atypical chemokine receptor 4), which was significantly expressed in the spleens of ΔAS compared to WT controls. Ackr4 encodes a dummy receptor acting as an interceptor for multiple chemokines and thus may negatively regulate a chemokine/cytokine signalling axis involved in lymphomagenesis, which is down-regulated by estrogen signalling. Using in vitro cell models, the authors provide evidence that Ackr4 is a transcriptional target for p53 and that its p53-dependent activation is repressed by 17b-oestradiol. Finally, seeking evidence for a relevance for this gene in human lymphomagenesis, the authors analyse Burkitt lymphoma transcriptomic datasets and show that high ACKR4 expression correlated with better survival in males, but not in females
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary
This article delves into the role of Ecdysone in regulating female sexual receptivity in Drosophila. The researchers discovered that PTTH, a positive regulator of Ecdysone production, hurts the receptivity of adult virgin females. Specifically, the researchers found that losing larval PTTH before metamorphosis significantly increases female receptivity immediately after adult eclosion. In addition, Ecdysone, through its receptor EcR-A, is necessary during metamorphic neurodevelopment for the proper development of P1 neurons, as its silencing leads to morphological changes associated with reduced adult female receptivity. Furthermore, Torso enhances receptivity in the adult stage. The molecular mechanisms linking each molecule to female receptivity have yet to be fully understood; therefore, the involvement of the juvenile-to-adult hormonal pathway (PTTH/Torso/ecdysone) in female receptivity is not proven.
Strengths
(1) Robust Methodology and Experimental Design: The study employs a comprehensive and well-structured experimental approach, combining genetic manipulations, behavioral assays, and molecular analyses. This multi-faceted methodology allows for a thorough investigation of the role of PTTH and Ecdysone in regulating female sexual receptivity in Drosophila. The use of specific gene knockouts, RNA interference, and overexpression techniques provides strong evidence supporting the findings.<br /> (2) Clear and Substantial Findings: The authors provide compelling data showing that PTTH negatively regulates female receptivity during the larval stage, which is rescued by Ecdysone feeding. Instead, metamorphic Ecdysone has a positive role during neurodevelopment. The experiments demonstrate this dual and temporally distinct role of PTTH/Ecdysone, shedding light on a complex hormonal regulation mechanism.<br /> (3) Clarification of Experimental Details: In response to the initial review, the authors have clarified important experimental details, such as the precise timing of genetic manipulations and the specific developmental stages examined. This clarification enhances the reproducibility and understanding of the study.
Weaknesses
(1) Unresolved Contradictions and Complexity in Results: Despite the detailed responses, the paper still presents complex and somewhat contradictory findings regarding the roles of PTTH, Torso, and Ecdysone. The observed increase in EcR-A expression in PTTH mutants and the nuanced explanation regarding the feedforward relationship, while insightful, do not fully resolve the initial confusion about the differing effects of PTTH and Ecdysone manipulations on female receptivity. This required more exploration.<br /> (2) Insufficient Exploration of Mechanistic Pathways: The potential mechanisms underlying the role of PTTH/Torso-Ecdysone across different developmental stages remain underexplored. While the authors suggest a feedforward relationship and possible interaction with other neurons, these hypotheses are not thoroughly tested or elaborated upon, leaving gaps in the mechanistic understanding.<br /> (3) Limited Scope of Validation Experiments: While the authors addressed some reviewer concerns about validation, the scope remains somewhat limited. The lack of existing PTTH mutants and the challenges in manipulating PTTH expression without affecting receptivity suggests that further work is needed to validate these pathways robustly. The inability to fully replicate the PTTHdelete phenotype through other means leaves some questions unanswered.<br /> (4). Complexity in Interpretation of dsx-Positive Neurons: The relevance of dsx-positive neurons in the context of PTTH's effects on female receptivity remains ambiguous. Although the authors provide some context, the biological significance of these observations is not fully clarified.
Conclusion<br /> The manuscript presents a well-conceived study with significant findings that advance the understanding of hormonal regulation of female receptivity in Drosophila. However, complexities in the data and unresolved mechanistic questions suggest that further work is needed to clarify the exact pathways and interactions involved. The authors' responses to feedback have strengthened the paper, but additional experiments and more thorough mechanistic exploration would enhance the robustness and clarity of the conclusions.
-
Reviewer #2 (Public Review):
Summary:
The authors tried to identify novel adult functions of the classical Drosophila juvenile-adult transition axis (i.e. ptth-ecdysone). Surprisingly, larval ptth-expressing neurons expressed the sex-specific doublesex gene, thus belonging to the sexual dimorphic circuit. Lack of ptth during late larval development caused enhanced female sexual receptivity, effect rescued by supplying ecdysone in the food. Among many other cellular players, pC1 neurons control receptivity by encoding the mating status of females. Interestingly, during metamorphosis a subtype of pC1 neurons required Ecdysone Receptor A in order to regulate such female receptivity. A transcriptomic analysis using pC1-specific Ecdyone signaling down-regulation gives some hints of possible downstream mechanisms.
Strengths:
The manuscript showed solid genetic evidence that lack of ptth during development caused enhanced copulation rate in female flies, which includes ptth mutant rescue experiments by over-expressing ptth as well as by adding ecdysone-supplemented food. They also present elegant data dissecting the temporal requirements of ptth-expressing neurons by shifting animals from non-permissive to permissive temperatures, in order to inactivate neuronal function (although not exclusively ptth function). They showed that EcR-A is up-regulated in ptth mutant background. By combining different drivers together with EcR-A RNAi and torso RNAi lines authors also identified the Ecdysone receptor and torso requirements of a particular subtype of pC1 neurons during metamorphosis. Convincing live calcium imaging showed no apparent effect of EcR-A in neural activity, although some effect on morphology is uncovered. Finally, bulk RNAseq shows differential gene expression after EcR-A down-regulation.
Weaknesses:
The paper has three main weaknesses. The first one refers to temporal requirements of ptth and ecdysone signaling. Whereas ptth is necessary during larval development, ecdysone effect appears during pupal development. ptth induces ecdysone synthesis during larval development but there is no published evidence about a similar role for ptth during pupal stages. The down-regulation of EcR-A by RNAi requires at least 8 h to be complete, whereas the activation of ptth neurons in larva stages is immediate. Furthermore, larval and pupal ecdysone functions are different (triggering metamorphosis vs tissue remodeling). The second caveat is the fact that ptth and ecdysone/torso loss-of-function experiments render opposite effects (enhancing and decreasing copulation rates, respectively). The most plausible explanation is that both functions are independent of each other, also suggested by differential temporal requirements. Finally, in order to identify the effect in the transcriptional response of down-regulating EcR-A in a very small population of neurons, a scRNAseq study should have been performed instead of bulk RNAseq.
In summary, despite the authors providing convincing evidence that ptth and ecdysone signaling pathways are involved in female receptivity, the main claim that ptth regulates this process through ecdysone is not supported by results. More likely, they'd rather be independent processes.
-
Reviewer #3 (Public Review):
Summary:
This manuscript shows that mutations that disable the gene encoding the PTTH gene cause an increase in female receptivity (they mate more quickly), a phenotype that can be reversed by feeding these mutants the molting hormone, 20-hydoxyecdysone (20E). The use of an inducible system reveals that inhibition or activation of PTTH neurons during the larval stages increases and decreases female receptivity, respectively, suggesting that PTTH is required during the larval stages to affect the receptivity of the (adult) female fly. Showing that these neurons express the sex-determining gene dsx leads the authors to show that interfering with 20E actions in pC1 neurons, which are dsx-positive neurons known to regulate female receptivity, reduces female receptivity and increases the arborization pattern of pC1 neurons. The work concludes by showing that targeted knockdown of EcRA in pC1 neurons causes 527 genes to be differentially expressed in the brains of female flies, of which 123 passed a false discovery rate cutoff of 0.01; interestingly, the gene showing the greatest down-regulation was the gene encoding dopamine beta-monooxygenase.
This reviewer appreciates the effort that was done to revise the manuscript and address the various comments made by the reviewers. Nevertheless, I feel that the main concerns remain. These are not necessarily due to an unwillingness on the part of the authors to address them, but rather to difficulties that are inherent to trying to assign specific roles to EcR and pC1 neurons at a time when major changes are occurring (or are about to occur) in the nervous system, and do so using tools that are currently not sharp or specific enough. Many of the conclusions are supported by the results and those that may have alternative interpretations can remain more speculative until better tools become available. It is, nevertheless, an interesting and provocative piece of work.
Strengths
This is an interesting piece of work, which may shed light on the basis for the observation noted previously that flies lacking PTTH neurons show reproductive defects ("... females show reduced fecundity"; McBrayer, 2007; DOI 10.1016/j.devcel.2007.11.003).
Weaknesses:
There are some results whose interpretation seem ambiguous and findings whose causal relationship is implied but not demonstrated.
(1) At some level, the findings reported here are not at all surprising. Since 20E regulates the profound changes that occur in the central nervous system (CNS) during metamorphosis, it is not surprising that PTTH would play a role in this process. Although animals lacking PTTH (rather paradoxically) live to adulthood, they do show greatly extended larval instars and a corresponding great delay in the 20E rise that signals the start of metamorphosis. For this reason, concluding that PTTH plays a SPECIFIC role in regulating female receptivity seems a little misleading, since the metamorphic remodeling of the entire CNS is likely altered in PTTH mutants. Since these mutants produce overall normal (albeit larger--due to their prolonged larval stages) adults, these alterations are likely to be subtle. Courtship has been reported as one defect expressed by animals lacking PTTH neurons, but this behavior may stand out because reduced fertility and increased male-male courtship (McBrayer, 2007) would be noticeable defects to researchers handling these flies. By contrast, detecting defects in other behaviors (e.g., optomotor responses, learning and memory, sleep, etc) would require closer examination. For this reason I would ask the authors to temper their statement that PTTH is SPECIFICALLY involved in regulating female receptivity.<br /> (2) The link between PTTH and the role of pC1 neurons in regulating female receptivity is not clear. Again, since 20E controls the metamorphic changes that occur in the CNS, it is not surprising that 20E would regulate the arborization of pC1 neurons. And since these neurons have been implicated in female receptivity, it would therefore be expected that altering 20E signaling in pC1 neurons would affect this phenotype. However, this does not mean that the defects in female receptivity expressed by PTTH mutants are due to defects in pC1 arborization. For this the authors would at least have to show that PTTH mutants show the changes in pC1 arborization shown in Fig. 6. And even then the most that could be said is that the changes observed in these neurons "may contribute" to the observed behavioral changes. Indeed, the changes observed in female receptivity may be caused by PTTH/20E actions on different neurons.<br /> (3) Some of the results need commenting on, or refining, or revising:<br /> (a) For some assays PTTH behaves sometimes like a recessive gene and at other times like a semi-dominant, and yet at others like a dominant gene. For instance, in Fig. 1D-G, PTTH[-]/+ flies behave like wildtype (D), express an intermediate phenotype (E-F), or behave like the mutant (G). This may all be correct but merits some comment.<br /> (b) Some of the conclusions are overstated. i) Although Fig. 2E-G does show that silencing the PTTH neurons during the larval stages affects copulation rate (E) the strength of the conclusion is tempered by the behavior of one of the controls (tub-GAL80[ts]/+, UAS-Kir2.1/+) in panels F and G, where it behaves essentially the same as the experimental group (and quite differently from the PTTH-GAL4/+ control; blue line).(Incidentally, the corresponding copulation latency should also be shown for these data.). ii) For Fig. 5I-K, the conclusion stated is that "Knock-down of EcR-A during pupal stage significantly decreased the copulation rate." Although strictly correct, the problem is that panel J is the only one for which the behavior of the control lacking the RNAi is not the same as that of the experimental group. Thus, it could just be that when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental. Again, the results shown in J are strictly speaking correct but the statement is too definitive given the behavior of one of the controls in panels I and K. Note also that panel F shows that the UAS-RNAi control causes a massive decrease in female fertility, yet no mention is made of this fact.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Willems and colleagues test whether unexpected shock omissions are associated with reward-related prediction errors by using an axiomatic approach to investigate brain activation in response to unexpected shock omission. Using an elegant design that parametrically varies shock expectancy through verbal instructions, they see a variety of responses in reward-related networks, only some of which adhere to the axioms necessary for prediction error. In addition, there were associations between omission-related responses and subjective relief. They also use machine learning to predict relief-related pleasantness and find that none of the a priori "reward" regions were predictive of relief, which is an interesting finding that can be validated and pursued in future work.
Strengths:
The authors pre-registered their approach and the analyses are sound. In particular, the axiomatic approach tests whether a given region can truly be called a reward prediction error. Although several a priori regions of interest satisfied a subset of axioms, no ROI satisfied all three axioms, and the authors were candid about this. A second strength was their use of machine learning to identify a relief-related classifier. Interestingly, none of the ROIs that have been traditionally implicated in reward prediction error reliably predicted relief, which opens important questions for future research.
Weaknesses:
The authors have done many analyses to address weaknesses in response to reviews. I will still note that given that one third of participants (n=10) did not show parametric SCR in response to instructions, it seems like some learning did occur. As prediction error is so important to such learning, a weakness of the paper is that conclusions about prediction error might differ if dynamic learning were taken into account using quantitative models.
-
Reviewer #3 (Public Review):
Summary:
The authors conducted a human fMRI study investigating the omission of expected electrical shocks with varying probabilities. Participants were informed of the probability of shock and shock intensity trial-by-trial. The time point corresponding to the absence of the expected shock (with varying probability) was framed as a prediction error producing the cognitive state of relief/pleasure for the participant. fMRI activity in the VTA/SN and ventral putamen corresponded to the surprising omission of a high probability shock. Participants' subjective relief at having not been shocked correlated with activity in brain regions typically associated with reward-prediction errors. The overall conclusion of the manuscript was that the absence of an expected aversive outcome in human fMRI looks like a reward-prediction error seen in other studies that use positive outcomes.
Strengths:
Overall, I found this to be a well-written human neuroimaging study investigating an often overlooked question on the role of aversive prediction errors, and how they may differ from reward-related prediction errors. The paper is well-written and the fMRI methods seem mostly rigorous and solid.
Once again, the authors were very responsive to feedback. I have no further comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Winged seeds or ovules from the Devonian are crucial to understanding the origin and early evolutionary history of wind dispersal strategy. Based on exceptionally well-preserved fossil specimens, the present manuscript documented a new fossil plant taxon (new genus and new species) from the Famennian Series of Upper Devonian in eastern China and demonstrated that three-winged seeds are more adapted to wind dispersal than one-, two- and four-winged seeds by using mathematical analysis.
Strengths:
The manuscript is well organised and well presented, with superb illustrations. The methods used in the manuscript are appropriate.
Weaknesses:
I would only like to suggest moving the "Mathematical analysis of wind dispersal of ovules with 1-4 wings" section from the supplementary information to the main text, leaving the supplementary figures as supplementary materials.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Medina-Feliciano et al. investigated the single cell transcriptomic profile of holoturian regenerating intestine following evisceration, a process used to expel their viscera in response to predation. Using single cell RNA-sequencing and standard analysis such as "Find cluster markers", "Enrichment analysis of Gene Ontology" and "RNA velocity", they identify 13 cell clusters and potential identity. Based merely on bioinformatic analysis they identified potentially proliferating clusters and potential trajectories of cell differentiation. This manuscript represents a useful dataset that can provide candidate cell types and cell markers for more in-depth functional analysis for gaining a better understanding of the holoturian intestine regeneration. The conclusions of this paper are supported only by bioinformatic analyses, since the in vivo validation through HCR does not sufficiently support them.
Strengths:<br /> - The Authors are providing a single cell dataset obtained from sea cucumber regenerating their intestine. This represents a first fundamental step to an unbiased approach to better understand this regeneration process and the cellular dynamics taking part in it.<br /> - The Authors run all the standard analyses providing the reader with a well digested set of information about cell clusters, potential cell types, potential functions and potential cell differentiation trajectories.
Weaknesses:<br /> - The entire study is based on only 2 adult animals, that were used for both the single cell dataset and the HCR. Additionally, the animals were caught from the ocean preventing information about their age or their life history. This makes the n extremely small and reduces the confidence of the conclusions.<br /> - All the fluorescent pictures present in this manuscript present red nuclei and green signals being not color-blind friendly. Additionally, many of the images lack sufficient quality to determine if the signal is real. Additional images of a control animal (not eviscerated) and of a negative control would help data interpretation. Finally, in many occasions a zoomed out image would help the reader to provide context and have a better understanding of where the signal is localized.<br /> - The Authors frequently report the percentage of cells with a specific feature (either labelled or expressing a certain gene or belonging to a certain cluster). This number can be misleading since that is calculated after cell dissociation and additional procedures (such as staining or sequencing and dataset cleanup) that can heavily bias the ratio between cell types. Similarly, the Authors cannot compare cell percentage between anlage and mesentery samples since that can be affected by technical aspects related to cell dissociation, tissue composition and sequencing depth.<br /> - The Authors decided to validate only a few clusters and in many cases there are no positive controls (such as specific localization, specific function, changes between control and regenerating animals, co-stain) that could actually validate the cluster identity and the specificity of the selected marker. There is no validation of the trajectory analysis and there is no validation of the proliferating cluster with H3P or BrdU stainings.<br /> - It is not clear what is already known about holothurian intestine regeneration and what are the new findings in this manuscript. The Authors reference several papers throughout the whole result sectioning mentioning how the steps of regeneration, the proliferating cells, some of the markers and some of the cell composition of mesenteries and anlages was already known.
-
Reviewer #2 (Public Review):
Summary:<br /> This research offers a comprehensive analysis of the regenerative process in sea cucumbers and builds upon decades of previous research. The approach involves a detailed examination using single-cell sequencing, making it a crucial reference paper while shedding new light on regeneration in this organism.
Strengths:<br /> Detailed analysis of single-cell sequencing data and high-quality RNA localization images provide significant new insights into regeneration in sea cucumbers and, more broadly, in animals.
Weaknesses:<br /> The spatial context of the RNA localization images is not well represented, making it difficult to understand how the schematic model was generated from the data. In addition, multiple strong statements in the conclusion should be better justified and connected to the data provided.
-
Reviewer #3 (Public Review):
Summary:<br /> The authors have done a good job of creating a "resource" paper for the study of gut regeneration in sea cucumbers. They present a single-cell RNAseq atlas for the reconstitution of Holothuria glaberrima gut following self-evisceration in response to a potassium chloride injection. The authors provide data characterizing cellular populations and precursors of the regenerating anlage at 9 days post evisceration. As a "Tools and Resources" contribution to eLife, this work, with some revisions, could be appropriate. It will be impactful in the fields of regeneration, particularly in invertebrates, but also in comparative studies in other species, including evolutionary studies. Some of these comparative studies could extend to vertebrates and could therefore impact regenerative medicine in the future.
Strengths:<br /> • Novel and useful information for a model organism and question for which this type of data has not yet been reported<br /> • Single-cell gene expression data will be valuable for developing testable hypotheses in the future<br /> • Marker genes for cell types provided to the field<br /> • Interesting predictions about possible lineage relationships between cells during sea cucumber gut regeneration
Weaknesses:<br /> • Possible theoretical advances regarding lineage trajectories of cells during sea cucumber gut regeneration, but the claims that can be made with this data alone are still predictive<br /> • Better microscopy is needed for many figures to be convincing<br /> • Some minor additions to the figures will help readers understand the data more clearly
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Dalal and Haddad investigated how neurons in the olfactory bulb are synchronized in oscillatory rhythms at gamma frequency. Temporal coordination of action potentials fired by projection neurons can facilitate information transmission to downstream areas. In a previous paper (Dalal and Haddad 2022, https://doi.org/10.1016/j.celrep.2022.110693), the authors showed that gamma frequency synchronization of mitral/tufted cells (MTCs) in the olfactory bulb enhances the response in the piriform cortex. The present study builds on these findings and takes a closer look at how gamma synchronization is restricted to a specific subset of MTCs in the olfactory bulb. They combined odor and optogenetic stimulations in anesthetized mice with extracellular recordings.<br /> The main findings are that lateral synchronization of MTCs at gamma frequency is mediated by granule cells (GCs), independent of the spatial distance, and strongest for MTCs with firing rates close to 40 Hz. The authors conclude that this reveals a simple mechanism by which spatially distributed neurons can form a synchronized ensemble. In contrast to lateral synchronization, they found no evidence for the involvement of GCs in lateral inhibition of nearby MTCs.
Strengths:
Investigating the mechanisms of rhythmic synchronization in vivo is difficult because of experimental limitations for the readout and manipulation of neuronal populations at fast timescales. Using spatially patterned light stimulation of opsin-expressing neurons in combination with extracellular recordings is a nice approach. The paper provides evidence for an activity-dependent synchronization of MTCs in gamma frequency that is mediated by GCs.
Weaknesses:
An important weakness of the study is the lack of direct evidence for the main conclusion - the synchronization of MTCs in gamma frequency. The data shows that paired optogenetic stimulation of MTCs in different parts of the olfactory bulb increases the rhythmicity of individual MTCs (Figure 1) and that combined odor stimulation and GC stimulation increases rhythmicity and gamma phase locking of individual MTCs (Figure 4). However, a direct comparison of the firing of different MTCs is missing. This could be addressed with extracellular recordings at two different locations in the olfactory bulb. The minimum requirement to support this conclusion would be to show that the MTCs lock to the same phase of the gamma cycle. Also, showing the evoked gamma oscillations would help to interpret the data.
Another weakness is that all experiments are performed under anesthesia with ketamine/medetomidine. Ketamine is an antagonist of NMDA receptors and NMDA receptors are critically involved in the interactions of MTCs and GCs at the reciprocal synapses (see for example Lage-Rupprecht et al. 2020, https://doi.org/10.7554/eLife.63737; Egger and Kuner 2021, https://doi.org/10.1007/s00441-020-03402-7). This should be considered for the interpretation of the presented data.
Furthermore, the direct effect of optogenetic stimulation on GCs activity is not shown. This is particularly important because they use Gad2-cre mice with virus injection in the olfactory bulb and expression might not be restricted to granule cells and might not target all subtypes of granule cells (Wachowiak et al., 2013, https://doi.org/10.1523/JNEUROSCI.4824-12.2013). This should be considered for the interpretation of the data, particularly for the absence of an effect of GC stimulation on lateral inhibition.
Several conclusions are only supported by data from example neurons. The paper would benefit from a more detailed description of the analysis and the display of some additional analysis at the population level:
- What were the criteria based on which the spots for light-activation were chosen from the receptive field map?
- The absence of an effect on firing rate for paired stimulations is only shown for one example (Figure 1c). A quantification of the population level would be interesting.
- Only one example neuron is shown to support the conclusion that "two different neural circuits mediate suppression and entrainment" in Figure 3. A population analysis would provide more evidence.
- Only one example neuron is shown to illustrate the effect of GC stimulation on gamma rhythmicity of MTCs in Figures 4 f,g.
- In Figure 5 and the corresponding text, "proximal" and "distal" GC activation are not clearly defined.
-
Reviewer #2 (Public Review):
Summary
This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.
The authors use a clever combination of single-cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of lateral glomerular MTC ensembles. This assay is rounded off by a gain-of-function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization to gamma (they had used this manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation).
Strengths
This study is of high interest for olfactory processing - since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance the synchronization of single neurons to gamma in one channel (and thus by inference most likely in both). These interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities.
In my view, parallels between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.
Such enhanced local synchronization was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve the reduction of firing rates, drops off with distance and most likely is caused by a different circuit-mediated by PV+ neurons (PVN; the evidence for which is circumstantial).
Weaknesses/Room for improvement
Thus this study is an impressive proof of concept that however does not yet allow for broad generalization. Therefore the framing of results should be slightly more careful in my opinion.
Along this line, the conclusions regarding two different circuits underlying lateral inhibition vs enhanced synchronization are not quite justified by the data, e.g.
(1) The authors mention that their granule cell stimulation results in a local cold spot (l. 527 ff) - how can they then said to be not involved in the inhibition of firing rate (bullet point in Highlights)? Please elaborate further. In l.406 they also state that GCs can inhibit MTCs under certain conditions. The argument, that this stimulation is not physiological, makes sense, but still does not rule out anything. You might want to cite Aghvami et al 2022 on the very small amplitude of GC-mediated IPSPs, also McIntyre and Cleland 2015.
(2) Even from the shown data, it appears that laterally increased synchronization might co-occur with lateral suppression (See also comment on Figures 1d,e and Figure S1c)
(3) There are no manipulations of PVN activity in this study, thus there is no direct evidence for the substrate of the second circuit.
(4) The manipulation of GC activity was performed in a transgenic line with viral transfection, which might result in a lower permeation of the population compared to the line used for optogenetic stimulation of MTCs.
In some instances, the authors tend to cite older literature - which was not yet aware of the prominent contribution of EPL interneurons including PVN to recurrent and lateral inhibition of MT cells - as if roles that then were ascribed to granule cells for lack of better knowledge can still be unequivocally linked to granule cells now. For example, they should discuss Arevian et al (2006), Galan et al 2006, Giridhar et al., Yokoi et al. 1995, etc in the light of PVN action.
Therefore it is also not quite justified to state that their result regarding the role of GCs specifically for synchronization, not suppression, is "in contrast to the field" (e.g. l.70 f.,, l.365, l. 400 ff).
Why did the authors choose to use the term "lateral suppression", often interchangeably with lateral inhibition? If this term is intended to specifically reflect reductions of firing rates, it might be useful to clearly define it at first use (and cite earlier literature on it) and then use it consistently throughout.
A discussion of anesthesia effects is missing - e.g. GC activity is known to be reportedly stronger in awake mice (Kato et al). This is not a contentious point at all since the authors themselves show that additional excitation of GCs enhances synchrony, but it should be mentioned.
Some citations should be added, in particular relevant recent preprints - e.g. Peace et al. BioRxiv 2024, Burton et al. BioRxiv 2024 and the direct evidence for a glutamate-dependent release of GABA from GCs (Lage-Rupprecht et al. 2020).
The introduction on the role of gamma oscillations in sensory systems (in particular vision) could be more elaborated.
-
Reviewer #3 (Public Review):
Summary:
This study by Dalal and Haddad analyzes two facets of cooperative recruitment of M/TCs as discerned through direct, ChR2-mediated spot stimulations:
(1) mutual inhibition and<br /> (2) entrainment of action potential timing within the gamma frequency range.
This investigation is conducted by contrasting the evoked activity elicited by a "central" stimulus spot, which induces an excitatory response alone, with that elicited when paired with stimulations of surrounding areas. Additionally, the effect of Gad2-expressing granule cells is examined.
Based on the observed distance dependence and the impact of GC stimulations, the authors infer that mutual inhibition and gamma entrainment are mediated by distinct mechanisms.
Strengths:
The results presented in this study offer a nice in vivo validation of the significant in vitro findings previously reported by Arevian, Kapoor, and Urban in 2008. Additionally, the distance-dependent analysis provides some mechanistic insights.
Weaknesses:
The results largely reproduce previously reported findings, including those from the authors' own work, such as Dalal and Haddad (2022), where a key highlight was "Modulating GC activities dissociates MTCs odor-evoked gamma synchrony from firing rates." Some interpretations, particularly the claim regarding the distance independence of the entrainment effect, may be considered over-interpretations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Kainov et al investigated the prevalence of mutations in 3'UTR that affect gene expression in cancer to identify noncoding cancer drivers.
The authors used data from normal controls (1000 genome data) and compared it to cancer data (PCAWG). They found that in cancer 3'UTR mutations had a stronger effect on cleavage than the normal population. These mutations are negatively selected in the normal population and positively selected in cancers. The authors used PCAWG data set to identify such mutations and found that the mutations that lead to a reduction of gene expression are enriched in tumor suppressor genes and those that are increased in gene expression are enriched for oncogenes. 3'UTR mutations that reduce gene expression or occur in TSGs co-occur with non-synonymous mutations. The authors then validate the effect of 3'UTR mutations experimentally using a luciferase reporter assay. These data identify a novel class of noncoding driver genes with mutations in 3'UTR that impact polyadenylation and thus gene expression.
This is an elegant study with fundamental insight into identifying cancer driver genes. The conclusions of this paper are mostly well supported by data, but some aspects of data analysis need to be extended.
(1) It would be important for the authors to show if the findings of this study hold for metastatic cancers since most deaths occur due to metastasis and tumor heterogeneity changes when cancer progresses to metastasis. The authors should use the Hartwig data and show if metastatic cancers are enriched for 3'UTR mutations.
(2) Figure 2 should show the distribution of 3'UTR mutations by cancer type especially since authors go on to use colorectal cancer only for validations. It would be helpful to bring Figures S3A and S3C to this panel since these findings make the connections to cancer biology. Are any molecular functions enriched in addition to biological processes? Are kinases, phosphatases, etc more or less affected by 3'UTR mutations?
(3) Figure 3 looks at the co-occurrence of 3'UTR mutations with non-synonymous mutations but what about copy number change? You would expect the loss of the other allele to be enriched. Along the same line, are these data phased? Do you know that the non-synonymous mutations are in the other allele or in the same allele that shows 3'UTR mutation?
-
Reviewer #2 (Public Review):
Summary:
To evaluate whether somatic mutations in cancer genomes are enriched with mutations in polyadenylation signal regions, the authors analyzed 1000 genomes data and PCAWG data as a control and experimental set, respectively. They observed increased enrichment of somatic mutations that may affect the function of polyA signals and confirmed that these mutations may influence the expression of the gene through a minigene expression experiment.
Strengths:
This study provides a systematic evaluation of polyA signal, which makes it valuable. Overall, the analytic approach and results are solid and supported by experimental validation.
Weaknesses:
(1) This study uses APARENT2 as a tool to evaluate functional alteration in polyA signal sequences. Based on the original paper and the results shown in this paper, the algorithm appears to be of high quality. However, the whole study is dependent on the output of APARENT2. Therefore, it would be nice to<br /> (a) run and show a positive control run, which can show that the algorithm works well, and<br /> (b) describe the rationale for selecting this algorithm in the main text.
(2) Are there recurrent somatic mutation calls (= exactly the same mutation across different tumor samples) in the poly(A) region of certain genes?
(3) The authors nicely showed that the minigene with A>G mutation altered gene expression. Maybe one can reach a similar conclusion by analyzing a cancer dataset that has mutation and gene expression data? That is, genes with or without polyA mutations show different expression levels.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study investigated the mechanism underlying Congenital NAD Deficiency Disorder (CNDD) using a mouse model with loss of function of the HAAO enzyme which mediates a key step in the NAD de novo synthesis pathway. This study builds on the observation that the kynurenine pathway is required in the conceptus, as HAAO null embryos are sensitive to maternal deficiency of NAD precursors (vitamin B3) and tryptophan, and narrows the window of sensitivity to a 3-day period.
An important finding is that de novo NAD synthesis occurs in an extra-embryonic tissue, the visceral yolk sac, before the liver develops in the embryo. It is suggested that lack of this yolk sac activity leads to impaired NAD supply in the embryo leading to structural abnormalities found later in development.
Strengths:
Previous studies show a requirement for HAAO activity for the normal development of embryos. Abnormalities develop under conditions of maternal vitamin B3 deficiency, indicating a requirement for NAD synthesis in the conceptus. Analysis of scRNA-seq datasets combined with metabolite analysis of yolk sac tissue shows that the NAD synthesis pathway is expressed and functional in the yolk sac from E10.5 onwards (prior to liver development).
HAAO enzyme assay enabled quantification of enzyme activity in relevant tissues including the liver (from E12.5), placenta, and yolk sac (from E11.5).
Comprehensive metabolite analysis of the NAD synthesis pathway supports the predicted effects of Haao knockout and provides analysis of the yolk sac, placenta, and embryo at a series of stages.
The dietary study (with lower vitamin B3 in maternal diet from E7.5-10.5) is an incremental addition to previous studies that imposed similar restrictions from E7.5-12.5.
Nevertheless, this emphasises the importance of the synthesis pathway on the conceptus at stages before the liver activity is prominent.
Weaknesses:
The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in the yolk sac and embryo at E10.5. However, without analysis of embryos at later stages in this experiment it is not known how long is needed for NAD synthesis to be recovered - and therefore until when the period of exposure to insufficient NAD lasts. This information would inform the understanding of the developmental origin of the observed defects.
More importantly, there is still a question of whether in addition to the yolk sac, there is HAAO activity within the embryo itself prior to E12.5 (when it has first been assayed in the liver - Figure 1C). The prediction is that within the conceptus (embryo, chorioallantoic placenta, and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development. Reanalysis of scRNA-seq (Fig 1B) shows expression of all the enzymes of the kynurenine pathway from E9.5 onwards. However, the expression of another available dataset at E10.5 (Fig S3) suggested that expression is 'negligible'. While the expression in Figure 1B, Figure S1 is weak this creates a lack of clarity about the possible expression of HAAO in the hepatocyte lineage, or especially elsewhere in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). Given these questions, a direct analysis of RNA and/or protein expression in the embryos at E7.5-10.5 would be helpful.
-
Reviewer #2 (Public Review):
Summary:
Disruption of the nicotinamide adenine dinucleotide (NAD) de novo Synthesis Pathway, by which L-tryptophan is converted to NAD results in multi-organ malformations which collectively has been termed Congenital NAD Deficiency Disorder (CNDD).
While NAD de novo synthesis is primarily active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. However, mouse embryos are susceptible to CNDD between E7.5-E12.5, before the embryo has developed a functional liver. Therefore, NAD de novo synthesis is likely active in another cell or tissue during this time window of susceptibility.
The body of work presented in this paper continues the corresponding author's lab investigation of the cause and effects of NAD Deficiency and the primary goal was to determine the cell or tissue responsible for NAD de novo synthesis during early embryogenesis.
The authors conclude that visceral yolk sac endoderm is the source of NAD de novo synthesis, which is essential for mouse embryonic development, and furthermore that the dynamics of NAD synthesis are conserved in human equivalent cells and tissues, the perturbation of which results in CNDD.
Strengths:
Overall, the primary findings regarding the source of NAD synthesis, the temporal requirement, and conservation between rodent and human species are quite novel and important for our understanding of NAD synthesis and its function and role in CNDD.
The authors used UHPLC-MS/MS to quantify NAD+ and NAD-related metabolites and showed convincingly that the NAD salvage pathway can compensate for the loss of NAD synthesis in Haao-/- embryos, then determined that Haao activity was present in the yolk sac prior to hepatic development identifying this organ as the site of de novo NAD synthesis. Dietary modulation between E7.5-10.5 was sufficient to induce CNDD phenotypes, narrowing the window of susceptibility, and then re-analysis of RNA-seq datasets suggested the endoderm was the cell source of NAD synthesis.
Weaknesses:
Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency.
Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway?
Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis.
Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD might require conditional deletion of Haoo in the yolk sac versus embryo using appropriate Cre driver lines or in the absence of a conditional allele, could be performed by tetraploid embryo-ES cell complementation approaches. But temporal dietary intervention can also approximate the same thing by perturbing NAD synthesis Shen the yolk sac is the primary source versus when the liver becomes the primary source in the embryo.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors aim to measure the apoptotic fraction of motorneurons in developing zebrafish spinal cord to assess the extent of neuronal apoptosis during the development of a vertebrate embryo in an in vivo context.
Strengths:
The transgenic fish line tg (mnx1:sensor C3) appears to be a good reagent for motorneuron apoptosis studies, while further validation of its motorneuron specificity should be performed.
Weaknesses:
The results do not support the conclusions. The main "selling point" as summarized in the title is that the apoptotic rate of zebrafish motorneurons during development is strikingly low (~2% ) as compared to the much higher estimate (~50%) by previous studies in other systems. The results used to support the conclusion are that only a small percentage (under 2%) of apoptotic cells were found over a large population at a variety of stages 24-120hpf. This is fundamentally flawed logic, as a short-time window measure of percentage cannot represent the percentage in the long term. For example, at any year under 1% of the human population dies, but over 100 years >99% of the starting group will have died. To find the real percentage of motorneurons that died, the motorneurons born at different times must be tracked over the long term or the new motorneuron birth rate must be estimated.
A similar argument can be applied to the macrophage results. Here the authors probably want to discuss well-established mechanisms of apoptotic neuron clearance such as by glia and microglia cells.
The conclusion regarding the timing of axon and cell body caspase activation and apoptosis timing also has clear issues. The ~minutes measurement is too long as compared to the transport/diffusion timescale between the cell body and the axon, caspase activity could have been activated in the cell body, and either caspase or the cleaved sensor moves to the axon in several seconds. The authors' results are not high-frequency enough to resolve these dynamics
Many statements suggest oversight of literature, for example, in the abstract "However, there is still no real-time observation showing this dying process in live animals.".
Many statements should use more scholarly terms and descriptions from the spinal cord or motor neuron, neuromuscular development fields, such as line 87 "their axons converged into one bundle to extend into individual somite, which serves as a functional unit for the development and contraction of muscle cells"
The transgenic line is perhaps the most meaningful contribution to the field as the work stands. However, the mnx1 promoter is well known for its non-specific activation - while the images suggest the authors' line is good, motor neuron markers should be used to validate the line. This is especially important for assessing this population later as mnx1 may be turned off in mature neurons.
Overall, this work does not substantiate its biological conclusions and therefore does not advance the field. The transgenic line has the potential to address the questions raised but requires different sets of experiments. The line and the data as reported are useful on their own by providing a short-term rate of apoptosis of the motorneuron population.
-
Reviewer #2 (Public Review):
Summary:
Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study the death of zebrafish spinal motor neurons.
Strengths:<br /> Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish.
Weaknesses:<br /> However, they have ignored significant literature describing the death of an identified zebrafish motor neuron, expression of the mnx gene in interneurons that are closely related to motor neurons, the increase in number of zebrafish motor neurons over developmental time, and potential differences between the limb-innervating motor neurons whose death has been characterized in chicks and rodents and the body wall-innervating motor neurons whose death they characterized using their biosensor. Thus, although their new tool is likely to be useful in the future, it does not provide new insights into zebrafish motor neuron programmed cell death.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
The authors report the results of a randomized clinical trial of taVNS as a neuromodulation technique in SAH patients. They found that taVNS appears to be safe without inducing bradycardia or QT prolongation. taVNS also increased parasympathetic activity, as assessed by heart rate variability measures. Acute elevation in heart rate might be a biomarker to identify SAH patients who are likely to respond favorably to taVNS treatment. The latter is very important in light of the need for acute biomarkers of response to neuromodulation treatments.
Comments:
(1) Frequency domain heart rate variability measures should be analyzed and reported. Given the short duration of the ECG recording, the frequency domain may more accurately reflect autonomic tone.
(2) How was the "dose" chosen (20 minutes twice daily)?
(3) The use of an acute biomarker of response is very important. A bimodal response to taVNS has been previously shown in patients with atrial fibrillation (Kulkarni et al. JAHA 2021).
-
Reviewer #2 (Public Review):
Summary:
This study investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on cardiovascular dynamics in subarachnoid hemorrhage (SAH) patients. The researchers conducted a randomized clinical trial with 24 SAH patients, comparing taVNS treatment to a Sham treatment group (20 minutes per day twice a day during the ICU stay). They monitored electrocardiogram (ECG) readings and vital signs to assess acute as well as middle-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. The results showed that repetitive taVNS did not significantly alter heart rate, corrected QT interval, blood pressure, or intracranial pressure. However, it increased overall heart rate variability and parasympathetic activity after 5-10 days of treatment compared to the sham treatment. Acute taVNS led to an increase in heart rate, blood pressure, and peripheral perfusion index without affecting corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who showed clinical improvement. In conclusion, the study found that taVNS treatment did not cause adverse cardiovascular effects, suggesting it is a safe immunomodulatory treatment for SAH patients. The mild acute increase in heart rate post-treatment could potentially serve as a biomarker for identifying SAH patients who may benefit more from taVNS therapy.
Strengths:
The paper is overall well written, and the topic is of great interest. The methods are solid and the presented data are convincing.
Weaknesses:
(1) It should be clearly pointed out that the current paper is part of the NAVSaH trial (NCT04557618) and presents one of the secondary outcomes of that study while the declared first outcomes (change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt) are available as a pre-print and currently under review (doi: 10.1101/2024.04.29.24306598.). The authors should better stress this point as well as the potential association of the primary with the secondary outcomes.
(2) The references should be implemented particularly concerning other relevant papers (including reviews and meta-analysis) of taVNS safety, particularly from a cardiovascular standpoint, such as doi: 10.1038/s41598-022-25864-1 and doi: 10.3389/fnins.2023.1227858).
(3) The dose-response issue that affects both VNS and taVNS applications in different settings should be mentioned (doi: 10.1093/eurheartjsupp/suac036.) as well as the need for more dose-finding preclinical as well as clinical studies in different settings (the best stimulation protocol is likely to be disease-specific).
Overall, the present work has the important potential to further promote the usage of taVNS even on critically ill patients and might set the basis for future randomized studies in this setting.
-
Reviewer #3 (Public Review):
Summary:
The authors aimed to characterize the cardiovascular effects of acute and repetitive taVNS as an index of safety. The authors concluded that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation.
Strengths:
This study has the potential to contribute important information about the clinical utility of taVNS as a safe immunomodulatory treatment approach for SAH patients.
Weaknesses:
A number of limitations were identified:
(1) A primary hypothesis should be clearly stated. Even though the authors state the design is a randomized clinical trial, several aspects of the study appear to be exploratory. The method of randomization was not stated. I am assuming it is a forced randomization given the small sample size and approximately equal numbers in each arm.
(2) The authors "first investigated whether taVNS treatment induced bradycardia or QT prolongation, both potential adverse effects of vagus nerve stimulation. This analysis showed no significant differences in heart rate calculated from 24-hour ECG recording between groups." A justification should be provided for why a difference is expected from 20 minutes of taVNS over a period of 24 hours. Acute ECG changes are a concern for increasing arrhythmic risk, for example, due to cardiac electrical restitution properties.
(3) More rigorous evaluation is necessary to support the conclusion that taVNS did not change heart rate, HRV, QTc, etc. For example, shifts in peak frequencies of the high-frequency vs. low-frequency power may be effective at distinguishing the effects of taVNS. Further, compensatory sympathetic responses due to taVNS should be explored by quantifying the changes in the trajectory of these metrics during and following taVNS.
(4) The authors do not state how the QT was corrected and at what range of heart rates. Because all forms of corrections are approximations, the actual QT data should be reported along with the corrected QT.
(5) The QT extraction method needs to be more robust. For example, in Figure 2C, the baseline voltage of the ECG is shifting while the threshold appears to be fixed. If indeed the threshold is not dynamic and does not account for baseline fluctuations (e.g., due to impedance changes from respiration), then the measures of the QT intervals were likely inaccurate.
(6) More statistical rigor is needed. For example, in Figure 2D, the change in heart rate for days 5-7, 8-10, and 11-13 is clearly a bimodal distribution and as such, should not be analyzed as a single distribution. Similarly, Figure 2E also shows a bimodal distribution. Without the QT data, it is unclear whether this is due to the application of the heart rate correction method.
(7) Figure 3A shows a number of outliers. A SDNN range of 200 msec should raise concern for a non-sinus rhythm such as arrhythmia or artifact, instead of sinus arrhythmia. Moreover, Figure 3B shows that the Sham RMSSD data distribution is substantially skewed by the presence of at least 3 outliers, resulting in lower RMSSD values compared to taVNS. What types of artifact or arrhythmia discrimination did the authors employ to ensure the reported analysis is on sinus rhythm? The overall results seem to be driven by outliers.
(8) The above concern will also affect the power analysis, which was reported by authors to have been performed based on the t-test assuming the medium effect size, but the details of sample size calculations were not reported, e.g., X% power, t-test assumed Bonferroni correction in the power analysis, etc.
(9) If the study was designed to show a cardiovascular effect, I am surprised that N=10 per group was considered to be sufficiently powered given the extensive reports in the literature on how HRV measures (except when pathologically low) vary within individuals. Moreover, HRV measures are especially susceptible to noise, artifacts, and outliers.
If the study was designed to show a lack of cardiovascular effect (as the conclusions and introduction seem to suggest), then a several-fold larger sample size is warranted.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Gekko, Nomura et al., show that Drp1 elimination in zygotes using the Trim-Away technique leads to mitochondrial clustering and uneven mitochondrial partitioning during the first embryonic cleavage, resulting in embryonic arrest. They monitor organellar localization and partitioning using specific targeted fluorophores. They also describe the effects of mitochondrial clustering in spindle formation and the detrimental effect of uneven mitochondrial partitioning to daughter cells.
Strengths:
The authors have gathered solid evidence for the uneven segregation of mitochondria upon Drp1 depletion through different means: mitochondrial labelling, ATP labelling and mtDNA copy number assessment in each daughter cell. Authors have also characterised the defects in cleavage mitotic spindles upon Drp1 loss
Weaknesses:
While this study convincingly describes the phenotype seen upon Drp1 loss, my major concern is that the mechanism underlying these defects in zygotes remains unclear. The authors refer to mitochondrial fragmentation as the mechanism ensuring organelle positioning and partitioning into functional daughters during the first embryonic cleavage. However, could Drp1 have a role beyond mitochondrial fission in zygotes? I raise these concerns because, as opposed to other Drp1 KO models (including those in oocytes) which lead to hyperfused/tubular mitochondria, Drp1 loss in zygotes appears to generate enlarged yet not tubular mitochondria. Lastly, while the authors discard the role of mitochondrial transport in the clustering observed, more refined experiments should be performed to reach that conclusion.
-
Reviewer #2 (Public Review):
Gekko et al investigate the impact of perturbing mitochondrial during early embryo development, through modulation of the mitochondrial fission protein Drp1 using Trim-Away technology. They aimed to validate a role for mitochondrial dynamics in modulating chromosomal segregation, mitochondrial inheritance and embryo development and achieve this through the examination of mitochondrial and endoplasmic reticulum distribution, as well as actin filament involvement, using targeted plasmids, molecular probes and TEM in pronuclear stage embryos through the first cleavages divisions. Drp1 deletion perturbed mitochondrial distribution, leading to asymmetric partitioning of mitochondria to the 2-cell stage embryo, prevented appropriate chromosomal segregation and culminated in embryo arrest. Resultant 2-cell embryos displayed altered ATP, mtDNA and calcium levels. Microinjection of Drp1 mRNA partially rescued embryo development. A role for actin filaments in mitochondrial inheritance is described, however the actin-based motor Myo19 does not appear to contribute.
Overall, this study builds upon their previous work and provides further support for the role of mitochondrial dynamics in mediating chromosomal segregation and mitochondrial inheritance. In particular, Drp1 is required for redistribution of mitochondria to support symmetric partitioning and support ongoing development.
Strengths:<br /> The study is well designed, the methods appropriate and the results clearly presented. The findings are nicely summarised in a schematic.
Understanding the role of mitochondria in binucleation and mitochondrial inheritance is of clinical relevance for patients undergoing infertility treatment, particularly those undergoing mitochondrial replacement therapy.
Weaknesses:
The authors first describe the redistribution of mitochondria during normal development, followed by alterations induced by Drp1 depletion. It would be useful to indicate the time post-hCG for imaging of fertilised zygotes (first paragraph of the results/Figure 1) to compare with subsequent Drp1 depletion experiments.
It is noted that Drp1 protein levels were undetectable 5h post-injection, suggesting earlier times were not examined, yet in Figure 3A it would seem that aggregation has occurred within 2 hours (relative to Figure 1).
Mitochondria appear to be slightly more aggregated in Drp1 fl/fl embryos than in control, though comparison with untreated controls does not appear to have been undertaken. There also appears to be some variability in mitochondrial aggregation patterns following Drp1 depletion (Figure 2-suppl 1 B) which are not discussed.
The authors use western blotting to validate the depletion of Drp1, however do not quantify band intensity. It is also unclear whether pooled embryo samples were used for western blot analysis.
Likewise, intracellular ROS levels are examined however quantification is not provided. It is therefore unclear whether 'highly accumulated levels' are of significance or related to Drp1 depletion.
In previous work, Drp1 was found to have a role as a spindle assembly checkpoint (SAC) protein. It is therefore unclear from the experiments performed whether aggregation of mitochondria separating the pronuclei physically (or other aspects of mitochondrial function) prevents appropriate chromosome segregation or whether Drp1 is acting directly on the SAC.
-
Reviewer #3 (Public Review):
Why mitochondria are finely maintained in the female germ cell (oocyte), zygotes, and preimplantation embryos? Mitochondrial fusion seems beneficial in somatic cells to compensate for mitochondria with mutated mtDNA that potentially defuel the respiratory activity if accumulated above a certain threshold. However, in the germ cells, it may rather increase the risk of transmitting mutated mtDNA to the next generation, as authors discussed. Also, finely maintained mitochondria would also be beneficial for efficient removal when damaged. Due in part to the limited suitable model, the physiological role of mitochondrial fission in embryos were obscure. In this study, authors demonstrated that mitochondrial fission prevents multiple adverse outcomes, even including the aberrant demixing of parental genome in zygotic stage. This is an important study that could contribute by proposing a new mechanism for solving problems that actually arise in the field of reproductive medicine. The conclusion is simple and clear, but the high level of technology has made it possible to overcome the difficulties of proving the results, making this an extremely excellent study.
Seemingly, there are few apparent shortcomings. Following are the specific comments to activate the further open discussion.<br /> - Line 246: Comments on cristae morphology of mitochondria in Drp1-depleted embryos would better be added.<br /> - Regarding Figure 2H: If possible, a representative picture of Ateam would better be included in the figure. As the authors discussed in line 458, Ateam may be able to detect whether any alterations of local energy demand occurred in the Drp1-depleted embryos.<br /> - Line 282: In Figure 3-Video 1, mitochondria were seemingly more aggregated around female pronucleus. Is it OK to understand that there is no gender preference of pronuclei being encircled by more aggregated mitochondria?<br /> - Line 317: A little more explanation of the "variability" would be fine. Does that basically mean that the Ca2+ response in both Drp1-depleted blastomeres were lower than control and blastomere with more highly aggregated mitochondria show severer phenotype compared to the other blastomere with fewer mito?<br /> - Regarding Figure 5B (& Figure 1-figure supplement 1B): Do authors think that there would be less abnormalities in the embryos if Drp1 is trim-awayed after 2-cell or 4-cell, in which mitochondria are less involved in the spindle?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This paper examines the recruitment of the inflammasome seeding pattern recognition receptor NLRP3 to the Golgi. Previously, electrostatic interactions between the polybasic region of NLRP3 and negatively charged lipids were implicated in membrane association. The current study concludes that reversible S-acylation of the conserved Cys-130 residue, in conjunction with upstream hydrophobic residues plus the polybasic region, act together to promote Golgi localization of NLRP3, although additional parts of the protein are needed for full Golgi localization. Treatment with the bacterial ionophore nigericin inhibits membrane traffic and apparently prevents Golgi-associated thioesterases from removing the acyl chain, causing NLRP3 to become immobilized at the Golgi. This mechanism is put forth as an explanation for how NLRP3 is activated in response to nigericin.
The experiments are generally well presented. It seems likely that Cys-130 does indeed play a previously unappreciated role in Golgi association of NLRP3. However, the evidence for S-acylation at Cys-130 is largely indirect, and the process by which nigericin enhances membrane association is not yet fully understood. Therefore, this interesting study points the way for further analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The pathomechanism underlying Sjögren's syndrome (SS) remains elusive. The Authors have studied if altered calcium signaling might be a factor in SS development in a commonly used mouse model. They provide a thorough and straightforward characterization of the salivary gland fluid secretion, cytoplasmic calcium signaling and mitochondrial morphology and respiration. A special strength of the study is the spectacular in vivo imaging, very few if any groups could have succeeded with the studies. The Authors show that the cytoplasmic calcium signaling is upregulated in the SS model and the Ca2+ regulated Cl- channels normally localized and function, still fluid secretion is suppressed. They also find altered localization of the IP3R and speculate about lesser exposure of Cl- channels to high local [Ca2+]. In addition, they describe changes in mitochondrial morphology and function that might also contribute to the attenuated secretory response. Although, the exact contribution of calcium and mitochondria to secretory dysfunction remains to be determined, the results seem to be useful for a range of scientists.
