10,000 Matching Annotations
  1. Jul 2024
    1. Reviewer #2 (Public Review):

      Summary:

      The paper sets out to understand the mechanisms underlying the colonization and degradation of marine particles using a natural Vibrio isolate as a model. The data are measurements of motility and gene expressing using microfluidic devices and RNA sequencing. The results reveal that degradation products of alginate do stimulate motility but not chemotaxis. In contrast, alginate itself (the polymer) does stimulate chemotaxis. Further, the dispersal from degrading alginate is density dependent, increasing at higher density. The evidence for these claims are strong. From these the authors propose a narrative (Fig. 6) for growth and dispersal cycles in this system. The idea is that cells colonize and degrade alginate, this degradation stimulates motility and dispersal followed by chemotaxis to a new alginate source. This complete narrative has modest support in the data. A quantitative description of these dynamics awaits future studies.

      Strengths:

      The microfluidic measurements are the central strength of the paper. The density dependence claim is qualitatively supported by the data. The motility and chemotaxis claims are also well supported by the data. The presentation of the experiment and results are well done. The study serves to motivate a unifying picture of growth and dispersal in marine systems. This is a key process in the global carbon cycle.

      Weaknesses:

      Perhaps not a weakness, but a glimmer that this is not yet the full story. The RNA expression data show alginate lyase expression in response to digested alginate which is unexpected given the narrative articulated above. Why express lyases while leaving the polymer patch via motility? This question is addressed in the Discussion. A holistic and quantitative picture of the proposed process in Figure 6 awaits additional studies.

    2. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Stubbusch and coauthors examine the foraging behavior of a marine species consuming an abundant marine polysaccharide. Laboratory experiments in a microfluidic setup are complemented with transcriptomic analyses aiming at assessing the genetic bases of the observed behavior. Bacterial cells consuming the polysaccharide form cohesive aggregates, while start dispersing away when the byproduct of the digestion of the polysaccharide start accumulating. Dispersing cells, tend to be attracted by the polysaccharide. Expression data show that motility genes are enriched during the dispersal phase, as expected. Counterintuitively, in the same phase, genes for transporters and digestions of polysaccharide are also highly expressed.

      Strengths:

      The manuscript is very well written and easy to follow. The topic is interesting and timely. The genetic analyses provide a new, albeit complex, angle to the study of foraging behaviors in bacteria, adding to previous studies conducted on other species.

      Weaknesses:

      I find this paper very descriptive and speculative. The results of the genetic analyses are quite counterintuitive; therefore, I understand the difficulty of connecting them to the observations coming from experiments in the microfluidic device. However, they could be better placed in the literature of foraging - dispersal cycles, beyond bacteria. In addition, the interpretation of the results is sometimes confusing.

    1. Reviewer #1 (Public Review):

      The present paper presents a new, simple, and cost-effective technique for multimodal EM imaging that combines the strengths of volume scanning electron microscopy (SEM) and electron microscopic tomography. The novel ATUM-Tomo approach enables the consecutive inspection of selected areas of interest by correlated serial SEM and TEM, optionally in combination with CLEM, as demonstrated. The most important finding of ATUM-Tomo and particularly correlative ATUM-Tomo is that it can bridge several scales from the cellular to the high-resolution subcellular scale, from the micrometer to low nanometer resolution, which is particularly important for the ultrastructural analysis of biological regions of interest as demonstrated here by focal pathologies or rare cellular and subcellular structures. Both imaging modalities are non-destructive, thus allowing re-imaging and hierarchical imaging at the SEM and TEM levels, which is particularly important for precious samples, such as human biopsies or specimens from complex CLEM experiments. The paper demonstrates that the new approach is very helpful in analyses of pathologically altered brains, including humans brain tissue samples, that require high-resolution SEM and TEM in combination with immunohistochemistry for analysis. Even the combination with tracers would be possible. In sum, ATUM-Tomo opens up new possibilities in multimodal volume EM imaging for diverse biological areas of research.

      Strengths

      This paper is a very nice piece of work. It combines modern, high-end, state-of-the-art technology that allows to investigate diverse biological questions in different fields and at multiple scales. The paper is clear and well-written. It is accompanied by excellent figures, supplementals, and colored 3D-reconstructions that make it easy for the reader to follow the experimental procedure and the scientific context alike.

      Weaknesses

      There is a bit of an imbalance between the description of the state-of-the-art methodology and the scientific context. The discussion of the latter could be expanded.

    2. Reviewer #2 (Public Review):

      Kislinger et al. present a method permitting a targeted, multi-scale ultrastructural imaging approach to bridge the resolution gap between large-scale scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The key methodological development consists of an approach to recover sections of resin-embedded material produced by Automated Tape Collecting Ultramicrotomy (ATUM), thereby permitting regions of interest identified by serial section SEM (ATUM-SEM) screening to be subsequently re-examined at higher resolution by TEM tomography (ATUM-Tomo). The study shows that both formvar and permanent marker coatings are in principle compatible with solvent-based release of pre-screened sections from ATUM tape (carbon nanotubule or Kapton tape). However, a comparative analysis of potential limitations and artifacts introduced by these respective coatings revealed permanent marker to provide a superior coating; permanent marker coatings are more easily and reliably applied to tape with only minor contaminants affecting the recovered section-tape interface with negligible influence on tomogram interpretation. Convincing proof-of-principle is provided by integrating this novel ATUMTomo technique into a technically impressive correlated light and electron microscopy (CLEM) approach specifically tailored to investigate ultrastructural manifestations of trauma-induced changes in blood-brain barrier permeability.

      Strengths

      Schematics and figures are very well-constructed, illustrating the workflow in a logical and easily interpretable manner. Light and electron microscope image data are of excellent quality, and the efficacy of the ATUM-Tomo approach is evidenced by a qualitative assessment of ATUM-SEM performance using coated tape variants and a convincing correlation between scanning and transmission electron microscopy imaging modalities. Potential ultrastructural artifacts induced via solvent exposure and any subsequent mechanical stress incurred during section detachment were thoroughly and systematically investigated using appropriate methods and reported with commendable transparency. In summary, the presented data convincingly support the claims of the study. A major strength of this work includes its general applicability to a broad range of biological questions and ultrastructural targets demanding resolutions exceeding that obtained via serial section and destructive block-face imaging approaches alone. The level of methodological detail provided is sufficient for replication of the ATUM-Tomo technique in other laboratories. Consequently, this relatively simple and cost-effective technique is widely adoptable by electron microscopy laboratories, and its integration into existing ATUM-SEM workflows supports a versatile and non-destructive imaging regime enabling high-resolution details of targeted structures to be interpreted within anatomical and subcellular contexts.

      Weaknesses

      I find no significant weaknesses in the current version of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Faniyan and colleagues build on their recent finding that renal Glut2 knockout mice display normal fasting blood glucose levels despite massive glucosuria. Renal Glut2 knockout mice were found to exhibit increased endogenous glucose production along with decreased hepatic metabolites associated with glucose metabolism. Crh mRNA levels were higher in the hypothalamus while circulating ACTH and corticosterone was elevated in this model. While these mice were able to maintain normal fasting glucose levels, ablating afferent renal signals to the brain caused low fasting blood glucose levels. In addition, the higher CRH and higher corticosterone levels of the knockout mice were lost following this denervation. Finally, acute phase proteins were altered, plasma Gpx3 was lower, and major urinary protein MUP18 and its gene expression were higher in renal Glut2 knockout mice. Overall, the main conclusion that afferent signaling from the kidney is required for renal glut2 dependent increases in endogenous glucose production is well supported by these findings.

      Strengths:

      An important strength of the paper is the novelty of the identification of kidney to brain communication as being important for glucose homeostasis. Previous studies had focused on other functions of the kidney modulated by or modulating brain function. This work is likely to promote interest in CNS pathways that respond to afferent renal signals and the response of the HPA axis to glucosuria. Additional strengths of this paper stem from the use of incisive techniques. Specifically, the authors use isotope enabled measurement of endogenous glucose production by GC-MS/MS, capsaicin ablation of afferent renal nerves, and multifiber recording from the renal nerve. The authors also paid excellent attention to rigor in the design and performance of these studies. For example, they used appropriate surgical controls, confirmed denervation through renal pelvic CGRP measurement, and avoided the confounding effects of nerve regrowth over time. These factors strengthen confidence in their results. Finally, humans with glucose transporter mutations and those being treated with SGLT2 inhibitors show a compensatory increase in endogenous glucose production. Therefore, this study strengthens the case for using renal Glut2 knockout mice as a model for understanding the physiology of these patients.

      Comments on latest version:

      My concerns have been addressed.

    1. Reviewer #1 (Public Review):

      Summary:

      Authors explore how sex-peptide (SP) affects post-mating behaviours in adult females, such as receptivity and egg laying. This study identifies different neurons in the adult brain and the VNC that become activated by SP, largely by using an intersectional gene expression approach (split-GAL4) to narrow down the specific neurons involved. They confirm that SP binds to the well-known Sex Peptide Receptor (SPR), initiating a cascade of physiological and behavioural changes related to receptivity and egg laying.

      Areas of improvement and suggestions:

      (1) "These results suggest the SP targets interneurons in the brain that feed into higher processing centers from different entry points likely representing different sensory input" and "All together, these data suggest that the abdominal ganglion harbors several distinct type of neurons involved in directing PMRs"<br /> The characterization of the post-mating circuitry has been largely described by the group of Barry Dickson and other labs. I suggest ruling out a potential effect of mSP in any of the well-known post-mating neuronal circuitry, i.e: SPSN, SAG, pC1, vpoDN or OviDNs neurons. A combination of available split-Gal4 should be sufficient to prove this.

      (2) Authors must show how specific is their "head" (elav/otd-flp) and "trunk" (elav/tsh) expression of mSP by showing images of the same constructs driving GFP.

      (3) VT3280 is termed as a SAG driver. However, VT3280 is a SPSN specific driver (Feng et al., 2014; Jang et al., 2017; Scheunemann et al., 2019; Laturney et al., 2023). The authors should clarify this.

      (4) Intersectional approaches must rule out the influence of SP on sex-peptide sensing neurons (SPSN) in the ovary by combining their constructs with SPSN-Gal80 construct. In line with this, most of their lines targets the SAG circuit (4I, J and K). Again, here they need to rule out the involvement of SPSN in their receptivity/egg laying phenotypes. Especially because "In the female genital tract, these split-Gal4 combinations show expression in genital tract neurons with innervations running along oviduct and uterine walls (Figures S3A-S3E)".

      (5) The authors separate head (brain) from trunk (VNC) responses, but they don't narrow down the neural circuits involved on each response. A detailed characterization of the involved circuits especially in the case of the VNC is needed to (a) show that the intersectional approach is indeed labelling distinct subtypes and (b) how these distinct neurons influence oviposition.

    2. Reviewer #3 (Public Review):

      Summary:

      This paper reports new findings regarding neuronal circuitries responsible for female post-mating responses (PMRs) in Drosophila. The PMRs are induced by sex peptide (SP) transferred from males during mating. The authors sought to identify SP target neurons using a membrane-tethered SP (mSP) and a collection of GAL4 lines, each containing a fragment derived from the regulatory regions of the SPR, fru, and dsx genes involved in PMR. They identified several lines that induced PMR upon expression of mSP. Using split-GAL4 lines, they identified distinct SP-sensing neurons in the central brain and ventral nerve cord. Analyses of pre- and post-synaptic connection using retro- and trans-Tango placed SP target neurons at the interface of sensory processing interneurons that connect to two common post-synaptic processing neuronal populations in the brain. The authors proposed that SP interferes with the processing of sensory inputs from multiple modalities.

      Strengths:

      Besides the main results described in the summary above, the authors discovered the following:

      (1) Reduction of receptivity and induction of egg-laying are separable by restricting the expression of membrane-tethered SP (mSP): head-specific expression of mSP induces reduction of receptivity only, whereas trunk-specific expression of mSP induces oviposition only. Also, they identified a GAL4 line (SPR12) that induced egg laying but did not reduce receptivity.

      (2) Expression of mSP in the genital tract sensory neurons does not induce PMR. The authors identified three GAL4 drivers (SPR3, SPR 21, and fru9), which robustly expressed mSP in genital tract sensory neurons but did not induce PMRs. Also, SPR12 does not express in genital tract neurons but induces egg laying by expressing mSP.

      Weaknesses:

      (1) Intersectional expression involving ppk-GAL4-DBD was negative in all GAL4AD lines (Supp. Fig.S5). As the authors mentioned, ppk neurons may not intersect with SPR, fru, dsx, and FD6 neurons in inducing PMRs by mSP. However, since there was no PMR induction and no GAL4 expression at all in any combination with GAL4-AD lines used in this study, I would like to have a positive control, where intersectional expression of mSP in ppk-GAL4-DBD and other GAL4-AD lines (e.g., ppk-GAL4-AD) would induce PMR.

      (2) The results of SPR RNAi knock-down experiments are inconclusive (Figure 5). SPR RNAi cancelled the PMR in dsx ∩ fru11/12 and partially in SPR8 ∩ fru 11/12 neurons. SPR RNAi in dsx ∩ SPR8 neurons turned virgin females unreceptive; it is unclear whether SPR mediates the phenotype in SPR8 ∩ fru 11/12 and dsx ∩ SPR8 neurons.

      SPR RNAi knock-down experiments may also help clarify whether mSP worked autocrine or juxtacrine to induce PMR. mSP may produce juxtacrine signaling, which is cell non-autonomous.

    3. Reviewer #2 (Public Review):

      Sex peptide (SP) transferred during mating from male to female induces various physiological responses in the receiving female. Among those, the increase in oviposition and decrease in sexual receptivity are very remarkable. Naturally, a long standing and significant question is the identity of the underlying sex peptide target neurons that express the SP receptor and are underlying these responses. Identification of these neurons will eventually lead to the identification of the underlying neuronal circuitry.

      The Soller lab has addressed this important question already several years ago (Haussmann et al. 2013), using relevant GAL4-lines and membrane-tethered SP. The results already showed that the action of SP on receptivity and oviposition is mediated by different neuronal subsets and hence can be separated. The GAL4-lines used at that time were, however, broad, and the individual identity of the relevant neurons remained unclear.

      In the present paper, Nallasivan and colleagues carried this analysis one step further, using new intersectional approaches and transsynaptic tracing.

      Strength:

      The intersectional approach is appropriate and state-of-the art. The analysis is a very comprehensive tour-de-force and experiments are carefully performed to a high standard. The authors also produced a useful new transgenic line (UAS-FRTstopFRT mSP). The finding that neurons in the brain (head) mediate the SP effect on receptivity, while neurons in the abdomen and thorax (ventral nerve cord or peripheral neurons) mediate the SP effect on oviposition, is a significant step forward in the endavour to identify the underlying neuronal networks and hence a mechanistic understanding of SP action. Though this result is not entirely unexpected, it is novel as it was not shown before.

      Weakness:

      Though the analysis identifies a small set of neurons underlying SP responses, it does not go the last step to individually identify at least a few of them. The last paragraph in the discussion rightfully speculates about the neurochemical identity of some of the intersection neurons (e.g. dopaminergic P1 neurons, NPF neurons). At least these suggested identities could have been confirmed by straight-forward immunostainings agains NPF or TH, for which antisera are available. Moreover, specific GAL4 lines for NPF or P1 or at least TH neurons are available which could be used to express mSP to test whether SP activation of those neurons is sufficient to trigger the SP effect.

    1. Reviewer #1 (Public Review):

      Previous Review:

      The authors have identified the predicted EBE of PthA4 in the promoter of Cs9g12620, which is induced by Xcc. The authors identified a homolog of Cs9g12620, which has variations in the promoter region. The authors show PthA4 suppresses Cs9g12620 promoter activity independent of the binding action. The authors also show that CsLOB1 binds to the promoter of Cs9g12620. Interestingly, the authors show that PthA4 interacts with CsLOB1 at protein level. Finally, it shows that Cs9g12620 is important for canker symptoms. Overall, this study has reported some interesting discoveries and the writing is generally well done. However, the discoveries are affected by the reliability of the data and some flaws of the experimental designs.

      Here are some major issues:

      The authors have demonstrated that Cs9g12620 contains the EBE of PthA4 in the promoter region, to show that PthA4 controls Cs9g12620, the authors need to compare to the wild type Xcc and pthA4 mutant for Cs9g12620 expression. The data in Figure 1 is not enough.

      The authors confirmed the interaction between PthA4 and the EBE in the promoter of Cs9g12620 using DNA electrophoretic mobility shift assay (EMSA). However, Fig. 2B is not convincing. The lane without GST-PthA4 also clearly showed mobility shift. For EMSA assay, the authors need also to include non-labeled probe as competitor to verify the specificity. The description of the EMSA in this paper suggests that it was not done properly. It is suggested the authors to redo this EMSA assay following the protocol: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions PMID: 17703195.

      The authors also claimed that PthA4 suppresses the promote activity of Cs9g12620. The data is not convincing and also contradicts with their own data that overexpression of Cs9g12620 causes canker and silencing of it reduces canker considering PthA4 is required for canker development. The authors conducted the assays using transient expression of PthA4. It should be done with Xcc wild type, pthA4 mutant and negative control to inoculate citrus plants to check the expression of Cs9g12620.

      Fig. 6 AB is not convincing. There are no apparent differences. The variations shown in B is common in different wild type samples. It is suggested that the authors to conduct transgenic instead of transient overexpression.

      Gene silencing data needs more appropriate controls. Fig. D. seems to suggest canker symptoms actually happen for the RNAi treated. The authors need to make sure same amount of Xcc was used for both CTV empty vector and the RNAi. It is suggested a blink test is needed here.

      Comments on revised version:

      Point 1: Addressed well.

      Point 2: The EMSA was reconducted with adding unlabeled DNA, however, the results are still not convincing. Firstly, in fig.3D lane 5, with the absence of unlabeled DNA, the shifted bound signal wasn't reduced significantly. Secondly, still in fig.3D lane 5, the free labeled DNA probe at the bottom of the gel didn't increase. Which together mean that the unlabeled DNA was unable to compete with the labeled DNA and the "bound" shifted bands might not be true positive.

      Point 3: The authors didn't address the question clearly regarding the connection between the inhibition of Cs9g12620 promoter by PthA4 and the positive function of Cs9g12620 on citrus canker.

      Point 4: The comment was not addressed. Fig.7A and B are not convincing. Firstly, no evidence shows the expression of transiently expressed genes. Secondly, hard to tell the difference in 7A. Thirdly, since CsLOB1 positively regulates Cs9g12620, why expressing of CsLOB1 is unable to cause phenotype, while expression of PthA4 does?

      Point 5: addressed.

    1. Reviewer #1 (Public Review):

      Summary:

      Orlovski and his colleagues revealed an interesting phenomenon that SAP54-overexpressing leaf exposure to leafhopper males is required for the attraction of followed females. By transcriptomic analysis, they demonstrated that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Furthermore, they clarified how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects.

      Strengths:

      The phenomenon of this study is interesting and exciting.

      Weaknesses:

      The underlying mechanisms of this phenomenon are not convincing.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, the authors show that leaf exposure to leafhopper males is required for female attraction in the SAP54-expressing plant. They clarify how SAP54, by degrading SVP, suppresses biotic stress response pathways in leaves exposed to the males, thus facilitating female attraction and plant colonization.

      Strengths:

      This study suggests the possibility that the attraction of insect vectors to leaves is the major function of SAP54, and the induction of the leaf-like flowers may be a side-effect of the degradation of MTFs and SVP. It is a very surprising discovery that only male insect vectors can effectively suppress the plant's biotic stress response pathway. Although there has been interest in the phyllody symptoms induced by SAP54, the purpose, and advantage of secreting SAP54 were unknown. The results of this study shed light on the significance of secreted proteins in the phytoplasma life cycle and should be highly evaluated.

      Weaknesses:

      One weakness of this study is that the mechanisms by which male and female leafhoppers differentially affect plant defense responses remain unclear, although I understand that this is a future study.

      The authors show that female feeding suppresses female colonization on SAP54-expressing plants. This is also an intriguing phenomenon but this study doesn't explain its molecular mechanism (Figure 7).

    1. Reviewer #1 (Public Review):

      Summary:

      The authors used video tracking of 4 larval cichlid species and medaka to quantify prey-capture behaviors.

      Strengths:

      Comparing these behaviors is in principle an interesting question, and helps to address the typicality of the much better-understood zebrafish model. The authors make a good effort to analyze their data quantitatively.

      Weaknesses:

      (1) The overall conclusion, as summarized in the abstract as "Together, our study documents the diversification of locomotor and oculomotor adaptations among hunting teleost larvae" is not that compelling. What would be much more interesting would be to directly relate these differences to different ecological niches (e.g. different types of natural prey, visual scene conditions, height in water column etc), and/or differences in neural circuit mechanisms. While I appreciate that this paper provides a first step on this path, by itself it seems on the verge of stamp collecting, i.e. collecting and cataloging observations without a clear, overarching hypothesis or theoretical framework.

      (2) The data to support some of the claims is either weak or lacking entirely.

    2. Reviewer #2 (Public Review):

      Summary:

      This is a fascinating study about the behavioral kinematics of prey capture in larvae of several fish species (zebrafish, four cichlid species, and medaka). The authors describe in great detail swimming kinematics, hunting movement, eye movement as well as prey capture kinematics across these species. One striking finding is that cichlids and zebrafish use binocular vision to hunt for prey whereas medaka uses a monocular hunting style with a sideways motion to capture prey. The behavioral variation described in this study forms a strong foundation for future studies on the mechanisms underlying variation in hunting styles.

      Strengths:

      In general, the paper is well-written and documents very interesting data. The authors used sophisticated analyses that help appreciate the complexity of the behaviors examined. The discussion attempts to place the paper in a broader, comparative context. Overall, this paper reveals novel insight into an important behavior across different teleost species and lays a foundation for future studies on the neural and genetic basis of these distinct swimming and hunting behaviors.

      Weaknesses:

      The paper is rather descriptive in nature, although more context is provided in the discussion. Most figures are great, but I think the authors could add a couple of visual aids in certain places to explain how certain components were measured.

    3. Reviewer #3 (Public Review):

      Summary:

      This paper uses 2D pose estimation and quantitative behavioral analyses to compare patterns of prey capture behavior used by six species of freshwater larval fish, including zebrafish, medaka, and four cichlids. The convincing comparison of tail and eye kinematics during hunts reveals that cichlids and zebrafish use binocular vision and similar hunting strategies, but that cichlids make use of an expanded set of action types. The authors also provide convincing evidence that medaka instead use monocular vision during hunts. This finding has important implications for the evolution of distinct distance estimation algorithms used by larval teleost fish species during prey capture.

      Strengths:

      The quality of the behavioral data is solid and the high frame rate allowed for careful quantification and comparison of eye and tail dynamics during hunts. The statistical approach to assess eye vergence states (Figure 2B) is elegant, the cross-species comparison of prey location throughout each hunt phase is well done (Figure 3B-D), and the demonstration that swim bout tail kinematics from diverse species can be embedded in a shared "canonical" principal component space to explain most of the variance in 2D postural dynamics for each species (Figure 4A-C) provides a simple and powerful framework for future studies of behavioral diversification across fish species.

      Weaknesses:

      More evidence is needed to assess the types of visual monocular depth cues used by medaka fish to estimate prey location, but that is beyond the scope of this compelling paper. For example, medaka may estimate depth through knowledge of expected prey size, accommodation, defocus blur, ocular parallax, and/or other possible algorithms to complement cues from motion parallax.

    1. Reviewer #1 (Public Review):

      Summary and Strengths:

      The study focuses on PIM1 and 2 in CD8 T cell activation and differentiation. These two serine/threonine kinases belong to a large network of Serine/Threonine kinases that acts following engagement of the TCR and of cytokine receptors and phosphorylates proteins that control transcriptional, translational and metabolic programs that result in effector and memory T cell differentiation. The expression of PIM1 and PIM2 is induced by the T-cell receptor and several cytokine receptors. The present study capitalized on high-resolution quantitative analysis of the proteomes and transcriptomes of Pim1/Pim2-deficient CD8 T cells to decipher how the PIM1/2 kinases control TCR-driven activation and IL-2/IL-15-driven proliferation, and differentiation into effector T cells.<br /> Quantitative mass spectrometry-based proteomics analysis of naïve OT1 CD8 T cell stimulated with their cognate peptide showed that the PIM1 protein was induced within 3 hours of TCR engagement and its expression was sustained at least up to 24 hours. The kinetics of PIM2 expression was protracted as compared to that of PIM1. Such TCR-dependent expression of PIM1/2 correlated with the analysis of both Pim1 and Pim2 mRNA. In contrast, Pim3 mRNA was only expressed at very low levels and the PIM3 protein was not detected by mass spectrometry. Therefore, PIM1 and 2 are the major PIM kinases in recently activated T cells. Pim1/Pim2 double knockout (Pim dKO) mice were generated on a B6 background and found to express a lower number of splenocytes. No difference in TCR/CD28-driven proliferation was observed between WT and Pim dKO T cells over 3 days in culture. Quantitative proteomics of >7000 proteins further revealed no substantial quantitative or qualitative differences in protein content or proteome composition. Therefore, other signaling pathways can compensate for the lack of PIM kinases downstream of TCR activation.

      Considering that PIM1 and PIM2 kinase expression is regulated by IL-2 and IL-15, antigen-primed CD8 T cells were expanded in IL-15 to generate memory phenotype CD8 T cells or expanded in IL-2 to generate effector cytotoxic T lymphocytes (CTL). Analysis of the survival, proliferation, proteome, and transcriptome of Pim dKO CD8 T cells kept for 6 days in IL-15 showed that PIM1 and PIM2 are dispensable to drive the IL-15-mediated metabolic or differentiation programs of antigen-primed CD8 T cells. Moreover, Pim1/Pim2-deficiency had no impact on the ability of IL-2 to maintain CD8 T cell viability and proliferation. However, WT CTL downregulated the expression of CD62L whereas the Pim dKO CTL sustained higher CD62L expression. Pim dKO CTL was also smaller and less granular than WT CTL. Comparison of the proteome of day 6 IL-2 cultured WT and Pim dKO CTL showed that the latter expressed lower levels of the glucose transporters, SLC2A1 and SLC2A3, of a number of proteins involved in fatty acid and cholesterol biosynthesis, and CTL effector proteins such as granzymes, perforin, IFNg, and TNFa. Parallel transcriptomics analysis showed that the reduced expression of perforin and some granzymes correlated with a decrease in their mRNA whereas the decreased protein levels of granzymes B and A, and the glucose transporters SLC2A1 and SLC2A3 did not correspond with decreased mRNA expression. Therefore, PIM kinases are likely required for IL-2 to maximally control protein synthesis in CD8 CTL. Along that line, the translational repressor PDCD4 was increased in Pim dKO CTL and pan-PIM kinase inhibitors caused a reduction in protein synthesis rates in IL-2-expanded CTL. Finally, the differences between Pim dKO and WT CTL in terms of CD62L expression resulted in Pim dKO CTL but not WT CTL retained the capacity to home to secondary lymphoid organs. In conclusion, this thorough and solid study showed that the PIM1/2 kinases shape the effector CD8 T cell proteomes rather than transcriptomes and are important mediators of IL2-signalling and CD8 T cell trafficking.

      Weaknesses:

      None identified by this reviewer.

    2. Reviewer #2 (Public Review):

      Summary:

      Using a suite of techniques (e.g., RNA seq, proteomics, and functional experiments ex vivo) this paper extensively focuses on the role of PIM1/2 kinases during CD8 T-cell activation and cytokine-driven (i.e., IL-2 or IL-15) differentiation. The authors' key finding is that PIM1/2 enhances protein synthesis in response to IL-2 stimulation, but not IL-15, in CD8+ T cells. Loss of PIM1/2 made T cells less 'effector-like', with lower granzyme and cytokine production, and a surface profile that maintained homing towards secondary lymphoid tissue. The cytokines the authors focus on are IL-15 and Il-2, which drive naïve CD8 T cells towards memory or effector states, respectively. Although PIM1/2 are upregulated in response to T-cell activation and cytokine stimulation (e.g., IL-15, and to a greater extent, IL-2), using T cells isolated from a global mouse genetic knockout background of PIM1/2, the authors find that PIM1/2 did not significantly influence T-cell activation, proliferation, or expression of anything in the proteome under anti-CD3/CD28 driven activation with/without cytokine (i.e., IL-15) stimulation ex vivo. This is perhaps somewhat surprising given PIM1/2 is upregulated, albeit to a small degree, in response to IL-15, and yet PIM1/2 did not seem to influence CD8+ T cell differentiation towards a memory state. Even more surprising is that IL-15 was previously shown to influence the metabolic programming of intestinal intraepithelial lymphocytes, suggesting cell-type specific effects from PIM kinases. What the authors went on to show, however, is that PIM1/2 KO altered CD8 T cell proteomes in response to IL-2. Using proteomics, they saw increased expression of homing receptors (i.e., L-selectin, CCR7), but reduced expression of metabolism-related proteins (e.g., GLUT1/3 & cholesterol biosynthesis) and effector-function related proteins (e.g., IFNy and granzymes). Rather neatly, by performing both RNA-seq and proteomics on the same IL-2 stimulated WT vs. PIM1/2 KO cells, the authors found that changes at the proteome level were not corroborated by differences in RNA uncovering that PIM1/2 predominantly influence protein synthesis/translation. Effectively, PIM1/2 knockout reduced the differentiation of CD8+ T cells towards an effector state. In vivo adoptive transfer experiments showed that PIM1/2KO cells homed better to secondary lymphoid tissue, presumably owing to their heightened L-selectin expression (although this was not directly examined).

      Strengths:

      Overall, I think the paper is scientifically good, and I have no major qualms with the paper. The paper as it stands is solid, and while the experimental aim of this paper was quite specific/niche, it is overall a nice addition to our understanding of how serine/threonine kinases impact T cell state, tissue homing, and functionality. Of note, they hint towards a more general finding that kinases may have distinct behaviour in different T-cell subtypes/states. I particularly liked their use of matched RNA-seq and proteomics to first suggest that PIM1/2 kinases may predominantly influence translation (then going on to verify this via their protein translation experiment - although I must add this was only done using PIM kinase inhibitors, not the PIM1/2KO cells). I also liked that they used small molecule inhibitors to acutely reduce PIM1/2 activity, which corroborated some of their mouse knockout findings - this experiment helps resolve any findings resulting from potential adaptation issues from the PIM1/2 global knockout in mice but also gives it a more translational link given the potential use of PIM kinase inhibitors in the clinic. The proteomics and RNA seq dataset may be of general use to the community, particularly for analysis of IL-15 or IL-2 stimulated CD8+ T cells.

      Weaknesses:

      It would be good to perform some experiments in human T cells too, given the ease of e.g., the small molecule inhibitor experiment. Would also be good for the authors to include a few experiments where PIM1/2 have been transduced back into the PIM1/2 KO T cells, to see if this reverts any differences observed in response to IL-2 - although the reviewer notes that the timeline for altering primary T cells via lentivirus/CRISPR may be on the cusp of being practical such that functional experiments can be performed on day 6 after first stimulating T cells. Other experiments could also look at how PIM1/2 KO influences the differentiation of T cell populations/states during ex vivo stimulation of PBMCs or in vivo infection models using (high-dimensional) flow cytometry (rather than using bulk proteomics/RNA seq which only provide an overview of all cell combined). Alongside this, performing a PCA of bulk RNA seq/proteomes or Untreated vs. IL-2 vs. IL-15 of WT and PIM1/2 knockout T cells would help cement their argument in the discussion about PIM1/2 knockout cells being distinct from a memory phenotype.

    1. Joint Public Review:

      Summary:

      This paper by Beath et. al. identifies a potential regulatory role for proteins involved in cytoplasmic streaming and maintaining the grouping of paternal organelles: holding sperm contents in the fertilized embryos away from the oocyte meiotic spindle so that they don't get ejected into the polar body during meiotic chromosome segregation. The authors show that by time-lapse video, paternal mitochondria (used as a readout for sperm and its genome) is excluded from yolk granules and maternal mitochondria, even when moving long distances by cytoplasmic streaming. To understand how this exclusion is accomplished, they first show that it is independent of both internal packing and the engulfment of the paternal chromosomes by the maternal endoplasmic reticulum creating an impermeable barrier. They then test whether the control of cytoplasmic steaming affects this exclusion by knocking down two microtubule motors, Katanin and kinesis I. They find that the ER ring, which is used as a proxy for paternal chromosomes, undergoes extensive displacement with these treatments during anaphase I and interacts with the meiotic spindle, supporting their hypothesis that the exclusion of paternal chromosomes is regulated by cytoplasmic streaming. Next, they test whether a regulator of maternal ER organization, ATX-2, disrupts sperm organization so that they can combine the double depletion of ATX-2 and KLP-7, presumably because klp-7 RNAi (unlike mei-1 RNAi) does not affect polar body extrusion and they can report on what happens to paternal chromosomes. They find that the knockdown of both ATX-2 and KLP-7 produces a higher incidence of what appears to be the capture of paternal chromosomes by the meiotic spindle (5/24 vs 1/25). However, this capture event appears to halt the cell cycle, preventing the authors from directly observing whether this would result in the paternal chromosomes being ejected into the polar body.

      The authors addressed the vast majority of the Reviewer's comments including the addition of new figures, re-wording of data interpretation and discussion points to better reflect the claims of the paper. There remain a few outstanding points which were not addressed.

      In many cases the number of embryos analyzed or events capture remains low and the authors conclude that these sample sizes prevented statistical significance. It's not clear if more embryos were analyzed or if more capture would lead to statistical significance. Language capturing this caveat should also be included in the manuscript. A specific example of this is given below:

      In the double knockdown of ATX-2 and KLP-7, there was no significant difference between single and double knockdowns and the ER ring displacement was not analyzed in this double mutant. Further, there was no difference in the frequency of sperm capture between single and double ATX-2 and KLP-7 due to low sample size, the the strength of the conclusion of this manuscript would be greatly improved if both of these results were further explored.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors used four datasets spanning 30 countries to examine funding success and research quality score for various disciplines. They examined whether funding or research quality score were influenced by majority gender of the discipline and whether these affected men, women, or both within each discipline. They found that disciplines dominated by women have lower funding success and research quality score than disciplines dominated by men. These findings are surprising because even the men in women-dominated fields experienced lower funding success and research quality score.

      Strengths:<br /> - The authors utilized a comprehensive dataset covering 30 countries to explore the influence of the majority gender in academic disciplines on funding success and research quality scores.<br /> - Findings suggest a systemic issue where disciplines with a higher proportion of women have lower evaluations and funding success for all researchers, regardless of gender.<br /> - The manuscript is notable for its large sample size and the diverse international scope, enhancing the generalizability of the results.<br /> - The work accounts for various factors including age, number of research outputs, and bibliometric measures, strengthening the validity of the findings.<br /> - The manuscript raises important questions about unconscious bias in research evaluation and funding decisions, as evidenced by lower scores in women-dominated fields even for researchers that are men.<br /> - The study provides a nuanced view of gender bias, showing that it is not limited to individuals but extends to entire disciplines, impacting the perception and funding and quality or worth of research.<br /> - This work underscores the need to explore motivations behind gender distribution across fields, hinting at deep-rooted societal and institutional barriers.<br /> - The authors have opened a discussion on potential solutions to counter bias, like adjusting funding paylines or anonymizing applications, or other practical solutions.<br /> - While pointing out limitations such as the absence of data from major research-producing countries, the manuscript paves the way for future studies to examine whether its findings are universally applicable.<br /> - The study carefully uses the existing data (including PBRF funding panel gender diversity) to examine gender bias. These types of datasets are often not readily accessible for analysis. Here, the authors have used the available data to the fullest extent possible.

      The authors have addressed the concerns I had about the original version.

    2. Reviewer #3 (Public Review):<br /> This study seeks to investigate one aspect of disparity in academia: how gender balance in a discipline is valued in terms of evaluated research quality score and funding success. This is important in understanding disparities within academia.<br /> This study uses publicly available data to investigate covariation between gender balance in an academic discipline and:<br /> individual research quality scores of New Zealand academics as evaluated by one of 14 broader subject panels.<br /> [ii] funding success in Australia, Canada, Europe, UK.

      The authors have addressed the concerns I had about the original version

    1. Reviewer #1 (Public Review):

      Summary: The authors present a close to complete annotation of the male Drosophila ventral nerve cord, a critical part of the fly's central nervous system.

      Strengths: The manuscript describes an enormous amount of work that takes the first steps towards presenting and comprehending the complexity and organization of the ventral nerve cord. The analysis is thorough and complete. It also makes the effort to connect this EM-centric view of the nervous system to more classical analyses, such as the previously defined hemilineages, that also describe the organization of the fly nervous system. There are many, many insights that come from this work that will be valuable to the field for the foreseeable future.

      Weaknesses: With more than 60 primary figures, the paper is overwhelming and cannot be read and digested in a single sitting. The result is more like a detailed resource rather than a typical research paper.

    2. Reviewer #2 (Public Review):

      Summary and strengths:<br /> This massive paper describes the identity and connectivity of neurons reconstructed from a volumetric EM image volume of the ventral nerve cord (VNC) of a male fruit fly. The segmentation of the EM data was described in one companion paper; the classification of the neurons entering the VNC from the brain (descending neurons or DNs) and the motor neurons leaving the VNC was described in a second companion paper. Here, the authors describe a system for annotating the remaining neurons in the VNC, which include intrinsic neurons, ascending neurons, and sensory neurons, representing the vast majority of neurons in the dataset. Another fundamental contribution of this paper is the identification of the developmental origins (hemilineage) of each intrinsic neuron in the VNC. These comprehensive hemilineage annotations can be used to understand the relationship between development and circuit structure, provide insight into neurotransmitter identity, and facilitate comparisons across insect species.Many sensory neurons are also annotated by comparison to past literature. Overall, defining and applying this annotation system provides the field with a standard nomenclature and resource for future studies of VNC anatomy, connectivity, and development. This is a monumental effort that will fundamentally transform the field of Drosophila neuroscience and provide a roadmap for similar connectomic studies in other organisms.

      Weaknesses:<br /> Despite the significant merit of these contributions, the manuscript is challenging to read and comprehend. In some places, it seems to be attempting to comprehensively document everything the authors found in this immense dataset. In other places, there are gaps in scholarship and analysis. As it is currently constructed, I worry that the manuscript will intimidate general readers looking for an entry point to the system, and ostracize specialized readers who are unable to use the paper as a comprehensive reference due to its confusing organization.