Comments on revised version:
I appreciate the Authors' responses and am satisfied with the revised manuscript.
-
Reviewer #1 (Public Review):
Summary:
The authors address cellular mechanisms underlying the early stages of Sjogren's syndrome, using a mouse model in which 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) is applied to stimulate the interferon gene (STING) pathway. They show that in this model salivary secretion in response to neural stimulation is greatly reduced, even though calcium responses of individual secretory cells was enhanced. They attribute the secretion defect to reduced activation of Ca2+ -activated Cl- channels (TMEM16a), due to an increased distance between Ca2+ release channels (IP3 receptors) and TMEM16a which is expected to reduce the [Ca2+] sensed by TMEM16a. A variety of disruptions in mitochondria were also observed after DMXAA treatment, including reduced abundance, altered morphology, depolarization and reduced oxygen consumption rate. The results of this study shed new light on some of the early events leading to the loss of secretory function in Sjogren's syndrome, at a time before inflammatory responses cause the death of secretory cells.
Strengths:
Two-photon microscopy enabled Ca2+ measurements in the salivary glands of intact animals in response to physiological stimuli (nerve stimulation. This approach has been shown previously by the authors as necessary to preserve the normal spatiotemporal organization of calcium signals that lead to secretion under physiological conditions.
Superresolution (STED) microscopy allowed precise measurements of the spacing of IP3R and TMEM16a and the cell membranes that would otherwise be prevented by the diffraction limit. The measured increase of distance (from 84 to 155 nm) would be expected to reduce [Ca2+] at the TMEM16a channel.
The authors effectively ruled out a variety of alternative explanations for reduced secretion, including changes in AQP5 expression, and TMEM16a expression, localization and Ca2+ sensitivity as indicated by Cl- current in response to defined levels of Ca2+. Suppression of Cl- currents by a fast buffer (BAPTA) but not a slow one (EGTA) supports the idea that increased distance between IP3R and TMEM16A contributes to the secretory defect in DMXAA-treated cells.
Weaknesses:
While the Ca2+ distribution in the cells was less restricted to the apical region in DMXAA-treated cells, it is not clear that this is relevant to the reduced activation of TMEM16a or to pathophysiological changes associated with Sjogren's syndrome.
Despite the decreased level of secretion, Ca2+ signal amplitudes were higher in the treated cells, raising the question of how much this might compensate for the increased distance between IP3R and TMEM16a. The authors assume that the increased separation of IP3R and TMEM16a (and the resulting decrease in local [Ca2+]) outweighed the effect of higher global [Ca2+], but this point was not addressed directly.
The description of mitochondrial changes in abundance, morphology, membrane potential, and oxygen consumption rate were not well integrated into the rest of the paper. While they may be a facet of the multiple effects of STING activation and may occur during Sjogren's syndrome, their possible role in reducing secretion was not examined. As it stands, the mitochondrial results are largely descriptive and more studies are needed to connect them to the secretory deficits in SJogren's syndrome.
-
Reviewer #2 (Public Review):
Summary:
This manuscript describes a very eloquent study of disrupted stimulus -secretion coupling in salivary acinar cells in the early stages of an animal model (DMXAA) of Sjogren's syndrome (SS). The study utilizes a range of technically innovative in vivo imaging of Ca signaling, in vivo salivary secretion, patch clamp electrophysiology to assess TMEM16a activity, immunofluorescence and electron microscopy and a range of morphological and functional assays of mitochondrial function. Results show that in mice with DMXAA-induced Sjogren's syndrome, there was a reduced nerve stimulation induced salivary secretion, yet surprisingly the nerve stimulation induced Ca signaling was enhanced. There was also a reduced carbachol (CCh)-induced activation of TMEM16a currents in acinar cells from DMXAA-induced SS mice, whereas the intrinsic Ca-activated TMEM16a currents were unaltered, further supporting that stimulus-secretion coupling was impaired. Consistent with this, high resolution STED microscopy revealed that there was a loss of close physical spatial coupling between IP3Rs and TMEM16a, which may contribute to the impaired stimulus-secretion coupling. Furthermore, the authors show that the mitochondria were both morphologically and functionally impaired, suggesting that bioenergetics may be impaired in salivary acinar cells of DMXAA-induced SS mice.
Strengths:
Overall, this is an outstanding manuscript, that will have a huge impact on the field. The manuscript is beautifully well-written with a very clear narrative. The experiments are technically innovative, very well executed and with a logical design The data are very well presented and appropriately analyzed and interpreted.
Review of Revised Manuscript:
The authors have now addressed all my comments and concerns in the revised manuscript to my satisfaction.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Leikina et al. investigate the role of redox changes in the ubiquitous protein La in promotion of osteoclast fusion. In a recently published manuscript, the investigators found that osteoclast multinucleation and resorptive activity are regulated by a de-phosphorylated and proteolytically cleaved form of the La protein that is present on the cell surface of differentiating osteoclasts. In the present work, the authors build upon these findings to determine the physiologic signals that regulate La trafficking to the cell membrane and ultimately, the ability of this protein to promote fusion. Building upon other published studies that show 1) that intracellular redox signaling can elicit changes in the confirmation and localization of La, and 2) that osteoclast formation is dependent on ROS signaling, the authors hypothesize that oxidation of La in response to intracellular ROS underlies the re-localization of La to the cell membrane and that this is necessary for its pro-fusion activity. The authors test this hypothesis in a rigorous manner using antioxidant treatments, recombinant La protein, and modification of cysteine residues predicted to be key sites of oxidation. Osteoclast fusion is then monitored in each condition using fluorescence microscopy. These data strongly support the conclusion that oxidized La is de-phosphorylated, increases in abundance at the cell surface of differentiating osteoclasts, and promotes cell-cell fusion. A strength of this manuscript is the use of multiple complementary approaches to test the hypothesis, especially the use of Cys mutant forms of La to directly tie the observed phenotypes to changes in residues that are key targets for oxidation. The manuscript is also well written and describes a clearly articulated hypothesis based on a precise summation of the existing literature. The findings of this manuscript will be of interest to researchers in the field of bone biology, but also more generally to cell biologists. The data in this manuscript may also lead to future studies that target La for bone diseases in which there is increased osteoclast activity. Weaknesses of the first version of the manuscript were minor and predominantly related to data presentation choices and some statistical analyses. These weaknesses were comprehensively addressed in the revised manuscript, and therefore the study has increased clarity and rigor.
-
Reviewer #2 (Public Review):
Summary:<br /> Bone resorption by osteoclasts plays an important role in bone modeling and homeostasis. The multinucleated mature osteoclasts have higher bone-resorbing capacity than their mononuclear precursors. The previous work by authors has identified that increased cell-surface level of La protein promotes fusion of mononuclear osteoclast precursor cells to form fully active multinucleated osteoclasts. In the present study, the authors further provided convincing data obtained from cellular and biochemical experiments to demonstrate that the nuclear localized La protein where it regulates RNA metabolism was oxidized by redox signaling during osteoclast differentiation and the modified La protein was translocated to osteoclast surface where it associated with other proteins and phospholipids to trigger cell-cell fusion process. The work provides novel mechanistic insights into osteoclast biology and provides a potential therapeutic target to suppress excessive bone resorption in metabolic bone diseases such as osteoporosis and arthritis.
Strengths:<br /> Increased intracellular ROS induced by osteoclast differentiation cytokine RANKL has been widely studied in enhancing RANKL signaling during osteoclast differentiation. The work provides novel evidence that redox signaling can post-translationally modify proteins to alter the translocation and functions of critical regulators in the late stage of osteoclastogenesis. The results and conclusions are mostly supported by the convincing cellular and biochemical assays,
Weaknesses:<br /> Lack of in vivo studies in animal models of bone diseases such as postmenopausal osteoporosis, inflammatory arthritis, and osteoarthritis reduces the translational potential of this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript the authors investigate the contributions of the long noncoding RNA snhg3 in liver metabolism and MAFLD. The authors conclude that liver-specific loss or overexpression of Snhg3 impacts hepatic lipid content and obesity through epigenetic mechanisms. More specifically, the authors invoke that nuclear activity of Snhg3 aggravates hepatic steatosis by altering the balance of activating and repressive chromatin marks at the Pparg gene locus. This regulatory circuit is dependent on a transcriptional regulator SNG1.
Strengths:
The authors developed a tissue specific lncRNA knockout and KI models. This effort is certainly appreciated as few lncRNA knockouts have been generated in the context of metabolism. Furthermore, lncRNA effects can be compensated in a whole organism or show subtle effects in acute versus chronic perturbation, rendering the focus on in vivo function important and highly relevant. In addition, Snhg3 was identified through a screening strategy and as a general rule the authors the authors attempt to follow unbiased approaches to decipher the mechanisms of Snhg3.
Weaknesses:
Despite efforts at generating a liver-specific knockout, the phenotypic characterization is not focused on the key readouts. Notably missing are rigorous lipid flux studies and targeted gene expression/protein measurement that would underpin why loss of Snhg3 protects from lipid accumulation. Along those lines, claims linking the Snhg3 to MAFLD would be better supported with careful interrogation of markers of fibrosis and advanced liver disease. In other areas, significance is limited since the presented data is either not clear or rigorous enough. Finally, there is an important conceptual limitation to the work since PPARG is not established to play a major role in the liver.
-
Reviewer #2 (Public Review):
Through RNA analysis, Xie et al found LncRNA Snhg3 was one of the most down-regulated Snhgs by high fat diet (HFD) in mouse liver. Consequently, the authors sought to examine the mechanism through which Snhg3 is involved in the progression of metabolic dysfunction-associated fatty liver diseases (MASLD) in HFD-induced obese (DIO) mice. Interestingly, liver-specific Sngh3 knockout reduced, while Sngh3 over-expression potentiated fatty liver in mice on a HFD. Using the RNA pull-down approach, the authors identified SND1 as a potential Sngh3 interacting protein. SND1 is a component of the RNA-induced silencing complex (RISC). The authors found that Sngh3 increased SND1 ubiquitination to enhance SND1 protein stability, which then reduced the level of repressive chromatin H3K27me3 on PPARg promoter. The upregulation of PPARg, a lipogenic transcription factor, thus contributed to hepatic fat accumulation.
The authors propose a signaling cascade that explains how LncRNA sngh3 may promote hepatic steatosis. Multiple molecular approaches have been employed to identify molecular targets of the proposed mechanism, which is a strength of the study. There are, however, several potential issues to consider before jumping to the conclusion.
(1) First of all, it's important to ensure the robustness and rigor of each study. The manuscript was not carefully put together. The image qualities for several figures were poor, making it difficult for the readers to evaluate the results with confidence. The biological replicates and numbers of experimental repeats for cell-based assays were not described. When possible, the entire immunoblot imaging used for quantification should be presented (rather than showing n=1 representative). There were multiple mis-labels in figure panels or figure legends (e.g., Fig. 2I, Fig. 2K and Fig. 3K). The b-actin immunoblot image was reused in Fig. 4J, Fig. 5G and Fig. 7B with different exposure times. These might be from the same cohort of mice. If the immunoblots were run at different times, the loading control should be included on the same blot as well.
(2) The authors can do a better job in explaining the logic for how they came up with the potential function of each component of the signaling cascade. Sngh3 is down-regulated by HFD. However, the evidence presented indicates its involvement in promoting steatosis. In Fig. 1C, one would expect PPARg expression to be up-regulated (when Sngh3 was down-regulated). If so, the physiological observation conflicts with the proposed mechanism. In addition, SND1 is known to regulate RNA/miRNA processing. How do the authors rule out this potential mechanism? How about the hosting snoRNA, Snord17? Does it involve in the progression of NASLD?
(3) The role of PPARg in fatty liver diseases might be a rodent-specific phenomenon. PPARg agonist treatment in humans may actually reduce ectopic fat deposition by increasing fat storage in adipose tissues. The relevance of the finding to human diseases should be discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study presents a valuable finding on the expression levels of circHMGCS1 regulating arginase-1 by sponging miR-4521observed in diabetes-induced vascular endothelial dysfunction, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity. Further, increase in the expression of adhesion molecules and generation of cellular reactive oxygen species reduced vasodilation and accelerated the impairment of vascular endothelial function.<br /> Modulating circHMGCS1/miR-4521/ARG1 axis could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases.
Comments on revised version:
The authors answered all questions satisfactorily.
-
Reviewer #2 (Public Review):
Summary:
The authors observed an aggravated vascular endothelial dysfunction upon overexpressing circHMGCS1 and inhibiting miR-4521. This study discovered that circHMGCS1 promotes arginase 1 expression by sponging miR-4521, which accelerated the impairment of vascular endothelial function.
Strengths:
The study is systematic and establishes the regulatory role of the circHMGCS1-miR-4521 axis in diabetes-induced cardiovascular diseases.
Weaknesses:
(1) The authors show direct evidence of interaction between circHMGCS1 and miR-4521 by pulldown assay. However, the changes in miRNA expression opposite to the levels of target circRNA could be through Target RNA-Directed MicroRNA Degradation. Since the miRNA level is downregulated, the downstream target gene is expected to be upregulated even in the absence of circRNA.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this work, the authors continue their investigations on the key role of glycosylation to modulate the function of a therapeutic antibody. As a follow-up to their previous demonstration on how ADCC was heavily affected by the glycans at the Fc gamma receptor (FcγR)IIIa, they now dissect the contributions of the different glycans that decorate the diverse glycosylation sites. Using a well-designed mutation strategy, accompanied by exhaustive biophysical measurements, with extensive use of NMR, using both standard and newly developed methodologies, they demonstrate that there is one specific locus, N162, which is heavily involved in the stabilization of (FcγR)IIIa and that the concomitant NK function is regulated by the glycan at this site.
Strengths:
The methodological aspects are carried out at the maximum level.
Weaknesses:
The exact (or the best possible assessment) of the glycan composition at the N162 site is not defined.
-
Reviewer #2 (Public Review):
Summary:
The authors set out to demonstrate a mechanistic link between Fcgamma receptor (IIIA) glycosylation and IgG binding affinity and signaling - resulting in antibody-dependent cellular cytotoxicity - ADCC. The work builds off prior findings from this group about the general impact of glycosylation on FcR (Fc receptor)-IgG binding.
Strengths:
The structural data (NMR) is highly compelling and very significant to the field. A demonstration of how IgG interacts with FcgRIIIA in a manner sensitive to glycosylation of both the IgG and the FcR fills a critical knowledge gap. The approach to demonstrate the selective impact of glycosylation at N162 is also excellent and convincing. The manuscript/study is, overall, very strong.
Weaknesses:
There are a number of minor weaknesses that should be addressed.
(1) Since S164A is the only mutant in Figure 1 that seems to improve affinity, even if minimally, it would be a nice reference to highlight that residue in the structural model in panel B.
(2) It is confusing why some of the mutants in the study are not represented in Figure 1 panel A. Those affinities and mutants should be incorporated into panel A so the reader can easily see where they all fall on the scale. T167Y in particular needs to be shown, as it is one of few mutants that fall between what seems to be ADCC+ and ADCC- lines. Also, that mutant seems to have a stronger affinity compared to wt (judged by panel D), yet less ADCC than wt. This would imply that the relationship between affinity and activity is not as clean as stated, though it is clearly important. Comments about this would strengthen the overall manuscript.
(3) This statement feels out of place: "In summary, this result demonstrates that the sensitivity to antibody fucosylation may be eliminated through FcγRIIIa engineering while preserving antibody-binding affinity." In Figure 2, the authors do indeed show that mutations in FcgRIIIa can alter the impact of IgG core fucosylation, but implying that receptor engineering is somehow translatable or as impactful therapeutically as engineering the antibody itself deflates the real basic science/biochemical impact of understanding these interactions in molecular detail. Not everything has to be immediately translatable to be important.
(4) The findings reported in Figure 2, panel C are exciting. Controls for the quality of digestion at each step should be shown (perhaps in supplementary data).
(5) Figure 3 is confusing (mislabeled?) and does not show what is described in the Results. First, there is a F158V variant in the graph but a V158F variant in the text. Please correct this. Second, this variant (V158F/F158V) does not show the 2-fold increase in ADCC with kifunesine as stated. Finally, there are no statistical evaluations between the groups (+/- kif; +/- fucose). The differences stated are not clearly statistically significant given the wide spread of the data. This is true even for the wt variant.
(6) The kifunensine impact is somewhat confusing. They report a major change in ADCC, yet similar large changes with trimming only occur once most of the glycan is nearly gone (Figure 2). Kifunensine will tend to generate high mannose and possibly a few hybrid glycans. It is difficult to understand what glycoforms are truly important outside of stating that multi-branched complex-type N-glycans decrease affinity.
(7) This is outside of the immediate scope, but I feel that the impact would be increased if differences in NK cell (and thus FcgRIIIA) glycosylation are known to occur during disease, inflammation, age, or some other factor - and then to demonstrate those specific changes impact ADCC activity via this mechanism.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
With this work, the authors tried to expand and integrate the concept of realized niche in the context of movement ecology by using fine-scale GPS data of 55 juvenile Golden eagles in the Alps. Authors found that ontogenic changes influence the percentage of area flyable to the eagles as individuals exploit better geographic uplifts that allow them to reduce the cost of transport.
Strengths:
Authors made insightful work linking changes in ontogeny and energy landscapes in large soaring birds that may not only advance the understanding of how changes in the life cycle affect the exploitability of aerial space but also offer valuable tools for the management and conservation of large soaring species in the changing world.
Weaknesses:
Future research may test the applicability of the present work by including more individuals and/or other species from other study areas.
-
Reviewer #1 (Public Review):
Summary:
The authors propose that the energy landscape of animals can be thought of in the same way as the fundamental versus realized niche concept in ecology. Namely, animals will use a subset of the fundamental energy landscape due to a variety of factors. The authors then show that the realized energy landscape of eagles increases with age as the animals are better able to use the energy landscape.
Strengths:
This is a very interesting idea and that adds significantly to the energy landscape framework. They provide convincing evidence that the available regions used by birds increase with size.
Review of revised version:
The authors have addressed all my comments and concerns. This is a really nice and important manuscript. I have one minor suggestion: Line 74-85: when discussing the effect of ontogeny, the authors give examples of how these may change due to improved cognition and memory. I would recommend they also give examples of how these may change with morphology (e.g. change in wing or fin relative area, buoyancy in sharks etc) should also be included. Most growth in fish for example is allometric so the relative measures of area of fins to body size should also change.
This is of course up to the authors but it would highlight how their study is applicable to many other systems beyond just birds (even though morphology is of little importance for their eagles).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors report an inability to reproduce a transgenerational memory of avoidance of the pathogen PA14 in C. elegans. Instead, the authors demonstrate intergenerational inheritance for a single F1 generation, in embryos of mothers exposed to OP50 and PA14, where embryos isolated from these mothers by bleaching are capable of remembering to avoid PA14 in a manner that is dependent on systemic RNAi proteins sid-1 and sid-2. This could reflect systemic sRNAs generated by neuronal daf-7 signaling that are transmitted to F1 embryos. The authors note that transgenerational memory of PA14 was reported by the Murphy group at Princeton, but that environmental or strain variation (worms or bacteria) might explain the single generation of inheritance observed at Harvard. The Hunter group tried different bacterial growth conditions and different worm growth temperatures for independent PA14 strains, which they showed to be strongly pathogenic. However, the authors could not reproduce a transgenerational effect at Harvard. This important data will allow members of the scientific community to focus on the robust and reproducible inheritance of PA14 avoidance transmitted to F1 embryos of mothers exposed to PA14, which the authors demonstrate depends on small RNAs in a manner that is downstream of or in parallel to daf-7. This paper honestly and importantly alters expectations and questions the model that avoidance of PA14 is mediated by a bacterial ncRNA whose siRNAs target a C. elegans gene. Instead, endogenous C. elegans sRNAs that affect pathogen response may be the culprit that explains sRNA-mediated avoidance.
Overall, this is an important paper that demonstrates that one model for transgenerational inheritance in C. elegans is not reproducible. This is important because it is not clear how many of the reported models of transgenerational inheritance reported in C. elegans are reproducible. The authors do demonstrate a memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.
Strengths:
The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to the memory of PA14 avoidance, speaking to an intergenerational phenotype.
The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that single copy daf-7::GFP is not elevated in F1 progeny of sid mutants. Because the Murphy group reported that daf-7 mutation abolishes avoidance for F1 progeny, this means that the sid genes function downstream of daf-7 or in parallel, rather than upstream as previously suggested.
The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. Importantly, the authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, is unlikely to affect maco-1 expression by generating sRNAs that target maco-1 in C. elegans. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. The Murphy group might wish to consider following up on these genes and their possible relationship with P11.
Weaknesses:
This very thorough and interesting manuscript is at times pugnacious.
Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.
-
Reviewer #2 (Public Review):
This paper examines the reproducibility of results reported by the Murphy lab regarding transgenerational inheritance of a learned avoidance behavior in C. elegans. It has been well established by multiple labs that worms can learn to avoid the pathogen pseudomonas aeruginosa (PA14) after a single exposure. The Murphy lab has reported that learned avoidance is transmittable to 4 generations and dependent on a small RNA expressed by PA14 that elicits the transgenerational silencing of a gene in C. elegans. The Hunter lab now reports that although they can reproduce inheritance of the learned behavior by the first generation (F1), they cannot reproduce inheritance in subsequent generations.
This is an important study that will be useful for the community. Although they fail to identify a "smoking gun", the study examines several possible sources for the discrepancy, and their findings will be useful to others interested in using these assays. The preference assay appears to work in their hands in as much as they are able to detect the learned behavior in the P0 and F1 generations, suggesting that the failure to reproduce the transgenerational effect is not due to trivial mistakes in the protocol. An obvious reason, however, to account for the differing results is that the culture conditions used by the authors are not permissive for the expression of the small RNA by PA14 that the MUrphy lab identified as required for transgenerational inheritance. It would seem prudent for the authors to determine whether this small RNA is present in their cultures, or at least acknowledge this possibility. The authors should also note that their protocol was significantly different from the Murphy protocol (see comments below) and therefore it remains possible that protocol differences cumulatively account for the different results.
-
Reviewer #3 (Public Review):
Summary:
It has been previously reported in many high-profile papers, that C. elegans can learn to avoid pathogens. Moreover, this learned pathogen avoidance can be passed on to future generations - up to the F5 generation in some reports. In this paper, Gainey et al. set out to replicate these findings. They successfully replicated pathogen avoidance in the exposed animals, as well as a strong increase in daf-7 expression in ASI neurons in F1 animals, as determined by a daf-7::GFP reporter construct. However, they failed to see strong evidence for pathogen avoidance or daf-7 overexpression in the F2 generation. The failure of replication is the major focus of this work.
Given their failure to replicate these findings, the authors embark on a thorough test of various experimental confounders that may have impacted their results. They also re-analyze the small RNA sequencing and mRNA sequencing data from one of the previously published papers and draw some new conclusions, extending this analysis.
Strengths:
(1) The authors provide a thorough description of their methods, and a marked-up version of a published protocol that describes how they adapted the protocol to their lab conditions. It should be easy to replicate the experiments.
(2) The authors test the source of bacteria, growth temperature (of both C. elegans and bacteria), and light/dark husbandry conditions. They also supply all their raw data, so that the sample size for each testing plate can be easily seen (in the supplementary data). None of these variations appears to have a measurable effect on pathogen avoidance in the F2 generation, with all but one of the experiments failing to exhibit learned pathogen avoidance.
(3) The small RNA seq and mRNA seq analysis is well performed and extends the results shown in the original paper. The original paper did not give many details of the small RNA analysis, which was an oversight. Although not a major focus of this paper, it is a worthwhile extension of the previous work.
(4) It is rare that negative results such as these are accessible. Although the authors were unable to determine the reason that their results differ from those previously published, it is important to document these attempts in detail, as has been done here. Behavioral assays are notoriously difficult to perform and public discourse around these attempts may give clarity to the difficulties faced by a controversial field.
Weaknesses:
(1) Although the "standard" conditions have been tested over multiple biological replicates, many of the potential confounders that may have altered the results have been tested only once or twice. For example, changing the incubation temperature to 25{degree sign}C was tested in only two biological replicates (Exp 5.1 and 5.2) - and one of these experiments actually resulted in apparent pathogen avoidance inheritance in the F2 generation (but not in the F1). An alternative pathogen source was tested in only one biological replicate (Exp 3). Given the variability observed in the F2 generation, increasing biological replicates would have added to the strengths of the report.
(2) A key difference between the methods used here and those published previously, is an increase in the age of the animals used for training - from mostly L4 to mostly young adults. I was unable to find a clear example of an experiment when these two conditions were compared, although the authors state that it made no difference to their results.
(3) The original paper reports a transgenerational avoidance effect up to the F5 generation. Although in this work the authors failed to see avoidance in the F2 generation, it would have been prudent to extend their tests for more generations in at least a couple of their experiments to ensure that the F2 generation was not an aberration (although this reviewer acknowledges that this seems unlikely to be the case).
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #3 (Public Review):
Summary:
In this work, the authors plate different type of cells on circular micropatterns and question how the organization and dynamics of the actin cytoskeleton correlate with particular actin chiral properties and rotational direction of the nucleus. The observe that cell spreading on large patterns correlates with the emergence of anti-clockwise rotations (ACW), while spreading on small patterns leads preferentially to clockwise rotations (CW). ACW originate, as previously demonstrated, from the polymerization of radial fibers, while clockwise rotations (CW) are observed when radial fibers are disorganized or absent and when transverse arcs take over to power CW rotations. These data are supported by a large number of observations and use of multiple drugs lead to observations that are consistent with the proposed model.
Strengths:
This is a beautiful work in which the authors rely on a large number of high-quality microscopic observations and use a full arsenal of drugs to test their model as thoroughly as possible.<br /> This study examines the influence of multiple actin networks. This is a challenging task in that the assembly and dynamics of different actin networks are interdependent, making it difficult to unambiguously analyze the importance of any specific network.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper uses single-molecule FRET to investigate the molecular basis for the distinct activation mechanisms between 2 GPCR responding to the chemokine CXCL12 : CXCR4, that couples to G-proteins, and ACKR3, which is G-protein independent and displays a higher basal activity.
Strengths:
It nicely combines the state-of-the-art techniques used in the studies of the structural dynamics of GPCR. The receptors are produced from eukaryotic cells, mutated, and labeled with single molecule compatible fluorescent dyes. They are reconstituted in nanodiscs, which maintain an environment as close as possible to the cell membrane, and immobilized through the nanodisc MSP protein, to avoid perturbing the receptor's structural dynamics by the use of an antibody for example.
The smFRET data are analysed using the HHMI technique, and the number of states to be taken into account is evaluated using a Bayesian Information Criterion, which constitutes the state-of-the-art for this task.
The data show convincingly that the activation of the CXCR4 and ACKR3 by an agonist leads to a shift from an ensemble of high FRET states to an ensemble of lower FRET states, consistent with an increase in distance between the TM4 and TM6. The two receptors also appear to explore a different conformational space. A wider distribution of states is observed for ACKR3 as compared to CXCR4, and it shifts in the presence of agonists toward the active states, which correlates well with ACKR3's tendency to be constitutively active. This interpretation is confirmed by the use of the mutation of Y254 to leucine (the corresponding residue in CXCR4), which leads to a conformational distribution that resembles the one observed with CXCR4. It is correlated with a decrease in constitutive activity of ACKR3.
Weaknesses:
Although the data overall support the claims of the authors, there are however some details in the data analysis and interpretation that should be modified, clarified, or discussed in my opinion.
Concerning the amplitude of the changes in FRET efficiency: the authors do not provide any structural information on the amplitude of the FRET changes that are expected. To me, it looks like a FRET change from ~0.9 to ~0.1 is very important, for a distance change that is expected to be only a few angstroms concerning the movement of the TM6. Can the authors give an explanation for that? How does this FRET change relate to those observed with other GPCRs modified at the same or equivalent positions on TM4 and TM6?
Concerning the intermediate states: the authors observe several intermediate states.
(1) First I am surprised, looking at the time traces, by the dwell times of the transitions between the states, which often last several seconds. Is such a long transition time compatible with what is known about the kinetic activation of these receptors?
(2) Second is it possible that these « intermediate » states correspond to differences in FRET efficiencies, that arise from different photophysical states of the dyes? Alexa555 and Cy5 are Cyanines, that are known to be very sensitive to their local environment. This could lead to different quantum yields and therefore different FRET efficiencies for a similar distance. In addition, the authors use statistical labeling of two cysteines, and have therefore in their experiment a mixture of receptors where the donor and acceptor are switched, and can therefore experience different environments. The authors do not speculate structurally on what these intermediate states could be, which is appreciated, but I think they should nevertheless discuss the potential issue of fluorophore photophysics effects.
(3) It would also have been nice to discuss whether these types of intermediate states have been observed in other studies by smFRET on GPCR labeled at similar positions.
On line 239: the authors talk about the R↔R' transitions that are more probable. In fact it is more striking that the R'↔R* transition appears in the plot. This transition is a signature of the behaviour observed in the presence of an agonist, although IT1t is supposed to be an inverse agonist. This observation is consistent with the unexpected (for an inverse agonist) shift in the FRET histogram distribution. In fact, it appears that all CXCR4 antagonists or inverse agonists have a similar (although smaller) effect than the agonist. Is this related to the fact that these (antagonist or inverse agonist) ligands lead to a conformation that is similar to the agonists, but cannot interact with the G-protein ?? Maybe a very interesting experiment would be here to repeat these measurements in the presence of purified G-protein. G-protein has been shown to lead to a shift of the conformational space explored by GPCR toward the active state (using smFRET on class A and class C GPCR). It would be interesting to explore its role on CXCR4 in the presence of these various ligands. Although I am aware that this experiment might go beyond the scope of this study, I think this point should be discussed nevertheless.
The authors also mentioned in Figure 6 that the energetic landscape of the receptors is relatively flat ... I do not really agree with this statement. For me, a flat conformational landscape would be one where the receptors are able to switch very rapidly between the states (typically in the submillisecond timescale, which is the timescale of protein domain dynamics). Here, the authors observed that the transition between states is in the second timescale, which for me implies that the transition barrier between the states is relatively high to preclude the fast transitions.
-
Reviewer #2 (Public Review):
Summary:
This manuscript uses single-molecule fluorescence resonance energy transfer (smFRET) to identify differences in the molecular mechanisms of CXCR4 and ACKR3, two 7-transmembrane receptors that both respond to the chemokine CXCL12 but otherwise have very different signaling profiles. CXCR4 is highly selective for CXCL12 and activates heterotrimeric G proteins. In contrast, ACKR3 is quite promiscuous and does not couple to G proteins, but like most G protein-coupled receptors (GPCRs), it is phosphorylated by GPCR kinases and recruits arrestins. By monitoring FRET between two positions on the intracellular face of the receptor (which highlights the movement of transmembrane helix 6 [TM6], a key hallmark of GPCR activation), the authors show that CXCR4 remains mostly in an inactive-like state until CXCL12 binds and stabilizes a single active-like state. ACKR3 rapidly exchanges among four different conformations even in the absence of ligands, and agonists stabilize multiple activated states.
Strengths:
The core method employed in this paper, smFRET, can reveal dynamic aspects of these receptors (the breadth of conformations explored and the rate of exchange among them) that are not evident from static structures or many other biophysical methods. smFRET has not been broadly employed in studies of GPCRs. Therefore, this manuscript makes important conceptual advances in our understanding of how related GPCRs can vary in their conformational dynamics.
Weaknesses:
(1) The cysteine mutations in ACKR3 required to site-specifically install fluorophores substantially increase its basal and ligand-induced activity. If, as the authors posit, basal activity correlates with conformational heterogeneity, the smFRET data could greatly overestimate the conformational heterogeneity of ACKR3.
(2) The probes used cannot reveal conformational changes in other positions besides TM6. GPCRs are known to exhibit loose allosteric coupling, so the conformational distribution observed at TM6 may not fully reflect the global conformational distribution of receptors. This could mask important differences that determine the ability of intracellular transducers to couple to specific receptor conformations.
(3) While it is clear that CXCR4 and ACKR3 have very different conformational dynamics, the data do not definitively show that this is the main or only mechanism that contributes to their functional differences. There is little discussion of alternative potential mechanisms.
(4) The extent to which conformational heterogeneity is a characteristic feature of ACKRs that contributes to their promiscuity and arrestin bias is unclear. The key residue the authors find promotes ACKR3 conformational heterogeneity is not conserved in most other ACKRs, but alternative mechanisms could generate similar heterogeneity.
(5) There are no data to confirm that the two receptors retain the same functional profiles observed in cell-based systems following in vitro manipulations (purification, labeling, nanodisc reconstitution).
-
Reviewer #3 (Public Review):
Summary:
This is a well-designed and rigorous comparative study of the conformational dynamics of two chemokine receptors, the canonical CXCR4 and the atypical ACKR3, using single-molecule fluorescence spectroscopy. These receptors play a role in cell migration and may be relevant for developing drugs targeting tumor growth in cancers. The authors use single-molecule FRET to obtain distributions of a specific intermolecular distance that changes upon activation of the receptor and track differences between the two receptors in the apo state, and in response to ligands and mutations. The picture emerging is that more dynamic conformations promote more basal activity and more promiscuous coupling of the receptor to effectors.
Strengths:
The study is well designed to test the main hypothesis, the sample preparation and the experiments conducted are sound and the data analysis is rigorous. The technique, smFRET, allows for the detection of several substates, even those that are rarely sampled, and it can provide a "connectivity map" by looking at the transition probabilities between states. The receptors are reconstituted in nanodiscs to create a native-like environment. The examples of raw donor/acceptor intensity traces and FRET traces look convincing and the data analysis is reliable to extract the sub-states of the ensemble. The role of specific residues in creating a more flat conformational landscape in ACKR3 (e.g., Y257 and the C34-C287 bridge) is well documented in the paper.
Weaknesses:
The kinetics side of the analysis is mentioned, but not described and discussed. I am not sure why since the data contains that information. For instance, it is not clear if greater conformational flexibility is accompanied by faster transitions between states or not.
The method to choose the number of states seems reasonable, but the "similarity" of states argument (Figures S4 and S6) is not that clear.
Also, the "dynamics" explanation offered for ACKR3's failure to couple and activate G proteins is not very convincing. In other studies, it was shown that activation of GPCRs by agonists leads to an increase in local dynamics around the TM6 labelling site, but that did not prevent G protein coupling and activation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this paper by Zhang, the authors build a physical framework to probe the mechanisms that underlie exchange of molecules between coexisting dense and dilute liquid-like phases of condensates. They first propose a continuum model, in the context of a FRAP-like experiment where the fluorescently labeled molecules inside the condensate are bleached at t=0 and the recovery of fluorescence is measured. Through this model, they identify how the key timescales of internal molecular mixing, replenishment from dilute phase, and interface transfer contribute to molecular exchange timescale. Motivated by a recent experiment reported by some of the co-authors previously (Brangwynne et al. in 2019) finding strong interfacial resistance in in vitro protein droplets of LAF-1, they seek to understand the microscopic features contributing to the interfacial conductance (inversely proportional to the resistance). To check, they perform coarse-grained MD-simulations of sticker-spacer self-associative polymers and report how conductance varies significantly even across the few explored sequences. Further, by looking at individual trajectories, they postulate the "bouncing" i.e., molecules that approach the interface but are not successfully absorbed is a strong contributor to this mass transfer limitation. Consistent with their predictions, sequences that have more free unbound stickers (i.e., for example through imbalance sequence sticker stoichiometries) have higher conductances and they show a simple linear scaling between number of unbound stickers and conductance. Finally, they predict that an droplet-size dependent transition in recovery time behavior.
Strengths:
(1) This paper is overall well-written and clear to understand.<br /> (2) By combining coarse-grained simulations, continuum modeling, and comparison to published data, the authors provide a solid picture of how their proposed framework relates to molecular exchange mechanisms that are dominated by interface resistance and LAF-1 droplets.<br /> (3) The choice of different ways to estimate conductance from simulation and reported data are thoughtful and convincing on their near-agreement (although a little discussion of why and when they differ would be merited as well).
Updated re-review:
This revised update by Zhang et al. is improved and addresses many of the concerns raised by myself and the other reviewer, especially with the expanded discussion, contextualized text in model description, and the addition of a nice example case-study in revised Fig. 4. I believe the paper provides solid evidence of how "bouncing" may contribute to interfacial resistance/exchange dynamics in biomolecular condensates and is a useful study for the community.
Note:<br /> In their response, the authors bring up an important point in references for LAF1 mutant FRAP data. While I found a few papers, for example https://www.pnas.org/doi/abs/10.1073/pnas.2000223117 and https://www.cell.com/biophysj/fulltext/S0006-3495(23)00464-2 , these are likely to be not whole droplet bleaches. I wonder whether it may be possible to approximately predict the conductance from other parameters (such as from effective expressions in eq 14) to roughly estimate what the effect maybe since LAF-1 has fairly "known" stickers and spacers. Note that this is not required at all, but I just bring this up in case it may be of interest to authors!
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this study, the authors describe the construction of an extremely large-scale anatomical model of juvenile rat somatosensory cortex (excluding the barrel region), which extends earlier iterations of these models by expanding across multiple interconnected cortical areas. The models are constructed in such a way as to maintain biological detail from a granular scale - for example, individual cell morphologies are maintained, and synaptic connectivity is founded on anatomical contacts. The authors use this model to investigate a variety of properties, from cell-type specific targeting (where the model results are compared to findings from recent large-scale electron microscopy studies) to network metrics. The model is also intended to serve as a platform and resource for the community by being a foundation for simulations of neuronal circuit activity and for additional anatomical studies that rely on the detailed knowledge of cellular identity and connectivity.
Strengths:
As the authors point out, the combination of scale and granularity of their model is what makes this study valuable and unique. The comparisons with recent electron microscopy findings are some of the most compelling results presented in the study, showing that certain connectivity patterns can arise directly from the anatomical configuration, while other discrepancies highlight where more selective targeting rules (perhaps based on molecular cues) are likely employed. They also describe intriguing effects of cortical thickness and curvature on circuit connectivity and characterize the magnitude of those effects on different cortical layers.
The detailed construction of the model is drawn on a wide range of data sources (cellular and synaptic density measures, neuronal morphologies, cellular composition measures, brain geometry, etc.) that are integrated together; other data sources are used for comparison and validation. This consolidation and comparison also represent a valuable contribution to the overall understanding of the modeled system.
Weaknesses:
The scale of the model, which is a primary strength, also can carry some drawbacks. In order to integrate all the diverse data sources together, many specific decisions must be made about, for example, translating findings from different species or regions to the modeled system, or deciding which aspects of the system can be assumed to be the same and which should vary. All these decisions will have effects on the predicted results from the model, which could limit the types of conclusions that can be made (both by the others and by others in the community who may wish to use the model for their own work).
As an example, while it is interesting that broad brain geometry has effects on network structure (Figure 7), it is not clear how those effects are actually manifested. I am not sure if some of the effects could be due to the way the model is constructed - perhaps there may be limited sets of morphologies that fit into columns of particular thicknesses, and those morphologies may have certain idiosyncrasies that could produce different statistics of connectivities where they are heavily used. That may be true to biology, but it may also be somewhat artifactual if, for example, the only neurons in the library that fit into that particular part of the cortex differ from the typical neurons that are actually found in that region (but may not have been part of the morphological sampling). I also wonder how much the assumption that the layers have the same relative thicknesses everywhere in the cortex affects these findings, since layer thicknesses do in fact vary across the cortex.
In addition, the complexity of the model means that some complicated analyses and decisions are only presented in this manuscript with perhaps a single panel and not much textual explanation. I find, for example, that the panels of Figure S2 seem to abstract or simplify many details to the point where I am not clear about what they are actually illustrating - how does Figure S2D represent the results of "the process illustrated in B"? Why are there abrupt changes in connectivity at region borders (shown as discontinuous colors), when dendrites and axons span those borders and so would imply interconnectivity across the borders? What do the histograms in E1 and E2 portray, and how are they related to each other?
Overall, the model presented in this study represents an enormous amount of work and stands as a unique resource for the community, but also is made somewhat unwieldy for the community to employ due to the weight of its manifold specific construction decisions, size, and complexity.
-
Reviewer #2 (Public Review):
Summary:
The authors build a colossal anatomical model of juvenile rat non-barrel primary somatosensory cortex, including inputs from the thalamus. This enhances past models by incorporating information on the shape of the cortex and estimated densities of various types of excitatory and inhibitory neurons across layers. This is intended to enable an analysis of the micro- and mesoscopic organisation of cortical connectivity and to be a base anatomical model for large-scale simulations of physiology.
Strengths:
• The authors incorporate many diverse data sources on morphology and connectivity.
• This paper takes on the challenging task of linking micro- and mesoscale connectivity.
• By building in the shape of the cortex, the authors were able to link cortical geometry to connectivity. In particular, they make an unexpected prediction that cortical conicality affects the modularity of local connectivity, which should be testable.
• The author's analysis of the model led to the interesting prediction that layer 5 neurons connect local modules, which may be testable in the future, and provide a basis to link from detailed anatomy to functional computations.
• The visualisation of the anatomy in various forms is excellent.
• A subnetwork of the model is openly shared (but see question below).
Weaknesses:
• Why was non-barrel S1 of the juvenile rat cortex selected as the target for this huge modelling effort? This is not explained.
• There is no effort to determine how specific or generalisable the findings here are to other parts of the cortex.
• Although there is a link to physiological modelling in another paper, there is no clear pathway to go from this type of model to understand how the specific function of the modelled areas may emerge here (and not in other cortical areas).
• In a few places the manuscript could be improved by being more specific in the language, for example:<br /> - "our anatomy-based approach has been shown to be powerful", I would prefer instead to read about specific contributions of past papers to the field, and how this builds on them.<br /> - similarly: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment.
• Some of the decisions seem a little ad-hoc, and the means to assess those decisions are not always available to the reader e.g.<br /> - pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised?<br /> - "In the remaining layers the results of the objective classification were used to validate the class assignments of individual pyramidal cells. We found the objective classification to match the expert classification closely (i.e., for 80-90% of the morphologies). Consequently, we considered the expert classification to be sufficiently accurate to build the model." The description of the validation is a little informal. How many experts were there? What are their initials? Was inter-rater or intra-rater reliability assessed? What are these numbers? The match with Kanari's classification accuracy should be reported exactly. There are clearly experts among the author list, but we are all fallible without good controls in place, and they should be more explicit about those controls here, in my opinion.<br /> - "Morphology selection was then performed as previously (Markram et al., 2015), that is, a morphology was selected randomly from the top 10% scorers for a given position." A lot of the decisions seem a little ad-hoc, without justification other than this group had previously done the same thing. For example, why 10% here? Shouldn't this be based on selecting from all of the reasonable morphologies?
• I would like to know if one of the key results relating to modularity and cortical geometry can be further explored. In particular, there seem to be sharp changes in the data at the end of the modelled cortical regions, which need to be explored or explained further.
• The shape of the juvenile cortex - a key novelty of this work - was based on merely a scalar reduction of the adult cortex. This is very surprising, and surely an oversimplification. Huge efforts have gone into modelling the complex nonlinear development of the cortex, by teams including the developing Human Connectome Project. For such a fundamental aspect of this work, why isn't it possible to reconstruct the shape of this relatively small part of the juvenile rat cortex?
• The same relative laminar depths are used for all subregions. This will have a large impact on the model. However, relative laminar depths can change drastically across the cortex (see e.g. many papers by Palomero-Gallagher, Zilles, and colleagues). The authors should incorporate the real laminar depths, or, failing that, show evidence to show that the laminar depth differences across the subregions included in the model are negligible.
• The authors perform an affine mapping between mouse and rat cortex. This is again surprising. In human imaging, affine mappings are insufficient to map between two individual brains of the same species and nonlinear transformations are instead used. That an affine transformation should be considered sufficient to map between two different species is then very surprising. For some models, this may be fine, but there is a supposed emphasis here on biological precision in terms of anatomical location.
• One of the most interesting conclusions, that the connectivity pattern observed is in part due to cooperative synapse formation, is based on analyses that are unfortunately not shown.
• Open code:<br /> - Why is only a subvolume available to the community?<br /> - Live nature of the model. This is such a colossal model, and effort, that I worry that it may be quite difficult to update in light of new data. For example, how much person and computer time would it take to update the model to account for different layer sizes across subregions? Or to more precisely account for the shape of the juvenile rat cortex?
-
Reviewer #3 (Public Review):
This manuscript reports a detailed model of the rat non-barrel somatosensory cortex, consisting of 4.2 million morphologically and biophysically detailed neuron models, arranged in space and connected according to highly sophisticated rules informed by diverse experimental data. Due to its breadth and sophistication, the model will undoubtedly be of interest to the community, and the reporting of anatomical details of modeling in this paper is important for understanding all the assumptions and procedures involved in constructing the model. While a useful contribution to this field, the model and the manuscript could be improved by employing data more directly and comparing simple features of the model's connectivity - in particular, connection probabilities - with relevant experimental data.
The manuscript is well-written overall but contains a substantial number of confusing or unclear statements, and some important information is not provided.
Below, major concerns are listed, followed by more specific but still important issues.
MAJOR ISSUES
(1) Cortical connectivity.
Section 2.3, "Local, mid-range and extrinsic connectivity modeled separately", and Figure 4: I am confused about what is done here and why. The authors have target data for connectivity (Figure 4B1). But then they use an apposition-based algorithm that results in connectivity that is quite different from the data (Figure 4B2, C). They then use a correction based on the data (Figure 4E) to arrive at a more realistic connectivity. Why not set the connectivity based on the data right away then? That would seem like a more straightforward approach.
The same comment applies to Section 2.4., "Specificity of axonal targeting": the distributions of synapses on different types of target cell compartments were not well captured by the original model based on axon-dendrite overlap and pruning, so the authors introduced further pruning to match data specificity. While details of this process and what worked and what didn't may be interesting to some, overall it is not surprising, as it has been well known that cell types exhibit connectivity that is much more specific than "Peters rule" or its simple variations. The question is, since one has the data, why not use the data in the first place to set up the connectivity, instead of using the convoluted process of employing axon-dendrite overlap followed by multiple corrections?
Most importantly, what is missing from the whole paper is the characterization of connection probabilities, at least for the local circuit within one area. Such connection probabilities can be obtained from the data that the authors already use here, such as the MICRONS dataset. Another good source of such data is Campagnola et al., Science, 2022. Both datasets are for mouse V1, but they provide a comprehensive characterization across all cortical layers, thus offering a good benchmark for comparison of the model with the data. It would be important for the authors to show how connection probabilities realized in their model for different cell types compared to these data.
(2) Section 2.5, "Structure of thalamic inputs" and Figure 6.
The text in section 2.5 should provide more details on what was done - namely, that the thalamic axons were generated based on the axon density profiles and then synapses were established based on their overall with cortical dendrites. Figure S10 where the target axon densities from data and the model axon densities are compared is not even mentioned here. Now, Figure S10 only shows that the axon densities were generated in a way that matches the data reasonably well. However, how can we know that it results in connectivity that agrees with data? Are there data sources that can be used for that purpose? For example, the authors show that in their model "the peaks of the mean number of thalamic inputs per neuron occur at lower depths than the peaks of the synaptic density". Is this prediction of the model consistent with any available data?
Most importantly, the authors should show how the different cell types in their model are targeted by the thalamic inputs in each layer. Experimental studies have been done suggesting specificity in targeting of interneuron types by thalamic axons, such as PV cells being targeted strongly whereas SST and VIP cells being targeted less.
(3) "We have therefore made not only the model but also most of our tool chain openly available to the public (Figure 1; step 7)."<br /> In fact it is not the whole model that is made publicly available, but only about 5% of it (211,000 out of 4,200,000 neurons). Also, why is "most" of the tool chain made openly available, and not the whole tool chain?
OTHER ISSUES
"At each soma location, a reconstruction of the corresponding m-type was chosen based on the size and shape of its dendritic and axonal trees (Figure S6). Additionally, it was rotated to according to the orientation towards the cortical surface at that point."
After this procedure, were cells additionally rotated around the white matter-pia axis? If yes, then how much and randomly or not? If not, then why not? Such rotations would seem important because otherwise additional order potentially not present in the real cortex is introduced in the model affecting connectivity and possibly also in vivo physiology (such as the dynamics of the extracellular electric field).
The term "new in vivo reconstructions" for the 58 neurons used in this paper in addition to "in vitro reconstructions" is a misnomer. It is not straightforward to see where the procedure is described, but then one finds that the part of Methods that describes experimental manipulations is mostly about that (so, a clearer pointer to that part of Methods could be useful). However, the description in Methods makes it clear that it is only labeling that is done in vivo; the microscopy and reconstruction are done subsequently in vitro. I would recommend changing the terminology here, as it is confusing. Also, can the authors show reconstructions of these neurons in the supplementary figures? Is the reconstruction shown in Figure 4A representative?
In the Discussion, "This was taken into account during the modeling of the anatomical composition, e.g. by using three-dimensional, layer-specific neuron density profiles that match biological measurements, and by ensuring the biologically correct orientation of model neurons with respect to the orientation towards the cortical surface. As local connectivity was derived from axo-dendritic appositions in the anatomical model, it was strongly affected by these aspects.<br /> However, this approach alone was insufficient at the large spatial scale of the model, as it was limited to connections at distances below 1000μm."
As mentioned above, it is not clear that this approach was sufficient for local connectivity either. It would be great if the authors showed a systematic comparison of local connection probabilities between different cell types in their model with experimental data and commented here in the Discussion about how well the model agrees with the data.
In the Discussion: "The combined connectome therefore captures important correlations at that level, such as slender-tufted layer 5 PCs sending strong non-local cortico-cortical connections, but thick-tufted layer 5 PCs not." (Also the corresponding findings in Results.)
If I understand this statement correctly, it may not agree with biological data. See analysis from MICRONS dataset in Bodor et al., https://www.biorxiv.org/content/10.1101/2023.10.18.562531v1.
Table 2 is confusing. What do pluses and minuses mean? What does it mean that some entries have two pluses? This table is not mentioned anywhere else in the text. If pluses mean some meaningful predictions of the model, then their distribution in the table seems quite liberal and arbitrary. It is not clear to me that the model makes that many predictions, especially for type-specificity and plasticity. Also, why is the hippocampus mentioned in this table? I don't see anything about the hippocampus anywhere else in the paper.
In the Discussion, "Thus, we made the tools to improve our model also openly available (see Data and Code availability section)."<br /> As mentioned before, the authors themselves write that they made "most of our tool chain openly available to the public", but not all of it.
Table S2 has multiple question marks. It is not clear whether the "predictions" listed in that table are truly well-thought-out and/or whether experimental confirmations are real.
Introduction: It would be quite appropriate to cite here Einevoll et al., Neuron, 2019 ("The Scientific Case for Brain Simulations").
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Ren et al developed a novel computational method to investigate cell evolutionary trajectory for scRNA-seq samples. This method, MGPfact, estimates pseudotime and potential branches in the evolutionary path by explicitly modeling the bifurcations in a Gaussian process. They benchmarked this method using synthetic as well as real-world samples and showed superior performance for some of the tasks in cell trajectory analysis. They further demonstrated the utilities of MGPfact using single-cell RNA-seq samples derived from microglia or T cells and showed that it can accurately identify the differentiation timepoint and uncover biologically relevant gene signatures.
Strengths:
Overall I think this is a useful new tool that could deliver novel insights for the large body of scRNA-seq data generated in the public domain. The manuscript is written in a logical way and most parts of the method are well described.
Weaknesses:
Some parts of the methods are not clear.
It should be outlined in detail how pseudo time T is updated in Methods. It is currently unclear either in the description or Algorithm 1.
There should be a brief description in the main text of how synthetic data were generated, under what hypothesis, and specifically how bifurcation is embedded in the simulation.
Please explain what the abbreviations mean at their first occurrence.
In the benchmark analysis (Figures 2/3), it would be helpful to include a few trajectory plots of the real-world data to visualize the results and to evaluate the accuracy.
It is not clear how this method selects important genes/features at bifurcation. This should be elaborated on in the main text.
It is not clear how survival analysis was performed in Figure 5. Specifically, were critical confounders, such as age, clinical stage, and tumor purity controlled?
I recommend that the authors perform some sort of 'robustness' analysis for the consensus tree built from the bifurcation Gaussian process. For example, subsample 80% of the cells to see if the bifurcations are similar between each bootstrap.
-
Reviewer #2 (Public Review):
Summary of the manuscript:
The authors present MGPfactXMBD, a novel model-based manifold-learning framework designed to address the challenges of interpreting complex cellular state spaces from single-cell RNA sequences. To overcome current limitations, MGPfactXMBD factorizes complex development trajectories into independent bifurcation processes of gene sets, enabling trajectory inference based on relevant features. As a result, it is expected that the method provides a deeper understanding of the biological processes underlying cellular trajectories and their potential determinants.
MGPfactXMBD was tested across 239 datasets, and the method demonstrated similar to slightly superior performance in key quality-control metrics to state-of-the-art methods. When applied to case studies, MGPfactXMBD successfully identified critical pathways and cell types in microglia development, validating experimentally identified regulons and markers. Additionally, it uncovered evolutionary trajectories of tumor-associated CD8+ T cells, revealing new subtypes with gene expression signatures that predict responses to immune checkpoint inhibitors in independent cohorts.
Overall, MGPfactXMBD represents a relevant tool in manifold learning for scRNA-seq data, enabling feature selection for specific biological processes and enhancing our understanding of the biological determinants of cell fate.
Summary of the outcome:
The novel method addresses core state-of-the-art questions in biology related to trajectory identification. The design and the case studies are of relevance.
However, in my opinion, the manuscript requires several clarifications and updates.
Also, how the methods compare with existing Deep Learning based approaches such as TIGON is a question mark. If a comparison would be possible, it should be conducted; if not, it should be clarified why.
Strengths:
(1) Relevant methodology for a current field of research.
(2) Relevant case studies with relevant outcomes.
Weaknesses:
(1) In general, the manuscript may be improved by making the text more accessible to the Journal's audience: (i) intuitive explanation of some concepts; (ii) review the flow of some explanations.
(2) Additionally, several parts require more details on how the methods work, especially the case studies.
(3) Finally, there are missing references to published work and possibly some additional comparisons to make.
-
-
arxiv.org arxiv.org
-
Reviewer #1 (Public Review):
The authors proposed a framework to estimate the posterior distribution of parameters in biophysical models. The framework has two modules: the first MLP module is used to reduce data dimensionality and the second NPE module is used to approximate the desired posterior distribution. The results show that the MLP module can capture additional information compared to manually defined summary statistics. By using the NPE module, the repetitive evaluation of the forward model is avoided, thus making the framework computationally efficient. The results show the framework has promise in identifying degeneracy. This is an interesting work.
-
Reviewer #2 (Public Review):
Summary:<br /> The authors improve the work of Jallais et al. (2022) by including a novel module capable of automatically learning feature selection from different acquisition protocols inside a supervised learning framework. Combining the module above with an estimation framework for estimating the posterior distribution of model parameters, they obtain rich probabilistic information (uncertainty and degeneracy) on the parameters in a reasonable computation time.
The main contributions of the work are:<br /> (1) The whole framework allows the user to avoid manually defining summary statistics, which may be slow and tedious and affect the quality of the results.<br /> (2) The authors tested the proposal by tackling three different biophysical models for brain tissue and using data with characteristics commonly used by the diffusion-MR-microstructure research community.<br /> (3) The authors validated their method well with the state-of-the-art.
The main weakness is:<br /> (1) The methodology was tested only on scenarios with a signal-to-noise ratio (SNR) equal to 50. It is interesting to show results with lower SNR and without noise that the method can detect the model's inherent degenerations and how the degeneration increases when strong noise is present. I suggest expanding the Figure in Appendix 1 to include this information.
The authors showed the utility of their proposal by computing complex parameter descriptors automatically in an achievable time for three different and relevant biophysical models.
Importantly, this proposal promotes tackling, analyzing, and considering the degenerated nature of the most used models in brain microstructure estimation.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In their manuscript, Gan and colleagues identified a functional critical residue, Tyr404, which when mutated to W or A results in GOF and LOF of TRPML1 activity, respectively. In addition, the authors provide a high-resolution structure of TRPML1 with PI(4,5)P2 inhibitor. This high-resolution structure also revealed a bound phospholipid likely sphingomyelin at the agonist/antagonist site, providing a plausible explanation for sphingomyelin inhibition of TRPML1.
This is an interesting study, revealing valuable additional information on TRPML1 gating mechanisms including effects on endogenous phospholipids on channel activity. The provided data are convincing. Some major open questions remain. The work will be of interest to a wide audience including industry researchers occupied with TRPML1 exploration as a drug target.
-
Reviewer #2 (Public Review):
The transient receptor potential mucolipin 1 (TRPML1) functions as a lysosomal organelle ion channel whose variants are associated with lysosomal storage disorder mucolipidosis type IV. Understanding sites that allosterically control the TRPML1 channel function may provide new molecular moieties to target with prototypic drugs.
Gan et al provide the first high-resolution cryo-EM structures of the TRPML1 channel (Y404W) in the open state without any activating ligands. This new structure demonstrates how a mutation at a site some distance away from the pore can influence the channel's conducting state. However, the authors do not provide a structural analysis of the Y404W pore which would validate their open-state claims. Nonetheless, Gan et al provide compelling electrophysiology evidence which supports the proposed Y404W gain of function effect. The authors propose an allosteric mechanism with the following molecular details- the Y404 to W sidechain substitution provides extra van der Waals contacts within the pocket surrounded by helices of the VSD-like domain and causes S4 bending which in turn opens to the pore through the S4-S5 linker. Conversely, the author functionally demonstrates that an alanine mutation at this site causes a loss of function. Although the authors do not provide a structure of the Y404A mutation, they propose that the alanine substitution disrupts the sidechain packing and likely destabilizes the open conformation. TRPM1 channels are regulated by PIP2 species, which is related to their cell function. In the membrane of lysosomes, PI(3,5)P2 activates the channel, whereas PI(4,5)P2 found in the plasma membrane has inhibitory effects. To understand its lipid regulation, the authors solved a cryo-EM structure of TRPM1 bound to PI(4,5)P2 in its presumed closed state. Again, while the provided functional evidence suggests that PI(4,5)P2 occupancy inhibits TRPML1 current, the authors do not provide analysis of the pore which would support their closed state assertion. Within this same structure, the authors observe a density that may be attributed to sphingomyelin (or possibly phosphocholine). Using electrophysiology of WT and the Y404W channels, the authors report sphingomyelins antagonist effect on TRPML1 currents under low luminal (external) pH. Taken together, the results described in Gan et al provide compelling evidence for a gating (open, closed) mechanism of the TRPML1 pore which can be allosterically regulated by altered packing and lipid interactions within the VSDL.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Sun et al. generated germline-specific cKO mice for the Znhit1 gene and examined its effect on male meiosis. The authors found that the loss of Znhit1 affects the transcriptional activation of pachytene. Znhit1 is a subunit of the SRCAP chromatin remodeling complex and a depositor of H2AZ, and in cKO spermatocytes, H2AZ is not deposited into the gene region. The authors claim that this is why the PGA was not activated. These findings provide important insights into the mechanisms of transcriptional regulation during the meiotic prophase.
Strengths:
The authors used samples from their original mouse model, analyzing both the epigenome and the transcriptome in detail using diverse NGS analyses to gain new insights into PGA. The quality of the results appeared excellent.
Weaknesses:
Overall, the data is inconsistent with the authors' claims and does not support their final conclusions. In addition, the sample used may not be the most suitable for the analysis, but a more suitable sample would dramatically improve the overall quality of the paper.
-
Reviewer #2 (Public Review):
Summary:
The study demonstrates that Znhit1 regulates male meiosis, with deletion causing pachytene failure associated with defective expression of pachytene genes and subtle effects on X-Y pairing and DSB repair. The authors attribute this phenotype to the defective incorporation of the Znhit1 target H2A.Z into chromatin.
Strengths:
The paper and the figures are well presented and the narrative is clear. Evidence that the conditional deletion strategy removes Znhit1 is strong, with multiple orthogonal approaches used. Most of the meiotic phenotyping is well performed, and the omics analysis clearly identifies a dramatic effect on the meiotic gene expression program. The link to H2A.Z and A-MYB adds a mechanistic angle to the study.
Weaknesses:
(1) Current literature demonstrates that meiotic mutants arrest at one of two stages: midpachytene (stage IV of the seminiferous cycle) or metaphase I (stage XII of the seminiferous cycle). This study documents that in the Znhit1 KO the midpachytene marker H1t appears normally, but that cells arrest before diplotene. If this is true, then arrest must occur during late pachytene, which based on my knowledge has never been documented for a meiotic KO. To resolve this, the authors should present stronger histological substaging evidence to support their claim.
(2) The authors overlooked the possible effects of Znhit1 deletion on MSCI. Defective MSCI is a well-established cause of pachytene arrest. Actually, the fact that they see X-Y pairing failure should alert them even more strongly to this possibility because MSCI failure is often associated with defective X-Y pairing. This could be easily addressed by examination of their RNAseq data.
(3) The recombination assays need attention.<br /> - In the text the authors state that they studied RPA2 and DMC1, but the figures show RPA2 and RAD51.<br /> - The RPA counts are not quantitated.<br /> - The conclusion that crossover formation fails (based on MLH1 staining) is not justified. This marker does not appear in wt males until late pachytene, so if cells in this mutant are dying before that stage, MLH1 cannot be assessed.<br /> - The authors state that gH2AZ persists in the KO, but I'm not convinced that they are comparing equivalent stages in the wt and KO. In Figure 3C, the pachytene cell is late, whereas in the mutant the pachytene cell is early or mid (when residual gH2AX is expected, even in wt males).<br /> - Previous work (PMID: 23824539) has shown that antibodies reportedly detecting pATM in the sex body are non-specific. I therefore advise caution with the data shown in Figure 3D.
(4) RNAseq data. The authors show convincingly that Znhit1 activates genes that are normally upregulated at the zyg-pachytene transition. They should repeat the analysis for genes normally upregulated at the prelep- lep and lep-zyg transition to show that this effect is really pachytene-gene specific.
(5) I am puzzled that the title and overall gist of the study focuses on H2A.Z, when it is Znhit1 that has been deleted.
-
Reviewer #3 (Public Review):
Summary:
Sun et al. present a manuscript detailing the phenotypic characterization of loss of Znhit1 in male germ cells. Znhit1 is a subunit of the chromatin regulating complex SRCAP that functions to deposit the histone variant H2A.Z. Given that meiosis, and specifically meiotic recombination, occurs in the context of the dynamic condensing of chromosomes, the role of chromatin regulators in general, and histone variants specifically, in mammalian meiosis is an active area of research. Previous work has shown that H2A.Z is found at the locations of recombination in plants, although H2A.Z was previously not found at recombination sites in mammalian meiosis. Here the authors use a conditional approach to ablate Znhit1 in spermatocytes and characterize a block in meiosis in prophase I in the transition from pachytene to diplotene stage.
Strengths:
The authors combine current methods in immunohistochemistry and functional genomics to provide strong evidence of meiotic block upon the loss of Znhit1. They find that loss of Znhit1 leads to reduced incorporation of the histone variant H2A.Z, specifically at promoters and enhancers. Further, RNA sequencing found more genes are down-regulated upon loss of Znhit1 compared to upregulated, suggesting that incorporation of H2A.Z is critical for the expression of genes necessary for successful meiotic progression.
A strength of the manuscript is tying the locations of changes in H2A.Z deposition with binding of the transcription factor A-MYB, providing a mechanism that can potentially combine the changes in chromatin regulation with variable binding of a transcription factor in gene expression in pachytene stage spermatocytes.
Weaknesses:
A weakness in the single-cell RNA experiment using cells from 16-day-old male mice. The authors suggest that the rationale for the experiment was to determine where the Znhit1-sKO mutant showed an arrest in meiosis, and claim that this is the pachytene stage. However, in the 'first wave' of meiosis 16-day-old mice are just beginning to enter pachytene, so cells from later meiotic stages will be largely absent in these tubules. This is clear from the UMAP showing a similar pattern of cell distributions between wild-type and mutant mice. Using older mice would have better demonstrated where the mutant and wild-type mice differ in cell-type composition.
The authors use the term pachytene genome activation (PGS) in the manuscript to suggest a novel process by which genes are specifically increased in expression in the pachytene stage of meiotic prophase I, without reference to literature that establishes the term. If the authors are putting forward a new concept defined by this term, it would strengthen the manuscript to describe it further and delineate what the genes are that are activated and discuss potential mechanisms.
Generally speaking, the authors present solid evidence for a pachytene block in male germ cell development in mice lacking Znhit1 in spermatocytes. The evidence supporting a change in gene expression during pachytene, that more genes are downregulated in the mutant compared to increased expression, and changes in histone modification dynamics and placement of H2A.Z all support a role in alterations in meiotic gene regulation. However, the support that changes in H2A.Z impacting meiotic recombination (as suggested in the manuscript title) is less supported, rather than a general cell arrest in the pachytene stage leading to cell death. The conclusions around the role of Znhit1 influencing meiotic recombination directly could use further justification or mechanistic hypothesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This work introduces a new imaging tool for profiling tumor microenvironments through glucose conversion kinetics. Using GL261 and CT2A intracranial mouse models, the authors demonstrated that tumor lactate turnover mimicked the glioblastoma phenotype, and differences in peritumoral glutamate-glutamine recycling correlated with tumor invasion capacity, aligning with histopathological characterization. This paper presents a novel method to image and quantify glucose metabolites, reducing background noise and improving the predictability of multiple tumor features. It is, therefore, a valuable tool for studying glioblastoma in mouse models and enhances the understanding of the metabolic heterogeneity of glioblastoma.
Strengths:
By combining novel spectroscopic imaging modalities and recent advances in noise attenuation, Simões et al. improve upon their previously published Dynamic Glucose-Enhanced deuterium metabolic imaging (DGE-DMI) method to resolve spatiotemporal glucose flux rates in two commonly used syngeneic GBM mouse models, CT2A and GL261. This method can be standardized and further enhanced by using tensor PCA for spectral denoising, which improves kinetic modeling performance. It enables the glioblastoma mouse model to be assessed and quantified with higher accuracy using imaging methods.
The study also demonstrated the potential of DGE-DMI by providing spectroscopic imaging of glucose metabolic fluxes in both the tumor and tumor border regions. By comparing these results with histopathological characterization, the authors showed that DGE-DMI could be a powerful tool for analyzing multiple aspects of mouse glioblastoma, such as cell density and proliferation, peritumoral infiltration, and distant migration.
Weaknesses:
Although the paper provides clear evidence that DGE-DMI is a potentially powerful tool for the mouse glioblastoma model, it fails to use this new method to discover novel features of tumors. The data presented mainly confirm tumor features that have been previously reported. While this demonstrates that DGE-DMI is a reliable imaging tool in such circumstances, it also diminishes the novelty of the study.
When using DGE-DMI to quantitatively map glycolysis and mitochondrial oxidation fluxes, there is no comparison with other methods to directly identify the changes. This makes it difficult to assess how sensitive DGE-DMI is in detecting differences in glycolysis and mitochondrial oxidation fluxes, which undermines the claim of its potential for in vivo GBM phenotyping.
The study only used intracranial injections of two mouse glioblastoma cell lines, which limits the application of DGE-DMI in detecting and characterizing de novo glioblastomas. A de novo mouse model can show tumor growth progression and is more heterogeneous than a cell line injection model. Demonstrating that DGE-DMI performs well in a more clinically relevant model would better support its claimed potential usage in patients.
-
Reviewer #2 (Public Review):
Summary:
In this work, the authors attempt to noninvasively image metabolic aspects of the tumor microenvironment in vivo, in 2 mouse models of glioblastoma. The tumor lesion and its surrounding appearance are extensively characterized using histology to validate/support any observations made with the metabolic imaging approach. The metabolic imaging method builds on a previously used approach by the authors and others to measure the kinetics of deuterated glucose metabolism using dynamic 2H magnetic resonance spectroscopic imaging (MRSI), supported by de-noising methods.
Strengths:
Extensive histological evaluation and characterization.
Measurement of the time course of isotope labeling to estimate absolute flux rates of glucose metabolism.
Weaknesses:
The de-noising method appears essential to achieve the high spatial resolution of the in vivo imaging to be compatible with the dimensions of the tumor microenvironment, here defined as the immediately adjacent rim of the mouse brain tumors. There are a few challenges with this approach. Often denoising methods applied to MR spectroscopy data have merely a cosmetic effect but the actual quantification of the peaks in the spectra is not more accurate than when applied directly to original non-denoised data. It is not clear if this concern is applicable to the denoising technique applied here. However, even if this is not an issue, no denoising method can truly increase the original spatial resolution at which data were acquired. A quick calculation estimates that the spatial resolution of the 2H MRSI used here is 30-40 times too low to capture the much smaller tumor rim volume, and therefore there is concern that normal brain tissue and tumor tissue will be the dominant metabolic signal in so-called tumor rim voxels. This means that the conclusions on metabolic features of the (much larger) tumor are much more robust than the observations attributed to the (much smaller) tumor microenvironment/tumor rim.
To achieve their goal of high-level metabolic characterization the authors set out to measure the deuterium labeling kinetics following an intravenous bolus of deuterated glucose, instead of the easier measurement of steady-state after the labeling has leveled off. These dynamic data are then used as input for a mathematical model of glucose metabolism to derive fluxes in absolute units. While this is conceptually a well-accepted approach there are concerns about the validity of the included assumptions in the metabolic model, and some of the model's equations and/or defining of fluxes, that seem different than those used by others.
-
Reviewer #3 (Public Review):
Summary:
Simoes et al enhanced dynamic glucose-enhanced (DGE) deuterium spectroscopy with Deuterium Metabolic Imaging (DMI) to characterize the kinetics of glucose conversion in two murine models of glioblastoma (GBM). The authors combined spectroscopic imaging and noise attenuation with histological analysis and showcased the efficacy of metabolic markers determined from DGE DMI to correlate with histological features of the tumors. This approach is also potent to differentiate the two models from GL261 and CT2A.
Strengths:
The primary strength of this study is to highlight the significance of DGE DMI in interrogating the metabolic flux from glucose. The authors focused on glutamine/glutamate and lactate. They attempted to correlate the imaging findings with in-depth histological analysis to depict the link between metabolic features and pathological characteristics such as cell density, infiltration, and distant migration.
Weaknesses:
(1) A lack of genetic interrogation is a major weakness of this study. It was unclear what underlying genetic/epigenetic aberrations in GL261 and CT2A account for the metabolic difference observed with DGE DMI. A correlative metabolic confirmation using mass spectrometry of the two tumor specimens would give insight into the observed imaging findings.
(2) A better depiction of the imaging features and tumor heterogeneity would support the authors' multimodal attempt.
(3) Integration of the various cell types in the tumor microenvironment, as allowed with the resolution of DGE DMI, will explain the observed difference between GL261 and CT2A. Is there a higher percentage of infiltrative "other cells" observed in GL261 tumor?
(4)This underlying technology with DGE DMI is capable of identifying more heterogeneous GBM tumors. A validation cohort of additional in vivo models will offer additional support to the potential clinical impact of this study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Previous work has shown that the evolutionarily-conserved division-orienting protein LGN/Pins (vertebrates/flies) participates in division orientation across a variety of cell types, perhaps most importantly those that undergo asymmetric divisions. Micromere formation in echinoids relies on asymmetric cell division at the 16-cell stage, and these authors previously demonstrated a role for the LGN/Pins homolog AGS in that ACD process. Here they extend that work by investigating and exploiting the question of why echinoids but not other echinoderms form micromeres. Starting with a phylogenetics approach, they determine that much of the difference in ACD and micromere formation in echinoids can be attributed to differences in the AGS C-terminus, in particular a GoLoco domain (GL1) that is missing in most other echinoderms.
Strengths:
There is a lot to like about this paper. It represents a superlative match of the problem with the model system and the findings it reports are a valuable addition to the literature. It is also an impressively thorough study; the authors should be commended for using a combination of experimental approaches (and consequently generating a mountain of data).
Weaknesses:
There is an intriguing finding described in Figure 1. AGS in sea cucumbers looks identical to AGS in the pencil urchin, at least at the C terminus (including the GL1 domain). Nevertheless, there are no micromeres in sea cucumbers. Therefore another mechanism besides GL motif organization has arisen to support micromere formation. It is a consequential finding and an important consideration in interpreting the data, but I could not find any mention of it in the text. That is a missed opportunity and should be remedied, ideally not only through discussion but also experimentation. Specifically: does sea cucumber AGS (SbAGS) ever localize to the vegetal cortex in sea cucumbers? Can it do so in echinoids? Will that support micromere formation?
The authors point out that AGS-PmGL demonstrates enrichment at the vegetal cortex (arrow in 5G, quantifications in 5H), unlike PmAGS. AGS-PmGL does not however support ACD. They interpret this result to indicate "that other elements of SpAGS outside of its C-terminus can drive its vegetal cortical localization but not function." This is a critical finding and deserves more attention. Put succinctly: Vegetal cortical localization of AGS is insufficient to promote ACD, even in echinoids. Why should this be?
The authors did perform experiments to address this problem, hypothesizing that the difference might be explained by the linker region, which includes a conserved phosphorylation site that mediates binding to Dlg. They write "To test if this serine is essential for SpAGS localization, we mutated it to alanine (AGS-S389A in Fig. S3A). Compared to the Full AGS control, the mutant AGS-S389A showed reduced vegetal cortical localization (Fig. S3B-C) and function (Fig. S3D-E). Furthermore, we replaced the linker region of PmAGS with that of SpAGS (PmAGS-SpLinker in Fig. S4A-B). However, this mutant did not show any cortical localization nor proper function in ACD (Fig. S4C-F). Therefore, the SpAGS C-terminus is the primary element that drives ACD, while the linker region serves as the secondary element to help cortical localization of AGS."
The experiments performed only make sense if the AGS-PmGL chimeric protein used in Figure 5 starts the PmGL sequence only after the Sp linker, or at least after the Sp phosphorylation site. I can't tell from the paper (Figure S3 indicates that it does, whereas S5 suggests otherwise), but it's a critical piece of information for the argument. Another piece of missing information is whether the PmAGS can be phosphorylated at its own conserved phosphorylation site. The authors don't test this, which they could at least try using a phosphosite prediction algorithm, but they do show that the candidate phosphorylation site has a slightly different sequence in Pm than in Et and Sp (Fig. S4A). With impressive rigor, the authors go on to mutate the PmAGS phosphorylation site to make it identical to Sp. Nothing happens. Vegetal cortical localization does not increase over AGS-PmGL alone. Micromere formation is unrescued.
There is therefore a logic problem in the text, or at least in the way the text is written. The paragraph begins "Additionally, AGS-PmGL unexpectedly showed cortical localization (Figure 5G), while PmAGS showed no cortical localization (Figure 5B)." We want to understand why this is true, but the explanation provided in the remainder of the paragraph doesn't match the question: according to quite a bit of their own data, the phosphorylation site in the linker does not explain the difference. It might explain why AGS-PmGL fails to promote micromere formation, but only if the AGS-PmGL chimeric protein uses the Pm linker domain (see above).
Another concern that is potentially related is the measurement of cortical signal. For example, in the control panel of Figure 5C, there is certainly a substantial amount of "non-cortical" signal that I believe is nuclear. I did not see a discussion of this signal or its implications. My impression of the pictures generally is that the nuclear signal and cortical signal are inversely correlated, which makes sense if they are derived from the same pool of total protein at different points of the cell cycle. If that's the case (and it might not be) I would expect some quantifications to be impacted. For example, the authors show in Figure S3B that AGS-S389A mutant does not localize to the cortex. However, this mutant shows a radically different localization pattern to the accompanying control picture (AGS), namely strong enrichment in what I assume to be the nucleus. Is the S389 mutant preventing AGS from making it to the cortex? Or are these pictures instead temporally distinct, meaning that AGS hasn't yet made it out of the nucleus? Notably, the work of Johnston et al. (Cell 2009), cited in the text, does not show or claim that the linker domain impacts Pins localization. Their model is rather that Pins is anchored at the cortex by Gαi, not Dlg, and that is the same model described in this manuscript. In agreement with that model and the results of Johnston et al., a later study (Neville et al. EMBO Reports 2023) failed to find a role for Dlg or the conserved phosphorylation site in Pins localization.
-
Reviewer #2 (Public Review):
This study from Dr. Emura and colleagues addresses the relevance of AGS3 mutations in the execution of asymmetric cell divisions promoting the formation of the micromere during sea-searching development. To this aim, the authors use quantitative imaging approaches to evaluate the localisation of AGS3 mutants truncated at the N-terminal region or at the C-terminal region, and correlate these distributions with the formation of micromere and correct development of embryos to the pluteus stage. The authors also analyse the capacity of these mutated proteins to rescue developmental defects observed upon AGS3 depletion by morpholino antisense nucleotides (MO). Collectively these experiments revealed that the C-terminus of AGS3, coding for four GoLoco motifs binding to cortical Gaphai proteins, is the molecular determinant for cortical localisation of AGS3 at the micromeres and correct pluteus development. Further genetic dissections and expression of chimeric AGS3 mutants carrying shuffled copies of the GoLoco motifs or four copies of the same motifs revealed that the position of GoLoco1 is essential for AGS3 functioning. To understand whether the AGS3-GoLoco1 evolved specifically to promote asymmetric cell divisions, the authors analyse chimeric AGS3 variants in which they replaced the sea urchin GoLoco region with orthologs from other echinoids that do not form micromeres, or from Drosophila Pins or human LGN. These analyses corroborate the notion that the GoLoco1 position is crucial for asymmetric AGS3 functions. In the last part of the manuscript, the authors explore whether SpAGS3 interacts with the molecular machinery described to promote asymmetric cell division in eukaryotes, including Insc, NuMA, Par3, and Galphai, and show that all these proteins colocalize at the nascent micromere, together with the fate determinant Vasa. Collectively this evidence highlighted how evolutionarily selected AGS3 modifications are essential to sustain asymmetric divisions and specific developmental programs associated with them.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors identified nanobodies that were specific for the trypanosomal enzyme pyruvate kinase in previous work seeking diagnostic tools. They have shown that a site involved in the allosteric regulation of the enzyme is targeted by the nanobody and using elegant structural approaches to pinpoint where binding occurs, opening the way to the design of small molecules that could also target this site.
Strengths:
The structural work shows the binding of a nanobody to a specific site on Trypanosoma congolense pyruvate kinase and provides a good explanation as to how binding inhibits enzyme activity. The authors go on to show that by expressing the nanobodies within the parasites they can get some inhibition of growth, which albeit rather weak, they provide a case on how this could point to targeting the same site with small molecules as potential trypanocidal drugs.
Weaknesses:
The impact on growth is rather marginal. Although explanations are offered on the reasons for that, including the high turnover rate of the expressed nanobody and the difficulty in achieving the high levels of inhibition of pyruvate kinase required to impact energy production sufficiently to kill parasites, this aspect of the work doesn't offer great support to developing small molecule inhibitors of the same site.
-
Reviewer #2 (Public Review):
Summary:
In this work, the authors show that the camelid single-chain antibody sdAb42 selectivity inhibits Trypanosome pyruvate kinase (PYK) but not human PYK. Through the determination of the crystal structure and biophysical experiments, the authors show that the nanobody binds to the inactive T-state of the enzyme, and in silico analysis shows that the binding site coincides with an allosteric hotspot, suggesting that nanobody binding may affect the enzyme active site. Binding to the T-state of the enzyme is further supported by non-linear inhibition kinetics. PYK is an important enzyme in the glycolytic pathway, and inhibition is likely to have an impact on organisms such a trypanosomes, that heavily rely on glycolysis for their energy production. The nanobody was generated against Trypanosoma congolense PYK, but for technical reasons the authors progressed to testing its impact on cell viability in Trypanosoma brucei brucei. First, they show that sdA42 is able to inhibit Tbb PYK, albeit with lower potency. Cell-based experiments next show that expression of sdA42 has a modest, and dose-dependent effect on the growth rate of Tbb. The authors conclude that their data indicates that targeting this allosteric site affects cell growth and is a valuable new option for the development of new chemotherapeutics for trypanosomatid diseases.
Strengths:
The work clearly shows that sdA42A inhibits Trypanosome and Leishmania PYK selectively, with no inhibition of the human orthologue. The crystal structure clearly identifies the binding site of the nanobody, and the accompanying analysis supports that the antibody acts as an allosteric inhibitor of PYK, by locking the enzyme in its apo state (T-state).
Weaknesses:
(1) The most impactful claim of this work is that sdAb42-mediated inhibition of PYK negatively affects parasite growth and that this presents an opportunity to develop novel chemotherapeutics for trypanosomatid diseases. For the following reasons I think this claim is not sufficiently supported:
- The authors do not provide evidence of target-engagement in cells, i.e. they do not show that sdA42A binds to, or inhibits, Tbb PYK in cells and/or do not provide a functional output consistent with PYK inhibition (e.g. effect on ATP production). Measuring the extent of target engagement and inhibition is important to draw conclusions from the modest effect on growth.
- The authors do not explore the selectivity of sdA42A in cells. Potentially sdA42A may cross-react with other proteins in cells, which would confound interpretation of the results.
- sdA42A only affects minor growth inhibition in Tbb. The growth defect is used as the main evidence to support targeting this site with chemotherapeutics, however based on the very modest effect on the parasites, one could reasonably claim that PYK is actually not a good drug target. The strongest effect on growth is seen for the high expressor clone in Figure 4a, however here the uninduced cells show an unusual profile, with a sudden increase in growth rate after 4 days, something that is not seen for any of the other control plots. This unexplained observation accentuates the growth difference between induced and uninduced, and the growth differences seen in all other experiments, including those with the highest expressors (clones 54 and 55) are much more modest. The loss of expression of sdA42A over time is presented as a reason for the limited effect, and used to further support the hypothesis that targeting the allosteric site is a suitable avenue for the development of new drugs. However, strong evidence for this is missing.
- For chemotherapeutic interventions to be possible, a ligandable site is required. There is no analysis provided of the antibody binding site to indicate that small molecule binding is indeed feasible.
(2) The authors comment on the modest growth inhibition, and refer to the need to achieve over 88% reduction in Vmax of PYK to see a strong effect, something that may or may not be achieved in the cell-based model (no target-engagement or functional readout provided). The slow binding model and switch of species are also raised as potential explanations. While these may be plausible explanations, they are not tested which leaves us with limited evidence to support targeting the allosteric site on PYK.
(3) The evidence to support an allosteric mechanism is derived from structural studies, including the in silico allosteric network predictions. Unfortunately, standard enzyme kinetics mode of inhibition studies are missing. Such studies could distinguish uncompetitive from non-competitive behaviour and strengthen the claim that sdAb42 locks the enzyme complex in the apo form.
(4) As general comment, the graphical representation of the data could be improved in line with recent recommendations: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128, https://elifesciences.org/inside-elife/5114d8e9/webinar-report-transforming-data-visualisation-to-improve-transparency-and-reproducibility.
- Bar-charts for potency are ideally presented as dot plots, showing the individual data points, or box plots with datapoints shown.
- Images in Figure 7 show significant heterogeneity of nanobody expression, but the extent of this can not be gleaned from Figure 7B. It would be much better to use box plots or violin plots for each cell line on this figure panel. The same applies to Figure 10.
-
Reviewer #3 (Public Review):
Summary:
Out of the 20 Neglected Tropical Diseases (NTD) highlighted by the WHO, three are caused by members of the trypanosomatids, namely Leishmanaisis, Trypanosomiasis, and Chagas disease. Trypanosomal glycolytic enzymes including pyruvate kinase (PyK) have long been recognised as potential targets. In this important study, single-chain camelid antibodies have been developed as novel and potent inhibitors of PyK from the T, congolense. To gain structural insight into the mode of action, binding was further characterised by biophysical and structural methods, including crystal structure determination of the enzyme-nanobody complex. The results revealed a novel allosteric mechanism/pathway with significant potential for the future development of novel drugs targeting allosteric and/or cryptic binding sites.
Strengths:
This paper covers an important area of science towards the development of novel therapies for three of the Neglected Tropical Diseases. The manuscript is very clearly written with excellent graphics making it accessible to a wide readership beyond experts. Particular strengths are the wide range of experimental and computational techniques applied to an important biological problem. The use of nanobodies in all areas from biophysical binding experiments and X-ray crystallography to in-vivo studies is particularly impressive. This is likely to inspire researchers from many areas to consider the use of nanobodies in their fields.
Weaknesses:
There is no particular weakness, but I think the computational analysis of allostery, which basically relies on a single server could have been more detailed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the manuscript entitled "SARS-CoV-2 NSP13 interacts with TEAD to suppress Hippo-YAP signaling", Meng et al. report that SARS-CoV-2 infection disrupts YAP downstream gene transcription in both patient lung samples and the iPSC-cardiomyocytes. Among the tested SARS-CoV-2 proteins, the helicase nonstructural protein 13 (NSP13) was identified to target YAP transcriptional activity both in vitro and in vivo, independent of the Hippo pathway. Mechanistically, NSP13 inhibits YAP transcriptional activity through its interaction with TEAD4 and a group of nuclear repressor proteins, a process that requires its helicase activity. Overall, this study uncovers a novel regulation of the YAP/TEAD complex by SARS-CoV-2 infection, highlighting its impact on cellular signaling events. The manuscript is well-written and easy to follow. Here are some suggestions for the authors to further improve their work.
Major points
(1) The authors discovered a novel regulation of the Hippo-YAP pathway by SARS-CoV-2 infection but did not address the pathological significance of this finding. It remains unclear why YAP downstream gene transcription needs to be inhibited in response to SARS-CoV-2 infection. Is this inhibition crucial for the innate immune response to SARS-CoV-2? The authors should re-analyze their snRNA-seq and bulk RNA-seq data described in Figure 1 to determine whether any of the affected YAP downstream genes are involved in this process.
(2) The authors concluded that helicase activity is required for NSP13-induced inhibition of YAP transcriptional activity based on mutation studies (Figure 3B). This finding is somewhat confusing, as K131, K345/K347, and R567 are all essential residues for NSP13 helicase activity while mutating K131 did not affect NSP13's ability to inhibit YAP (Figure 3B). Additionally, there are no data showing exactly how NSP13 inhibits the YAP/TEAD complex through its helicase function. This point was also not reflected in their proposed working model (Figure 4H).
(3) The proposed model that NSP13 binds TEAD4 to recruit repressor proteins and inhibits YAP/TEAD downstream gene transcription (Figure 4H) needs further characterization. First, it is notable that the provided NSP13 IP-MS data did not reveal any TEAD family members as binding proteins for NSP13 (Supplement Figure 4C and the tables), suggesting that NSP13 may modulate the YAP/TEAD complex through other mechanisms, possibly involving other binding proteins. Second, NSP13 is a DNA-binding protein, and its nucleic acid-binding mutant K345A/K347A failed to inhibit YAP transcriptional activity (Figure 3B). The authors should investigate whether NSP13 could bind to the TEAD binding sequence or the nearby sequence on the genome to modulate TEAD's DNA binding ability. Third, regarding the identified nuclear repressors, the authors should validate the interaction of NSP13 with the ones whose loss activates YAP transcriptional activity (Figure 4G). Lastly, why can't NSP13 bind TEAD4 in the cytoplasmic fractionation if both NSP13 and TEAD4 are detected there (Figure 3B)? This finding indicates their interaction is not a direct protein-protein interaction but is mediated by something in the nucleus, such as genomic DNA.
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Meng et al. describes a potential role for the coronavirus helicase NSP13 in the regulation of YAP-TEAD activity. The authors present data that NSP13 expression in cells reduces YAP-induced TEAD luciferase reporter activity and that NSP13 transduction in cardiomyocytes blocks hyperactive YAP-mutant phenotypes in vivo. Mechanisms by which viral proteins (particularly those from coronavirus) intersect with cellular signaling events is an important research topic, and the intersection of NSP13 with YAP-TEAD transcriptional activity (independent of upstream Hippo pathway mediated signals) offers new knowledge that is of interest to a broad range of researchers.
Strengths:
The manuscript presents convincing data mapping the effects of NSP13 on YAP-TEAD reporter activity in the helicase domain. Moreover, the in vivo data demonstrating that NSP13 expression in YAP5SA mouse cardiomyocytes increased survival animal rates, and restored cardiac function is striking and is supportive of the model presented.
Weaknesses:
Limitations to the study are the reliance on TEAD-reporter assays to show specific effects of NPS13 on YAP-TEAD activity, incomplete characterization of the interesting in vivo findings that are presented, and a lack of follow-up to the proposed mechanisms identified from the IP-MS experiments.
Specific comments and suggestions for improvement of the manuscript:
(1) NSP13 has been reported to block, in a helicase-dependent manner, episomal DNA transcription (PMID: 37347173), raising questions about the effects observed on the data shown from the HOP-Flash and 8xGTIIC assays. It would be valuable to demonstrate the specificity of the proposed effect of NSP13 on TEAD activation by YAP (versus broad effects on reporter assays) and also to show that NSP13 reduces the function of endogenous YAP-TEAD transcriptional activity (i.e., does ectopic NSP13 expression reduce the expression of YAP induced TEAD target genes in cells).
(2) While the IP-MS experiment may have revealed new regulators of TEAD activity, the data presented are preliminary and inconclusive. No interactions are validated and beyond slight changes in TEAD reporter activity following knockdown, no direct links to YAP-TEAD are demonstrated, and no link to NPS13 was shown. Also, no details are provided about the methods used for the IP-MS experiment, raising some concerns about potential false positive associations within the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Yun et al. examined the molecular and neuronal underpinnings of changes in Drosophila female reproductive behaviors in response to social cues. Specifically, the authors measure the ejaculate-holding period, which is the amount of time females retain male ejaculate after mating (typically 90 min in flies). They find that female fruit flies, Drosophila melanogaster, display shorter holding periods in the presence of a native male or male-associated cues, including 2-Methyltetracosane (2MC) and 7-Tricosene (7-T). They further show that 2MC functions through Or47b olfactory receptor neurons (ORNs) and the Or47b channel, while 7-T functions through ppk23 expressing neurons. Interestingly, their data also indicates that two other olfactory ligands for Or47b (methyl laurate and palmitoleic acid) do not have the same effects on the ejaculate-holding period. By performing a series of behavioral and imaging experiments, the authors reveal that an increase in cAMP activity in pC1 neurons is required for this shortening of the ejaculate-holding period and may be involved in the likelihood of remating. This work lays the foundation for future studies on sexual plasticity in female Drosophila.
The conclusions of this paper are supported by the data and the authors have revised the manuscript in accordance with comments of the reviewers. This revised version also contains the expression pattern of the lines used for modulating individual pC1 subtypes. These data and reagents open interesting avenues for future studies on female receptivity and mate choice.
-
Reviewer #2 (Public Review):
The work by Yun et al. explores an important question related to post-copulatory sexual selection and sperm competition: Can females actively influence the outcome of insemination by a particular male by modulating storage and ejection of transferred sperm in response to contextual sensory stimuli? The present work is exemplary for how the Drosophila model can give detailed insight in basic mechanism of sexual plasticity, addressing the underlying neuronal circuits on a genetic, molecular and cellular level.
Using the Drosophila model, the authors show that the presence of other males or mated females after mating shortens the ejaculate-holding period (EHP) of a female, i.e. the time she takes until she ejects the mating plug and unstored sperm. Through a series of thorough and systematic experiments involving the manipulation of olfactory and chemogustatory neurons and genes in combination with exposure to defined pheromones, they uncover two pheromones and their sensory cells for this behavior. Exposure to the male specific pheromone 2MC shortens EHP via female Or47b olfactory neurons, and the contact pheromone 7-T, present males and on mated females, does so via ppk23 expressing gustatory foreleg neurons. Both compounds increase cAMP levels in a specific subset of central brain receptivity circuit neurons, the pC1b,c neurons. By employing an optogenetically controlled adenyl cyclase, the authors show that increased cAMP levels in pC1b,c neurons increase their excitability upon male pheromone exposure, decrease female EHP and increase the remating rate. This provides convincing evidence for the role of pC1b,c neurons in integrating information about the social environment and mediating not only virgin, but also mated female post-copulatory mate choice.
Understanding context and state-dependent sexual behavior is of fundamental interest. Mate behavior is highly context-dependent. In animals subjected to sperm competition, the complexities of optimal mate choice have attracted a long history of sophisticated modelling in the framework of game theory. These models are in stark contrast to how little we understand so far about the biological and neurophysiological mechanisms of how females implement post-copulatory or so-called "cryptic" mate choice and bias sperm usage when mating multiple times.
The strength of the paper is decrypting "cryptic" mate choice, i.e. the clear identification of physiological mechanisms and proximal causes for female post-copulatory mate choice. The discovery of peripheral chemosensory nodes and of neurophysiological mechanisms in central circuit nodes will provide a fruitful starting point to fully map the circuits for female receptivity and mate choice during the whole gamut of female life history.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The process of EMT is a major contributor of metastasis and chemoresistance in breast cancer. By using a modified PyMT model that allows identification of cells undergoing EMT and their decedents via S100A4-Cre mediated recombination of the mTmG allele, Ban et al. tackle a very important question of how tumor metastasis and therapy resistance by EMT can be blocked. They identified that pathways associated with ribosome biogenesis (RiBi) are activated during transition cell states. This finding represents a promising therapeutic target to block any transition from E to M (activated during cell dissemination and invasion) as well as from M to E (activated during metastatic colonization). Inhibition of RiBi-blocked EMT also reduced the establishment of chemoresistance that is associated with an EMT phenotype. Hence, RiBi blockage together with standard chemotherapy showed synergistic effects, resulting in impaired colonization/metastatic outgrowth in an animal model. The study is of great interest and of high clinical relevance as the authors show that blocking the transition from E to M or vice versa targets both aspects of metastasis, dissemination form the primary tumor and colonization in distant organs.
The study is done with high skill using state of the art technology and the conclusions are convincing and solid, but some aspects require some additional experimental support and clarification. It remains elusive whether blocking of EMT/MET is necessary for the synergistic effect of standard chemotherapy together with RiBi blockage or whether a general growth disadvantage of RiBi treated cells independent of blocking transition is responsible. How can specific effect on state transition by RiBI block be seperated from global effects attributed to overall reduced protein biosynthesis, proliferation etc.? Some other aspects are misleading or need extension:
In the revised version, the authors appropriately addressed all my comments. I'd like to congratulate the authors for this wonderful work!
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This study reports a physical interaction between the kinase DYRK1A and the Tuberous Sclerosis Complex (TSC) protein complex (TSC1, TSC2, TBC1D7). Furthermore, this study demonstrates that DYRK1A, upon interaction with the TSC proteins, regulates mTORC1 activity and cell size. Additionally, this study identifies T1462 on TSC2 as a phosphorylation target of DYRK1A. Finally, the authors demonstrate that DYRK1A impacts cell size using human, mouse and Drosophila cells.
The interaction described here is highly impactful to the field of mTORC1-regulated cell growth and uncovers a previously unrecognized TSC-associated interacting protein. DYRK1A and its regulation of mTORC1 activation may have an impact for multiple diseases in which mTORC1 is hyperactivated.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Working memory is imperfect - memories accrue error over time and are biased towards certain identities. For example, previous work has shown memory for orientation is more accurate near the cardinal directions (i.e., variance in responses is smaller for horizontal and vertical stimuli) while being biased towards diagonal orientations (i.e., there is a repulsive bias away from horizontal and vertical stimuli). The magnitude of errors and biases increase the longer an item is held in working memory and when more items are held in working memory (i.e., working memory load is higher). Previous work has argued that biases and errors could be explained by increased perceptual acuity at cardinal directions. However, these models are constrained to sensory perception and do not explain how biases and errors increase over time in memory. The current manuscript builds on this work to show how a two-layer neural network could integrate errors and biases over a memory delay. In brief, the model includes a 'sensory' layer with heterogenous connections that lead to the repulsive bias and decreased error at the cardinal directions. This layer is then reciprocally connected with a classic ring attractor layer. Through their reciprocal interactions, the biases in the sensory layer are constantly integrated into the representation in memory. In this way, the model captures the distribution of biases and errors for different orientations that has been seen in behavior and their increasing magnitude with time. The authors compare the two-layer network to a simpler one-network model, showing that the one model network is harder to tune and shows an attractive bias for memories that have lower error (which is incompatible with empirical results).
Strengths:
The manuscript provides a nice review of the dynamics of items in working memory, showing how errors and biases differ across stimulus space. The two-layer neural network model is able to capture the behavioral effects as well as relate to neurophysiological observations that memory representations are distributed across sensory cortex and prefrontal cortex.
The authors use multiple approaches to understand how the network produces the observed results. For example, analyzing the dynamics of memories in the low-dimensional representational space of the networks provides the reader with an intuition for the observed effects.
As a point of comparison with the two-layer network, the authors construct a heterogenous one-layer network (analogous to a single memory network with embedded biases). They argue that such a network is incapable of capturing the observed behavioral effects but could potentially explain biases and noise levels in other sensory domains where attractive biases have lower errors (e.g., color).
The authors show how changes in the strength of Hebbian learning of excitatory and inhibitory synapses can change network behavior. This argues for relatively stronger learning in inhibitory synapses, an interesting prediction.
The manuscript is well-written. In particular, the figures are well done and nicely schematize the model and the results.
Weaknesses:
Despite its strengths, the manuscript does have some weaknesses. These weaknesses are adequately discussed in the manuscript and motivate future research.
One weakness is that the model is not directly fit to behavioral data, but rather compared to a schematic of behavioral data. As noted above, the model provides insight into the general phenomenon of biases in working memory. However, because the models are not fit directly to data, they may miss some aspects of the data.
In addition, directly fitting the models to behavioral data could allow for a broader exploration of parameter space for both the one-layer and two-layer models (and their alternatives). Such an approach would provide stronger support for the papers claims (such as "....these evolving errors...require network interaction between two distinct modules."). That being said, the manuscript does explore several alternative models and also acknowledges the limitation of not directly fitting behavior, due to difficulties in fitting complex neural network models to data.
One important behavioral observation is that both diffusive noise and biases increase with the number of items in working memory. The current model does not capture these effects and it isn't clear how the model architecture could be extended to capture these effects. That being said, the authors note this limitation in the Discussion and present it as a future direction.
Overall:
Overall, the manuscript was successful in building a model that captured the biases and noise observed in working memory. This work complements previous studies that have viewed these effects through the lens of optimal coding, extending these models to explain the effects of time in memory. In addition, the two-layer network architecture extends previous work with similar architectures, adding further support to the distributed nature of working memory representations.
-
Reviewer #2 (Public Review):
In this manuscript, Yang et al. present a modeling framework to understand the pattern of response biases and variance observed in delayed-response orientation estimation tasks. They combine a series of modeling approaches to show that coupled sensory-memory networks are in a better position than single-area models to support experimentally observed delay-dependent response bias and variance in cardinal compared to oblique orientations. These errors can emerge from a population-code approach that implements efficient coding and Bayesian inference principles and is coupled to a memory module that introduces random maintenance errors. A biological implementation of such operation is found when coupling two neural network modules, a sensory module with connectivity inhomogeneities that reflect environment priors, and a memory module with strong homogeneous connectivity that sustains continuous ring attractor function. Comparison with single-network solutions that combine both connectivity inhomogeneities and memory attractors shows that two-area models can more easily reproduce the patterns of errors observed experimentally.
Strengths:
The model provides an integration of two modeling approaches to the computational bases of behavioral biases: one based on Bayesian and efficient coding principles, and one based on attractor dynamics. These two perspectives are not usually integrated consistently in existing studies, which this manuscript beautifully achieves. This is a conceptual advancement, especially because it brings together the perceptual and memory components of common laboratory tasks.
The proposed two-area model provides a biologically plausible implementation of efficient coding and Bayesian inference principles, which interact seamlessly with a memory buffer to produce a complex pattern of delay-dependent response errors. No previous model had achieved this.
Weaknesses:
The correspondence between the various computational models is not clearly shown. It is not easy to see clearly this correspondence because network function is illustrated with different representations for different models. In particular, the Bayesian model of Figure 2 is illustrated with population responses for different stimuli and delays, while the attractor models of Figure 3 and 4 are illustrated with neuronal tuning curves but not population activity.
The proposed model has stronger feedback than feedforward connections between the sensory and memory modules (J_f = 0.1 and J_b = 0.25). This is not the common assumption when thinking about hierarchical processing in the brain. The manuscript argues that error patterns remain similar as long as the product of J_f and J_b is constant, so it is unclear why the authors preferred this network example as opposed to one with J_b = 0.1 and J_f = 0.25.
-
Reviewer #3 (Public Review):
Summary:
The present study proposes a neural circuit model consisting of coupled sensory and memory networks to explain the circuit mechanism of the cardinal effect in orientation perception which is characterized by the bias towards the oblique orientation and the largest variance at the oblique orientation.
Strengths:
The authors have done numerical simulations and preliminary analysis of the neural circuit model to show the model successfully reproduces the cardinal effect. And the paper is well-written overall. As far as I know, most of the studies on the cardinal effect are at the level of statistical models, and the current study provides one possibility of how neural circuit models reproduce such an effect.
Weaknesses:
There are no major weaknesses and flaws in the present study, although I suggest the author conduct further analysis to deepen our understanding of the circuit mechanism of the cardinal effects. Please find my recommendations for concrete comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work by Stauber et al., is focused on understanding the signaling mechanisms that are associated with tendinopathy development, and by screening a panel of human tendinopathy samples, identified IL-6/JAK/STAT as a potential mediator of this pathology. Using an innovate explant model they delineated the requirement for IL-6 in the main body of the tendon to alter the dynamics of extrinsic fibroblasts. These studies are complemented by in vivo studies that include a Scx-GFP reporter. This approach facilitates examination of the effects of IL6-/- on Scx+ cells, and the differences observed between ex vivo and in vivo contexts.
The use of a publicly available existing dataset is considered a strength, since this dataset includes expression data from several different human tendons experiencing tendinopathy. The revised analysis that includes only non-sheathed tendons facilitates the identification of potentially conserved regulators of the tendinopathy phenotype, with immunostaining for CD90, IL-6R, and IL-6 expression in human tendinopathy samples providing important validation of the transcriptomic studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In their paper, Hou and co-workers explored the use of a FRET sensor for endogenous g-sec activity in vivo in the mouse brain. They used AAV to deliver the sensor to the brain for neuron specific expression and applied NIR in cranial windows to assess FRET activity; optimizing as well an imaging and segmentation protocol. In brief they observe clustered g-sec activity in neighboring cells arguing for a cell non-autonomous regulation of endogenous g-sec activity in vivo.
Strengths:
Mone.
Weaknesses:
Overall the authors provide a very limited data set and in fact only a proof of concept that their sensor can be applied in vivo. This is not really a research paper, but a technical note. With respect to their observation of clustered activity, they now provide an overview image, next to zoomed details. However, from these images one cannot conclude 'by eye' any clustering event. This aligns with the very low r values. All neurons in the field show variable activity and a clustering is not really evident from these examples. Even within a cluster, there is variability. The authors now confirm that expression levels are indeed variable but are independent from the ratio measurements. Further, they controlled for specificity by including DAPT treatments, but opposite to their own in vitro data (in primary neurons) the ratios increased. The authors argue that both distance and orientation can either decrease or increase ratios and that the use of this biosensor should be explored model-by-model. This doesn't really confer high confidence and may hinder other groups in using this sensor reliably.
Secondly, there is still no physiological relevance for this observation. The experiments are performed in wild-type mice, but it would be more relevant to compare this with a fadPSEN1 KI or a PSEN1cKO model to investigate the contribution of a gain of toxic function or LOF to the claimed cell non-autonomous activations. The authors acknowledge this shortcoming but argue that this is for a follow-up study.