      The bulk of the 559 pages of the submitted paper is taken up by a set of dashboard figures for each of ~40 hemilineages. Formatting the paper as an eLife publication will certainly help condense these supplemental figures into a more manageable format, but 68 primary figures will remain, and many of these also lack quality and clarity. Without articulating a clear function for each plot, it is hard to know what the authors missed or chose not to show. As an example, many of the axis labels indicate the hemilineage of a group of neurons, but are ordered haphazardly and so small as to be illegible; if the hemilineage name is too small, and in a bespoke order for that data, then is the reader meant to ignore the specific hemilineage labels?

      The text has similar problems of emphasis. It is often meandering and repetitive. Overlapping information is found in multiple places, which causes the paper to be much longer than it needs to be. For example, the concept of hemilineages is introduced three times before the subtitle "Introduction to hemilineage-based organisation". When cell typing is introduced, it is unclear how this relates to serial motif, hemilineage, etc; "Secondary hemilineages" follow the Cell typing title. Like the overwhelming number of graphical elements, this gives the impression that little attention has been paid to curating and editing the text. It is unclear whether the authors intend for the paper to be read linearly or used as a reference. In addition, descriptions of the naming system are often followed by extensive caveats and exceptions, giving the impression that the system is not airtight and possibly fluid. At many points, the text vacillates between careful consideration of the dataset's limitations and overly grandiose claims. These presentation flaws overshadow the paper's fundamental contribution of describing a reasonable and useful cell-typing system and placing intrinsic neurons within this framework.

      References to past Drosophila literature are inconsistent and references to work from other insects are generally not included; for example, the extensive past work on leg sensory neurons in locusts, cockroaches, and stick insects. Such omissions are understandable in a situation where brevity is paramount. However, this paper adopts a comprehensive and authoritative tone that gives the reader an impression of completeness that does not hold up under careful scrutiny.

      The paper accompanies the release of the MANC dataset (EM images, segmentation, annotations) through a web browser-based tool: clio.janelia.org. The paper would be improved by distilling it down to its core elements, and then encouraging readers to explore the dataset through this interactive interface. Streamlining the paper by removing extraneous and incomplete analyses would provide the reader with a conceptual or practical framework on which to base their own queries of the connectome.

    1. Reviewer #1 (Public Review):

      This study generated 3D cell constructs from endometrial cell mixtures that were seeded in the Matrigel scaffold. The cell assemblies were treated with hormones to induce a "window of implantation" (WOI) state.

      The authors did their best to revise their study according to the reviewers' comments. However, the study remains unconvincing and at the same time too dense and not focused enough.

      (1) The use of the term organoids is still confusing and should be avoided. Organoids are epithelial tissue-resembling structures. Hence, the multiple-cell aggregates developed here are rather "co-culture models" (or "assembloids"). It is still unexpected (unlikely) that these structures containing epithelial, stromal and immune cells can be robustly passaged in the epithelial growth conditions used. All other research groups developing real organoids from endometrium have shown that only the epithelial compartment remains in culture at passaging (while the stromal compartment is lost). If authors keep to their idea, they should perform scRNA-seq on both early and late (passage 6-10) "organoids". And they should provide details of culturing/passaging/plating etc that are different with other groups and might explain why they keep stromal and immune cells in their culture for such a long time. In other words, they should then in detail compare their method to the standard method of all other researchers in the field, and show the differences in survival and growth of the stromal and immune cells.<br /> (2) The paper is still much too dense, touching upon all kind of conclusions from the manifold bioinformatic analyses. The latter should be much clearer and better described, and then some interesting findings (pathways/genes) should be highlighted without mentioning every single aspect that is observed. The paper needs a lot of editing to better focus and extract take-home messages, not bombing the reader with a mass of pathways, genes etc which makes the manuscript just not readable or 'digest-able'. There is no explanation whatever and no clear rationale why certain genes are included in a list while others are not. There is the impression that mass bioinformatics is applied without enough focus.<br /> (3) The study is much too descriptive and does not show functional validation or exploration (except glycogen production). Some interesting findings extracted from the bioinformatics must be functionally tested.<br /> (4) In contrast to what was found in vivo (Wang et al. 2020), no abrupt change in gene expression pattern is mentioned here from the (early-)secretory to the WoI phase. Should be discussed. Although the bioinformatic analyses point into this direction, there are major concerns which must be solved before the study can provide the needed reliability and credibility for revision.<br /> (5) All data should be benchmarked to the Wang et al 2020 and Garcia-Alonso et al. 2021 papers reporting very detailed scRNA-seq data, and not only the Stephen R. Quake 2020 paper.<br /> (6) Fig. 2B: Vimentin staining is not at all clear. F-actin could be used to show the typical morphology of the stromal cells?<br /> (7) Where does the term "EMT-derived stromal cells" come from? On what basis has this term been coined?<br /> (8) CD44 is shown in Fig. 2D but the text mentions CD45 (line 159)?<br /> (9) All quantification experiments (of stainings etc) should be in detail described how this was done. It looks very difficult (almost not feasible) when looking at the provided pictures to count the stained cells.<br /> (10) Fig. 3C: it is unclear how quantification can be reliably done. Moreover, OLFM4 looks positive in all cells of Ctrl, but authors still see an increase?<br /> (11) Fig. 3F: Met is downregulated which is not in accordance with the mentioned activation of the PI3K-AKT pathway.<br /> (12) Lines 222-226: transcriptome and proteome differences are not significant; so, how meaningful are the results then? Then, it is very hard to conclude an evolution from secretory phase to WoI.<br /> (13) WoI organoids show an increased number of cilia. However, some literature shows the opposite, i.e. less ciliated cells in the endometrial lining at WoI (to keep the embryo in place). How to reconcile?<br /> (14) How are pinopodes distinguished from microvilli? Moreover, Fig. 3 does not show the typical EM structure of cilia.<br /> (15) There is a recently published paper demonstrating another model for implantation. This paper should be referenced as well (Shibata et al. Science Advances, 2024).<br /> (16) Line 78: two groups were the first here (Turco and Borreto) and should both be mentioned.<br /> (17) Line 554: "as an alternative platform" - alternative to what? Authors answer reviewers' comments by just changing one word, but this makes the text odd.

    2. Reviewer #2 (Public Review):

      In this research, Zhang et al. have pioneered the creation of an advanced organoid culture designed to emulate the intricate characteristics of endometrial tissue during the crucial Window of Implantation (WOI) phase. Their method involves the incorporation of three distinct hormones into the organoid culture, coupled with additives that replicate the dynamics of the menstrual cycle. Through a series of assays, they underscore the striking parallels between the endometrial tissue present during the WOI and their crafted organoids. Through a comparative analysis involving historical endometrial tissue data and control organoids, they establish a system that exhibits a capacity to simulate the intricate nuances of the WOI.

      The authors made a commendable effort to address the majority of the statements. Developing an endometrial organoid culture methodology that mimics the window of implantation is a game-changer for studying the implantation process. However, the authors should strive to enhance the results to demonstrate how different WOI organoids are from SEC organoids, ensuring whether they are worth using in implantation studies, or a proper demonstration using implantation experiments.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors conducted an important study that explored an innovative regenerative treatment for pediatric craniofacial bone loss, with a particular focus on investigating the impacts of JAGGED1 (JAG1) signaling.

      Strengths:

      Building on their prior research involving the effect of JAG1 on murine cranial neural crest cells, the authors demonstrated successful bone regeneration in an in vivo murine bone loss model with a critically-sized cranial defect, where they delivered JAG1 with pediatric human bone-derived osteoblast-like cells in the hydrogel. Additionally, their findings unveiled a crucial mechanism wherein JAG1 induces pediatric osteoblast commitment and bone regeneration through the phosphorylation of p70 S6K. This discovery offers a promising avenue for potential treatment, involving targeted delivery of JAG1 and activation of downstream p70 s6K, for pediatric craniofacial bone loss. Overall, the experimental design is appropriate, and the results are clearly presented.

    2. Reviewer #2 (Public Review):

      The current manuscript undoubtedly demonstrates that JAG1 can induced osteogenesis via non-canonical signaling. In fact, using the mouse-calvarial critical defect model, the authors have clearly shown the anabolic regenerative effect of JAG1 in via non-canonical pathways. Exploring the molecular mechanisms, the authors have shown that non-canonically JAG1 is regulating multiple pathways including STAT5, AKT, P38, JNK, NF-ĸB, and p70 S6K, which together possibly culminate to the activation of p70 S6K. In summary these findings have significant implications in designing new approaches for bone regenerative research.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, proteomics analysis of the plasma of human subjects that underwent an exercise training regime consisting of a combination of endurance and resistance exercise led to the identification of several proteins that were responsive to exercise training. Confirming previous studies, many exercise-responsive secreted proteins were found to be involved in the extra-cellular matrix. The protein CD300LG was singled out as a potential novel exercise biomarker and the subject of numerous follow-up analyses. The levels of CD300LG were correlated with insulin sensitivity. The analysis of various open-source datasets led to the tentative suggestion that CD300LG might be connected with angiogenesis, liver fat, and insulin sensitivity. CD300LG was found to be most highly expressed in subcutaneous adipose tissue and specifically in venular endothelial cells. In a subset of subjects from the UK Biobank, serum CD300LG levels were positively associated with several measures of physical activity - particularly vigorous activity. In addition, serum CD300LG levels were negatively associated with glucose levels and type 2 diabetes. Genetic studies hinted at these associations possibly being causal. Mice carrying alterations in the CD300LG gene displayed impaired glucose tolerance, but no change in fasting glucose and insulin. Whether the production of CD300LG is changed in the mutant mice is unclear.

      Strengths:

      The specific proteomics approach conducted to identify novel proteins impacted by exercise training is new. The authors are resourceful in the exploitation of existing datasets to gain additional information on CD300LG.

      Weaknesses:

      While the analyses of multiple open-source datasets are necessary and useful, they lead to relatively unspecific correlative data that collectively insufficiently advance our knowledge of CD300LG and merely represent the starting point for more detailed investigations. Additional more targeted experiments of CD300LG are necessary to gain a better understanding of the role of CD300LG and the mechanism by which exercise training may influence CD300LG levels. One should also be careful to rely on external data for such delicate experiments as mouse phenotyping. Can the authors vouch for the quality of the data collected?

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript from Lee-Odegard et al reports proteomic profiling of exercise plasma in humans, leading to the discovery of CD300LG as a secreted exercise-inducible plasma protein. Correlational studies show associations of CD300LG with glycemic traits. Lastly, the authors query available public data from CD300LG-KO mice to establish a causal role for CD300LG as a potential link between exercise and glucose metabolism. However, the strengths of this manuscript were balanced by the moderate to major weaknesses. Therefore in my opinion, while this is an interesting study, the conclusions remain preliminary and are not fully supported by the experiments shown so far.

      Strengths:

      (1) Data from a well-phenotyped human cohort showing exercise-inducible increases in CD300LG.

      (2) Associations between CD300LG and glucose and other cardiometabolic traits in humans, that have not previously been reported.

      (3) Correlation to CD300LG mRNA levels in adipose provides additional evidence for exercise-inducible increases in CD300LG.

      Weaknesses:

      (1) CD300LG is by sequence a single-pass transmembrane protein that is exclusively localized to the plasma membrane. How CD300LG can be secreted remains a mystery. More evidence should be provided to understand the molecular nature of circulating CD300LG. Is it full-length? Is there a cleaved fragment? Where is the epitope where the o-link is binding to CD300LG? Does transfection of CD300LG to cells in vitro result in secreted CD300LG?

      (2) There is a growing recognition of specificity issues with both the O-link and somalogic platforms. Therefore it is critical that the authors use antibodies, targeted mass spectrometry, or some other methods to validate that CD300LG really is increased instead of just relying on the O-link data.

      (3) It is insufficient simply to query the IMPC phenotyping data for CD300LG; the authors should obtain the animals and reproduce or determine the glucose phenotypes in their own hands. In addition, this would allow the investigators to answer key questions like the phenotype of these animals after a GTT, whether glucose production or glucose uptake is affected, whether insulin secretion in response to glucose is normal, effects of high-fat diet, and other standard mouse metabolic phenotyping assays.

      (4) I was unable to find the time point at which plasma was collected at the 12-week time point. Was it immediately after the last bout of exercise (an acute response) or after some time after the training protocol (trained state)?

    1. Reviewer #3 (Public Review):

      In multiple cancers, the key roles of B cells are emerging in the tumor microenvironment (TME). The authors of this study appropriately introduce that B cells are relatively under-characterised in the TME and argue correctly that it is not known how the B cell receptor (BCR) repertoires across tumor, lymph node and peripheral blood relate. The authors therefore supply a potentially useful study evaluating the tumor, lymph node and peripheral blood BCR repertoires and site-to-site as well as intra-site relationships. The authors employ sophisticated analysis techniques, although the description of the methods is incomplete.

      Major strengths:

      (1) The authors provide a unique analysis of BCR repertoires across tumor, dLN, and peripheral blood. The work provides useful insights into inter- and intra-site BCR repertoire heterogeneity. While patient-to-patient variation is expected, the findings with regard to intra-tumor and intra-dLN heterogeneity with the use of fragments from the same tissue are of importance, contribute to the understanding of the TME, and will inform future study design.

      (2) A particular strength of the study is the detailed CDR3 physicochemical properties analysis which leads the authors to observations that suggest a less-specific BCR repertoire of TIL-B compared to circulating B cells.

      Concerns and comments on current version:

      The revision has improved the manuscript but, in my opinion, remains inadequate. While most of my requested changes have been made, I do not see an expansion of Fig1A legend to incorporate more details about the analysis. Lacking details of methodology was a concern from all reviewers. Similarly, the 'fragmented' narrative was a concern of all reviewers. These matters have not been dealt with adequately enough - there are parts of the manuscript which remain fragmented and confusing. The narrative and analysis does not explain how the plasma cell bias has been dealt with adequately and in fact is simply just confusing. There is a paragraph at the beginning of the discussion re the plasma cell bias, which should be re-written to be clearer and moved to have a prominent place early in the results. Why are these results not properly presented? They are key for interpretation of the manuscript. Furthermore, the sorted plasma cell sequencing analysis also has only been performed on two patients. Another issue is that some disease cohorts are entirely composed of patients with metastasis, some without but metastasis is not mentioned. Metastasis has been shown to impact the immune landscape.

      A reviewer brought up a concern about the overlap analysis and I also asked for an explanation on why this F2 metric chosen. Part of the rebuttal argues that another metric was explored showing similar results, thus conclusion reached is reasonable. Remarkably, these data are not only omitted from the manuscript, but is not even provided for the reviewers.

      This manuscript certainly includes some interesting and useful work. Unfortunately, a comprehensive re-write was required to make the work much clearer and easier to understand and this has not been realised.

    1. Reviewer #1 (Public Review):

      Summary:

      Kroeg et al. describe a novel method for 2D culture human induced pluripotent stem cells (hiPSCs) to form cortical tissue in a multiwell format. The method claims to offer a significant advancement over existing developmental models. Their approach allows them to generate cultures with precise, reproducible dimensions and structure with a single rosette; consistent geometry; incorporating multiple neuronal and glial cell types (cellular diversity); avoiding the necrotic core (often seen in free-floating models due to limited nutrient and oxygen diffusion). The researchers demonstrate the method's capacity for long-term culture, exceeding ten months, and show the formation of mature dendritic spines and considerable neuronal activity. The method aims to tackle multiple key problems of in vitro neural cultures: reproducibility, diversity, topological consistency, and electrophysiological activity. The authors suggest their potential in high-throughput screening and neurotoxicological studies.

      Strengths:

      The main advances in the paper seem to be: The culture developed by the authors appears to have optimal conditions for neural differentiation, lineage diversification, and long-term culture beyond 300 days. These seem to me as a major strength of the paper and an important contribution to the field. The authors present solid evidence about the high cell type diversity present in their cultures. It is a major point and therefore it could be better compared to the state of the art. I commend the authors for using three different IPS lines, this is a very important part of their proof. The staining and imaging quality of the manuscript is of excellent quality.

      Weaknesses:

      (1) The title is misleading: The presented cultures appear not to be organoids, but 2D neural cultures, with an insufficiently described intermediate EB stage. For nomenclature, see: doi: 10.1038/s41586-022-05219-6. Should the tissue develop considerable 3D depth, it would suffer from the same limited nutrient supply as 3D models - as the authors point out in their introduction.

      (2) The method therefore should be compared to state-of-the-art (well-based or not) 2D cultures, which seems to be somewhat overlooked in the paper, therefore making it hard to assess what the advance is that is presented by this work.

      (3) Reproducibility is prominently claimed throughout the manuscript. However, it is challenging to assess this claim based on the data presented, which mostly contain single frames of unquantified, high-resolution images. There are almost no systematic quantifications presented. The ones present (Figure S1D, Figure 4) show very large variability. However, the authors show sets of images across wells (Figure S1B, Figure S3) which hint that in some important aspects, the culture seems reproducible and robust.

      (4) What is in the middle? All images show markers in cells present around the center. The center however seems to be a dense lump of cells based on DAPI staining. What is the identity of these cells? Do these cells persist throughout the protocol? Do they divide? Until when? Addressing this prominent cell population is currently lacking.

      (5) This manuscript proposes a new method of 2D neural culture. However, the description and representation of the method are currently insufficient.<br /> (a) The results section would benefit from a clear and concise, but step-by-step overview of the protocol. The current description refers to an earlier paper and appears to skip over some key steps. This section would benefit from being completely rewritten. This is not a replacement for a clear methods section, but a section that allows readers to clearly interpret results presented later.<br /> (b) Along the same lines, the graphical abstract should be much more detailed. It should contain the time frames and the media used at the different stages of the protocol, seeding numbers, etc.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, van der Kroeg et al have developed a method for creating 3D cortical organoids using iPSC-derived neural progenitor cells in 384-well plates, thus scaling down the neural organoids to adherent culture and a smaller format that is amenable to high throughput cultivation. These adherent cortical organoids, measuring 3 x 3 x 0.2 mm, self-organize over eight weeks and include multiple neuronal subtypes, astrocytes, and oligodendrocyte lineage cells.

      Strengths:

      (1) The organoids can be cultured for up to 10 months, exhibiting mature dendritic spines, axonal myelination, and robust neuronal activity.

      (2) Unlike free-floating organoids, these do not develop necrotic cores, making them ideal for high-throughput drug discovery, neurotoxicological screening, and brain disorder studies.

      (3) The method addresses the technical challenge of achieving higher-order neural complexity with reduced heterogeneity and the issue of necrosis in larger organoids. The method presents a technical advance in organoid culture.

      (4) The method has been demonstrated with multiple cell lines which is a strength.

      (5) The manuscript provides high-quality immunostaining for multiple markers.

      Weaknesses:

      (1) Direct head-to-head comparison with standard organoid culture seems to be missing and may be valuable for benchmarking, ie what can be done with the new method that cannot be done with standard culture and vice versa, ie what are the aspects in which new method could be inferior to the standard.

      (2) It would be important to further benchmark the throughput, ie what is the success rate in filling and successfully growing the organoids in the entire 384 well plate?

      (3) For each NPC line an optimal seeding density was estimated based on the proliferation rate of that NPC line and via visual observation after 6 weeks of culture. It would be important to delineate this protocol in more robust terms, in order to enable reproducibility with different cell lines and amongst the labs.

    3. Reviewer #3 (Public Review):

      Summary:

      Kroeg et al. have introduced a novel method to produce 3D cortical layer formation in hiPSC-derived models, revealing a remarkably consistent topography within compact dimensions. This technique involves seeding frontal cortex-patterned iPSC-derived neural progenitor cells in 384-well plates, triggering the spontaneous assembly of adherent cortical organoids consisting of various neuronal subtypes, astrocytes, and oligodendrocyte lineage cells.

      Strengths:

      Compared to existing brain organoid models, these adherent cortical organoids demonstrate enhanced reproducibility and cell viability during prolonged culture, thereby providing versatile opportunities for high-throughput drug discovery, neurotoxicological screening, and the investigation of brain disorder pathophysiology. This is an important and timely issue that needs to be addressed to improve the current brain organoid systems.

      Weaknesses:

      While the authors have provided significant data supporting this claim, several aspects necessitate further characterization and clarification. Mainly, highlighting the consistency of differentiation across different cell lines and standardizing functional outputs are crucial elements to emphasize the future broad potential of this new organoid system for large-scale pharmacological screening.

    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kelbert et al. presents results on the involvement of the yeast transcription factor Sfp1 in the stabilisation of transcripts whose synthesis it stimulates. Sfp1 is known to affect the synthesis of a number of important cellular transcripts, such as many of those that code for ribosomal proteins. The hypothesis that a transcription factor can remain bound to the nascent transcript and affect its cytoplasmic half-life is attractive. However, the association of Sfp1 with cytoplasmic transcripts remains to be validated, as explained in the following comments:

      A two-hybrid based assay for protein-protein interactions identified Sfp1, a transcription factor known for its effects on ribosomal protein gene expression, as interacting with Rpb4, a subunit of RNA polymerase II. Classical two-hybrid experiments depend on the presence of the tested proteins in the nucleus of yeast cells, suggesting that the observed interaction occurs in the nucleus. Unfortunately, the two-hybrid method cannot determine whether the interaction is direct or mediated by nucleic acids. The revised version of the manuscript now states that the observed interaction could be indirect.

      To understand to which RNA Sfp1 might bind, the authors used an N-terminally tagged fusion protein in a cross-linking and purification experiment. This method identified 264 transcripts for which the CRAC signal was considered positive and which mostly correspond to abundant mRNAs, including 74 ribosomal protein mRNAs or metabolic enzyme-abundant mRNAs such as PGK1. The authors did not provide evidence for the specificity of the observed CRAC signal, in particular what would be the background of a similar experiment performed without UV cross-linking. This is crucial, as Figure S2G shows very localized and sharp peaks for the CRAC signal, often associated with over-amplification of weak signal during sequencing library preparation.

      In a validation experiment, the presence of several mRNAs in a purified SFP1 fraction was measured at levels that reflect the relative levels of RNA in a total RNA extract. Negative controls showing that abundant mRNAs not found in the CRAC experiment were clearly depleted from the purified fraction with Sfp1 would be crucial to assess the specificity of the observed protein-RNA interactions (to complement Fig. 2D). The CRAC-selected mRNAs were enriched for genes whose expression was previously shown to be upregulated upon Sfp1 overexpression (Albert et al., 2019). The presence of unspliced RPL30 pre-mRNA in the Sfp1 purification was interpreted as a sign of co-transcriptional assembly of Sfp1 into mRNA, but in the absence of valid negative controls, this hypothesis would require further experimental validation. Also, whether the fraction of mRNA bound by Sfp1 is nuclear or cytoplasmic is unclear.

      To address the important question of whether co-transcriptional assembly of Spf1 with transcripts could alter their stability, the authors first used a reporter system in which the RPL30 transcription unit is transferred to vectors under different transcriptional contexts, as previously described by the Choder laboratory (Bregman et al. 2011). While RPL30 expressed under an ACT1 promoter was barely detectable, the highest levels of RNA were observed in the context of the native upstream RPL30 sequence when Rap1 binding sites were also present. Sfp1 showed better association with reporter mRNAs containing Rap1 binding sites in the promoter region. Removal of the Rap1 binding sites from the reporter vector also led to a drastic decrease in reporter mRNA levels. Co-purification of reporter RNA with Sfp1 was only observed when Rap1 binding sites were included in the reporter. Negative controls for all the purification experiments might be useful.

      To complement the biochemical data presented in the first part of the manuscript, the authors turned to the deletion or rapid depletion of SFP1 and used labelling experiments to assess changes in the rate of synthesis, abundance and decay of mRNAs under these conditions. An important observation was that in the absence of Sfp1, mRNAs encoding ribosomal protein genes not only had a reduced synthesis rate, but also an increased degradation rate. This important observation needs careful validation, as genomic run-on experiments were used to measure half-lives, and this particular method was found to give results that correlated poorly with other measures of half-life in yeast (e.g. Chappelboim et al., 2022 for a comparison). As an additional validation, a temperature shift to 42{degree sign}C was used to show that , for specific ribosomal protein mRNA, the degradation was faster, assuming that transcription stops at that temperature. It would be important to cite and discuss the work from the Tollervey laboratory showing that a temperature shift to 42{degree sign}C leads to a strong and specific decrease in ribosomal protein mRNA levels, probably through an accelerated RNA degradation (Bresson et al., Mol Cell 2020, e.g. Fig 5E). Finally, the conclusion that mRNA deadenylation rate is altered in the absence of Sfp1, is difficult to assess from the presented results (Fig. 3D).

      The effects of SFP1 on transcription were investigated by chromatin purification with Rpb3, a subunit of RNA polymerase, and the results were compared with synthesis rates determined by genomic run-on experiments. The decrease in polII presence on transcripts in the absence of SFP1 was not accompanied by a marked decrease in transcript output, suggesting an effect of Sfp1 in ensuring robust transcription and avoiding RNA polymerase backtracking. To further investigate the phenotypes associated with the depletion or absence of Sfp1, the authors examined the presence of Rpb4 along transcription units compared to Rpb3. An effect of spf1 deficiency was that this ratio, which decreased from the start of transcription towards the end of transcripts, increased slightly. To what extent this result is important for the main message of the manuscript is unclear.

      Suggestions: a) please clearly indicate in the figures when they correspond to reanalyses of published results. b) In table S2, it would be important to mention what the results represent and what statistics were used for the selection of "positive" hits.

      Strengths:

      - Diversity of experimental approaches used.<br /> - Validation of large-scale results with appropriate reporters.

      Weaknesses:

      - Lack of controls for the CRAC results and lack of negative controls for the co-purification experiments that were used to validate specific mRNA targets potentially bound by Sfp1.<br /> - Several conclusions are derived from complex correlative analyses that fully depend on the validity of the aforementioned Sfp1-mRNA interactions.

    1. Reviewer #1 (Public Review):

      This work seeks to understand how behaviour-related information is represented in the neural activity of the primate motor cortex. To this end, a statistical model of neural activity is presented that enables a non-linear separation of behaviour-related from unrelated activity. As a generative model, it enables the separate analysis of these two activity modes, here primarily done by assessing the decoding performance of hand movements the monkeys perform in the experiments. Several lines of analysis are presented to show that while the neurons with significant tuning to movements strongly contribute to the behaviourally-relevant activity subspace, less or un-tuned neurons also carry decodable information. It is further shown that the discovered subspaces enable linear decoding, leading the authors to conclude that motor cortex read-out can be linear.

      Strengths:

      In my opinion, using an expressive generative model to analyse neural state spaces is an interesting approach to understand neural population coding. While potentially sacrificing interpretability, this approach allows capturing both redundancies and synergies in the code as done in this paper. The model presented here is a natural non-linear extension of a previous linear model PSID) and uses weak supervision in a manner similar to a previous non-linear model (TNDM).

      Weaknesses:

      This revised version provides additional evidence to support the author's claims regarding model performance and interpretation of the structure of the resulting latent spaces, in particular the distributed neural code over the whole recorded population, not just the well-tuned neurons. The improved ability to linearly decode behaviour from the relevant subspace and the analysis of the linear subspace projections in my opinion convincingly demonstrates that the model picks up behaviour-relevant dynamics, and that these are distributed widely across the population. As reviewer 3 also points out, I would, however, caution to interpret this as evidence for linear read-out of the motor system - your model performs a non-linear transformation, and while this is indeed linearly decodable, the motor system would need to do something similar first to achieve the same. In fact to me it seems to show the opposite, that behaviour-related information may not be generally accessible to linear decoders (including to down-stream brain areas).

      As in my initial review, I would also caution against making strong claims about identifiability although this work and TNDM seem to show that in practise such methods work quite well. CEBRA, in contrast, offers some theoretical guarantees, but it is not a generative model, so would not allow the type of analysis done in this paper. In your model there is a para,eter \alpha to balance between neural and behaviour reconstruction. This seems very similar to TNDM and has to be optimised - if this is correct, then there is manual intervention required to identify a good model.

      Somewhat related, I also found that the now comprehensive comparison with related models shows that the using decoding performance (R2) as a metric for model comparison may be problematic: the R2 values reported in Figure 2 (e.g. the MC_RTT dataset) should be compared to the values reported in the neural latent benchmark, which represent well-tuned models (e.g. AutoLFADS). The numbers (difficult to see, a table with numbers in the appendix would be useful, see: https://eval.ai/web/challenges/challenge-page/1256/leaderboard) seem lower than what can be obtained with models without latent space disentanglement. While this does not necessarily invalidate the conclusions drawn here, it shows that decoding performance can depend on a variety of model choices, and may not be ideal to discriminate between models. I'm also surprised by the low neural R2 for LFADS I assume this is condition-averaged) - LFADS tends to perform very well on this metric.

      One statement I still cannot follow is how the prior of the variational distribution is modelled. You say you depart from the usual Gaussian prior, but equation 7 seems to suggest there is a normal prior. Are the parameters of this distribution learned? As I pointed out earlier, I however suspect this may not matter much as you give the prior a very low weight. I also still am not sure how you generate a sample from the variational distribution, do you just draw one for each pass?

      Summary:

      This paper presents a very interesting analysis, but some concerns remain that mainly stem from the complexity of deep learning models. It would be good to acknowledge these as readers without relevant background need to understand where the possible caveats are.

    2. Reviewer #2 (Public Review):

      Li et al present a method to extract "behaviorally relevant" signals from neural activity. The method is meant to solve a problem which likely has high utility for neuroscience researchers. There are numerous existing methods to achieve this goal some of which the authors compare their method to-thankfully, the revised version includes one of the major previous omissions (TNDM). However, I still believe that d-VAE is a promising approach that has its own advantages. Still, I have issues with the paper as-is. The authors have made relatively few modifications to the text based on my previous comments, and the responses have largely just dismissed my feedback and restated claims from the paper. Nearly all of my previous comments remain relevant for this revised manuscript. As such, they have done little to assuage my concerns, the most important of which I will restate here using the labels/notation (Q1, Q2, etc) from the reviewer response.

      (Q1) I still remain unconvinced that the core findings of the paper are "unexpected". In the response to my previous Specific Comment #1, they say "We use the term 'unexpected' due to the disparity between our findings and the prior understanding concerning neural encoding and decoding." However, they provide no citations or grounding for why they make those claims. What prior understanding makes it unexpected that encoding is more complex than decoding given the entropy, sparseness, and high dimensionality of neural signals (the "encoding") compared to the smoothness and low dimensionality of typical behavioural signals (the "decoding")?

      (Q2) I still take issue with the premise that signals in the brain are "irrelevant" simply because they do not correlate with a fixed temporal lag with a particular behavioural feature hand-chosen by the experimenter. In the response to my previous review, the authors say "we employ terms like 'behaviorally-relevant' and 'behaviorally-irrelevant' only regarding behavioral variables of interest measured within a given task, such as arm kinematics during a motor control task.". This is just a restatement of their definition, not a response to my concern, and does not address my concern that the method requires a fixed temporal lag and continual decoding/encoding. My example of reward signals remains. There is a huge body of literature dating back to the 70s on the linear relationships between neural and activity and arm kinematics; in a sense, the authors have chosen the "variable of interest" that proves their point. This all ties back to the previous comment: this is mostly expected, not unexpected, when relating apparently-stochastic, discrete action potential events to smoothly varying limb kinematics.

      (Q5) The authors seem to have missed the spirit of my critique: to say "linear readout is performed in motor cortex" is an over-interpretation of what their model can show.

      (Q7) Agreeing with my critique is not sufficient; please provide the data or simulations that provides the context for the reference in the fano factor. I believe my critique is still valid.

      (Q8) Thank you for comparing to TNDM, it's a useful benchmark.

    3. Reviewer #4 (Public Review):

      I am a new reviewer for this manuscript, which has been reviewed before. The authors provide a variational autoencoder that has three objectives in the loss: linear reconstruction of behavior from embeddings, reconstruction of neural data, and KL divergence term related to the variational model elements. They take the output of the VAE as the "behaviorally relevant" part of neural data and call the residual "behaviorally irrelevant". Results aim to inspect the linear versus nonlinear behavior decoding using the original raw neural data versus the inferred behaviorally relevant and irrelevant parts of the signal.

      Overall, studying neural computations that are behaviorally relevant or not is an important problem, which several previous studies have explored (for example PSID in (Sani et al. 2021), TNDM in (Hurwitz et al. 2021), TAME-GP in (Balzani et al. 2023), pi-VAE in (Zhou and Wei 2020), and dPCA in (Kobak et al. 2016), etc). However, this manuscript does not properly put their work in the context of such prior works. For example, the abstract states "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive", which is not the case given that these prior works have done that. The same is true for various claims in the main text, for example "Furthermore, we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that using raw signals to estimate the neural dimensionality of behaviors leads to an overestimation" (line 321). This finding was presented in (Sani et al. 2021) and (Hurwitz et al. 2021), which is not clarified here. This issue of putting the work in context has been brought up by other reviewers previously but seems to remain largely unaddressed. The introduction is inaccurate also in that it mixes up methods that were designed for separation of behaviorally relevant information with those that are unsupervised and do not aim to do so (e.g., LFADS). The introduction should be significantly revised to explicitly discuss prior models/works that specifically formulated this behavior separation and what these prior studies found, and how this study differs.

      Beyond the above, some of the main claims/conclusions made by the manuscript are not properly supported by the analyses and results, which has also been brought up by other reviewers but not fully addressed. First, the analyses here do not support the linear readout from the motor cortex because i) by construction, the VAE here is trained to have a linear readout from its embedding in its loss, which can bias its outputs toward doing well with a linear decoder/readout, and ii) the overall mapping from neural data to behavior includes both the VAE and the linear readout and thus is always nonlinear (even when a linear Kalman filter is used for decoding). This claim is also vague as there is no definition of readout from "motor cortex" or what it means. Why is the readout from the bottleneck of this particular VAE the readout of motor cortex? Second, other claims about properties of individual neurons are also confounded because the VAE is a population-level model that extracts the bottleneck from all neurons. Thus, information can leak from any set of neurons to other sets of neurons during the inference of behaviorally relevant parts of signals. Overall, the results do not convincingly support the claims, and thus the claims should be carefully revised and significantly tempered to avoid misinterpretation by readers.

      Below I briefly expand on these as well as other issues, and provide suggestions:

      (1) Claims about linearity of "motor cortex" readout are not supported by results yet stated even in the abstract. Instead, what the results support is that for decoding behavior from the output of the dVAE model -- that is trained specifically to have a linear behavior readout from its embedding -- a nonlinear readout does not help. This result can be biased by the very construction of the dVAE's loss that encourages a linear readout/decoding from embeddings and thus does not imply a finding about motor cortex.

      (2) Related to the above, it is unclear what the manuscript means by readout from motor cortex. A clearer definition of "readout" (a mapping from what to what?) in general is needed. The mapping that the linearity/nonlinearity claims refer to is from the *inferred* behaviorally relevant neural signals, which themselves are inferred nonlinearly using the VAE. This should be explicitly clarified in all claims, i.e., that only the mapping from distilled signals to behavior is linear, not the whole mapping from neural data to behavior. Again, to say the readout from motor cortex is linear is not supported, including in the abstract.

      (3) Claims about individual neurons are also confounded. The d-VAE distilling processing is a population level embedding so the individual distilled neurons are not obtainable on their own without using the population data. This population level approach also raises the possibility that information can leak from one neuron to another during distillation, which is indeed what the authors hope would recover true information about individual neurons that wasn't there in the recording (the pixel denoising example). The authors acknowledge the possibility that information could leak to a neuron that didn't truly have that information and try to rule it out to some extent with some simulations and by comparing the distilled behaviorally relevant signals to the original neural signals. But ultimately, the distilled signals are different enough from the original signals to substantially improve decoding of low information neurons, and one cannot be sure if all of the information in distilled signals from any individual neuron truly belongs to that neuron. It is still quite likely that some of the improved behavior prediction of the distilled version of low-information neurons is due to leakage of behaviorally relevant information from other neurons, not the former's inherent behavioral information. This should be explicitly acknowledged in the manuscript.

      (4) Given the nuances involved in appropriate comparisons across methods and since two of the datasets are public, the authors should provide their complete code (not just the dVAE method code), including the code for data loading, data preprocessing, model fitting and model evaluation for all methods and public datasets. This will alleviate concerns and allow readers to confirm conclusions (e.g., figure 2) for themselves down the line.

      (5) Related to 1) above, the authors should explore the results if the affine network h(.) (from embedding to behavior) was replaced with a nonlinear ANN. Perhaps linear decoders would no longer be as close to nonlinear decoders. Regardless, the claim of linearity should be revised as described in 1) and 2) above, and all caveats should be discussed.

      (6) The beginning of the section on the "smaller R2 neurons" should clearly define what R2 is being discussed. Based on the response to previous reviewers, this R2 "signifies the proportion of neuronal activity variance explained by the linear encoding model, calculated using raw signals". This should be mentioned and made clear in the main text whenever this R2 is referred to.

      (7) Various terms require clear definitions. The authors sometimes use vague terminology (e.g., "useless") without a clear definition. Similarly, discussions regarding dimensionality could benefit from more precise definitions. How is neural dimensionality defined? For example, how is "neural dimensionality of specific behaviors" (line 590) defined? Related to this, I agree with Reviewer 2 that a clear definition of irrelevant should be mentioned that clarifies that relevance is roughly taken as "correlated or predictive with a fixed time lag". The analyses do not explore relevance with arbitrary time lags between neural and behavior data.

      (8) CEBRA itself doesn't provide a neural reconstruction from its embeddings, but one could obtain one via a regression from extracted CEBRA embeddings to neural data. In addition to decoding results of CEBRA (figure S3), the neural reconstruction of CEBRA should be computed and CEBRA should be added to Figure 2 to see how the behaviorally relevant and irrelevant signals from CEBRA compare to other methods.

      References:

      Kobak, Dmitry, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepecs, Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens. 2016. "Demixed Principal Component Analysis of Neural Population Data." Edited by Mark CW van Rossum. eLife 5 (April): e10989. https://doi.org/10.7554/eLife.10989.