For instance, they only monitor activity in cell bodies, and miss all info on g-sec activity in neurites and synapses: what is the relevance of the cell body associated g-sec and can it be used as a proxy for neuronal g-sec activity? If cells 'communicate' g-sec activities, I would expect to see hot spots of activity at synapses between neurons.
Without some more validation and physiologically relevant studies, it remains a single observation and rather a technical note paper, instead of a true research paper.
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Hou et al is a short technical report which details the potential use of a recently developed FRET based biosensor for gamma-secretase activity (Houser et al 2020) for in vivo imaging in the mouse brain. Gamma-secretase plays a crucial role in Alzheimer's disease pathology and therefore developing methodologies for precise in vivo measurements would be highly valuable to better understand AD pathophysiology in animal models.
The current version of the sensor utilizes a pair of far-red fluorescent proteins fused to a substrate of the enzyme. Using live imaging, it was previously demonstrated it is possible to monitor gamma-secretase activity in cultured cells. Notably, this is a variant of a biosensor that was previously described using CFP-YFP variants FRET pair (Maesako et al, iScience. 2020). The main claim and hypothesis for the manuscript is that IR excitation and emission has considerable advantages in terms of depth of penetration, as well as reduction in autofluorescence. These properties would make this approach potentially suitable to monitor cellular level dynamics of Gama-secretase in vivo.
The authors use confocal microscopy and show it is possible to detect fluorescence from single cortical cells. The paper described in detail technical information regarding imaging and analysis. The data presented details analysis of FRET ratio (FR) measurements within populations of cells. The authors claim it is possible to obtain reliable measurements at the level of individual cells. They compare the FR values across cells and mice and find a spatial correlation among neighboring cells. This is compared with data obtained after inhibition of endogenous gamma-secretase activity, which abolishes this correlation.
Strengths:
The authors describe in detail their experimental design and analysis for in vivo imaging of the reporter. The idea of using a far-red FRET sensor for in vivo imaging is novel and potentially useful to circumvent many of the pitfalls associated with intensity-based FRET imaging in complex biological environments (such as autofluorescence and scattering).
Weaknesses:
There are several critical points regarding the validation of this approach:
(1) Regarding the variability and spatial correlation- the dynamic range of the sensor previously reported in vitro is in the range of 20-30% change (Houser et al 2020) whereas the range of FR detected in vivo is between cells is significantly larger in this MS. This raises considerable doubts for specific detection of cellular activity<br /> (2) One direct way to test the dynamic range of the sensor in vivo, is to increase or decrease endogenous gamma-secretase activity and to ensure this experimental design allows to accurately monitor gamma-secretase activity. In the previous characterization of the reporter (Hauser et al 2020), DAPT application and inhibition of gamma-secretase activity results in increased FR (Figures 2 and 3 of Houser et al). This is in agreement with the design of the biosensor, since FR should be inversely correlated with enzymatic activity. Here, the authors repeated the experiment, and surprisingly found an opposite effect, in which DAPT significantly reduced FR.<br /> The authors maintain that this result could be due to differences in cell-types, However, this experiment was previously performed in cultures cortical neurons and many different cell types, as noted by the authors in their rebuttal.<br /> Instead, I would argue that these results further highlight the concerns of using FR in vivo, since based on their own data, there is no way to interpret this quantification. If DAPT reduces FR, does this mean we should now interpret the results of higher FR corresponds to higher g-sec activity? Given a number of papers from the authors claiming otherwise, I do not understand how one can interpret the results as indicating a cell-specific effect.<br /> In conclusion, without any ground truth, it is impossible to assess and interpret what FR measurements of this sensor in vivo mean. Therefore, the use of this approach as a way to study g-sec activity in vivo seems premature.
-
Reviewer #3 (Public Review):
This paper builds on the authors' original development of a near infrared (NIR) FRET sensor by reporting in vivo real-time measurements for gamma-secretase activity in the mouse cortex. The in vivo application of the sensor using state-of-the-art techniques is supported by a clear description and straightforward data, and the project represents significant progress because so few biosensors work in vivo. Notably, the NIR biosensor is detectable to ~ 100 µm depth in the cortex. A minor limitation is that this sensor has a relatively modest ΔF as reported in Houser et al, which is an additional challenge for its use in vivo. Thus, the data is fully dependent on post-capture processing and computational analyses. This can unintentionally introduce biases but is not an insurmountable issue with the proper controls that the authors have performed here.
The following opportunity for improving the system didn't initially present itself until the authors performed an important test of the FRET sensor in vivo following DAPT treatment. The authors get credit for diligently reporting the unexpected decrease in 720/670 FRET ratio. In turn this has led to a suggestion that this sensor would benefit from a control that is insensitive to gamma-secretase activity. FRET influences that are independent of gamma-secretase activity could be distinguished by this control.
From previous results in cultured neurons, the authors expected an increase in FRET following DAPT treatment in vivo. These expectations fit with the sensor's mode-of-action because a block of gamma-secretase activity should retain the fluorophores in proximity. When the authors observed decreased FRET, the conclusion was that the sensor performs differently in different cellular contexts. However, a major concern is that mechanistically it is unclear how this could occur with this type of sensor. The relative orientation of fluorophores indeed can contribute to FRET efficiency in tension-based sensors. However, the proteolysis expected with gamma-secretase activity would release tension and orientation constraints. Thus, the major contributing FRET factor is expected to be distance, not orientation. Alternative possibilities that could inadvertently affect readouts include an additional DAPT target in vivo sequestering the inhibitor, secondary pH effects on FRET, photo-bleaching, or an unidentified fluorophore quencher in vivo stimulated by DAPT. Ultimately this new FRET sensor would benefit from a control that is insensitive to gamma-secretase activity. FRET influences that are independent of gamma-secretase activity could be distinguished by this control.
-
-
-
Reviewer #1 (Public Review):
Summary:
This paper suggests to apply intrinsically-motivated exploration for the discovery of robust goal states in gene regulatory networks.
Strengths:
The paper is well written. The biological motivation and the need for such methods are formulated extraordinarily well. The battery of experimental models is impressive.
Weaknesses:
(1) The proposed method is compared to the random search. That says little about the performance with regard to the true steady-state goal sets. The latter could be calculated at least for a few simple ODE (e.g., BIOMD0000000454, `Metabolic Control Analysis: Rereading Reder'). The experiment with 'oscillator circuits' may not be directly interpolated to the other models.
The lack of comparison to the ground truth goal set (attractors of ODE) from arbitrary initial conditions makes it hard to evaluate the true performance/contribution of the method. A part of the used models can be analyzed numerically using JAX, while there are models that can be analyzed analytically.
"...The true versatility of the GRN is unknown and can only be inferred through empirical exploration and proxy metrics....": one could perform a sensitivity analysis of the ODEs, identifying stable equilibria. That could provide a proxy for the ground truth 'versatility'.
(2) The proposed method is based on `Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning', which assumes state action trajectories [s_{t_0:t}, a_{t_0:t}], (2.1 Notations and Assumptions' in the IMGEP paper). However, the models used in the current work do not include external control actions, but rather only the initial conditions can be set. It is not clear from the methods whether IMGEP was adapted to this setting, and how the exploration policy was designed w/o actual time-dependent actions. What does "...generates candidate intervention parameters to achieve the current goal...."<br /> mean considering that interventions 'Sets the initial state...' as explained in Table 2?
(3) Fig 2 shows the phase space for (ERK, RKIPP_RP) without mentioning the typical full scale of ERK, RKIPP_RP. It is unclear whether the path from (0, 0) to (~0.575, ~3.75) at t=1000 is significant on the typical scale of this phase space. is it significant on the typical scale of this phase space?
(4) Table 2:<br /> (a) Where is 'effective intervention' used in the method?<br /> (b) In my opinion 'controllability', 'trainability', and 'versatility' are different terms. If there correspondence is important I would suggest to extend/enhance the column "Proposed Isomorphism". otherwise, it may be confusing. I don't see how this table generalizes generalizes "concepts from dynamical complex systems and behavioral sciences under a common navigation task perspective".
-
Reviewer #2 (Public Review):
Summary:
Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.
Following revision, my overall perspective of the paper remains unchanged. The first half of the paper provides solid evidence to support an important conceptual framework. The evidence presented for the use cases in the latter half is incomplete; as the authors note, they are preliminary and meant to be built on in future work. I have included my first round comments below.
Strengths:
Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.
The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.
Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:
(1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?
Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.
(2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only has 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.
(3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system in one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.
(4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method. [second round: the authors have included a comparison against CMA-ES, an evolutionary algorithm]
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript by Wang et al is, like its companion paper, very unusual in the opinion of this reviewer. It builds off of the companion theory paper's exploration of the "Wright-Fisher Haldane" model but applies it to the specific problem of diversity in ribosomal RNA arrays. The authors argue that polymorphism and divergence among rRNA arrays are inconsistent with neutral evolution, primarily stating that the amount of polymorphism suggests a high effective size and thus a slow fixation rate, while we, in fact, observe relatively fast fixation between species, even in putatively non-functional regions. They frame this as a paradox in need of solving, and invoke the WFH model.
The same critiques apply to this paper as to the presentation of the WFH model and the lack of engagement with the literature, particularly concerning Cannings models and non-diffusive limits. However, I have additional concerns about this manuscript, which I found particularly difficult to follow.
My first, and most major, concern is that I can never tell when the authors are referring to diversity in a single copy of an rRNA gene compared to when they are discussing diversity across the entire array of rRNA genes. I admit that I am not at all an expert in studies of rRNA diversity, so perhaps this is a standard understanding in the field, but in order for this manuscript to be read and understood by a larger number of people, these issues must be clarified.
The authors frame the number of rRNA genes as roughly equivalent to expanding the population size, but this seems to be wrong: the way that a mutation can spread among rRNA gene copies is fundamentally different than how mutations spread within a single copy gene. In particular, a mutation in a single copy gene can spread through vertical transmission, but a mutation spreading from one copy to another is fundamentally horizontal: it has to occur because some molecular mechanism, such as slippage, gene conversion, or recombination resulted in its spread to another copy. Moreover, by collapsing diversity across genes in an rRNA array, the authors are massively increasing the mutational target size.
For example, it's difficult for me to tell if the discussion of heterozygosity at rRNA genes in mice starting on line 277 is collapsed or not. The authors point out that Hs per kb is ~5x larger in rRNA than the rest of the genome, but I can't tell based on the authors' description if this is diversity per single copy locus or after collapsing loci together. If it's the first one, I have concerns about diversity estimation in highly repetitive regions that would need to be addressed, and if it's the second one, an elevated rate of polymorphism is not surprising, because the mutational target size is in fact significantly larger.
Even if these issues were sorted out, I'm not sure that the authors framing, in terms of variance in reproductive success is a useful way to understand what is going on in rRNA arrays. The authors explicitly highlight homogenizing forces such as gene conversion and replication slippage but then seem to just want to incorporate those as accounting for variance in reproductive success. However, don't we usually want to dissect these things in terms of their underlying mechanism? Why build a model based on variance in reproductive success when you could instead explicitly model these homogenizing processes? That seems more informative about the mechanism, and it would also serve significantly better as a null model, since the parameters would be able to be related to in vitro or in vivo measurements of the rates of slippage, gene conversion, etc.
In the end, I find the paper in its current state somewhat difficult to review in more detail, because I have a hard time understanding some of the more technical aspects of the manuscript while so confused about high-level features of the manuscript. I think that a revision would need to be substantially clarified in the ways I highlighted above.
-
Reviewer #2 (Public Review):
Summary:
Multi-copy gene systems are expected to evolve slower than single-copy gene systems because it takes longer for genetic variants to fix in the large number of gene copies in the entire population. Paradoxically, their evolution is often observed to be surprisingly fast. To explain this paradox, the authors hypothesize that the rapid evolution of multi-copy gene systems arises from stronger genetic drift driven by homogenizing forces within individuals, such as gene conversion, unequal crossover, and replication slippage. They formulate this idea by combining the advantages of two classic population genetic models -- adding the V(k) term (which is the variance in reproductive success) in the Haldane model to the Wright-Fisher model. Using this model, the authors derived the strength of genetic drift (i.e., reciprocal of the effective population size, Ne) for the multi-copy gene system and compared it to that of the single-copy system. The theory was then applied to empirical genetic polymorphism and divergence data in rodents and great apes, relying on comparison between rRNA genes and genome-wide patterns (which mostly are single-copy genes). Based on this analysis, the authors concluded that neutral genetic drift could explain the rRNA diversity and evolution patterns in mice but not in humans and chimpanzees, pointing to a positive selection of rRNA variants in great apes.
Strengths:
Overall, the new WFH model is an interesting idea. It is intuitive, efficient, and versatile in various scenarios, including the multi-copy gene system and other cases discussed in the companion paper by Ruan et al.
Weaknesses:
Despite being intuitive at a high level, the model is a little unclear, as several terms in the main text were not clearly defined and connections between model parameters and biological mechanisms are missing. Most importantly, the data analysis of rRNA genes is extremely over-simplified and does not adequately consider biological and technical factors that are not discussed in the model. Even if these factors are ignored, the authors' interpretation of several observations is unconvincing, as alternative scenarios can lead to similar patterns. Consequently, the conclusions regarding rRNA genes are poorly supported. Overall, I think this paper shines more in the model than the data analysis, and the modeling part would be better presented as a section of the companion theory paper rather than a stand-alone paper. My specific concerns are outlined below.
(1) Unclear definition of terms
Many of the terms in the model or the main text were not clearly defined the first time they occurred, which hindered understanding of the model and observations reported. To name a few:
(i) In Eq(1), although C* is defined as the "effective copy number", it is unclear what it means in an empirical sense. For example, Ne could be interpreted as "an ideal WF population with this size would have the same level of genetic diversity as the population of interest" or "the reciprocal of strength of allele frequency change in a unit of time". A few factors were provided that could affect C*, but specifically, how do these factors impact C*? For example, does increased replication slippage increase or decrease C*? How about gene conversion or unequal cross-over? If we don't even have a qualitative understanding of how these processes influence C*, it is very hard to make interpretations based on inferred C*. How to interpret the claim on lines 240-241 (If the homogenization is powerful enough, rRNA genes would have C*<1)? Please also clarify what C* would be, in a single-copy gene system in diploid species.
(ii) In Eq(1), what exactly is V*(K)? Variance in reproductive success across all gene copies in the population? What factors affect V*(K)? For the same population, what is the possible range of V*(K)/V(K)? Is it somewhat bounded because of biological constraints? Are V*(K) and C*(K) independent parameters, or does one affect the other, or are both affected by an overlapping set of factors?
(iii) In the multi-copy gene system, how is fixation defined? A variant found at the same position in all copies of the rRNA genes in the entire population?
(iv) Lines 199-201, HI, Hs, and HT are not defined in the context of a multi-copy gene system. What are the empirical estimators?
(v) Line 392-393, f and g are not clearly defined. What does "the proportion of AT-to-GC conversion" mean? What are the numerator and denominator of the fraction, respectively?
(2) Technical concerns with rRNA gene data quality
Given the highly repetitive nature and rapid evolution of rRNA genes, myriads of things could go wrong with read alignment and variant calling, raising great concerns regarding the data quality. The data source and methods used for calling variants were insufficiently described at places, further exacerbating the concern.
(i) What are the accession numbers or sample IDs of the high-coverage WGS data of humans, chimpanzees, and gorillas from NCBI? How many individuals are in each species? These details are necessary to ensure reproducibility and correct interpretation of the results.
(ii) Sequencing reads from great apes and mice were mapped against the human and mouse rDNA reference sequences, respectively (lines 485-486). Given the rapid evolution of rRNA genes, even individuals within the same species differ in copy number and sequences of these genes. Alignment to a single reference genome would likely lead to incorrect and even failed alignment for some reads, resulting in genotyping errors. Differences in rDNA sequence, copy number, and structure are even greater between species, potentially leading to higher error rates in the called variants. Yet the authors provided no justification for the practice of aligning reads from multiple species to a single reference genome nor evidence that misalignment and incorrect variant calling are not major concerns for the downstream analysis.
(vi) It is unclear how variant frequency within an individual was defined conceptually or computed from data (lines 499-501). The population-level variant frequency was calculated by averaging across individuals, but why was the averaging not weighted by the copy number of rRNA genes each individual carries? How many individuals are sampled for each species? Are the sample sizes sufficient to provide an accurate estimate of population frequencies?
(vii) Fixed variants are operationally defined as those with a frequency>0.8 in one species. What is the justification for this choice of threshold? Without knowing the exact sample size of the various species, it's difficult to assess whether this threshold is appropriate.
(viii) It is not explained exactly how FIS, FST, and divergence levels of rRNA genes were calculated from variant frequency at individual and species levels. Formulae need to be provided to explain the computation.
(3) Complete ignorance of the difference in mutation rate difference between rRNA genes and genome-wide average
Nearly all data analysis in this paper relied on comparison between rRNA genes with the rest (presumably single-copy part) of the genome. However, mutation rate, a key parameter determining the diversity and divergence levels, was completely ignored in the comparison. It is well known that mutation rate differs tremendously along the genome, with both fine and large-scale variation. If the mutation rate of rRNA genes differs substantially from the genome average, it would invalidate almost all of the analysis results. Yet no discussion or justification was provided.
Related to mutation rate: given the hypermutability of CpG sites, it is surprising that the evolution/fixation rate of rRNA estimated with or without CpG sites is so close (2.24% vs 2.27%). Given the 10 - 20-fold higher mutation rate at CpG sites in the human genome, and 2% CpG density (which is probably an under-estimate for rDNA), we expect the former to be at least 20% higher than the latter.
Among the weaknesses above, concern (1) can be addressed with clarification, but concerns (2) and (3) invalidate almost all findings from the data analysis and cannot be easily alleviated with a complete revamp work.
-
-
-
Reviewer #1 (Public Review):
In this manuscript, Lee et al. compared encoding of odor identity and value by calcium signaling from neurons in the ventral pallidum (VP) in comparison to D1 and D2 neurons in the olfactory tubercle (OT).
Strengths:
They utilize a strong comparative approach, which allows the comparison of signals in two directly connected regions. First, they demonstrate that both D1 and D2 OT neurons project strongly to the VP, but not the VTA or other examined regions, in contrast to accumbal D1 neurons which project strongly to the VTA as well as the VP. They examine single unit calcium activity in a robust olfactory cue conditioning paradigm that allows them to differentiate encoding of olfactory identity versus value, by incorporating two different sucrose, neutral and air puff cues with different chemical characteristics. They then use multiple analytical approaches to demonstrate strong, low-dimensional encoding of cue value in the VP, and more robust, high-dimensional encoding of odor identity by both D1 and D2 OT neurons, though D1 OT neurons are still somewhat modulated by reward contingency/value. Finally, they utilize a modified conditioning paradigm that dissociates reward probability and lick vigor to demonstrate that VP encoding of cue value is not dependent on encoding of lick vigor during sucrose cues, and that separable populations of VP neuros encode cue value/sucrose probability and lick vigor. Direct comparisons of single unit responses between the two regions now utilize linear mixed effects models with random effects for subject,
Weaknesses:
The manuscript still includes mention of differences in effect size or differing "levels" of significance between VP and OT D1 neurons without reports of a direct comparisons between the two populations. This is somewhat mitigated by the comprehensive statistical reporting in the supplemental information, but interpretation of some of these results is clouded by the inclusion of OT D2 neurons in these analyses, and the limited description or contextualization in the main text.
-
Reviewer #2 (Public Review):
We appreciate the authors revision of this manuscript and toning down some of the statements regarding "contradictory" results. We still have some concerns about the major claims of this paper which lead us to suggest this paper undergo more revision as follows since, in its present form, we fear this paper is misleading for the field in two areas. here is a brief outline:
(1) Despite acknowledging that the injections only occurred in the anteromedial aspect of the tubercle, the authors still assert broad conclusions regarding where the tubercle projects and what the tubercle does. for instance, even the abstract states "both D1 and D2 neurons of the OT project primarily to the VP and minimally elsewhere" without mention that this is the "anteromedial OT". Every conclusion needs to specify this is stemming from evidence in just the anteromedial tubercle, as the authors do in some parts of the the discussion.
(2) The authors now frame the 2P imaging data that D1 neuron activity reflects "increased contrast of identity or an intermediate and multiplexed encoding of valence and identity". I struggle to understand what the authors are actually concluding here. Later in discussion, the authors state that they saw that OT D1 and D2 neurons "encode odor valence" (line 510). We appreciate the authors note that there is "poor standardization" when it comes to defining valence (line 521). We are ok with the authors speculating and think this revision is more forthcoming regarding the results and better caveats the conclusions. I suggest in abstract the authors adjust line 14/15 to conclude that, "While D1 OT neurons showed larger responses to rewarded odors, in line with prior work, we propose this might be interpreted as identity encoding with enhanced contrast." [eliminating "rather than valence encoding" since that is a speculation best reserved for discussion as the authors nicely do.
The above items stated, one issue comes to mind, and that is, why of all reasons would the authors find that the anteromedial aspect of the tubercle is not greatly reflecting valence. the anteromedial aspect of the tubercle, over all other aspects of the tubercle, is thought my many to more greatly partake in valence and other hedonic-driven behaviors given its dense reception of VTA DAergic fibers (as shown by Ikemoto, Kelsch, Zhang, and others). So this finding is paradoxical in contrast to if the authors would had studied the anterolateral tubercle or posterior lateral tubercle which gets less DA input.
-
Reviewer #3 (Public Review):
Summary:
This manuscript describes a study of the olfactory tubercle in the context of reward representation in the brain. The authors do so by studying the responses of OT neurons to odors with various reward contingencies and compare systematically to the ventral pallidum. Through careful tracing, they present convincing anatomical evidence that the projection from the olfactory tubercle is restricted to the lateral portion of the ventral pallidum.
Using a clever behavioral paradigm, the authors then investigate how D1 receptor- vs. D2 receptor-expressing neurons of the OT respond to odors as mice learn different contingencies. The authors find that, while the D1-expressing OT neurons are modulated marginally more by the rewarded odor than the D2-expressing OT neurons as mice learn the contingencies, this modulation is significantly less than is observed for the ventral pallidum. In addition, neither of the OT neuron classes shows conspicuous amount of modulation by the reward itself. In contrast, the OT neurons contained information that could distinguish odor identities. These observations have led the authors to conclude that the primary feature represented in the OT may not be reward.
Strengths:
The highly localized projection pattern from olfactory tubercle to ventral pallidum is a valuable finding and suggests that studying this connection may give unique insights into the transformation of odor by reward association.
Comparison of olfactory tubervle vs. ventral pallidum is a good strategy to further clarify the olfactory tubercle's position in value representation in the brain.
Weaknesses:
The study comes to a different conclusion about the olfactory tubercle regarding reward representations from several other prior works. Whether this stems from a difference in the experimental configurations such as behavioral paradigms used or indeed points to a conceptually different role for the olfactory tubercle remains to be seen.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This work explored intra and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores and mesocarnivores in the Qilian Mountain National Park of China, using camera trapping data and DNA metabarcoding sequencing data. They conclude that spatial niche partitioning plays a key role in facilitating the coexistence of apex carnivore species, spatial and temporal niche partitioning facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.
Strengths:
Extensive fieldwork is evident in the study. Aiming to cover a large percentage of the Qilian Mountain National Park, the study area was subdivided into squares, as a geographical reference to distribute the sampling points where the camera traps were placed and the excreta samples were collected.
They were able to obtain many records in their camera traps and collected many samples of excreta. This diversity of data allowed them to conduct robust analyses. The data analyses carried out were adequate to obtain clear and meaningful results that enabled them to answer the research questions posed. The conclusions of this paper are mostly well supported by data.
The study has demonstrated the coexistence of carnivore species in the landscapes of the Qilian Mountains National Park, complementing the findings of previous studies. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.
Weaknesses:
It is necessary to better explain the methodology because it is not clear what is the total sampling effort. In methodology, they only claim to have used 280 camera traps, and in the results, they mention that there are 319 sampling sites. However, the total sampling effort (e.g. total time of active camera traps) carried out in the study and at each site is not specified.
-
Reviewer #2 (Public Review):
Summary:
The study entitled "Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China" by Cong et al. addresses the compelling topic of carnivores' coexistence in a biodiversity hotspot in China. The study is interesting given it considers all three components affecting sympatric carnivores' distribution and co-occurrence, namely the temporal, the spatial, and the dietary partition within the carnivore guild. The authors have found that spatial co-occurrence is generally low, which represents the major strategy for coexistence, while there is temporal and dietary overlap. I also appreciated the huge sampling effort carried out for this study by the authors: they were able to deploy 280 camera trapping sites (which became 322 in the result section?) and collect a total of 480 scat samples. However, I have some concerns about the study on the non-consideration of the human dimension and potential anthropogenic disturbance that could affect the spatial and temporal distribution of carnivores, the choice of the statistical model to test co-occurrence, and the lack of clearly stated ecological hypotheses.
Strengths:
The strengths of the study are the investigation of all three major strategies that can mitigate carnivores' coexistence, therefore, the use of multiple monitoring techniques (both camera trapping and DNA metabarcoding) and the big dataset produced that consists of a very large sampled area with a noteworthy number of camera tap stations and many scat samples for each species.
Weaknesses:
I think that some parts of the manuscript should be written better and more clearly. A clear statement of the ecological hypotheses that could affect the partitioning among the carnivore guild is lacking. I think that the human component (thus anthropogenic disturbance) should have been considered more in the spatial analyses given it can influence the use of the environment by some carnivores. Additionally, a multi-species co-occurrence model would have been a more robust approach to test for spatial co-occurrence given it also considers imperfect detection.
Temporal and dietary results are solid and this latter in particular highlights a big predation pressure on some prey species such as the pika. This implies important conservation and management implications for this species, and therefore for the trophic chain, given that i) the pika population should be conserved and ii) a potential poisoning campaign against small mammals could be incredibly dangerous also for mesocarnivores feeding on them due to secondary poisoning.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Kainate receptors play various important roles in synaptic transmission. The receptors can be divided into low affinity kainate receptors (GluK1-3) and high affinity kainate receptos (GluK4-5). The receptors can assemble as homomers (GluK1-3) or low-high affinity heteromers (GluK4-5). The functional diversity is further increased by RNA splicing. Previous studies have investigated C-terminal splice variants of GluK1, but GluK1 N-terminal (exon 9) insertions have not been previously characterized. In this study Dhingra et al investigate the functional implications of a GluK1 splice variant that inserts a 15 amino acid segment into the extracellular N-terminal region of the protein using whole-cell and excised outside-out electrophysiology.<br /> The authors convincingly show that the insertion profoundly impacts the function of GluK1-1a - the channels that have the insertion are slower to desensitize. The data also shows that the insertion changes the modulatory effects of Neto proteins, resulting in altered rates of desensitization and recovery from desensitization. To determine the mechanism by which the insertion exerts these functional effects, the authors perform pull-down assays of Neto proteins, and extensive mutagenesis on the insert.<br /> The electrophysiological part of the study is very rigorous and meticulous.
The biggest weakness of the manuscript is the structural work. Due to issues with preferred orientation (a common problem in cryo-EM), the 3D reconstructions are at a low resolution (in the 5-8 Å range) and cannot offer much mechanistic insight into the effects of the insertion. Based on the available data, the authors posit that the insertion does not change the arrangement of the subunits in the desensitized state. However, there is no comparison with a structure that does not contain the insertion, so while the statement may well be true, no data is shown to support it.
Overall, the cryo-EM contributes little and distracts from the good parts of the manuscript.
Another part that does not contribute much is the RNAseq data that has been pulled from a database and analyzed for the paper. It is being used to show that the exon 9 insertion variant is predominantly expressed in the cerebellar cortex at early stages of brain development. The methods do not describe in detail how the data has been analyzed (e.g., is the data scaled per sample/gene or globally?) so it is hard to know what we can compare in the heat plots. In Figure 1- supplement 1 there aren't striking differences in expression (at least not obviously visible in the current illustration).
Despite these weaknesses, the study is a valuable contribution to the field because it characterizes a GluK1 variant that has not been studied before and highlights the functional diversity that exists within the kainate receptor family.
Revised manuscript:
The authors have clarified some of the issues raised by the reviewers, but no new data has been added to strengthen the manuscript. The structural part of the manuscript remains its weakest point, and the extent of mechanistic insight remains low.
-
Reviewer #2 (Public Review):
Among ionotropic glutamate receptors, kainate receptors (KAR) are still the object of intense investigation to understand their role in normal and pathological excitatory synaptic transmission. Like other receptors, KAR appear under different splicing variants and their respective physiological function is still debated. In this manuscript, Dhingra et al explored the impact of the presence and of the absence of Exon9 of the GluK1 receptors on the pharmacological, biophysi cal and structural properties of the receptors. They further investigated how it is impacted by the association of KAR with their cognate auxiliary subunit Neto 1 and 2. This study represents a large body of work and data. The authors addressed the issue in a very systematic and rigorous manner.
First, by exploring RNAseq database, authors showed that GluK1 transcripts containing the exon 9 are present in many brain structures and especially in the cerebellum suggesting that a large part of GluK1 contains effectively this exon9.<br /> Using HEK cells as an expression system, they characterized many gating and biophysical properties of GluK1 receptors containing or not the exon9. Evaluated parameters were desensitization, relative potency of glutamate versus kainate, and polyamine block.
It is known that the association of GluK1 with auxiliary proteins Neto1/2 modulates the properties of the receptors. Authors investigated systematically whether Neto1 and 2 similarly alter GluK1 properties in function of the presence of exon9. This study provides many quantitative data that could be reused for modeling the role of kainate receptors. Given the change shown by the authors, the presence of exon in GluK1 is noticeable and likely should have an impact of synaptic transmission.<br /> Interestingly, authors used a mutational approach to identify critical residues encoded by exon9 that are responsible for the functional differences between the two splice variants. In many cases, the replacement of a single amino acid leads to the absence of current confirming the crucial role of the segment of the receptor. However, it made the comparison and the identification of critical residues more challenging.
Authors attempted to establish the structure GluK1 receptors comprising the exon9 using different preparation methods. They succeeded in obtaining structures with equivalent or lower resolution compared with previous reports on GluK1 and GluK2 receptors. However, the organization of the peptide coded by exon is poorly defined and limited possible analyses. Despite this, they could observe that the presence of the exon9 does not alter significantly the structure of GluK1.
-
Reviewer #3 (Public Review):
GluK1 forms glutamate-gated ion channels with an important function in synaptic transmission and neuronal excitability. Alternative RNA splicing has been described for these channels, allowing the diversification of GluK1 channels. The GluK1 splice variant GluK1-1a contains 15 residues in the amino-terminal domain, resulting from the Exon 9 splice insert. GluK1-1a displays significant expression in different regions of the brain, likely co-expressing with other Gluk channels. The impact of the 15 residues on GluK1 channel properties and the overall structure has not been studied yet. The paper by Dhingra et al. aims to evaluate the impact of the Exon 9 splice insert on GluK1.1 channel function and structure. This work uses electrophysiological approaches, including whole-cell and patch clamp recordings, to determine the effect of the splice insert on GluK1.1 gating properties, including desensitization, agonist efficacy, recovery from desensitization, and rectification. By using mutagenesis and biochemical approaches, the authors studied the role of positively charged residues in the splice insert on channel properties and the interaction with modulatory Neto proteins. This work also shows the effect of the splice insert on the regulation of GluK1 channels by Neto proteins. Finally, by using Cryo-EM and single-particle analysis, the authors reconstructed a model for a homomeric GluK1-1a channel. Overall, this work provides two major milestones: 1) the first functional characterization of the GluK1-1a variant and 2) the first structure of this channel.
The functional data supporting the role of the insert on channel properties is convincing, although the current data does not provide significant insights about the mechanism. The overall structure in a putative desensitized state shows no differences with channels lacking the splice insert. However, some domains, including most of the 15 residues unique for the GluK1-1a variant were not resolved, suggesting high flexibility or conformational heterogeneity in those regions. Also, the low resolution of the obtained structures precludes conclusions on the structural basis for the role of the insert in channel function/regulation. Nonetheless, this paper represents an important advance in the study of glutamate receptors and invites the field to elucidate the structural basis for gating properties in GluK1-1a channels as well as other glutamate receptors. A more in-depth study about the role of splicing variants on ligand binding affinity, regulation by modulatory subunits such as Neto proteins, and the potential impact of this specific variant on heteromeric channels would also be relevant.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study examines lipid profiles in cancer patients treated with the neurotoxic chemotherapy paclitaxel. Multiple methods, including machine learning as well as more conventional statistical modelling, were used to classify lipid patterns before and after paclitaxel treatment and in conjunction with neuropathy status. Lipid profiles before and after paclitaxel therapy were analysed from 31 patients. The study aimed to characterize from the lipid profile if plasma samples were collected pre paclitaxel or post paclitaxel and their relevance to neuropathy status. Sphingolipids including sphinganine-1-phosphate (SA1P) differed between patients with and without neuropathy. To examine the potential role of SA1P, it was applied to murine primary sensory neuron cultures, and produced calcium transients in a proportion of neurons. This response was abolished by application of a TRPV1 antagonist. The number of neurons responding to SA1P was partially reduced by the sphingosine 1-phosphate receptor (S1PR1) modulator fingolimod.
Strengths:
The strengths of this study include the use of multiple methods to classify lipid patterns and the attempt to validate findings from the clinical cohort in a preclinical model using primary sensory neurons.
Weaknesses:
These still stand from the original review and are repeated here:
There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy.
Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.
Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to pos- paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment timepoints.
Primary sensory neuron cultures were used to examine the effects of SA1P application. SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.
Impact:
Taken in total, the data presented do not provide sufficient evidence to support the contention that SA1P has an important role in paclitaxel induced peripheral neuropathy. Further, the results do not provide evidence to support the use of S1PR1 receptor antagonists as a therapeutic strategy. It is important to be careful with language use in the discussion, as the significance of the present results are overstated.
However, based on the results of previous studies, it is likely that sphingolipid metabolism plays a role in chemotherapy induced peripheral neuropathy. Based on this existing evidence, the S1PR1 receptor antagonist fingolimod has already been examined in experimental models and in clinical trials. Further work is needed to examine the links between lipid mediators and neuropathy development and identify additional strategies for intervention.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors performed a Multi-Omics Factor Analysis (MOFA) on analysis of two published MDS patient cohorts-1 from bone marrow mononuclear cells (BMMNCs) and CD34 cells (ref 17) and another from CD34+ cells (ref 15) --with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, Retrotransposon (RTE) expression, and cell- type composition, were derived from these modalities to attempt to identify the latent factors with significant impact on MDS prognosis.
SF3B1 was found to be the only mutation among 13 mutations in the BMMNC cohort that indicated a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34+ cohort. The MOFA factor representing inflammation showed a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases showed a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Also, MOFA identified RTE expression as a risk factor for MDS. They proposed that this work showed the efficacy of their integrative approach to assess MDS prognostic risk that 'goes beyond all the scoring systems described thus far for MDS'.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):<br /> The authors present the cryo-EM structure of of PSI-fucoxanthin chlorophyll a/c-binding proteins (FCPs) supercomplex from the diatom Thalassiosira pseudonana CCMP1335 at a global resolution of 2.3 Å. This exceptional resolution allows the authors to construct a near-atomic model of the entire supercomplex and elucidate the molecular details of FCPs arrangement. The high-resolution structure reveals subunits not previously identified in earlier reconstructions and models, as well as sequence analysis of PSI-FCPIs from other diatoms and red algae. Additionally, the authors use their model in conjunction with a phylogenetic analysis to compare and contrast the structural features of the T. pseudonana supercomplex with those of Chaetoceros gracilis, uncovering key structural features that contribute to the efficiency of light energy conversion in diatoms.
The study employs the advanced technique of single particle cryo-electron microscopy to visualize the complex architecture of the PSI supercomplex at near-atomic resolution and analyze the specific roles of FCPs in enhancing photosynthetic performance in diatoms.
Overall, the approach and data are both compelling and of high quality. The paper is well written and will be of wide interest for comprehending the molecular mechanisms of photosynthesis in diatoms. This work provides valuable insights for applications in bioenergy, environmental conservation, plant physiology, and membrane protein structural biology.
-
Reviewer #2 (Public Review):
Summary:
This manuscript elucidated the cryo-electron microscopic structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Combining structural, sequence, and phylogenetic analyses, the authors provided solid evidence to reveal the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits and provided valuable information about the molecular mechanisms governing the assembly and selective binding of FCPIs in diatoms.
Strengths:
The manuscript is well-written and presented clearly as well as consistently. The supplemental figures are also of high quality.
Weaknesses:
Only minor comments (provided in recommendations for authors) to help improve the manuscript.
-
Reviewer #3 (Public Review):
Summary:
Understanding the structure and function of the photosynthetic machinery is crucial for grasping its mode of action. Photosystem I (PSI) plays a vital role in light-driven electron transfer, which is essential for generating cellular reducing power. A primary strategy to mitigate light and environmental stresses involves incorporating peripheral light-harvesting proteins. Among various lineages, the number of LHCIs and their protein and pigment compositions differ significantly in PSI-LHCI structures. However, it is still unclear how LHCIs recognize their specific binding sites in the PSI core. This study aims to address this question by obtaining a high-resolution structure of the PSI supercomplex, including fucoxanthin chlorophyll a/c-binding proteins (FCPs), referred to as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana. Through structural and sequence analyses, distinct protein-protein interactions are identified at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves.
Strengths:
The primary strength of this work lies in its superb isolation and structural determination, followed by clear discussion and conclusions. However, the interactions among the protein complexes and their relevance in formulating general rules are not definitively established. While efficiency is a crucial aspect, preventing damage is equally important, and currently, we cannot infer this from the provided structures.
Weaknesses:
The interactions among the protein complexes and their relevance in formulating general rules are not definitively established. While efficiency is a crucial aspect, preventing damage is equally important, and currently, we cannot infer this from the provided structures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.
Strengths:
The subject is of importance.
Weaknesses:
The conclusions are too strong for the presented data. The lack of statistical analysis makes this paper incomplete. The novelty of the findings is not clear.
Major issues:
(1) The novelty is in question since in the Abstract the authors highlight their main finding, which is that both the chemotaxis complex and the flagella localize to the same pole, as surprising. However, in the Introduction they state that "pathway-related receptors that mediate chemotaxis, as well as the flagellum are localized at the same cell pole17,18". I am not a pseudomonas researcher and from my short glance at these references, I could not tell whether they report colocalization of the two structures to the same pole. However, I trust the authors that they know the literature on the localization of the chemotaxis complex and flagella in their organism. See also major issue number 5 on the novelty regarding the involvement of c-di-GMP.
(2) Statistics for the microscopy images, on which most conclusions in this manuscript are based, are completely missing. Given that most micrographs present one or very few cells, together with the fact that almost all conclusions depend on whether certain macromolecules are at one or two poles and whether different complexes are in the same pole, proper statistics, based on hundreds of cells in several fields, are absolutely required. Without this information, the results are anecdotal and do not support the conclusions. Due to the importance of statistics for this manuscript, strict statistical tests should be used and reported. Moreover, representative large fields with many cells should be added as supportive information.
The problem is more pronounced when the authors make strong statements, as in lines 157-158: "The results revealed that the chemoreceptor arrays no longer grow robustly at the cell pole (Figure 2A)". Looking at the seven cells shown in Figure 2A, five of them show polar localization of the chemoreceptors. The question is then: what is the percentage of cells that show precise polar, near-polar, or mid cell localization (the three patterns shown here) in the mutant and in the wild type? Since I know that these three patterns can also be observed in WT cells, what counts is the difference, and whether it is statistically significant.
Even for the graphs shown in Figures 3C and 3D, where the proportion of cells with obvious chemoreceptor arrays and absolute fluorescence brightness of the chemosensory array are shown, respectively, the questions that arise are: for how many individual cells these values hold and what is the significance of the difference between each two strains?
(3) The authors conclude that "Motor structural integrity is a prerequisite for chemoreceptor self-assembly" based on the reduction in cells with chemoreceptor clusters in mutants deleted for flagellar genes, despite the proper polar localization of the chemotaxis protein CheY. They show that the level of CheY in the WT and the mutant strains is similar, based on Western blot, which in my opinion is over-exposed. "To ascertain whether it is motor integrity rather than functionality that influences the efficiency of chemosensory array assembly", they constructed a mutant deleted for the flagella stator and found that the motor is stalled while CheY behaves like in WT cells. The authors further "quantified the proportion of cells with receptor clusters and the absolute fluorescence intensity of individual clusters (Figures 3C-D)". While Figure 3DC suggests that, indeed, the flagella mutants show fewer cells with a chemotaxis complex, Figure 3D suggests that the differences in fluorescence intensity are not statistically significant.
Since it is obvious that the regulation of both structures' production and localization is codependent, I think that it takes more than a Western blot to make such a decision.
(4) I wonder why the authors chose to label CheY, which is the only component of the chemotaxis complex that shuttles back and forth to the base of the flagella. In any case, I think that they should strengthen their results by repeating some key experiments with labeled CheW or CheA.
(5) The last section of the results is very problematic, regarding the rationale, the conclusions, and the novelty. As far as the rationale is concerned, I do not understand why the authors assume that "a spatial separation between the chemoreceptors and flagellar motors should not significantly impact the temporal comparison in bacterial chemotaxis". Is there any proof for that? More surprising for me was to read that "The signal transduction pathways in E. coli are relatively simple, and the chemotaxis response regulator CheY-P affects only the regulation of motor switching". There are degrees of complexity among signal transduction pathways in E. coli, but the chemotaxis seems to be ranked at the top. CheY is part of the adaptation. Perfect adaptation, as many other issues related to the chemotaxis pathway, which include the wide dynamic range, the robustness, the sensitivity, and the signal amplification (gain), are still largely unexplained. Hence, such assumptions are not justified.
More perplexing is the novelty of the authors' documentation of the effect of the chemotaxis proteins on the c-di-GMP level. In 2013, Kulasekara et al. published a paper in eLife entitled "c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility". In the same year, Kulasekara published a paper entitled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa". The authors did not cite these works and I wonder why.
(6) Throughout the manuscript, the authors refer to foci of fluorescent CheY as "chemoreceptor arrays". If anything, these foci signify the chemotaxis complex, not the membrane-traversing chemoreceptors.
Conclusions:
The manuscript addresses an interesting subject and contains interesting, but incomplete, data.
-
Reviewer #2 (Public Review):
Summary:
Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. FlhF is known to cause the motor to localize to the pole in a different bacterial species, Vibrio cholera, but it is not involved in receptor localization in that bacterium. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.
Strengths:
The experiments and data look to be high-quality.
Weaknesses:
However, the interpretations and conclusions drawn from the experimental observations are not fully justified in my opinion.
I see two main issues with the evidence provided for the authors' claims.
(1) Assumptions about receptor localization:
The authors rely on YFP-tagged CheY to identify the location of the receptor cluster, but CheY is a diffusible cytoplasmic protein. In E. coli, CheY has been shown to localize at the receptor cluster, but the evidence for this in PA is less strong. The authors refer to a paper by Guvener et al 2006, which showed that CheY localizes to a cell pole, and CheA (a receptor cluster protein) also localizes to a pole, but my understanding is that colocalization of CheY and CheA was not shown. My concern is that CheY could instead localize to the motor in PA, say by binding FliM. This "null model" would explain the authors' observations, without colocalization of the receptors and motor.
Verifying that CheY and CheA are colocalized in PA would be a very helpful experiment to address this weakness.
(2) Argument for the functional importance of receptor-motor colocalization at the pole:
The authors argue that colocalization of the receptors and motors at the pole is important because it could keep phosphorylated CheY, CheY-p, restricted to a small region of the cell, preventing crosstalk with other signaling pathways. Their evidence for this is that overexpressing CheY leads to higher intracellular cdG levels and cell aggregation.
Say that the receptors and motors are colocalized at the pole. In E. coli, CheY-p rapidly diffuses through the cell. What would prevent this from occurring in PA, even with colocalization?
Elevating CheY concentration may increase the concentration of CheY-p in the cell, but might also stress the cells in other unexpected ways. It is not so clear from this experiment that elevated CheY-p throughout the cell is the reason that they aggregate, or that this outcome is avoided by colocalizing the receptors and motor at the same pole.
If localization of the receptor array and motor at one pole were important for keeping CheY-p levels low at the opposite pole, then we should expect cells in which the receptors and motor are not at the pole to have higher CheY-p at the opposite pole. According to the authors' argument, it seems like this should cause elevated cdG levels and aggregation in the delta flhF mutants with wild-type levels of CheY. But it does not look like this happened.
Instead of varying CheY expression, the authors could test their hypothesis that receptor-motor colocalization at the pole is important for preventing crosstalk by measuring cdG levels in the flhF mutant, in which the motor (and maybe the receptor cluster) are no longer localized in the cell pole.
-
Reviewer #3 (Public Review):
Summary:
The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild-type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.
Strengths:
The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.
Weaknesses:
The major weakness in this paper is that the authors never discussed how the flagellar gene expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? How many classes are there for these genes? Is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.
-
-
www.theguardian.com www.theguardian.com
Tags
- James Sallee
- Lew Daly
- The Inflation Reduction Act: Saving American Households Money While Reducing Climate Change and Air Pollution
- Matt Huber
- Inflation Reduction Act
- USA
- A review of US residential energy tax credits: distributional impacts, expenditures, and changes since 2006
- Just Solutions
- Climate change as class war
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:<br /> In this study, Davies and Plate set out to discover conserved host interactors of coronavirus non-structural proteins (Nsp). They used 293T cells to ectopically express flag-tagged Nsp2 and Nsp4 from five human and mouse coronaviruses, including SARS-CoV-1 and 2, and analyzed their interaction with host proteins by affinity purification mass-spectrometry (AP-MS). To confirm whether such interactors play a role in coronavirus infection, the authors measured the effects of individual knockdowns on replication of murine hepatitis virus (MHV) in mouse Delayed Brain Tumor cells. Using this approach, they identified a previously undescribed interactor of Nsp2, Malectin (Mlec), which is involved in glycoprotein processing and shows a potent pro-viral function in both MHV and SARS-CoV-2. Although the authors were unable to confirm this interaction in MHV-infected cells, they show that infection remodels many other Mlec interactions, recruiting it to the ER complex that catalyzes protein glycosylation (OST). Mlec knockdown reduced viral RNA and protein levels during MHV infection, although such effects were not limited to specific viral proteins. However, knockdown reduced the levels of five viral glycopeptides that map to Spike protein, suggesting it may be affected by Mlec.
Strengths:<br /> This is an elegant study that uses a state-of-the-art quantitative proteomic approach to identify host proteins that play critical roles in viral infection. Instead of focusing on a single protein from a single virus, it compares the interactomes of two viral proteins from five related viruses, generating a high confidence dataset. The functional follow-ups using multiple live and reporter viruses, including MHV and CoV2 variants, convincingly depict a pro-viral role for Mlec, a protein not previously implicated in coronavirus biology.
Weaknesses:<br /> Although a commonly used approach, AP-MS of ectopically expressed viral proteins may not accurately capture infection-related interactions. The authors observed Mlec-Nsp2 interactions in transfected 293T cells (1C) but were unable to reproduce those in mouse cells infected with MHV (3C). EIF4E2/GIGYF2, two bonafide interactors of CoV2 Nsp2 from previous studies, are listed as depleted compared to negative controls (S1D). Most other CoV2 Nsp2 interactors are also depleted by the same analysis (S1D). Previously reported MERS Nsp2 interactors, including ASCC1 and TCF25, are also not detected (S1D). Furthermore, although GIGYF2 was not identified as an interactor of MHV Nsp2/4 in human cells (S1D), its knockdown in mouse cells reduced MHV titers about 1000 fold (S4). The authors should attempt to explain these discrepancies.
More importantly, the authors were unable to establish a direct link between Mlec and the biogenesis of any viral or host proteins, by mass-spectrometry or otherwise. Although it is clear that Mlec promotes coronavirus infection, the mechanism remains unclear. Its knockdown does not affect the proteome composition of uninfected cells (S15B), suggesting it is not required for proteome maintenance under normal conditions. The only viral glycopeptides detected during MHV infection originated from Spike (5D), although other viral proteins are also known to be glycosylated. Cells depleted for Mlec produce ~4-fold less Spike protein (4E) but no more than 2-fold less glycosylated spike peptides (5D), compounding the interpretation of Mlec effects on viral protein biogenesis. Furthermore, Spike is not essential for the pro-viral role of Mlec, given that Mlec knockdown reduces replication of SARS-CoV-2 replicons that express all viral proteins except for Spike (6A/B).
Any of the observed effects on viral protein levels could be secondary to multiple other processes. Interventions that delay infection for any reason could lead to an imbalance of viral protein levels because Spike and other structural proteins are produced at a much higher rate than non-structural proteins due to the higher abundance of their cognate subgenomic RNAs. Similarly, the observation that Mlec depletion attenuates MHV-mediated changes to the host proteome (S15C/D) can also be attributed to indirect effects on viral replication, regardless of glycoprotein processing. In the discussion, the authors acknowledge that Mlec may indirectly affect infection through modulation of replication complex formation or ER stress, but do not offer any supporting evidence. Interestingly, plant homologs of Mlec are implicated in innate immunity, favoring a more global role for Mlec in mammalian coronavirus infections.
Finally, the observation that both Nsp2 (3C) and Mlec (3E/F) are recruited to the OST complex during MHV infection neither support nor refute any of these alternate hypotheses, given that Mlec is known to interact with OST in uninfected cells and that Nsp2 may interact with OST as part of the full length unprocessed Orf1a, as it co-translationally translocates into the ER.
Therefore, the main claims about the role of Mlec in coronavirus protein biogenesis are only partially supported.
-
Reviewer #1 (Public Review):
In this manuscript, the authors employ a combined proteomic and genetic approach to identify the glycoprotein QC factor malectin as an important protein involved in promoting coronavirus infection. Using proteomic approaches, they show that the non-structural protein NSP2 and malectin interact in the absence of viral infection, but not in the presence of viral infection. However, both NSP2 and malectin engage the OST complex during viral infection, with malectin also showing reduced interactions with other glycoprotein QC proteins. Malectin KD reduce replication of coronaviruses, including SARS-COV2. Collectively, these results identify Malectin as a glycoprotein QC protein involved in regulating coronavirus replication that could potentially be targeted to mitigate coronavirus replication.
Overall, the experiments described appear well performed and the interpretations generally reflect the results. Moreover, this work identifies Malectin as an important pro-viral protein whose activity could potentially be therapeutically targeted for the broad treatment of coronavirus infection. However, there are some weaknesses in the work that, if addressed, would improve the impact of the manuscript.
Notably, the mechanism by which malectin regulates viral replication is not well described. It is clear from the work that malectin is a pro-viral protein in the work presented, but the mechanistic basis of this activity is not pursued. Some potential mechanisms are proposed in the discussion, but the manuscript would be strengthened if additional insight was included. For example, does the UPR activated to higher levels in infected cells depleted of malectin? Do glycosylation patterns of viral (or non-viral) proteins change in malectin-depleted cells? Additional insight into this specific question would significantly improve the manuscript.
Further, the evidence for increased interactions between OST and malectin during viral infection is fairly weak, despite being a major talking point throughout the manuscript. The reduced interactions between malectin and other glycoproteostasis QC factors is evident, but the increased interactions with OST are not well supported. I'd recommend backing off on this point throughout the text, instead, continuing to highlight the reduced interactions.
I was also curious as to why non-structural proteins, nsp2 and nsp4, showed robust interactions with host proteins localized to both the ER and mitochondria? Do these proteins localize to different organelles or do these interactions reflect some other type of dysregulation? It would be useful to provide a bit of speculation on this point.
Again, the overall identification of malectin as a pro-viral protein involved in the replication of multiple different coronaviruses is interesting and important, but additional insights into the mechanism of this activity would strengthen the overall impact of this work.