      Sani, Omid G., Hamidreza Abbaspourazad, Yan T. Wong, Bijan Pesaran, and Maryam M. Shanechi. 2021. "Modeling Behaviorally Relevant Neural Dynamics Enabled by Preferential Subspace Identification." Nature Neuroscience 24 (1): 140-49. https://doi.org/10.1038/s41593-020-00733-0.

      Zhou, Ding, and Xue-Xin Wei. 2020. "Learning Identifiable and Interpretable Latent Models of High-Dimensional Neural Activity Using Pi-VAE." In Advances in Neural Information Processing Systems, 33:7234-47. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html.

      Hurwitz, Cole, Akash Srivastava, Kai Xu, Justin Jude, Matthew Perich, Lee Miller, and Matthias Hennig. 2021. "Targeted Neural Dynamical Modeling." In Advances in Neural Information Processing Systems. Vol. 34. https://proceedings.neurips.cc/paper/2021/hash/f5cfbc876972bd0d031c8abc37344c28-Abstract.html.

      Balzani, Edoardo, Jean-Paul G. Noel, Pedro Herrero-Vidal, Dora E. Angelaki, and Cristina Savin. 2023. "A Probabilistic Framework for Task-Aligned Intra- and Inter-Area Neural Manifold Estimation." In . https://openreview.net/forum?id=kt-dcBQcSA.

    1. Reviewer #1 (Public Review):

      This study explored the relationship between sustained attention and substance use from ages 14 to 23 in a large longitudinal dataset. They found behaviour and brain connectivity associated with poorer sustained attention at age 14 predicted subsequent increase in cannabis and cigarette smoking from ages 14-23. They concluded that the brain network of sustained attention is a robust biomarker for vulnerability to substance use. The big strength of the study is a substantial sample size and validation of the generalization to an external dataset. In addition, various methods/models were used to prove the relationship between sustained attention and substance use over time.

    2. Reviewer #2 (Public Review):

      Weng and colleagues investigated the relationship between sustained attention and substance use in a large cohort across three longitudinal visits (ages 14, 19, and 23). They employed a stop signal task to assess sustained attention and utilized the Timeline Followback self-report questionnaire to measure substance use. They assessed the linear relationship between sustained attention-associated functional connections and substance use at an earlier visit (age 14 or 19). Subsequently, they utilized this relationship along with the functional connection profile at a later age (age 19 or 23) to predict substance use at those respective ages. The authors found that connections in association with reduced sustained attention predicted subsequent increases in substance use, a conclusion validated in an external dataset. Altogether, the authors suggest that sustained attention could serve as a robust biomarker for predicting future substance use.

      This study by Weng and colleagues focused on an important topic of substance use prediction in adolescence/early adulthood.

    3. Reviewer #3 (Public Review):

      Summary:

      Weng and colleagues investigated the association between attention-related connectivity and substance use. They conducted a study with a sizable sample of over 1,000 participants, collecting longitudinal data at ages 14, 19, and 23. Their findings indicate that behaviors and brain connectivity linked to sustained attention at age 14 forecasted subsequent increases in cigarette and cannabis use from ages 14 to 23. However, early substance use did not predict future attention levels or attention-related connectivity strength.

      Strengths:

      The study's primary strength lies in its large sample size and longitudinal design spanning three time-points. A robust predictive analysis was employed, demonstrating that diminished sustained attention behavior and connectivity strength predict substance use, while early substance use does not forecast future attention-related behavior or connectivity strength.

      Weaknesses:

      It's questionable whether the prediction approach (i.e., CPM), even when combined with longitudinal data, can establish causality. I recommend removing the term 'consequence' in the abstract and replacing it with 'predict'. Additionally, the paper could benefit from enhanced rigor through additional analyses, such as testing various thresholds and conducting lagged effect analyses with covariate regression.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper by Schommartz and colleagues investigates the neural basis of memory reinstatement as a function of both how recently the memory was formed (recent, remote) and its development (children, young adults). The core question is whether memory consolidation processes as well as the specificity of memory reinstatement differ with development. A number of brain regions showed a greater activation difference for recent vs. remote memories at the long versus shorter delay specifically in adults (cerebellum, parahippocampal gyrus, LOC). A different set showed decreases in the same comparison, but only in children (precuneus, RSC). The authors also used neural pattern similarity analysis to characterize reinstatement, though still in this revised paper I have substantive concerns about how the analyses were performed. While scene-specific reinstatement decreased for remote memories in both children and adults, claims about its presence cannot be made given the analyses. Gist-level reinstatement was observed in children but not adults, but I also have concerns about this analysis. Broadly, the behavioural and univariate findings are consistent with the idea memory consolidation differs between children and adults in important ways, and takes a step towards characterizing how.

      Strengths:

      The topic and goals of this paper are very interesting. As the authors note, there is little work on memory consolidation over development, and as such this will be an important data point in helping us begin to understand these important differences. The sample size is great, particularly given this is an onerous, multi-day experiment; the authors are to be commended for that. The task design is also generally well controlled, for example as the authors include new recently learned pairs during each session.

      Weaknesses:

      As noted above and in my review of the original submission, the pattern similarity analysis for both item and category-level reinstatement were performed in a way that is not interpretable given concerns about temporal autocorrelation within scanning run. Unfortunately these issues remain of concern in this revision because they were not rectified. Most of my review focuses on this analytic issue, though I also outline additional concerns.

      (1) The pattern similarity analyses are largely uninterpretable due to how they were performed.

      (a) First, the scene-specific reinstatement index: The authors have correlated a neural pattern during a fixation cross (delay period) with a neural pattern associated with viewing a scene as their measure of reinstatement. The main issue with this is that these events always occurred back-to-back in time. As such, the two patterns will be similar due simply to the temporal autocorrelation in the BOLD signal. Because of the issues with temporal autocorrelation within scanning run, it is always recommended to perform such correlations only across different runs. In this case, the authors always correlated patterns extracted from the same run, and which moreover have temporal lags that are perfectly confounded with their comparison of interest (i.e., from Fig 4A, the "scene-specific" comparisons will always be back-to-back, having a very short temporal lag; "set-based" comparisons will be dispersed across the run, and therefore have a much higher lag). The authors' within-run correlation approach also yields correlation values that are extremely high - much higher than would be expected if this analysis was done appropriately. The way to fix this would be to restrict the analysis to only cross-run comparisons, which is not possible given the design.

      To remedy this, in the revision the authors have said they will refrain from making conclusions about the presence of scene-specific reinstatement (i.e., reinstatement above baseline). While this itself is an improvement from the original manuscript, I still have several concerns. First, this was not done thoroughly and at times conclusions/interpretations still seem to imply or assume the presence of scene reinstatement (e.g., line 979-985, "our research supports the presence of scene-specific reinstatement in 5-to-7-year-old children"; line 1138). Second, the authors' logic for the neural-behavioural correlations in the PLSC analysis involved restricting to regions that showed significant reinstatement for the gist analysis, which cannot be done for the analogous scene-specific reinstatement analysis. This makes it challenging to directly compare these two analyses since one was restricted to a small subset of regions and only children (gist), while scene reinstatement included both groups and all ROIs. Third, it is also unclear whether children and adults' values should be directly comparable given pattern similarity can be influenced by many factors like motion, among other things.

      My fourth concern with this analysis relates to the lack of regional specificity of the effects. All ROIs tested showed a virtually identical pattern: "Scene-specific reinstatement" decreased across delays, and was greater in children than adults. I believe control analyses are needed to ensure artifacts are not driving these effects. This would greatly strengthen the authors' ability to draw conclusions from the "clean" comparison of day 1 vs. day 14. (A) The authors should present results from a control ROI that should absolutely not show memory reinstatement effects (e.g., white matter?). Results from the control ROI should look very different - should not differ between children and adults, and should not show decreases over time. (B) Do the recent items from day 1 vs. day 14 differ? If so, this could suggest something is different about the later scans (and if not, it would be reassuring). (C) If the same analysis was performed comparing the object cue and immediately following fixation (rather than the fixation and the immediately following scene), the results should look very different. I would argue that this should not be an index of reinstatement at all since it involves something presented visually rather than something reinstated (i.e., the scene picture is not included in this comparison). If this control analysis were to show the same effects as the primary analysis, this would be further evidence that this analysis is uninterpretable and hopelessly confounded.

      (b) For the category-based neural reinstatement: (1) This suffers from the same issue of correlations being performed within run. Again, to correct this the authors would need to restrict comparisons to only across runs (i.e., patterns from run 1 correlated with patterns for run 2 and so on). The authors in their response letter have indicated that because the patterns being correlated are not derived from events in close temporal proximity, they should not suffer from the issue of temporal autocorrelation. This is simply not true. For example, see the paper by Prince et al. (eLife 2022; on GLMsingle). This is not the main point of Prince et al.'s paper, but it includes a nice figure that shows that, using standard modelling approaches, the correlation between (same-run) patterns can be artificially elevated for lags as long as ~120 seconds (and can even be artificially reduced after that; Figure 5 from that paper) between events. This would affect many of the comparisons in the present paper. The cleanest way to proceed is to simply drop the within-run comparisons, which I believe the authors can do and yet they have not. Relatedly, in the response letter the authors say they are focusing mainly on the change over time for reinstatement at both levels including the gist-type reinstatement; however, this is not how it is discussed in the paper. They in fact are mainly relying on differences from zero, as children show some "above baseline" reinstatement while adults do not, but I believe there were no significant differences over time (i.e., the findings the authors said they would lean on primarily, as they are arguably the most comparable). (2) This analysis uses a different approach of comparing fixations to one another, rather than fixations to scenes. In their response letter and the revised paper, the authors do provide a bit of reasoning as to why this is the most sensible. However, it is still not clear to me whether this is really "reinstatement" which (in my mind) entails the re-evoking of a neural pattern initially engaged during perception. Rather, could this be a shared neural state that is category specific? In any case, I think additional information should be added to the text to clarify that this definition differs from others in the literature. The authors might also consider using some term other than reinstatement. Again (as I noted in my prior review), the finding of no category-level reinstatement in adults is surprising and confusing given prior work and likely has to do with the operationalization of "reinstatement" here. I was not quite sure about the explanation provided in the response letter, as category-level reinstatement is quite widespread in the brain for adults and is robust to differences in analytic procedures etc. (3) Also from a theoretical standpoint-I'm still a bit confused as to why gist-based reinstatement would involve reinstatement of the scene gist, rather than the object's location (on the screen) gist. Were the locations on the screen similar across scene backgrounds from the same category? It seems like a different way to define memory retrieval here would be to compare the neural patterns when cued to retrieve the same vs. similar (at the "gist" level) vs. different locations across object-scene pairs. This is somewhat related to a point from my review of the initial version of this manuscript, about how scene reinstatement is not necessary. The authors state that participants were instructed to reinstate the scene, but that does not mean they were actually doing it. The point that what is being measured via the reinstatement analyses is actually not necessary to perform the task should be discussed in more detail in the paper.

      (2) Inspired by another reviewer's comment, it is unclear to me the extent to which age group differences can be attributed to differences in age/development versus memory strength. I liked the other reviewer's suggestions about how to identify and control for differences in memory strength, which I don't think the authors actually did in the revision. They instead showed evidence that memory strength does seem to be lower in children, which indicates this is an interpretive confound. For example, I liked the reviewer's suggestion of performing analyses on subsets of participants who were actually matched in initial learning/memory performance would have been very informative. As it is, the authors didn't really control for memory strength adequately in my opinion, and as such their conclusions about children vs. adults could have been reframed as people with weak vs. strong memories. This is obviously a big drawback given what the authors want to conclude. Relatedly, I'm not sure the DDM was incorporated as the reviewer was suggesting; at minimum I think the authors need to do more work in the paper to explain what this means and why it is relevant. (I understand putting it in the supplement rather than the main paper, but I still wanted to know more about what it added from an interpretive perspective.)

      (3) Some of the univariate results reporting is a bit strange, as they are relying upon differences between retrieval of 1- vs. 14-day memories in terms of the recent vs. report difference, and yet don't report whether the regions are differently active for recent and remote retrieval. For example in Figure 3A, neither anterior nor posterior hippocampus seem to be differentially active for recent vs. remote memories for either age group (i.e., all data is around 0). Precuneus also interestingly seems to show numerically recent>remote (values mostly negative), whereas most other regions show the opposite. This difference from zero (in either direction) or lack thereof seems important to the message. In response to this comment on the original manuscript, the authors seem to have confirmed that hippocampal activity was greater during retrieval than implicit baseline. But this was not really my question - I was asking whether hippocampus is (and other ROIs in this same figure are) differently engaged for recent vs. remote memories.

      (4) Related to point 3, the claims about hippocampus with respect to multiple trace theory feel very unsupported by the data. I believe the authors want to conclude that children's memory retrieval shows reliance on hippocampus irrespective of delay, presumably because this is a detailed memory task. However the authors have not really shown this; all they have shown is that hippocampal involvement (whatever it is) does not vary by delay. But we do not have compelling evidence that the hippocampus is involved in this task at all. That hippocampus is more active during retrieval than implicit baseline is a very low bar and does not necessarily indicate a role in memory retrieval. If the authors want to make this claim, more data are needed (e.g., showing that hippocampal activity during retrieval is higher when the upcoming memory retrieval is successful vs. unsuccessful). In the absence of this, I think all the claims about multiple trace theory supporting retrieval similarly across delays and that this is operational in children are inappropriate and should be removed.

      (5) There are still not enough methodological details in the main paper to make sense of the results. Some of these problems were addressed in the revision but others remain. For example, a couple of things that were unclear: that initially learned locations were split, where half were tested again at day 1 and the other half at day 14; what specific criterion was used to determine to pick the 'well-learned' associations that were used for comparisons at different delay periods (object-scene pairs that participants remembered accurately in the last repetition of learning? Or across all of learning?).

      (6) In still find the revised Introduction a bit unclear. I appreciated the added descriptions of different theories of consolidation, though the order of presented points is still a bit hard to follow. Some of the predictions I also find a bit confusing as laid out in the introduction. (1) As noted in the paper multiple trace theory predicts that hippocampal involvement will remain high provided memories retained are sufficiently high detail. The authors however also predict that children will rely more on gist (than detailed) memories than adults, which would seem to imply (combined with the MTT idea) that they should show reduced hippocampal involvement over time (while in adults, it should remain high). However, the authors' actual prediction is that hippocampus will show stable involvement over time in both kids and adults. I'm having a hard time reconciling these points. (2) With respect to the extraction of gist in children, I was confused by the link to Fuzzy Trace Theory given the children in the present study are a bit young to be showing the kind of gist extraction shown in the Brainerd & Reyna data. Would 5-7 year olds not be more likely to show reliance on verbatim traces under that framework? Also from a phrasing perspective, I was confused about whether gist-like information was something different from just gist in this sentence: "children may be more inclined to extract gist information at the expense of detailed or gist-like information." (p. 8) - is this a typo?

      (7) For the PLSC, if I understand this correctly, the profiles were defined for showing associations with behaviour across age groups. (1) As such, is it not "double dipping" to then show that there is an association between brain profile and behaviour-must this not be true by definition? If I am mistaken, it might be helpful to clarify this in the paper. (2) In addition, I believe for the univariate and scene-specific reinstatement analyses these profiles were defined across both age groups. I assume this doesn't allow for separate definition of profiles across the two group (i.e., a kind of "interaction"). If this is the case, it makes sense that there would not be big age differences... the profiles were defined for showing an association across all subjects. If the authors wanted to identify distinct profiles in children and adults they may need to run another analysis. (3) Also, as for differences between short delay brain profile and long delay brain profile for the scene-specific reinstatement - there are 2 regions that become significant at long delay that were not significant at a short delay (PC, and CE). However, given there are ceiling effects in behaviour at the long but not short delay, it's unclear if this is a meaningful difference or just a difference in sensitivity. Is there a way to test whether the profiles are statistically different from one another? (4) As I mentioned above, it also was not ideal in my opinion that all regions were included for the scene-specific reinstatement due to the authors' inability to have an appropriate baseline and therefore define above-chance reinstatement. It makes these findings really challenging to compare with the gist reinstatement ones.

      (8) I would encourage the authors to be specific about whether they are measuring/talking about memory representations versus reinstatement, unless they think these are the same thing (in which case some explanation as to why would be helpful). For example, especially under the Fuzzy Trace framework, couldn't someone maintain both verbatim and gist traces of a memory yet rely more on one when making a memory decision?

      (9) With respect to the learning criteria - it is misleading to say that "children needed between two to four learning-retrieval cycles to reach the criterion of 83% correct responses" (p. 9). Four was the maximum, and looking at the Figure 1C data it appears as though there were at least a few children who did not meet the 83% minimum. I believe they were included in the analysis anyway? Please clarify. Was there any minimum imposed for inclusion?

      (10) For the gist-like reinstatement PLSC analysis, results are really similar a short and long delays and yet some of the text seems to implying specificity to the long delay. One is a trend and one is significant (p. 31), but surely these two associations would not be statistically different from one another?

      (11) As a general comment, I had a hard time tying all of the (many) results together. For example adults show more mature neocortical consolidation-related engagement, which the authors say is going to create more durable detailed memories, but under multiple trace theory we would generally think of neocortical representations as providing more schematic information. If the authors could try to make more connections across the different neural analyses, as well as tie the neural findings in more closely with the behaviour & back to the theoretical frameworks, that would be really helpful.

    2. Reviewer #2 (Public Review):

      Schommartz et al. present a manuscript characterizing neural signatures of reinstatement during cued retrieval of middle-aged children compared to adults. The authors utilize a paradigm where participants learn the spatial location of semantically related item-scene memoranda which they retrieve after short or long delays. The paradigm is especially strong as the authors include novel memoranda at each delayed time point to make comparisons across new and old learning. In brief, the authors find that children show more forgetting than adults, and adults show greater engagement of cortical networks after longer delays as well as stronger item-specific reinstatement. Interestingly, children show more category-based reinstatement, however, evidence supports that this marker may be maladaptive for retrieving episodic details. The question is extremely timely both given the boom in neurocognitive research on the neural development of memory, and the dearth of research on consolidation in this age group. Also, the results provide novel insights into why consolidation processes may be disrupted in children.

    1. Reviewer #1 (Public Review):

      Summary:

      This work by Passlick and colleagues set out to reveal the mechanism by which short bouts of ischemia perturb glutamate signalling. This manuscript builds upon previous work in the field that reported a paradoxical increase in synaptic transmission following acute, transient ischemia termed ischemic or anoxic long-term potentiation. Despite these observations how this occurs and the involvement of glutamate release and uptake mechanisms remained unanswered.

      Here the authors employed two distinct chemical ischemia models, one lasting 2-minutes, the other 5-minutes. Recording evoked field excitatory postsynaptic potentials in acute brain slices, the authors revealed that shorter bouts of ischemia resulted in a transient decrease in postsynaptic responses followed by an overshoot and long-term potentiation. Longer bouts of chemical ischemia (5-minutes), however, resulted in synaptic failure that did not return to baseline levels over 50-minutes of recording (Figure 1).

      Two-photon Imaging of fluorescent glutamate sensor iGluSnFR expressed in astrocytes matched postsynaptic responses with shorter ischemia resulting in a transient dip before increase in extracellular glutamate which was not the case with prolonged ischemia (Figure 2).

      Mechanistically, the authors show that this increased glutamate levels and postsynaptic responses were not due to changes in glutamate clearance (Figure 3). Next using a competitive antagonist for postsynaptic AMPA receptors the authors show that synaptic glutamate release was enhanced by 2-minute chemical ischemia.

      Taken together, these data reveal the underlying mechanism regarding ischemic long-term potentiation, highlighting presynaptic release as the primary culprit. Additionally, the authors show relative insensitivity of glutamate uptake mechanisms during ischemia, highlighting the resilience of astrocytes to this metabolic challenge.

    2. Reviewer #2 (Public Review):

      Summary:

      To investigate the impact of chemical ischemia induced by blocking mitochondrial function and glycolysis, the authors measured extracellular field potentials, performed whole-cell patch-clamp recordings, and measured glutamate release with optical techniques. They found that shorter two-minutes-lasting blockade of energy production initially blocked synaptic transmission but subsequently caused a potentiation of synaptic transmission due to increased glutamate release. In contrast, longer five-minutes-lasting blockage of energy production caused a sustained decrease of synaptic transmission. A correlation between the increase of extracellular potassium concentration and the response upon chemical ischemia indicates that the severity of the ischemia determines whether synapses potentiate or depress upon chemical ischemia. A subsequent mechanistic analysis revealed that the speed of uptake of glutamate is unchanged. An increase in the duration of the fiber volley reflecting the extracellular voltage of the action potentials of the axon bundle was interpreted as an action potential broadening, which could provide mechanistic explanation. In summary, the data convincingly demonstrate that synaptic potentiation induced by chemical ischemia is caused by increased glutamate release.

      Strengths:

      The manuscript is well written, and the experiments are carefully designed. The results are exciting, novel, and important for the field. The main strength of the manuscript is the combination of electrophysiological recordings and optical glutamate imaging. The main conclusion of increased glutamate release was furthermore supported with an independent approach relying on a low-affinity competitive antagonist of glutamate receptors. The data are of exceptional quality. Several important controls were carefully performed, such as the stability of the recordings and the size of the extracellular space. The number of experiments are sufficient for the conclusions. The careful data analysis justifies the classification of two types of responses, namely synaptic potentiation and depression after chemical ischemia. The data are carefully discussed and the conclusions are justified.

      Weaknesses:

      The weaknesses are minor. The authors measured the fiber volley, which reflects the extracellular voltage of the compound action potential of the fiber bundle. The half-duration of the fiber volley was increased. These results are consistent with action potential broadening in the axons but the action potential broadening was not experimentally demonstrated. However, these results are carefully discussed.

    3. Reviewer #3 (Public Review):

      Summary:

      This valuable study shows that shorter episodes (2min duration) of energy depletion, as it occurs in ischemia, could lead to long lasting dysregulation of synaptic transmission with presynaptic alterations of glutamate release at the CA3-CA1 synapses. A longer duration of chemical ischemia (5 min) permanently suppresses synaptic transmission. By using electrophysiological approaches, including field and patch clamp recordings, combined to imaging studies, the authors demonstrated that 2 min of chemical ischemia leads to a prolonged potentiation of synaptic activity with a long lasting increase of glutamate release from presynaptic terminals. This was observed as an increase in iGluSnFR fluorescence, a sensor for glutamate expressed selectively on hippocampal astrocytes by viral injection. The increase in iGluSnFR fluorescence upon 2 min chemical ischemia could not be ascribed to an altered glutamate uptake, which is unaffected by both 2 min and 5 min chemical ischemia. The presynaptic increase in glutamate release upon short episodes of chemical ischemia is confirmed by a reduced inhibitory effect of the competitive antagonist gamma-D-glutamylglycine on AMPA receptor mediated postsynaptic responses. Fiber volley durations in field recording are prolonged in slices exposed to 2 min chemical ischemia. The authors interpret this data as an indication that the increase in glutamate release could be ascribed to a prolongation of the presynaptic action potential possibly due to inactivation of voltage-dependent K+ channels. However, more direct evidence are needed to fully support this hypothesis. This research highlights an important mechanism by which altered ionic homeostasis underlying metabolic failure can impact on neuronal activity. Moreover, it also showed a different vulnerability of mechanisms involved in glutamatergic transmission with a marked resilience of glutamate uptake to chemical ischemia.

      Strengths:

      (1) The authors use a variety of experimental techniques ranging from electrophysiology to imaging to study the contribution of several mechanisms underlying the effect of chemical ischemia on synaptic transmission.<br /> (2) The experiments are appropriately designed and clearly described in the figures and in the text.<br /> (3) The controls are appropriate

      Weaknesses:<br /> - The results are obtained in an ex-vivo preparation

      Impact:

      This study provides a more comprehensive view of the long term effects of energy depletion during short episodes of experimental ischemia leading to the notion that not only post-synaptic changes, as reported by others, but also presynaptic changes are responsible for long-lasting modification of synaptic transmission. Interestingly, the direction of synaptic changes is bidirectional and dependent on the duration of chemical ischemia, indicating that different mechanisms involved in synaptic transmission are differently affected by energy depletion.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript describes the crystallographic screening of a number of small molecules derived from the natural substrates S-adenosyl methionine (SAM) and adenine, against the SARS-CoV-2 2'-O-methyltransferase NSP16 in complex with its partner NSP10. High-quality structures for several of these are presented together with efforts to evaluate their potential biophysical binding and antiviral activities. The structures are of high quality and the data are well presented but do not yet show potency in biophysical binding. They only offer limited insights into the design of inhibitors of NSP16/10.

      Strengths:

      The main strengths of the study are the high quality of the structural data, and associated electron density maps making the structural data highly accurate and informative for future structure-based design. These results are clearly presented and communicated in the manuscript. Another strength is the authors' attempts to probe the binding of the identified fragments using biophysical assays. Although in general the outcome of these experiments shows negative data or very weak binding affinities the authors should be commended for attempting several techniques and showing the data clearly. This study is also useful as an example of the complexities associated with drug discovery on a bi-substrate target such as a methyltransferase, several of the observed binding poises were unexpected with compounds that are relatively similar to substrates binding in different parts of the active site or other unexpected orientations. This serves as an example of how experimental structural information is still of crucial importance to structure-based drug design. In general, the claims in the manuscript are well supported by the data.

      Weaknesses:

      The main limitations of the study are that the new structures generated in the study are fairly limited in terms of chemical space being similar to either SAM or RNA-CAP analogues. It feels a little bit of a lost opportunity to expand this to more diverse ligands which may reveal potential inhibitors that are distinct from current methyltransferase inhibitors based on SAM analogues and truly allow a selective targeting of this important target.

      Another limitation is the potentially misleading nature of the antiviral assays. It is not possible to say if these compounds display on-target activity in these assays or even if the inhibition of NSP16/10 would have any effect in these assays. Whilst the authors do mention these points I think this should be emphasized more strongly.

      Minor critical points:

      The authors state that their crystals and protein preps have co-purified SAM occupying the active site of the crystals. Presumably, this complicates the interpretation of electron density maps as many of the ligands share overlap with the existing SAM density making traditional analysis of difference maps challenging. The authors did not utilize the PanDDA analysis for this step, perhaps this is related to the presence of SAM in the ground state datasets? Also, occupancies are reported in the manuscript in some cases to two significant figures, this seems to be an overestimation of the ability of refinement to determine occupancy based on density alone and the authors should clarify how these figures were reached.

      The molecular docking approach to pre-selection of library compounds to soak did not appear to be successful. Could the authors make any observations about the compounds selected by docking or the docking approach used that may explain this?

    2. Reviewer #2 (Public Review):

      Summary:

      The study by Kremling et al. describes a study of the nsp16-nsp10 methyl transferase from SARS CoV-2 protein which is aimed at identifying inhibitors by x-ray crystallography-based compound screening.<br /> A set of 234 compounds were screened resulting in a set of adenosine-containing compounds or analogues thereof that bind in the SAM site of nsp16-nsp10. The compound selection was mainly based on similarity to SAM and docking of commercially available libraries. The resulting structures are of good quality and clearly show the binding mode of the compounds. It is not surprising to find that these compounds bind in the SAM pocket since they are structurally very similar to portions of SAM. Nevertheless, the result is novel and may be inspirational for the future design of inhibitors. Following up on the crystallographic screen the identified compounds were tested for antiviral activity and binding to np16-nsp10. In addition, an analysis of similar binding sites was presented.

      Strengths:

      The crystallography is solid and the structures are of good quality. The compound binding constitutes a novel finding.

      Weaknesses:

      The major weakness is the mismatch between antiviral activity and binding to the target protein. Only one of the compounds could be demonstrated to bind to the nsp16-nsp10 protein. By performing a displacement experiment using ITC Sangivamycin is concluded to bind with a Kd > 1mM. However, the same compound displays antiviral activity with an EC50 of 0.01 microM. Even though the authors do not make specific claims that the antiviral effect is due to inhibition of nsp16-nsp10, it is implicit. If the data is included, it should state specifically that the effect is not likely due to nsp16-nsp10 inhibition.

      The structure of the paper and the language needs quite a lot of work to bring it to the expected quality.

      Technical point:

      Refinement of crystallographic occupancies to single digit percentage is not normally supported by electron density.

    1. Reviewer #1 (Public Review):

      The comments below are from my review of the first submission of this article. I would now like to thank the authors for their hard work in responding to my comments. I am happy with the changes they have made, in particular the inclusion of further experimental evidence in Figures 2 and 4. I have no further comments to make.

      In 'Systems analysis of miR-199a/b-5p and multiple miR-199a/b-5p targets during chondrogenesis', Patel et al. present a variety of analyses using different methodologies to investigate the importance of two miRNAs in regulating gene expression in a cellular model of cartilage development. They first re-analysed existing data to identify these miRNAs as one of the most dynamic across a chondrogenesis development timecourse. Next, they manipulated the expression of these miRNAs and showed that this affected the expression of various marker genes as expected. An RNA-seq experiment on these manipulations identified putative mRNA targets of the miRNAs which were also supported by bioinformatics predictions. These top hits were validated experimentally and, finally, a kinetic model was developed to demonstrate the relationship between the miRNAs and mRNAs studied throughout the paper.

      I am convinced that the novel relationships reported here between miR-199a/b-5p and target genes FZD6, ITGA3 and CAV1 are likely to be genuine. It is important for researchers working on this system and related diseases to know all the miRNA/mRNA relationships but, as the authors have already published work studying the most dynamic miRNA (miR-140-5p) in this biological system I was not convinced that this study of the second miRNA in their list provided a conceptual advance on their previous work.

      I was also concerned with the lack of reporting of details of the manipulation experiments. The authors state that they have over-expressed miR-199a-5p (Figure 2A) and knocked down miR-199b-5p (Figure 2B) but they should have reported their proof that these experiments had worked as predicted, e.g. showing the qRT-PCR change in miRNA expression. Similarly, I was concerned that one miRNA was over-expressed while the other was knocked down - why did the authors not attempt to manipulate both miRNAs in both directions? Were they unable to achieve a significant change in miRNA expression or did these experiments not confirm the results reported in the manuscript?

      I had a number of issues with the way in which some of the data is presented. Table 1 only reported whether a specific pathway was significant or not for a given differential expression analysis but this concealed the extent of this enrichment or the level of statistical significance reported. Could it be redrawn to more similarly match the format of Figure 3A? The various shades of grey in Figure 2 and Figure 4 made it impossible to discriminate between treatments and therefore identify whether these data supported the conclusions made in the text. It also appeared that the same results were reported in Figure 3B and 3C and, indeed, Figure 3B was not referred to in the main text. Perhaps this figure could be made more concise by removing one of these two sets of panels?

      Overall, while I think that this is an interesting and valuable paper, I think its findings are relatively limited to those interested in the role of miRNAs in this specific biomedical context.

    1. Reviewer #1 (Public Review):

      Summary:

      PPARgamma is a nuclear receptor that binds to orthosteric ligands to coordinate transcriptional programs that are critical for adipocyte biogenesis and insulin sensitivity. Consequently, it is a critical therapeutic target for many diseases, but especially diabetes. The malleable nature and promiscuity of the PPARgamma orthosteric ligand binding pocket have confounded the development of improved therapeutic modulators. Covalent inhibitors have been developed but they show unanticipated mechanisms of action depending on which orthosteric ligands are present. In this work, Shang and Kojetin present a compelling and comprehensive structural, biochemical, and biophysical analysis that shows how covalent and noncovalent ligands can co-occupy the PPARgamma ligand binding pocket to elicit distinctive preferences of coactivator and corepressor proteins. Importantly, this work shows how the covalent inhibitors GW9662 and T0070907 may be unreliable tools as pan-PPARgamma inhibitors despite their widespread use.

      Strengths:

      - Highly detailed structure and functional analyses provide a comprehensive structure-based hypothesis for the relationship between PPARgamma ligand binding domain co-occupancy and allosteric mechanisms of action.<br /> - Multiple orthogonal approaches are used to provide high-resolution information on ligand binding poses and protein dynamics.<br /> - The large number of x-ray crystal structures solved for this manuscript should be applauded along with their rigorous validation and interpretation.

      Weaknesses

      - Inclusion of statistical analysis is missing in several places in the text.<br /> - Functional analysis beyond coregulator binding is needed.

    2. Reviewer #2 (Public Review):

      Summary:

      The flexibility of the ligand binding domain (LBD) of NRs allows various modes of ligand binding leading to various cellular outcomes. In the case of PPARγ, it's known that two ligands can co-bind to the receptor. However, whether a covalent inhibitor functions by blocking the binding of a non-covalent ligand, or co-bind in a manner that weakens the binding of a non-covalent ligand remains unclear. In this study, the authors first used TR-FRET and NMR to demonstrate that covalent inhibitors (such as GW9662 and T0070907) weaken but do not prevent non-covalent synthetic ligands from binding, likely via an allosteric mechanism. The AF-2 helix can exchange between active and repressive conformations, and covalent inhibitors shift the conformation toward a transcriptionally repressive one to reduce the orthosteric binding of the non-covalent ligands. By co-crystal studies, the authors further reveal the structural details of various non-covalent ligand binding mechanisms in a ligand-specific manner (e.g., an alternate binding site, or a new orthosteric binding mode by alerting covalent ligand binding pose).

      Strengths:

      The biochemical and biophysical evidence presented is strong and convincing.

      Weaknesses:

      However, the co-crystal studies were performed by soaking non-covalent ligands to LBD pre-crystalized with a covalent inhibitor. Since the covalent inhibitors would shift the LBD toward transcriptionally repressive conformation which reduces orthosteric binding of non-covalent ligands, if the sequence was reversed (i.e., soaking a covalent inhibitor to LBD pre-crystalized with a non-covalent ligand), would a similar conclusion be drawn? Additional discussion will broaden the implications of the conclusion.

    1. Reviewer #1 (Public Review):

      This is a fantastic, comprehensive, timely, and landmark pan-species work that demonstrates the convergence of multiple familial PD mutations onto a synaptic program. It is extremely well written and I have only a few comments that do not require additional data collection.

      Major Comments:

      (1) In the functional experiments performing calcium imaging on projection neurons I could not find a count of cell bodies across conditions. Since the loss of OPNs could explain the reduced calcium signal, this is a critical control to perform. A differential abundance test on the single-cell data would also suffice here and be easy for the authors to perform with their existing data.

      (2) One of the authors' conclusions is that cholinergic neurons and the olfactory system are acutely impacted by these PD mutations. However, I wonder if this is the case:<br /> a. Most Drosophila excitatory neurons are cholinergic and only a subpopulation appear to be dysregulated by these mutations. The authors point out that visual neurons also have many DEGs, couldn't the visual system also be dysregulated in these flies? Is there something special about these cholinergic neurons versus other cholinergic neurons in the fly brain? I wonder if they can leverage their nice dataset to say something about vulnerability.<br /> b. As far as I can tell, the cross-species analysis of DEGs (Figure 3) is agnostic to neuronal cell type, although the conclusion seems to suggest only cholinergic neurons were contrasted. Is this correct? Could you please clarify this in the text as it's an important detail. If not, Have the authors tried comparing only cholinergic neuron DEGs across species? That would lend strength to their specificity argument. The results for the NBM are impressive. Could the authors add more detail to the main text here about other regions to the main text?<br /> c. Uniquely within the human data, are cholinergic neurons more dysregulated than others? I understand this is not an early timepoint but would still be useful to discuss.<br /> d. In the discussion, the authors say that olfactory neurons are uniquely poised to be dysregulated as they are large and have high activity. Is this really true compared to other circuits? I didn't find the references convincing and I am not sure this has been borne out in electron microscopy reconstructions for anatomy.

    2. Reviewer #2 (Public Review):

      Summary:

      Pech et al selected 5 Parkinson's disease-causing genes, and generated multiple Drosophila lines by replacing the Drosophila lrrk, rab39, auxilin (aux), synaptojanin (synj), and Pink1 genes with wild-type and pathogenic mutant human or Drosophila cDNA sequences. First, the authors performed a panel of assays to characterize the phenotypes of the models mentioned above. Next, by using single-cell RNA-seq and comparing fly data with human postmortem tissue data, the authors identified multiple cell clusters being commonly dysregulated in these models, highlighting the olfactory projection neurons. Next, by using selective expression of Ca2+-sensor GCaMP3 in the OPN, the authors confirmed the synaptic impairment in these models, which was further strengthened by olfactory performance defects.

      Strengths:

      The authors overall investigated the functionality of PD-related mutations at endogenous levels and found a very interesting shared pathway through single-cell analysis, more importantly, they performed nice follow-up work using multiple assays.

      Weaknesses:

      While the authors state this is a new collection of five familial PD knock-in models, the AuxR927G model has been published and carefully characterized in Jacquemyn et al., 2023. ERG has been performed for Aux R927G in Jacquemyn et al., 2023, but the findings are different from what's shown in Figure 1b and Supplementary Figure 1d, which the authors should try to explain. Moreover, according to the authors, the hPINK1control was the expression of human PINK1 with UAS-hPINK1 and nsyb-Gal4 due to technical obstacles.  Having PINK1 WT being an overexpression model, makes it difficult to explain PINK1 mutant phenotypes. It will be strengthened if the authors use UAS-hPINK1 and nsyb-Gal4 (or maybe ubiquitous Gal4) to rescue hPink1L347P and hPink1P399L phenotypes. In addition, although the authors picked these models targeting different biology/ pathways, however, Aux and Synj both act in related steps of Clathrin-mediated endocytosis, with LRRK2 being their accessory regulatory proteins. Therefore, is the data set more favorable in identifying synaptic-related defects?

      GH146-GAL4+ PNs are derived from three neuroblast lineages, producing both cholinergic and GABAergic inhibitory PNs (Li et al, 2017). Therefore, OPN neurons have more than "cholinergic projection neurons". How do we know from single-cell data that cholinergic neurons were more vulnerable across 5 models?

      In Figure 1b, the authors assumed that locomotion defects were caused by dopaminergic neuron dysfunction. However, to better support it, the author should perform rescue experiments using dopaminergic neuron-specific Gal4 drivers. Otherwise, the authors may consider staining DA neurons and performing cell counting. Furthermore, the authors stated in the discussion, that "We now place cholinergic failure firmly ahead of dopaminergic system failure in flies", which feels rushed and insufficient to draw such a conclusion, especially given no experimental evidence was provided, particularly related to DA neuron dysfunction, in this manuscript.