-
Reviewer #2 (Public Review):
Summary:<br /> A strong case is presented to establish that the endoplasmic reticulum carbohydrate binding protein malectin is an important factor for coronavirus propagation. Malectin was identified as a coronavirus nsp2 protein interactor using quantitative proteomics and its importance in the viral life cycle was supported by using a functional genetic screen and viral assays. Malectin binds diglucosylated proteins, an early glycoform thought to transiently exist on nascent chains shortly after translation and translocation; yet a role for malectin has previously been proposed in later quality control decisions and degradation targeting. These two observations have been difficult to reconcile temporally. In agreement with results from the Locher lab, the malectin-interactome shown here includes a number of subunits of the oligosaccharyltransferase complex (OST). These results place malectin in close proximity to both the co-translational (STT3A or OST-A) and post-translational (STT3B or OST-B) complexes. It follows that malectin knockdown was associated with coronavirus Spike protein hypoglycosylation.
Strengths:<br /> Strengths include using multiple viruses to identify interactors of nsp2 and quantitative proteomics along with multiple viral assays to monitor the viral life cycle.
Weaknesses:<br /> Malectin knockdown was shown to be associated with Spike protein hypoglycosylation. This was further supported by malectin interactions with the OSTs. However, no specific role of malectin in glycosylation was discussed or proposed.
Given the likelihood that malectin plays a role in the glycosylation of heavily glycosylated proteins like Spike, it is unfortunate that only 5 glycosites on Spike were identified using the MS deamidation assay when Spike has a large number of glycans (~22 sites). The mass spec data set would also include endogenous proteins. Were any heavily glycosylated endogenous proteins hypoglycosylated in the MS analysis in Fig 5D?
The inclusion of the nsp4 interactome and its partial characterization is a distraction from the storyline that focuses on malectin and nsp2.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
EnvA-pseudotyped glycoprotein-deleted rabies virus has emerged as an essential tool for tracing monosynaptic inputs to genetically defined neuron populations in the mammalian brain. Recently, in addition to the SAD B19 rabies virus strain first described by Callaway and colleagues in 2007, the CVS N2c rabies virus strain has become popular due to its low toxicity and high trans-synaptic transfer efficiency. However, despite its widespread use in the mammalian brain, particularly in mice, the application of this cell-type-specific monosynaptic rabies tracing system in zebrafish has been limited by low labeling efficiency and high toxicity. In this manuscript, the authors aimed to develop an efficient retrograde monosynaptic rabies-mediated circuit mapping tool for larval zebrafish. Given the translucent nature of larval zebrafish, whole-brain neuronal activities can be monitored, perturbed, and recorded over time. Introducing a robust circuit mapping tool for larval zebrafish would enable researchers to simultaneously investigate the structure and function of neural circuits, which would be of significant interest to the neural circuit research community. Furthermore, the ability to track rabies-labeled cells over time in the transparent brain could enhance our understanding of the trans-synaptic retrograde tracing mechanism of the rabies virus.
To establish an efficient rabies virus tracing system in the larval zebrafish brain, the authors conducted meticulous side-by-side experiments to determine the optimal combination of trans-expressed rabies G proteins, TVA receptors, and recombinant rabies virus strains. Consistent with observations in the mouse brain, the CVS N2c strain trans-complemented with N2cG was found to be superior to the SAD B19 combination, offering lower toxicity and higher efficiency in labeling presynaptic neurons. Additionally, the authors tested various temperatures for the larvae post-virus injection and identified 36{degree sign}C as the optimal temperature for improved virus labeling. They then validated the system in the cerebellar circuits, noting evolutionary conservation in the cerebellar structure between zebrafish and mammals. The monosynaptic inputs to Purkinje cells from granule cells were neatly confirmed through ablation experiments.
However, there are a couple of issues that this study should address. Additionally, conducting some extra experiments could provide valuable information to the broader research field utilizing recombinant rabies viruses as retrograde tracers.
(1) It was observed that many radial glia were labeled, which casts doubt on the specificity of trans-synaptic spread between neurons. The issues of transneuronal labeling of glial cells should be addressed and discussed in more detail. In this manuscript, the authors used a transgenic zebrafish line carrying a neuron-specific Cre-dependent reporter and EnvA-CVS N2c(dG)-Cre virus to avoid the visualization of virally infected glial cells. However, this does not solve the real issue of glial cell labeling and the possibility of a non-synaptic spread mechanism.
In addition, wrong citations in Line 307 were made when referring to previous studies discovering the same issue of RVdG-based transneuronal labeling radial glial cells.
"The RVdG-based transneuronal labeling of radial glial cells was commonly observed in larval zebrafish29,30".
The cited work was conducted using vesicular stomatitis virus (VSV). A more thorough analysis and/or discussion on this topic should be included. Several key questions should be addressed:
Does the number of labeled glial cells increase over time?<br /> Do they increase at the same rate over time as labeled neurons?<br /> Are the labeled glial cells only present around the injection site?<br /> Can the phenomenon of transneuronal labeling of radial glial cells be mitigated if the tracing is done in slightly older larvae?<br /> What is the survival rate of the infected glial cells over time?<br /> If an infected glial cell dies due to infection or gets ablated, does the rabies virus spread from the dead glial cells?<br /> If TVA and rabies G are delivered to glial cells, followed by rabies virus injection, will it lead to the infection of other glial cells or neurons?
Answers to any of these questions could greatly benefit the broader research community.
(2) The optimal virus tracing effect has to be achieved by raising the injected larvae at 36C. Since the routine temperature of zebrafish culture is around 28C, a more thorough characterization of the effect on the health of zebrafish should be conducted.
(3) Given the ability of time-lapse imaging of the infected larval zebrafish brain, the system can be taken advantage of to tackle important issues of rabies virus tracing tools.<br /> a) Toxicity.<br /> The toxicity of rabies viruses is an important issue that limits their application and affects the interpretation of traced circuits. For example, if a significant proportion of starter cells die before analysis, the traced presynaptic networks cannot be reliably assigned to a "defined" population of starter cells. In this manuscript, the authors did an excellent job of characterizing the effects of different rabies strains, G proteins derived from various strains, and levels of G protein expression on starter cell survival. However, an additional parameter that should be tested is the dose of rabies virus injection. The current method section states that all rabies virus preparations were diluted to 2x10^8 infection units per ml, and 2-5 nl of virus suspension was injected near the target cells. It would be interesting to know the impact of the dose/volume of virus injection on retrograde tracing efficiency and toxicity. Would higher titers of the virus lead to more efficient labeling but stronger toxicities? What would be the optimal dose/volume to balance efficiency and toxicity? Addressing these questions would provide valuable insights and help optimize the use of rabies viruses for circuit tracing.
b) Primary starters and secondary starters:<br /> Given that the trans-expression of TVA and G is widespread, there is the possibility of coexistence of starter cells from the initial infection (primary starters) and starter cells generated by rabies virus spreading from the primary starters to presynaptic neurons expressing G. This means that the labeled input cells could be a mixed population connected with either the primary or secondary starter cells.
It would be immensely interesting if time-lapse imaging could be utilized to observe the appearance of such primary and secondary starter cells. Assuming there is a time difference between the initial appearance of these two populations, it may be possible to differentiate the input cells wired to these populations based on a similar temporal difference in their initial appearance. This approach could provide valuable insights into the dynamics of rabies virus spread and the connectivity of neural circuits.
-
Reviewer #2 (Public Review):
The study by Chen, Deng et al. aims to develop an efficient viral transneuronal tracing method that allows efficient retrograde tracing in the larval zebrafish. The authors utilize pseudotyped-rabies virus that can be targeted to specific cell types using the EnvA-TvA systems. Pseudotyped rabies virus has been used extensively in rodent models and, in recent years, has begun to be developed for use in adult zebrafish. However, compared to rodents, the efficiency of the spread in adult zebrafish is very low (~one upstream neuron labeled per starter cell). Additionally, there is limited evidence of retrograde tracing with pseudotyped rabies in the larval stage, which is the stage when most functional neural imaging studies are done in the field. In this study, the authors systematically optimized several parameters of rabies tracing, including different rabies virus strains, glycoprotein types, temperatures, expression construct designs, and elimination of glial labeling. The optimal configurations developed by the authors are up to 5-10 fold higher than more typically used configurations.
The results are solid and support the conclusions. However, the methods should be described in more detail to allow other zebrafish researchers to apply this method in their own work.
Additionally, some findings are presented anecdotally, i.e., without quantification or sufficient detail to allow close examinations. Lastly, there is concern that the reagents created by the authors will not be easily accessible to the zebrafish community.
(1) The titer used in each experiment was not stated. In the methods section, it is stated that aliquots are stored at 2x10e8. Is it diluted for injection? Are all of the experiments in the manuscripts with the same titer?
2) The age for injection is quite broad (3-5 dpf in Fig 1 and 4-6 dpf in Fig 2). Given that viral spread efficiency is usually more robust in younger animals, describing the exact injection age for each experiment is critical.
(3) More details should be provided for the paired electrical stimulation-calcium imaging study. How many GC cells were tested? How many had corresponding PC cell responses? What is the response latency? For example, images of stimulated and recorded GCs and PCs should be shown.
(4) It is unclear how connectivity between specific PC and GC is determined for single neuron connectivity. In other images (Figure 4C), there are usually multiple starter cells and many GCs. It was not shown that the image resolution can establish clear axon-dendritic contacts between cell pairs.
-
Reviewer #3 (Public Review):
Summary:
The authors establish reagents and define experimental parameters useful for defining neurons retrograde to a neuron of interest.
Strengths:
A clever approach, careful optimization, novel reagents, and convincing data together lead to convincing conclusions.
Weaknesses:
In the current version of the manuscript, the tracing results could be better centered with respect to past work, certain methods could be presented more clearly, and other approaches worth considering.
Appraisal/Discussion:
Trans-neuronal tracing in the larval zebrafish preparation has lagged behind rodent models, limiting "circuit-cracking" experiments. Previous work has demonstrated that pseudotyped rabies virus-mediated tracing could work, but published data suggested that there was considerable room for optimization. The authors take a major step forward here, identifying a number of key parameters to achieve success and establishing new transgenic reagents that incorporate modern intersectional approaches. As a proof of concept, the manuscript concludes with a rough characterization of inputs to cerebellar Purkinje cells. The work will be of considerable interest to neuroscientists who use the zebrafish model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Wang, Y. et al. used a silicone wire embolus to definitively and acutely clot the pterygopalatine ophthalmic artery in addition to carotid artery ligation to completely block blood supply to the mouse inner retina, which mimic clinical acute retinal artery occlusion. A detailed characterization of this mouse model determined the time course of inner retina degeneration and associated functional deficits, which closely mimic human patients. Whole retina transcriptome profiling and comparison revealed distinct features associated with ischemia, reperfusion, and different model mechanisms. Interestingly and importantly, this team found a sequential event including reperfusion-induced leukocyte infiltration from blood vessels, residual microglial activation, and neuroinflammation that may lead to neuronal cell death.
Strengths:
Clear demonstration of the surgery procedure with informative illustrations, images, and superb surgical videos.<br /> Two time points of ischemia and reperfusion were studied with convincing histological and in vivo data to demonstrate the time course of various changes in retinal neuronal cell survivals, ERG functions, and inner/outer retina thickness.<br /> The transcriptome comparison among different retinal artery occlusion models provides informative evidence to differentiate these models.<br /> The potential applications of the in vivo retinal ischemia-reperfusion model and relevant readouts demonstrated by this study will certainly inspire further investigation of the dynamic morphological and functional changes of retinal neurons and glial cell responses during disease progression and before and after treatments.
Weaknesses:
It would be beneficial to the manuscript and the readers if the authors could improve the English of this manuscript by correcting obvious grammar errors, eliminating many of the acronyms that are not commonly used by the field, and providing a reason why this complicated but clever surgery procedure was designed and a summary table with time course of all the morphological, functional, cellular, and transcriptome changes associated with this model.
-
Reviewer #2 (Public Review):
Summary:
The authors of this manuscript aim to develop a novel animal model to accurately simulate the retinal ischemic process in retinal artery occlusion (RAO). A unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model was established using silicone wire embolization combined with carotid artery ligation. This manuscript provided data to show the changes of major classes of retinal neural cells and visual dysfunction following various durations of ischemia (30 minutes and 60 minutes) and reperfusion (3 days and 7 days) after UPOAO. Additionally, transcriptomics was utilized to investigate the transcriptional changes and elucidate changes in the pathophysiological process in the UPOAO model post-ischemia and reperfusion. Furthermore, the authors compared transcriptomic differences between the UPOAO model and other retinal ischemic-reperfusion models, including HIOP and UCCAO, and revealed unique pathological processes.
Strengths:
The UPOAO model represents a novel approach for studying retinal artery occlusion. The study is very comprehensive.
Weaknesses:
Originally, some statements were incorrect and confusing. However, the authors have made clarifications in the revised manuscript to avoid confusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction, and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.
Strengths:
- The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells.<br /> - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.
Weaknesses:
- The authors claim that the cellular Potts Model (CPM) is unable to achieve the results of the vertex model (VM) simulations due to naturally non-straight cellular junctions in the CPM versus the VM. The lack of a substantial comparison undermines this assertion. None of the references mentioned in the manuscript are from a work using vertex model with straight cellular junctions, simulating apical constriction purely by a enhancing a length-independent apical tension. Sherrard et al and Pérez-González et al. use 2D and 3D Vertex Models, respectively, with a "contractility" force driving apical constriction. However, their models allow cell curvature. Both references suggest that the cell side flexibility of the CPM shouldn't be the main issue of the "contractility model" for apical constriction.<br /> - The myosin cable is assumed to encircle the invaginated cells. Therefore, it is not clear why the force acts over the entire system (even when decreasing towards the center), and not locally in the contour of the group of cells under constriction. The specific form of the associated potential is missing. It is unclear how dependent the results of the manuscript are on these not-well-motivated and model-specific rules for the myosin cable.<br /> - The authors are using different names than the conventional ones for the energy terms. Their current attempt to clarify what is usually done in other works might lead to further confusion.
-
Reviewer #2 (Public Review):
Summary:
In their work, the Authors study local mechanics in an invaginating epithelial tissue. The work, which is mostly computational, relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The Authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity".
Strengths:
It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue.
Weaknesses:
Although the Authors have improved and clarified certain aspects of their results as suggested by the Reviewers, the presentation still mostly relies on showing simulation snapshots. Snapshots can be useful, but when there are too many, the results are hard to read. The manuscript would benefit from more quantitative plots like phase diagrams etc.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
As adult-born granule neurons have been shown to play diverse roles, both positive and negative, to modulate hippocampal circuitry and function in epilepsy, understanding the mechanisms by which altered neurogenesis contribute to seizures is important for future therapeutic strategies. The work by Jain et al., demonstrates that increasing adult-born neurons (not increasing adult neurogenesis because BrdU birthdating was not performed in this study) before status epilepticus (SE) leads to a suppression in chronic seizures in the pilocarpine model of temporal lobe epilepsy. This work is potentially interesting because previous studies showed suppressing adult-born neurons led to reduced chronic seizures.
To increase adult-born neurons, the authors conditionally delete the pro-apoptotic gene Bax using a tamoxifen inducible Nestin-CreERT2 which has been previously published to increase proliferation and survival of adult-born neurons by Sahay et al. (although this was not shown in this study). After 6 weeks of tamoxifen injection, the authors subject male and female mice to pilocarpine induced SE. In the first study, at 2 hours after pilocarpine, the authors examine latency to the first seizure, severity and total number of acute seizures, and power during SE. In the second study in a separate group of mice, the authors examine chronic seizure number and frequency, seizure duration, postictal depression, and seizure distribution/cluster seizures for 3 weeks after pilocarpine. Overall, the study concludes that increasing adult-born neurons in the normal adult brain can reduce epilepsy in females specifically.
Strengths:
(1) The study is sex matched and reveals differences in response to increasing adult-born neurons in chronic seizures between male and females.
(2) The EEG recording parameters are stringent, and analysis of chronic seizures is comprehensive. In two separate experiments, the electrodes were implanted to record EEG from cortex as well as hippocampus. The recording is done for 10 hours post pilocarpine to analyze acute seizures, and for 3 weeks continuous video EEG recording was done to analyze chronic seizures.
Weaknesses:
(1) Increased DCX alone (without birthdating with BrdU) could indicate increased survival of adult-born neurons, not proliferation or birth of newborn neurons per se. While prior work has demonstrated that tamoxifen injection in adult mice showed an increase in dentate gyrus neurogenesis based on studies of BrdU, Ki67, and DCX (Sahay et al., 2011), the dynamics of adult-born neurons (proliferation, differentiation, and/or survival) could be different in epileptic (pilocarpine-treated) animals. Other stages, e.g., proliferation of neural precursors or maturation of adult-born dentate granule cells, was not examined. Analysis of additional stages of adult neurogenesis may reveal additional cellular understanding and add impact of the work on the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Wang et al., present a paper aiming to identify NALCN and TRPC6 channels as key mechanisms regulating VTA dopaminergic neuron spontaneous firing and investigating whether these mechanisms are disrupted in a chronic unpredictable stress model mouse.
Major strengths:
This paper uses multiple approaches to investigate the role of NALCN and TRPC6 channels in VTA dopaminergic neurons.
-
Reviewer #2 (Public Review):
This paper describes the results of a set of complementary and convergent experiments aimed at describing roles for the non-selective cation channels NALCN and TRPC6 in mediating subthreshold inward depolarizing currents and action potential generation in VTA DA neurons under normal physiological conditions. In general, the authors have responded satisfactorily to reviewer comments, and the revised manuscript is improved.
-
Reviewer #3 (Public Review):
The authors of this study have examined which cation channels specifically confer to ventral tegmental area dopaminergic neurones their autonomic (spontaneous) firing properties. Having brought evidence for the key role played by NALCN and TRPC6 channels therein, the authors aimed at measuring whether these channels play some role in so-called depression-like (but see below) behaviors triggered by chronic exposure to different stressors. Following evidence for a down-regulation of TRPC6 protein expression in ventral tegmental area dopaminergic cells of stressed animals, the authors provide evidence through viral expression protocols for a causal link between such a down-regulation and so-called depression-like behaviors. The main strength of this study lies on a comprehensive bottom-up approach ranging from patch-clamp recordings to behavioral tasks. These tasks mainly address anxiety-like behaviors and so-called depression-like behaviors (sucrose choice, forced swim test, tail suspension test). The results gathered by means of these procedures are clearcut.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper reports an intracranial SEEG study of speech coordination, where participants synchronize their speech output with a virtual partner that is designed to vary its synchronization behavior. This allows the authors to identify electrodes throughout the left hemisphere of the brain that have activity (both power and phase) that correlates with the degree of synchronization behavior. They find that high-frequency activity in the secondary auditory cortex (superior temporal gyrus) is correlated to synchronization, in contrast to primary auditory regions. Furthermore, activity in the inferior frontal gyrus shows a significant phase-amplitude coupling relationship that is interpreted as compensation for deviation from synchronized behavior with the virtual partner.
Strengths:
(1) The development of a virtual partner model trained for each individual participant, which can dynamically vary its synchronization to the participant's behavior in real-time, is novel and exciting.
(2) Understanding real-time temporal coordination for behaviors like speech is a critical and understudied area.
(3) The use of SEEG provides the spatial and temporal resolution necessary to address the complex dynamics associated with the behavior.
(4) The paper provides some results that suggest a role for regions like IFG and STG in the dynamic temporal coordination of behavior both within an individual speaker and across speakers performing a coordination task.
Weaknesses:
(1) The main weakness of the paper is that the results are presented in a largely descriptive and vague manner. For instance, while the interpretation of predictive coding and error correction is interesting, it is not clear how the experimental design or analyses specifically support such a model, or how they differentiate that model from the alternatives. It's possible that some greater specificity could be achieved by a more detailed examination of this rich dataset, for example by characterizing the specific phase relationships (e.g., positive vs negative lags) in areas that show correlations with synchronization behavior. However, as written, it is difficult to understand what these results tell us about how coordination behavior arises.
(2) In the results section, there's a general lack of quantification. While some of the statistics reported in the figures are helpful, there are also claims that are stated without any statistical test. For example, in the paragraph starting on line 342, it is claimed that there is an inverse relationship between rho-value and frequency band, "possibly due to the reversed desynchronization/synchronization process in low and high frequency bands". Based on Figure 3, the first part of this statement appears to be true qualitatively, but is not quantified, and is therefore impossible to assess in relation to the second part of the claim. Similarly, the next paragraph on line 348 describes optimal clustering, but statistics of the clustering algorithm and silhouette metric are not provided. More importantly, it's not entirely clear what is being clustered - is the point to identify activity patterns that are similar within/across brain regions? Or to interpret the meaning of the specific patterns? If the latter, this is not explained or explored in the paper.
(3) Given the design of the stimuli, it would be useful to know more about how coordination relates to specific speech units. The authors focus on the syllabic level, which is understandable. But as far as the results relate to speech planning (an explicit point in the paper), the claims could be strengthened by determining whether the coordination signal (whether error correction or otherwise) is specifically timed to e.g., the consonant vs the vowel. If the mechanism is a phase reset, does it tend to occur on one part of the syllable?
(4) In the discussion the results are related to a previously-described speech-induced suppression effect. However, it's not clear what the current results have to do with SIS, since the speaker's own voice is present and predictable from the forward model on every trial. Statements such as "Moreover, when the two speech signals come close enough in time, the patient possibly perceives them as its own voice" are highly speculative and apparently not supported by the data.
(5) There are some seemingly arbitrary decisions made in the design and analysis that, while likely justified, need to be explained. For example, how were the cutoffs for moderate coupling vs phase-shifted coupling (k ~0.09) determined? This is noted as "rather weak" (line 212), but it's not clear where this comes from. Similarly, the ROI-based analyses are only done on regions "recorded in at least 7 patients" - how was this number chosen? How many electrodes total does this correspond to? Is there heterogeneity within each ROI?
-
Reviewer #2 (Public Review):
Summary:
This paper investigates the neural underpinnings of an interactive speech task requiring verbal coordination with another speaker. To achieve this, the authors recorded intracranial brain activity from the left hemisphere in a group of drug-resistant epilepsy patients while they synchronised their speech with a 'virtual partner'. Crucially, the authors were able to manipulate the degree of success of this synchronisation by programming the virtual partner to either actively synchronise or desynchronise their speech with the participant, or else to not vary its speech in response to the participant (making the synchronisation task purely one-way). Using such a paradigm, the authors identified different brain regions that were either more sensitive to the speech of the virtual partner (primary auditory cortex), or more sensitive to the degree of verbal coordination (i.e. synchronisation success) with the virtual partner (secondary auditory cortex and IFG). Such sensitivity was measured by (1) calculating the correlation between the index of verbal coordination and mean power within a range of frequency bands across trials, and (2) calculating the phase-amplitude coupling between the behavioural and brain signals within single trials (using the power of high-frequency neural activity only). Overall, the findings help to elucidate some of the left hemisphere brain areas involved in interactive speaking behaviours, particularly highlighting the high-frequency activity of the IFG as a potential candidate supporting verbal coordination.
Strengths:
This study provides the field with a convincing demonstration of how to investigate speaking behaviours in more complex situations that share many features with real-world speaking contexts e.g. simultaneous engagement of speech perception and production processes, the presence of an interlocutor, and the need for inter-speaker coordination. The findings thus go beyond previous work that has typically studied solo speech production in isolation, and represent a significant advance in our understanding of speech as a social and communicative behaviour. It is further an impressive feat to develop a paradigm in which the degree of cooperativity of the synchronisation partner can be so tightly controlled; in this way, this study combines the benefits of using pre-recorded stimuli (namely, the high degree of experimental control) with the benefits of using a live synchronisation partner (allowing the task to be truly two-way interactive, an important criticism of other work using pre-recorded stimuli). A further key strength of the study lies in its employment of stereotactic EEG to measure brain responses with both high temporal and spatial resolution, an ideal method for studying the unfolding relationship between neural processing and this dynamic coordination behaviour.
Weaknesses:
One major limitation of the current study is the lack of coverage of the right hemisphere by the implanted electrodes. Of course, electrode location is solely clinically motivated, and so the authors did not have control over this. However, this means that the current study neglects the potentially important role of the right hemisphere in this task. The right hemisphere has previously been proposed to support feedback control for speech (likely a core process engaged by synchronous speech), as opposed to the left hemisphere which has been argued to underlie feedforward control (Tourville & Guenther, 2011). Indeed, a previous fMRI study of synchronous speech reported the engagement of a network of right hemisphere regions, including STG, IPL, IFG, and the temporal pole (Jasmin et al., 2016). Further, the release from speech-induced suppression during a synchronous speech reported by Jasmin et al. was found in the right temporal pole, which may explain the discrepancy with the current finding of reduced leftward high-frequency activity with increasing verbal coordination (suggesting instead increased speech-induced suppression for successful synchronisation). The findings should therefore be interpreted with the caveat that they are limited to the left hemisphere, and are thus likely missing an important aspect of the neural processing underpinning verbal coordination behaviour.
A further limitation of this study is that its findings are purely correlational in nature; that is, the results tell us how neural activity correlates with behaviour, but not whether it is instrumental in that behaviour. Elucidating the latter would require some form of intervention such as electrode stimulation, to disrupt activity in a brain area and measure the resulting effect on behaviour. Any claims therefore as to the specific role of brain areas in verbal coordination (e.g. the role of the IFG in supporting online coordinative adjustments to achieve synchronisation) are therefore speculative.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Johnston and Smith used linear electrode arrays to record from small populations of neurons in the superior colliculus (SC) of monkeys performing a memory-guided saccade (MGS) task. Dimensionality reduction (PCA) was used to reveal low-dimensional subspaces of population activity reflecting the slow drift of neuronal signals during the delay period across a recording session (similar to what they reported for parts of the cortex: Cowley et al., 2020). This SC drift was correlated with a similar slow-drift subspace recorded from the prefrontal cortex, and both slow-drift subspaces tended to be associated with changes in arousal (pupil size). These relationships were driven primarily by neurons in superficial layers of the SC, where saccade sensitivity/selectivity is typically reduced. Accordingly, delay-period modulations of both spiking activity and pupil size were independent of saccade-related activity, which was most prevalent in deeper layers of the SC. The authors suggest that these findings provide evidence of a separation of arousal- and motor-related signals. The analysis techniques expand upon the group's previous work and provide useful insight into the power of large-scale neural recordings paired with dimensionality reduction. This is particularly important with the advent of recording technologies which allow for the measurement of spiking activity across hundreds of neurons simultaneously. Together, these results provide a useful framework for comparing how different populations encode signals related to cognition, arousal, and motor output in potentially different subspaces.
The conclusions drawn by this paper, however, are only partially supported by the data. Additional statistical comparisons and clarifications are needed.
Comments:
(1) The authors make fairly strong claims that "arousal-related fluctuations are isolated from neurons in the deep layers of the SC" (emphasis added). This conclusion is based on comparisons between a "slow drift axis", a low-dimensional representation of neuronal drift, and other measures of arousal (Figures 2C, 3) and motor output sensitivity (Figures 2B, 3B). However, the metrics used to compare the slow-drift axis and motor activity were computed during separate task epochs: the delay period (600-1100 ms) and a peri-saccade epoch (25 ms before and after saccade initiation), respectively. As the authors reference, deep-layer SC neurons are typically active only around the time of a saccade. Therefore, it is not clear if the lack of arousal-related modulations reported for deep-layer SC neurons is because those neurons are truly insensitive to those modulations, or if the modulations were not apparent because they were assessed in an epoch in which the neurons were not active. A potentially more valuable comparison would be to calculate a slow-drift axis aligned to saccade onset.
(2) More generally, arousal-related signals may persist throughout multiple different epochs of the task. It would be worthwhile to determine whether similar "slow-drift" dynamics are observed for baseline, sensory-evoked, and saccade-related activity. Although it may not be possible to examine pupil responses during a saccade, there may be systematic relationships between baseline and evoked responses.
(3) The relationships between changes in SC activity and pupil size are quite small (Figures 2C & 5C). Although the distribution across sessions (Figure 2C) is greater than chance, they are nearly 1/4 of the size compared to the PFC-SC axis comparisons. Likewise, the distribution of r2 values relating pupil size and spiking activity directly (Figure 5) is quite low. We remain skeptical that these drifts are truly due to arousal and cannot be accounted for by other factors. For example, does the relationship persist if accounting for a very simple, monotonic (e.g., linear) drift in pupil size and overall firing rate over the course of an individual session?
(4) It is not clear how the final analysis (Figure 6) contributes to the authors' conclusions. The authors perform PCA on: (i) residual spiking responses during the delay period binned according to pupil size, and (ii) spiking responses in the saccade epoch binned according to target location (i.e., the saccade tuning curve). The corresponding PCs are the spike-pupil axis and the saccade tuning axis, respectively. Unsurprisingly, the spike-pupil axis that captures variance associated with arousal (and removes variance associated with saccade direction) was not correlated with a saccade-tuning axis that captures variance associated with saccade direction and omits arousal. Had these measures been related it would imply a unique association between a neuron's preferred saccade direction and pupil control- which seems unlikely. The separation of these axes thus seems trivial and does not provide evidence of a "mechanism...in the SC to prevent arousal-related signals interfering with the motor output." It remains unknown whether, for example, arousal-related signals may impact trial-by-trial changes in neuronal gain near the time of a saccade, or alter saccade dynamics such as acceleration, precision, and reaction time.
-
Reviewer #2 (Public Review):
Summary:
Neurons in motor-related areas have increasingly been shown to carry also other, non-motoric signals. This creates a problem of avoidance of interference between the motor and non-motor-related signals. This is a significant problem that likely affects many brain areas. The specific example studied here is interference between saccade-related activity and slow-changing arousal signals in the superior colliculus. The authors identify neuronal activity related to saccades and arousal. Identifying saccade-related activity is straightforward, but arousal-related activity is harder to identify. The authors first identify a potential neuronal correlate of arousal using PCA to identify a component in the population activity corresponding to slow drift over the recording session. Next, they link this component to arousal by showing that the component is present across different brain areas (SC and PFC), and that it is correlated with pupil size, an external marker of arousal. Having identified an arousal-related component in SC, the authors show next that SC neurons with strong motor-related activity are less strongly affected by this arousal component (both SC and PFC). Lastly, they show that SC population activity patterns related to saccades and pupil size form orthogonal subspaces in the SC population.
Strengths:
A great strength of this research is the clear description of the problem, its relationship with the performed analysis, and the interpretation of the results. the paper is very well written and easy to follow.
An additional strength is the use of fairly sophisticated analysis using population activity.
Weaknesses:
(1) The greatest weakness in the present research is the fact that arousal is a functionally less important non-motoric variable. The authors themselves introduce the problem with a discussion of attention, which is without any doubt the most important cognitive process that needs to be functionally isolated from oculomotor processes. Given this introduction, one cannot help but wonder, why the authors did not design an experiment, in which spatial attention and oculomotor control are differentiated. Absent such an experiment, the authors should spend more time explaining the importance of arousal and how it could interfere with oculomotor behavior.
(2) In this context, it is particularly puzzling that one actually would expect effects of arousal on oculomotor behavior. Specifically, saccade reaction time, accuracy, and speed could be influenced by arousal. The authors should include an analysis of such effects. They should also discuss the absence or presence of such effects and how they affect their other results.
(3) The authors use the analysis shown in Figure 6D to argue that across recording sessions the activity components capturing variance in pupil size and saccade tuning are uncorrelated. however, the distribution (green) seems to be non-uniform with a peak at very low and very high correlation specifically. The authors should test if such an interpretation is correct. If yes, where are the low and high correlations respectively? Are there potentially two functional areas in SC?
-
Reviewer #3 (Public Review):
Summary:
This study looked at slow changes in neuronal activity (on the order of minutes to hours) in the superior colliculus (SC) and prefrontal cortex (PFC) of two monkeys. They found that SC activity shows slow drift in neuronal activity like in the cortex. They then computed a motor index in SC neurons. By definition, this index is low if the neuron has stronger visual responses than motor responses, and it is low if the neuron has weaker visual responses and stronger motor responses. The authors found that the slow drift in neuronal activity was more prevalent in the low motor index SC neurons and less prevalent in the high motor index neurons. In addition, the authors measured pupil diameter and found it to correlate with slow drifts in neuronal activity, but only in the neurons with lower motor index of the SC. They concluded that arousal signals affecting slow drifts in neuronal modulations are brain-wide. They also concluded that these signals are not present in the deepest SC layers, and they interpreted this to mean that this minimizes the impact of arousal on unwanted eye movements.
Strengths:
The paper is clear and well-written.
Showing slow drifts in the SC activity is important to demonstrate that cortical slow drifts could be brain-wide.
Weaknesses:
However, I am concerned about two main points:
First, the authors repeatedly say that the "output" layers of the SC are the ones with the highest motor indices. This might not necessarily be accurate. For example, current thresholds for evoking saccades are lowest in the intermediate layers, and Mohler & Wurtz 1972 suggested that the output of the SC might be in the intermediate layers. Also, even if it were true that the high motor index neurons are the output, they are very few in the authors' data (this is also true in a lot of other labs, where it is less likely to see purely motor neurons in the SC). So, this makes one wonder if the electrode channels were simply too deep and already out of the SC? In other words, it seems important to show distributions of encountered neurons (regardless of the motor index) across depth, in order to better know how to interpret the tails of the distributions in the motor index histogram and in the other panels of Figure Supplement 1. I elaborate more on these points in the detailed comments below.
Second, the authors find that the SC cells with a low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual responses. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC.
I think that a remedy to the first point above is to change the text to make it a bit more descriptive and less interpretive. For example, just say that the slow drifts were less evident among the neurons with high motor index.
For the second point, I think that it is important to consider the alternative caveat of different amounts of light entering the system. Changes in light level caused by pupil diameter variations can be quite large.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In the retina, parallel processing of cone photoreceptor output under bright light conditions dissects critical features of our visual environment and is fundamental to visual function. Cone photoreceptor signals are sampled by several types of bipolar cells and passed onto the ganglion cells. At the output of retinal processing, retinal ganglion cells send about 40 different codes of the visual scene to the brain for further processing. In this study, the authors focus on whether subtype-specific differences in the size of synaptic ribbon-associated vesicle pools of bipolar cells contribute to different retinal ganglion cell (RGC) responses. Specifically, inputs to ON alpha RGCs producing transient versus sustained kinetics (ON-S vs. ON-T, respectively) are compared. The authors first demonstrate that ON-S vs. ON-T RGCs are readily identifiable in a whole mount preparation and respond differently to both static and to a spatially uniform, randomly fluctuating (Gaussian noise) light stimulus. Liner-nonlinear (LN) models were used to estimate the transformation between visual input and excitatory synaptic input for each RGCs; these models suggested the presence of transient versus sustained kinetics already in the excitatory inputs to ON-T and ON-S RGCs. Indeed, the authors show that (glutamatergic) excitatory inputs to ON-S vs. ON-T RGCs are of distinct kinetics. The subtypes of bipolar cells providing input to ON-S are known (i.e., type 6 and 7), but the source of excitatory bipolar inputs to ON-T RGCs needed to be determined. In a tedious process, it is elegantly shown here that ON-T RGCs receive most of their excitatory inputs from type 5 and 6 bipolars. Interestingly, the temporal properties of light-evoked responses of type 5, 6, and 7 bipolars recorded from the somas were indistinguishable and rather sustained, suggesting that the origin of transient kinetics of excitatory inputs to ON-T RGCs suggested by the LN model might be found in the processing of visual signals at the bipolar cell axon terminal. Blocking GABA- or glycinergic inhibitory inputs did not alter the light-evoked excitatory input kinetics to ON-T and ON-S RGCs. Two-photon glutamate sensor imaging revealed significantly faster kinetics of light-evoked glutamate signals at ON-T versus ON-S RGCs. Detailed EM analysis of bipolar cell ribbon synapses onto ON-T and ON-S RGCs revealed fewer ribbon-associated vesicles at ON-T synapses, which is consistent with stronger paired-flash depression of light-evoked excitatory currents in ON-T RGCS versus ON-S RGCs. This study suggests that bipolar subtype-specific differences in the size of synaptic ribbon-associated vesicle pools contribute to transient versus sustained kinetics in RGCs.
Strengths:
The use of multiple, state-of-the-art tools and approaches to address the kinetics of bipolar to ganglion cell synapse in an identified circuit.
Weaknesses:
For the most part, the data in the paper support the conclusions, and the authors were careful to try to address questions in multiple ways. Two-photon glutamate sensor imaging experiment showing that blocking GABA- and glycinergic inhibition does not change the kinetics of light-evoked glutamate signals at ON-T RGCs would strengthen the conclusion that bipolar subtype-specific differences in the size of synaptic ribbon-associated vesicle pools contribute to transient versus sustained kinetics in RGCs.
-
Reviewer #2 (Public Review):
Summary:
Goal of the study. The authors tried to pinpoint the origins of transient and sustained responses measured at retinal ganglion cells (rgcs), which is the output layer of the retina. Response characteristics of rgcs are used to group them into different types. The diversity of rgc types represents the ability of the retina to transform visual inputs into distinct output channels. They find that the physical dimensions of bipolar cell's synaptic ribbons (specialized release sites/active zones) vary across the different types of cone on-bpcs, in ways that they argue could facilitate transient or sustained release. This diversity of release output is what they argue underlies the differences in on-rgcs response characteristics, and ultimately represents a mechanism for creating parallel cone-driven channels.
Strengths:
The major strengths of the study are the anatomical approaches employed and the use of the "glutamate sniffer" to assay synaptic glutamate levels. The outline of the study is elegant and reflects the strengths of the authors.
Weaknesses:
The major weakness is that the ambitious outline is not matched with a complete set of results, and the set of physiological protocols is disjointed, not sufficient to bridge the systems-level question with the presynaptic release question.
Major comments on the results and suggestions.
The ribbon model of release has been explored for decades and needs to be further adapted to systems-level work. The study under consideration by Kuo et al. takes on this task. Unfortunately, the experimental design does not permit a level of control over presynaptic/bpc behavior that is comparable to earlier studies, nor do they manipulate release in ways that test the ribbon model (i.e., paired recordings or Ribeye-ko). Furthermore, the data needs additional evaluation, and the presentation and interpretations should draw on published biophysical and molecular studies.
To build a ribbon-centric context, consider recent literature that supports the assertion that ribbons play a role in forming AZ release sites and facilitating exocytosis. Reference Ribeye-ko studies. For example, ribbonless bpcs show an 80% reduction in release (Maxeiner et al EMBO J 2016), the ribbonless retina exhibits signaling deficits at the output layer (Okawa et al ...Rieke, ..Wong Nat Comm 2019), and ribbonless rods show an 80% reduction the readily releasable pool (RRP) of SVs (Grabner Moser, elife 2021). In addition, the authors could refer to whole-cell membrane capacitance studies on mammalian rods, cones, and bpcs, because the size of the RRP of SVs scales with the dimensions and numbers of ribbons (total ribbon footprint). For comparison, bipolars see the review by Wan and Heidelberger 2011. For a comparison of mammalian rods and cones, see, rods: Grabner and Moser (2021 eLife), Mueller.. Regus Leidig et al. (2019; J Neurosci) and cones Grabner ...DeVries (Nat Comm 2023). A comparison of cell types shows that the extent of release is (1) proportional to the total size of the ribbon footprint, and (2) less release is witnessed when ribbons are deleted (also see photo ablation studies by Snellman.... And Mehta..Zenisek, Nat Neurosci and Neuron).
Ribbon morphology may change in an activity-dependent manner. The rod ribbon AZ has been reported to lengthen in the dark (Dembla et al 2020), and deletion of the ribbon shortens the length of the AZ (defined by Cav1,4 or RIM2); in addition, the Ribeye-ko AZs fail to change in size with light and dark conditioning. Furthermore, EM studies on rod and cone AZs in light and dark argue that the number of SVs at the base of the ribbon increases in the dark, when PRs are depolarized (see Figure 10, Babai et al 2016 JNeurosci). Lastly, using goldfish Mb1 on-bipolars, Hull et al (2006, J Neurophysio) correlated an increase in release efficiency with an increase in ribbon numbers, which accompanied daylight. >> When release activity is high, ribbon AZ length increases (Dembla, rods), the number of docked SVs increases (Babai, rods cones), and the number of ribbons increases (Hull, diurnal Mb1s).
The results under review, Kuo et al., were attained with SBF-SEM, which has the benefit of addressing large-volume questions as required here, yet it achieves lower spatial resolution than what is attained with TEM tomography and FIB-EM. Ideally, the EM description would include SV size, and the density of ribbon-tethered SVs that are docked at the plasma membrane, because this is where the SVs fuse (additional non-ribbon release sites may also exist? Mehta ... Singer 2014 J Neurosci). Studies by Graydon et al 2011 and 2014 (both in J Neurosci), and Jean ... Moser et al 2018 (eLife) are good examples of quantitative estimates of SVs docking sites at ribbons. SBF-SEM does not allow for an assessment of SVs within 5 nm of the PM, but if the authors can identify the number of SVs that appear within the limit of resolution (10 to 15 nm) from the PM, then this data would be useful. Also, what dimension(s) of the large ribbons make them larger? Typically, ribbons are fixed in height (at least in the outer retina, 200 to 250 nm), but their length varies and the number ribbons per terminal varies. Is the larger ribbon size observed in type 6 bpcs do to longer ribbons, or taller ribbons? A longer ribbon likely has more docked SVs. An additional possibility is that more SVs are about the ribbon-PM footprint, either more densely packed and/or expanding laterally (see definitions in Jean....Moser, elife 2018).
The ribbon literature given above makes the argument that ribbons increase exocytotic output, and morphological studies suggest that release activity enhances 1) ribbon length (Dembla) and 2) the density of SVs near the PM (Babai). These findings could lead one to propose that type 6 bpcs (inputs to On-sustained) are more active than type 5i (feed into On-transient). Here Kuo et al. show that the bpcs have similar Vm (measured from the soma) in response to light stimulation. Does Vm predict release? Not entirely as the authors acknowledge, because: Cav channel properties, SV availability, and negative feedback are all downstream of bpc Vm. The only experiment performed to test downstream factors focused on negative feedback from amacrines. The data presented in Figures 5C-F led me to conclude the opposite of what the authors concluded. My impression is that the T-ON rgc exhibits strong disinhibition when GABA-blockers are applied (the initial phase is greatly increased in amplitude and broadened with the drug), which contrasts with the S-On rgc responses that show a change in the amplitude of the initial phase but not its width (taus would be nice). Here and in many places the authors refer to changes in release kinetics, without implementing a useful description of kinetics. For instance, take the cumulative current (charge) in Figure 5C and fit the control and drug traces to arrive at taus, and their respective amplitudes, and use these values to describe kinetic phases. One final point, the summary in Figure 5D has a p: 0.06, very close to the cutoff for significance, which begs for more than an n = 5. Given that previous studies have shown that bpc output is shaped by immediate msec GABA feedback, in ways that influence kinetic phases of release (..Mb1 bipolars, see Vigh et al 2005 Neuron), more attention to this matter is needed before the authors rule out feedback inhibition in favor of ribbon size. If by chance, type 5i bpcs are under uniquely strong feedback inhibition, then ribbon size may result from less activity, not less output resulting from smaller ribbons.
As mentioned above, the behavior of Cav channels is important here. This is difficult to address with voltage clamps from the soma, especially in the Vm range relevant to this study. Given that it has previously been modeled that the rod bpc to AII pathway adapts to prolonged depolarization of rbcs through downregulating Cav channel-mediated Ca2+ influx (Grimes ....Rieke 2014 Neuron), it seems important for Kou et al to test if there is a difference in Cav regulation between type 6 and 5i bpcs. Ca2+ imaging with a GCaMP strategy (Baden....Lagnado Current Biology, 2011) or filling the presynapse with Ca dyes (see inner hair cells: Ozcete and Moser, EMBO J 2020) would allow for the correlation of [Ca]intra with GluSnf signals (both local readouts).
Stimulation protocol and presentation of Glutamate Sniffer data in Figure 6. In all of your figures where you state steady st as a % of pk amplitude, please indicate in the figure where you estimate steady state. Alternatively, if you take the cumulative dF/F signal, then you can fit the different kinetic phases. From the appearance of the data, the Sustained Glu signals look like square waves (Figure 6B ROI1-4), without a transient at onset, which is not predicted in your ribbon model that assumes different kinetic phases (1. depletion of docked SVs, and 2. refilling and repriming). The Transient responses (Figure 6B ROI5-8) are transient and more compatible with a depressing ribbon scheme. If you take the cumulative, for all of the On-S and compare it to all of the On-T responses, my guess is the cumulative dF/F will be 10 to 20 larger for the S-On. Would you conclude that bpc inputs to On-S (type 6) release 20-fold more SVs per 4 seconds on a per ribbon basis, and does the surface area of the type 6 bpcs account for this difference? From Figures 8B and D, the volume of the ribbon is ~2 fold greater for type 6 vs 5i, but the Surface Area (both faces of ribbon) is more relevant to your model that claims ribbon size is the pivotal factor. If making cumulative traces, and comparisons on an absolute scale is unfounded, then we need to know how to compare different observations. The classic ribbon models always have a conversion factor such as the capacitance of an SV or q size that is used to derive SV numbers from total dCm or Qcontent. See Kim ....et al von Gersdorff, 2023, Cell Reports. Why not use the Gaussian noise stimulus in Fig 6 as in Figure 1 and 2?
Figure 7. What is the recovery time for mammalian cones derived from ribbon-based models? There are estimates from membrane capacitance studies. Ground squirrel cones take 0.7 to 1 sec to recover the ultrafast, primed pool of SVs when probed with a paired-pulse protocol (Grabner ...DeVries 2016, Neuron). Their off-bpcs take anywhere from under 0.2 sec to a second to recover, which is a combination of many synaptic factors (Grabner ...DeVries Nat Comm 2023). Rod On bpcs take over a second (Singer Diamond 2006, reviewed Wan and Heidelberger 2011). In Figure 7B, the recovery time is ~150 ms for the responses measured at rgcs. This brief recovery time is incompatible with existing ribbon models of release. Whole-cell membrane capacitance measurements would be helpful here.
Experimental Suggestion: Add GABA blockers and see if type 5i bpc responds with more release (GluSniff) and prolonged [Ca2+] intra (GCaMP). Compare this to type 6 bpc behavior with GABA/gly blockers. This will rule in or out whether feedback inhibition is involved.
-
Reviewer #3 (Public Review):
Summary:
Different types of retinal ganglion cell (RGC) have different temporal properties - most prominently a distinction between sustained vs. transient responses to contrast. This has been well established in multiple species, including mice. In general, RGCs with dendrites that stratify close to the ganglion cell layer (GCL) are sustained; whereas those that stratify near the middle of the inner plexiform layer (IPL) are transient. This difference in RGC spiking responses aligns with similar differences in excitatory synaptic currents as well as with differences in glutamate release in the respective layers - shown previously and here, with a glutamate sensor (iGluSnFR) expressed in the RGCs of interest. Differences in glutamate release were not explained by differences in the distinct presynaptic bipolar cells' voltage responses, which were quite similar to one another. Rather, the difference in transient vs. sustained responses seems to emerge at the bipolar cell axon terminals in the form of glutamate release. This difference in the temporal pattern of glutamate release was correlated with differences in the size of synaptic ribbons (larger in the bipolar cells with more sustained responses), which also correlated with a greater number of vesicles in the vicinity of the larger ribbons.
The main conclusion of the study relates to a correlation (because it is difficult to manipulate ribbon size or vesicle density experimentally): the bipolar cells with increased ribbon size/vesicle number would have a greater possibility of sustained release, which would be reflected in the postsynaptic RGC synaptic currents and RGC firing rates. This model proposes a mechanism for temporal channels that is independent of synaptic inhibition. Indeed, some experiments in the paper suggest that inhibition cannot explain the transient nature of glutamate release onto one of the RGC types. Still, it is surprising that such a diverse set of inhibitory interneurons in the retina would not play some role in diversifying the temporal properties of RGC responses.
Strengths:
(1) The study uses a systematic approach to evaluating temporal properties of retinal ganglion cell (RGC) spiking outputs, excitatory synaptic inputs, presynaptic voltage responses, and presynaptic glutamate release. The combination of these experiments demonstrates an important step in the conversion from voltage to glutamate release in shaping response dynamics in RGCs.
(2) The study uses a combination of electrophysiology, two-photon imaging, and scanning block-face EM to build a quantitative and coherent story about specific retinal circuits and their functional properties.
Weaknesses:
(1) There were some interesting aspects of the study that were not completely resolved, and resolving some of these issues may go beyond the current study. For example, it was interesting that different extracellular media (Ames medium vs. ACSF) generated different degrees of transient vs. sustained responses in RGCs, but it was unclear how these media might have impacted ion channels at different levels of the circuit that could explain the effects on temporal tuning.
(2) It was surprising that inhibition played such a small role in generating temporal tuning. At the same time, there were some gaps in the investigation of inhibition (e.g., IPSCs were not measured in either of the RGC types; pharmacology was used to investigate responses only in the transient RGCs).
(3) There could be additional discussion and references to the literature describing several topics, including: temporal dynamics of glutamate release at different levels of the IPL; previous evidence that release sites from a single presynaptic neuron can differ in their temporal properties depending on the postsynaptic target; previous investigations of the role of inhibition in temporal tuning within retinal circuitry.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the study "Re-focusing visual working memory during expected and unexpected memory tests" by Sisi Wang and Freek van Ede, the authors investigate the dynamics of attentional re-orienting within visual working memory (VWM). Utilizing a robust combination of behavioral measures, electroencephalography (EEG), and eye tracking, the research presents a compelling exploration of how attention is redirected within VWM under varying conditions. The research question addresses a significant gap in our understanding of cognitive processes, particularly how expected and unexpected memory tests influence the focus and re-focus of attention. The experimental design is meticulously crafted, enabling a thorough investigation of these dynamics. The figures presented are clear and effectively illustrate the findings, while the writing is concise and accessible, making the complex concepts understandable. Overall, this study provides valuable insights into the mechanisms of visual working memory and attentional re-orienting, contributing meaningfully to the field of cognitive neuroscience. Despite the strengths of the manuscript, there are several areas where improvements could be made.
Microsaccades or Saccades?
In the manuscript, the terms "microsaccades" and "saccades" are used interchangeably. For instance, "microsaccades" are mentioned in the keywords, whereas "saccades" appear in the results section. It is crucial to differentiate between these two concepts. Saccades are large, often deliberate eye movements used for scanning and shifting attention, while microsaccades are small, involuntary movements that maintain visual perception during fixation. The authors note the connection between microsaccades and attention, but it is not well-recognized that saccades are directly linked to attention. Despite the paradigm involving a fixation point, it remains unclear whether large eye movements (saccades) were removed from the analysis. The authors mention the relationship between microsaccades and attention but do not clarify whether large eye movements (saccades) were excluded from the analysis. If large eye movements were removed during data processing, this should be documented in the manuscript, including clear definitions of "microsaccades" and "saccades." If such trials were not removed, the contribution of large eye movements to the results should be shown, and an explanation provided as to why they should be considered.
Alpha Lateralization in Attentional Re-orienting
In the attentional orienting section of the results (Figure 2), the authors effectively present EEG alpha lateralization results with time-frequency plots and topographic maps. However, in the attentional re-orienting section (Figure 3), these visualizations are absent. It is important to note that the time period in attentional orienting differs from attentional re-orienting, and consequently, the time-frequency plots and topographic maps may also differ. Therefore, it may be invalid to compute alpha lateralization without a clear alpha activity difference. The authors should consider including time-frequency plots and topographic maps for the attentional re-orienting period to validate their findings.
Onset and Offset Latency of Saccade Bias
The use of the 50% peak to determine the onset and offset latency of the saccade bias is problematic. For example, if one condition has a higher peak amplitude than another, the standard for saccade bias onset would be higher, making the observed differences between the onset/offset latencies potentially driven by amplitude rather than the latencies themselves. The authors should consider a more robust method for determining saccade bias onset and offset that accounts for these amplitude differences.
Control Analysis for Trials Not Using the Initial Cue
The control analysis for trials where participants did not use the initial cue raises several questions:
(1) The authors claim that "unlike continuous alpha activity, saccades are events that can be classified on a single-trial level." However, alpha activity can also be analyzed at the single-trial level, as demonstrated by studies like "Alpha Oscillations in the Human Brain Implement Distractor Suppression Independent of Target Selection" by Wöstmann et al. (2019). If single-trial alpha activity can be used, it should be included in additional control analyses.