      It is interesting to see that different familial PD mutations converge onto synapses. The authors have suggested that different mechanisms may be involved directly through regulating synaptic functions, or indirectly through mitochondria or transport. It will be improved if the authors extend their analysis on Figure 3, and better utilize their single-cell data to dissect the mechanisms. For example, for all the candidates listed in Figure 3C, are they all altered in the same direction across 5 models?

      While this approach is carefully performed, the authors should state in the discussions the strengths and the caveats of the current strategy. For example, what kind of knowledge have we gained by introducing these mutations at an endogenous locus? Are there any caveats of having scRNAseq at day 5 only but being compared with postmortem human disease tissue?

    3. Reviewer #3 (Public Review):

      Summary:

      This study investigates the cellular and molecular events leading to hyposmia, an early dysfunction in Parkinson's disease (PD), which develops up to 10 years prior to motor symptoms. The authors use five Drosophila knock-in models of familial PD genes (LRRK2, RAB39B, PINK1, DNAJC6 (Aux), and SYNJ1 (Synj)), three expressing human genes and two Drosophila genes with equivalent mutations.

      The authors carry out single-cell RNA sequencing of young fly brains and single-nucleus RNA sequencing of human brain samples. The authors found that cholinergic olfactory projection neurons (OPN) were consistently affected across the fly models, showing synaptic dysfunction before the onset of motor deficits, known to be associated with dopaminergic neuron (DAN) dysfunction.

      Single-cell RNA sequencing revealed significant transcriptional deregulation of synaptic genes in OPNs across all five fly PD models. This synaptic dysfunction was confirmed by impaired calcium signalling and morphological changes in synaptic OPN terminals. Furthermore, these young PD flies exhibited olfactory behavioural deficits that were rescued by selective expression of wild-type genes in OPNs.

      Single-nucleus RNA sequencing of post-mortem brain samples from PD patients with LRRK2 risk mutations revealed similar synaptic gene deregulation in cholinergic neurons, particularly in the nucleus basalis of Meynert (NBM). Gene ontology analysis highlighted enrichment for processes related to presynaptic function, protein homeostasis, RNA regulation, and mitochondrial function.

      This study provides compelling evidence for the early and primary involvement of cholinergic dysfunction in PD pathogenesis, preceding the canonical DAN degeneration. The convergence of familial PD mutations on synaptic dysfunction in cholinergic projection neurons suggests a common mechanism contributing to early non-motor symptoms like hyposmia. The authors also emphasise the potential of targeting cholinergic neurons for early diagnosis and intervention in PD.

      Strengths:

      This study presents a novel approach, combining multiple mutants to identify salient disease mechanisms. The quality of the data and analysis is of a high standard, providing compelling evidence for the role of OPN neurons in olfactory dysfunction in PD. The comprehensive single-cell RNA sequencing data from both flies and humans is a valuable resource for the research community. The identification of consistent impairments in cholinergic olfactory neurons, at early disease stages, is a powerful finding that highlights the convergent nature of PD progression. The comparison between fly models and human patients' brains provides strong evidence of the conservation of molecular mechanisms of disease, which can be built upon in further studies using flies to prove causal relationships between the defects described here and neurodegeneration.

      The identification of specific neurons involved in olfactory dysfunction opens up potential avenues for diagnostic and therapeutic interventions.

      Weaknesses:

      The causal relationship between early olfactory dysfunction and later motor symptoms in PD remains unclear. It is also uncertain whether this early defect contributes to neurodegeneration or is simply a reflection of the sensitivity of olfactory neurons to cellular impairments. The study does not investigate whether the observed early olfactory impairment in flies leads to later DAN deficits. Additionally, the single-cell RNA sequencing analysis reveals several affected neuronal populations that are not further explored. The main weakness of the paper is the lack of conclusive evidence linking early olfactory dysfunction to later disease progression. The rationale behind the selection of specific mutants and neuronal populations for further analysis could be better qualified.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an important and interesting study that uses the split-GFP approach. Localization of receptors and correlating them to function is important in understanding the circuit basis of behavior.

      Strengths:

      The split-GFP approach allows visualization of subcellular enrichment of dopamine receptors in the plasma membrane of GAL4-expressing neurons allowing for a high level of specificity.

      The authors resolve the presynaptic localization of DopR1 and Dop2R, in "giant" Drosophila neurons differentiated from cytokinesis-arrested neuroblasts in culture as it is not clear in the lobes and calyx.

      Starvation-induced opposite responses of dopamine receptor expression in the PPL1 and PAM DANs provide key insights into models of appetitive learning.

      Starvation-induced increase in D2R allows for increased negative feedback that the authors test in D2R knockout flies where appetitive memory is diminished.

      This dual autoreceptor system is an attractive model for how amplitude and kinetics of dopamine release can be fine-tuned and controlled depending on the cellular function and this paper presents a good methodology to do it and a good system where the dynamics of dopamine release can be tested at the level of behavior.

      Weaknesses:

      LI measurements of Kenyon cells and lobes indicate that Dop2R was approximately twice as enriched in the lobe as the average density across the whole neuron, while the lobe enrichment of Dop1R1 was about 1.5 times the average, are these levels consistent during different times of the day and the state of the animal. How were these conditions controlled and how sensitive are receptor expression to the time of day of dissection, staining, etc.

      The authors assume without discussion as to why and how presynaptic enrichment of these receptors is similar in giant neurons and MB.

      Figures 1-3 show the expensive expression of receptors in alpha and beta lobes while Figure 5 focusses on PAM and localization in γ and β' projections of PAM leading to the conclusion that pre-synaptic dopamine neurons express these and have feedback regulation. Consistency between lobes or discussion of these differences is important to consider.

      Receptor expression in any learning-related MBONs is not discussed, and it would be intriguing as how receptors are organized in those cells. Given that these PAMs input to both KCs and MBONs these will have to work in some coordination.

      Although authors use the D2R enhancement post starvation to show that knocking down receptors eliminated appetitive memory, the knocking out is affecting multiple neurons within this circuit including PAMs and KCs. How does that account for the observed effect? Are those not important for appetitive learning?

      The evidence for fine-tuning is completely based on receptor expression and one behavioral outcome which could result from many possibilities. It is not clear if this fine-tuning and presynaptic feedback regulation-based dopamine release is a clear possibility. Alternate hypotheses and outcomes could be considered in the model as it is not completely substantiated by data at least as presented.

    2. Reviewer #2 (Public Review):

      Summary:

      Hiramatsu et al. investigated how cognate neurotransmitter receptors with antagonizing downstream effects localize within neurons when co-expressed. They focus on mapping the localization of the dopaminergic Dop1R1 and Dop2R receptors, which correspond to the mammalian D1- and D2-like dopamine receptors, which have opposing effects on intracellular cAMP levels, in neurons of the Drosophila mushroom body (MB). To visualize specific receptors in single neuron types within the crowded MB neuropil, the authors use existing dopamine receptor alleles tagged with 7 copies of split GFP to target reconstitution of GFP tags only in the neurons of interest as a read-out of receptor localization. The authors show that both Dop1R1 and Dop2R, with differing degrees, are enriched in axonal compartments of both the Kenyon Cells cholinergic presynaptic inputs and in different dopamine neurons (DANs), which project axons to the MB. Co-localization studies of dopamine receptors with the presynaptic marker Brp suggest that Dop1R1 and, to a larger extent Dop2R, localize in the proximity of release sites. This localization pattern in DANs suggests that Dop1R1 and Dop2R work in dual-feedback regulation as autoreceptors. Finally, they provide evidence that the balance of Dop1R1 and Dop2R in the axons of two different DAN populations is differentially modulated by starvation and that this regulation plays a role in regulating appetitive behaviors.

      Strengths:

      The authors use reconstitution of GFP fluorescence of split GFP tags knocked into the endogenous locus at the C-terminus of the dopamine receptors as a readout of dopamine receptor localization. This elegant approach preserves the endogenous transcriptional and post-transcriptional regulation of the receptor, which is essential for studies of protein localization.

      The study focuses on mapping the localization of dopamine receptors in neurons of the mushroom body. This is an excellent choice of system to address the question posed in this study, as the neurons are well-studied, and their connections are carefully reconstructed in the mushroom body connectome. Furthermore, the role of this circuit in different behaviors and associative memory permits the linking of patterns of receptor localization to circuit function and resulting behavior. Because of these features, the authors can provide evidence that two antagonizing dopamine receptors can act as autoreceptors within the axonal compartment of MB innervating DANs. The differential regulation of the balance of the two receptors under starvation in two distinct DAN innervations provides evidence of the role that regulation of this balance can play in circuit function and behavioral output.

      Weaknesses:

      The approach of using endogenously tagged alleles to study localization is a strength of this study, but the authors do not provide sufficient evidence that the insertion of 7 copies of split GFP to the C terminus of the dopamine receptors does not interfere with the endogenous localization pattern or function. Both sets of tagged alleles (1X Venus and 7X split GFP tagged) were previously reported (Kondo et al., 2020), but only the 1X Venus tagged alleles were further functionally validated in assays of olfactory appetitive memory. Despite the smaller size of the 7X split-GFP array tag knocked into the same location as the 1X venus tag, the reconstitution of 7 copies of GFP at the C terminus of the dopamine receptor, might substantially increase the molecular bulk at this site, potentially impeding the function of the receptor more significantly than the smaller, single Venus tag. The data presented by Kondo et al. 2020, is insufficient to conclude that the two alleles are equivalent.

      The authors' conclusion that the receptors localize to presynaptic sites is weak. The analysis of the colocalization of the active zone marker Brp whole-brain staining with dopamine receptors labeled in specific neurons is insufficient to conclude that the receptors are localized at presynaptic sites. Given the highly crowded neuropil environment, the data cannot differentiate between the receptor localization postsynaptic to a dopamine release site or at a presynaptic site within the same neuron. The known distribution of presynaptic sites within the neurons analyzed in the study provides evidence that the receptors are enriched in axonal compartments, but co-labeling of presynaptic sites and receptors in the same neuron or super-resolution methods are needed to provide evidence of receptor localization at active zones. The data presented in Figures 5K-5L provides compelling evidence that the receptors localize to neuronal varicosities in DANs where the receptors could play a role as autoreceptors.

      Given the highly crowded environment of the mushroom body neuropil, the analysis of dopamine receptor localization in Kenyon cells is not conclusive. The data is sufficient to conclude that the receptors are preferentially localizing to the axonal compartment of Kenyon cells, but co-localization with brain-wide Brp active zone immunostaining is not sufficient to determine if the receptor localizes juxtaposed to dopaminergic release sites, in proximity of release sites in Kenyon cells, or both.

    1. Reviewer #1 (Public Review):

      Summary:

      The study made fundamental findings in investigations of the dynamic functional states during sleep. Twenty-one HMM states were revealed from the fMRI data, surpassing the number of EEG-defined sleep stages, which can define sub-states of N2 and REM. Importantly, these findings were reproducible over two nights, shedding new light on the dynamics of brain function during sleep.

      Strengths:

      The study provides the most compelling evidence on the sub-states of both REM and N2 sleep. Moreover, they showed these findings on dynamics states and their transitions were reproducible over two nights of sleep. These novel findings offered unique information in the field of sleep neuroimaging.

      Weaknesses:

      The only weakness of this study has been acknowledged by the authors: limited sample size.

    2. Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues used a Hidden Markov Model (HMM) on whole-night fMRI to isolate sleep and wake brain states in a data-driven fashion. They identify more brain states (21) than the five sleep/wake stages described in conventional PSG-based sleep staging, show that the identified brain states are stable across nights, and characterize the brain states in terms of which networks they primarily engage.

      Strengths:

      This work's primary strengths are its dataset of two nights of whole-night concurrent EEG-fMRI (including REM sleep), and its sound methodology.

      Weaknesses:

      The study's weaknesses are its small sample size and the limited attempts at relating the identified fMRI brain states back to EEG.

      General appraisal:

      The paper's conclusions are generally well-supported, but some additional analyses and discussions could improve the work.

      The authors' main focus lies in identifying fMRI-based brain states, and they succeed at demonstrating both the presence and robustness of these states in terms of cross-night stability. Additional characterization of brain states in terms of which networks these brain states primarily engage adds additional insights.

      A somewhat missed opportunity is the absence of more analyses relating the HMM states back to EEG. It would be very helpful to the sleep field to see how EEG spectra of, say, different N2-related HMM states compare. Similarly, it is presently unclear whether anything noticeable happens within the EEG time course at the moment of an HMM class switch (particularly when the PSG stage remains stable). While the authors did look at slow wave density and various physiological signals in different HMM states, a characterization of the EEG itself in terms of spectral features is missing. Such analyses might have shown that fMRI-based brain states map onto familiar EEG substates, or reveal novel EEG changes that have so far gone unnoticed.

      It is unclear how the presently identified HMM brain states relate to the previously identified NREM and wake states by Stevner et al. (2019), who used a roughly similar approach. This is important, as similar brain states across studies would suggest reproducibility, whereas large discrepancies could indicate a large dependence on particular methods and/or the sample (also see later point regarding generalizability).

      More justice could be done to previous EEG-based efforts moving beyond conventional AASM-defined sleep/wake states. Various EEG studies performed data-driven clustering of brain states, typically indicating more than 5 traditional brain states (e.g., Koch et al. 2014, Christensen et al. 2019, Decat. et al 2022). Beyond that, countless subdivisions of classical sleep stages have been proposed (e.g., phasic/tonic REM, N2 with/without spindles, N3 with global/local slow waves, cyclic alternating patterns, and many more). While these aren't incorporated into standard sleep stage classification, the current manuscript could be misinterpreted to suggest that improved/data-driven classifications cannot be achieved from EEG, which is incorrect.

      More discussion of the limitations of the current sample and generalizability would be helpful. A sample of N=12 is no doubt impressive for two nights of concurrent whole-night EEG-fMRI. Still, any data-driven approach can only capture the brain states that are present in the sample, and 12 individuals are unlikely to express all brain states present in the population of young healthy individuals. Add to that all the potentially different or altered brain states that come with healthy ageing, other demographic variables, and numerous clinical disorders. How do the authors expect their results to change with larger samples and/or varying these factors? Perhaps most importantly, I think it's important to mention that the particular number of identified brain states (here 21, and e.g. 19 in Stevner) is not set in stone and will likely vary as a function of many sample- and methods-related factors.

    1. Reviewer #1 (Public Review):

      Summary:

      This work studies representations in a network with one recurrent layer and one output layer that needs to path-integrate so that its position can be accurately decoded from its output. To formalise this problem, the authors define a cost function consisting of the decoding error and a regularisation term. They specify a decoding procedure that at a given time averages the output unit center locations, weighted by the activity of the unit at that time. The network is initialised without position information, and only receives a velocity signal (and a context signal to index the environment) at each timestep, so to achieve low decoding error it needs to infer its position and keep it updated with respect to its velocity by path integration.

      The authors take the trained network and let it explore a series of environments with different geometries while collecting unit activities to probe learned representations. They find localised responses in the output units (resembling place fields) and border responses in the recurrent units. Across environments, the output units show global remapping and the recurrent units show rate remapping. Stretching the environment generally produces stretched responses in output and recurrent units. Ratemaps remain stable within environments and stabilise after noise injection. Low-dimensional projections of the recurrent population activity forms environment-specific clusters that reflect the environment's geometry, which suggests independent rather than generalised representations. Finally, the authors discover that the centers of the output unit ratemaps cluster together on a triangular lattice (like the receptive fields of a single grid cell), and find significant clustering of place cell centers in empirical data as well.

      The model setup and simulations are clearly described, and are an interesting exploration of the consequences of a particular set of training requirements - here: path integration and decodability. But it is not obvious to what extent the modelling choices are a realistic reflection of how the brain solves navigation. Therefore it is not clear whether the results generalize beyond the specifics of the setup here.

      Strengths:

      The authors introduce a very minimal set of model requirements, assumptions, and constraints. In that sense, the model can function as a useful 'baseline', that shows how spatial representations and remapping properties can emerge from the requirement of path integration and decodability alone. Moreover, the authors use the same formalism to relate their setup to existing spatial navigation models, which is informative.

      The global remapping that the authors show is convincing and well-supported by their analyses. The geometric manipulations and the resulting stretching of place responses, without additional training, are interesting. They seem to suggest that the recurrent network may scale the velocity input by the environment dimensions so that the exact same path integrator-output mappings remain valid (but maybe there are other mechanisms too that achieve the same).

      The clustering of place cell peaks on a triangular lattice is intriguing, given there is no grid cell input. It could have something to do with the fact that a triangular lattice provides optimal coverage of 2d space? The included comparison with empirical data is valuable, although the authors only show significant clustering - there is no analysis of its grid-like regularity.

      Weaknesses:

      The navigation problem that needs to be solved by the model is a bit of an odd one. Without any initial position information, the network needs to figure out where it is, and then path-integrate with respect to a velocity signal. As the authors remark in Methods 4.2, without additional input, the only way to infer location is from border interactions. It is like navigating in absolute darkness. Therefore, it seems likely that the salient wall representations found in the recurrent units are just a consequence of the specific navigation task here; it is unclear if the same would apply in natural navigation. In natural navigation, there are many more sensory cues that help inferring location, most importantly vision, but also smell and whiskers/touch (which provides a more direct wall interaction; here, wall interactions are indirect by constraining velocity vectors). There is a similar but weaker concern about whether the (place cell like) localised firing fields of the output units are a direct consequence of the decoding procedure that only considers activity center locations.

      The conclusion that 'contexts are attractive' (heading of section 2) is not well-supported. The authors show 'attractor-like behaviour' within a single context, but there could be alternative explanations for the recovery of stable ratemaps after noise injection. For example, the noise injection could scramble the network's currently inferred position, so that it would need to re-infer its position from boundary interactions along the trajectory. In that case the stabilisation would be driven by the input, not just internal attractor dynamics. Moreover, the authors show that different contexts occupy different regions in the space of low-dimensional projections of recurrent activity, but not that these regions are attractive.

      The authors report empirical data that shows clustering of place cell centers like they find for their output units. They report that 'there appears to be a tendency for the clusters to arrange in hexagonal fashion, similar to our computational findings'. They only quantify the clustering, but not the arrangement. Moreover, in Figure 7e they only plot data from a single animal, then plot all other animals in the supplementary. Does the analysis of Fig 7f include all animals, or just the one for which the data is plotted in 7e? If so, why that animal? As Appendix C mentions that the ratemap for the plotted animal 'has a hexagonal resemblance' whereas other have 'no clear pattern in their center arrangements', it feels like cherrypicking to only analyse one animal without further justification.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors proposed a neural network model to explore the spatial representations of the hippocampal CA1 and entorhinal cortex (EC) and the remapping of these representations when multiple environments are learned. The model consists of a recurrent network and output units (a decoder) mimicking the EC and CA1, respectively. The major results of this study are: the EC network generates cells with their receptive fields tuned to a border of the arena; decoder develops neuron clusters arranged in a hexagonal lattice. Thus, the model accounts for entrohinal border cells and CA1 place cells. The authors also suggested the remapping of place cells occurs between different environments through state transitions corresponding to unstable dynamical modes in the recurrent network.

      Strengths:<br /> The authors found a spatial arrangement of receptive fields similar to their model's prediction in experimental data recorded from CA1. Thus, the model proposes a plausible mechanisms to generate hippocampal spatial representations without relying on grid cells. This result is consistent with the observation that grid cells are unnecessary to generate CA1 place cells.

      The suggestion about the remapping mechanism shows an interesting theoretical possibility.

      Weaknesses:<br /> The explicit mechanisms of generating border cells and place cells and those underlying remapping were not clarified at a satisfactory level.

      The model cannot generate entorhinal grid cells. Therefore, how the proposed model is integrated into the entire picture of the hippocampal mechanism of memory processing remains elusive.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors used recurrent neural network modelling of spatial navigation tasks to investigate border and place cell behaviour during remapping phenomena.

      Strengths:

      The neural network training seemed for the most part (see comments later) well-performed, and the analyses used to make the points were thorough.

      The paper and ideas were well explained.

      Figure 4 contained some interesting and strong evidence for map-like generalisation as environmental geometry was warped.

      Figure 7 was striking, and potentially very interesting.

      It was impressive that the RNN path-integration error stayed low for so long (Fig A1), given that normally networks that only work with dead-reckoning have errors that compound. I would have loved to know how the network was doing this, given that borders did not provide sensory input to the network. I could not think of many other plausible explanations... It would be even more impressive if it was preserved when the network was slightly noisy.

      Weaknesses:

      I felt that the stated neuroscience interpretations were not well supported by the presented evidence, for a few reasons I'll now detail.

      First, I was unconvinced by the interpretation of the reported recurrent cells as border cells. An equally likely hypothesis seemed to be that they were positions cells that are linearly encoding the x and y position, which when your environment only contains external linear boundaries, look the same. As in figure 4, in environments with internal boundaries the cells do not encode them, they encode (x,y) position. Further, if I'm not misunderstanding, there is, throughout, a confusing case of broken symmetry. The cells appear to code not for any random linear direction, but for either the x or y axis (i.e. there are x cells and y cells). These look like border cells in environments in which the boundaries are external only, and align with the axes (like square and rectangular ones), but the same also appears to be true in the rotationally symmetric circular environment, which strikes me as very odd. I can't think of a good reason why the cells in circular environments should care about the particular choice of (x,y) axes... unless the choice of position encoding scheme is leaking influence throughout. A good test of these would be differently oriented (45 degree rotated square) or more geometrically complicated (two diamonds connected) environments in which the difference between a pure (x,y) code and a border code are more obvious.

      Next, the decoding mechanism used seems to have forced the representation to learn place cells (no other cell type is going to be usefully decodable?). That is, in itself, not a problem. It just changes the interpretation of the results. To be a normative interpretation for place cells you need to show some evidence that this decoding mechanism is relevant for the brain, since this seems to be where they are coming from in this model. Instead, this is a model with place cells built into it, which can then be used for studying things like remapping, which is a reasonable stance.

      However, the remapping results were also puzzling. The authors present convincing evidence that the recurrent units effectively form 6 different maps of the 6 different environments (e.g. the sparsity of the cod, or fig 6a), with the place cells remapping between environments. Yet, as the authors point out, in neural data the finding is that some cells generalise their co-firing patterns across environments (e.g. grid cells, border cells), while place cells remap, making it unclear what correspondence to make between the authors network and the brain. There are existing normative models that capture both entorhinal's consistent and hippocampus' less consistent neural remapping behaviour (Whittington et al. and probably others), what have we then learnt from this exercise?

      One striking result was figure 7, the hexagonal arrangement of place cell centres. I had one question that I couldn't find the answer to in the paper, which would change my interpretation. Are place cell centres within a single clusters of points in figure 7a, for example, from one cell across the 100 trajectories, or from many? If each cluster belongs to a different place cell then the interpretation seems like some kind of optimal packing/coding of 2D space by a set of place cells, an interesting prediction. If multiple place cells fall within a single cluster then that's a very puzzling suggestion about the grouping of place cells into these discrete clusters. From figure 7c I guess that the former is the likely interpretation, from the fact that clusters appear to maintain the same colour, and are unlikely to be co-remapping place cells, but I would like to know for sure!

      I felt that the neural data analysis was unconvincing. Most notably, the statistical effect was found in only one of seven animals. Random noise is likely to pass statistical tests 1 in 20 times (at 0.05 p value), this seems like it could have been something similar? Further, the data was compared to a null model in which place cell fields were randomly distributed. The authors claim place cell fields have two properties that the random model doesn't (1) clustering to edges (as experimentally reported) and (2) much more provocatively, a hexagonal lattice arrangement. The test seems to collude the two; I think that nearby ball radii could be overrepresented, as in figure 7f, due to either effect. I would have liked to see a computation of the statistic for a null model in which place cells were random but with a bias towards to boundaries of the environment that matches the observed changing density, to distinguish these two hypotheses.

      Some smaller weaknesses:<br /> - Had the models trained to convergence? From the loss plot it seemed like not, and when including regularisors recent work (grokking phenomena, e.g. Nanda et al. 2023) has shown the importance of letting the regularisor minimise completely to see the resulting effect. Else you are interpreting representations that are likely still being learnt, a dangerous business.<br /> - Since RNNs are nonlinear it seems that eigenvalues larger than 1 doesn't necessarily mean unstable?<br /> - Why do you not include a bias in the networks? ReLU networks without bias are not universal function approximators, so it is a real change in architecture that doesn't seem to have any positives?<br /> - The claim that this work provided a mathematical formalism of the intuitive idea of a cognitive map seems strange, given that upwards of 10 of the works this paper cite also mathematically formalise a cognitive map into a similar integration loss for a neural network.

      Aim Achieved? Impact/Utility/Context of Work

      Given the listed weaknesses, I think this was a thorough exploration of how this network with these losses is able to path-integrate its position and remap. This is useful, it is good to know how another neural network with slightly different constraints learns to perform these behaviours. That said, I do not think the link to neuroscience was convincing, and as such, it has not achieved its stated aim of explaining these phenomena in biology. The mechanism for remapping in the entorhinal module seemed fundamentally different to the brain's, instead using completely disjoint maps; the recurrent cell types described seemed to match no described cell type (no bad thing in itself, but it does limit the permissible neuroscience claims) either in tuning or remapping properties, with a potentially worrying link between an arbitrary encoding choice and the responses; and the striking place cell prediction was unconvincingly matched by neural data. Further, this is a busy field in which many remapping results have been shown before by similar models, limiting the impact of this work. For example, George et al. and Whittington et al. show remapping of place cells across environments; Whittington et al. study remapping of entorhinal codes; and Rajkumar Vasudeva et al. 2022 show similar place cell stretching results under environmental shifts. As such, this papers contribution is muddied significantly.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to enhance the effectiveness of PARP inhibitors (PARPi) in treating high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) by inhibiting PRMT1/5 enzymes. They conducted a drug screen combining PARPi with 74 epigenetic modulators to identify promising combinations.

      Zhang et al. reported that protein arginine methyltransferase (PRMT) 1/5 inhibition acts synergistically to enhance the sensitivity of Poly (ADP-ribose) polymerase inhibitors (PARPi) in high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) cells. The authors are the first to perform a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Their drug screen identified both PRMT1/5 inhibitors with high combination and clinical priority scores in PARPi treatment. Notably, PRMT1/5 inhibitors significantly enhance PARPi treatment-induced DNA damage in HR-proficient HGSOC and TNBC cells through enhanced maintenance of gene expression associated with DNA damage repair, BRCAness, and intrinsic innate immune pathways in cancer cells. Additionally, bioinformatic analysis of large-scale genomic and functional profiles from TCGA and DepMap further supports that PRMT1/5 are potential therapeutic targets in oncology, including HGSOC and TNBC. These results provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian and breast cancer. Thus, this discovery has a high impact on developing novel therapeutic approaches to overcome resistance to PARPi in clinical cancer therapy. The data and presentation in this manuscript are straightforward and reliable.

      Strengths:

      (1) Innovative Approach: First to screen PARPi with a large panel of epigenetic modulators.<br /> (2) Significant Results: Found that PRMT1/5 inhibitors significantly boost PARPi effectiveness in HR-proficient HGSOC and TNBC cells.<br /> (3) Mechanistic Insights: Showed how PRMT1/5 inhibitors enhance DNA damage repair and immune pathways.<br /> (4) Robust Data: Supported by extensive bioinformatic analysis from large genomic databases.

      Weaknesses:

      (1) Novelty Clarification: Needs clearer comparison to existing studies showing similar effects.<br /> (2) Unclear Mechanisms: More investigation is needed on how MYC targets correlate with PRMT1/5.<br /> (3) Inconsistent Data: ERCC1 expression results varied across cell lines.<br /> (4) Limited Immune Study: Using immunodeficient mice does not fully explore immune responses.<br /> (5) Statistical Methods: Should use one-way ANOVA instead of a two-tailed Student's t-test for multiple comparisons.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors show that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple-negative cancer cell lines in vitro and in vivo using preclinical mouse models.

      PARP inhibitors have been the common targeted-therapy options to treat high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC). PRMTs are oncological therapeutic targets and specific inhibitors have been developed. However, due to the insufficiency of PRMTi or PARPi single treatment for HGSOC and TNBC, designing novel combinations of existing inhibitors is necessary. In previous studies, the authors and others developed an "induced PARPi sensitivity by epigenetic modulation" strategy to target resistant tumors. In this study, the authors presented a triple combination of PRMT1i, PRMT5i and PARPi that synergistically kills TNBC cells. A drug screen and RNA-seq analysis were performed to indicate cancer cell growth dependency of PRMT1 and PRMT5, and their CRISPR/Cas9 knockout sensitizes cancer cells to PARPi treatment. It was shown that the cells accumulate DNA damage and have increased caspase 3/7 activity. RNA-seq analysis identified BRCAness genes, and the authors closely studied a top hit ERCC1 as a downregulated DNA damage protein in PRMT inhibitor treatments. ERCC1 is known to be synthetic lethal with PARP inhibitors. Thus, the authors add back ERCC1 and reduce the effects of PRMT inhibitors suggesting PRMT inhibitors mediate, in part, their effect via ERCC1 downregulation. The combination therapy (PRMT/PARP) is validated in 2D cultures of cell lines (OVCAR3, 8 and MDA-MB-231) and has shown to be effective in nude mice with MDA-MB-231 xenograph models.

      Strengths and weaknesses:

      Overall, the data is well-presented. The experiments are well-performed, convincing, and have the appropriate controls (using inhibitors and genetic deletions) and statistics.

      They identify the DNA damage protein ERCC1 to be reduced in expression with PRMT inhibitors. As ERCC1 is known to be synthetic lethal with PARPi, this provides a mechanism for the synergy. They use cell lines only for their study in 2D as well as xenograph models.

    1. Reviewer #1 (Public Review):

      Summary:

      Herneisen et al characterise the Toxoplasma PDK1 orthologue SPARK and an associated protein SPARKEL (cute name) in controlling important fate decisions in Toxoplasma. Over recent years this group and others have characterised the role of cAMP and cGMP signalling in negatively and positively regulating egress, motility and invasion, respectively. This manuscript furthers this work by showing that SPARK and SPARKEL likely act upstream, or at least control the levels of the cAMP and cGMP-dependent kinases PKA and PKG, respectively, thus controlling the transition of intracellular replicating parasites into extracellular motile forms (and back again).

      The authors use quantitative (phospho)proteomic techniques to elegantly demonstrate the upstream role of SPARK in controlling cAMP and cGMP pathways. They use sophisticated analysis techniques (at least for parasitology) to show the functional association between cGMP and cAMP signalling pathways. They therefore begin to unify our understanding of the complicated signalling pathways used by Toxoplasma to control key regulatory processes that control the activation and suppression of motility. The authors then use molecular and cellular assays on a range of generated transgenic lines to back up their observations made by quantitative proteomics that are clear in their design and approach.

      The authors then extend their work by showing that SPARK/SPARKEL also control PKAc3 function. PKAc3 has previously been shown to negatively regulate differentiation into bradyzoite forms and this work backs up and extends this finding to show that SPARK also controls this. The authors conclude that SPARK could act as a central node of regulation of the asexual stage, keeping parasites in their lytic cell growth and preventing differentiation. Whether this is true is beyond the scope of this paper and will have to be determined at a later date.

      Strengths:

      This is an exceptional body of work. It is elegantly performed, with state-of-the-art proteomic methodologies carefully being applied to Toxoplasma. Observations from the proteomic datasets are masterfully backed up with validation using quantitative molecular and cellular biology assays.

      The paper is carefully and concisely written and is not overreaching in its conclusions. This work and its analysis set a new benchmark for the use of proteomics and molecular genetics in apicomplexan parasites.

      Weaknesses:

      There are no weaknesses in this paper.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Herneisen et al. examines the Toxoplasma SPARK kinase orthologous to mammalian PDK1 kinase. The extracellular signals trigger cascades of the second messengers and play a central role in the apicomplexan parasites' survival. In Toxoplasma, these cascades regulate active replication of the tachyzoites, which manifests as acute toxoplasmosis, or the development into drug-resilient bradyzoites characteristic of the chronic stage of the disease. This study focuses on the poorly understood signaling mechanisms acting upstream of such second messenger kinases as PKA and PKG. The authors showed that similar to PDK1, Toxoplasma SPARK likely regulates several AGC kinases.

      Strengths:

      The study demonstrated a strong association of the SPARK kinase with the SPARKL factor and an uncharacterized AGC kinase. Using a set of standard assays, the authors determined the SPARK /SPARLS role in parasite egress, invasion, and bradyzoite differentiation.

      Weaknesses:

      Although the revised manuscript has significantly improved, the primary concern of incomplete data analysis still needs to be addressed.

    3. Reviewer #3 (Public Review):

      Summary:

      This paper focuses on the roles of a toxoplasma protein (SPARKEL) with homology to an elongin C and the kinase SPARK that it interacts with. They demonstrate that the two proteins regulate the abundance of PKA and PKG and that depletion of SPARKEL reduces invasion and egress (previously shown with SPARK), and that their loss also triggers spontaneous bradyzoite differentiation. The data are overall very convincing and will be of high interest to those who study Toxoplasma and related apicomplexan parasites.

      Strengths:

      The study is very well executed with appropriate controls. The manuscript is also very well and clearly written. Overall, the work clearly demonstrates that SPARK/SPARKEL regulate invasion and egress and that their loss triggers differentiation.

      Comments on the revised version:

      The authors have addressed my concerns.

    1. Joint Public Review:

      Ewing sarcoma is an aggressive pediatric cancer driven by the EWS-FLI oncogene. Ewing sarcoma cells are addicted to this chimeric transcription factor, which represents a strong therapeutic vulnerability. Unfortunately, targeting EWS-FLI has proven to be very difficult and better understanding how this chimeric transcription factor works is critical to achieving this goal. Towards this perspective, the group had previously identified a DBD-𝛼4 helix (DBD) in FLI that appears to be necessary to mediate EWS-FLI transcriptomic activity. Here, the authors used multi-omic approaches, including CUT&tag, RNAseq, and MicroC to investigate the impact of this DBD domain. Importantly, these experiments were performed in the A673 Ewing sarcoma model where endogenous EWS-FLI was silenced, and EWS-FLI-DBD proficient or deficient isoforms were re-expressed (isogenic context). The authors found that the DBD domain is key to mediate EWS-FLI cis activity (at msat) and to generate the formation of specific TADs. Furthermore, cells expressing DBD deficient EWS-FLI display very poor colony forming capacity, highlighting that targeting this domain may lead to therapeutic perspectives.

      This new version of the study comprises as requested new data from an additional cell line. The new data has strengthened the manuscript. Nevertheless, some of the arguments of the authors pertaining to the limitations of immunoblots to assess stability of the DBD constructs or the poor reproducibility of the Micro C data remain problematic. While the effort to repeat MicroC in a different cell line is appreciated, the data are as heterogeneous as those in A673 and no real conclusion can be drawn. The authors should tone down their conclusions. If DBD has a strong effect on chromatin organization, it should be reproducible and detectable. The transcriptomic and cut and tag data are more consistent and provide robust evidence for their findings at these levels.

      Concerning the issue of stability of the DBD and DBD+ constructs, a simple protein half-life assay (e.g. cycloheximide chase assay) could rule out any bias here and satisfactorily address the issue.

      Suggestions:

      The Reviewing Editor and a referee have considered the revised version and the responses of the referees. While the additional data included in the new version has consolidated many conclusions of the study, the MicroC data in the new cell line are also heterogeneous and as the authors argue, this may be an inherent limitation of the technique. In this situation, the best would be for the authors to avoid drawing robust conclusions from this data and to acknowledge its current limitations.

      The referee and Reviewing Editor also felt that the arguments of the authors concerning a lack of firm conclusions on the stability of EWS-FLI1 under +/-DBD conditions could be better addressed. We would urge the authors to perform a cycloheximide chase type assay to assess protein half-life. These types of experiments are relatively simple to perform and should address this issue in a satisfactory manner.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript entitled "Association with TFIIIC limits MYCN accumulation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II" the authors examine how the cohesin complex component (and RNA pol III associated factor) TFIIIC interacts with MYCN and controls transcription. They confirm that TFIIIC co-purifies with MYCN, dependent on its amino terminus, as shown in previous work. The authors also find that TFIIIC and MYCN are both found in promoter hubs and suggest that TFIIIC inhibits MYCN association with these hubs. Finally, the authors indicate that TFIIIC/MYCN alter exosome function, and BRCA1 dependent effects, at MYCN regulated loci.

      In the revised manuscript the authors have adequately addressed or responded to our questions and comments. The exception concerns point #2 in our initial review:

      (2) The authors indicate in Figure 2 that TF3C has essentially no effect on MYCN- dependent gene expression and/or transcription elongation. Yet a previous study (PMID: 29262328) associated with several of the same authors concluded that TF3C positively affects transcription elongation. The authors to not attempt to reconcile these disparate results and the point still needs to clarified.

      Authors' Response<br /> We agree that the data in this manuscript do not support the role on transcription elongation. This point was also raised by Reviewer 3. Comparing our new results to the data published previously we can summarize that the data sets in the two studies show three key results: First, the traveling ratio of RNAPII changes upon induction of MYCN. Second, RNAPII decreases at the transcription start side and third, it increases towards the end side.

      We agree that in the previous study we linked the traveling ratio directly to elongation. However performing ChIP-seq with different RNAPII antibodies showed us that for example RNAPII (N20), which is unfortunately discontinued, gives different results compared to RNAPII (A10). Combining our new results using the RNAPII (8WG16) antibody shows that the traveling ratio is not only reflecting transcription elongation but also includes that the RNAPII is kicked-off chromatin at the start side.

      Reviewer revised response:<br /> The explanation for the change in interpretation of the previous study (Buchel, et. al., 2017) in light of the differing results using different RNA pol2 antibodies used in the present study seems reasonable. However the final manuscript may well result in some confusion in the literature in regards to TF3C and elongation. This is because, while the authors refer to the earlier paper frequently, they do not directly discuss the re-interpretation of the elongation conclusion of the earlier paper. It seems likely that a reader of the present paper will find this issue confusing when trying to reconcile the results of the two papers.