(2) The authors aimed to test whether the re-orienting signal observed after the test is not driven exclusively by trials where participants did not use the initial cue. They hypothesized that "in such a scenario, we should only observe attention deployment after the test stimulus in trials in which participants did not use the preceding retro cue." However, if the saccade bias is the index for attentional deployment, the authors should conduct a statistical test for significant saccade bias rather than only comparing toward-saccade after-cue trials with no-toward-saccade after-cue trials. The null results between the two conditions do not immediately suggest that there is attention deployment in both conditions.
(3) Even if attention deployment occurs in both conditions, the prolonged re-orienting effect could also be caused by trials where participants did not use the initial cue. Unexpected trials usually involve larger and longer brain activity. The authors should perform the same analysis on the time after the removal of trials without toward-saccade after the cue to address this potential confound.
-
Reviewer #2 (Public Review):
Summary:
This study utilized EEG-alpha activity and saccade bias to quantify the spatial allocation of attention during a working memory task. The findings indicate a second stage of internal attentional deployment following the appearance of a memory test, revealing distinct patterns between expected and unexpected test trials. The spatial bias observed during the expected test suggests a memory verification process, whereas the prolonged spatial bias during the unexpected test suggests a re-orienting response to the memory test. This work offers novel insights into the dynamics of attentional deployment, particularly in terms of orienting and re-orienting following both the cue and memory test.
Strengths:
The inclusion of both EEG-alpha activity and saccade bias yields consistent results in quantifying the attentional orienting and re-orienting processes. The data clearly delineate the dynamics of spatial attentional shifts in working memory. The findings of a second stage of attentional re-orienting may enhance our understanding of how memorized information is retrieved.
Weaknesses:
Although analyses of neural signatures and saccade bias provided clear evidence regarding the dynamics of spatial attention, the link between these signatures and behavioral performance remains unclear. Given the novelty of this study in proposing a second stage of 'verification' of memory contents, it would be more informative to present evidence demonstrating how this verification process enhances memory performance.
-
Reviewer #3 (Public Review):
Summary:
Wang and van Ede investigate whether and how attention re-orients within visual working memory following expected and unexpected centrally presented memory tests. Using a combination of spatial modulations in neural activity (EEG-alpha lateralization) and gaze bias quantified as time courses of microsaccade rate, the authors examined how retro cues with varying levels of reliability influence attentional deployment and subsequent memory performance. The conclusion is that attentional re-orienting occurs within visual working memory, even when tested centrally, with distinct patterns following expected and unexpected tests. The findings provide new value for the field and are likely of broad interest and impact, by highlighting working memory as an action-bound process (in)dependent on (an ambiguous) past.
Strengths:
The study uniquely integrates behavioral data (accuracy and reaction time), EEG-alpha activity, and gaze tracking to provide a comprehensive analysis of attentional re-orienting within visual working memory. As typical for this research group, the validity of the findings follows from the task design that effectively manipulates the reliability of retro cues and isolates attentional processes related to memory tests. The use of well-established markers for spatial attention (i.e. alpha lateralization) and more recently entangled dependent variable (gaze bias) is commendable. Utilizing these dependent metrics, the concise report presents a thorough analysis of the scaling effects of cue reliability on attentional deployment, both at the behavioral and neural levels. The clear demonstration of prolonged attentional deployment following unexpected memory tests is particularly noteworthy, although there are no significant time clusters per definition as time isn't a factor in a statistical sense, the jackknife approach is convincing. Overall, the evidence is compelling allowing the conclusion of a second stage of internal attentional deployment following both expected and unexpected memory tests, highlighting the importance of memory verification and re-orienting processes.
Weaknesses:
I want to stress upfront that these weaknesses are not specific to the presented work and do not affect my recommendation of the paper in its present form.
The sample size is consistent with previous studies, a larger sample could enhance the generalizability and robustness of the findings. The authors acknowledge high noise levels in EEG-alpha activity, which may affect the reliability of this marker. This is a general issue in non-invasive electrophysiology that cannot be handled by the authors but an interested reader should be aware of it. Effectively, the sensitivity of the gaze analysis appears "better" in part due to the better SNR. The latter also sets the boundaries for single-tiral analyses as the authors correctly mention. In terms of generalizability, I am convinced that the main outcome will likely generalize to different samples and stimulus types. Yet, as typical for the field future research could explore different contexts and task demands to validate and extend the findings. The authors provide here how and why (including sharing of data and code).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Mosshammer et al. studied the oxygenic photosynthetic productivity of beachrock samples containing cyanobacteria with different pigment compositions. The use of longer wavelength absorbing chlorophylls in some cyanobacteria (chlorophylls d and f) allows their photosystems to use light further in the red than canonical chlorophyll a photosystems. As such, their distribution in visible light-shaded environments, such as the beachrock studied by Mosshammer et al., allows them to perform oxygenic photosynthesis using wavelengths not capable of driving photosynthesis in most cyanobacteria, algae, or plants.
By adapting measuring systems they have previously used to study these types of beachrock samples, the authors attempt to mimic a more natural light penetration through the beachrock in order to measure oxygen production. By doing so with different wavelengths and intensities, the authors are able to show that far-red light-driven oxygen production is potentially capable of driving high levels of gross primary production.
Strengths:
The manuscript builds on previous measurement techniques used by the authors while focussing on illumination from the top of a sample rather than the specific microbial layers themselves. This provides a more environmentally realistic understanding of the beachrock community, as well as far-red light-driven photosynthesis.
The manuscript benefits from using previously defined methods to further characterize complex environmental samples.
Weaknesses:
The manuscript suffers from a lack of discussion and interpretation of the findings, and as such is more of a report.
Using the envionmental beachrock samples has inherent complications, from the variation in rock morphology, to the microbial community composition of different samples as well as within a single sample. It would benefit the authors to discuss these technical difficulties in more detail, as the light penetration through the beachrock is likely greatly limiting measurements of chlorophyll f and/or chlorophyll d-driven photosynthesis in the beachrock.
This can be seen in the different luminescence measurements (Figure 2 and supplements), that the different samples have clear differences in far-red light-driven oxygen production. While the BLACK sample produces oxygen with 740nm LED filtered with a NIR-75N filter, neither of the other two samples produce measureable oxygen under this condition. Conversely, this sample results in the lowest level of gross photosynthesis when measuring dissolved oxygen. A more detailed discussion of the variation between and within samples and measurements would benefit the overall results of the manuscript.
The PINK beachrock sample has the highest level of chlorophyll d per chlorophyll a. As FaRLiP cyanobacteria only incorporate 1 chlorophyll d per photosystem II, and none in photosytem I, is there a (relatively) high composition of Acaryochloris species in the PINK sample? If normalized to the reflectance minima can more distinct populations be identified?
For Figure 1, multiple points should be clarified. The first is that the HPLC methods are estimates of concentrations, as the extinction coefficients are not correct for the solvent solution for which the pigments elute, and are likely to be differently incorrect for each pigment. This results in quantitatively incorrect data, but qualitative comparisons between samples likely remain valid. Secondly, the pigment concentrations can also be misleading. Within the cyanobacterial cells, photosystem I harbors approximately 3 times as many chlorophylls as photosystem II. While the community numbers and photosystem stoichiometry are not necessarily relevant to the current study, the red shift in absorbance between photosystem II and photosystem I is of importance for the measurements performed. How cyanobacterial cells with differing concentrations of photosystems will absorb the red tail of the far-red LEDs, as well as impact the light penetration would be a useful discussion point.
The different samples used are from varying beachrock zonations but have the same chlorophyll f per chlorophyll a concentrations. A discussion of why this might be would be useful.
For the luminescence measurements (Figure 2 and supplements), no oxygen production is seen in the BROWN or PINK beachrock samples when the 740nm LED is filtered with a NIR-75N filter. This is likely due to multiple factors (low initial intensity compounded by penetration depth, community composition, etc.) but should be discussed. While the authors say that Chrooccidiopsis species dominate the samples, variation of absorbance between different chlorophyll f containing cyanobacteria has also been measured (see Tros et al. 2021, Chem), and the extent to which even chlorophyll f species extend into the far-red varies. Discussions about these implications would help with their characterization of the luminescence data. While the authors discuss that based on their respiration measurements the oxygen may be being consumed, resulting in an inability to measure it (lines 147-150), other explanations are clearly viable.
For the luminescence measurements, no oxygen production is discernable in the endolithic region when excited with visible light, which is at a much stronger intensity than the near-infrared light used. However, both Acaryochloris and chlorophyll f cyanobacteria are capable of driving photosynthesis with visible light. As the intensities used are much brighter than for the NIR measurements, presumably generated oxygen would be higher than what could be immediately consumed by respiration. It is important that the authors address this.
A highlighted point by the authors is the >20% of photosynthesis driven by NIR in the beachrock at comparable irradiation. However, this statement is deceiving for multiple reasons.<br /> (1) The irradiation is likely not comparable for what is reaching the cells. This is not a problem per se as illumination from above is the point, but does skew the interpretation.<br /> (2) The >20% value comes from the maximum amount of gross photosynthesis driven by NIR at ~1400 umol photons m-2s-1, whereas at other comparable illuminations the value is much, much lower (<1%). A likely interpretation of such data is that while the chlorophyll f endolithic layer is capable of producing a relatively large amount of oxygen, it is likely far less productive under most illuminations, though not zero.
The authors have the difficult task of weaving in results from laboratory, uniculture or isolated photosystem measurements with their environmental-based results. This is especially clear in lines 172-183. While the authors are correct that measurements of trapping times in chlorophyll f containing photosystems have been measured and are slower in chlorophyll f photosystem II and photosystem I relative to all chlorophyll a photosystems, the quantum yield for trapping remains high in chlorophyll f photosystem I (Tros et al. 2021, Chem). The quantum yield of trapping for chlorophyll f photosystem II is much lower for chlorophyll f than chlorophyll a complex, though improved by the attachment of phycobilisomes. However, these are intrinsic physical properties of the complexes that are not modulated in response to the environments. This could be interpreted that at low photon flux densities as measured in these experiments, the endolithic near infrared-driven oxygen production could be limited by an overall lower quantum efficiency of trapping the captured light and thus minimizing photosynthetic productivity relative to a theoretical level based on the efficiency of the chlorophyll a photosystem II. How the variations in intensity and spectral composition impact the cyanobacterial community likely involves many other factors and has not been addressed (though see Nurnberg et al. 2018, Science and Viola et al. 2022 eLife for further discussions).
-
Reviewer #2 (Public Review):
The authors investigate the role of near-infrared photosynthesis in primary production across three beachrock communities. This work is particularly pertinent as more cyanobacteria with far-red light acclimation capacities are discovered, underscoring the need to assess their contributions to primary production. However, the manuscript is currently very difficult to follow due to unclear correlations between the text and figures and the samples analyzed in the different experiments.. Additional explanations would also enhance clarity. For example, it would be beneficial for the authors to better define the three communities, as distinctions are not apparent. Another example is the pigment analysis, where the extinction coefficients for pigments vary in different solvents. Quantification by chromatography should use calibration curves for all pigments, not just Chl a, as is currently done. Pigments can be easily purified from cyanobacteria for this purpose.
-
Reviewer #3 (Public Review):
Summary:
On islands in the pacific, beachrock occurs near high tide level, composed of calcareous material. The surface of the beach rock is colonised by cyanobacteria and some eukaryotic algae. On Heron Island on the Southern Great Barrier Reef, beach rock occurs on the north and south side of the island in continuous slabs, which slope gently upwards toward the island. Thus the upper beach rock is only inundated at extreme high tides. On the south side, the major photosynthetic organism is a cyanobacterium Chroococcidiopsis, which forms tough smooth mats over all the beach rock. This cyanobacterium belongs to a newly discovered class called FaRLiP photosynthesisers, which carry out conventional photosynthesis under visible radiation using chlorophyll a (Chl a) but which deactivate most of the Chl a under near infra -red radiation (NIR) and produce chlorophyll f and chlorophyll d which can absorb NIR (700 - 760 nm). These NIR Chl molecules are repositioned in the reaction centres. In addition, an NIR-activated allophycocyanin (a phycobiliprotein) is synthesised and placed in the reaction centres. These FaRLiP cyanobacteria can carry out photosynthesis and primary production when placed under NIR. Here it is shown that in the mats of Chroococcidiopsis on the beach rock the upper layers carry out conventional photosynthesis while the lower layers carry out FaRLiP photosynthesis. It is shown that the FaRLiP-activated lower layers can produce up to 20% of the total photosynthetic primary production.
Strengths:
The authors have researched sections of beachrock obtained from the beach rock on Heron Island. The Beach Rock on Heron Island occurs on both sides of the Island lying in a semi-horizontal position slightly sloping upwards toward the Island. At normal high tide, only the upper parts are not submerged. Black crusts occur in the uppermost parts of the beachrock. Brown crusts occur in the intermediate sites and pink crusts occur at the lowest part of the beachrock.
The crusts are made up largely of cyanobacteria and the major component is a cyanobacterium of one species, tentatively identified by shape, pigmentation, and partial DNA analysis as Chroococcidiopsis.
In this investigation sections of the beach rock from different levels have been analysed using three techniques:
(1) Hyperspectral analysis to determine the layout of pigmented cells and their spectra.
(2) Bioluminescence to determine the spectra of the cells in the sections.
(3) Oxygen analysis, using luminescence lifetime imaging on special films closely applied to vertical sections of the beachrock.
(4) Oxygen production from the surface of three-dimensional blocks of beach rock, illuminated with white light or Near Infra Red (NIR) radiation, from above.
In addition, pigmentation has been analysed by High Performance Liquid Chromatography (HPLC).
These techniques allow the following conclusions:
(1) Scytonemin is a main screening compound for UV irradiation.
(2) Carotenoids also play a part in screening from UV and probably visible radiation.
(3) The cyanobacteria occur near the rock surface and contain Chl a plus some Chl f and a small amount of Chl d.
(4) HPLC pigment analysis confirms the presence of Chl a plus Chl f and a small amount of Chl d.
(5) The deeper layer with FaRLiP cyanobacteria produces oxygen under both visible light and NIR irradiation, with different P vs I curves.
(6) Using the oxygen chamber to measure oxygen exchange above the beach rock surface, it was shown that high respiration meant that only with the brown samples was significant oxygen released to the water column at lower light levels, i.e. respiration accounted for most of the primary production of oxygen except at the highest visible light intensities. And with NIR much lower levels of oxygen production only breaking compensation significantly in the brown samples.
(7) FaRLiP primary production was significant in the deeper layer.
The major new conclusion from these studies is that FaRLiP photosynthesis is a significant factor in this biofilm, and possibly other biofilms. Visible light is mostly absorbed in the upper layers and NIR reaching the lower layers induces FaRLiP photosynthesis and primary production, which can be up to 20% of the total primary production of the film.
Weaknesses:
The techniques are sufficient to justify the conclusions, especially the new result that the FaRLiP photosynthesis deeper in the films is surprisingly active with relatively high primary productivity. This is an important conclusion but it must be realised that there is some way to go to polish up the results and gain more quantitative results.
Firstly the beachrock is a heterogeneous material. So cutting a section leaves a non-homogeneous surface where various sand grains are removed, cut, or not removed. This means that when applying a luminescence film, the results are dependent on the uniformity of the surface or rather the lack of conformity. This needs to be taken into consideration in future studies.
Furthermore, previous papers have revealed that pits in the beach rock are important sites for FaRLiP cyanobacteria and the paper needs to make clear that these pits were avoided here.
Secondly, while Chroococcidiopsis is the major alga/cyanobacterium present, other algae/cyanobacteria are present and their presence needs to be factored into the results. In this regard we need more microscopic images of the surface and cross-sections of the beachrock, to reveal the nature of the bacterial and algal organisms.
Thirdly, it is not clear from this paper how far the identification of Chroococcidiopsis is firm. Presumably preliminary DNA analyses have been carried out on tell-tale genes (rRNA?). At some stage, a complete genome will be needed. Mention should be made about what has been done and what is contemplated.
Fourthly, the acclimation to FaRLiP is time-dependent. How long does it take in these beach rock sections? And has sufficient notice been taken of this time-dependent process?
Fifthly, FaRLiP is a sophisticated system as shown by Mascoli et al, 2022. It is activated in NIR by red-shifted allophycocyanin. It is also dependent on the allocation of Chl f and Chl d to special positions in the reaction centre. All this may take some time and be light-dependent. This may explain the curious increase in the slopes of light vs productivity of Fig 4 (Pink and Black) for NIR light.
The fifth point needs to be taken into account in any rewrite of the paper. The authors assume that the upwardly sloping P vs I curve is explained as follows:<br /> "This can be explained by the light attenuation due to scattering and absorption in the compacted beachrock biofilm, which prevented saturation of NIR-driven photosynthesis in the endolithic layer even at levels of incident light similar to solar irradiation on mid-day exposed beachrock."
Activation of the FaRLiP system also needs to be considered.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this work, the authors study whether the human brain uses long term priors (acquired during our lifetime) regarding the statistics of auditory stimuli to make predictions respecting auditory stimuli. This is an important open question in the field of predictive processing.
To address this question, the authors cleverly profit from the naturally existing differences in two linguistic groups. While speakers of Spanish use phrases in which function-words (short words like, articles and prepositions) are followed by content-words (longer words like nouns, adjectives and verbs), speakers of Basque use phrases with the opposite order. Because of this, speakers of Spanish usually hear phrases in which short words are followed by longer words, and speakers of Basque experience the opposite. This difference in the order of short and longer words is hypothesized to result in a long term duration prior that is used to make predictions regarding the likely durations of incoming sounds, even if they are not linguistic in nature.
To test this, the authors used MEG to measure the mismatch responses (MMN) elicited by the omission of short and long tones that were presented in alternation. The authors report an interaction between the language background of the participants (Spanish, Basque) and the type of omission MMN (short, long), which goes in line with their predictions. They supplement these results with a source level analysis.
Strengths:
This work has many strengths. To test the main question, the authors profit from naturally occurring differences in the everyday auditory experiences of two linguistic groups, which allows to test the effect of putative auditory priors consolidated over the years. This is a direct way of testing the effect of long term priors.
The fact that the priors in question are linguistic and that the experiment was conducted using non-linguistic stimuli (i.e. simple tones), allows to test if these long term priors generalize across auditory domains.
The experimental design is elegant and the analysis pipeline appropriate. This work is very well written. In particular the introduction and discussion sections are clear and engaging. The literature review is complete.
Weaknesses:
The authors report a widespread omission response, which resembles the classical mismatch response (in MEG planar gradiometers) with strong activations in sensors over temporal regions. However the interaction reported is circumscribed to four sensors that do not overlap with the peaks of activation of the omission response.
-
Reviewer #2 (Public Review):
Summary:
Morucci et al. tested the influence of linguistic prosody long-term priors in forming predictions about simple acoustic rhythmic tone sequences composed of alternating tone duration, by violating context-dependent short-term priors formed during sequence listening. Spanish and Basque participants were selected due to the different rhythmic prosody of the two languages (functor-initial vs. Functor final, respectively), despite a common cultural background. The authors found that neuromagnetic responses to casual tone omissions reflected the linguistic prosody pattern of the participant's dominant language: in Spanish speakers, omission responses were larger to short tones, whereas in Basque speakers, omission responses were larger to long tones. Source localization of these responses revealed this interaction pattern in the left auditory cortex, which the authors interpret as reflecting a perceptual bias due to acoustic cues (inherent linguistic rhythms, rather than linguistic content). Importantly, this pattern was not found when the rhythmic sequence entailed pitch, rather than duration, cues. To my knowledge, this is the first study providing neural signatures of a known behavioral effect linking ambiguous rhythmic tone sequence perceptual organization to linguistic experience.
The conclusions of the study are well supported by the data. The hypotheses, albeit allowing alternative perspectives, are well justified according to the existing literature. Albeit with inconclusive results, additional analyses to test entrained oscillatory activity to the perceived rhythms have been performed, which adds explanatory power to the study.
Strengths:
(1) The choice of participants. The bilingual population of the Basque country is perfect for performing studies which need to control for cultural and socio-economic background while having profound linguistic differences. In this sense, having dominant Basque speakers as a sample equates that in Molnar et al. (2016), and thus overcomes the lack of direct behavioral evidence for a difference in rhythmic grouping across linguistic groups. Molnar et al. (2016)'s evidence on the behavioral effect is compelling, and the evidence on neural signatures provided by the present study aligns with it.
(2) The experimental paradigm. It is a well designed acoustic sequence, which considers aspects such as gap length insertion, to be able to analyze omission responses free from subsequent stimulus-driven responses, and which includes a control sequence which uses pitch instead of duration as a cue to rhythmic grouping, which provides a stronger case for the differences found between groups to be due to prosodic duration cues.
(3) Data analyses. Sound, state-of-the-art methodology in the event-related field analyses at the sensor and source levels.
Weaknesses:
(1) The main conclusion of the study reflects a known behavioral effect on rhythmic sequence perceptual organization driven by linguistic background (Molnar et al. 2016, particularly) and, thus, the novelty of the findings is restricted to neural activity evidence.
(2) Although the paradigm is well designed, there are alternative views in formulating the hypotheses. For instance, one could argue that, according to predictive coding views, omission responses should be larger when the gap occurs at the end of the pattern, as that would be where stronger expectations are placed. However, the authors provide good justification based on previous literature for the expectation of larger omission responses at the downbeat of a rhythmic pattern.
-
Reviewer #3 (Public Review):
Summary:
The paper investigates the effects of long-term linguistic experience on early auditory processing, a subject that has been relatively less studied compared to short-term influences. Using MEG, the study examines brain responses to auditory stimuli in speakers of Spanish and Basque, whose syntactic rules provide different degrees of exposure to durational patterns (long-short vs short-long). The findings suggest that both long-term language experience as well as short-term transitional probabilities can shape auditory predictive coding for non-linguistic sound sequences, evidenced by differences in mismatch negativity amplitudes localised to left auditory cortex.
Strengths:
The study integrates linguistics and auditory neuroscience in an interesting interdisciplinary way that may interest linguists as well as neuroscientists. The fact that long-term language experience affects early auditory predictive coding is important for understanding group and individual differences in domain-general auditory perception. It has importance for neurocognitive models of auditory perception (e.g. inclusion of long-term priors), and will be of interest to researchers in linguistics, auditory neuroscience, and the relationship between language and perception. The inclusion of a control condition based on pitch is also a strength.
Weaknesses:
The main weaknesses are the strength of the effects and generalisability. Only two languages were examined, Spanish and Basque. The sample size is also relatively small by today's standards, with N=20 in each group. Furthermore, the crucial effects are all mostly in the .01>P<.05 range, such as the crucial interaction P=.03, although I note the methods used to derive the results are sound and state-of-the-art. It would be nice to see it replicated in the future, with more participants and other languages. It would also have been nice to see behavioural data that could be correlated with neural data to better understand the real-world consequences of the effect.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
This study aims to understand gene regulation of the plant bacterial pathogen Pseudomonas syringae. Although the function of some TFs has been characterized in this strain, a global picture of the gene regulatory network remains elusive. The authors conducted a large-scale ChIP-seq analysis, covering 170 out of 301 TFs of this strain, and revealed gene regulatory hierarchy with functional validation of some previously uncharacterized TFs.
Strength:
- This study provides one of the largest ChIP-seq datasets for a single bacterial strain, covering more than half of its TFs. This impressive resource enabled comprehensive systems-level analysis of the TF hierarchy.<br /> - This study identified novel gene regulation and function with validations through biochemical and genetic experiments.<br /> - The authors conducted broad analyses including comparisons between different bacterial strains, providing further insights into the diversity and conservation of gene regulatory mechanisms.
-
Reviewer #2 (Public Review):
Summary:
The phytopathogenic bacterium Pseudomonas syringae is comprised of many pathovars with different host plant species and has been used as a model organism to study bacterial pathogenesis in plants. Transcriptional regulation is key to plant infection and adaptation to host environments by this bacterium. However, researches have focused on limited number of transcription factors (TFs) that regulate virulence-related pathways. Thus, a comprehensive, systems-level understanding of regulatory interactions between transcription factors in P. syringae has not been achieved.
This study by Sun et al performed ChIP-seq analysis of 170 out of 301 TFs in P. syringae pv. syringae 1448A and used this unique dataset to infer transcriptional regulatory networks in this bacterium. The network analyses revealed hierarchical interactions between TFs, various network motifs, and co-regulation of target genes by TF pairs, which collectively mediate information flow. As discussed, the structure and properties of the P. syringae transcriptional regulatory networks are somewhat different from those identified in humans, yeast, and E. coli, highlighting the significance of this study. Further, the authors made use of the P. syringae transcriptional regulatory networks to find TFs of unknown functions to be involved in virulence-related pathways. For some of these TFs, their target specificity and biological functions, such as motility and biofilm formation, were experimentally validated. Of particular interest is the finding that despite conservation of TFs between P. syringae pv. syringae 1448A, P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, and P. syringae pv. actinidiae C48, some of the conserved TFs show different repertoires of target genes in these four P. syringae strains.
Strengths:
This study presents a systems-level analysis of transcriptional regulatory networks in relation to P. syringae virulence and metabolism, highlights differences in transcriptional regulatory landscapes of conserved TFs between different P. syringae strains, and develops a user-friendly database for mining the ChIP-seq data generated in this study. These findings and resources will be valuable to researchers in the fields of systems biology, bacteriology, and plant-microbe interactions.
Weaknesses:
No major weaknesses were found, but some of the results may need to be interpreted with caution. ChIP-seq was performed with bacterial strains overexpressing TFs. This may cause artificial binding of TFs to promoters which may not occur when TFs are expressed at physiological levels. Another caution is applied to the interpretation of the biological functions of TFs during plant infection, as biological roles of the tested TFs are mostly based on in vitro experiments.
This work advances our understanding of transcriptional regulation of virulence and metabolic pathways in plant pathogenic bacteria. Solid evidence for the claims is provided by computational analysis of newly generated data on the genome-wide binding of 170 transcription factors to their target genes, together with experimental validation of the biological functions of some of these transcription factors. The findings and resources from this study will be valuable to researchers in the fields of systems biology, bacteriology, and plant-microbe interactions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In Drosophila melanogaster, expression of Sex-lethal (Sxl) protein determines sexual identity and drives female development. Functional Sxl protein is absent from males where splicing includes a termination codon-containing "poison" exon. Early during development, in the soma of female individuals, Sxl expression is initiated by an X chromosome counting mechanism that activates the Sxl establishment promoter (SxlPE) to produce an initial amount of Sxl protein. This then suppresses the inclusion of the "poison" exon, directing the constructive splicing of Sxl transcripts emerging from the Sxl maintenance promotor (SxlPM) which is activated at a later stage during development irrespective of sex. This autoregulatory loop maintains Sxl expression and commits to female development.
Sxl also determines the sexual identity of the germline. Here Sxl expression generally follows the same principles as in somatic tissues, but the way expression is initiated differs from the soma. This regulation has so far remained elusive.
In the presented manuscript, Goyal et al. show that activation of Sxl expression in the germline depends on additional regulatory DNA sequences, or sequences different from the ones driving initial Sxl expression in the soma. They further demonstrate that sisterless A (sisA), a transcription factor that is required for activation of Sxl expression in the soma, is also necessary, but not sufficient, to initiate the expression of functional Sxl protein in female germ cells. sisA expression precedes Sxl induction in the germline and its ablation by RNAi results in impaired expression of Sxl, formation of ovarian tumors, and germline loss, phenocopying the loss of Sxl. Intriguingly, this phenotype can be rescued by the forced expression of Sxl, demonstrating that the primary function of sisA in the germline is the induction of Sxl expression.
Strengths:
The clever design of probes (for RNA FISH) and reporters allowed the authors to dissect Sxl expression from different promoters to get novel insight into sex-specific gene regulation in the germline. All experiments are carefully controlled. Since Sxl regulation differs between the soma and the germline, somatic tissues provide elegant internal controls in many experiments, ensuring e.g. functionality of the reporters. Similarly, animals carrying newly generated alleles (e.g. genomic tagging of the Sxl locus) are fertile and viable, demonstrating that the genetic manipulation does not interfere with protein function. The conclusions drawn from the experimental data are sound and advance our understanding of how Sxl expression is induced in the female germline.
Weaknesses:
The assays employed by the authors provide valuable information on when Sxl promoters become active. However, since no information on the stability of the gene products (i.e. RNA and protein) is available, it remains unclear when the SxlPE promoter is switched off in the germline (conceptually it only needs to be active for a short time period to initiate production of functional Sxl protein). As correctly stated by the authors, the persisting signals observed in the germline might therefore not reflect the continuous activity of the SxlPE promoter.
Mapping of regulatory elements and their function: SxlPE with 1.5 kb of flanking upstream sequence is sufficient to recapitulate early Sxl expression in the soma. The authors now provide evidence that beyond that, additional DNA sequences flanking the SxlPE promoter are required for germline expression. However, a more precise mapping was not performed. Also, due to technical limitations, the authors could not precisely map the sisA binding sites. Since this protein is also involved in the somatic induction of Sxl, its binding sites likely reside in the region 1.5kb upstream of the SxlPE promoter, which has been reported to be sufficient for somatic regulation. The regulatory role of the sequences beyond SxlPE-1.5kb therefore remains unaddressed and it remains to be investigated which trans-acting factor(s) exert(s) its/their function(s) via this region.
The central question of how Sxl expression is initiated and controlled in the germline still remains unanswered. Since sisA is zygotically expressed in both the male and the female germline (Figure 4D), it is unlikely the factor that restricts Sxl expression to the female germline.
How does weak expression of Sxl in male tissues or expression above background after knockdown of sisA reconcile with the model that an autoregulatory feedback loop enforces constant and clonally inheritable Sxl expression once Sxl is induced? Is the current model for Sxl expression too simple or are we missing additional factors that modulate Sxl expression (such as e.g. Sister of Sex-lethal)? While I do not expect the authors to answer these questions, I would expect them to appropriately address these intriguing aspects in the discussion.
-
Reviewer #2 (Public Review):
Summary:
The authors wanted to determine whether cis-acting factors of Sxl - two different Sxl promoters in somatic cells - regulate Sxl in a similar way in germ cells. They also wanted to determine whether trans-acting factors known to regulate Sxl in the soma also regulate Sxl in the germline.
Regarding the cis-acting factors, they examine the Sxl "establishment promoter" (SxlPE) that is activated in female somatic cells by the presence of two X chromosomes. Slightly later in development, dosage compensation equalizes X chromosome expression in males and females and so X chromosomes can no longer be counted. The second Sxl promoter is the "maintenance promoter," (SxlPM), which is activated in both sexes. The mRNA produced from the maintenance promoter has to be alternatively splicing from early Sxl protein generated earlier in development by the PE. This leads to an autoregulatory loop that maintains Sxl expression in female somatic cells. The authors used fluorescent in situ hybridization (FISH) with oligopaints to determine the temporal activation of the PE or PM promoters. They find that - unlike the soma - the PE does not precede the PM and instead is activated contemporaneously or later than the PM - this is confusing with the later results (see below). Next, they generated transcriptional reporter constructs containing large segments of the Sxl locus, the 1.5 kb used in somatic studies, a 5.2 kb reporter, and a 10.2 kb. Interestingly the 1.5 kb reporter that was reported to recapitulate Sxl expression in soma and germline was not observed by the authors. The 5.2 kb reporter was observed in female somatic cells but not in germ cells. Only when they include an additional 5 kb downstream of the 5.2 kb reporter (here the 10.2 kb reporter) they did see expression in germ cells but this occurred at the L1 stages. Their data indicate that Sxl activity in the germ requires different cis-regulation than the soma and that the PE is activated later in germ cells than in somatic cells. The authors next use gene editing to insert epitope tags in two distinct strains in the hopes of creating an early Sxl and a later Sxl protein derived from the PE and PM, respectively. The HA-tagged protein from the PE was seen in somatic cells but never in the germline, possibly due to very low expression. The FLAG-tagged late Sxl protein is observed in L2 germ cells. Because the early HA-Sxl protein is not perceptible in germ cells, it is not possible to conclude its role in the germline. However, because late FLAG-Sxl was only observed in L2 germ cells and the PE was detected in L1, this leaves open the possibility that PE produces early HA-Sxl (which currently cannot be detected), which then alternatively splices the transcript from the PM. In other words, the soma and germline could have a similar temporal relationship between the two Sxl promoters. While I agree with the authors about this conclusion, the earlier work with the oligopaints leads to the conclusion that SE is active after PM. This is confusing.
Next, the authors wanted to turn their attention to the trans-acting factors that regulate Sxl in the soma, including Sisterless A (SisA), SisB, Runt, and the JAK/STAT ligand Unpaired. Using germline RNAi, the authors found that only knockdown of SisA causes ovarian tumors, similar to the loss of Sxl, suggesting that SisA regulates Sxl (ie the PE) in both the soma and the germline. They generated a SisA null allele using CRISPR/Cas9 and these animals had ovarian tumors and germ cell-less ovaries. FISH revealed that sisA is activated in primordial germ cells in stages 3-6 before the activation of Sxl. They used CRISPR-Cas9 to generate an endogenously-tagged SisA and found that tagged SisA was expressed in stage 3-6 PCGs, which is consistent with activating PE in the germline. They showed that sisA is upstream of Sxl as germline depletion of sisA led to a significant decrease in expression from the 10.2 kb PE reporter and in SXL protein. The authors could rescue the ovarian tumors and loss of Sxl protein upon germline depletion of sisA by supplying Sxl from another protein (the otu promoter). These data indicate that sisA is necessary for Sxl activation in the germline. However, ectopic sisA in germ cells in the testis did not lead to ectopic Sxl, suggesting that sisA is not sufficient to activate Sxl in the germline.
Strengths:
(1) The genetic and genomic approaches in this study are top-notch and they have generated reagents that will be very useful for the field.
(2) Excellent use of powerful approaches (oligo paint, reporter constructs, CRISPR-Cas9 alleles).
(3) The combination of state of art approaches and quantification of phenotypes allows the authors to make important conclusions.
Weaknesses:
(1) Confusion in line 127 (this indicates that SxlPE is not activated before SxlPM in the germline) about PE not being activated before the PM in the germline when later figures show that PE is activated in L1 and late Sxl protein is seen in L2. It would be helpful to the readers if the authors edited the text to avoid this confusion. Perhaps more explanation of the results at specific points would be helpful.
-
Reviewer #3 (Public Review):
Summary:
The mechanisms governing the initial female-specific activation of Sex-lethal (Sxl) in the soma, the subsequent maintenance of female-specific expression and the various functions of Sxl in somatic sex determination and dosage compensation are well documented. While Sxl is also expressed in the female germline where it plays a critical role during oogenesis, the pathway that is responsible for turning Sxl on in germ cells has been a long-standing mystery. This manuscript from Goyal et al describes studies aimed at elucidating the mechanism(s) for the sex-specific activation of the Sex-lethal (Sxl) gene in the female germline of Drosophila.
In the soma, the Sxl establishment promoter, Sxl-Pe, is regulated in pre-cellular blastoderm embryos in somatic cells by several X-linked transcription factors (sis-a, sis-b, sis-c and runt). At this stage of development, the expression of these transcription factors is proportional to gene dose, 2x females and 1x in males. The cumulative two-fold difference in the expression of these transcription factors is sufficient to turn Sxl-Pe on in female embryos. Transcripts from the Sxl-Pe promoter encode an "early" version of the female Sxl protein, and they function to activate a splicing positive autoregulatory loop by promoting the female-specific splicing of the initial pre-mRNAs derived from the Sxl maintenance promoter, Sxl-Pm (which is located upstream of Sxl-Pm). These female Sxl-Pm mRNAs encode a Sxl protein with a different N-terminus from the Sxl-Pe mRNAs, and they function to maintain female-specific splicing in the soma during the remainder of development.
In this manuscript, the authors are trying to understand how the Sxl-Pm positive autoregulatory loop is established in germ cells. If Sxl-Pe is used and its activation precedes Sxl-Pm as is true in the soma, they should be able to detect Sxl-Pe transcripts in germ cells before Sxl-Pm transcripts appear. To test this possibility, they generated RNA FISH probes complementary to the Sxl-Pe first exon (which is part of an intron sequence in the Sxl-Pm transcript) and to a "common sequence" that labels both Sxl-Pe and Sxl-Pm transcripts. Transcripts labeled by both probes were detected in germ cells beginning at stage 5 (and reaching a peak at stage 10), so either the Sxl-Pm and Sxl-Pe promoters turn on simultaneously, or Sxl-Pe is not active.
They next switched to Sxl-Pe reporters. The first Sxl-Pe:gfp reporter they used has a 1.5 kb upstream region which in other studies was found to be sufficient to drive sex-specific expression in the soma of blastoderm embryos. Also like the endogenous Sxl gene it is not expressed in germ cells at this early stage. In 2011, Hashiyama et al reported that this 1.5 kb promoter fragment was able to drive gfp expression in Vasa-positive germ cells later in development in stage 9/10 embryos. However, because of the high background of gfp in the nearby soma, their result wasn't especially convincing. Though they don't show the data, Goyal et al indicated that unlike Hashiyama et al they were unable to detect gfp expressed from this reporter in germ cells. Goyal et al extended the upstream sequences in the reporter to 5 kb, but they were still unable to detect germline expression of gfp.
Goyal et al then generated a more complicated reporter which extends 5 kb upstream of the Sxl-Pe start site and 5 kb downstream-ending at or near 4th exon of the Sxl-Pm transcript (the Sxl-Pe10 kb reporter). (The authors were not explicit as to whether the 5 kb downstream sequence extended beyond the 4th exon splice junction-in which case splicing could potentially occur with an upstream exon(s)-or terminated prior to the splice junction as seems to be indicated in their diagram.) With this reporter, they were able to detect sex-specific gfp expression in the germline beginning in L1 (first instar larva). With the caveat that gfp detection might be delayed compared to the onset of reporter activation, these findings indicated that the sequences in the reporter are able to drive sex-specific transcription in the germline at least as early as L1.
The authors next tagged the N-terminal end of the Sxl-Pe protein with HA (using Crispr/Cas9) and the N-terminal end of Sxl-Pm protein with Flag. They report that the HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis. Somatic HA-Sxl-Pe protein persists into L1, but is no longer detected in L2. However, while somatic HA-Sxl-Pe protein is detected, they were unable to detect HA-Sxl-Pe protein in germ cells. In the case of FLAG-Sxl-Pm, it could first be detected in L2 germ cells indicating that at this juncture the Sxl-positive autoregulatory loop has been activated. This contrasts with Sxl-Pm transcripts which are observed in a few germ cells at stage 5 of embryogenesis, and in most germ cells by stage 10. The authors propose (based on the expression pattern of the Sxl-Pe10kb reporter and the appearance of Flag-Sxl-Pm protein) that Sxl-Pe comes on in germ cells in L1, and that the Sxl-Pe protein activates the female splicing of Sxl-Pm transcripts, giving detectable Flag-Sxl-Pm proteins beginning in L2.
To investigate the signals that activate Sxl-Pe in germ cells, the authors tested four of the X-linked genes (sis-a, sis-b, sis-c, and runt) that function to activate Sxl-Pe in the soma in early embryos. RNAi knockdown of sis-b, sis-c, and runt had no apparent effect on oogenesis. In contrast, knockdown of sis-a resulted in tumorous ovaries, a phenotype associated with Sxl mutations. (Three different RNAi transgenes were tested-two gave this phenotype, the third did not.) Sxl-Pe10kb reporter activity in L1 female germ cells is also dependent on sis-A.
Several approaches were used to confirm a role for sis-a in a) oogenesis and b) the activation of the Sxl-Pm autoregulatory loop. They showed that sis-a germline clones (using tissue-specific Crispr/Cas9 editing) resulted in the tumorous ovary phenotype and reduced the expression of Sxl protein in these ovaries. They found that sis-a transcripts and GFP-tagged Sis-A protein are present in germ cells. Finally, they showed tumorous ovary phenotype induced by germline RNAi knockdown of sis-a can be partially rescued by expressing Sxl in the germ cells.
Critique:
While this manuscript addresses a longstanding puzzle - the mechanism activating the Sxl autoregulatory loop in female germ cells-and likely identified an important germline transcriptional activator of Sxl, sis-a, the data that they've generated doesn't make a compelling story. At every step, there are puzzle pieces that don't fit the narrative. In addition, some of their findings are inconsistent with many previous studies.
(1) The authors used RNA FISH to time the expression of Sxl-Pe and Sxl-Pm transcripts in germ cells. Transcripts complementary to Sxl-Pe and Sxl-Pm were detected at the same time in embryos beginning at stage 5. This is not a definitive experiment as it could mean a) that Sxl-Pe and Sxl-Pm turn on at the same time, b) that Sxl-Pe comes on after Sxl-Pm (as suggested by the Sxl-Pe10kb reporter) or c) Sxl-Pe never comes on.
(2) Hashiyama et al reported that they detected gfp expression in stage 9/10 germ cells from a 1.5 kb Sxl-Pe-gfp. As noted above, this result wasn't entirely convincing and thus it isn't surprising that Goyal et al were unable to reproduce it. Extending the upstream sequences to just before the 1st exon of Sxl-Pm transcripts also didn't give gfp expression in germ cells. Only when they added 5 kb downstream did they detect gfp expression. However, from this result, it isn't possible to conclude that the Sxl-Pe promoter is actually driving gfp expression in L1 germ cells. Instead, the Sxl promoter active in the germ line could be anywhere in their 10 kb reporter.
(3) At least one experiment suggests that Sxl-Pe never comes on in germ cells. The authors tagged the N-terminus of the Sxl-Pe protein with HA and the N-terminus of the Sxl-Pm protein with Flag. Though they could detect HA-Sxl-Pe protein in the soma, they didn't detect it in germ cells. On the other hand, the Flag-Sxl-Pm protein was detected in L2 germ cells (but not earlier). These results would more or less fit with those obtained for the 10 kb reporter and would support the following model: Prior to L1, Sxl-Pm transcripts are expressed and spliced in the male pattern in both male and female germ cells. During L1, Sxl protein expressed via a mechanism that depends upon a 10 kb region spanning Sxl-Pe (but not on Sxl-Pe) is produced and by L2 there are sufficient amounts of this protein to switch the splicing of Sxl-Pm transcripts from a male to a female pattern-generating Flag-tagged Sxl-Pm protein.
(4) The 10kb reporter is sex-specific, but not germline-specific. The levels of gfp in female L1 somatic cells are equal to if not greater than those in L1 female germ cells. That the Sxl-Pe10kb reporter is active in the soma complicates the conclusion that it represents a germ line-specific promoter. Germline activity is, however, sensitive to sis-A knockdowns which is plus. Presumably, somatic expression of the reporter wouldn't be sensitive to a (late) sis-A knockdown- but this wasn't shown.
(5) Their results with the HA-Sxl-Pe protein don't fit with many previous studies-assuming that the authors have explained their results properly. They report that HA-Sxl-Pe protein is first detected in the soma at stage 9 of embryogenesis and that it then persists till L2. However, previous studies have shown that Sxl-Pe transcripts and then Sxl-Pe proteins are first detected in ~NC11-NC12 embryos. In RNase protection experiments, the Sxl-Pe exon is observed in 2-4 hr embryos, but not detected in 5-8 hr, 14-12 hr, L1, L2, L3, or pupae. Northerns give pretty much the same picture. Western blots also show that Sxl-Pe proteins are first detectable around the blastoderm stage. So it is not at all clear why HA-Sxl-Pe proteins are first observed at stage 9 which, of course, is well after the time that the Sxl-Pm autoregulatory loop is established.
Given the obvious problems with the initial timing of somatic expression described here, it is hard to know what to make of the fact that HA-tagged Sxl-Pe proteins aren't observed in germ cells.
As for the presence of HA-Sxl-Pe proteins later than expected: While RNase protection/Northern experiments showed that Sxl-Pe mRNAs are expressed in 2-4 hr embryos and disappear thereafter, one could argue from the published Western experiments that the Sxl-PE proteins expressed at the blastoderm stage persist at least until the end embryogenesis, though perhaps at somewhat lower levels than at earlier points in development. So the fact that Goyal et al were able to detect HA-Sxl-Pe proteins in stage 9 embryos and later on in L1 larva probably isn't completely unexpected. What is unexpected is that the HA-Sxl-Pe proteins weren't present earlier.
(6) The authors use RNAi and germline clones to demonstrate that sis-A is required for proper oogenesis: when sis-A activity is compromised in germ cells, i) tumorous ovary phenotypes are observed and ii) there is a reduction in the expression of Sxl-Pm protein. They are also able to rescue the phenotypic effects of sis-a knockdown by expressing a Sxl-Pm protein. While the experiments indicating sis-a is important for normal oogenesis and that at least one of its functions is to ensure that sufficient Sxl is present in the germline stem cells seem convincing, other findings would make the reader wonder whether Sis-A is actually functioning (directly) to activate Sxl transcription from promoter X.
The authors show that sis-a mRNAs and proteins are expressed in stage 3-5 germ cells (PGCs). This is not unexpected as the X-linked transcription factors that turn Sxl-Pe on are expressed prior to nuclear migration, so their protein products should be present in early PGCs. The available evidence suggests that their transcription is shut down in PGCs by the factors responsible for transcriptional quiescence (e.g., nos and pgc) in which case transcripts might be detected in only one or two PGC-which fits with their images. However, it is hard to believe that expression of Sis-A protein in pre-blastoderm embryos is relevant to the observed activation of the Sxl-Pm autoregulatory loop hours later in L2 larva.
It is also not clear how the very low level of gfp-Sis-A seen in only a small subset of migrating germ cells in stage 10 embryos (Figure S6) would be responsible for activating the Sxl-Pe10kb reporter in L1. It seems likely that the small amount of protein seen in stage 10 embryos is left over from the pre-cellular blastoderm stage. In this case, it would not be surprising to discover that the residual protein is present in both female and male stage 10 germ cells. This would raise further doubts about the relevance of the gfp-Sis-A at these early stages.
In fact, given the evidence presented implicating sis-a in activating Sxl, (the germline activation of the Sxl-Pe10kb reporter, the RNAi knockdowns, and the germ cell-specific sis-a clones) it is clear that the sis-A RNAs and proteins seen in pre-cellular blastoderm PGCs aren't relevant. The germline clone experiment (and also the RNAi knockdowns) indicates that sis-A must be transcribed in germ cells after Cas9 editing has taken place. Presumably, this would be after transcription is reactivated in the germline (~stage 10) and after the formation of the embryonic gonad (stage 14) so that the somatic gonadal cells can signal to the germ cells. With respect to the reporter, the relevant time frame for showing that sis-A is present in germ cells would be even later in L1.
(7) As noted above, the data in this manuscript do not support the idea that Sxl-Pe proteins activate the Sxl-Pm female splicing in the germline. Flybase indicates that there is at least one other Sxl promoter that could potentially generate a transcript that includes the male exon but still could encode a Sxl protein. This promoter "Sxl-Px" is located downstream of Sxl-Pm and from its position it could have been included in the authors' 10 kb reporter. The reported splicing pattern of the endogenous transcript skips exon2, and instead links an exon just downstream of Sxl-Px to the male exon. The male exon is then spliced to exon4. If the translation doesn't start and end at one of the small upstream orfs in the exons close to Sxl-Px and the male exon, a translation could begin with an AUG codon in exon4 that is in frame with the Sxl protein coding sequence. This would produce a Sxl protein that lacks aa sequences from N-terminus, but still retains some function.
Another possible explanation for how gfp is expressed from the 10 kb reporter is that the transcript includes the "z" exon described by Cline et al., 2010.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Liu et al. used scRNA-seq to characterize cell type-specific responses during allergic contact dermatitis (ACD) in a mouse model, specifically the hapten-induced DNFB model. Using the scRNA-seq data, they deconvolved the cell types responsible for the expression of major inflammatory cytokines such as IFNG (from CD4 and CD8 T cells), IL4/13 (from basophils), IL17A (from gd T cells), and IL1B from neutrophils and macrophages. They found the highest upregulation of a type 1 inflammatory response, centering around IFNG produced by CD4 and CD8 T cells. They further identified a subpopulation of dermal fibroblasts (pre-adipocytes found in the dermal white adipose tissue layer) that upregulate CXCL9/10 during ACD and provide functional genetic evidence in their mouse model that disrupting IFNG signaling in fibroblasts decreases CD8 T cell infiltration and overall inflammation. They identify an increase in IFNG-expressing CD8 T cells in human patient samples of ACD vs. healthy control skin and co-localization of CD8 T cells with PDGFRA+ fibroblasts, which suggests this mechanism is relevant to human ACD. This mechanism is reminiscent of recent work showing that IFNG signaling in dermal fibroblasts upregulates CXCL9/10 to recruit CD8 T cells in a mouse model of vitiligo. Overall, this is a well-presented, clear, and comprehensive manuscript. The conclusions of the study are well supported by the data, with thoughtful discussion on study limitations by the authors. One such limitation was the use of one ACD model (DNFB), which prevents an assessment of how broadly relevant this axis is. The human sample validation is limited by the multiplexing capacity of immunofluorescence markers but shows a predominance of CD8+/IFNG+ cells and PDGFRA+/CXCL10+ cells in ACD (which are virtually absent in healthy control), along with co-localization of CD8+ cells with PDGFRA+ cells. Thus, this mechanism is likely active in human ACD.
Strengths:<br /> Through deep characterization of the in vivo ACD model using scRNA-seq, the authors were able to determine which cell types were expressing the major cytokines involved in ACD inflammation, such as IFNG, IL4/13, IL17A, and IL1B. These analyses are well-presented and thoughtful, showing first that the response is IFNG-dominant, then focusing on deeper characterization of lymphocytes, myeloid cells, and fibroblasts, which are also validated and complemented by FACS experiments using canonical markers of these cell types as well as IF staining. Crosstalk analyses from the scRNA-seq data led the authors to focus on IFNG signaling fibroblasts, and in vitro experiments demonstrate that CXCL9 and CXCL10 are expressed by fibroblasts stimulated by IFNG. In vivo functional genetic evidence demonstrates an important role for IFNG signaling in fibroblasts, as KO of Ifngr1 using Pdgfra-Cre Ifngr1 fl/fl mice, showed a reduction in inflammation and CD8 T cell recruitment. Human ACD sample staining demonstrates the likely activity of the CD8 T cell IFNG-driven fibroblast response in human disease.
Weaknesses:<br /> The use of one model limits an understanding of how broad this fibroblast-T cell axis is during ACD. However, the authors chose the most commonly employed model and compared their data to work in a vitiligo model (another type 1 immune response) to demonstrate similar mechanisms at play. Human patient samples of ACD were co-stained with two markers at a time, demonstrating the presence of CD8+IFNG+ T cells, PDGFRA+CXCL10+ fibroblasts, and co-localization of PDGFRA+ fibroblasts and CD8+ T cells. However, no IF staining demonstrates co-expression of all 4 markers at once; thus, the human validation of co-localization of CD8+IFNG+ T cells and PDGFRA+CXCL10+ fibroblasts is ultimately indirect, although more likely than not to be true.
-
Reviewer #2 (Public Review):
Summary: The investigators apply scRNA seq and bioinformatics to identify biomarkers associated with the DNFB-induced contact dermatitis in mice. The bioinformatics component of the study appears reasonable and may provide new insights regarding TH1 driven immune reactions in ACD in mice. However, the IF data and images of tissue sections are not clear and should be improved to validate the model.
Strengths:<br /> The bioinformatics analysis.
Weaknesses:<br /> The IF data presented in 4H, 6H, 7E and 7F are not convincing and need to be correlated with routine staining on histology and different IF markers for PDGFR. Some of the IF staining data demonstrates a pattern inconsistent with its target.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #1 (Public Review):
Review after revision
Of note the main results of this article are very similar to the results present in the previous manuscript (same Figures 1 to 9, addition of Figure 10 with no quantification).<br /> Unfortunately, the main weaknesses of the article have not been addressed:
(1) The main findings have been obtained in clones of Jurkat cells. They have not been confirmed in primary T cells. The only experiment performed in primary cells is shown in Figure S7 (primary human T lymphoblasts) for which only the distribution of FMNL1 is shown without quantification. No results presenting the effect of FMNL1 KO and expression of mutants in primary T cells are shown.
(2) Analysis in- depth of the defect in actin remodeling (quantification of the images, analysis of some key actors of actin remodeling) is still lacking. Only F-actin is shown, no attempt to look more precisely at actors of actin remodeling has been done.
(3) The defect in the secretion of extracellular vesicles is still very preliminary. Examples of STED images given by the authors are nice, yet no quantification is performed.
(4) Results shown in Figure S12 on the colocalization of proteins phosphorylated on Ser/Thr are still not convincing. It seems indeed that "phospho-PKC" is labeling more preferentially the CMAC positive cells (Raji) than the Jurkat T cells. It is thus particularly difficult to conclude on the co-localization and even more on the recruitment of phosphorylated-FMNL1 at the IS. Thus, these experiments are not conclusive and cannot be the basis even for their cautious conclusion: "Although all these data did not allow us to infer that FMNL1b is phosphorylated at the IS due to the resolution limit of confocal and STED microscopes, the results are compatible with the idea that both endogenous FMNL1 and YFP-FMNL1bWT are specifically phosphorylated at the cIS".
The study would benefit from a more careful statistical analysis. The dot plots showing polarity are presented for one experiment. Yet, the distribution of the polarity is broad. Results of the 3 independent experiments should be shown and a statistical analysis performed on the independent experiments.
-
Reviewer #2 (Public Review):
Summary
Based on i) the documented role of FMNL1 proteins in IS formation; ii) their ability to regulate F-actin dynamics; iii) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation; and iv) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified, the authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.
Strengths
The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).
Weaknesses
The authors have satisfactorily addressed the weaknesses pointed out in my previous review.
-
-
-
Reviewer #1 (Public Review):
Summary:
This paper presents valuable findings that gustation and feeding state influence the preferred environmental temperature preference in flies. Interestingly, the authors showed that by refeeding starved animals with non-nutritive sugar sucralose, they are able to tune their preference towards a higher temperature in addition to nutrient-dependent warm preference. The authors show that temperature sensing and sweet sensing gustatory neurons (SGNs) are involved in the former but not the latter. In addition, their data indicate that peptidergic signals involved in internal state and clock genes are required for taste-dependent warm preference behavior.
The authors made an analogy of their results to the cephalic phase response (CPR) in mammals where the thought, sight and taste of food prepares the animal for the consumption of food and nutrients. The authors showed that taste triggers CPR-induced temperature preference behaviors in flies. The authors also briefly covered that the combined modalities of smell and taste induced CPR responses, showing that starved orco mutant flies failed to recover temperature preference after refeeding with sucralose.
The findings of this work hold promising future research prospects, for example, whether the sight of food influences temperature preference behavior in hungry flies, or whether taste, smell and sight work together or independently in promoting CPR responses.
Futhermore, these valuable behavioral results can be further investigated in flies with the advantage of being able to dissect the neural circuitry underlying CPR and nutrient homeostasis.
Strengths:
(1) The authors convincingly showed that tasting is sufficient to drive warm temperature preference behavior in starved flies and show that it is independent of nutrient-driven warm preference.<br /> (2) By using the genetic manipulation of key internal sensors and genes controlling internal feeding and sleep state such as DH44 neurons and the per genes for eg the authors linked gustation and temperature preference behavior control to the internal state of the animal.
Weaknesses:
Most of the weaknesses of the paper have been addressed in the revision. The points mentioned below are meant to improve readability of the paper and to promote understanding of the significance of the work.<br /> (1) Supplementary fig 1 could replace Figure 1A. The purpose of Figure 1F is not clear to me as the comparison between the different food substances is not separately addressed anywhere in the text.<br /> (2) The data for the orco receptor mutant could be placed in the main figures to justify the discussion emphasising CPR-like responses.
-
Reviewer #2 (Public Review):
Animals constantly adjust behavior and physiology based on internal states. Hungry animals, desperate for food, exhibit physiological changes immediately upon sensing, smelling, or chewing food, known as the cephalic phase response (CPR), involving processes like increased saliva and gastrointestinal secretions. While starvation lowers body temperature, the mechanisms underlying how the sensation of food without nutrients induces behavioral responses remain unclear. Hunger stress induces changes in both behavior and physiological responses, which in flies (or at least in Drosophila melanogaster) leads to a preference for lower temperatures, analogous to the hunger-driven lower body temperature observed in mammals. In this manuscript, the authors have used Drosophila melanogaster to investigate the issue of whether taste cues can robustly trigger behavioral recovery of temperature preference in starving animals. The authors find that food detection triggers a warm preference in flies. Starved flies recover their temperature preference after food intake, with a distinction between partial and full recovery based on the duration of refeeding. Sucralose, an artificial sweetener, induces a warm preference, suggesting the importance of food-sensing cues. The paper compares the effects of sucralose and glucose refeeding, indicating that both taste cues and nutrients contribute to temperature preference recovery. The authors show that that sweet gustatory receptors (Grs) and sweet GRNs (Gustatory Receptor Neurons) play a crucial role in taste-evoked warm preference. Optogenetic experiments with CsChrimson support the idea that the excitation of sweet GRNs leads to a warm preference. The authors then examine the internal state's influence on taste-evoked warm preference, focusing on neuropeptide F (NPF) and small neuropeptide F (sNPF), analogous to mammalian neuropeptide Y. Mutations in NPF and sNPF result in a failure to exhibit taste-evoked warm preference, emphasizing their role in this process. However, these neuropeptides appear not to be critical for nutrient-induced warm preference, as indicated by increased temperature preference during glucose and fly food refeeding in mutant flies. The authors also explore the role of hunger-related factors in regulating taste-evoked warm preference. Hunger signals, including diuretic hormone (DH44) and adipokinetic hormone (AKH) neurons, are found to be essential for taste-evoked warm preference but not for nutrient-induced warm preference. Additionally, insulin-like peptide 6 (Ilp6) and Unpaired3 (Upd3), related to nutritional stress, are identified as crucial for taste-evoked warm preference. The investigation then extends into circadian rhythms, revealing that taste-evoked warm preference does not align with the feeding rhythm. While flies exhibit a rhythmic feeding pattern, taste-evoked warm preference occurs consistently, suggesting a lack of parallel coordination. Clock genes, crucial for circadian rhythms, are found to be necessary for taste-evoked warm preference but not for nutrient-induced warm preference.
Strengths:
A well-written and interesting study, investigating an intriguing issue. The claims, none of which to the best of my knowledge controversial, are backed by a substantial number of experiments.
Weakness:
The experimental setup used and the procedures for assessing the temperature preferences of flies is rather sparingly described. Additional details and data presentation would enhance the clarity and replicability of the study. I kindly request the authors to consider the following points: i) A schematic drawing or diagram illustrating the experimental setup for the temperature preference assay would greatly aid readers in understanding the spatial arrangement of the apparatus, temperature points, and the positioning of flies during the assay. The drawing should also be accompanied by specific details about the setup (dimensions, material, etc). ii) It would be beneficial to include a visual representation of the distribution of flies within the temperature gradient on the apparatus. A graphical representation, such as a heatmaps or histograms, showing the percentage of flies within each one-degree temperature bin, would offer insights into the preferences and behaviors of the flies during the assay. In addition to the detailed description of the assay and data analysis, the inclusion of actual data plots, especially for key findings or representative trials, would provide readers with a more direct visualization of the experimental outcomes. These additions will not only enhance the clarity of the presented information but also provide the reader with a more comprehensive understanding of the experimental setup and results. I appreciate the authors' attention to these points and look forward to the potential inclusion of these elements in the revised manuscript.
Update: The revised manuscript now includes heatmaps showing the distribution of the flies across the temperature bins. As well as a schematic drawing of the behavioral setup.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper uses a model of binge alcohol consumption in mice to examine how the behaviour and its control by a pathway between the anterior insular cortex (AIC) to the dorsolateral striatum (DLS) may differ between males and females. Photometry is used to measure the activity of AIC terminals in the DLS when animals are drinking and this activity seems to correspond to drink bouts in males but not females. The effects appear to be lateralized with inputs to the left DLS being of particular interest.
Strengths:
Increasing alcohol intake in females is of concern and the consequences for substance use disorder and brain health are not fully understood, so this is an area that needs further study. The attempt to link fine-grained drinking behaviour with neural activity has the potential to enrich our understanding of the neural basis of behaviour, beyond what can be gleaned from coarser measures of volumes consumed etc.
Weaknesses:
The introduction to the drinking in the dark (DID) paradigm is rather narrow in scope (starting line 47). This would be improved if the authors framed this in the context of other common intermittent access paradigms and gave due credit to important studies and authors that were responsible for the innovation in this area (particularly studies by Wise, 1973 and returned to popular use by Simms et al 2010 and related papers; e.g., Wise RA (1973). Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29: 203-210; Simms, J., Bito-Onon, J., Chatterjee, S. et al. Long-Evans Rats Acquire Operant Self-Administration of 20% Ethanol Without Sucrose Fading. Neuropsychopharmacol 35, 1453-1463 (2010).) The original drinking in the dark demonstrations should also be referenced (Rhodes et al., 2005). Line 154 Theile & Navarro 2014 is a review and not the original demonstration.
When sex differences in alcohol intake are described, more care should be taken to be clear about whether this is in terms of volume (e.g. ml) or blood alcohol levels (BAC, or at least g/kg as a proxy measure). This distinction was often lost when lick responses were being considered. If licking is similar (assuming a single lick from a male and female brings in a similar volume?), this might mean males and females consume similar volumes, but females due to their smaller size would become more intoxicated so the implications of these details need far closer consideration. What is described as identical in one measure, is not in another.
While the authors have some previous data on the AIC to DLS pathway, there are many brain regions and pathways impacted by alcohol and so the focus on this one in particular was not strongly justified. Since photometry is really an observational method, it's important to note that no causal link between activity in the pathway and drinking has been established here.
It would be helpful if the authors could further explain whether their modified lickometers actually measure individual licks. While in some systems contact with the tongue closes a circuit which is recorded, the interruption of a photobeam was used here. It's not clear to me whether the nose close to the spout would be sufficient to interrupt that beam, or whether a tongue protrusion is required. This detail is important for understanding how the photometry data is linked to behaviour. The temporal resolution of the GCaMP signal is likely not good enough to capture individual links but I think more caution or detail in the discussion of the correspondence of these events is required.
Even if the pattern of drinking differs between males and females, the use of the word "strategy" implies a cognitive process that was never described or measured.
-
Reviewer #2 (Public Review):
Summary:
This study looks at sex differences in alcohol drinking behaviour in a well-validated model of binge drinking. They provide a comprehensive analysis of drinking behaviour within and between sessions for males and females, as well as looking at the calcium dynamics in neurons projecting from the anterior insula cortex to the dorsolateral striatum.
Strengths:
Examining specific sex differences in drinking behaviour is important. This research question is currently a major focus for preclinical researchers looking at substance use. Although we have made a lot of progress over the last few years, there is still a lot that is not understood about sex-differences in alcohol consumption and the clinical implications of this.
Identifying the lateralisation of activity is novel, and has fundamental importance for researchers investigating functional anatomy underlying alcohol-driven behaviour (and other reward-driven behaviours).
Weaknesses:
Very small and unequal sample sizes, especially females (9 males, 5 females). This is probably ok for the calcium imaging, especially with the G-power figures provided, however, I would be cautious with the outcomes of the drinking behaviour, which can be quite variable.
For female drinking behaviour, rather than this being labelled "more efficient", could this just be that female mice (being substantially smaller than male mice) just don't need to consume as much liquid to reach the same g/kg. In which case, the interpretation might not be so much that females are more efficient, as that mice are very good at titrating their intake to achieve the desired dose of alcohol.
-
Reviewer #3 (Public Review):
Summary:
In this manuscript by Haggerty and Atwood, the authors use a repeated binge drinking paradigm to assess how water and ethanol intake changes in male in female mice as well as measure changes in anterior insular cortex to dorsolateral striatum terminal activity using fiber photometry. They find that overall, males and females have similar overall water and ethanol intake, but females appear to be more efficient alcohol drinkers. Using fiber photometry, they show that the anterior insular cortex (AIC) to dorsolateral striatum projections (DLS) projections have sex, fluid, and lateralization differences. The male left circuit was most robust when aligned to ethanol drinking, and water was somewhat less robust. Male right, and female and left and right, had essentially no change in photometry activity. To some degree, the changes in terminal activity appear to be related to fluid exposure over time, as well as within-session differences in trial-by-trial intake. Overall, the authors provide an exhaustive analysis of the behavioral and photometric data, thus providing the scientific community with a rich information set to continue to study this interesting circuit. However, although the analysis is impressive, there are a few inconsistencies regarding specific measures (e.g., AUC, duration of licking) that do not quite fit together across analytic domains. This does not reduce the rigor of the work, but it does somewhat limit the interpretability of the data, at least within the scope of this single manuscript.
Strengths:
- The authors use high-resolution licking data to characterize ingestive behaviors.<br /> - The authors account for a variety of important variables, such as fluid type, brain lateralization, and sex.<br /> - The authors provide a nice discussion on how this data fits with other data, both from their laboratory and others'.<br /> - The lateralization discovery is particularly novel.
Weaknesses:
- The volume of data and number of variables provided makes it difficult to find a cohesive link between data sets. This limits interpretability.<br /> - The authors describe a clear sex difference in the photometry circuit activity. However, I am curious about whether female mice that drink more similarly to males (e.g., less efficiently?) also show increased activity in the left circuit, similar to males. Oppositely, do very efficient males show weaker calcium activity in the circuit? Ultimately, I am curious about how the circuit activity maps to the behaviors described in Figures 1 and 2.<br /> - What does the change in water-drinking calcium imaging across time in males mean? Especially considering that alcohol-related signals do not seem to change much over time, I am not sure what it means to have water drinking change.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper introduces an efficient approach to infer properties of receptive-field subunits from the ensemble of spike-triggered stimuli. This is an important general problem in sensory coding. The results introduced in the paper make a solid contribution to both how subunits can be identified and how subunits of different types are coordinated in space.
Strengths:
A primary strength of the paper is the development of approaches that substantially speed non-negative matrix factorization and by doing so create an opportunity for a more systematic exploration of how the procedure depends on various control parameters. The improved procedure is well documented and the direct comparisons with previous procedures are helpful. The improved efficiency enabled several improvements in the procedure - notably tests of good procedures for initializing NNMF and tests of the dependence of the results on the sparsity regularization parameter.
A second strength of the paper is the exploration of the spatial relationship between different subunits. This, to my knowledge, is new and is an interesting direction. There are some concerns about this analysis (see weaknesses below), but if this analysis can be strengthened it will provide new information that will be important both functionally and developmentally.
Weaknesses:
A primary concern is that choices made about parameters for several aspects of the analysis appear to be made subjectively. Much of this centers around how much of the structure in the extracted subunits is imposed by the procedure itself, and how much reflects the underlying neural circuitry. Some specific issues related to this concern are:
- Sparsity: the use of the autocorrelation function to differentiate real vs spurious subunits should be documented and validated. For example, can the authors split data in half and show that the real subunits are stable?
- Choice of regularization: the impact of the regularization parameter on subunit properties is nicely documented. However, the choice of an appropriate regularization parameter seems somewhat arbitrary. Line 253-256 is an example of this problem: this sentence sounds circular - as if the sparsity factor was turned up until the authors obtained what they expected to obtain. Could the choice of this parameter significantly impact the properties of the extracted subunits? How sensitive are the subunit properties to that parameter? Some additional control analyses are needed to validate the parameter choice (see the crossvalidation comment below).
- Crossvalidation was not used to identify the regularization constraint value because the weight matrix from NNMF does not generalize beyond the data it was fit to. Could the authors instead hold the components matrix fixed and recompute the weight matrix, and use that approach for cross-validation (especially since it is really the components matrix that needs validating)?
The paper would benefit from a more complete comparison with known anatomy. For example, can the authors estimate the number of cones within each subunit? This is well-constrained both anatomically (at least in macaque) and, especially for midget ganglion cell subunits, functionally. In macaque, most midget bipolar cells get input from single cones, so the number of extracted subunits should be close to the number of cones. This would be a useful point of comparison for the current work.
Is the analysis of the spatial relationship between different subunit mosaics robust to the incompleteness of those mosaics? The argument on lines 496-503 should be backed up by more analysis. For example, if subunits are removed from regions where the mosaic is pretty complete, do the authors change the spatial dependence? Alternatively, could they use synthetic mosaics with properties like those measured to check the sensitivity to missing cells?
NNMF relies on accounting for each spike-triggered stimulus with a linear combination of components. Would nonlinearities - e.g. those in the bipolar cell outputs - substantially change the results?
Does the approach work for cells that receive input from multiple bipolar types? Some ganglion cells, e.g. in mice, receive input from multiple bipolar types, each accounting for a sizable percentage of the total input. There is similar anatomical work indicating that parasol cells may receive input from multiple diffuse bipolar types. It is not clear whether the current approach works in cases where the subunits of a single ganglion cell overlap. Some discussion of this would be useful.
-
Reviewer #2 (Public Review):
Summary:
Identifying spatial subunits within the receptive field of retinal ganglion cells can help study spatial nonlinearities and upstream computations performed by the bipolar cells. The authors significantly accelerate the implementation of the previously proposed Spike Triggered semi-non-negative Matrix Factorization (STNMF) method to identify the subunits. The authors also propose a few method improvements - better initialization; new stability-based criteria for selecting the regularization strength, and hyperparameter selection across cell types.
The authors then apply this new method to RGC populations in both the salamander retina and the macaque (marmoset) retina. The authors document the subunit sizes, numbers, and overlap across cell types. The neuroscience finding describes the anti-coordination of ON and OFF parasol receptive fields, but not for the corresponding subunits.
Overall, the authors claim that a faster and more accurate method makes scale-up to large neuronal populations feasible.
Strengths:
- The paper is well-written, easy to read and the figures are clear. The limitations are also made clear.
- The scientific findings are novel and seem to be well supported.
- The claimed speed-up of the method is potentially important for practical applications to large populations. Each innovation of the method is well-supported.
- This is a serious effort to improve the method and document the subunits in primate retina.
Weaknesses:
- The description of the method is confusing. Currently, the new method is described in the context of changes from existing methods. As someone who is not familiar with previous methods, it is very confusing to follow the details.
- I think it will help a lot with clarity to have a concise flowchart/pseudocode to summarize the algorithm and separate it from a description of the main changes from previous methods.
- Separate pseudocodes can be provided for the main method, initialization, regularization parameter selection using consensus, and identifying the regularization parameter across cell types.
- While the new method clearly shows a drastic improvement compared to the previous method on a laptop, would it be possible to get the same improvement on the previous method if it was implemented with GPU (as is standard for most AI/ML algorithms)?
- For the calculation of subunits across multiple cells, can you run multiple parallel jobs on the same computer? This may make some innovations unnecessary (like setting the same regularization strength across multiple cells).
- There are two main innovations in this paper: the fast and approximate method, and analysis of subunit mosaics for primate RGCs. It would be helpful to include an analysis of the primate RGC subunits using the older, slower, but more exact method and show that the major scientific results can be reproduced. This would validate the new method in an end-to-end manner. While this may take a while to run, it may be helpful in the supplement.
- It would be important to understand the data-efficiency of the method. The approximate method may deviate more from the exact method when the amount of data is limited.
- Would it be possible to have a few steps of the exact method at the end to ensure that the solution truly optimizes the objective function?
- Does the number of estimated subunits change with the number of observed spikes? If so, the estimates of subunit number/size must be interpreted with caution.
-
Reviewer #3 (Public Review):
Summary:
This work addresses the problem of determining the subunit composition of receptive fields of retinal ganglion cells (RGCs). RGCs process stimuli through non-linear transforms that largely (although not entirely) reflect the individual contributions of their input bipolar cells, which themselves process visual stimuli nonlinearly. Thus, using the correct system identification methods might correctly model the RGC cells, while revealing details of the underlying circuit, including the function of the presynaptic components. It is now well established that a model of the form of an LNLN cascade can potentially capture this bipolar-RGC circuit, although the devil is in the details. The authors present an improved method of non-negative matrix factorization (NMF) - which is one approach to this system identification problem - that can speed things up by a factor of 100, and in doing so infer plausible mosaics of the bipolar cell types supporting the identified RGC types that are recorded from.
As written, the focus of this paper seems almost entirely methodological, supporting the sped-up version of NMF, called STNMF. The >100x speedup potentially makes a lot more measurements available, since it enables much more comprehensive scans across model meta-parameters, although has its own complications that must also be methodologically addressed. The results presented are largely a demonstration and validation of the potential power of this approach using example recordings in the peripheral marmoset retina. I do not think the results themselves are meant to be evaluated as definitive, since they are often based on examples and are largely confirmatory of what is already known.
Strengths:
I have very few concerns about the paper methodologically: these methods are well laid out and demonstrated (at least up to the level of my expertise and interest), including validation with established literature.
I am also enthusiastic about some of the potential results in the retina outlined (but not fully fleshed out) in the later sections of the paper.
Weaknesses:
My main critique is to question the conceptual advance in this paper: what did we learn, and what is the targeted audience of interest? Establishing this is particularly dire for this manuscript since NMF has already been established and expounded on as a useful approach in this context (including by the author most recently in 2017) so any of the scientific results is already achievable with enough computer power using existing approaches. As currently cast, the conceptual advances here are purely methodological and relate to the utility of speeding up the approach. Also, they do not appear to generalize to other problems outside of the narrow range that it is currently applied.
Thus, two paths to improving the manuscript would be either:<br /> (1) target readers interested in the retina by fully fleshing out the current results and add more to make this into a paper about the retina rather than about the STNMF method, or<br /> (2) demonstrate that the methods might be useful outside of the very narrow set of conditions specific to identifying nonlinear bipolar cell subunits in peripheral retina under white noise stimulation.
In its current state, the Discussion addressing limitations and generality seems to suggest applicability past this narrow condition, which I do not think is the case: but would be happy to be convinced otherwise.
For fleshing out scientific results, in the current manuscript, they are currently presented to validate the approach and are largely confirmatory for what we already know about the retina (which allows for this validation). Also, much of the results are measurements based on examples, and not accumulated past a single recording in some cases. Finally, it is not clear to the extent that these results depend on the specific recordings in the peripheral marmoset retina: what about more central in the retina, or in other species?
For demonstrating the utility of the methodology: here are some of the main limitations to generalizing past this specific case:<br /> (1) the necessity of linear or near-linear processing in previous layers;<br /> (2) lack of any negative components;<br /> (3) lack of ability to account for other influences on spiking than the positive contributions of LN subunits;<br /> (4) necessity of white noise stimulation that is specifically sized for a uniform subunit size.
Together, I believe this precludes potential applications to other areas in the brain: further back in the visual system will require non-linear transforms as well as the convergence of positive and negative inputs. Other sensory systems like the auditory system are even more non-linear well before getting to even mid-level pre-cortical structures and also combine positive and negative influences. Given the importance of inhibition in the retina (including what is thought to be an important role of amacrine cells in shaping RGC responses), it is not clear how general this approach is in the retina, although the specific results shown are believable. How could this approach generalize, realistically? Could applications to other types of data be demonstrated, and/or plausibly get by these fundamental limitations? How?
-
-
www.biorxiv.org www.biorxiv.org
-
Gating of Kv10 channels is unique because it involves coupling between non-domain swapped voltage sensing domains, a domain-swapped cytoplasmic ring assembly formed by the N- and C-termini, and the pore domain. Recent structural data suggests that activation of the voltage sensing domain relieves a steric hindrance to pore opening, but the contribution of the cytoplasmic domain to gating is still not well understood. This aspect is of particular importance because proteins like calmodulin interact with the cytoplasmic domain to regulate channel activity. The effects of calmodulin (CaM) in WT and mutant channels with disrupted cytoplasmic gating ring assemblies are contradictory, resulting in inhibition or activation, respectively. The underlying mechanism for these discrepancies is not understood. In the present manuscript, Reham Abdelaziz and collaborators use electrophysiology, biochemistry and mathematical modeling to describe how mutations and deletions that disrupt inter-subunit interactions at the cytoplasmic gating ring assembly affect Kv10.1 channel gating and modulation by CaM. In the revised manuscript, additional information is provided to allow readers to identify within the Kv10.1 channel structure the location of E600R, one of the key channel mutants analyzed in this study. However, the mechanistic role of the cytoplasmic domains that this study focuses on, as well as the location of the ΔPASCap deletion and other perturbations investigated in the study remain difficult to visualize without additional graphical information.
The authors focused mainly on two structural perturbations that disrupt interactions within the cytoplasmic domain, the E600R mutant and the ΔPASCap deletion. By expressing mutants in oocytes and recording currents using Two Electrode Voltage-Clamp (TEV), it is found that both ΔPASCap and E600R mutants have biphasic conductance-voltage (G-V) relations and exhibit activation and deactivation kinetics with multiple voltage-dependent components. Importantly, the mutant-specific component in the G-V relations is observed at negative voltages where WT channels remain closed. The authors argue that the biphasic behavior in the G-V relations is unlikely to result from two different populations of channels in the oocytes, because they found that the relative amplitude between the two components in the G-V relations was highly reproducible across individual oocytes that otherwise tend to show high variability in expression levels. Instead, the G-V relations for all mutant channels could be well described by an equation that considers two open states O1 and O2, and a transition between them; O1 appeared to be unaffected by any of the structural manipulations tested (i.e. E600R, ΔPASCap, and other deletions) whereas the parameters for O2 and the transition between the two open states were different between constructs. The O1 state is not observed in WT channels and is hypothesized to be associated with voltage sensor activation. O2 represents the open state that is normally observed in WT channels and is speculated to be associated with conformational changes within the cytoplasmic gating ring that follow voltage sensor activation, which could explain why the mutations and deletions disrupting cytoplasmic interactions affect primarily O2.
Severing the covalent link between the voltage sensor and pore reduced O1 occupancy in one of the deletion constructs. Although this observation is consistent with the hypothesis that voltage-sensor activation drives entry into O1, this result is not conclusive. Structural as well as functional data has established that the coupling of the voltage sensor and pore does not entirely rely on the S4-S5 covalent linker between the sensor and the pore, and thus the severed construct could still retain coupling through other mechanisms, which is consistent with the prominent voltage dependence that is observed. If both states O1 and O2 require voltage sensor activation, it is unclear why the severed construct would affect state O1 primarily, as suggested in the manuscript, as opposed to decreasing occupancy of both open states. In line with this argument, the presence of Mg2+ in the extracellular solution affected both O1 and O2. This finding suggests that entry into both O1 and O2 requires voltage-sensor activation because Mg2+ ions are known to stabilize the voltage sensor in its most deactivated conformations.
Activation towards and closure from O1 is slow, whereas channels close rapidly from O2. A rapid alternating pulse protocol was used to take advantage of the difference in activation and deactivation kinetics between the two open components in the mutants and thus drive an increasing number of channels towards state O1. Currents activated by the alternating protocol reached larger amplitudes than those elicited by a long depolarization to the same voltage. This finding is interpreted as an indication that O1 has a larger macroscopic conductance than O2. In the revised manuscript, the authors performed single-channel recordings to determine why O1 and O2 have different macroscopic conductance. The results show that at voltages where the state O1 predominates, channels exhibited longer open times and overall higher open probability, whereas at more depolarized voltages where occupancy of O2 increases, channels exhibited more flickery gating behavior and decreased open probability. These results are informative but not conclusive since single-channel amplitudes could not be resolved at strong depolarizations, limiting the extent to which the data could be analyzed. In the last revision, the authors have included one representative example showing inhibition of single channel activity by the Kv10-specific inhibitor astemizole. Group data analysis would be needed to conclusively establish that the currents that were recorded indeed correspond to Kv10 channels.
It is shown that conditioning pulses to very negative voltages result in mutant channel currents that are larger and activate more slowly than those elicited at the same voltage but starting from less negative conditioning pulses. In voltage-activated curves, O1 occupancy is shown to be favored by increasingly negative conditioning voltages. This is interpreted as indicating that O1 is primarily accessed from deeply closed states in which voltage sensors are in their most deactivated position. Consistently, a mutation that destabilizes these deactivated states is shown to largely suppress the first component in voltage-activation curves for both ΔPASCap and E600R channels.
The authors then address the role of the hidden O1 state in channel regulation by calcium-calmodulin (CaM). Stimulating calcium entry into oocytes with ionomycin and thapsigargin, assumed to enhance CaM-dependent modulation, resulted in preferential potentiation of the first component in ΔPASCap and E600R channels. This potentiation was attenuated by including an additional mutation that disfavors deeply closed states. Together, these results are interpreted as an indication that calcium-CaM preferentially stabilizes deeply closed states from which O1 can be readily accessed in mutant channels, thus favoring current activation. In WT channels lacking a conducting O1 state, CaM stabilizes deeply closed states and is therefore inhibitory. It is found that the potentiation of ΔPASCap and E600R by CaM is more strongly attenuated by mutations in the channel that are assumed to disrupt interaction with the C-terminal lobe of CaM than mutations assumed to affect interaction with the N-terminal lobe. These results are intriguing but difficult to interpret in mechanistic terms. The strong effect that calcium-CaM had on the occupancy of the O1 state in the mutants raises the possibility that O1 can be only observed in channels that are constitutively associated with CaM. To address this, a biochemical pull-down assay was carried out to establish that only a small fraction of channels are associated with CaM under baseline conditions. These CaM experiments are potentially very interesting and could have wide physiological relevance. However, the approach utilized to activate CaM is indirect and could result in additional non-specific effects on the oocytes that could affect the results.
Finally, a mathematical model is proposed consisting of two layers involving two activation steps for the voltage sensor, and one conformational change in the cytoplasmic gating ring - completion of both sets of conformational changes is required to access state O2, but accessing state O1 only requires completion of the first voltage-sensor activation step in the four subunits. The model qualitatively reproduces most major findings on the mutants. Although the model used is highly symmetric and appears simple, the mathematical form used for the rate constants in the model adds a layer of complexity to the model that makes mechanistic interpretations difficult. In addition, many transitions that from a mechanistic standpoint should not depend on voltage were assigned a voltage dependence in the model. These limitations diminish the mechanistic insight that can be reliably extracted from the model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Yang et al. conduct a comprehensive investigation to demonstrate the role of adipose tissue miR-802 in obesity-associated inflammation and metabolic dysfunction. Using multiple models and techniques, they propose a mechanism where elevated levels of miR-802 in adipose tissue (both in mouse models and humans) trigger fat accumulation and inflammation, leading to increased adiposity and insulin resistance. They suggest that increased miR-802 levels in adipocytes during obesity result in the downregulation of TRAF3, a negative regulator of canonical and non-canonical NF-κB pathways. This downregulation induces inflammation through the production of cytokines/chemokines that attract and polarize macrophages. Concurrently, the NF-κB pathway induces the lipogenic transcriptional factor SREBP1, which promotes fat accumulation and further recruits pro-inflammatory macrophages. While the proposed model is supported by multiple experiments and consistent data, there are areas where the manuscript could be improved. Some improvements can be addressed in the text, while others require additional controls, experiments, or analyses.
(1) The manuscript should provide measurements of lipid droplet/adipocyte size for all models, both in vitro and in vivo. In vivo studies should also include fat weight measurements. This is crucial to determine whether miR-802, TRAF3, and SREBP1 promote adiposity/fat accumulation across all models.<br /> (2) The rationale for co-culture experiments using WAT SVF is unclear, given that miR-802 is upregulated by obesity in adipocytes, not in the stromal-vascular fraction. These experiments would be more relevant if performed using isolated adipocytes or differentiated WAT SVF.<br /> (3) Figures 1G and 1H lack a control group (time 0 or NCD). Without this control, it is impossible to determine if inflammation precedes miR-802 upregulation.<br /> (4) The statement, "The knockout of miR-802 in adipose tissue did not alter food intake, body weight, glucose level, and adiposity (data not shown)," needs more detail regarding the age and sex of the animals. These data are important and should be reported, perhaps in a supplementary figure.<br /> (5) The terms "KO" (knockout) and "KI" (knock-in) are misleading for AAV models, as they do not modify the genome. "KD" (knockdown) and "OE" (overexpression) are more accurate.<br /> (6) The statement, "miR-802 expression was unaffected in other organs (Figure S3O)," should clarify that this is except for BAT.
By addressing these points, the manuscript would present a more robust and clear demonstration of the role of miR-802 in obesity-associated inflammation and metabolic dysfunction.
-
Reviewer #2 (Public Review):
Yang et al. investigated the role of miR-802 in the development of adipose tissue (AT) inflammation during obesity. The authors found miR-802 levels are up-regulated in the AT of mouse models of obesity and insulin resistance as well as in the AT of humans. They further demonstrated that miR-802 regulates the intracellular levels of TRAF3 and downstream activation of the NF-kB pathway. Ultimately, controlling AT inflammation by manipulating miR-802 affected whole-body glucose homeostasis, highlighting the role of AT inflammatory status in whole-body metabolism. The study provides solid evidence on the role of adipocyte miR-802 in controlling inflammation and macrophage recruitment. However, how lipid mobilization from adipocytes and how engulfment of lipid droplets by macrophages control inflammatory phenotype in these cells could be better explored. The findings of this study will have a great impact in the field, contributing to the growing body of evidence on how microRNAs control the inflammatory microenvironment of AT and whole-body metabolism in obesity.
-
Reviewer #3 (Public Review):
MiR-802 appears to accumulate before macrophage numbers increase in adipose tissue in both mice and humans. The phenotype of miR-802 overexpression and deletion in vivo is sticking and novel. Deletion of miR-802 in adipose tissue after obesity onset also attenuated Adipose inflammation and improved systemic glucose homeostasis. Understanding how miR-802 affects the crosstalk between macrophage and adipocyte is a major point. For example, does miR-802 change the inflammatory of macrophages as it increases Traf3 expression in adipocytes? This is important because macrophages are the input if inflammatory mediators that will activate the TNFR receptor signaling pathway, potentially Traf3, resulting in impaired insulin stimulated Glut4 translocation and glucose uptake. Also, modulation of miR-802 levels in vivo leads to alterations in adiposity. Here, what is a direct effect of miR-802 and what is a result of simply reduced adiposity? One point that os ket is what triggers miR-802 expression, especially in obesity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, Tompary & Davachi present work looking at how memories become integrated over time in the brain, and relating those mechanisms to responses on a priming task as a behavioral measure of memory linkage. They find that remotely but not recently formed memories are behaviorally linked and that this is associated with a change in the neural representation in mPFC. They also find that the same behavioral outcomes are associated with the increased coupling of the posterior hippocampus with category-sensitive parts of the neocortex (LOC) during a post-learning rest period-again only for remotely learned information. There was also correspondence in rest connectivity (posterior hippocampus-LOC) and representational change (mPFC) such that for remote memories specifically, the initial post-learning connectivity enhancement during rest related to longer-term mPFC representational change.
This work has many strengths. The topic of this paper is very interesting, and the data provide a really nice package in terms of providing a mechanistic account of how memories become integrated over a delay. The paper is also exceptionally well-written and a pleasure to read. There are two studies, including one large behavioral study, and the findings replicate in the smaller fMRI sample. I do however have two fairly substantive concerns about the analytic approach, where more data will be required before we can know whether the interpretations are an appropriate reflection of the findings. These and other concerns are described below.
(1) One major concern relates to the lack of a pre-encoding baseline scan prior to recent learning.
a) First, I think it would be helpful if the authors could clarify why there was no pre-learning rest scan dedicated to the recent condition. Was this simply a feasibility consideration, or were there theoretical reasons why this would be less "clean"? Including this information in the paper would be helpful for context. Apologies if I missed this detail in the paper.
b) Second, I was hoping the authors could speak to what they think is reflected in the post-encoding "recent" scan. Is it possible that these data could also reflect the processing of the remote memories? I think, though am not positive, that the authors may be alluding to this in the penultimate paragraph of the discussion (p. 33) when noting the LOC-mPFC connectivity findings. Could there be the reinstatement of the old memories due to being back in the same experimental context and so forth? I wonder the extent to which the authors think the data from this scan can be reflected as strictly reflecting recent memories, particularly given it is relative to the pre-encoding baseline from before the remote memories, as well (and therefore in theory could reflect both the remote + recent). (I should also acknowledge that, if it is the case that the authors think there might be some remote memory processing during the recent learning session in general, a pre-learning rest scan might not have been "clean" either, in that it could have reflected some processing of the remote memories-i.e., perhaps a clean pre-learning scan for the recent learning session related to point 1a is simply not possible.)
c) Third, I am thinking about how both of the above issues might relate to the authors' findings, and would love to see more added to the paper to address this point. Specifically, I assume there are fluctuations in baseline connectivity profile across days within a person, such that the pre-learning connectivity on day 1 might be different from on day 2. Given that, and the lack of a pre-learning connectivity measure on day 2, it would logically follow that the measure of connectivity change from pre- to post-learning is going to be cleaner for the remote memories. In other words, could the lack of connectivity change observed for the recent scan simply be due to the lack of a within-day baseline? Given that otherwise, the post-learning rest should be the same in that it is an immediate reflection of how connectivity changes as a function of learning (depending on whether the authors think that the "recent" scan is actually reflecting "recent + remote"), it seems odd that they both don't show the same corresponding increase in connectivity-which makes me think it may be a baseline difference. I am not sure if this is what the authors are implying when they talk about how day 1 is most similar to prior investigation on p. 20, but if so it might be helpful to state that directly.
d) Fourth and very related to my point 1c, I wonder if the lack of correlations for the recent scan with behavior is interpretable, or if it might just be that this is a noisy measure due to imperfect baseline correction. Do the authors have any data or logic they might be able to provide that could speak to these points? One thing that comes to mind is seeing whether the raw post-learning connectivity values (separately for both recent and remote) show the same pattern as the different scores. However, the authors may come up with other clever ways to address this point. If not, it might be worth acknowledging this interpretive challenge in the Discussion.
(2) My second major concern is how the authors have operationalized integration and differentiation. The pattern similarity analysis uses an overall correspondence between the neural similarity and a predicted model as the main metric. In the predicted model, C items that are indirectly associated are more similar to one another than they are C items that are entirely unrelated. The authors are then looking at a change in correspondence (correlation) between the neural data and that prediction model from pre- to post-learning. However, a change in the degree of correspondence with the predicted matrix could be driven by either the unrelated items becoming less similar or the related ones becoming more similar (or both!). Since the interpretation in the paper focuses on change to indirectly related C items, it would be important to report those values directly. For instance, as evidence of differentiation, it would be important to show that there is a greater decrease in similarity for indirectly associated C items than it is for unrelated C items (or even a smaller increase) from pre to post, or that C items that are indirectly related are less similar than are unrelated C items post but not pre-learning. Performing this analysis would confirm that the pattern of results matches the authors' interpretation. This would also impact the interpretation of the subsequent analyses that involve the neural integration measures (e.g., correlation analyses like those on p. 16, which may or may not be driven by increased similarity among overlapping C pairs). I should add that given the specificity to the remote learning in mPFC versus recent in LOC and anterior hippocampus, it is clearly the case that something interesting is going on. However, I think we need more data to understand fully what that "something" is.
(3) The priming task occurred before the post-learning exposure phase and could have impacted the representations. More consideration of this in the paper would be useful. Most critically, since the priming task involves seeing the related C items back-to-back, it would be important to consider whether this experience could have conceivably impacted the neural integration indices. I believe it never would have been the case that unrelated C items were presented sequentially during the priming task, i.e., that related C items always appeared together in this task. I think again the specificity of the remote condition is key and perhaps the authors can leverage this to support their interpretation. Can the authors consider this possibility in the Discussion?
(4) For the priming task, based on the Figure 2A caption it seems as though every sequence contributes to both the control and primed conditions, but (I believe) this means that the control transition always happens first (and they are always back-to-back). Is this a concern? If RTs are changing over time (getting faster), it would be helpful to know whether the priming effects hold after controlling for trial numbers. I do not think this is a big issue because if it were, you would not expect to see the specificity of the remotely learned information. However, it would be helpful to know given the order of these conditions has to be fixed in their design.
(5) The authors should be cautious about the general conclusion that memories with overlapping temporal regularities become neurally integrated - given their findings in MPFC are more consistent with overall differentiation (though as noted above, I think we need more data on this to know for sure what is going on).
(6) It would be worth stating a few more details and perhaps providing additional logic or justification in the main text about the pre and post-exposure phases were set up and why. How many times each object was presented pre and post, and how the sequencing was determined (were any constraints put in place e.g., such that C1 and C2 did not appear close in time?). What was the cover task (I think this is important to the interpretation & so belongs in the main paper)? Were there considerations involving the fact that this is a different sequence of the same objects the participants would later be learning - e.g., interference, etc.?
-
Reviewer #2 (Public Review):
The manuscript by Tompary & Davachi presents results from two experiments, one behavior only and one fMRI plus behavior. They examine the important question of how to separate object memories (C1 and C2) that are never experienced together in time and become linked by shared predictive cues in a sequence (A followed by B followed by one of the C items). The authors developed an implicit priming task that provides a novel behavioral metric for such integration. They find significant C1-C2 priming for sequences that were learned 24h prior to the test, but not for recently learned sequences, suggesting that associative links between the two originally separate memories emerge over an extended period of consolidation. The fMRI study relates this behavioral integration effect to two neural metrics: pattern similarity changes in the medial prefrontal cortex (mPFC) as a measure of neural integration, and changes in hippocampal-LOC connectivity as a measure of post-learning consolidation. While fMRI patterns in mPFC overall show differentiation rather than integration (i.e., C1-C2 representational distances become larger), the authors find a robust correlation such that increasing pattern similarity in mPFC relates to stronger integration in the priming test, and this relationship is again specific to remote memories. Moreover, connectivity between the posterior hippocampus and LOC during post-learning rest is positively related to the behavioral integration effect as well as the mPFC neural similarity index, again specifically for remote memories. Overall, this is a coherent set of findings with interesting theoretical implications for consolidation theories, which will be of broad interest to the memory, learning, and predictive coding communities.
Strengths:
(1) The implicit associative priming task designed for this study provides a promising new tool for assessing the formation of mnemonic links that influence behavior without explicit retrieval demands. The authors find an interesting dissociation between this implicit measure of memory integration and more commonly used explicit inference measures: a priming effect on the implicit task only evolved after a 24h consolidation period, while the ability to explicitly link the two critical object memories is present immediately after learning. While speculative at this point, these two measures thus appear to tap into neocortical and hippocampal learning processes, respectively, and this potential dissociation will be of interest to future studies investigating time-dependent integration processes in memory.
(2) The experimental task is well designed for isolating pre- vs post-learning changes in neural similarity and connectivity, including important controls of baseline neural similarity and connectivity.
(3) The main claim of a consolidation-dependent effect is supported by a coherent set of findings that relate behavioral integration to neural changes. The specificity of the effects on remote memories makes the results particularly interesting and compelling.
(4) The authors are transparent about unexpected results, for example, the finding that overall similarity in mPFC is consistent with a differentiation rather than an integration model.
Weaknesses:
(1) The sequence learning and recognition priming tasks are cleverly designed to isolate the effects of interest while controlling for potential order effects. However, due to the complex nature of the task, it is difficult for the reader to infer all the transition probabilities between item types and how they may influence the behavioral priming results. For example, baseline items (BL) are interspersed between repeated sequences during learning, and thus presumably can only occur before an A item or after a C item. This seems to create non-random predictive relationships such that C is often followed by BL, and BL by A items. If this relationship is reversed during the recognition priming task, where the sequence is always BL-C1-C2, this violation of expectations might slow down reaction times and deflate the baseline measure. It would be helpful if the manuscript explicitly reported transition probabilities for each relevant item type in the priming task relative to the sequence learning task and discussed how a match vs mismatch may influence the observed priming effects.
(2) The choice of what regions of interest to include in the different sets of analyses could be better motivated. For example, even though briefly discussed in the intro, it remains unclear why the posterior but not the anterior hippocampus is of interest for the connectivity analyses, and why the main target is LOC, not mPFC, given past results including from this group (Tompary & Davachi, 2017). Moreover, for readers not familiar with this literature, it would help if references were provided to suggest that a predictable > unpredictable contrast is well suited for functionally defining mPFC, as done in the present study.
(3) Relatedly, multiple comparison corrections should be applied in the fMRI integration and connectivity analyses whenever the same contrast is performed on multiple regions in an exploratory manner.
-
Reviewer #3 (Public Review):
The authors of this manuscript sought to illuminate a link between a behavioral measure of integration and neural markers of cortical integration associated with systems consolidation (post-encoding connectivity, change in representational neural overlap). To that aim, participants incidentally encoded sequences of objects in the fMRI scanner. Unbeknownst to participants, the first two objects of the presented ABC triplet sequences overlapped for a given pair of sequences. This allowed the authors to probe the integration of unique C objects that were never directly presented in the same sequence, but which shared the same preceding A and B objects. They encoded one set of objects on Day 1 (remote condition), another set of objects 24 hours later (recent condition) and tested implicit and explicit memory for the learned sequences on Day 2. They additionally collected baseline and post-encoding resting-state scans. As their measure of behavioral integration, the authors examined reaction time during an Old/New judgement task for C objects depending on if they were preceded by a C object from an overlapping sequence (primed condition) versus a baseline object. They found faster reaction times for the primed objects compared to the control condition for remote but not recently learned objects, suggesting that the C objects from overlapping sequences became integrated over time. They then examined pattern similarity in a priori ROIs as a measure of neural integration and found that participants showing evidence of integration of C objects from overlapping sequences in the medial prefrontal cortex for remotely learned objects also showed a stronger implicit priming effect between those C objects over time. When they examined the change in connectivity between their ROIs after encoding, they also found that connectivity between the posterior hippocampus and lateral occipital cortex correlated with larger priming effects for remotely learned objects, and that lateral occipital connectivity with the medial prefrontal cortex was related to neural integration of remote objects from overlapping sequences.
The authors aim to provide evidence of a relationship between behavioral and neural measures of integration with consolidation is interesting, important, and difficult to achieve given the longitudinal nature of studies required to answer this question. Strengths of this study include a creative behavioral task, and solid modelling approaches for fMRI data with careful control for several known confounds such as bold activation on pattern analysis results, motion, and physiological noise. The authors replicate their behavioral observations across two separate experiments, one of which included a large sample size, and found similar results that speak to the reliability of the observed behavioral phenomenon. In addition, they document several correlations between neural measures and task performance, lending functional significance to their neural findings.
However, this study is not without notable weaknesses that limit the strength of the manuscript. The authors report a behavioral priming effect suggestive of integration of remote but not recent memories, leading to the interpretation that the priming effect emerges with consolidation. However, they did not observe a reliable interaction between the priming condition and learning session (recent/remote) on reaction times, meaning that the priming effect for remote memories was not reliably greater than that observed for recent. In addition, the emergence of a priming effect for remote memories does not appear to be due to faster reaction times for primed targets over time (the condition of interest), but rather, slower reaction times for control items in the remote condition compared to recent. These issues limit the strength of the claim that the priming effect observed is due to C items of interest being integrated in a consolidation-dependent manner.
Similarly, the interactions between neural variables of interest and learning session needed to strongly show a significant consolidation-related effect in the brain were sometimes tenuous. There was no reliable difference in neural representational pattern analysis fit to a model of neural integration between the short and long delays in the medial prefrontal cortex or lateral occipital cortex, nor was the posterior hippocampus-lateral occipital cortex post-encoding connectivity correlation with subsequent priming significantly different for recent and remote memories. While the relationship between integration model fit in the medial prefrontal cortex and subsequent priming (which was significantly different from that occurring for recent memories) was one of the stronger findings of the paper in favor of a consolidation-related effect on behavior, is it possible that lack of a behavioral priming effect for recent memories due to possible issues with the control condition could mask a correlation between neural and behavioral integration in the recent memory condition?
These limitations are especially notable when one considers that priming does not classically require a period of prolonged consolidation to occur, and prominent models of systems consolidation rather pertain to explicit memory. While the authors have provided evidence that neural integration in the medial prefrontal cortex, as well as post-encoding coupling between the lateral occipital cortex and posterior hippocampus, are related to faster reaction times for primed objects of overlapping sequences compared to their control condition, more work is needed to verify that the observed findings indeed reflect consolidation dependent integration as proposed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Girardello et al. use proteomics to reveal the membrane tension sensitive caveolin-1 interactome in migrating cells. The authors use EM and surface rendering to demonstrate that caveolae formed at the rear of migrating cells are complex membrane-linked multilobed structures, and they devise a robust strategy to identify caveolin-1 associated proteins using APEX2-mediated proximity biotinylation. This important dataset is further validated using proximity ligation assays to confirm key interactions, and follows up with an interrogation of a surprising relationship between caveolae and RhoGTPase signalling, where caveolin-1 recruits ROCK1 under high membrane tension conditions, and ROCK1 activity is required to reform caveolae upon reversion to isotonic solution. However, caveolin-1 recruits the RhoA inactivator ARHGAP29 when membrane tension is low and ARHGAP29 overexpression leads to disassembly of caveolae and reduced cell motility. This study builds on previous findings linking caveolae to positive feedback regulation of RhoA signalling, and provides further evidence that caveolae serve to drive rear retraction in migration but also possess an intrinsic brake to limit RhoA activation, leading the authors to suggest that cycles of caveolae assembly and disassembly could thereby be central to establish a stable cell rear for persistent cell migration
A major strength of the manuscript is the robust proteomic dataset. The experimental set up is well defined and mostly well controlled, and there is good internal validation in that the high abundance of core caveolar proteins in low membrane tension (isotonic) conditions, and absence under high membrane tension (brief hypo-osmotic shock) conditions, correlating very well with previous finding. The data could however be better presented to show where statically robust changes occur, and supplementary information should include a table of showing abundance. It's very good to see a link to PRIDE, providing a useful resource for the community.
The authors detail several known interactions and their mechanosensitivty, but also report new interactors of caveolin-1. Several mechanosensitive interactions of caveolin-1 take place at the cell rear, but others are more diffuse across the cell looking at the PLA data (e.g FLN1, CTTN, HSPB1; Figure 4A-F and Figure 4 supplement 1). It is interesting to speculate that those at the cell rear are involved in caveolae, whilst others are linked specifically to caveolin-1 (e.g. dolines). PLA or localisation analysis with Cavin1/PTRF may be able to resolve this and further specify caveolae versus non-caveolae mechanosensitive interactions.
The Cav1/ARHGAP29 influence on YAP signalling is interesting, but appear to be quite isolated from the rest of the manuscript. Does overexpression of ARHGAP29 influence YAP signalling and/or caveolar protein expression/Cav1pY14?<br /> ARHGAP29 and RhoA/ROCK1 related observations are very interesting and potentially really important. However, the link between ARHGAP29 and caveolae is not well established (other than in proteomic data). PLA or FRET could help establish this.<br /> The relationship between ARHGAP29 and RhoA signalling is not well defined. Is GAP activity important in determining the effect on migration and caveolae formation? What is the effect on RhoA activity? Alternatively, the authors could investigate YAP dependent transcriptional regulation downstream of overexpression.