    2. Reviewer #2 (Public Review):

      This manuscript reports several interesting observations that invite follow-up. The notion that hubs, and perhaps condensates that may (or may not embrace them) are functionally and physiologically important is an open issue at this time. The authors note that TFIIIC helps to prune extraneous connections from hubs, but do not comment that the connections that are maintained are also reinforced. At the same time only modest changes in gene expression associated with expanded or decreased connections and changes in bound proteins. One interesting possibility might be that standard methods for assessing expression miss changes global or background transcription. It seems that the TFIIIC-MYCN-ER connection has features that would help to suppress such background. The results invite a more global consideration of TFIIIC than as primarily RNAPIII/small RNA transcription factor and of MYCN as an E-box dependent transcription factor. The results use sate of the art methods to develop interesting new ideas that have the potential to instruct further studies that may reveal new mechanisms of action for TFIIIC and MYCN.

      The work is however subject to a couple of caveats. First, the authors should be more cautious when drawing firm conclusions about the dynamics and kinetics of transcription from the static snapshots obtained from most genomic methods. For example, please take a look at Figure 1F of "Transcription elongation defects link oncogenicSF3B1 mutations to targetable alterations in chromatin landscape" by Buddu et al, https://doi.org/10.1016/j.molcel.2024.02.032. Here, an increase in RNAPSer2P is seen in gene bodies and a bit at the TES- superficially inviting the conclusion that expression is increased (a similar erroneous conclusion has been claimed in other genomic studies), but the increase is in fact, not due to increased transcription, rather to impaired elongation-this conclusion required performing TT-Seq which allowed inferences to be made about elongation rates. Acknowledging this qualification would help advise the reader.

      The authors also need to discuss directly what differences between the MYC predominant SH-EP cells and the MYCN-predominant SH-EP-MYCNER+tamoxifen are qualitative versus quantitative. MYCNER indeed associates much more with chromatin than did MYC, but there seems to be a lot more MYCER than there was MYC prior to the addition of tamoxifen. (The true control for this would be to prepare SH-EP-MYCER cells expressed from the same promoter as was MYCNER. Some discussion of qualitative versus quantitative differences should be acknowledged.

      Strengths:

      Use of a variety of methods to assess the genomic response to increased MYCN in the presence or absence of TFIIIC. Clearly establishes in vitro and in vivo the TFIIIC-MYCN complex

      Weaknesses:

      Dynamic inferences are made without kinetic experiments.

    3. Reviewer #3 (Public Review):

      Summary:

      Vidal et al. investigated how TFIIIC may mediate MYCN effects on transcription. The work builds upon previous reports from the same group where they describe MYCN interactors in neuroblastoma cells (Buchel et al, 2017), which include TFIIIC, and their different roles in MYCN-dependent control of RNA polymerase II function (Herold et al, 2019) (Roeschert et al, 2021) (Papadopoulus et al, 2022). Using baculovirus expression systems, they confirm that MYCN-TFIIIC interaction is direct, and likely relevant for neuroblastoma cell proliferation. However, transcriptomics analyses led them to conclude that TFIIC is largely dispensable for MYCN-dependent gene expression. Instead, they propose that TFIIC limits MYCN-mediated promoter-promoter 3D chromatin contacts, which would in turn facilitate the recruitment of the nascent RNA degradation machinery and restrict the accumulation of non-phosphorylated RNA polymerase II at promoters. How this mechanism may impact on MYCN-driven neuroblastoma cell biology remains to be elucidated.

      Strengths:

      This study presents a nice variety of genomic datasets addressing the specific role of TFIIIC in MYCN-dependent functions. In particular, the technically challenging HiChIP sequencing experiments performed under various conditions provide very useful information about the interplay between MYCN and TFIIIC in the regulation of 3D chromatin contacts. The authors show that MYCN and TFIIIC participate both in unique and overlapping long-range chromatin contacts and that the expression of each of these proteins limits the function of the other. Together, their results suggest a dynamic and interconnected relationship between MYCN and TFIIIC in regulating 3D chromatin contacts.

      Weaknesses:

      (1) Mechanistic questions regarding the specific role of TFIIIC in regulating MYCN function remain unsolved. Why is it important to restrict MYCN association to promoter hubs? Do the authors find any TFIIIC-dependent phenotype that is restricted or particularly enhanced at these locations? Both the effects on the accumulation of non-phosphorylated RNA pol II and the recruitment of the nascent RNA degradation machinery seem to be global.

      (2) Two specific points regarding RNA pol II ChIPseq results remain unclear:

      -It is unfortunate that although both RNAPII (N20) and RNAPII (A10) antibodies were raised against the N-teminal domain, they give different results according to the authors. Caution should be taken, as it may imply that some previous results could be explained by epitope masking.

      -I am sorry if I missed something crucial, but to my understanding, the disparities regarding the ChIPseq results obtained using the 8WG16 antibody are not fully resolved. In Figure S7C from their previous publication (Buchel et al, 2017) the authors concluded that "Intriguingly, ChIP sequencing showed that activation of N-MYC had no significant effect on chromatin association of hypo-phosphorylated Pol II". Is this not a similar experiment, using the same antibody and experimental conditions as in Figure 2 from the current manuscript? They now conclude that "activation of MYCN caused a global decrease in promoter association of non-phosphorylated RNAPII".

      (3) Conducting ChIP-qPCR experiments for all nascent RNA degradation factors to be compared would have enabled a more direct and comprehensive comparison.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a nice paper taking a broad range of aspects and endpoints into account. The effect of GAHT in girls has been nicely worked out. Changes in Sertoli and peritubular cells appear valid, less strong evidence is provided for Leydig cell development. The recovery of SSCs appears an overjudgement and should be rephrased. The multitude and diversity of datasets appear a strength and a weakness as some datasets were not sufficiently critically reviewed and a selection of highlights provides a certain bias to the interpretation and conclusion of the study.

      The authors need to indicate that the subset of data on SSCs has been reported previously (Human Reprod 36: 5-15 (2021) and is simply re-incorporated in the present paper. as Fig. 1C. There are sufficient new results to publish the remaining datasets as a separate paper. Authors could refer to the SSC data with reference to the previous publication.

      Strengths:

      The patient cohort is impressive and is nicely characterized. Here, histological endpoints and endocrine profiles were analyzed appropriately for most endpoints. The paper is well-written and has many new findings.

      Weaknesses:

      The patients and controls are poorly separated in regard to pubertal status. Here additional endpoints (e.g. Tanner status) would have been helpful especially as the individual patient history is unknown. Pre- and peri-puberty is a very rough differentiation. The characterization and evaluation of Leydig cells is the weakest histological endpoint. Here, additional markers may be required. Fig. 1 suffers from suboptimal micrograph quality.

    2. Reviewer #2 (Public Review):

      Summary:

      The study is devoted to the deep investigation of the spermatogonial stem cell (SSC) niche in trans women after gender-affirming hormone therapy (GAHT). Both cellular structure and functionality of the niche were studied. The authors evidently demonstrated that all cellular components of SSC niche were affected by hormone therapy. Interestingly, the signs of "rejuvenation" within the niche were also observed indicating the possible reverse to the immature condition.

      Strengths:

      The obtained findings are important for the better understanding of hormonal regulation of testis and SSC niche and provide some clues for using the biomaterials from these specific and even unique donors for biomedical research.

      Weaknesses:

      This study has some limitations. Many studies can't be done using the testes cells of trans women, since their cells are significantly different from adult man cells and less from prepubertal and pubertal cells. The authors themselves identify some of the limitations: this material is suitable only for studying prepubertal processes in the testis. However, the authors also report large variability in data due to different hormonal therapy regimens and, apparently, age. Accordingly, not all material obtained from trans women can also be used for studies of prepubertal processes.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Gholamalamdari et al. described various aspects of genome organization in relation to nuclear speckles, the nuclear lamina, and nucleoli. Their findings were drawn from the analysis of genomic data sourced from four distinct human cell types. The authors observed significant variation in genome positioning at the lamina and nucleoli across different cell types, whereas contacts with nuclear speckles showed less variability. The data revealed a correlation between gene expression levels and proximity to nuclear speckles, with regions in contact with these speckles coinciding with DNA replication initiation zones. Additionally, the results indicated that the loss of Lamin A and LBR leads to a redistribution of H3K9me3-enriched LADs from the lamina to the nucleolus. Furthermore, a portion of H3K27me3-enriched, partially repressed intergenic LADs (iLADs) was observed to relocate from the nucleolus to the lamina. The study also proposed that these repressed iLADs may compete with LADs for attachment to the nuclear lamina.

      Strengths:

      The datasets have been thoroughly integrated and exhibit various features of genomic domains interacting with nuclear speckles, the nuclear lamina, and nucleoli, which will be of interest to the field.

      Weaknesses:

      The weakness of this study lies in the fact that many of the genomic datasets originated from novel methods that were not validated with orthogonal approaches, such as DNA-FISH. Therefore, the detailed correlations described in this work are based on methodologies whose efficacy is not clearly established. Specifically, the authors utilized two modified protocols of TSA-seq for the detection of NADs (MKI67IP TSA-seq) and LADs (LMNB1-TSA-seq). Although these methods have been described in a bioRxiv manuscript by Kumar et al., they have not yet been published. Moreover, and surprisingly, Kumar et al., work is not cited in the current manuscript, despite its use of all TSA-seq data for NADs and LADs across the four cell lines. Moreover, Kumar et al. did not provide any DNA-FISH validation for their methods. Therefore, the interesting correlations described in this work are not based on robust technologies.<br /> An attempt to validate the data was made for SON-TSA-seq of human foreskin fibroblasts (HFF) using multiplexed FISH data from IMR90 fibroblasts (from the lung) by the Zhuang lab (Su et al., 2020). However, the comparability of these datasets is questionable. It might have been more reasonable for the authors to conduct their analyses in IMR90 cells, thereby allowing them to utilize MERFISH data for validating the TSA-seq method and also for mapping NADs and LADs.

    2. Reviewer #2 (Public Review):

      Summary:

      Golamalamdari, van Schaik, Wang, Kumar Zhang, Zhang, and colleagues study interactions between the speckle, nucleolus, and lamina in multiple cell types (K562, H1, HCT116, and HFF). Their datasets define how interactions between the genome and the different nuclear landmarks relate to each other and change across cell types. They also identify how these relationships change in K562 cells in which LBR and LMNA are knocked out.

      Strengths:

      Overall, there are a number of datasets that are provided, and several "integrative" analyses are performed. This is a major strength of the paper, and I imagine the datasets will be of use to the community to further probed and the relationships elucidated here further studied. An especially interesting result was that specific genomic regions (relative to their association with the speckle, lamina, and other molecular characteristics) segregate relative to the equatorial plane of the cell.

      Weaknesses:

      The experiments are largely descriptive, and it is difficult to draw many cause-and-effect relationships. Similarly, the paper would be very much strengthened if the authors provided additional summary statements and interpretation of their results (especially for those not as familiar with 3D genome organization). The study would benefit from a clear and specific hypothesis.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study from Belato, Knight, and co-workers, the authors investigated the Rec domain of a thermophilic Cas9 from Geobacillus stearothermophilus (GeoCas9). The authors investigated three constructs, two individual subdomains of Rec (Rec1 and Rec2) and the full Rec domain. This domain is involved in binding to the guide RNA of Cas9, as well as the RNA-DNA duplex that is formed upon target binding. The authors performed RNA binding and relaxation experiments using NMR for the wild-type domain as well as two-point mutants. They observed differences in RNA binding activities as well as the flexibility of the domain. The authors also performed experiments on full-length GeoCas9 to determine whether these biophysical differences affect the RNA binding or cleavage activity. Although the authors observed some changes in the thermal stability of the mutant GeoCas9-gRNA complex, they did not observe substantial differences in the cleavage activities of the mutant GeoCas9 variants.

      Overall, this manuscript provides a detailed biophysical analysis of the GeoCas9 Rec domain. The NMR assignments for this construct should prove very useful, and the results may provide the grounds for future engineering of higher fidelity variants of GeoCas9. While the NMR results are generally well presented, it is unclear how the results on the isolated Rec domain related to the overall function of full-length GeoCas9. In addition, some conclusions are overstated and not fully supported by the evidence provided. The following major points should be addressed by the authors.

      (1) Many of the results rely on the backbone resonance assignments of the three constructs that were used, and the authors have done an excellent job of assigning the Rec1 and Rec2 constructs. However, it is unclear from the descriptions in the text how the full-length Rec construct was assigned. Were these assignments made based on assignments for the individual domains? The authors state that the spectra of individual domains and RecFL overlay very well, but there appear to be many resonances that have chemical shift differences or are only present in one construct. As it stands, it is unclear how the resonances were assigned for residues whose chemical shifts were perturbed, making it difficult to interpret many of the results.

      (2) The minimal gRNA that was used for the Rec-gRNA binding experiments is unlikely to be a good mimic for the full-length gRNA, as it lacks any of the secondary structure that is most specifically recognized by the REC lobe and the rest of the Cas9 protein. The majority of this RNA is a "spacer" sequence, but spacers are variable, so this sequence is arbitrary. Thus, the interactions that the authors are observing most likely represent non-specific interactions between the Rec domains and RNA. The authors also map chemical shift perturbations and line broadening on structural models with an RNA-DNA duplex bound, but this is not an accurate model for how the Rec domain binds to a single-stranded RNA (for which there is no structural model). Thus, many of the conclusions regarding the RNA binding interface are overstated.

      (3) The authors include microscale thermophoresis (MST) data for the Rec constructs binding to the minimal gRNA. These data suggest that all three Rec variants have very similar Kd's for the RNA. Given these similarities, it is unclear why the RNA titration experiments by NMR yielded such different results. Moreover, in the Discussion, the authors state that the NMR titration data are consistent with the MST-derived Kd values. This conclusion appears to be overstated given the very small differences in affinities measured by MST.

      (4) While the authors have performed some experiments to help place their findings on the isolated Rec domain in the context of the full-length protein, these experiments do not fully support the conclusions that the authors draw about the meaning of their NMR results. The two Cas9 variants that were explored via NMR have no effect on Cas9 cleavage activity, and it is unclear from the data provided whether they have any effect on GeoCas9 binding to the full sgRNA. This makes it difficult to determine whether the observed differences in RNA binding and dynamics of the isolated Rec domain have any consequence in the context of the full protein.

      (5) The authors state in multiple places that the K267E/R332A mutant enhanced GeoCas9 specificity. Improved specificity refers to a situation in which the efficiency of cleavage of a perfectly matched target improves in comparison to a mismatched target. This is not what the authors observed for the double mutant. Instead, the cleavage of the perfect target was drastically reduced, in some cases to a larger degree than for the mismatched target. The double mutant does not appear to have improved specificity, it has simply decreased cleavage efficiency of the enzyme.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript from Belato et al. used advanced NMR approaches and a mutagenesis campaign to probe the conformational dynamics of the recognition lobe (Rec) of the CRISPR Cas9 enzyme from G. stearothermophilus (GeoCas9). Using truncated and full-length constructs they assess the impacts of two different point mutations have on the redistribution and timescale of these motions and assess gRNA recognition and specificity. Single point mutations in the Rec domain in a Cas9 from a related species had profound impacts on- and off-target DNA editing, therefore the authors reasoned analogous mutations in GeoCas9 would have similar effects. However, despite a redistribution of local motions and changes in global stability, their chosen mutations had little impact on DNA editing in the context of the full-length enzyme. Their studies highlight the species-specific complexity of interdomain communication and allosteric mechanisms used by these multi-domain endonucleases. Despite these negative results, their study is highly rigorous, and their approach will broadly support understanding how the activity and specificity of these enzymes can be engineered to tune activity and limit off-target cleavage by these enzymes.

      Strengths:

      (1) Atomistic investigation of the conformational dynamics of the GeoCas9 gRNA recognition lobe (GeoRec), probing dynamics on a broad range of timescales from ps to ms using advanced NMR approaches will be broadly interesting to both the structural biology and CRISPR engineering communities.

      (2) Highly rigorous biophysical studies that push the boundaries of current techniques, provide insight into local dynamics of the GeoRec domain that serve to propagate allosteric information and potentially regulate enzymatic activity.

      (3) The study highlights the complexities of understanding interdomain communication in Cas9 enzymes since analogous mutations in different species have different effects on target recognition and cleavage.

      (4) The type of structural and dynamic insights derived from this study design could serve as foundational information to guide a rational design strategy aimed at improving the selectivity and reducing the off-target effects of Cas9 enzymes.

      Weaknesses:

      (1) Despite the rigor of the experiments, the mutations chosen by the authors do not have a profound effect on the overall substrate affinity or activity of GeoCas9 rendering little mechanistic insight into allosteric communication in this particular Cas9. However, the double mutant K267E/R332A has a more pronounced effect on the cleavage of WT and mismatched (at nucleotides 19 and 20) DNA substrates while minimally affecting the cleavage of mismatched (at nucleotides 5 and 6), suggesting more could be learned about the allosteric mechanism from the detailed characterization of this mutant.

      (2) Follow-up experiments with other residues that were identified as being highly dynamic might affect substrate recognition and cleavage activity in different ways providing additional insight.

      (3) Details regarding the authors' experimental approach are incomplete such as a description of the model used to fit the CD data, a detailed explanation of the global fitting of the relaxation dispersion data describing how the best-fit model was selected, and the description of the ModelFree fitting of fast timescale dynamics is incomplete.

    3. Reviewer #3 (Public Review):

      The authors explore the role of Rec domains in a thermophilic Cas9 enzyme. They report on the crystal structure of part of the recognition lobe, its dynamics from NMR spin relaxation and relaxation-dispersion data, its interaction mode with guide RNA, and the effect of two single-point mutations hypothesised to enhance specificity. They find that mutations have small effects on Rec domain structure and stability but lead to significant rearrangement of micro- to milli-second dynamics which does not translate into major changes in guide RNA affinity or DNA cleavage specificity, illustrating the inherent tolerance of GeoCas9. The work can be considered as a first step towards understanding motions in GeoCas9 recognition lobe, although no clear hotspots were discovered with potential for future rational design of enhanced Cas9 variants.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors generated a DNA methylation score in cord blood for detecting exposure to cigarette smoke during pregnancy. They then asked if it could be used to predict height, weight, BMI, adiposity and WHR throughout early childhood.

      Strengths:

      The study included two cohorts of European ancestry and one of South Asian ancestry.

      Weaknesses:

      (1) Numbers of mothers who self-reported any smoking was very low likely resulting in underpowered analyses.

      (2) Although it was likely that some mothers were exposed to second-hand smoke and/or pollution, data on this was not available.

      (3) One of the European cohorts and half of the South Asian cohort had DNA methylation measured on only 2500 CpG sites including only 125 sites previously linked to prenatal smoking.

    2. Reviewer #3 (Public Review):

      Summary:

      Deng et al. assess neonatal cord blood methylation profiles and the association with (self-reported) maternal smoking in multiple populations, including two European (CHILD, FAMILY) and one South Asian (START), via two approaches: 1) they perform an independent epigenome-wide association study (EWAS) and meta-analysis across the CHILD and FAMILY cohort, during which they also benchmark previously reported maternal-smoking associated sites, and 2) they generate new composite methylation risk scores for maternal smoking, and assess their performance and association with phenotypic characteristics in the three populations, in addition to previously described maternal smoking methylation risk scores.

      Strengths and weaknesses:

      Their meta-analysis across multiple cohorts and comparison with previous findings represents a strength. In particular the inclusion of a South Asian birth cohort is commendable as it may help to bolster generalizability. However, their conclusions are limited by several important weaknesses:

      (1) the low number of (self-reported) maternal smokers in particular their South Asian population, resulting in an inability to conduct benchmarking of maternal smoking sites in this cohort. As such, the inclusion of the START cohort in certain figures is not warranted (e.g., Figure 3) and the overall statement that smoking-associated MRS are portable across populations are not fully supported;<br /> (2) different methylation profiling tools were used: START and CHILD methylation profiles were generated using the more comprehensive 450K array while the FAMILY cohort blood samples were profiled using a targeted array covering only 3,000, as opposed to 450,000 sites, resulting in different coverage of certain sites which affects downstream analyses and MRS, and importantly, omission of potentially relevant sites as the array was designed in 2016 and substantial additional work into epigenetic traits has been conducted since then;<br /> (3) the authors train methylation risk scores (MRS) in CHILD or FAMILY populations based on sites that are associated with maternal smoking in both cohorts and internally validate them in the other cohort, respectively. As START cohort due to insufficient numbers of self-reported maternal smokers, the authors cannot fully independently validated their MRS, thus limiting the strength of their results.

      Overall strength of evidence and conclusions:

      Despite these limitations, the study overall does explore the feasibility of using neonatal cord blood for the assessment of maternal smoking. However, their conclusion on generalizability of the maternal smoking risk score is currently not supported by their data as they were not able to validate their score in a sufficiently large number of maternal smokers and never smokers of South Asian populations.

      While their generalizability remains limited due to small sample numbers and previous studies with methylation risk scores exist, their findings may nonetheless provide the basis for future work into prenatal exposures which will be of interest to the research community. In particular their finding that the maternal smoking-associated MRS was associated with small birth sizes and weights across birth cohorts, including the South Asian birth cohort that had very few self-reported smokers, is interesting and the author suggest these findings could be associated with factors other than smoking alone (e.g., pollution), which warrant further investigation and would be highly novel.<br /> Future exploration should also include a strong focus on more diverse health outcomes, including respiratory conditions that may have long-lasting health consequences.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors use fluorescence lifetime imaging (FLIM) and tmFRET to resolve resting vs. active conformational heterogeneity and free energy differences driven by cGMP and cAMP in a tetrameric arrangement of CNBDs from a prokaryotic CNG channel.

      Strengths:

      The excellent data provide detailed measures of the probability of adopting resting vs. activated conformations with and without bound ligands.

      Weaknesses:

      Limitations are that only the cytosolic fragments of the channel were studied, and the current manuscript does not do a good job of placing the results in the context of what is already known about CNBDs from other methods that yield similar information.

    2. Reviewer #2 (Public Review):

      The authors investigated the conformational dynamics and energetics of the SthK Clinker/CNBD fragment using both steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. To do so, they engineered donor-acceptor pairs at specific sites of the CNBD (C-helix and β-roll) by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. In particular, the authors employed two cysteine-reactive metal chelators (TETAC and phenM). This allowed them to coordinate three transition metals (Cu2+, Fe2+, and Ru2+) to measure both short (10-20 Å, Cu2+) and long distances (25-50 Å, Fe2+, and Ru2+). By measuring tmFRET with fluorescence lifetimes, the authors determined intramolecular distance distributions in the absence and presence of the full agonist cAMP or the partial agonist cGMP. The probability distributions between conformational states without and with ligands were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model.

      Overall, the work is conducted in a rigorous manner, and it is well-written. I greatly enjoyed reading it.

      Nonetheless, I do not see the novelty that the authors claim.

      In terms of methodology, this work provides further support to steady-state and time-resolved tmFRET approaches previously developed by the authors of the present work to probe conformational rearrangements by using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor (Zagotta et al., eLIfe 2021; Gordon et al., Biophysical Journal 2024; Zagotta et al., Biophysical Journal 2024).

      Regarding cyclic nucleotide-binding domain (CNBD)-containing ion channels, I disagree with the authors when they state that "the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood". On the contrary, I would say that the literature on this subject is rather vast and based on a significantly large variety of methodologies. This is a not exhaustive list of papers: Zagotta et al., Nature 2003; Craven et al., GJP, 2004; Craven et al., JBC, 2008; Taraska et al., Nature Methods, 2009; Puljung et al., JBC, 2013; Saponaro et al., PNAS 2014; Goldschen-Ohm et al., eLife, 2016; Bankston et al., JBC, 2017; Hummert et al., PLoS Comput Biol., 2018; Porro et al., eLife, 2019; Ng et al., JGP, 2019; Porro et al., JGP, 2020; Evans et al., PNAS, 2020; Pfleger et al., Biophys J. 2021; Saponaro et al., Mol Cell, 2021; Dai et al., Nat Commun. 2021; Kondapuram et al., Commun Biol. 2022. These studies were conducted either on the isolated Clinker/CNBD fragments or on the entire full-length proteins. As is evident from the above list, the authors of the present work have significantly contributed to the understanding of the allosteric mechanism governing the ligand-induced activation of CNBD-containing channels, including a detailed description of the energetic changes induced by ligand binding. Particularly relevant are their works based on DEER spectroscopy. In DeBerg et al., JBC 2016, the authors described, in atomic detail, the conformational changes induced by different cyclic nucleotides on the HCN CNBD fragment and derived energetics associated with ligand binding to the CNBD (ΔΔG). In Collauto et al., Phys Chem Chem Phys. 2017, they further detailed the ligand-CNBD conformational changes by combining DEER spectroscopy with microfluidic rapid freeze quench to resolve these processes and obtain both equilibrium constants and reaction rates, thus demonstrating that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational changes.

      Suggestions:

      - In light of the above, I suggest the authors better clarify the contribution/novelty that the present work provides to the state-of-the-art methodology employed (steady-state and time-resolved tmFRET) and of CNBD-containing ion channels. In particular, it would be nice to have a comparison with the conformational dynamics and energetics reported in the previous works of the authors based on DEER spectroscopy (DeBerg et al., JBC 2016, Collauto et al., Phys Chem Chem Phys. 2017 and Evans et al., PNAS, 2020) and with Goldschen-Ohm et al., eLife, 2016, where single-molecule events (FRET-based) of cAMP binding to HCN CNBD were measured and kinetic rate constants were models in the context of a simple four-state model, reminiscent of the model employed in the present work.

      - Even considering the bacterial SthK channel, cryo-EM has significantly advanced the atomistic understanding of its ligand-dependent regulation (Rheinberger et al., eLife, 2018). More recently, the authors of the present work have elegantly employed DEER on full-length SthK protein to reveal ligand-dependent conformational rearrangements in the Clinker region (Evans et al., PNAS, 2020). In light of the above, what is the contribution/novelty that the present work provides to the SthK biophysics?

      - The authors decided to use the Clinker/CNBD fragment of SthK. On the basis of the above-cited work (Evans et al., PNAS, 2020) the authors should clarify why they have decided to work on the isolated Clinker/CNBD fragment and not on the full-length protein. I assume that the use of the C-licker/CNBD fragment was necessary to isolate tetramers with only one labelled subunit (fSEC and MP were used to confirm this) to avoid inter-subunit crass-talk. However, I am not clear if this is correct.

      - What is the advantage of using the Clinker/CNBD fragment of a bacterial protein and not one of HCN channels, as already successfully employed by the authors (see above citations)?

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript aims to provide insights into conformational transitions in the cyclic nucleotide-binding domain of a cyclic nucleotide-gated (CNG) channel. The authors use transition metal FRET (tmFRET) which has been pioneered by this lab and previously led to detailed insights into ion channel conformational changes. Here, the authors not only use steady-state measurements but also time-resolved, fluorescence lifetime measurements to gain detailed insights into conformational transitions within a protein construct that contains the cytosolic C-linker and cyclic nucleotide-binding domain (CNBD) of a bacterial CNG channel. The use of time-resolved tmFRET is a clear advancement of this technique and a strength of this manuscript.

      In summary, the present work introduced time-resolved tmFRET as a novel tool to study conformational distributions in proteins. This is a clear technological advance. At this stage, conclusions made about energetics in CNG channels are overstated. However, it will be interesting to see in the future how results compare to similar measurements on full-length channels, for example, reconstituted into nanodiscs.

      Strengths:

      The results capture known differences in promoting the open state between different ligands (cAMP and cGMP) and are consistent across three donor-acceptor FRET pairs. The calculated distance distributions further are in reasonable agreement with predicted values based on available structures. The finding that the C-helix is conformationally more mobile in the closed state as compared to the open state quantitatively increases our understanding of conformational changes in these channels.

      Weaknesses:

      While the use of a truncated construct of SthK is justified, it also comes with certain limitations. The construct is missing the transmembrane part including the pore for ions. However, the pore is the central part of every ion channel and is crucial to describe conformational transitions and energetics that lead to ion channel gating. Two observations in the present study disagree with the results for the full-length channel protein. Here, under apo conditions, the CNBD can adopt an 'open' conformation, and second, cooperativity of channel opening is lost. These differences need to be weighed carefully when judging the impact of the presented results for understanding allostery in CNG channels. Qualitatively, the results can describe movements of the C-helix in CNBDs, but detailed energetics as calculated in this study, need to be limited to the truncated protein construct used. The entire ion channel is an allosteric system and detailed, energetic conclusions cannot be made for the full-length channel when working with only the cytosolic domains. Similarly, the statement "These results demonstrate that time-resolved tmFRET can be utilized to obtain energetic information on the individual domains during the allosteric activation of SthK." is misleading. The data only describe movements of the C-helix. Upon ligand binding, the C-helix moves upwards to coordinate the ligand. Thus, the results are ligand-induced conformational changes (as the title states). Allosteric regulation usually involves remote locations in the protein, which is not the case here.

    1. Reviewer #1 (Public Review):

      Experiments in model organisms have revealed that the effects of genes on heritable traits are often mediated by environmental factors---so-called gene-by-environment (or GxE) interactions. In human genetics, however, where indirect statistical approaches must be taken to detect GxE, limited evidence has been found for pervasive GxE interactions. The present manuscript argues that the failure of statistical methods to detect GxE may be due to how GxE is modelled (or not modelled) by these methods.

      The authors show, via re-analysis of an existing dataset in Drosophila, that a polygenic 'amplification' model can parsimoniously explain patterns of differential genetic effects across environments. (Work from the same lab had previously shown that the amplification model is consistent with differential genetic effects across the sexes for several traits in humans.) The parsimony of the amplification model allows for powerful detection of GxE in scenarios in which it pertains, as the authors show via simulation.

      Before the authors consider polygenic models of GxE, however, they present a very clear analysis of a related question around GxE: When one wants to estimate the effect of an individual allele in a particular environment, when is it better to stratify one's sample by environment (reducing sample size, and therefore increasing the variance of the estimator) versus using the entire sample (including individuals not in the environment of interest, and therefore biasing the estimator away from the true effect specific to the environment of interest)? Intuitively, the sample-size cost of stratification is worth paying if true allelic effects differ substantially between the environment of interest and other environments (i.e., GxE interactions are large), but not worth paying if effects are similar across environments. The authors quantify this trade-off in a way that is both mathematically precise and conveys the above intuition very clearly. They argue on its basis that, when allelic effects are small (as in highly polygenic traits), single-locus tests for GxE may be substantially underpowered.

      The paper is an important further demonstration of the plausibility of the amplification model of GxE, which, given its parsimony, holds substantial promise for the detection and characterization of GxE in genomic datasets. However, the empirical and simulation examples considered in the paper (and previous work from the same lab) are somewhat "best-case" scenarios for the amplification model, with only two environments, and with these environments amplifying equally the effects of only a single set of genes. It would be an important step forward to demonstrate the possibility of detecting amplification in more complex scenarios, with multiple environments each differentially modulating the effects of multiple sets of genes. This could be achieved via simulations similar to those presented in the current manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      Wine et al. describe a framework to view the estimation of gene-context interaction analysis through the lens of bias-variance tradeoff. They show that, depending on trait variance and context-specific effect sizes, effect estimates may be estimated more accurately in context-combined analysis rather than in context-specific analysis. They proceed by investigating, primarily via simulations, implications for the study or utilization of gene-context interaction, for testing and prediction, in traits with polygenic architecture. First, the authors describe an assessment of the identification of context-specificity (or context differences) focusing on "top hits" from association analyses. Next, they describe an assessment of polygenic scores (PGSs) that account for context-specific effect sizes, showing, in simulations, that often the PGSs that do not attempt to estimate context-specific effect sizes have superior prediction performance. An exception is a PGS approach that utilizes information across contexts.

      Strengths:

      The bias-variance tradeoff framing of GxE is useful, interesting, and rigorous. The PGS analysis under pervasive amplification is also interesting and demonstrates the bias-variance tradeoff.

      Weaknesses:

      The weakness of this paper is that the first part -- the bias-variance tradeoff analysis -- is not tightly connected to, i.e. not sufficiently informing, the later parts, that focus on polygenic architecture. For example, the analysis of "top hits" focuses on the question of testing, rather than estimation, and testing was not discussed within the bias-variance tradeoff framework. Similarly, while the PGS analysis does demonstrate (well) the bias-variance tradeoff, the reader is left to wonder whether a bias-variance deviation rule (discussed in the first part of the manuscript) should or could be utilized for PGS construction.

    1. Reviewer #1 (Public Review):

      Tu et al investigated how LFPs recorded simultaneously with rsfMRI explain the spatiotemporal patterns of functional connectivity in sedated and awake rats. They find that connectivity maps generated from gamma band LFPs (from either area) explain very well the spatial correlations observed in rsfMRI signals, but that the temporal variance in rsfMRI data is more poorly explained by the same LFP signals. The authors excluded the effects of sedation in this effect by investigating rats in the awake state (a remarkable feat in the MRI scanner), where the findings generally replicate. The authors also performed a series of tests to assess multiple factors (including noise, outliers, etc., and nonlinearity of the data...) in their analysis.

      This apparent paradox is then explained by a hypothetical model in which LFPs and neurovascular coupling are generated in some sense "in parallel" by different neuron types, some of which drive LFPs and are measured by ePhys, while others (nNOS, etc.) have an important role in neurovascular coupling but are less visible in Ephys data. Hence the discrepancy is explained by the spatial similarity of neural activity but the more "selective" LFPs picked up by Ephys account for the different temporal aspects observed.

      This is a deep, outstanding study that harnesses multidisciplinary approaches (fMRI and ephys) for observing brain activity. The results are strongly supported by the comprehensive analyses done by the authors, that ruled out many potential sources for the observed findings. The study's impact is expected to be very large.

      There are very few weaknesses in the work, but I'd point out that the 1-second temporal resolution may have masked significant temporal correlations between LFPs and spontaneous activity, for instance, as shown by Cabral et al Nature Communications 2023, and even in earlier QPP work from the Keilholz Lab. The synchronization of the LFPs may correlate more with one of these modes than the total signal. Perhaps a kind of "dynamic connectivity" analysis on the authors' data could test whether LFPs correlate better with the activity at specific intervals. However this could purely be discussed and left for future work, in my opinion.

    2. Reviewer #2 (Public Review):<br /> The authors investigate the disparity between spatial extant and temporal variance of electrophysiological-fMRI correlations in a rodent model. They found high correspondence in spatial extent but a disparity in temporal variance. From this, they propose a model of an electrophysiologically-invisible signal affecting temporal variance.

      I remain skeptical about the "electrophysiologically invisible signal" model but the authors have done a much better job of both explaining it and hedging it in this version. Readers can decide for themselves.

      The revision submitted by the authors substantially improves writing and methods.

    1. Reviewer #1 (Public Review):

      Summary

      In their manuscript, Ho and colleagues investigate the importance of thymic-imprinted self-reactivity in determining CD8 T cell pathogenicity in non-obese diabetic (NOD) mice. The authors describe pre-existing functional biases associated with naive CD8 T cell self-reactivity based on CD5 levels, a well-characterized proxy for T cell affinity to self-peptide. They find that naive CD5hi CD8 T cells are poised to respond to antigen challenge; these findings are largely consistent with previously published data on the B6 background. The authors go on to suggest that CD5hi CD8 T cells are more diabetogenic as 1) the CD5hi naive CD8 T cell receptor repertoire has features associated with autoreactivity and contains a larger population of islet-specific T cells, and 2) the autoreactivity of "CD5hi" monoclonal islet-specific TCR transgenic T cells cannot be controlled by phosphatase over-expression. Thus, they implicate CD8 T cells with relatively higher levels of basal self-reactivity in autoimmunity. However, the interpretation of some of the presented data is questioned and compromises some of the conclusions at this stage. A clearer explanation of the data and experimental methods as well as increased rigor in presentation is suggested.

      Specific comments

      (1) Figures 1 through 4 contain data that largely recapitulate published findings (Fulton et al., Nat. Immunol, 2015; Lee et al, Nat. Comm., 2024; Swee et al, Open Biol, 2016; Dong et al, Immunology & Cell Biology, 2021); it is noted that there is value in confirming phenotypic differences between naive CD5lo and CD5hi CD8 T cells in the NOD background. It is important to contextualize the data while being wary of making parallels with results obtained from CD5lo and CD5hi CD4 T cells. There should also be additional attention paid to the wording in the text describing the data (e.g, the authors assert that, in Figure 4C, the "CD5hi group exhibited higher percentages of CD8+ T cells producing TNF-α, IFN-γ and IL-2" though there is no difference in IL-2 nor consistent differences in TNF-α between the CD5lo and CD5hi populations).

      (2) The comparison of a marker of self-reactivity, CD5 in this case, on broad thymocyte populations (DN/DP/CD8SP) is cautioned (Figure 5). CD5 is upregulated with signals associated with b-selection and positive selection; CD5 levels will thus vary even among subsets within these broad developmental intermediates. This is a particularly important consideration when comparing CD5 across thymic intermediates in polyclonal versus TCR transgenic thymocytes due to the striking differences in thymic selection efficiency, resulting in different developmental population profiles. The higher levels of CD5 noted in the DN population of NOD8.3 mice, for example, is likely due to the shift towards more mature DN4 post-b-selection cells (Figure 5E, Supplementary Figure 3A). Similarly, in the DP population, the larger population of post-positive selection cells in the NOD8.3 transgenic thymus may also skew CD5 levels significantly (Figure 5F, Supplementary Figure 3A). Overall, the reported differences between NOD and NOD8.3 thymocyte subsets could be due largely to differences in differentiation/maturation stage rather than affinity for self-antigen during T cell development. The lack of differences in CD5 levels of CD8 SP thymocytes (Fig. 5B) and CD8 T cells in the pancreas draining lymph nodes (Fig. 6B) from NOD vs NOD8.3 mice also raises questions about the relevance of this model to address the question of basal self-reactivity and diabetogenicity; the phenotype of the CD8 T cells that were analyzed in the pancreas draining lymph nodes is not clear (i.e., are these gated on naive T cells?). Furthermore, the rationale for the comparison with NOD-BDC2.5 mice that carry an MHC II-restricted TCR is unclear.

      (3) In reference to the conclusion that transgenic Pep phosphatase does not inhibit the diabetogenic potential of "CD5hi" CD8 T cells, there is some concern that comparing diabetes development in mice receiving polyclonal versus TCR transgenic T cells specific for an islet antigen is not appropriate. The increased frequency and number of antigen-specific T cells in the NOD8.3 mice may be responsible for some of the observed differences. Further justification for the comparison is suggested.

      (4) There is an interesting observation that TCR sequences from the CD5hi CD8 T cells may share some characteristics with diabetogenic T cells found in patients (e.g., CDR3 length) and that IGFP-specific T cells may be preferentially found within the CD5hi naive CD8 T cell population. However, there are questions about the reproducibility of the TCR sequencing data given the low number of replicates and sampling size. In particular, the TRAV, TRAJ, TRBV, and TRBJ frequency is variable across sequencing runs. Is this data truly representative of the overall TCR repertoire of CD5hi vs CD5lo CD8 T cells?

      (5) For clarity and transparency, please consider:<br /> ● Naïve T cell gating/sorting is not always clear.<br /> ● Additional controls should be considered for tetramer and cytokine stains/gating, in particular.<br /> ● The reporting of the percentage of cells expressing a certain marker (e.g., activation marker) and gMFI of this marker is often used interchangeably. Reporting gMFI is most appropriate for unimodal populations (normal distribution), but some of the populations for which gMFI is reported are bimodal (e.g., DN CD5 in Supplementary Figure 3D, etc.). The figure legends throughout the paper do not clearly explain the gating strategy when reporting gMFI. When reporting frequency, the reference population is often unclear (% of parent population, % of naive CD8 T cells, etc.).<br /> ● Several items are missing or incorrectly described in the methods section; for example:<br /> --EdU incorporation assay presented in Supplementary Figure 4.<br /> --Construction of the Overlapped Count Matrix in Figure 7G.<br /> --Clonality, Pielou's evenness, richness, and medium metrics, although reported in the methods, are not shown in any of the figures as far as noted.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Chia-Lo Ho et al. study the impact of CD5high CD8 T cells in the pathophysiology of type 1 diabetes (T1D) in NOD mice. The authors used high expression of CD5 as a surrogate of high TCR signaling and self-reactivity and compared the phenotype, transcriptome, TCR usage, function, and pathogenic properties of CD5high vs. CD5low CD8 T cells extracted from the so-called naive T cell pool. The study shows that CD5high CD8 T cells resemble memory T cells poised for a stronger response to TCR stimulation and that they exacerbate disease upon transfer in RAG-deficient NOD mice. The authors attempt to link these features to the thymic selection events of these CD5high CD8 T cells. Importantly, forced overexpression of the phosphatase PTPN22 in T cells attenuated TCR signaling and reduced pathogenicity of polyclonal CD8 T cells but not highly autoreactive 8.3-TCR CD8 T cells.

      Strengths:

      The study is nicely performed and the manuscript is clear and well-written. Interpretation of the data is careful and fair. The data are novel and likely important. However, some issues would need to be clarified through either text changes or the addition of new data.

      Weaknesses:

      The definition of naïve T cells based solely on CD44low and CD62Lhigh staining may be oversimplistic. Indeed, even within this definition, naïve CD5high CD8 T cells express much higher levels of CD44 than CD5low CD8 T cells.

    3. Reviewer #3 (Public Review):

      Summary:

      In this study, Ho et al. hypothesised that autoreactive T cells receiving enhanced TCR signals during positive selection in the thymus are primed for generating effector and memory T cells. They used CD5 as a marker for TCR signal strength during their selection at the double positive stage. Supporting their hypothesis, naïve T cells with high CD5 levels expressed markers of T cell activation and function at higher levels compared to naïve T cells with lower levels of CD5. Furthermore, results showed that autoimmune diabetes can be efficiently induced after the transfer of naïve CD5 hi T cells compared to CD5 lo T cells, this provided solid evidence in support of their hypothesis that T cells receiving higher basal TCR signaling are primmed to develop into effector T cells. These results have to be carefully interpreted because both CD5 hi and CD5 lo naïve T cells are capable of inducing diabetes, meaning that both CD5 hi and CD5 lo T cell compartments harbour autoreactive T cells. The evidence that transgenic PTPN22 expression could not regulate T cell activation in CD5 hi TCR transgenic autoreactive T cells was weak.

      Strengths:

      (1) Demonstrating that CD5 hi cells in naïve CD8 T cell compartment express markers of T cell activation, proliferation, and cytotoxicity at a higher level.

      (2) Using gene expression analysis, the study showed CD5 hi cells among naïve CD8 T cells are transcriptionally poised to develop into effector or memory T cells.

      (3) The study showed that CD5 hi cells have higher basal TCR signaling compared to CD5 lo T cells.

      (4) Key evidence of pathogenicity of autoreactive CD5 hi T cells was provided by doing the adoptive transfer of CD5 hi and CD5 lo CD8 T cells into NOD Rag1-/- mice and comparing them.

      Weaknesses:

      (1) Although CD5 can be used as a marker for self-reactivity and T cell signal strength during thymic development, it can be also regulated in the periphery by tonic TCR signaling or when T cells are activated by its cognate antigen. Hence, TCR signals in the periphery could also prime the T cells toward effector/memory differentiation. That's why from the evidence presented here it cannot be concluded that this predisposition of T cells towards effector/memory differentiation is programmed due to higher reactivity towards self-MHC molecules in the thymus, as stated in the title.

      (2) Experiments done in this study did not address why CD5 hi T cells could be negatively regulated in NOD mice when PTPN22 is overexpressed resulting in protection from diabetes but the same cannot be achieved in NOD8.3 mice.

      (3) Experimental evidence provided to show that PTPN22 overexpression does not regulate TCR signaling in NOD8.3 T cells is weak.

      (4) TCR sequencing analysis does not conclusively show that the CD5 hi population is linked with autoreactive T cells. Doing single-cell RNAseq and TCR seq analysis would have helped address this question.

      (5) When analysing data from CD5 hi T cells from the pancreatic lymph node, it is difficult to discriminate if the phenotype is just because of T cells that would have just encountered the cognate antigen in the draining lymph node or if it is truly due to basal TCR signaling.

      (6) In general, authors should provide relevant positive-negative controls and gating with representative flow-cytometry plots when they are showing activation of T cells in CD5 lo and CD5 hi compartments.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to elucidate the cytological mechanisms by which conjugated linoleic acids (CLAs) influence intramuscular fat deposition and muscle fiber transformation in pig models. Utilizing single-nucleus RNA sequencing (snRNA-seq), the study explores how CLA supplementation alters cell populations, muscle fiber types, and adipocyte differentiation pathways in pig skeletal muscles.

      Strengths:

      Innovative approach: The use of snRNA-seq provides a high-resolution insight into the cellular heterogeneity of pig skeletal muscle, enhancing our understanding of the intricate cellular dynamics influenced by nutritional regulation strategy.

      Robust validation: The study utilizes multiple pig models, including Heigai and Laiwu pigs, to validate the differentiation trajectories of adipocytes and the effects of CLA on muscle fiber type transformation. The reproducibility of these findings across different (nutritional vs genetic) models enhances the reliability of the results.

      Advanced data analysis: The integration of pseudotemporal trajectory analysis and cell-cell communication analysis allows for a comprehensive understanding of the functional implications of the cellular changes observed.

      Practical relevance: The findings have significant implications for improving meat quality, which is valuable for both the agricultural and food industry.

      Weaknesses:

      Model generalizability: While pigs are excellent models for human physiology, the translation of these findings to human health, especially in diverse populations, needs careful consideration.

    2. Reviewer #2 (Public Review):

      Summary:

      This study comprehensively presents data from single nuclei sequencing of Heigai pig skeletal muscle in response to conjugated linoleic acid supplementation. The authors identify changes in myofiber type and adipocyte subpopulations induced by linoleic acid at depth previously unobserved. The authors show that linoleic acid supplementation decreased the total myofiber count, specifically reducing type II muscle fiber types (IIB), myotendinous junctions, and neuromuscular junctions, whereas type I muscle fibers are increased. Moreover, the authors identify changes in adipocyte pools, specifically in a population marked by SCD1/DGAT2. To validate the skeletal muscle remodeling in response to linoleic acid supplementation, the authors compare transcriptomics data from Laiwu pigs, a model of high intramuscular fat, to Heigai pigs. The results verify changes in adipocyte subpopulations when pigs have higher intramuscular fat, either genetically or diet-induced. Targeted examination using cell-cell communication network analysis revealed associations with high intramuscular fat with fibro-adipogenic progenitors (FAPs).  The authors then conclude that conjugated linoleic acid induces FAPs towards adipogenic commitment. Specifically, they show that linoleic acid stimulates FAPs to become SCD1/DGAT2+ adipocytes via JNK signaling. The authors conclude that their findings demonstrate the effects of conjugated linoleic acid on skeletal muscle fat formation in pigs, which could serve as a model for studying human skeletal muscle diseases.

      Strengths:

      The comprehensive data analysis provides information on conjugated linoleic acid effects on pig skeletal muscle and organ function. The notion that linoleic acid induces skeletal muscle composition and fat accumulation is considered a strength and demonstrates the effect of dietary interactions on organ remodeling. This could have implications for the pig farming industry to promote muscle marbling. Additionally, these data may inform the remodeling of human skeletal muscle under dietary behaviors, such as elimination and supplementation diets and chronic overnutrition of nutrient-poor diets. However, the biggest strength resides in thorough data collection at the single nuclei level, which was extrapolated to other types of Chinese pigs.

      Weaknesses:

      While the authors generated a sizeable comprehensive dataset, cellular and molecular validation needed to be improved. For example, the single nuclei data suggest changes in myofiber type after linoleic acid supplementation, yet these data are not validated by other methodologies. Similarly, the authors suggest that linoleic acid alters adipocyte populations, FAPs, and preadipocytes; however, no cellular and molecular analysis was performed to reveal if these trajectories indeed apply. Attempts to identify JNK signaling pathways appear superficial and do not delve deeper into mechanistic action or transcriptional regulation. Notably, a variety of single cell studies have been performed on mouse/human skeletal muscle and adipose tissues. Yet, the authors need to discuss how the populations they have identified support the existing literature on cell-type populations in skeletal muscle. Moreover, the authors nicely incorporate the two pig models into their results, but the authors only examine one muscle group. It would be interesting if other muscle groups respond similarly or differently in response to linoleic acid supplementation. Further, it was unclear whether Heigai and Laiwu pigs were both fed conjugated linoleic acid or whether the comparison between Heigai-fed linoleic acid and Laiwu pigs (as a model of high intramuscular fat). With this in mind, the authors do not discuss how their results could be implicated in human and pig nutrition, such as desirability and cost-effectiveness for pig farmers and human diets high in linoleic acid. Notably, while single nuclei data is comprehensive, there needs to be a statement on data deposition and code availability, allowing others access to these datasets. Moreover, the experimental designs do not denote the conjugated linoleic acid supplementation duration. Several immunostainings performed could be quantified to validate statements. This reviewer also found the Nile Red staining hard to interpret visually and did not appear to support the conclusions convincingly. Within Figure 7, several letters (assuming they represent statistical significance) are present on the graphs but are not denoted within the figure legend.

    1. Reviewer #1 (Public Review):

      Summary:

      The study investigates the impact of Clonal Hematopoiesis of Indeterminate Potential (CHIP) on Immune Checkpoint Inhibitor (ICI) therapy outcomes in NSCLC patients, analyzing blood samples from 100 patients pre- and post-ICI therapy for CHIP, and conducting single-cell RNA sequencing (scRNA-seq) of PBMCs in 63 samples, with validation in 180 more patients through whole exome sequencing. Findings show no significant CHIP influence on ICI response, but a higher CHIP prevalence in NSCLC compared to controls, and a notable CHIP burden in squamous cell carcinoma. Severely affected CHIP groups showed NF-kB pathway gene enrichment in myeloid clusters.

      Strengths:

      The study is commendable for analyzing a significant cohort of 100 patients for CHIP and utilizing scRNA-seq on 63 samples, showcasing the use of cutting-edge technology.

      The study tackles the vital clinical question of predicting ICI therapy outcomes in NSCLC.

      Weaknesses:

      The manuscript's comparison of CHIP prevalence between NSCLC patients and healthy controls could be strengthened by providing more detailed information on the control group. Specifically, details such as sex, smoking status, and comorbidities are needed to ensure the differences in CHIP are attributable to lung cancer rather than other factors. Including these details, along with a comparative analysis of demographics and comorbidities between both groups and clarifying how the control group was selected, would enhance the study's credibility and conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors used a large cohort of patients with metastatic lung cancer pre- and 1-3 weeks post-immunotherapy. The goal was to investigate whether immunotherapy results in changes in CHIP clones (using targeted sequencing and whole exome sequencing) as well as to investigate whether patients with CHIP changed their response to immunotherapy (single-cell RNA sequencing).

      Strengths:

      This represents a large cohort of patients, and comprehensive assays - including targeted sequencing, whole exome sequencing, and single-cell RNA sequencing.

      Weaknesses:

      Findings are not necessarily unexpected. With regards to clonal dynamics, it would be very unlikely to see any changes within a few weeks' time frame. Longer follow-up to assess clonal dynamics would realistically be necessary.

    1. Reviewer #3 (Public Review):

      Summary of the Authors' Objectives:

      The authors aimed to delineate the role of S1P/S1PR1 signaling in the dentate gyrus in the context of memory impairment associated with chronic pain. They sought to understand the molecular mechanisms contributing to the variability in memory impairment susceptibility and to identify potential therapeutic targets.

      Major Strengths and Weaknesses of the Study:

      The study is methodologically robust, employing a combination of RNA-seq analysis, viral-mediated gene manipulation, and pharmacological interventions to investigate the S1P/S1PR1 pathway. The use of both knockdown and overexpression approaches to modulate S1PR1 levels provides compelling evidence for its role in memory impairment. The research also benefits from a comprehensive assessment of behavioral changes associated with chronic pain.

      However, the study has some weaknesses. The categorization of mice into 'susceptible' and 'unsusceptible' groups based on memory performance requires further validation. Additionally, the reliance on a single animal model may limit the generalizability of the findings. The study could also benefit from a more detailed exploration of the impact of different types of pain on memory impairment.

      Assessment of the Authors' Achievements:

      The authors successfully identified S1P/S1PR1 signaling as a key factor in chronic pain-related memory impairment and demonstrated its potential as a therapeutic target. The findings are supported by rigorous experimental evidence, including biochemical, histological, and behavioral data. However, the study's impact could be enhanced by further exploration of the molecular pathways downstream of S1PR1 and by assessing the long-term effects of S1PR1 manipulation.

      Impact on the Field and Utility to the Community:

      This study is likely to have a significant impact on pain research by providing a novel perspective on the mechanisms underlying memory impairment in chronic pain conditions. The identification of the S1P/S1PR1 pathway as a potential therapeutic target could guide the development of new treatments.

      Additional Context for Readers:

      The study's approach to categorizing susceptibility to memory impairment could inspire new methods for stratifying patient populations in clinical settings.

      Recommendations:

      (1) A more detailed explanation of the k-means clustering algorithm and its application in categorizing mice should be provided.

      (2) The discussion on the potential influence of different pain types or sensitivities on memory impairment should be expanded.

      (3) The protocol for behavioral testing should be clarified and the potential for learning or stress effects should be addressed.

      (4) Conduct additional behavioral assays for other molecular targets implicated in the study.

      (5) The effective drug thresholds and potential non-specific effects of pharmacological interventions should be discussed in more detail.

    2. Reviewer #1 (Public Review):

      This work from Cui, Pan, Fan, et al explores memory impairment in chronic pain mouse models, a topic of great interest in the neurobiology field. In particular, the work starts from a very interesting observation, that WT mice can be divided into susceptible and unsusceptible to memory impairment upon modelling chronic pain with CCI. This observation represents the basis of the work where the authors identify the sphingosine receptor S1PR1 as down-regulated in the dentate gyrus of susceptible animals and demonstrate through an elegant range of experiments involving AAV-mediated knockdown or overexpression of S1PR1 that this receptor is involved in the memory impairment observed with chronic pain. Importantly for translational purposes, they also show that activation of S1PR1 through a pharmacological paradigm is able to rescue the memory impairment phenotype.

      The authors also link these defects to reduced dendritic branching and a reduced number of mature excitatory synapses in the DG to the memory phenotype.

      They then proceed to explore possible mechanisms downstream of S1PR1 that could explain this reduction in dendritic spines. They identify integrin α2 as an interactor of S1PR1 and show a reduction in several proteins involved in actin dynamic, which is crucial for dendritic spine formation and plasticity.

      They thus hypothesize that the interaction between S1PR1 and Integrin α2 is fundamental for the activation of Rac1 and Cdc42 and consequently for the polymerisation of actin; a reduction in this pathway upon chronic pain would thus lead to impaired actin polymerisation, synapse formation, and thus impaired memory.

      The work is of great interest and the experiments are of very good quality with results of great importance. I have however some concerns. The main concern I have relates to the last part of the work, namely Figures 8 and 9, which I feel are not at the same level as the results presented in the previous 7 Figures, which are instead outstanding.

      In particular:

      - In Figure 8, given the reduction in all the proteins tested, the authors need to check some additional proteins as controls. One good candidate could be RhoA, considering the authors say it is activated by S1PR2 and not by S1PR1;

      - In addition to the previous point, could the authors also show that the number of neurons is not grossly different between susceptible and unsusceptible mice? This could be done by simply staining for NeuN or performing a western blot for a neuronal-specific protein (e.g. Map2 or beta3-tubulin);

      - In Figure 8, the authors should also evaluate the levels of activated RAC1 and activated Cdc42, which are much more important than just basal levels of the proteins to infer an effect on actin dynamics. This is possible through kits that use specific adaptors to pulldown GTP-Rac1 and GTP-Cdc42;

      - In Figure 9C, the experiment is performed in an immortalised cell line. I feel this needs to be performed at least in primary hippocampal neurons;

      - In Figure 9D, the authors use a Yeast two-hybrid system to demonstrate the interaction between S1PR1 and Integrin α2. However, as the yeast two-hybrid system is based on the proximity of the GAL4 activating domain and the GAL4 binding domain, which are used to activate the transcription of reporter genes, the system is not often used when probing the interaction between transmembrane proteins. Could the authors use other transmembrane proteins as negative controls?;

      - In Figure 9E, the immunoblot is very unconvincing. The bands in the inputs are very weak for both ITGA2 and S1PR1, the authors do not show the enrichment of S1PR1 upon its immunoprecipitation and the band for ITGA2 in the IP fraction has a weird appearance. Were these experiments performed on DG lysates only? If so, I suggest the authors repeat the experiment using the whole brain (or at least the whole hippocampus) so as to have more starting material. Alternatively, if this doesn't work, or in addition, they could also perform the immunoprecipitation in heterologous cells overexpressing the two proteins;

      - About the point above, even if the results were convincing, the authors can't say that they demonstrate an interaction in vivo. In co-IP experiments, the interaction is much more likely to occur in the lysate during the incubation period rather than being conserved from the in vivo state. These co-IPs demonstrate the ability of proteins to interact, not necessarily that they do it in vivo. If the authors wanted to demonstrate this, they could perform a Proximity ligation assay in primary hippocampal neurons, using antibodies against S1PR1 and ITGA2.

      - In Figure 9H, could the authors increase the N to see if shItga2 causes further KD in the CCI?

      - To conclusively demonstrate that S1PR1 and ITGA2 participate in the same pathway, they could show that knocking down the two proteins at the same time does not have additive effects on behavioral tests compared to the knockdown of each one of them in isolation.

      Other major concerns:

      - Supplementary Figure 5: the image showing colocalisation between S1PR1 and CamKII is not very convincing. Is the S1PR1 antibody validated on Knockout or knockdown in immunostaining?;

      - It would be interesting to check S1PR2 levels as a control in CCI-chronic animals;

      - Figure 1: I am a bit concerned about the Ns in these experiments. In the chronic pain experiments, the N for Sham is around 8 whereas is around 20 for CCI animals. Although I understand higher numbers are necessary to see the susceptible and unsusceptible populations, I feel that then the same number of Sham animals should be used;

      - Figures 1E and 1G have much higher Ns than the other panels. Why is that? If they have performed this high number of animals why not show them in all panels?;

      - In the experiments where viral injection is performed, the authors should show a zoomed-out image of the brain to show the precision of the injection and how spread the expression of the different viruses was;

      - The authors should check if there is brain inflammation in CCI chronic animals. This would be interesting to explain if this could be the trigger for the effects seen in neurons. In particular, the authors should check astrocytes and microglia. This is of interest also because the pathways altered in Figure 8A are related to viral infection;

      - If the previous point shows increased brain inflammation, it would be interesting for the authors to check whether a prolonged anti-inflammatory treatment in CCI animals administered before the insurgence of memory impairment could stop it from happening;

      - In addition, the authors should speculate on what could be the signal that can induce these molecular changes starting from the site of injury;

      - Also, as the animals are all WT, the authors should speculate on what could render some animals prone to have memory impairments and others resistant.

    3. Reviewer #2 (Public Review):

      Summary:

      The study investigates the molecular mechanisms underlying chronic pain-related memory impairment by focusing on S1P/S1PR1 signaling in the dentate gyrus (DG) of the hippocampus. Through behavioural tests (Y-maze and Morris water maze) and RNA-seq analysis, the researchers segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations. They discovered that S1P/S1PR1 signaling is crucial for determining susceptibility to memory impairment, with decreased S1PR1 expression linked to structural plasticity changes and memory deficits.

      Knockdown of S1PR1 in the DG induced a susceptible phenotype, while overexpression or pharmacological activation of S1PR1 promoted resistance to memory impairment and restored normal synaptic structure. The study identifies actin cytoskeleton-related pathways, including ITGA2 and its downstream Rac1/Cdc42 signaling, as key mediators of S1PR1's effects, offering new insights and potential therapeutic targets for chronic pain-related cognitive dysfunction.

      This manuscript consists of a comprehensive investigation and significant findings. The study provides novel insights into the molecular mechanisms of chronic pain-related memory impairment, highlighting the critical role of S1P/S1PR1 signaling in the hippocampal dentate gyrus. The clear identification of S1P/S1PR1 as a potential therapeutic target offers promising avenues for future research and treatment strategies. The manuscript is well-structured, methodologically sound, and presents valuable contributions to the field.

      Strengths:

      (1) The manuscript is well-structured and written in clear, concise language. The flow of information is logical and easy to follow.

      (2) The segregation of mice into memory impairment-susceptible and -unsusceptible subpopulations is innovative and well-justified. The statistical analyses are robust and appropriate for the data.

      (3) The detailed examination of S1PR1 expression and its impact on synaptic plasticity and actin cytoskeleton reorganization is impressive. The findings are significant and contribute to the understanding of chronic pain-related memory impairment.

      Weaknesses:

      (1) Results: While the results are comprehensive, some sections are data-heavy and could be more reader-friendly with summarized key points before diving into detailed data.

      (2) Discussion: There is a need for a more balanced discussion regarding the limitations of the study. For example, addressing potential biases in the animal model or limitations in the generalizability of the findings to humans would strengthen the discussion. Also, providing specific suggestions for follow-up studies would be beneficial.

      (3) Conclusion: The conclusion, while concise, could better highlight the study's broader impact on the field and potential clinical implications.

    1. Reviewer #1 (Public Review):

      Summary:

      This research article by Nath et al. from the Lee Lab addresses how lipolysis under starvation is achieved by a transient receptor potential channel, TRPγ, in the neuroendocrine neurons to help animals survive prolonged starvation. Through a series of genetic analyses, the authors identify that TRPγ mutations specifically lead to a failure in lipolytic processes under starvation, thereby reducing animals' starvation resistance. The conclusion was confirmed through total triacylglycerol levels in the animals and lipid droplet staining in the fat bodies. This study highlights the importance of transient receptor potential (TRP) channels in the fly brain to modulate energy homeostasis and combat metabolic stress. While the data is compelling and the message is easy to follow, several aspects require further clarification to improve the interpretation of the research and its visibility in the field.

      Strengths:

      This study identifies the biological meaning of TRPγ in promoting lipolysis during starvation, advancing our knowledge about TRP channels and the neural mechanisms to combat metabolic stress. Furthermore, this study demonstrates the potential of the TRP channel as a target to develop new therapeutic strategies for human metabolic disorders by showing that metformin and AMPK pathways are involved in its function in lipid metabolisms during starvation in Drosophila.

      Weaknesses:

      Some key results that might strengthen their conclusions were left out for discussion or careful explanation (see below). If the authors could improve the writing to address their findings and connect their findings with conclusions, the research would be much more appreciated and have a higher impact in the field.

      Here, I listed the major issues and suggestions for the authors to improve their manuscript:

      (1) Are the increased lipid droplet size and the upregulated total TAG level measured in the starved or sated mutant in Figure 1? This information might be crucial for readers to understand the physiological function of TRP in lipid metabolism. In other words, clarifying whether the upregulated lipid storage is observed only in the starved trp mutant will advance our knowledge of TRPγ. If the increase of total TAG level is only observed in the starved animals, TRP in the Dh44 neurons might serve as a sensor for the starvation state required to promote lipolysis in starvation conditions. On the other hand, if the total TAG level increases in both starved and sated animals, activation of Dh44 through TRPγ might be involved in the lipid metabolism process after food ingestion.

      (2) It is unclear how AMPK activation in Dh44 neurons reduces the total triacylglycerol (TAG) levels in the animals (Figure 3G). As AMPK is activated in response to metabolic stress, the result in Figure 3G might suggest that Dh44 neurons sense metabolic stress through AMPK activation to promote lipolysis in other tissues. Do Dh44 neurons become more active during starvation? Is activation of Dh44 neurons sufficient to activate AMPK in the Dh44 neurons without starvation? Is activation of AMPK in the Dh44 neurons required for Dh44 release and lipolysis during starvation? These answers would provide more insights into the conclusion in Lines 192-193.

      (3) It is unclear how the lipolytic gene brummer is further downregulated in the trpγ mutant during starvation while brummer is upregulated in the control group (Figure 6A). This result implies that the trpγ mutant was able to sense the starvation state but responded abnormally by inhibiting the lipolytic process rather than promoting lipolysis, which makes it more susceptible to starvation (Figure 3B).

      (4) There is an inconsistency of total TAG levels and the lipid droplet size observed in the Dh44 mutant but not in the Dh44-R2 mutant (Figures 7A and 7F). This inconsistency raises a possibility that the signaling pathway from Dh44 release to its receptor Dh44-R2 only accounts for part of the lipid metabolic process under starvation. Adding discussion to address this inconsistency may be helpful for readers to appreciate the finding.

    2. Reviewer #2 (Public Review):

      Summary:

      In this paper, the function of trpγ in lipid metabolism was investigated. The authors found that lipid accumulation levels were increased in trpγ mutants and remained high during starvation; the increased TAG levels in trpγ mutants were restored by the expression of active AMPK in DH44 neurons and oral administration of the anti-diabetic drug metformin. Furthermore, oral administration of lipase, TAG, and free fatty acids effectively restored the survival of trpγ mutants under starvation conditions. These results indicate that TRPv plays an important role in the maintenance of systemic lipid levels through the proper expression of lipase. Furthermore, authors have shown that this function is mediated by DH44R2. This study provides an interesting finding in that the neuropeptide DH44 released from the brain regulates lipid metabolism through a brain-gut axis, acting on the receptor DH44R2 presumably expressed in gut cells.

      Strengths:

      Using Drosophila genetics, careful analysis of which cells express trpγ regulates lipid metabolism is performed in this study. The study supports its conclusions from various angles, including not only TAG levels, but also fat droplet staining and survival rate under starved conditions, and oral administration of substances involved in lipid metabolism.

      Weaknesses:

      Lipid metabolism in the gut of DH44R2-expressing cells should be investigated for a better understanding of the mechanism. Fat accumulation in the gut is not mechanistically linked with fat accumulation in the fat body. The function of lipase in the gut (esp. R2 region) should be addressed, e.g. by manipulating gut-lipases such as magro or Lip3 in the gut in the contest of trpγ mutant. Also, it is not clarified which cell types in the gut DH44R2 is expressed. The study also mentioned only in the text that bmm expression in the gut cannot restore lipid droplet enlargement in the fat body, but this result might be presented as a figure.

    3. Reviewer #3 (Public Review):

      In this manuscript, the authors demonstrated the significance of the TRPγ channel in regulating internal TAG levels. They found high TAG levels in TRPγ mutant, which was ascribed to a deficit in the lipolysis process due to the downregulation of brummer (bmm). It was notable that the expression of TRPγ in DH44+ PI neurons, but not dILP2+ neurons, in the brain restored the internal TAG levels and that the knockdown of TRPγ in DH44+ PI neurons resulted in an increase in TAG levels. These results suggested a non-cell autonomous effect of Dh44+PI neurons. Additionally, the expression of the TRPγ channel in Dh44 R2-expressing cells restored the internal TAG levels. The authors, however, did not provide an explanation of how TRPγ might function in both presynaptic and postsynaptic cells in the non-cell autonomous manner to regulate the TAG storage. The authors further determined the effect of TRPγ mutation on the size of lipid droplets (LD) and the lifespan and found that TRPγ mutation caused an increase in the size of LD and a decrease in the lifespan, which were reverted by feeding lipase and metformin. These were creative endeavors, I thought. The finding that DH44+ PI neurons have non-cell autonomous functions in regulating bodily metabolism (mainly sugar/lipid) in addition to directing sugar nutrient sensing and consumption is likely correct, but the paper has many loose ends. I would like to see a revision that includes more experiments to tighten up the findings and appropriate interpretations of the results.

      (1) The authors need to provide interpretations or speculations as to how DH44+ PI neurons have non-cell autonomous functions in regulating the internal TAG stores, and how both presynaptic DH44 neurons and postsynaptic DH44 R2 neurons require TRPγ for lipid homeostasis.

      (2) The expression of TRPγ solely in DH44 R2 neurons of TRPγ mutant flies restored the TAG phenotype, suggesting an important function mediated by TRPγ in DH44 R2 neurons. However, the authors did not document the endogenous expression of TRPγ in the DH44R2+ gut cells. This needs to be shown.

      (3) While Dh44 mutant flies displayed normal internal TAG levels, Dh44R2 mutant flies exhibited elevated TAG levels (Figure 7A). This suggested that the lipolysis phenotype could be facilitated by a neuropeptide other than Dh44. Alternatively, a Dh44 neuropeptide-independent pathway could mediate the lipolysis. In either case, an additional result is needed to substantiate either one of the hypotheses.

      (4) While the authors observed an increased area of fat body lipid droplets (LD) in Dh44 mutant flies (Figure 7F), they did not specify the particular region of the fat body chosen for measuring the LD area.

      (5) The LD area only accounts for TAG levels in the fat body, whereas TAG can be found in many other body parts, including the R2 area as demonstrated in Figure 5A-D using Nile red staining. As such, measuring the total internal TAG levels would provide a more accurate representation of TAG levels than the average fat body LD area.

      (6) In Figure 5F-I, the authors should perform the similar experiment with Dh44, Dh44R1, and Dh44R2 mutant flies.

      (7) The representative image in Figure 6B does not correspond to the GFP quantification results shown in Figure 6C. In trpr1;bmm::GFP flies, the GFP signal appears stronger in starved conditions than in satiated conditions.

      (8) In Figure 6H-I, fat body-specific expression of bmm reversed the increased LD area in TRPγ mutants. The authors also showed that Dh44+PI neuron-specific expression of bmm yielded a similar result. The authors need to provide an interpretation as to how bmm acts in the fat body or DH44 neurons to regulate this.

      (9) The authors should explain why the DH44 R1 mutant did not represent similar results as the wild type.

      (10) It would be good to have a schematic that represents the working model proposed in this manuscript.

    1. Reviewer #1 (Public Review):

      The paper proposes an interesting perspective on the spatio-temporal relationship between FC in fMRI and electrophysiology. The study found that while similar network configurations are found in both modalities, there is a tendency for the networks to spatially converge more commonly at synchronous than asynchronous time points. However, my confidence in the findings and their interpretation is undermined by an apparent lack of justification for the expected outcomes for each of the proposed scenarios, and in the analysis pipeline itself.

      Main Concerns

      (1) Figure 1 makes sense to me conceptually, including the schematics of the trajectories, i.e.<br /> Scenario 1: Temporally convergent, same trajectories through connectome state space<br /> Scenario 2: Temporally divergent, different trajectories through connectome state space

      However, based on my understanding I am concerned that these scenarios do not necessarily translate into the schematic CRP plots shown in Figure 2C, or the statements in the main text:

      For Scenario 1: "epochs of cross-modal spatial similarity should occur more frequently at on-diagonal (synchronous) than off-diagonal (asynchronous) entries, resulting in an on-/off-diagonal ratio larger than unity"<br /> For Scenario 2: "epochs of spatial similarity could occur equally likely at on-diagonal and off-diagonal entries (ratio≈1)"

      Where do the authors get these statements and the schematics in Figure 2C from? Are they based on previous literature, theory, or simulations?<br /> I am not convinced based on the evidence currently in the paper, that the ratio of off- to on-diagonal entries (and under what assumptions) is a definitive way to discriminate between scenarios 1 and 2.

      For example, what about the case where the same network configuration reoccurs in both modalities at multiple time points? It seems to me that one would get a CRP with entries occurring equally on the on-diagonal as on the off-diagonal, regardless of whether the dynamics are matched between the two modalities or not (i.e. regardless of scenario 1 or 2 being true).

      This thought experiment example might have a flaw in it, and the authors might ultimately be correct, but nonetheless, a systematic justification needs to be provided for using the ratio of off- to on-diagonal entries to discriminate between scenarios 1 and 2 (and under what assumptions it is valid).

      In the absence of theory, a couple of ways I can think of to gain insight into this key aspect are:

      (1) Use surrogate data for scenarios 1 and 2:<br /> a. For scenario 1: Run the CRP using a single modality. E.g. feed in the EEG into the analysis as both modality 1 AND modality 2. This should provide at least one example of CRP under scenario 1 (although it does not ensure that all CRPs under this scenario will look like this, it is at least a useful sanity check)<br /> b. For scenario 2: Run the CRP using a single modality plus a shuffled version. E.g. feed in the EEG into the analysis as both modality 1 AND a temporally shuffled version of the EEG as modality 2. The temporal shuffling of the EEG could be done by simply splitting the data into blocks of say ~10s and then shuffling them into a new order. This should provide a version of the CRP under scenario 2 (although it does not ensure that all CRPs under this scenario will look like this, it is at least a useful sanity check).

      (2) Do simulations, with clearly specified assumptions, for scenarios 1 and 2. One way of doing this is to use a simplified (state-space) setup and randomly simulate N spatially fixed networks that are independently switching on and off over time (i.e. "activation" is 0 or 1). Note that this would result in a N-dimensional connectome state space.

      The authors would only need to worry about simulating the network activation time courses, i.e. they would not need to bother with specifying the spatial configuration of each network, instead, they would make the implied assumption that each of these networks has the same spatial configuration in modality 1 and modality 2.

      With that assumption, the CRP calculation should simply correspond to calculating, at each time i in modality 1 and time j in modality 2, the number of networks that are activating in both modality 1 and modality 2, by using their activation time courses. Using this, one can simulate and compute the CRPs for the two scenarios:<br /> a. Scenario 1: where the simulated activation timecourses are set to be the same between both modalities<br /> b. Scenario 2: where the simulated activation timecourses are simulated separately for each of the modalities

      (2) Choices in the analysis pipeline leading up to the computation of FC in fMRI or EEG will affect the quality of information available in the FC. For example, but not only, the choice of parcellation (in the study, the number of parcels is very high given the number of EEG sensors). I think it is important that we see the impact of the chosen pipeline on the time-averaged connectomes, an output that the field has some idea about what is sensible. This would give confidence that the information being used in the main analyses in the paper is based on a sensible footing and relates to what the field is used to thinking about in terms of FC. This should be trivial to compute, as it is just a case of averaging the time-varying FCs being used for the CRP over all time points. Admittedly, this approach is less useful for the intracranial EEG.

      (3) Leakage correction. The paper states: "To mitigate this issue, we provide results from source-localized data both with and without leakage correction (supplementary and main text, respectively)." Given that FC in EEG is dominated by spatial leakage (see Hipp paper), then I cannot see how it can be justified to look at non-spatial leakage correction results at all, let alone put them up front as the main results. All main results/figures for the scalp EEG should be done using spatial leakage-corrected EEG data.

    2. Reviewer #2 (Public Review):

      Summary:

      The study investigates the brain's functional connectivity (FC) dynamics across different timescales using simultaneous recordings of intracranial EEG/source-localized EEG and fMRI. The primary research goal was to determine which of three convergence/divergence scenarios is the most likely to occur.

      The results indicate that despite similar FC patterns found in different data modalities, the time points were not aligned, indicating spatial convergence but temporal divergence.

      The researchers also found that FC patterns in different frequencies do not overlap significantly, emphasizing the multi-frequency nature of brain connectivity. Such asynchronous activity across frequency bands supports the idea of multiple connectivity states that operate independently and are organized into a multiplex system.

      Strengths:

      The data supporting the authors' claims are convincing and come from simultaneous recordings of fMRI and iEEG/EEG, which has been recently developed and adapted.

      The analysis methods are solid and involve a novel approach to analyzing the co-occurrence of FC patterns across modalities (cross-modal recurrence plot, CRP) and robust statistics, including replication of the main results using multiple operationalizations of the functional connectome (e.g., amplitude, orthogonalized, and phase-based coupling).

      In addition, the authors provided a detailed interpretation of the results, placing them in the context of recent advances and understanding of the relationships between functional connectivity and cognitive states.

      Weaknesses:

      Despite the impressive work, the paper still lacks some analyses to make it complete.

      Firstly, the effect of the window size is unclear, especially in the case of different frequencies where the number of cycles that fall in a window will vary drastically. A typical oscillation lasts just a few cycles (see Myrov et al., 2024), and brain states are usually short-lived because of meta-stability (see Roberts et al., 2019).

      Secondly, the authors didn't examine frequencies lower than 1Hz despite similarities between fMRI and infra-slow oscillations found in prior literature (see Palva et al., 2014; Zhang et al., 2023).

      On a minor note, the phase-locking value (PLV) is positively biased for EEG data (see Palva et al., 2018) and a different metric for phase coupling could be a more appropriate choice (e.g., iPLV/wPLI, see Vinck et al., 2011). The repository with the code is also unavailable.

    1. Reviewer #1 (Public Review):

      Summary:

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

      Strengths:

      The three experiments are well designed and the various conditions are well controlled. The rationale of the study is clear, and the manuscript is pleasant to read. The analysis choices are easy to follow, and mostly appropriate.