-
Reviewer #2 (Public Review):
Girardello et al investigated the composition of the molecular machinery of caveolae governing their mechano-regulation in migrating cells. Using live cell imaging and RPE1 cells, the authors provide a spatio-temporal analysis of cavin-3 distribution during cell migration and reveal that caveolae are preferentially localized at the rear of the cell in a stable manner. They further characterize these structures using electron tomography and reveal an organization into clusters connected to the cell surface. By performing a proteomic approach, they address the interactome of caveolin-1 proteins upon mechanical stimulation by exposing RPE1 cells to hypo-osmotic shock (which aims to increase cell membrane tension) or not as a control condition. The authors identify over 300 proteins, notably proteins related to actin cytoskeleton and cell adhesion. These results were further validated in cellulo by interrogating protein-protein interactions using proximity ligation assays and hypo-osmotic shock. These experiments confirmed previous data showing that high membrane tension induces caveolae disassembly in a reversible manner. Eventually, based on literature and on the results collected by the proteomic analysis, authors investigated more deeply the molecular signaling pathway controlling caveolae assembly upon mechanical stimuli. First, they confirm the targeting of ROCK1 with Caveolin-1 and the implication of the kinase activity for caveolae formation (at the rear of the cell). Then, they show that RhoGA ARHGAP29, a factor newly identified by the proteomic analysis, is also implicated in caveolae mechano-regulation likely through YAP protein and found that overexpression of RHoGA ARHGAP29 affects cell motility. Overall, this paper interrogated the role of membrane tension in caveolae located at the rear of the cell and identified a new pathway controlling cell motility.
Strengths:
Using a proximity-based proteomic assay, the authors reveal the protein network interacting with caveolae upon mechanical stimuli. This approach is elegant and allows to identify a substantial new set of factors involved in the mechano-regulation of caveolin-1, some of which have been verified directly in the cell by PLA. This study provides a compelling set of data on the interactions between caveolae and its cortical network which was so far ill-characterized.
Weaknesses:
The methodology demonstrating an impact of membrane tension is not precise enough to directly assess a direct role on caveolae at a subcellular scale, that is between the front and the rear of the cell. First, a better characterization of the "front-rear" cellular model is encouraged. Secondly, authors frequently present osmotic shock as "high membrane tension" stimuli. While osmotic shock is widely used in the field, this study is focused only on caveolae localized at the rear of cell and it remains unclear how the level of a global mechanical stimuli triggered by an osmotic shock could mimic a local stimuli. In the present case, it remains unknown the extent to which this mechanical stress is physiologically relevant to mimic mechanical forces applied at the rear of a migrating cell.<br /> Some images are not satisfying to fully support the conclusions of the article. At this stage, the lack of an unbiased quantitative analysis of the spatio-temporal analysis of caveolae upon well-defined mechanical stimuli is also needed. Cells on images, in particular Figure 1, are difficult to see. Signal-to noise ratio in different cell area could generate a biased. Since there is inconsistency between caveolae density and localization between Figures, more solid illustrations are needed along quantitative analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Although the authors findings are interesting, they do little to demonstrate new scientific information or advancements in producing genetically modified livestock with improved production characteristics. While the MSTNDel273 sheep exhibited an increased number of muscle fibers, the data provided did not demonstrate a significant improvement in meat production, quality or quantity in the MSTNDel273 sheep vs WT.
The manuscript is very long, complicated and difficult to read, given the minimum amount of significant information that is provided. It reads more like a graduate student thesis than a scientific manuscript ready for publication. Given the significant findings are so minimal, the amount of text provided, figures and tables are excessive. A large number of different molecular techniques are employed to try and decipher the mechanism(s) that result in the observed phenotype = double muscling. The authors focus on the MEK-ERK-FOSL1 pathway and suggest this is the key pathway/mechanism resulting in the phenotype observed in MSTNDel273sheep. However, they provide very little "significant" evidence to support this. RNA-Seq data demonstrated that hundreds of different genes were either upregulated or down-regulated, but the authors chose to only focus on FOSL1 and associated genes. The findings do not support the idea that FOSL1 is not involved, but neither do they strongly support FOSL1 involvement. The observations made by the authors could be co-incidental and not causative in nature.
The authors indicate that sgRNA design changes in addition to changing the molar ratio of Cas9MRNA:sgRNA improved the ability to generate biallelic homozygous mutant sheep; however, the data provided to not demonstrate any significant difference. Given the small number of sheep that were actually produced and evaluated, it is extremely difficult to demonstrate anything that was analyzed to be significantly (statistically) different between MSTNDel273 sheep and WT, yet the authors seem to ignore this in much of their discussion. There is no explanation as to why the authors started with sheep that were FGF5 knockouts. The reviewer assumes that this was simply a line of sheep available from previous studies and the goal was to produce sheep with both improved hair/wool characteristics in addition to improved muscle development. However, the use of FGF5 knockout sheep complicates the ability to accurately decipher the unique aspects associated with targeting only myostatin for knock-out. At minimum, this is a variable that has to be considered in the statistical analysis. No information is provided on the methods used to produce the MSTNDel273 sheep, which seems fundamentally important. It is assumed they were produced by injecting one-cell zygotes then transferring these into surrogate females, but given the information provided, it is impossible to know. Certainly, the methods employed could have a profound effect on the outcome. There is no information provided on the sex of the animals produced and then analyzed.
Comments on revised version:
The manuscript by Chen et al. is improved and demonstrates successful gene editing in sheep embryos to obtain biallelic mutation of Mstn and FGF5. Despite the improvements in the revised manuscript, the cellular and molecular mechanism remain inadequate to conclude whether Fosl1 indeed acts downstream of myostatin. In addition, there is little that is new direction versus confirmatory for what is already well know regarding Mstn and FGF5
There are also a number of editorial mistakes e.g. the authors refer to tables S1-S4 in the materials and methods and results section, but there is no table S1-S4 provided.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The data clearly demonstrate that arpin is important for vessel barrier function, yet its genetic loss via a CRISPR strategy was not lethality, but led to viable animals in C57Blk strain at 12 weeks of age, albeit with leaky blood vessels. Pharmacological approaches were employed to demonstrate that loss of arpin led to ROCK1-dependent stress fiber formation that promoted increased permeability.
Strengths:
The results clearly demonstrate that arpin is expressed in the endothelium of blood vessels and its deficiency leads to leaky blood vessels in in vivo and in vitro models.
Weaknesses:
They conclude vessel leak was not related to enhanced Arp2/3 function through arpin deficiency, but no direct evidence of Arp2/3 activity is provided to support this conclusion. Instead, the authors concluded that ROCK1 activity was elevated in arpin knockdown cells and caused robust stress fiber formation. This idea could be strengthened by testing if ROCK1 inhibition by pharmacological block in arpin KO mice leads to less vascular leakage while pharmacological inhibition of Arp2/3 does not attenuate increased vessel permeability.
-
Reviewer #2 (Public Review):
Summary:
The authors have taken their previous finding that arpin is important for epithelial junctions and extended this to endothelial cells. They find that the positive effects of arpin on endothelial junctions are not dependent on Arp2/3 activity but instead on suppression of actinomyosin contractility.
Strengths:
The study uses standard approaches to test each of the components in the model. The quality of the experimental work is good and the amount of experimental evidence is sufficient to support this straightforward story.
Weaknesses:
The major weakness is that the story is a simple extension of the previous work on arpin and junctions in epithelial cells. The additional information is that the effects are not via Arp2/3 directly, but instead through an increase in actinomyosin contractility. However, the connection between arpin and increased ROCK activity is not revealed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The authors use publicly available SMA-3 and SMA-9 ChIP-Seq data, own RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation.
Strengths:
Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans.
Weaknesses:
(1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure. The authors write that in SMA-9 mutants, body size is affected, but they do not show any data on the mechanism of this effect.
(2) The authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which should either be experimentally substantiated or toned down.
(3) The second part of the paper (the collagen story) is very loosely connected to the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9.
(4) The Discussion does not add much to the paper - it simply repeats the results in a more streamlined fashion.
-
Reviewer #2 (Public Review):
In the present study, Vora et al. elucidated the transcription factors downstream of the BMP pathway components Smad and Schnurri in C. elegans and their effects on body size. Using a combination of a broad range of techniques, they compiled a comprehensive list of genome-wide downstream targets of the Smads SMA-3 and SMA-9. They found that both proteins have an overlapping spectrum of transcriptional target sites they control, but also unique ones. Thereby, they also identified genes involved in one-carbon metabolism or the endoplasmic reticulum (ER) secretory pathway. In an elaborate effort, the authors set out to characterize the effects of numerous of these targets on the regulation of body size in vivo as the BMP pathway is involved in this process. Using the reporter ROL-6::wrmScarlet, they further revealed that not only collagen production, as previously shown, but also collagen secretion into the cuticle is controlled by SMA-3 and SMA-9. The data presented by Vora et al. provide in-depth insight into the means by which the BMP pathway regulates body size, thus offering a whole new set of downstream mechanisms that are potentially interesting to a broad field of researchers.
The paper is mostly well-researched, and the conclusions are comprehensive and supported by the data presented. However, certain aspects need clarification and potentially extended data.
(1) The BMP pathway is active during development and growth. Thus, it is logical that the data shown in the study by Vora et al. is based on L2 worms. However, it raises the question of if and how the pattern of transcriptional targets of SMA-3 and SMA-9 changes with age or in the male tail, where the BMP pathway also has been shown to play a role. Is there any data to shed light on this matter or are there any speculations or hypotheses?
(2) As it was shown that SMA-3 and SMA-9 potentially act in a complex to regulate the transcription of several genes, it would be interesting to know whether the two interact with each other or if the cooperation is more indirect.
(3) It would help the understanding of the data even more if the authors could specifically state if there were collagens among the genes regulated by SMA-3 and SMA-9 and which.
(4) The data on the role of SMA-3 and SMA-9 in the regulation of the secretion of collagens from the hypodermis is highly intriguing. The authors use ROL-6 as a reporter for the secretion of collagens. Is ROL-6 a target of SMA-9 or SMA-3? Even if this is not the case, the data would gain even more strength if a comparable quantification of the cuticular levels of ROL-6 were shown in Figure 6, and potentially a ratio of cuticular versus hypodermal levels. By that, the levels of secretion versus production can be better appreciated.
(5) It is known that the BMP pathway controls several processes besides body size. The discussion would benefit from a broader overview of how the identified genes could contribute to body size. The focus of the study is on collagen production and secretion, but it would be interesting to have some insights into whether and how other identified proteins could play a role or whether they are likely to not be involved here (such as the ones normally associated with lipid metabolism, etc.).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This manuscript by Aybar-Torres et al investigated the effect of common human STING1 variants on STING-mediated T cell phenotypes in mice. The authors previously made knock-in mice expressing human STING1 alleles HAQ or AQ, and here they established a new knock-in line Q293. The authors stimulated cells isolated from these mice with STING agonists and found that all three human mutant alleles resist cell death, leading to the conclusion that R293 residue is essential for STING-mediated cell death (there are several caveats with this conclusion, more below). The authors also bred HAQ and AQ alleles to the mouse Sting1-N153S SAVI mouse and observed varying levels of rescue of disease phenotypes with the AQ allele showing more complete rescue than the HAQ allele. The Q293 allele was not tested in the SAVI model. They conclude that the human common variants such as HAQ and AQ have a dominant negative effect over the gain-of-function SAVI mutants.
Strengths:
The authors and Dr. Jin's group previously made important observations of common human STING1 variants, and these knock-in mouse models are essential for understanding the physiological function of these alleles.
Weaknesses:
However, although some of the observations reported here are interesting, the data collectively does not support a unified model. The authors seem to be drawing two sets of conclusions from in vitro and in vivo experiments, and neither mechanism is clear. Several experiments need better controls, and these knock-in mice need more comprehensive functional characterization.
-
Reviewer #2 (Public Review):
Aybar-Torres and colleagues utilize common human STING alleles to dissect the mechanism of SAVI inflammatory disease. The authors demonstrate that these common alleles alleviate SAVI pathology in mice, and perhaps more importantly use the differing functionality of these alleles to provide insight into requirements of SAVI disease induction. Their findings suggest that it is residue A230 and/or Q293 that are required for SAVI induction, while the ability to induce an interferon-dependent inflammatory response is not. This is nicely exemplified by the AQ/SAVI mice that have an intact inflammatory response to STING activation, yet minimal disease progression. As both mutants seem to be resistant STING-dependent cell death, this manuscript also alludes to the importance of STING-dependent cell death, rather than STING-dependent inflammation, in the progression of SAVI pathology. I believe this manuscript makes some important connections between STING pathology mouse models and human genetics that would contribute to the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Summary:
This paper described the dynamics of the nuclear substructure called PML Nucleolar Association (PNA) in response to DNA damage on ribosomal DNA (rDNA) repeats. The authors showed that the PNA with rDNA repeats is induced by the inhibition of topoisomerases and RNA polymerase I and that the PNA formation is modulated by RAD51, thus homologous recombination. Artificially induced DNA double-strand breaks (DSBs) in rDNA repeats stimulate the formation of PNA with DSB markers. This DSB-triggered PNA formation is regulated by DSB repair pathways.
Strengths:
This paper illustrates a unique DNA damage-induced sub-nuclear structure containing the PML body, which is specifically associated with the nucleolus. Moreover, the dynamics of this PML Nucleolar Association (PNA) require topoisomerases and RNA polymerase I and are modulated by RAD51-mediated homologous recombination and non-homologous end-joining. This study provides a unique regulation of DSB repair at rDNA repeats associated with the unique-membrane-less subnuclear structure.
Weaknesses:
Although the PNA formation on rDNA repeat is nicely shown by cytological analysis, the biological significance of PNA in DSB repair is not fully addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this work, the authors examine the activity and function of D1 and D2 MSNs in dorsomedial striatum (DMS) during an interval timing task. In this task, animals must first nose poke into a cued port on the left or right; if not rewarded after 6 seconds, they must switch to the other port. Thus, this task requires animals to estimate if at least 6 seconds have passed after the first nose poke. After verifying that animals estimate the passage of 6 seconds, the authors examine striatal activity during this interval. They report that D1-MSNs tend to decrease activity, while D2-MSNs increase activity, throughout this interval. They suggest that this activity follows a drift-diffusion model, in which activity increases (or decreases) to a threshold after which a decision is made. The authors next report that optogenetically inhibiting D1 or D2 MSNs, or pharmacologically blocking D1 and D2 receptors, increased the average wait time. This suggests that both D1 and D2 neurons contribute to the estimate of time, with a decrease in their activity corresponding to a decrease in the rate of 'drift' in their drift-diffusion model. Lastly, the authors examine MSN activity while pharmacologically inhibiting D1 or D2 receptors. The authors observe most recorded MSNs neurons decrease their activity over the interval, with the rate decreasing with D1/D2 receptor inhibition.
Major strengths:<br /> The study employs a wide range of techniques - including animal behavioral training, electrophysiology, optogenetic manipulation, pharmacological manipulations, and computational modeling. The question posed by the authors - how striatal activity contributes to interval timing - is of importance to the field and has been the focus of many studies and labs. This paper contributes to that line of work by investigating whether D1 and D2 neurons have similar activity patterns during the timed interval, as might be expected based on prior work based on striatal manipulations. However, the authors find that D1 and D2 neurons have distinct activity patterns. They then provide a decision-making model that is consistent with all results. The data within the paper is presented very clearly, and the authors have done a nice job presenting the data in a transparent manner (e.g., showing individual cells and animals). Overall, the manuscript is relatively easy to read and clear, with sufficient detail given in most places regarding the experimental paradigm or analyses used.
Major weaknesses:<br /> One weakness to me is the impact of identifying whether D1 and D2 had similar or different activity patterns. Does observing increasing/decreasing activity in D2 versus D1, or different activity patterns in D1 and D2, support one model of interval timing over another, or does it further support a more specific idea of how DMS contributes to interval timing?
I found the results presented in Figures 2 and 3 to be a little confusing or misleading. In Figure 2, the authors appear to claim that D1 neurons decrease their activity over the time interval while D2 neurons increase activity. The authors use this result to suggest that D1/D2 activity patterns are different. In Figure 3, a different analysis is done, and this time D2 neurons do not significantly increase their activity with time, conflicting with Figure 2. While in both figures, there is a significant difference between the mean slopes across the population, the secondary effect of positive/negative slope for D2/D1 neurons changes. I find this especially confusing as the authors refer back to the positive/negative slope for D2/D1 neurons result throughout the rest of the text.
It is a bit unclear to me how the authors chose the parameters for the model, and how well the model explains behavior is quantified. It seems that the authors didn't perform cross-validation across trials (i.e., they chose parameters that explained behavior across all trials combined, rather than choosing parameters from a subset of trials and determining whether those parameters are robust enough to explain behavior on held-out trials). I think this would increase the robustness of the result.
In addition, it remains a bit unclear to me how the authors changed the specific parameters they did to model the optogenetic manipulation. It seems these parameters were chosen because they fit the manipulation data. This makes me wonder if this model is flexible enough that there is almost always a set of parameters that would explain any experimental result; in other words, I'm not sure this model has high explanatory power.
Lastly, the results are based on a relatively small dataset (tens of cells).
Impact:<br /> The task and data presented by the authors are very intriguing, and there are many groups interested in how striatal activity contributes to the neural perception of time. The authors perform a wide variety of experiments and analysis to examine how DMS activity influences time perception during an interval-timing task, allowing for insight into this process. However, the significance of the key finding -- that D1 and D2 activity is distinct across time -- remains somewhat ambiguous to me.
-
Reviewer #2 (Public Review):
(1) Regarding the results in Figure 2 and Figure 5: for the heatmaps in Fig.2F and Fig.2E, the overall activity pattern of D1 and D2 MSNs looks very similar, both D1 and D2 MSNs contains neurons showing decreasing or increasing activity during interval timing. And the optogenetic and pharmacologic inhibition of either D1 or D2 MSNs resulted in similar behavior outcomes. To me, the D1 and D2 MSN activities were more complementary than opposing. If the authors want to emphasize the opposing side of D1 and D2 MSNs, then the manipulation experiments need to be re-designed, since the average activity of D2 MSNs increased, while D1 MSNs decreased during interval timing, instead of using inhibitory manipulations in both pathways, the authors should use inhibitory manipulation in D2-MSNs, while using optogenetic or pharmacology to activate D1-MSNs. In this way, the authors can demonstrate the opposing role of D1 and D2 MSNs and the functions of increased activity in D2-MSNs and decreased activity in D1-MSNs.
(2) Regarding the results in Figure 3 C and D, Figure 6 H and Figure 7 D, what is the sample size? From the single data points in the figures, it seems that the authors were using the number of cells to do statistical tests and plot the figures. For example, Figure 3 C, if the authors use n= 32 D2 MSNs and n= 41D1 MSNs to do the statistical test, it could make a small difference to be statistically significant. The authors should use the number of mice to do the statistical tests.
(3) Regarding the results in Figure 5, what is the reason for the increase in the response times? The authors should plot the position track during intervals (0-6 s) with or without optogenetic or pharmacologic inhibition. The authors can check Figures 3, 5, and 6 in the paper https://doi.org/10.1016/j.cell.2016.06.032 for reference to analyze the data.
-
Reviewer #3 (Public Review):
Summary:<br /> The cognitive striatum, also known as the dorsomedial striatum, receives input from brain regions involved in high-level cognition and plays a crucial role in processing cognitive information. However, despite its importance, the extent to which different projection pathways of the striatum contribute to this information processing remains unclear. In this paper, Bruce et al. conducted a study using various causal and correlational techniques to investigate how these pathways collectively contribute to interval timing in mice. Their results were consistent with previous research, showing that the direct and indirect striatal pathways perform opposing roles in processing elapsed time. Based on their findings, the authors proposed a revised computational model in which two separate accumulators track evidence for elapsed time in opposing directions. These results have significant implications for understanding the neural mechanisms underlying cognitive impairment in neurological and psychiatric disorders, as disruptions in the balance between direct and indirect pathway activity are commonly observed in such conditions.
Strengths:<br /> The authors employed a well-established approach to study interval timing and employed optogenetic tagging to observe the behavior of specific cell types in the striatum. Additionally, the authors utilized two complementary techniques to assess the impact of manipulating the activity of these pathways on behavior. Finally, the authors utilized their experimental findings to enhance the theoretical comprehension of interval timing using a computational model.
Weaknesses:<br /> The behavioral task used in this study is best suited for investigating elapsed time perception, rather than interval timing. Timing bisection tasks are often employed to study interval timing in humans and animals. In the optogenetic experiment, the laser was kept on for too long (18 seconds) at high power (12 mW). This has been shown to cause adverse effects on population activity (for example, through heating the tissue) that are not necessarily related to their function during the task epochs. Given the systemic delivery of pharmacological interventions, it is difficult to conclude that the effects are specific to the dorsomedial striatum. Future studies should use the local infusion of drugs into the dorsomedial striatum.
Comments on revised version:
Thank you for the comprehensive revisions. Most of my (addressable) concerns were addressed. The current version of your manuscript appears significantly improved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This review evaluates the SCellBOW framework, which applies phenotype algebra to obtain vectors from cancer subclusters or user-defined subclusters.
Strengths:
SCellBOW employs an innovative application of NLP-inspired techniques to analyze scRNA-seq data, facilitating the identification and visualization of phenotypically divergent cell subpopulations.
The framework demonstrates robustness in accurately representing various cell types across multiple datasets, highlighting its versatility and utility in different biological contexts.
By simulating the impact of specific malignant subpopulations on disease prognosis, SCellBOW provides valuable insights into the relative risk and aggressiveness of cancer subpopulations, which is crucial for personalized therapeutic strategies.
The identification of a previously unknown and aggressive AR−/NElow subpopulation in metastatic prostate cancer underscores the potential of SCellBOW in uncovering clinically significant findings.
Weaknesses:
The reliance on bulk RNA-seq data as a reference raises concerns about potentially misleading results due to the presence of RNA expression from immune cells in the TME. It is unclear if SCellBOW adequately addresses this issue, which could affect the accuracy of the cancer subcluster vectors.
The method of extracting vectors in phenotype algebra appears to be a straightforward subtraction operation. This simplicity might limit its efficiency in excluding associations with phenotypes from specific subpopulations, potentially leading to inaccurate interpretations of the data.
The review would benefit from additional validation studies to assess the effectiveness of SCellBOW in distinguishing between cancerous and non-cancerous signals, particularly in heterogeneous tumor environments.
Further clarification on how SCellBOW handles mixed-cell populations within bulk RNA-seq data would strengthen the evaluation of its applicability and reliability in diverse research settings.
-
Reviewer #2 (Public Review):
Summary:
The authors developed a novel tool, SCellBOW, to perform cell clustering and infer survival risks on individual cancer cell clusters from the single-cell RNA seq dataset. The key ideas/techniques used in the tool include transfer learning, bag of words (BOW), and phenotype algebra which is similar to word algebra from natural language processing (NLP). Comparisons with existing methods demonstrated that SCellBOW provides superior clustering results and exhibits robust performance across a wide range of datasets. Importantly, a distinguishing feature of SCellBOW compared to other tools is its ability to assign risk scores to specific cancer cell clusters. Using SCellBOW, the authors identified a new group of prostate cancer cells characterized by a highly aggressive and dedifferentiated phenotype.
Strengths:
The application of natural language processing (NLP) to single-cell RNA sequencing (scRNA-seq) datasets is both smart and insightful. Encoding gene expression levels as word frequencies is a creative way to apply text analysis techniques to biological data. When combined with transfer learning, this approach enhances our ability to describe the heterogeneity of different cells, offering a novel method for understanding the biological behavior of individual cells and surpassing the capabilities of existing cell clustering methods. Moreover, the ability of the package to predict risk, particularly within cancer datasets, significantly expands the potential applications.
Weaknesses:
Given the promising nature of this tool, it would be beneficial for the authors to test the risk-stratification functionality on other types of tumors with high heterogeneity, such as liver and pancreatic cancers, which currently lack clinically relevant and well-recognized stratification methods. Additionally, it would be worthwhile to investigate how the tool could be applied to spatial transcriptomics by analyzing cell embeddings from different layers within these tissues.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study unveils a novel role for ferritin in Drosophila larval brain development. Furthermore, it pinpoints that the observed defects in larval brain development resulting from ferritin knockdown are attributed to impaired Fe-S cluster activity and ATP production. Overall this is a well-conducted and novel study.
The author have adequately addressed the concerns.
-
Reviewer #2 (Public Review):
Summary:
Zhixin and collaborators have investigated if the molecular pathways present in glia play a role in the proliferation, maintenance and differentiation of Neural Stem Cells. In this case, Drosophila Neuroblasts are used as models. Authors find that neuronal iron metabolism modulated by glial ferritin is an essential element for Neuroblast proliferation and differentiation. They show that loss of glial ferritin is sufficient to impact the number of neuroblasts. Remarkably, authors have identified that ferritin produced in the glia is secreted to be used as an iron source by the neurons. Therefore iron defects in glia have serious consequences in neuroblasts and likely vice versa. Interestingly, preventing iron absorption in the intestine is sufficient to reduce NB number. Furthermore, they have identified Zip13 as another regulator of the process. Evidence presented strongly indicates that the loss of neuroblasts is due to premature differentiation rather than cell death.
Strengths:
- Comprehensive analysis of the impact of glial iron metabolism in neuroblast behaviour by genetic and drug-based approaches as well as using a second model (mouse) for some validations.
- Using cutting edge methods such as RNAseq as well as very elegant and clean approaches such as RNAi-resistant lines or temperature-sensitive tools
- Goes beyond the state of the art highlighting iron as a key element in neuroblast formation as well as as a target in tumor treatments.
Comments on latest version:
The authors have successfully and convincingly addressed all comments from this reviewer. The modifications, changes and additions have increased the robustness of the results and clearly increased the readability of the manuscript.
This reviewer also appreciates all the efforts and extra work conducted by the authors to finish in a reasonable time all the experiments suggested by all reviewers.
-
-
www.biorxiv.org www.biorxiv.org
-
In this study, the authors confirm that one of the genes classified as essential in a Tn-mutagenesis study in A. baumannii, Aeg1, is, in fact, an essential gene. The strength of the work is that it discovered that the depletion of Aeg1 leads to cell filamentation and that activation mutations in various cell division genes can suppress the requirement for Aeg1. These results suggest that Aeg1 plays an important role in cell division. The work's weakness is that it lacks convincing evidence to define Aeg1's place or role in the divisome assembly pathway. It is unclear whether proteins are at the division site under the wildtype condition and when Aeg1 is depleted, and whether Aeg1 is indeed required for a set of division proteins to the division site.
Reviewer comments:
The revised manuscript partially addressed two of the three major concerns from the previous assessment: (1) the functionality test of fluorescent fusion proteins using a spotting assay, and (2) membrane protein topology in the bacterial two-hybrid assays by constructing a C-terminal T25 fusion.
(1) In the spotting assay, all fluorescent fusion proteins rescued the growth of the corresponding deletion strain, which suggests these fusion proteins are functional. However, fluorescent images of these fusion proteins were diffusive, and only a few cells showed the expected midcell/membrane localization pattern for cell division proteins. This observation raised the concern that these fusion proteins may be cleaved in the middle, leading to the separation of the untagged fusion partner and diffusive fluorescent protein in the cytoplasm, which would explain the positive spotting rescue results. This phenomenon is commonly observed in other bacterial species. A western blot using an antibody targeting either the fluorescent protein or the fusion partner is widely used to examine whether the fusion protein is expressed at its full length.
(2) The authors constructed a C-terminal fusion of Aeg1 and showed that it still interacted with ZipA and FtsN. This result supports the authors' suggestion that the N-terminus of Aeg1 may not be the predicated membrane-targeting domain. Along the same line, the membrane topology of ZipA should also be considered. ZipA's N terminus is in the membrane facing the periplasm, and its C terminal domain is in the cytoplasm. Therefore, the PUT18C fusion will place the T18 domain of ZipA in the periplasm. All other division proteins' N termini are in the cytoplasm.
(3) Colocalization images did not show significant midcell localizations for each fluorescent protein; most cells showed diffusive cytoplasmic fluorescence. In all other species, midcell localization of cell division proteins is prominent in dividing cells, especially for early division proteins such as ZipA (at least 40-50% of cells show midcell bands). In A. baumannii, divisome localization timing may differ from other species, but this possibility needs to be established before the colocalization pattern is examined. Compounding this issue is that in Aeg1 depletion strains, some cells expressing ZipA, FtsB, FtsL, and FtsN fusions showed roughly regularly spaced puncta in long filamentous cells. It is hard to explain why this was observed if, under the WT condition, these fusions do not localize to the midcell. These results again raised concerns that these fusion proteins may not be functional and the observations are protein aggregates.
Besides these major issues, experimental observations did not support some claims in the main text. For example: (1) In the two-hybrid assay, only ZipA and FtsN showed significant interactions with Aeg1, as judged by the darkness of the blue spots. FtsL and FtsB showed pale spots. The quantified values accompanying this figure did not appear to agree with the image. (2) The spotting rescue assay showed that only FtsB-E56A and FtsA-E202K was able to bypass Aeg1 depletion (full dilution set comparable to that of Aeg1 complementation), but the main text claimed that FtsA-D124A and V144L, and FtsW-M254I and S274G also rescued the growth. These claims could be misleading.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Understanding the mechanisms of how organisms respond to environmental stresses is a key goal of biological research. Assessment of transcriptional responses to stress can provide some insights into those underlying mechanisms. The researchers quantified traits, fitness, and gene expression (transcriptional) response to salinity stress (control vs stress treatments) for 130 accessions of rice (three replicates for each accession), which were grown in the field in the Philippines. This experimental design allowed for many different types of downstream analyses to better understand the biology of the system. These analyses included estimating the strength of selection imposed on transcription in each environment, evaluating possible trade-offs in gene expression, testing whether salinity induces transcriptional decoherence, and conducting various eQTL-type analyses.
Strengths:
The study provides an extensive analysis of gene expression responses to stress in rice and offers some insights into underlying mechanisms of salinity responses in this important crop system. The fact that the study was conducted under field conditions is a major plus, as the gene expression responses to soil salinity are more realistic than if the study was conducted in a greenhouse or growth chamber. The preprint is generally well-written and the methods and results are mostly well-described.
Weaknesses:
While the study makes good use of analyzing the dataset, it is not clear how the current work advances our understanding of gene regulatory evolution or plant responses to soil salinity generally. Overall, the results are consistent with other prior studies of gene expression and studies of selection across environmental conditions. Some of the framing of the paper suggests that there is more novelty to this study than there is in reality. That said, the results will certainly be useful for those working in rice and should be interesting to scientists interested in how gene expression responses to stress occur under field conditions. I detail other concerns I had about the preprint below:
The abstract on lines 33-35 illustrates some of my concerns about the overstatement of the novelty of the current study. For example, is it really true that the role of gene expression in mediating stress response and adaptation is largely unexplored? There have been numerous studies that have evaluated gene expression responses to stresses in a wide range of organisms. Perhaps, I am missing something critically different about this study. If so, I would recommend that the authors reword this sentence to clarify what gap is being filled by this study. Further, is it really the case that none of them have evaluated how the correlational structure of gene expression changes in response to stresses in plants, as implied in lines 263-265? Don't the various modules and PC analyses of gene expression get at this question?
There were some places in the methods of the preprint that required more information to properly evaluate. For example, more information should be provided on lines 664-668 about how G, E, and GxE effects were established, especially since this is so central to this study. What programs/software (R? SAS? Other?) were used for these analyses? If R, how were the ANOVAs/models fit? What type of ANOVA was used? How exactly was significance determined for each term? Which effects were considered fixed and which were random? If the goal was to fit mixed models, why not use an approach like voom-limma (Law et al. 2014 Genome Biology)? More details should also be added to lines 688-709 about these analyses, including what software/programs were used for these analyses.
One thing that I found a bit confusing throughout was the intermixing of different terms and types of selection. In particular, there seemed to be some inconsistencies with the usage of quantitative genetics terms for selection (e.g. directional, stabilizing) vs molecular evolution terms for selection (e.g. positive, purifying). I would encourage the authors to think carefully about what they mean by each of these terms and make sure that those definitions are consistently applied here.
It would be useful to clarify the reasons for the inherent bias in the detection of conditional neutrality (CN) and antagonistic pleiotropy (AP; Lines 187-196). It is also not clear to me what the authors did to deal with the bias in terms of adjusting P-value thresholds for CN and AP the way it is currently written. Further, I found the discussion of antagonistic pleiotropy and conditional neutrality to be a bit confusing for a couple of reasons, especially around lines 489-491. First of all, does it really make sense to contrast gene expression versus local adaptation, when lots of local adaptation likely involves changes in gene expression? Second, the implication that antagonistic pleiotropy is more common for local adaptation than the results found in this study seems questionable. Conditional neutrality appears to be more common for local adaptation as well: see Table 2 of Wadgymar et al. 2017 Methods in Ecology and Evolution. That all said, it is always difficult to conclude that there are no trade-offs (antagonistic pleiotropy) for a particular locus, as the detecting trade-offs may only manifest in some years and not others and can require large sample sizes if they are subtle in effect.
-
Reviewer #2 (Public Review):
The authors investigate the gene expression variation in a rice diversity panel under normal and saline growth conditions to gain insight into the underlying molecular adaptive response to salinity. They present a convincing case to demonstrate that environmental stress can induce selective pressure on gene expression, which is in agreement to their earlier study (Groen et al, 2020). The data seems to be a good fit for their study and overall the analytic approach is robust.
(1) The work started by investigating the effect of genotype and their interaction at each transcript level using 3'-end-biased mRNA sequencing, and detecting a wide-spread GXE effect. Later, using the total filled grain number as a proxy of fitness, they estimated the strength of selection on each transcript and reported stronger selective pressure in a saline environment. However, this current framework relies on precise estimation of fitness and, therefore can be sensitive to the choice of fitness proxy.
(2) Furthermore, the authors decomposed the genetic architecture of expression variation into cis- and trans-eQTL in each environment separately and reported more unique environment-specific trans-eQTLs than cis-. The relative contribution of cis- and trans-eQTL depends on both the abundance and effect size. I wonder why the latter was not reported while comparing these two different genetic architectures. If the authors were to compare the variation explained by these two categories of eQTL instead of their frequency, would the inference that trans-eQTLs are primarily associated with expression variation still hold?
(3) Next, the authors investigated the relationship between cis- and trans-eQTLs at the transcript level and revealed an excess of reinforcement over the compensation pattern. Here, I struggle to understand the motivation for testing the relationship by comparing the effect of cis-QTL with the mean effect of all trans-eQTLs of a given transcript. My concern is that taking the mean can diminish the effect of small trans-eQTLs potentially biasing the relationship towards the large-effect eQTLs.
-
Reviewer #3 (Public Review):
In this work, the authors conducted a large-scale field trial of 130 indica accessions in normal vs. moderate salt stress conditions. The experiment consists of 3 replicates for each accession in each treatment, making it 780 plants in total. Leaf transcriptome, plant traits, and final yield were collected. Starting from a quantitative genetics framework, the authors first dissected the heritability and selection forces acting on gene expression. After summarizing the selection force acting on gene expression (or plant traits) in each environment, the authors described the difference in gene expression correlation between environments. The final part consists of eQTL investigation and categorizing cis- and trans-effects acting on gene expression.
Building on the group's previous study and using a similar methodology (Groen et al. 2020, 2021), the unique aspect of this study is in incorporating large-scale empirical field works and combining gene expression data with plant traits. Unlike many systems biology studies, this study strongly emphasizes the quantitative genetics perspective and investigates the empirical fitness effects of gene expression data. The large amounts of RNAseq data (one sample for each plant individual) also allow heritability calculation. This study also utilizes the population genetics perspective to test for traces of selection around eQTL. As there are too many genes to fit in multiple regression (for selection analysis) and to construct the G-matrix (for breeder's equation), grouping genes into PCs is a very good idea.
Building on large amounts of data, this study conducted many analyses and described some patterns, but a central message or hypothesis would still be necessary. Currently, the selection analysis, transcript correlation structure change, and eQTL parts seem to be independent. The manuscript currently looks like a combination of several parallel works, and this is reflected in the Results, where each part has its own short introduction (e.g., 185-187, 261-266, 349-353). It would be great to discuss how these patterns observed could be translated to larger biological insights. On a related note, since this and the previous studies (focusing on dry-wet environments) use a similar methodology, one would also wonder what the conclusions from these studies would be. How do they agree or disagree with each other?
Many analyses were done separately for each environment, and results from these two environments are listed together for comparison. Especially for the eQTL part, no specific comparison was discussed between the two environments. It would be interesting to consider whether one could fit the data in more coherent models specifically modeling the X-by-environment effects, where X might be transcripts, PCs, traits, transcript-transcript correlation, or eQTLs.
As stated, grouping genes into PCs is a good idea, but although in theory, the PCs are orthogonal, each gene still has some loadings on each PC (ie. each PC is not controlled by a completely different set of genes). Another possibility is to use any gene grouping method, such as WGCNA, to group genes into modules and use the PC1 of each module. There, each module would consist of completely different sets of genes, and one would be more likely to separate the biological functions of each module. I wonder whether the authors could discuss the pros and cons of these methods.
-
Reviewer #4 (Public Review):
The manuscript examines how patterns of selection on gene expression differ between a normal field environment and a field environment with elevated salinity based on transcript abundances obtained from leaves of a diverse panel of rice germplasm. In addition, the manuscript also maps expression QTL (eQTL) that explains variation in each environment. One highlight from the mapping is that a small group of trans-mapping regulators explains some gene expression variation for large sets of transcripts in each environment. The overall scope of the datasets is impressive, combining large field studies that capture information about fecundity, gene expression, and trait variation at multiple sites. The finding related to patterns indicating increased LD among eQTLs that have cis-trans compensatory or reinforcing effects is interesting in the context of other recent work finding patterns of epistatic selection. However, other analyses in the manuscript are less compelling or do not make the most of the value of collected data. Revisions are also warranted to improve the precision with which field-specific terminology is applied and the language chosen when interpreting analytical findings.
Selection of gene expression:<br /> One strength of the dataset is that gene expression and fecundity were measured for the same genotypes in multiple environments. However, the selection analyses are largely conducted within environments. The addition of phenotypic selection analyses that jointly analyze gene expression across environments and or selection on reaction norms would be worthwhile.
Gene expression trade-offs:<br /> The terminology and possibly methods involved in the section on gene expression trade-offs need amendment. I specifically recommend discontinuing reference to the analysis presented as an analysis of antagonistic pleiotropy (rather than more general trade-offs) because pleiotropy is defined as a property of a genotype, not a phenotype. Gene expression levels are a molecular phenotype, influenced by both genotype and the environment. By conducting analyses of selection within environments as reported, the analysis does not account for the fact that the distribution of phenotypic values, the fitness surface, or both may differ across environments. Thus, this presents a very different situation than asking whether the genotypic effect of a QTL on fitness differs across environments, which is the context in which the contrasting terms antagonistic pleiotropy and conditional neutrality have been traditionally applied. A more interesting analysis would be to examine whether the covariance of phenotype with fitness has truly changed between environments or whether the phenotypic distribution has just shifted to a different area of a static fitness surface.
Biological processes under selection / Decoherence: PCs are likely not the most ideal way to cluster genes to generate consolidated metrics for a selection gradient analysis. Because individual genes will contribute to multiple PCs, the current fractional majority-rule method applied to determine whether a PC is under direct or indirect selection for increased or decreased expression comes across as arbitrary and with the potential for double-counting genes. A gene co-expression network analysis could be more appropriate, as genes only belong to one module and one can examine how selection is acting on the eigengene of a co-expression module. Building gene co-expression modules would also provide a complementary and more concrete framework for evaluating whether salinity stress induces "decoherence" and which functional groups of genes are most impacted.
Selection of traits:<br /> Having paired organismal and molecular trait data is a strength of the manuscript, but the organismal trait data are underutilized. The manuscript as written only makes weak indirect inferences based on GO categories or assumed gene functions to connect selection at the organismal and molecular levels. Stronger connections could be made for instance by showing a selection of co-expression module eigengene values that are also correlated with traits that show similar patterns of selection, or by demonstrating that GWAS hits for trait variation co-localize to cis-mapping eQTL.
Genetic architecture of gene expression variation:<br /> The descriptive statistics of the eQTL analysis summarize counts of eQTLs observed in each environment, but these numbers are not broken down to the molecular trait level (e.g., what are the median and range of cis- and trans-eQTLs per gene). In addition, genetic architecture is a combination of the numbers and relative effect sizes of the QTLs. It would be useful to provide information about the relative distributions of phenotypic variance explained by the cis- vs. trans- eQTLs and whether those distributions vary by environment. The motivation for examining patterns of cis-trans compensation specifically for the results obtained under high salinity conditions is unclear to me. If the lines sampled have predominantly evolved under low salinity conditions and the hypothesis being evaluated relates to historical experience of stabilizing selection, then my intuition is that evaluating the eQTL patterns under normal conditions provides the more relevant test of the hypothesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The study starts with the notion that in an AD-like disease model, ILC2s in the Rag1 knock-out were expanded and contained relatively more IL-5+ and IL-13+ ILC2s. This was confirmed in the Rag2 knock-out mouse model.
By using a chimeric mouse model in which wild-type knock-out splenocytes were injected into irradiated Rag1 knock-out mice, it was shown that even though the adaptive lymphocyte compartment was restored, there were increased AD-like symptoms and increased ILC2 expansion and activity. Moreover, in the reverse chimeric model, i.e. injecting a mix of wild-type and Rag1 knock-out splenocytes into irradiated wild-type animals, it was shown that the Rag1 knock-out ILC2s expanded more and were more active. Therefore, the authors could conclude that the RAG1 mediated effects were ILC2 cell-intrinsic.
Subsequent fate-mapping experiments using the Rag1Cre;reporter mouse model showed that there were indeed RAGnaïve and RAGexp ILC2 populations within naïve mice. Lastly, the authors performed multi-omic profiling, using single-cell RNA sequencing and ATAC-sequencing, in which a specific gene expression profile was associated with ILC2. These included well-known genes but the authors notably also found expression of Ccl1 and Ccr8 within the ILC2. The authors confirmed their earlier observations that in the RAGexp ILC2 population, the Th2 regulome was more suppressed, i.e. more closed, compared to the RAGnaïve population, indicative of the suppressive function of RAG on ILC2 activity. I do agree with the authors' notion that the main weakness was that this study lacks the mechanism by which RAG regulates these changes in ILC2s.
The manuscript is very well written and easy to follow, and the compelling conclusions are well supported by the data. The experiments are meticulously designed and presented. I wish to commend the authors for the study's quality.
Even though the study is compelling and well supported by the presented data, some additional context could increase the significance:
(1) The presence of the RAGnaïve and RAGexp ILC2 populations raises some questions on the (different?) origin of these populations. It is known that there are different waves of ILC2 origin (most notably shown in the Schneider et al Immunity 2019 publication, PMID 31128962). I believe it would be very interesting to further discuss or possibly show if there are different origins for these two ILC populations.
Several publications describe the presence and origin of ILC2s in/from the thymus (PMIDs 33432227 24155745). Could the authors discuss whether there might be a common origin for the RAGexp ILC2 and Th2 cells from a thymic lineage? If true that the two populations would be derived from different populations, e.g. being the embryonic (possibly RAGnaïve) vs. adult bone marrow/thymus (possibly RAGexp), this would show a unique functional difference between the embryonic derived ILC2 vs. adult ILC2.
(2) On line 104 & Figures 1C/G etc. the authors describe that in the RAG knock-out ILC2 are relatively more abundant in the lineage negative fraction. On line 108 they further briefly mentioned that this observation is an indication of enhanced ILC2 expansion. Since the study includes an extensive multi-omics analysis, could the authors discuss whether they have seen a correlation of RAG expression in ILC2 with regulation of genes associated with proliferation, which could explain this phenomenon?
-
Reviewer #2 (Public Review):
Summary:
The study by Ver Heul et al., investigates the consequences of RAG expression for type 2 innate lymphoid cell (ILC2) function. RAG expression is essential for the generation of the receptors expressed by B and T cells and their subsequent development. Innate lymphocytes, which arise from the same initial progenitor populations, are in part defined by their ability to develop in the absence of RAG expression. However, it has been described in multiple studies that a significant proportion of innate lymphocytes show a history of Rag expression. In compelling studies several years ago, members of this research team revealed that early Rag expression during the development of Natural Killer cells (Karo et al., Cell 2014), the first described innate lymphocyte, had functional consequences.
Here, the authors revisit this topic, a worthwhile endeavour given the broad history of Rag expression within all ILCs and the common use of RAG-deficient mice to specifically assess ILC function. Focusing on ILC2s and utilising state-of-the-art approaches, the authors sought to understand whether early expression of Rag during ILC2 development had consequences for activity, fitness, or function. Having identified cell-intrinsic effects in vivo, the authors investigated the causes of this, identifying epigenetic changes associated with the accessibility genes associated with core ILC2 functions.
The manuscript is well written and does an excellent job of supporting the reader through reasonably complex transcriptional and epigenetic analyses, with considerate use of explanatory diagrams. Overall I think that the conclusions are fair, the topic is thought-provoking, and the research is likely of broad immunological interest. I think that the extent of functional data and mechanistic insight is appropriate.
Strengths:
- The logical and stepwise use of mouse models to first demonstrate the impact on ILC2 function in vivo and a cell-intrinsic role. Initial analyses show enhanced cytokine production by ILC2 from RAG-deficient mice. Then through two different chimeric mice (including BM chimeras), the authors convincingly show this is cell intrinsic and not simply as a result of lymphopenia. This is important given other studies implicating enhanced ILC function in RAG-/- mice reflect altered competition for resources (e.g. cytokines).
- Use of Rag expression fate mapping to support analyses of how cells were impacted - this enables a robust platform supporting subsequent analyses of the consequences of Rag expression for ILC2.
- Use of snRNA-seq supports gene expression and chromatin accessibility studies - these reveal clear differences in the data sets consistent with altered ILC2 function.
- Convincing evidence of epigenetic changes associated with loci strongly linked to ILC2 function. This forms a detailed analysis that potentially helps explain some of the altered ILC2 functions observed in ex vivo stimulation assays.
- Provision of a wealth of expression data and bioinformatics analyses that can serve as valuable resources to the field.
Weaknesses:
- Lack of insight into precisely how early RAG expression mediates its effects, although I think this is beyond the scale of this current manuscript. Really this is the fundamental next question from the data provided here.
- The epigenetic analyses provide evidence of differences in the state of chromatin, but there is no data on what may be interacting or binding at these sites, impeding understanding of what this means mechanistically.
- Focus on ILC2 from skin-draining lymph nodes rather than the principal site of ILC2 activity itself (the skin). This may well reflect the ease at which cells can be isolated from different tissues.
- Comparison with ILC2 from other sites would have helped to substantiate findings and compensate for the reliance on data on ILC2 from skin-draining lymph nodes, which are not usually assessed amongst ILC2 populations.
- The studies of how ILC2 are impacted are a little limited, focused exclusively on IL-13 and IL-5 cytokine expression.
-
Reviewer #3 (Public Review):
In this study, Ver Heul et al. investigate the role of RAG expression in ILC2 functions. While RAG genes are not required for the development of ILCs, previous studies have reported a history of expression in these cells. The authors aim to determine the potential consequences of this expression in mature cells. They demonstrate that ILC2s from RAG1 or RAG2 deficient mice exhibit increased expression of IL-5 and IL-13 and suggest that these cells are expanded in the absence of RAG expression. However, it is unclear whether this effect is due to a direct impact of RAG genes or a consequence of the lack of T and B cells in this condition. This ambiguity represents a key issue with this study: distinguishing the direct effects of RAG genes from the indirect consequences of a lymphopenic environment.
The authors focus their study on ILC2s found in the skin-draining lymph nodes, omitting analysis of tissues where ILC2s are more enriched, such as the gut, lungs, and fat tissue. This approach is surprising given the goal of evaluating the role of RAG genes in ILC2s across different tissues. The study shows that ILC2s derived from RAG-/- mice are more activated than those from WT mice, and RAG-deficient mice show increased inflammation in an atopic dermatitis (AD)-like disease model. The authors use an elegant model to distinguish ILC2s with a history of RAG expression from those that never expressed RAG genes. However, this model is currently limited to transcriptional and epigenomic analyses, which suggest that RAG genes suppress the type 2 regulome at the Th2 locus in ILC2s.
The authors report a higher frequency of ILC2s in RAG-/- mice in skin-draining lymph nodes, which is expected as these mice lack T and B cells, leading to ILC expansion. Previous studies have reported hyper-activation of ILCs in RAG-deficient mice, suggesting that this is not necessarily an intrinsic phenomenon. For example, RAG-/- mice exhibit hyperphosphorylation of STAT3 in the gut, leading to hyperactivation of ILC3s. This study does not currently provide conclusive evidence of an intrinsic role of RAG genes in the hyperactivation of ILC2s. The splenocyte chimera model is artificial and does not reflect a normal environment in tissues other than the spleen. Similarly, the mixed BM model does not demonstrate an intrinsic role of RAG genes, as RAG1-/- BM cells cannot contribute to the B and T cell pool, leading to an expected expansion of ILC2s. As the data are currently presented it is expected that a proportion of IL-5-producing cells will come from the RAG1-/- BM.
Overall, the level of analysis could be improved. Total cell numbers are not presented, the response of other immune cells to IL-5 and IL-13 (except the eosinophils in the splenocyte chimera mice) is not analyzed, and the analysis is limited to skin-draining lymph nodes.
The authors have a promising model in which they can track ILC2s that have expressed RAG or not. They need to perform a comprehensive characterization of ILC2s in these mice, which develop in a normal environment with T and B cells. Approximately 50% of the ILC2s have a history of RAG expression. It would be valuable to know whether these cells differ from ILC2s that never expressed RAG, in terms of proliferation and expression of IL-5 and IL-13. These analyses should be conducted in different tissues, as ILC2s adapt their phenotype and transcriptional landscape to their environment. Additionally, the authors should perform their AD-like disease model in these mice.
The authors provide a valuable dataset of single-nuclei RNA sequencing (snRNA-seq) and ATAC sequencing (snATAC-seq) from RAGexp (RAG fate map-positive) and RAGnaïve (RAG fate map-negative) ILC2s. This elegant approach demonstrates that ILC2s with a history of RAG expression are epigenomically suppressed. However, key genes such as IL-5 and IL-13 do not appear to be differentially regulated between RAGexp and RAGnaïve ILC2s according to Table S5. Although the authors show that the regulome activity of IL-5 and IL-13 is decreased in RAGexp ILC2s, how do the authors explain that these genes are not differentially expressed between the RAGexp and RAGnaïve ILC2? I think that it is important to validate this in vivo.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors experimentally demonstrated the heterogeneous behavior of sarcomeres in cardiomyocytes and that a stochastic component exists in their contractile activity, which cancels out at the level of myofibrils.
Strengths:
The experiments and data analysis are robust and valid. With very good statistics and unbiased methods, they show cellular activity at the individual level and highlight the heterogeneity between biological networks. The similarity of the results to the study cited in [24] demonstrates the validity of the in vitro setup for answering these questions and the feasibility of such in-vitro systems to extend our knowledge of physiology.
Weaknesses:
Compared to the current literature ([24]), the study does not show a high degree of innovation. It mainly confirms what has been established in the past. The authors complemented the published experiments by developing an in vitro setup with stem cells and by changing the stiffness of the substrate to simulate pathological conditions. However, the experiments they performed do not allow them to explain more than the study in [24], and the conclusions of their study are based on interpretation and speculation about the possible mechanism underlying the observations.
-
Reviewer #2 (Public Review):
Summary:
Sarcomeres, the contractile units of skeletal and cardiac muscle, contract in a concerted fashion to power myofibril and thus muscle fiber contraction.
Muscle fiber contraction depends on the stiffness of the elastic substrate of the cell, yet it is not known how this dependence emerges from the collective dynamics of sarcomeres. Here, the authors analyze the contraction time series of individual sarcomeres using live imaging of fluorescently labeled cardiomyocytes cultured on elastic substrates of different stiffness. They find that reduced collective contractility of muscle fibers on unphysiologically stiff substrates is partially explained by a lack of synchronization in the contraction of individual sarcomeres.
This lack of synchronization is at least partially stochastic, consistent with the notion of a tug-of-war between sarcomeres on stiff sarcomeres. A particular irregularity of sarcomere contraction cycles is 'popping', the extension of sarcomeres beyond their rest length. The statistics of 'popping' suggest that this is a purely random process.
Strengths:
This study thus marks an important shift of perspective from whole-cell analysis towards an understanding of the collective dynamics of coupled, stochastic sarcomeres.
Weaknesses:
Further insight into mechanisms could be provided by additional analyses and/or comparisons to mathematical models.
-