      Weaknesses:

      I only have one potential worry. The analysis for gait tracking (1 Hz) in Experiment 2 (Figures 3a/b) starts by computing a congruency effect (A/V stimulation congruent (same frequency) versus A/V incongruent (V at 1 Hz, A at either 0.6 or 1.4 Hz), separately for the Upright and Inverted conditions. Then, this congruency effect is contrasted between Upright and Inverted, in essence computing an interaction score (Congruent/Incongruent X Upright/Inverted). Then, the channels in which this interaction score is significant (by cluster-based permutation test; Figure 3a) are subselected for further analysis. This further analysis is shown in Figure 3b and described in lines 195-202. Critically, the further analysis exactly mirrors the selection criteria, i.e. it is aimed at testing the effect of Congruent/Incongruent and Upright/Inverted. This is colloquially known as "double dipping", the same contrast is used for selection (of channels, in this case) as for later statistical testing. This should be avoided, since in this case even random noise might result in a significant effect. To strengthen the evidence, either the authors could use a selection contrast that is orthogonal to the subsequent statistical test, or they could skip either the preselection step or the subsequent test. (It could be argued that the test in Figure 3b and related text is not needed to make the point - that same point is already made by the cluster-based permutation test.)

      Related to the above: the test for the three-way interaction (lines 211-216) is reported as "marginally significant", with a p-value of 0.087. This is not very strong evidence.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information were presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      Weaknesses:

      The manuscript interprets the neural findings using mechanistic and cognitive claims that are not justified by the presented analyses and results.

      First, entrainment and cortical tracking are both invoked in this manuscript, sometimes interchangeably so, but it is becoming the standard of the field to recognize their separate evidential requirements. Namely, step and gate cycles are striking perceptual or cognitive events that are expected to produce event-related potentials (ERPs). The regular presentation of these events in the paradigm will naturally evoke a series of ERPs that leave a trace in the power spectrum at stimulation rates even if no oscillations are at play. Thus, the findings should not be interpreted from an entrainment framework except if it is contextualized as speculation, or if additional analyses or experiments are carried out to support the assumption that oscillations are present. Even if oscillations are shown to be present, it is then a further question whether the oscillations are causally relevant toward the integration of biological motion and for the orchestration of cognitive processes.

      Second, if only a cortical tracking account is adopted, it is not clear why the demonstration of supra-additivity in spectral amplitude is cognitively or behaviorally relevant. Namely, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated with the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion, and it is possible that such neural correlates relate to behaviorally relevant neural mechanisms, but based on the current task and associated analyses this has not been shown.

    3. Reviewer #3 (Public Review):

      Summary:

      The study demonstrates differential patterns of entrainment to biological motion (BM). At a basic, sensory level, the authors demonstrate entrainment to faster rhythms that make up BM (step-cycle) which seems to be separate from its audio aspects and its visual aspects (though to a much lesser degree). Ultimately this temporal scale seems to reside in a manner that does not indicate much multi-modal integration. At a higher-order, emergent rhythms in motion that are biologically relevant (gait-cycle) seem to be the result of multisensory integration. The work sheds light on the perceptual processes that are engaged in perceiving BM as well as the role of multisensory integration in these processes. Moreover, the work also outlines interesting links between shorter and longer integration windows along the sensory and multisensory processing stages.

      In a series of experiments, the authors sought to investigate the role of multisensory integration in the processing of biological motion (BM). Specifically, they study neural entrainment in BM light-point walkers. Visual-only, auditory-only, and audio-visual (AV) displays were compared under different conditions.

      Experiments 1a and b mainly characterized entrainment to these stimuli. Here, entrainment to step cycle (at different scales for 1a and 1b) was found to entrain in the presence of the auditory rhythm and to a certain degree also for the visual stimulus (though barely beyond the noise floor in 1b). The AV condition for this temporal scale seemed to follow an additive rule whereby the combined stimulation resulted in entrainment more or less equal to the sum of the unimodal effects. At the slower, gait cycle a slightly different pattern emerges whereby neither unimodal stimulation conditions result in entrainment however the AV condition does.

      This finding was further explored in Experiment 2 where two extra manipulations were added. Point-light walkers could generally be either congruently paired with AV or incongruently. In addition, the visual BM stimulus was matched with a control consisting of an inverted BM and thus non-BM movement. This study enabled further discerning among the step- and gait-cycle findings seeing that the pattern that emerged suggested that step-cycle entrainment was consistent with a low-level process that is not selective to BM whilst gait-cycle entrainment was only found for BM. This generally replicated the findings in Experiment 1 and extended them further suggesting that entrainment seen for uni- and multisensory step cycles is reflects a different process than that captured in the gait-cycle multi-modal entrainment. The selective BM finding seemed to demonstrate a link to autistic traits within a sample of 24 participants informing a hypothesis that sensitivity to biological motion might be related to social cognition.

      Strengths:

      The main strengths of the paper relate to the conceptualization of BM and the way it is operationalized in the experimental design and analyses. The use of entrainment, and the tracking of different, nested aspects of BM result in seemingly clean data that demonstrate the basic pattern. The first experiments essentially provide the basic utility of the methodological innovation and the second experiment further hones in on the relevant interpretation of the findings by the inclusion of better control stimuli sets.

      Another strength of the work is that it includes at a conceptual level two replications.

      Weaknesses:

      The statistical analysis is misleading and inadequate at times. The inclusion of the autism trait is not foreshadowed and adequately motivated and is likely underpowered. Finally, a broader discussion over other nested frequencies that might reside in the point-light walker stimuli would also be important to fully interpret the different peaks in the spectra.

    1. Reviewer #2 (Public Review):

      MotorNet aims to provide a unified interface where the trained RNN controller exists within the same TensorFlow environment as the end effectors being controlled. This architecture provides a much simpler interface for the researcher to develop and iterate through computational hypotheses. In addition, the authors have built a set of biomechanically realistic end effectors (e.g., a 2 joint arm model with realistic muscles) within TensorFlow that are fully differentiable.

      MotorNet will prove a highly useful starting point for researchers interested in exploring the challenges of controlling movement with realistic muscle and joint dynamics. The architecture features a conveniently modular design and the inclusion of simpler arm models provides an approachable learning curve. Other state-of-the-art simulation engines offer realistic models of muscles and multi-joint arms and afford more complex object manipulation and contact dynamics than MotorNet. However, MotorNet's approach allows for direct optimization of the controller network via gradient descent rather than reinforcement learning, which is a compromise currently required when other simulation engines (as these engines' code cannot be differentiated through).

      The paper has been reorganized to provide clearer signposts to guide the reader. Importantly, the software has been rewritten atop PyTorch which is increasingly popular in ML and computational neuroscience research.

    2. Reviewer #1 (Public Review):

      Summary:

      Codol et al. present a toolbox that allows simulating biomechanically realistic effectors and training Artificial Neural Networks (ANNs) to control them. The paper provides a detailed explanation of how the toolbox is structured and several examples demonstrating its utility.

      Main comments:

      (1) The paper is well-written and easy to follow. The schematics facilitate understanding of the toolbox's functionality, and the examples give insight into the potential results users can achieve.

      (2) The toolbox's latest version, developed in PyTorch, is expected to offer greater benefits to the community.

      (3) The new API, being compatible with Gymnasium, broadens the toolbox's application scope, enabling the use of Reinforcement Learning for training the ANNs.

      Impact:

      MotorNet is designed to simplify the process of simulating complex experimental setups, enabling the rapid testing of hypotheses on how the brain generates specific movements. Implemented in PyTorch and compatible with widely-used machine learning toolboxes, including Gymnasium, it offers an end-to-end pipeline for training ANNs on simulated setups. This can greatly assist experimenters in determining the focus of their subsequent efforts.

      Additional context:

      The main outcome of the work, a toolbox, is supplemented by a GitHub repository and a documentation webpage. Both the repository and the webpage are well-organized and user-friendly. The webpage guides users through the toolbox installation process, as well as the construction of effectors and Artificial Neural Networks (ANNs).

    1. Reviewer #3 (Public Review):

      Summary:

      In this paper Hajra et al have attempted to identify the role of Sirt1 and Sirt3 in regulating metabolic reprogramming and macrophage host defense. They have performed gene knock down experiments in RAW macrophage cell line to show that depletion of Sirt1 or Sirt3 enhances the ability of macrophages to eliminate Salmonella Typhimurium. However, in mice inhibition of Sirt1 resulted in dissemination of the bacteria but the bacterial burden was still reduced in macrophages. They suggest that the effect they have observed is due to increased inflammation and ROS production by macrophages. They also try to establish a weak link with metabolism. They present data to show that the switch in metabolism from glycolysis to fatty acid oxidation is regulated by acetylation of Hif1a, and PDHA1.

      Strengths:

      The strength of the manuscript is that the role of Sirtuins in host-pathogen interactions has not been previously explored in-depth making the study interesting. It is also interesting to see that depletion of either Sirt1 or Sirt3 results in a similar outcome.

      Weaknesses:

      The major weakness of the paper is the low quality of data, making it harder to substantiate the claims. Also, there are too many pathways and mechanisms being investigated. It would have been better if the authors had focussed on either Sirt1 or Sirt3 and elucidated how it reprograms metabolism to eventually modulate host response against Salmonella Typhimurium. Experimental evidence is also lacking to prove the proposed mechanisms. For instance they show correlative data that knock down of Sirt1 mediated shift in metabolism is due to HIF1a acetylation but this needs to be proven with further experiments.

    2. Reviewer #2 (Public Review):

      Dipasree Hajra et al demonstrated that Salmonella was able to modulate the expression of Sirtuins (Sirt1 and Sirt3) and regulate the metabolic switch in both host and Salmonella, promoting its pathogenesis. The authors found Salmonella infection induced high levels of Sirt1 and Sirt3 in macrophages, which were skewed toward the M2 phenotype allowing Salmonella to hyper-proliferate. Mechanistically, Sirt1 and Sirt3 regulated the acetylation of HIF-1alpha and PDHA1, therefore mediating Salmonella-induced host metabolic shift in the infected macrophages. Interestingly, Sirt1 and Sirt3-driven host metabolic switch also had an effect on the metabolic profile of Salmonella. Counterintuitively, inhibition of Sirt1/3 led to increased pathogen burdens in an in vivo mouse model. Overall, this is a well-designed study.

      Comments on revised version:

      The authors have performed additional experiments to address the discrepancy between in vitro and in vivo data. While this offers some potential insights into the in vivo role of Sirt1/3 in different cell types and how this affects bacterial growth/dissemination, I still believe that Sirt1/3 inhibitors could have some effect on the gut microbiota contributing to increased pathogen counts. This possibility can be discussed briefly to give a better scenario of how Sirt1/3 inhibitors work in vivo. Additionally, the manuscript would improve significantly if some of the flow cytometry analysis and WB data could be better analyzed.

    1. Reviewer #1 (Public Review):

      Summary:

      In the paper, the authors study whether the number of deaths in cancer patients in the USA went up or down during the first year (2020) of the COVID-19 pandemic. They found that the number of deaths with cancer mentioned on the death certificate went up, but only moderately. In fact, the excess with-cancer mortality was smaller than expected if cancer had no influence on the COVID mortality rate and all cancer patients got COVID with the same frequency as in the general population. The authors conclude that the data are consistent with cancer not being a risk factor for COVID and that cancer patients were likely actively shielding themselves from COVID infections.

      Strengths:

      The paper studies an important topic and uses sound statistical and modeling methodology. It analyzes both, deaths with cancer listed as the primary cause of death, as well as deaths with cancer listed as one of the contributing causes. The authors argue, correctly, that the latter is a more important and reliable indicator to study relationships between cancer and COVID. The authors supplement their US-wide analysis with analysing three states separately.

      For comparison, the authors study excess mortality from diabetes and from Alzheimer's disease. They show that Covid-related excess mortality in these two groups of patients was expected to be much higher (than in cancer patients), and indeed that is what the data showed.

    1. Reviewer #1 (Public Review):

      Summary:

      The global decline of amphibians is primarily attributed to deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). It is unclear whether and how skin-resident immune cells defend against Bd. Although it is well known that mammalian mast cells are crucial immune sentinels in the skin and play a pivotal role in immune recognition of pathogens and orchestrating subsequent immune responses, the roles of amphibian mast cells during Bd infections is largely unknown. The current study developed a novel way to enrich X. laevis skin mast cells by injecting the skin with recombinant stem cell factor (SCF), a KIT ligand required for mast cell differentiation and survival. The investigators found an enrichment of skin mast cells provides X. laevis substantial protection against Bd and mitigates the inflammation-related skin damage resulting from Bd infection. Additionally, the augmentation of mast cells leads to increased mucin content within cutaneous mucus glands and shields frogs from the alterations to their skin microbiomes caused by Bd.

      Strengths:

      This study underscores the significance of amphibian skin-resident immune cells in defenses against Bd and introduces a novel approach to examining interactions between amphibian hosts and fungal pathogens.

      Weaknesses:

      The main weakness of the study is lack of functional analysis of X. laevis mast cells. Upon activation, mast cells have the characteristic feature of degranulation to release histamine, serotonin, proteases, cytokines, and chemokines, etc. The study should determine whether X. laevis mast cells can be degranulated by two commonly used mast cell activators IgE and compound 48/80 for IgE-dependent and independent pathway. This can be easily done in vitro. It is also important to assess whether in vivo these mast cells are degranulated upon Bd infection using avidin staining to visualize vesicle releases from mast cells. Figure 3 only showed rSCF injection caused an increase in mast cells in naïve skin. They need to present whether Bd infection can induce mast cell increase and rSCF injection under Bd infection causes a mast cell increase in the skin. In addition, it is unclear how the enrichment of mast cells provides the protection against Bd infection and alternations to skin microbiomes after infection. It is important to determine whether skin mast cell release any contents mentioned above.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Hauser et al investigate the role of amphibian (Xenopus laevis) mast cells in cutaneous immune responses to the ecologically important pathogen Batrachochytrium dendrobatidis (Bd) using novel methods of in vitro differentiation of bone marrow-derived mast cells and in vivo expansion of skin mast cell populations. They find that bone marrow-derived myeloid precursors cultured in the presence of recombinant X. laevis Stem Cell Factor (rSCF) differentiate into cells that display hallmark characteristics of mast cells. They inject their novel (r)SCF reagent in the skin of X. laevis and find that this stimulates expansion of cutaneous mast cell populations in vivo. They then apply this model of cutaneous mast cell expansion in the setting of Bd infection and find that mast cell expansion attenuates skin burden of Bd zoospores and pathologic features including epithelial thickness and improves protective mucus production and transcriptional markers of barrier function. Utilizing their prior expertise with expanding neutrophil populations in X. laevis, the authors compare mast cell expansion using (r)SCF to neutrophil expansion using recombinant colony stimulating factor 3 (rCSF3) and find that neutrophil expansion in Bd infection leads to greater burden of zoospores and worse skin pathology. Combining these two observations, they demonstrate that mast cell expansion using rSCF attenuates cutaneous neutrophilic infiltration. They further show that mast cell expansion correlates to cutaneous IL-4 expression, and that treatment with exogenous rIL-4 reduces neutrophilic infiltration and restores markers of epithelial health, offering a mechanism by which mast cell expansion protects from Bd infection.

      Strengths:

      The authors report a novel method of expanding amphibian mast cells utilizing their custom-made rSCF reagent. They rigorously characterize expanded mast cells in vitro and in vivo using histologic, morphologic, transcriptional, and functional assays. This establishes solid footing with which to then study the role of rSCF-stimulated mast cell expansion in the Bd infection model. This appears to be the first demonstration of exogenous use of rSCF in amphibians to expand mast cell populations and may set a foundation for future mechanistic studies of mast cells in the X. laevis model organism. Building on prior work, they are able to contrast mast cell expansion with their neutrophil expansion model, allowing them to infer a mechanistic link between mast cell expansion and IL-4 production and subsequent suppression of neutrophil infiltration and cutaneous dysbiosis.

      Weaknesses:

      The main weaknesses derive from technical limitations inherent to the Xenopus model at this time. For example, in mice a mechanistic study would be expected to use IL-4 knockouts, preferably mast cell-specific, to prove the link between mast cell expansion and IL-4 production being necessary and sufficient to suppress neutrophils. However, the novel reagents in this manuscript present a compelling technical advance and a step forward in the tools available to study amphibian biology.

      In addition to their discussion, one open question from the revised manuscript is how a single treatment with rSCF leads to a peak in mast cell numbers and then decline to baseline in mock-infected frogs, while Bd infection either sustains rSCF-boosted mast cells or leads to steady mast cell increase over time in control-treated frogs. Whether this is mediated by endogenous SCF or some other factor remains unexplored.

    1. Reviewer #1 (Public Review):

      The authors tested whether anterior insular cortex neurons that increase or decrease firing during fear behavior, freezing, bidirectionally control fear via separate, anatomically defined outputs. Using a fairly simple behavior where mice were exposed to tone-shock pairings, they found roughly equal populations that increased or decreased firing during freezing. They next tested whether these distinct populations also had distinct outputs. Using retrograde tracers they found that the anterior insular cortex contains non-overlapping neurons which project to the mediodorsal thalamus or amygdala. Mediodorsal thalamus-projecting neurons tended to cluster in deep cortical layers, while amygdala-projecting neurons were primarily in more superficial layers. Stimulation of insula-thalamus projection decreased freezing behavior, and stimulation of insula-amygdala projections increased fear behavior. Given that the neurons which increased firing were located in deep layers, that thalamus projections occurred in deep layers, and that stimulation of insula-thalamus neurons decreased freezing, the authors concluded that the increased-firing neurons were likely thalamic projections. Similarly, given that decreased-firing neurons tended to occur in more superficial layers, that insula-amygdala projections were primarily superficial, and that insula-amygdala stimulation increased freezing behavior, authors concluded that the decreased firing cells were likely amygdala projections. The study has several strengths though also some caveats. Overall, the authors provide a valuable contribution to the field by demonstrating bidirectional control of behavior, linking the underlying anatomy and physiology.

      Strengths:

      The potential link between physiological activity, anatomy, and behavior is well laid out and is an interesting question. The activity contrast between the units that increase/decrease firing during freezing is clear.

      It is nice to see the recording of extracellular spiking activity, which provides a clear measure of neural output, whereas similar studies often use bulk calcium imaging, a signal which rarely matches real neural activity even when anatomy suggests it might.

      Weaknesses:

      The link between spiking, anatomy, and behavior requires assumptions/inferences: the anatomically/genetically defined neurons which had distinct outputs and opposite behavioral effects can only be assumed the increased/decreased spiking neurons, based on the rough area of cortical layer they were recorded. This is, of course, discussed as a future experiment.

    2. Reviewer #2 (Public Review):

      In this study, the authors aim to understand how neurons in the anterior insular cortex (insula) modulate fear behaviors. They report that the activity of a subpopulation of insula neurons is positively correlated with freezing behaviors, while the activity of another subpopulation of neurons is negatively correlated to the same freezing episodes. They then used optogenetics and showed that activation of anterior insula excitatory neurons during tones predicting a footshock increases the amount of freezing outside the tone presentation, while optogenetic inhibition had no effect. Finally, they found that two neuronal projections of the anterior insula, one to the amygdala and another to the medial thalamus, are increasing and decreasing freezing behaviors respectively.

    1. Reviewer #1 (Public Review):

      Summary:

      The main goal of the authors was to study the testis-specific role of the protein FBXO24 in the formation and function of the ribonucleoprotein granules (membrane-less electron-dense structures rich in RNAs and proteins).

      Strengths:

      The wide variety of methods used to support their conclusions (including transgenic models)

      Weaknesses:

      The complex phenotype observed, in some situations, cannot be fully explained by the experiments presented by the authors (i.e., AR or the tail structure).

    1. Reviewer #3 (Public Review):

      Summary:

      The authors have initiated studies to understand the molecular mechanisms underlying the devolvement of multi drug resistance in clinical Mtb strains. They demonstrate the association of isoniazid resistant isolates by rifampicin treatment supporting the idea that selection of MDR is a microenvironment phenomenon and involves a group of isolates.

      Strengths:

      The methods used in this study are robust and the results support the authors claims to a major extent.<br /> The language has now been corrected and is better to comprehend.

    1. Reviewer #2 (Public Review):

      The authors indicated that the adherence of ETEC is to intestinal epithelial cells. However, it is also possible that the majority of ETEC may reside in the intestinal mucus, particularly under in vivo infection condition. The colonization of ETEC in the jejunum and colon of piglets (Fig 2C) and in the intestines of mice (Fig S2A) does not necessarily reflect the adherence of ETEC to epithelial cells. Please verify these observations with other methods, such as immunostaining. Also, while Salmonella enterica serovar Typhimurium or Listeria monocytogenes can invade organoids within 1 hour, it is unknown if ETEC invade into organoids in this study. Clarifying this will help resolve if A. muciniphila block the adherence and/or invasion of ETEC. Please also address if A. muciniphila metabolites could prevent ETEC infection in the organoid models.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      After revision, the bioinformatics section of the methods is still jumbled and may indicate issues in the pipeline. Important parameters are not included to replicate analyses. Merging the forward and reverse reads may represent a problem for denoising. Chimera detection was performed prior to denoising.

      Potential denoising issues for NovaSeq data was not addressed in the response. The authors did not clarify if multiple testing correction was applied; however, it may be assumed not as written. The raw sequencing data made available through the SRA accession (if for the correct project) indicates it was a MiSeq platform; however, the sample names do not appear to link up to this experimental design and metadata not sufficient to replicate analyses.

    1. Reviewer #1 (Public Review):

      Using the UK Biobank, this study assessed the value of nuclear magnetic resonance measured metabolites as predictors of progression to diabetes. The authors identified a panel of 9 circulating metabolites that improved the ability in risk prediction of progression from prediabetes to diabetes. In general, this is a well-performed study, and the findings may provide a new approach to identifying those at high risk of developing diabetes.

      I have some comments that may improve the importance of this study.

      (1) It is unclear why the authors only considered the top 20 variables in the metabolite selection and why they did not set a wider threshold.

      (2) The methods section would benefit from a more detailed exposition of how parameter tuning was conducted and the range of parameters explored during the training of the RSF model.

      (3) It is hard to understand the meaning of the decision curve analysis and the clinical implications behind the net benefit, which are required to clarify the application values of models.

      (4) Notably, the NMR platform utilized within the UK Biobank primarily focused on lipid species. This limitation should be discussed in the manuscript to provide context for interpreting the results and acknowledge the potential bias from the measuring platform.

      (5) The manuscript should explain the potential influence of non-fasting status on the findings, particularly concerning lipoprotein particles and composition. There should be a detailed discussion of how non-fasting status may impact the measurement and the findings.

      (6) Cross-platform standardization is an issue in metabolism, and further descriptions of quality control are recommended.

    2. Reviewer #2 (Public Review):

      Deciphering the metabolic alterations characterizing the prediabetes-diabetes spectrum could provide early time windows for targeted preventive measures to extend precision medicine while avoiding disproportionate healthcare costs. The authors identified a panel of 9 circulating metabolites combined with basic clinical variables that significantly improved the prediction from prediabetes to diabetes. These findings provided insights into the integration of these metabolites into clinical and public health practice. However, the interpretation of these findings should take account of the following limitations.

      First, the causal relationship between identified metabolites and diabetes or prediabetes deserves to be further examined particularly when the prediabetic status was partially defined. Some metabolites might be the results of prediabetes rather than the casual factors for progression to diabetes.

      Second, the blood samples were taken at random (not all in a non-fasting state) and so the findings were subjected to greater variability. This should be discussed in the limitations.

      Third, the strength of NMR in metabolic profiling compared to other techniques (i.e., mass spectrometry [MS], another commonly used metabolic profiling method) could be added in the Discussion section.

      Fourth, the applied platform focuses mostly on lipid species which may be a limitation as well.

      Fifth, it is a very large group with pre-diabetes, but the results only apply to prediabetes and not to the general population. This should be clear, although the authors have also validated the predictive value of these metabolites in the general population.

    1. Reviewer #1 (Public Review):

      Summary:

      Recent studies have used optical or electrophysiological techniques to chronically measure receptive field properties of sensory cortical neurons over long time periods, i.e. days to weeks, to ask whether sensory receptive fields are stable properties. Akritas et al expand on prior studies by investigating whether nonlinear contextual sensitivity, a property not previously investigated in the context of so-called 'representational drift,' remains stable over days or weeks of recording. They performed chronic tetrode recordings of auditory cortical neurons over at least five recording days while also performing daily measurements of both the linear spectro-temporal receptive field (principal receptive field, PRF) and non-linear 'contextual gain field' (CGF), which captures the neuron's sensitivity to acoustic context. They found that spike waveforms could be reliably matched even when recorded weeks apart. In well-matched units, by comparing the correlation between tuning within one day's session to sessions across days, both PRFs and CGFs showed remarkable stability over time. This was the case even when recordings were performed over weeks. Meanwhile, behavioral and brain state, measured with locomotion and pupil diameter, respectively, resulted in small but significant shifts in the ability of the PRF/CGF model to predict fluctuations in the neuronal response over time.

      Strengths:

      The study addresses a fundamental question, which is whether the neural underpinnings of sensory perception, which encompasses both sensory events and their context, are stable across relevant timescales over which our experiences must be stable, despite biological turnover. Although two-photon calcium imaging is ideal for identifying neurons stably regardless of their activity levels and tuning, it lacks temporal precision and is therefore limited in its ability to capture the complexity of sensory responses. Akritas et al performed painstaking chronic extracellular recordings in the auditory cortex with the temporal resolution to investigate complex receptive field properties, such as neural sensitivities to acoustic context. Prior studies, particularly in the auditory cortex, focused on basic tuning properties or sensory responsivity, but Akritas et al expand on this work by showing that even the nonlinear, contextual elements of sensory neurons' responses can remain stable, providing a mechanism for the stability of our complex perception. This work is both novel and broadly applicable to those investigating cortical stability across sensory modalities.

      Weaknesses:

      Apart from some aspects such as single-unit versus multi-unit, the study largely treats their dataset as a monolith rather than showing how factors such as firing rate, depth, and cell type could define more or less stable subpopulations. It is likely that their methodology did not enable an even sampling over these qualities, and the authors should discuss these biases to put their findings more in context with related studies.

    2. Reviewer #2 (Public Review):

      Summary:

      This study explores the fundamental neuroscience question of the stability of neuronal representation. The concept of 'representational-drift' has been put forward after observations made using 2-photon imaging of neuronal activity over many days revealed that neurons contribute in a time-limited manner to population representation of stimuli or experiences. The authors contribute to the still contested concept of 'drifts' by measuring representation across days using electrophysiology and thus with sufficient temporal resolution to characterize the receptive fields of neurons in timescales relevant to the stimuli used. The data obtained from chronic recordings over days combined with nonlinear stimulus-response estimation allows the authors to conclude that both the spectrotemporal receptive fields as well as contextual gain fields dependent on combination sensitivity to complex stimuli were stable over time. This suggests that when a neuron is responsive to experimental parameters across long periods of time (days), its sensory receptive field is stable.

      Strengths:

      The strength of this study lies in the capacity to draw novel conclusions on auditory cortex representation based on the experimentally difficult combination of stable recordings of neuronal activity, behavior, and pupil over days and state-of-the-art analysis of receptive fields.

      Weaknesses:

      It would have been desirable, but too ambitious in the current setting, to be able to assess what proportion if any of the neurons drop out or in to draw a closer parallel with the 2-photon studies.

    3. Reviewer #3 (Public Review):

      Summary:

      In their study on "Nonlinear sensitivity to acoustic context is a stable feature of neuronal responses to complex sounds in auditory cortex of awake mice", Akritas et al. investigate the stability of the response properties of neurons in the auditory cortex of mice. They estimate a model with restricted non-linearities for individual neurons and compare the model properties between recordings on the same day and subsequent days. They find that both the linear and nonlinear components of the model stay rather constant over this period and conclude that on the level of the tuning properties, there is no evidence for representational drift on this time scale.

      Strengths:

      - The study has a clear analytical approach that goes beyond linear models and investigates this in a rigorous way, in particular comparing across-day variability to within-day variability.<br /> - The use of tetrodes is a rather reliable way in electrophysiological recordings to assess neuron identity over multiple days.<br /> - The comparison with pupil and motion activity was useful and insightful.<br /> - The presentation of the study is very logical and pretty much flawless on the writing level.

      Weaknesses:

      - The stability results across cells show a good amount of variability, which is only partially addressed.<br /> - In particular, no attempt is made to localize the cells in space, in order to check whether these differences could be layer or area-dependent.<br /> - The full context model also includes the possibility to estimate the input non-linearity, which was not done here, but could have been insightful.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors explored how galanin affects whole-brain activity in larval zebrafish using wide-field Ca2+ imaging, genetic modifications, and drugs that increase brain activity. The authors conclude that galanin has a sedative effect on the brain under normal conditions and during seizures, mainly through the galanin receptor 1a (galr1a). However, acute "stressors(?)" like pentylenetetrazole (PTZ) reduce galanin's effects, leading to increased brain activity and more seizures. The authors claim that galanin can reduce seizure severity while increasing seizure occurrence, speculated to occur through different receptor subtypes. This study confirms galanin's complex role in brain activity, supporting its potential impact on epilepsy.

      Strengths:

      The overall strength of the study lies primarily in its methodological approach using whole-brain Calcium imaging facilitated by the transparency of zebrafish larvae. Additionally, the use of transgenic zebrafish models is an advantage, as it enables genetic manipulations to investigate specific aspects of galanin signaling. This combination of advanced imaging and genetic tools allows for addressing galanin's role in regulating brain activity.

      Weaknesses:

      The weaknesses of the study also stem from the methodological approach, particularly the use of whole-brain Calcium imaging as a measure of brain activity. While epilepsy and seizures involve network interactions, they typically do not originate across the entire brain simultaneously. Seizures often begin in specific regions or even within specific populations of neurons within those regions. Therefore, a whole-brain approach, especially with Calcium imaging with inherited limitations, may not fully capture the localized nature of seizure initiation and propagation, potentially limiting the understanding of Galanin's role in epilepsy.

      Furthermore, Galanin's effects may vary across different brain areas, likely influenced by the predominant receptor types expressed in those regions. Additionally, the use of PTZ as a "stressor" is questionable since PTZ induces seizures rather than conventional stress. Referring to seizures induced by PTZ as "stress" might be a misinterpretation intended to fit the proposed model of stress regulation by receptors other than Galanin receptor 1 (GalR1).

      The description of the EAAT2 mutants is missing crucial details. EAAT2 plays a significant role in the uptake of glutamate from the synaptic cleft, thereby regulating excitatory neurotransmission and preventing excitotoxicity. Authors suggest that in EAAT2 knockout (KO) mice galanin expression is upregulated 15-fold compared to wild-type (WT) mice, which could be interpreted as galanin playing a role in the hypoactivity observed in these animals.

      However, the study does not explore the misregulation of other genes that could be contributing to the observed phenotype. For instance, if AMPA receptors are significantly downregulated, or if there are alterations in other genes critical for brain activity, these changes could be more important than the upregulation of galanin. The lack of wider gene expression analysis leaves open the possibility that the observed hypoactivity could be due to factors other than, or in addition to, galanin upregulation.

      Moreover, the observation that in double KO mice for both EAAT2 and galanin, there was little difference in seizure susceptibility compared to EAAT2 KO mice alone further supports the idea that galanin upregulation might not be the reason for the observed phenotype. This indicates that other regulatory mechanisms or gene expressions might be playing a more pivotal role in the manifestation of hypoactivity in EAAT2 mutants.

      These methodological shortcomings and conceptual inconsistencies undermine the perceived strengths of the study, and hinders understanding of Galanin's role in epilepsy and stress regulation.

    2. Reviewer #2 (Public Review):

      Summary:

      This study is an investigation of galanin and galanin receptor signaling on whole-brain activity in the context of recurrent seizure activity or under homeostatic basal conditions. The authors primarily use calcium imaging to observe whole-brain neuronal activity accompanied by galanin qPCR to determine how manipulations of galanin or the galr1a receptor affect the activity of the whole-brain under non-ictal or seizure event conditions. The authors' Eaat2a-/- model (introduced in their Glia 2022 paper, PMID 34716961) that shows recurrent seizure activity alongside suppression of neuronal activity and locomotion in the time periods lacking seizures is used in this paper in comparison to the well-known pentylenetetrazole (PTZ) pharmacological model of epilepsy in zebrafish. Given the literature cited in their Introduction, the authors reasonably hypothesize that galanin will exert a net inhibitory effect on brain activity in models of epilepsy and at homeostatic baseline, but were surprised to find that this hypothesis was only moderately supported in their Eaat2a-/- model. In contrast, under PTZ challenge, fish with galanin overexpression showed increased seizure number and reduced duration while fish with galanin KO showed reduced seizure number and increased duration. These results would have been greatly enriched by the inclusion of behavioral analyses of seizure activity and locomotion (similar to the authors' 2022 Glia paper and/or PMIDs 15730879, 24002024). In addition, the authors have not accounted for sex as a biological variable, though they did note that sex sorting zebrafish larvae precludes sex selection at the younger ages used. It would be helpful to include smaller experiments taken from pilot experiments in older, sex-balanced groups of the relevant zebrafish to increase confidence in the findings' robustness across sexes. A possible major caveat is that all of the various genetic manipulations are non-conditional as performed, meaning that developmental impacts of galanin overexpression or galanin or galr1a knockout on the observed results have not been controlled for and may have had a confounding influence on the authors' findings. Overall, this study is important and solid (yet limited), and carries clear value for understanding the multifaceted functions that neuronal galanin can have under homeostatic and disease conditions.

      Strengths:

      - The authors convincingly show that galanin is upregulated across multiple contexts that feature seizure activity or hyperexcitability in zebrafish, and appears to reduce neuronal activity overall, with key identified exceptions (PTZ model).

      - The authors use both genetic and pharmacological models to answer their question, and through this diverse approach, find serendipitous results that suggest novel underexplored functions of galanin and its receptors in basal and disease conditions. Their question is well-informed by the cited literature, though the authors should cite and consider their findings in the context of Mazarati et al., 1998 (PMID:982276). The authors' Discussion places their findings in context, allowing for multiple interpretations and suggesting some convincing explanations.

      - Sample sizes are robust and the methods used are well-characterized, with a few exceptions (as the paper is currently written).

      - Use of a glutamatergic signaling-based genetic model of epilepsy (Eaat2a-/-) is likely the most appropriate selection to test how galanin signaling can alter seizure activity, as galanin is known to reduce glutamatergic release as an inhibitory mechanism in rodent hippocampal neurons via GalR1a (alongside GIRK activation effects). Given that PTZ instead acts through GABAergic signaling pathways, it is reasonable and useful to note that their glutamate-based genetic model showed different effects than did their GABAergic-based model of seizure activity.

      Weaknesses:

      - The authors do not include behavioral assessments of seizure or locomotor activity that would be expected in this paper given their characterizations of their Eaat2a-/- model in the Glia 2022 paper that showed these behavioral data for this zebrafish model. These data would inform the reader of the behavioral phenotypes to expect under the various conditions and would likely further support the authors' findings if obtained and reported.

      - No assessment of sex as a biological variable is included, though it is understood that these specific studied ages of the larvae may preclude sex sorting for experimental balancing as stated by the authors.

      - The reported results may have been influenced by the loss or overexpression of galanin or loss of galr1a during developmental stages. The authors did attempt to use the hsp70l system to overexpress galanin, but noted that the heat shock induction step led to reduced brain activity on its own (Supplementary Figure 1). Their hsp70l:gal model shows galanin overexpression anyways (8x fold) regardless of heat induction, so this model is still useful as a way to overexpress galanin, but it should be noted that this galanin overexpression is not restricted to post-developmental timepoints and is present during development.

    3. Reviewer #3 (Public Review):

      Summary:

      The neuropeptide galanin is primarily expressed in the hypothalamus and has been shown to play critical roles in homeostatic functions such as arousal, sleep, stress, and brain disorders such as epilepsy. Previous work in rodents using galanin analogs and receptor-specific knockout has provided convincing evidence for the anti-convulsant effects of galanin.

      In the present study, the authors sought to determine the relationship between galanin expression and whole-brain activity. The authors took advantage of the transparent nature of larval zebrafish to perform whole-brain neural activity measurements via widefield calcium imaging. Two models of seizures were used (eaat2a-/- and pentylenetetrazol; PTZ). In the eaat2a-/- model, spontaneous seizures occur and the authors found that galanin transcript levels were significantly increased and associated with a reduced frequency of calcium events. Similarly, two hours after PTZ galanin transcript levels roughly doubled and the frequency and amplitude of calcium events were reduced. The authors also used a heat shock protein line (hsp70I:gal) where galanin transcript levels are induced by activation of heat shock protein, but this line also shows higher basal transcript levels of galanin. Again, the higher level of galanin in hsp70I:gal larval zebrafish resulted in a reduction of calcium events and a reduction in the amplitude of events. In contrast, galanin knockout (gal-/-) increased calcium activity, indicated by an increased number of calcium events, but a reduction in amplitude and duration. Knockout of the galanin receptor subtype galr1a via crispants also increased the frequency of calcium events.

      In subsequent experiments in eaat2a-/- mutants were crossed with hsp70I:gal or gal-/- to increase or decrease galanin expression, respectively. These experiments showed modest effects, with eaat2a-/- x gal-/- knockouts showing an increased normalized area under the curve and seizure amplitude.

      Lastly, the authors attempted to study the relationship between galanin and brain activity during a PTZ challenge. The hsp70I:gal larva showed an increased number of seizures and reduced seizure duration during PTZ. In contrast, gal-/- mutants showed an increased normalized area under the curve and a stark reduction in the number of detected seizures, a reduction in seizure amplitude, but an increase in seizure duration. The authors then ruled out the role of Galr1a in modulating this effect during PTZ, since the number of seizures was unaffected, whereas the amplitude and duration of seizures were increased.

      Strengths:

      (1) The gain- and loss-of function galanin manipulations provided convincing evidence that galanin influences brain activity (via calcium imaging) during interictal and/or seizure-free periods. In particular, the relationship between galanin transcript levels and brain activity in Figures 1 & 2 was convincing.

      (2) The authors use two models of epilepsy (eaat2a-/- and PTZ).

      (3) Focus on the galanin receptor subtype galr1a provided good evidence for the important role of this receptor in controlling brain activity during interictal and/or seizure-free periods.

      Weaknesses:

      (1) Although the relationship between galanin and brain activity during interictal or seizure-free periods was clear, the manuscript currently lacks mechanistic insight in the role of galanin during seizure-like activity induced by PTZ.

      (2) Calcium imaging is the primary data for the paper, but there are no representative time-series images or movies of GCaMP signal in the various mutants used.

      (3) For Figure 3, the authors suggest that hsp70I:gal x eaat2a-/-mutants would further increase galanin transcript levels, which were hypothesized to further reduce brain activity. However, the authors failed to measure galanin transcript levels in this cross to show that galanin is actually increased more than the eaat2a-/- mutant or the hsp70I:gal mutant alone.

      (4) Similarly, transcript levels of galanin are not provided in Figure 2 for Gal-/- mutants and galr1a KOs. Transcript levels would help validate the knockout and any potential compensatory effects of subtype-specific knockout.

      (5) The authors very heavily rely on calcium imaging of different mutant lines. Additional methods could strengthen the data, translational relevance, and interpretation (e.g., acute pharmacology using galanin agonists or antagonists, brain or cell recordings, biochemistry, etc).

    1. Reviewer #1 (Public Review):

      Summary:

      Tateishi et al. report a Tn-seq-based analysis of genetic requirements for growth and fitness in 8 clinical strains of Mycobacterium intracellulare Mi), and compare the findings with a type strain ATCC13950. The study finds a core set of 131 genes that are essential in all nine strains, and therefore are reasonably argued as potential drug targets. Multiple other genes required for fitness in clinical isolates have been found to be important for hypoxic growth in the type strain.

      Strengths:

      The study has generated a large volume of Tn-seq datasets of multiple clinical strains of Mi from multiple growth conditions, including from mouse lungs. The dataset can serve as an important resource for future studies on Mi, which despite being clinically significant remains a relatively understudied species of mycobacteria.

      Weaknesses:

      The paper lacks clarity in data presentation and organization. For example, some of the key data on cfu counts of clinical Mi strains in a mouse model can be presented along with the Tn-seq dataset in Figure 6, the visualization of which can be improved with volcano plots. etc. Improvement in data visualization is perhaps necessary throughout the paper.

      The primary claim of the study that the clinical strains are better adapted for hypoxic growth is not well-supported by the data presented in Figure 7.

      The title of the paper is misleading as the study doesn't provide any mechanistic aspect of hypoxic adaptation in Mi.

    2. Reviewer #2 (Public Review):

      Summary:

      In the study titled "Functional genomics reveals the mechanism of hypoxic adaptation in nontuberculous mycobacteria" by Tateishi et al., the authors have used TnSeq to identify the common essential and growth-defect-associated genes that represent the genomic diversity of clinical M. intracellulare strains in comparison to the reference type strain. By estimating the frequency of Tn insertion, the authors speculate that genes involved in gluconeogenesis, the type VII secretion system, and cysteine desulfurase are relatively critical in the clinical MAC-PD strains than in the type strain, both for the extracellular survival and in a mouse lung infection model.

      Based on their analysis, the authors proposed to identify the mechanism of hypoxic adaptation in nontuberculous mycobacteria (NTM) which offer promising drug targets in the strains causing clinical Mycobacterium avium-intracellulare complex pulmonary disease (MAC-PD).

      Strengths:

      A major strength of the manuscript is the performance of the exhaustive set of TnSeq experiments with multiple strains of M. intracellulare during in vitro growth and animal infection.

      Weaknesses:

      (1) The study suffers from the authors' preconceived bias toward a small subset of genes involved in hypoxic pellicle formation in ATCC13950.

      (2) An important set of data with the ATCC13950 reference strain is missing in the mouse infection study. In the absence of this, it is difficult to establish whether the identified genes are critical for infection/intracellular proliferation, specifically in the clinical isolates that are relatively more adapted for hypoxia.

      (3) Statistical enrichment analysis of gene sets by GSEA wrongly involves genes required for hypoxic pellicle formation in ATCC13950 together with the gene sets found essential in the clinical MAC-PD strains, to claim that a significant % of genes belong to hypoxia-adaptation pathways. It could be factually incorrect because a majority of these might overlap with those found critical for the in vitro survival of MAC-PD strains (and may not be related to hypoxia).

      (4) Validation of mouse infection experiments with individual mutants is missing.

      (5) Phenotypes with TnSeq and CRISPRi-based KD exhibit poor correlation with misleading justifications by the authors.

      In summary, this study is unable to provide mechanistic insights into why and how different MAC-PD mutant strains exhibit differential survival (in vitro and in animals) and adaptation to hypoxia. It remains to understand why the clinical strains show better adaptation to hypoxia and what is the impact of other stresses on their growth rates.

    3. Reviewer #3 (Public Review):

      Summary:

      The study by Tateishi et al. utilized TnSeq in nine genetically diverse M. intracellulare strains, identifying 131 common essential and growth-defect-associated genes across those strains, which could serve as potential drug targets. The authors also provided an overview of the differences in gene essentiality required for hypoxic growth between the reference strain and the clinical strains. Furthermore, they validated the universal and accessory/strain-dependent essential genes by knocking down their expression using CRISPRi technique. Overall, this study offers a comprehensive assessment of gene requirements in different clinical strains of M. intracellular.

      (1) The rationale for using ATCC13950 versus clinical strains needs to be clarified. The reference strain ATCC13950 was obtained from the abdominal lymph node of a patient around 10 years ago and is therefore considered a clinical strain that has undergone passages in vitro. How many mutations have accumulated during these in vitro passages? Are these mutations significant enough to cause the behavior of ATCC13950 to differ from other recently sampled clinical strains? From the phylogenetic tree, ATCC13950 is located between M018 and M.i.27. Did the authors observe a similarity in gene essentiality between ATCC13950 and its neighbor strains? What is the key feature that separates ATCC13950 from these clinical strains? The authors should provide a strong rationale for how to interpret the results of this comparison in a clinical or biological context.

      (2) Regarding the 'nine representative strains of M. intracellulare with diverse genotypes in this study,' how were these nine strains selected? To what extent do they represent the genetic diversity of the M. intracellulare population? A phylogenetic tree illustrating the global genetic diversity of the M. intracellulare population, with these strains marked on it, would be important to demonstrate their genetic representativeness.

      (3) The authors observed a considerable amount of differential gene requirements in clinical strains. However, the genetic underpinning underlying the differential requirement of genes in clinical strains was not investigated or discussed. Because M. intracellulare has a huge number of accessory genes, the authors should at least check whether the differential requirement could be explained by the existence of a second copy of functional analogous genes or duplications.

      (4) Growth in aerobic and hypoxic conditions: The authors concluded that clinical strains are better adapted to hypoxia, as reflected by their earlier entry into the log phase. They presented the 'Time at midpoint' and 'Growth rate at midpoint.' However, after reviewing the growth curves, I noticed that ATCC13950 had a longer lag phase compared to other strains under hypoxic conditions, and its phylogenetic neighbor M018 also had a longer lag phase. Hence, I do not believe a conclusion can be drawn that clinical strains are better adapted to hypoxia, as this behavior could be specific to a particular clade. It's also possible that the ATCC13950 strain has adapted to aerobic growth. I would suggest that the authors include growth curves in the main figures. The difference in 'Time at midpoint' could be attributed to several factors, and visualizing the growth curves would provide additional context and clarity.

      (5) Lack of statistical statement: The authors emphasized the role of pellicle-formation-associated genes in strain-dependent essential and accessory essential genes. Additionally, the authors observed that 10% of the genes required for mouse infection are also required for hypoxic pellicle formation. However, these are merely descriptive statements. There is no enrichment analysis to justify whether pellicle-formation-associated genes are significantly enriched in these groups.

    1. Reviewer #1 (Public Review):

      Summary:

      This work sought to demonstrate that gut microbiota dysbiosis may promote the colonization of mycobacteria, and they tried to prove that Nos2 down-regulation was a key mediator of such gut-lung pathogenesis transition.

      Strengths:

      They did large-scale analysis of RNAs in lungs to analyze the gene expression of mice upon gut dysbiosis in MS-infected mice. This might help provide an overview of gene pathways and critical genes for lung pathology in gut dysbiosis. This data is somewhat useful and important for the TB field.

      Weaknesses:

      (1) They did not use wide-type Mtb strain (e.g. H37Rv) to develop mouse TB infection models, and this may lead to the failure of the establishment of TB granuloma and other TB pathology icons.

      (2) The usage of in vitro assays based on A542 to examine the regulation function of Nos2 expression on NO and ROS may not be enough. A542 is not the primary Mtb infection target in the lungs.

      (3) They did not examine the lung pathology upon gut dysbiosis to examine the true significance of increased colonization of Mtb.

      (4) Most of the studies are based on MS-infected mouse models with a lack of clinical significance.

    2. Reviewer #2 (Public Review):

      The manuscript entitled "Intestinal microbiome dysbiosis increases Mycobacteria pulmonary colonization in mice by regulating the Nos2-associated pathways" by Han et al reported that using clindamycin, an antibiotic to selectively disorder anaerobic Bacteriodetes, intestinal microbiome dysbiosis resulted in Mycobacterium smegmatis (MS) colonization in the mice lungs. The authors found that clindamycin induced damage of the enterocytes and gut permeability and also enhanced the fermentation of cecum contents, which finally increased MS colonization in the mice's lungs. The study showed that gut microbiota dysbiosis up-regulated the Nos2 gene-associated pathways, leading to increased nitric oxide (NO) levels and decreased reactive oxygen species (ROS) and β-defensin 1 (Defb1) levels. These changes in the host's immune response created an antimicrobial and anti-inflammatory environment that favored MS colonization in the lungs. The findings suggest that gut microbiota dysbiosis can modulate the host's immune response and increase susceptibility to pulmonary infections by altering the expression of key genes and pathways involved in innate immunity. The authors reasonably provided experimental data and subsequent gene profiles to support their conclusion. Although the overall outcomes are convincing, there are several issues that need to be addressed:

      (1) In Figure S1, the reviewer suggests checking the image sizes of the pathological sections of intestinal tissue from the control group and the CL-treatment group. When compared to the same intestinal tissue images in Figure S4, they do not appear to be consistently magnified at 40x. The numerical scale bars should be presented instead of just magnification such as "40x".

      (2) In Figure 4d, the ratio of Firmicutes in the CL-FMT group decreased compared to the CON-FMT group, whereas the CL-treatment group showed an increase in Firmicutes compared to the Control group in Figure 3b. The author should explain this discrepancy and discuss its potential implications on the study's findings.

      (3) In Figure 6, did the authors have a specific reason for selecting Nos2 but not Tnf for further investigation? The expression level of the Tnf gene appears to be the most significant in both RT-qPCR and RNA-sequencing results in Figure 5f. Tnf is an important cytokine involved in immune responses to bacterial infections, so it is also a factor that can influence NO, ROS, and Defb1 levels.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript nicely outlines a conceptual problem with the bFAC model in A-motility, namely, how is the energy produced by the inner membrane AglRQS motor transduced through the cell wall into mechanical force on the cell surface to drive motility? To address this, the authors make a significant contribution by identifying and characterizing a lytic transglycosylase (LTG) called AgmT. This work thus provides clues and a future framework work for addressing mechanical force transmission between the cytoplasm and the cell surface.

      Strengths:

      (1) Convincing evidence shows AgmT functions as an LTG and, surprisingly, that mltG from E. coli complements the swarming defect of an agmT mutant.

      (2) Authors show agmT mutants develop morphological changes in response to treatment with a -lactam antibiotic, mecillinam.

      (3) The use of single-molecule tracking to monitor the assembly and dynamics of bFACs in WT and mutant backgrounds.

      (4) The authors understand the limitations of their work and do not overinterpret their data.

      Weaknesses:

      (1) A clear model of AgmT's role in gliding motility or interactions with other A-motility proteins is not provided. Instead, speculative roles for how AgmT enzymatic activity could facilitate bFAC function in A-motility are discussed.

      (2) Although agmT mutants do not swarm, in-depth phenotypic analysis is lacking. In particular, do individual agmT mutant cells move, as found with other swarming defective mutants, or are agmT mutants completely nonmotile, as are motor mutants?

      (3) The bioinformatic and comparative genomics analysis of agmT is incomplete. For example, the sequence relationships between AgmT, MltG, and the 13 other LTG proteins in M. xanthus are not clear. Is E. coli MltG the closest homology to AgmT? Their relationships could be addressed with a phylogenetic tree and/or sequence alignments. Furthermore, are there other A-motility genes in proximity to agmT? Similarly, does agmT show specific co-occurrences with the other A-motility genes across genera/species?

      (4) Related to iii, what about the functional relationship of the endogenous 13 LTG genes? Although knockout mutants were shown to be motile, presumably because AgmT is present, can overexpression of them, similar to E. coli MltG, complement an agmT mutant? In other words, why does MltG complement and the endogenous LTG proteins appear not to be relevant?

      (5) Based on Figure 2B, overexpression of MltG enhances A-motility compared to the parent strain and the agmT-PAmCh complemented strain, is this actually true? Showing expanded swarming colony phenotypes would help address this question.

      (6) Cell flexibility is correlated with gliding motility function in M. xanthus. Since AgmT has LTG activity, are agmT mutants less flexible than WT cells and is this the cause of their motility defect?

    2. Reviewer #2 (Public Review):

      The manuscript by Carbo et al. reports a novel role for the MltG homolog AgmT in gliding motility in M. xanthus. The authors conclusively show that AgmT is a cell wall lytic enzyme (likely a lytic transglycosylase), its lytic activity is required for gliding motility, and that its activity is required for proper binding of a component of the motility apparatus to the cell wall. The data are generally well-controlled. The marked strength of the manuscript includes the detailed characterization of AgmT as a cell wall lytic enzyme, and the careful dissection of its role in motility. Using multiple lines of evidence, the authors conclusively show that AgmT does not directly associate with the motility complexes, but that instead its absence (or the overexpression of its active site mutant) results in the failure of focal adhesion complexes to properly interact with the cell wall.

      An interpretive weakness is the rather direct role attributed to AgmT in focal adhesion assembly. While their data clearly show that AgmT is important, it is unclear whether this is the direct consequence of AgmT somehow promoting bFAC binding to PG or just an indirect consequence of changed cell wall architecture without AgmT. In E. coli, an MltG mutant has increased PG strain length, suggesting that M. xanthus's PG architecture may likewise be compromised in a way that precludes AglR binding to the cell wall. However, this distinction would be very difficult to establish experimentally. MltG has been shown to associate with active cell wall synthesis in E.c oli in the absence of protein-protein interactions, and one could envision a similar model in M. xanthus, where active cell wall synthesis is required for focal adhesion assembly, and MltG makes an important contribution to this process.

    1. Reviewer #1 (Public Review):

      Summary:

      Li et al investigated how adjuvants such as MPLA and CpG influence antigen presentation at the level of the Antigen-presenting cell and MHCII : peptide interaction. They found that the use of MPLA or CpG influences the exogenous peptide repertoire presented by MHC II molecules. Additionally, their observations included the finding that peptides with low-stability peptide:MHC interactions yielded more robust CD4+ T cell responses in mice. These phenomena were illustrated specifically for 2 pattern recognition receptor activating adjuvants. This work represents a step forward for how adjuvants program CD4+ Th responses and provides further evidence regarding the expected mechanisms of PRR adjuvants in enhancing CD4+ T cell responses in the setting of vaccination.

      Strengths:

      The authors use a variety of systems to analyze this question. Initial observations were collected in an H pylori model of vaccination with a demonstration of immunodominance differences simply by adjuvant type, followed by analysis of MHC:peptide as well as proteomic analysis with comparison by adjuvant group. Their analysis returns to peptide immunization and analysis of strength of relative CD4+ T cell responses, through calculation of IC:50 values and strength of binding. This is a comprehensive work. The logical sequence of experiments makes sense and follows an unexpected observation through to trying to understand that process further with peptide immunization and its impact on Th responses. This work will premise further studies into the mechanisms of adjuvants on T cells

      Weaknesses:

      While MDP has a different manner of interaction as an adjuvant compared to CpG and MPLA, it is unclear why MDP has a different impact on peptide presentation and it should be further investigated, or at minimum highlighted in the discussion as an area that requires further investigation.

      It is alluded by the authors that TLR activating adjuvants mediate selective, low affinity, exogenous peptide binding onto MHC class II molecules. However, this was not demonstrated to be related specifically to TLR binding. I wonder if some work with TLR deficient mice (TLR 4KO for example) could evaluate this phenomenon more specifically.

      It is unclear to me if this observation is H pylori model/antigen-specific. It may have been nice to characterize the phenomenon with a different set of antigens as supplemental. Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low-stability peptides among the peptides analyzed.

    2. Reviewer #2 (Public Review):

      Adjuvants boost antigen-specific immune responses to vaccines. However, whether adjuvants modulate the epitope immunodominance and the mechanisms involved in adjuvant's effect on antigen processing and presentation are not fully characterized. In this manuscript, Li et al report that immunodominant epitopes recognized by antigen-specific T cells are altered by adjuvants.

      Using MPLA, CpG, and MDP adjuvants and H. pylori antigens, the authors screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that adjuvants altered antigen-specific CD4+ T cell immunodominant epitope hierarchy. They show that adjuvants, MPLA and CpG especially, modulate the peptide repertoires presented on the surface of APCs. Surprisingly, adjuvant favored the presentation of low-stability peptides rather than high-stability peptides by APCs. As a result, the low stability peptide presented in adjuvant groups elicits T cell response effectively.

    1. Reviewer #1 (Public Review):

      Summary:

      SARS-CoV-2 infection induces syncytia formation, which promotes viral transmission. In this paper, the authors aimed to understand how host-derived inflammatory cytokines IL-1α/β combat SARS-CoV-2 infection.

      Strengths:

      First, they used a cell-cell fusion assay developed previously to identify IL-1α/β as the cytokines that inhibit syncytia formation. They co-cultured cells expressing the spike protein and cells expressing ACE2 and found that IL-1β treatment decreased syncytia formation and S2' cleavage.

      Second, they investigated the IL-1 signaling pathway in detail, using knockouts or pharmacological perturbation to understand the signaling proteins responsible for blocking cell fusion. They found that IL-1 prevents cell-cell fusion through MyD88/IRAK/TRAF6 but not TAK1/IKK/NF-κB, as only knocking out MyD88/IRAK/TRAF6 eliminates the inhibitory effect on cell-cell fusion in response to IL-1β. This revealed that the inhibition of cell fusion did not require a transcriptional response and was mediated by IL-1R proximal signaling effectors.

      Third, the authors identified RhoA/ROCK activation by IL-1 as the basis for this inhibition of cell fusion. By visualizing a RhoA biosensor and actin, they found a redistribution of RhoA to the cell periphery and cell-cell junctions after IL-1 stimulation. This triggered the formation of actin bundles at cell-cell junctions, preventing fusion and syncytia formation. The authors confirmed this molecular mechanism by using constitutively active RhoA and an inhibitor of ROCK.

      Diverse Cell types and in vivo models were used, and consistent results were shown across diverse models. These results were convincing and well-presented.

      Weaknesses:

      As the authors point out in the discussion, whether IL-1-mediated RhoA activation is specific to viral infection or regulates other RhoA-regulated processes is unclear. We would also require high-magnification images of the subcellular organization of the cytoskeleton to appreciate the effect of IL-1 stimulation.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Zheng et al investigated the role of inflammatory cytokines in protecting cells against SARS-CoV-2 infection. They demonstrate that soluble factors in the supernatants of TLR-stimulated THP1 cells reduce fusion events between HEK293 cells expressing SARS-CoV-2 S protein and the ACE2 receptor. Using qRT-PCR and ELISA, they demonstrate that IL-1 cytokines are (not surprisingly) upregulated by TLR treatment in THP1 cells. Further, they convincingly demonstrate that recombinant IL-1 cytokines are sufficient to reduce cell-to-cell fusion mediated by the S protein. Using chemical inhibitors and CRISPR knock-out of key IL-1 receptor signaling components in HEK293 cells, they demonstrate that components of the myddosome (MYD88, IRAK1/4, and TRAF6) are required for fusion inhibition, but that downstream canonical signaling (i.e., TAK1 and NFKB activation) is not required. Instead, they provide evidence that IL-1-dependent non-canonical activation of RhoA/Rock is important for this phenotype. Importantly, the authors demonstrate that expression of a constitutively active RhoA alone is sufficient to inhibit fusion and that chemical inhibition of Rock could reverse this inhibition. The authors followed up these in vitro experiments by examining the effects of IL-1 on SARS-COV-2 infection in vivo and they demonstrate that recombinant IL-1 can reduce viral burden and lung pathogenesis in a mouse model of infection. However, the contribution of the RhoA/Rock pathway and inhibition of fusion to IL-1-mediated control of SARS-CoV-2 infection in vivo remains unclear.

      Strengths:

      (1) The bioluminescence cell-cell fusion assay provides a robust quantitative method to examine cytokine effects on viral glycoprotein-mediated fusion.

      (2) The study identifies a new mechanism by which IL-1 cytokines can limit virus infection.

      (3) The authors tested IL-1 mediated inhibition of fusion induced by many different coronavirus S proteins and several SARS-CoV-2 strains.

      Weaknesses:

      (1) The qualitative assay demonstrating S2 cleavage and IL-1 mediated inhibition of this phenotype is extremely variable across the data figures. Sometimes it appears like S2 cleavage (S2') is reduced, while in other figures immunoblots show that total S2 protein is decreased. Based on the proposed model the expectation would be that S2 abundance would be rescued when cleavage is inhibited.

      (2) The text referencing Figure 1H suggests that TLR-stimulated THP-1 cell supernatants "significantly" reduce syncytia, but image quantification and statistics are not provided to support this statement.

      (3) The authors conclude that because IL-1 accumulates in TLR2-stimulated THP1 monocyte supernatants, this cytokine accounts for the ability of these supernatants to inhibit cell-cell fusion. However, they do not directly test whether IL-1 is required for the phenotype. Inhibition of the IL-1 receptor in supernatant-treated cells would help support their conclusion.

      (4) Immunoblot analysis of IL-1 treated HEK293 cells suggests that this cytokine does not reduce the abundance of ACE2 or total S protein in cells. However, it is possible that IL-1 signaling reduces the abundance of these proteins on the cell surface, which would result in a similar inhibition of cell-cell fusion. The authors should confirm that IL-1 treatment of their cells does not change Ace2 or S protein on the cell surface.

      (5) In Figure 5A, expression of constitutively active RhoA appears to have profound effects on how ACE2 runs by SDS-PAGE, suggesting that RhoA may have additional effects on ACE2 biology that might account for the decreased cell-cell fusion. This phenotype should be addressed in the text and explored in more detail.

      (6) The experiments linking IL-1 mediated restriction of SARS-COV-2 fusion to the control of virus infection in vivo are incomplete. The reported data demonstrate that recombinant IL-1 can restrict virus replication in vivo, but they fall short of confirming that the in vitro mechanism described (reduced fusion) contributes to the control of SARS-CoV2 replication in vivo. A critical piece of data that is missing is the demonstration that the ROCK inhibitor phenocopies IL-1RA treatment of SARS-COV-2 infected mice (viral infection and pathology).

    1. Reviewer #1 (Public Review):

      Summary:

      Chlamydia spp. has a biphasic developmental cycle consisting of an extracellular, infectious form called an elementary body (EB) and an intracellular, replicative form known as a reticular body (RB). The structural stability of EBs is maintained by extensive cross-linking of outer membrane proteins while the outer membrane proteins of RBs are in a reduced state. The overall redox state of EBs is more oxidized than RBs. The authors propose that the redox state may be a controlling factor in the developmental cycle. To test this, alkyl hydroperoxide reductase subunit C (ahpC) was overexpressed or knocked down to examine effects on developmental gene expression. KD of ahpC induced increased expression of EB-specific genes and accelerated EB production. Conversely, overexpression of phpC delayed differentiation to EBs. The results suggest that chlamydial redox state may play a role in differentiation.

      Strengths:

      Uses modern genetic tools to explore the difficult area of temporal gene expression throughout the chlamydial developmental cycle.

      Weaknesses:

      The environmental signals triggering ahpC expression/activity are not determined.

    2. Reviewer #2 (Public Review):

      The factors that influence the differentiation of EBs and RBs during Chlamydial development are not clearly understood. A previous study had shown a redox oscillation during the Chlamydial developmental cycle. Based on this observation, the authors hypothesize that the bacterial redox state may play a role in regulating the differentiation in Chlamydia. To test their hypothesis, they make knock-down and overexpression strains of the major ROS regulator, ahpC. They show that the knock-down of ahpC leads to a significant increase in ROS levels leading to an increase in the production of elementary bodies and overexpression leads to a decrease in EB production likely caused by a decrease in oxidation. From their observations, they present an interesting model wherein an increase in oxidation favors the production of EBs.

      Major concern:

      In the absence of proper redox potential measurements, it is not clear if what they observe is a general oxidative stress response, especially when the knock-down of ahpC leads to a significant increase in ROS levels. Direct redox potential measurement in the ahpC overexpression and knock-down cells is required to support the model. This can be done using the roGFP-based measurements mentioned in the Wang et al. 2014 study cited by the authors.

    3. Reviewer #3 (Public Review):

      Summary:

      The study reports clearly on the role of the AhpC protein as an antioxidant factor in Chlamydia trachomatis and speculates on the role of AhpC as an indirect regulator of developmental transcription induced by redox stress in this differentiating obligate intracellular bacterium.

      Strengths:

      The question posed and the concluding model about redox-dependent differentiation in chlamydia is interesting and highly relevant. This work fits with other propositions in which redox changes have been reported during bacterial developmental cycles, potentially as triggers, but have not been cited (examples PMID: 2865432, PMID: 32090198, PMID: 26063575). Here, AhpC over-expression is shown to protect Chlamydia towards redox stress imposed by H2O2, CHP, TBHP, and PN, while CRISPRi-mediated depletion of AhpC curbed intracellular replication and resulted in increased ROS levels and sensitivity to oxidizing agents. Importantly, the addition of ROS scavengers mitigated the growth defect caused by AhpC depletion. These results clearly establish the role of AhpC affects the redox state and growth in Ct (with the complicated KO genetics and complementation that are very nicely done).

      Weaknesses:

      However, with respect to the most important implication and claims of this work, the role of redox in controlling the chlamydial developmental cycle rather than simply being a correlation/passenger effect, I am less convinced about the impact of this work. First, the study is largely observational and does not resolve how this redox control of the cell cycle could be achieved, whereas in the case of Caulobacter, a clear molecular link between DNA replication and redox has been proposed. How would progressive oxidation in RBs eventually trigger the secondary developmental genes to induce EB differentiation? Is there an OxyR homolog that could elicit this change and why would the oxidation stress in RBs gradually accumulate during growth despite the presence of AhpC? In other words, the role of AhpC is simply to delay or dampen the redox stress response until the trigger kicks in, again, what is the trigger? Is this caused by increasing oxidative respiration of RBs in the inclusion? But what determines the redox threshold?

      I also find the experiment with Pen treatment to have little predictive power. The fact that transcription just proceeds when division is blocked is not unprecedented. This also happens during the Caulobacter cell cycle when FtsZ is depleted for most developmental genes, except for those that are activated upon completion of the asymmetric cell division and that is dependent on the completion of compartmentalization. This is a smaller subset of developmental genes in caulobacter, but if there is a similar subset that depends on division on chlamydia and if these are affected by redox as well, then the argument about the interplay between developmental transcription and redox becomes much stronger and the link more intriguing. Another possibility to strengthen the study is to show that redox-regulated genes are under the direct control of chlamydial developmental regulators such as Euo, HctA, or others and at least show dual regulation by these inputs -perhaps the feed occurs through the same path.

      This redox-transcription shortcoming is also reflected in the discussion where most are about the effects and molecular mitigation of redox stress in various systems, but there is little discussion on its link with developmental transcription in bacteria in general and chlamydia.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Kely C. Matteucc et al. titled "Reprogramming of host energy metabolism mediated by the TNF-iNOS-HIF-1α axis plays a key role in host resistance to Plasmodium infection" describes that TNF induces HIF-1α stabilization that increases GLUT1 expression as well as glycolytic metabolism in monocytic and splenic CD11b+ cells in P. chabaudi infected mice. Also, TNF signaling plays a crucial role in host energy metabolism, controlling parasitemia, and regulating the clinical symptoms in experimental malaria.

      Weaknesses:

      Even though iNOS deficiency reduced the expression of the glycolytic enzymes as well as reduced GLUT1 expression and lower ECAR in splenic monocytes, there is no data to support that RNI induces the expression and stabilization of HIF-1α.

      This paper involves an incredible amount of work, and the authors have done an exciting study addressing the TNF-iNOS-HIF-1α axis as a critical role in host immune defense during Plasmodium infection.

    2. Reviewer #2 (Public Review):

      Summary:

      The premise of the manuscript by Matteucci et al. is interesting and elaborates on a mechanism via which TNFa regulates monocyte activation and metabolism to promote murine survival during Plasmodium infection. The authors show that TNF signaling (via an unknown mechanism) induces nitrite synthesis, which (via yet an unknown mechanism), and stabilizes the transcription factor HIF1a. Furthermore, HIF1a (via an unknown mechanism) increases GLUT1 expression and increases glycolysis in monocytes. The authors demonstrate that this metabolic rewiring towards increased glycolysis in a subset of monocytes is necessary for monocyte activation including cytokine secretion, and parasite control.

      Strengths:

      The authors provide elegant in vivo experiments to characterize metabolic consequences of Plasmodium infection, and isolate cell populations whose metabolic state is regulated downstream of TNFa. Furthermore, the authors tie together several interesting observations to propose an interesting model.

      Weaknesses:

      The main conclusion of this work - that "Reprogramming of host energy metabolism mediated by the TNF-iNOS-HIF1a axis plays a key role in host resistance to Plasmodium infection" is unsubstantiated. The authors show that TNFa induces GLUT1 in monocytes, but never show a direct role for GLUT1 or glucose uptake in monocytes in host resistance to infection (nor the hypoglycemia phenotype they describe).

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors provide a study among healthy individuals, general medical patients and patients receiving haematopoietic cell transplants (HCT) to study the gut microbiome through shotgun metagenomic sequencing of stool samples. The first two groups were sampled once, while the patients receiving HCT were sampled longitudinally. A range of metadata (including current and previous (up to 1 year before sampling) antibiotic use) was recorded for all sampled individuals. The authors then performed shotgun metagenomic sequencing (using the Illumina platform) and performed bioinformatic analyses on these data to determine the composition and diversity of the gut microbiota and the antibiotic resistance genes therein. The authors conclude, on the basis of these analyses, that some antibiotics had a large impact on gut microbiota diversity, and could select opportunistic pathogens and/or antibiotic resistance genes in the gut microbiota.

      Strengths:

      The major strength of this study is the considerable achievement of performing this observational study in a large cohort of individuals. Studies into the impact of antibiotic therapy on the gut microbiota are difficult to organise, perform and interpret, and this work follows state-of-the-art methodologies to achieve its goals. The authors have achieved their objectives and the conclusion they draw on the impact of different antibiotics and their impact on the gut microbiota and its antibiotic resistance genes (the 'resistome', in short), are supported by the data presented in this work.

      Weaknesses:

      The weaknesses are the lack of information on the different resistance genes that have been identified and which could have been supplied as Supplementary Data. In addition, no attempt is made to assess whether the identified resistance genes are associated with mobile genetic elements and/or (opportunistic) pathogens in the gut. While this is challenging with short-read data, alternative approaches like long-read metagenomics, Hi-C and/or culture-based profiling of bacterial communities could have been employed to further strengthen this work. Unfortunately, the authors have not attempted to perform corrections for multiple testing because many antibiotic exposures were correlated.

      Impact:

      The work may impact policies on the use of antibiotics, as those drugs that have major impacts on the diversity of the gut microbiota and select for antibiotic resistance genes in the gut are better avoided. However, the primary rationale for antibiotic therapy will remain the clinical effectiveness of antimicrobial drugs, and the impact on the gut microbiota and resistome will be secondary to these considerations.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript by Peto et al., the authors describe the impact of different antimicrobials on gut microbiota in a prospective observational study of 225 participants (healthy volunteers, inpatients and outpatients). Both cross-sectional data (all participants) and longitudinal data (a subset of 79 haematopoietic cell transplant patients) were used. Using metagenomic sequencing, they estimated the impact of antibiotic exposure on gut microbiota composition and resistance genes. In their models, the authors aim to correct for potential confounders (e.g. demographics, non-antimicrobial exposures and physiological abnormalities), and for differences in the recency and total duration of antibiotic exposure. I consider these comprehensive models an important strength of this observational study. Yet, the underlying assumptions of such models may have impacted the study findings (detailed below). Other strengths include the presence of both cross-sectional and longitudinal exposure data and the presence of both healthy volunteers and patients. Together, these observational findings expand on previous studies (both observational and RCTs) describing the impact of antimicrobials on gut microbiota.

      Weaknesses:

      (1) The main weaknesses result from the observational design. This hampers causal interpretation and corrects for potential confounding necessary. The authors have used comprehensive models to correct for potential confounders and for differences between participants in duration of antibiotic exposure and time between exposure and sample collection. I wonder if some of the choices made by the authors did affect these findings. For example, the authors did not include travel in the final model, but travel (most importantly, south Asia) may result in the acquisition of AMR genes [Worby et al., Lancet Microbe 2023; PMID 37716364). Moreover, non-antimicrobial drugs (such as proton pump inhibitors) were not included but these have a well-known impact on gut microbiota and might be linked with exposure to antimicrobial drugs. Residual confounding may underlie some of the unexplained discrepancies between the cross-sectional and longitudinal data (e.g. for vancomycin).

      In addition, the authors found a disruption half-life of 6 days to be the best fit based on Shannon diversity. If I'm understanding correctly, this results in a near-zero modelled exposure of a 14-day-course after 70 days (purple line; Supplementary Figure 2). However, it has been described that microbiota composition and resistome (not Shannon diversity!) remain altered for longer periods of time after (certain) antibiotic exposures (e.g. Anthony et al., Cell Reports 2022; PMID 35417701). The authors did not assess whether extending the disruption half-life would alter their conclusions.

      (2) Another consequence of the observational design of this study is the relatively small number of participants available for some comparisons (e.g. oral clindamycin was only used by 6 participants). Care should be taken when drawing any conclusions from such small numbers.

      (3) The authors assessed log-transformed relative abundances of specific bacteria after subsampling to 3.5 million reads. While I agree that some kind of data transformation is probably preferable, these methods do not address the compositional data of microbiome data and using a pseudocount (10-6) is necessary for absent (i.e. undetected) taxa [Gloor et al., Front Microbiol 2017; PMID 29187837]. Given the centrality of these relative abundances to their conclusions, a sensitivity analysis using compositionally-aware methods (such as a centred log-ratio (clr) transformation) would have added robustness to their findings.

      (4) An overall description of gut microbiota composition and resistome of the included participants is missing. This makes it difficult to compare the current study population to other studies. In addition, for correct interpretation of the findings, it would have been helpful if the reasons for hospital visits of the general medical patients were provided.

    1. Reviewer #1 (Public Review):

      Summary:

      Despite the study being a collation of important results likely to have an overall positive effect on the field, methodological weaknesses and suboptimal use of statistics make it difficult to give confidence to the study's message.

      Strengths:

      Relevant human and mouse models approached with in vivo and in vitro techniques.

      Weaknesses:

      The methodology, statistics, reagents, analyses, and manuscripts' language all lack rigour.

      (1) The authors used statistics to generate P-values and Rsquare values to evaluate the strength of their findings.

      However, it is unclear how stats were used and/or whether stats were used correctly. For instance, the authors write: "Gaussian distribution of all numerical variables was evaluated by QQ plots". But why? For statistical tests that fall under the umbrella of General Linear Models (line ANOVA, t-tests, and correlations (Pearson's)), there are several assumptions that ought to be checked, including typically:

      (a) Gaussian distribution of residuals.

      (b) Homoskedasticity of the residuals.

      (c) Independence of Y, but that's assumed to be valid due to experimental design.

      So what is the point of evaluating the Gaussian distribution of the data themselves? It is not necessary. In this reviewer's opinion, it is irrelevant, not a good use of statistics, and we ought to be leading by example here.

      Additionally, it is not clear whether the homoscedasticity of the residuals was checked. Many of the data appear to have particularly heteroskedastic residuals. In many respects, homoscedasticity matters more than the normal distribution of the residuals. In Graphpad analyses if ANOVA is used but equal variances are assumed (when variances among groups are unequal then standard deviations assigned in each group will be wrong and thus incorrect p values are being calculated.

      Based on the incomplete and/or wrong statistical analyses it is difficult to evaluate the study in greater depth.

      While on the subject of stats, it is worth mentioning this misuse of statistics in Figure 3D, where the authors added the Slc34a1 transcript levels from controls in the correlation analyses, thereby driving the intercept down. Without the Control data there does not appear to be a correlation between the Slc34a1 levels and tumor size.

      There is more. The authors make statements (e.g. in the figure levels as: "Correlations indicated by R2.". What does that mean? In a simple correlation, the P value is used to evaluate the strength of the slope being different from zero. The authors also give R2 values for the correlations but they do not provide R2 values for the other stats (like ANOVAs). Why not?

      (2) The authors used antibodies for immunos and WBs. I checked those antibodies online and it was concerning:

      (a) Many are discontinued.

      (b) Many are not validated.

      (c) Many performed poorly in the Immunos, e.g. FGF23, FGFR1, and Kotho are not really convincing. PO5F1 (gene: OCT4) is the one that looks convincing as it is expressed at the correct cell types.

      (d) Others like NPT2A (product of gene SLC34A1) are equally unconvincing. Shouldn't the immuno show them to be in the plasma membrane?

      If there is some brown staining, this does not mean the antibodies are working. If your antibodies are not validated then you ought to omit the immunos from the manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      This study set out to examine microlithiasis associated with an increased risk of testicular germ cell tumors (TGCT). This reviewer considers this to be an excellent study. It raises questions regarding exactly how aberrant Sertoli cell function could induce osteogenic-like differentiation of germ cells but then all research should raise more questions than it answers.

      Strengths:

      Data showing the link between a disruption in testicular mineral (phosphate) homeostasis, FGF23 expression, and Sertoli cell dysfunction, are compelling.

      Weaknesses:

      Not sure I see any weaknesses here, as this study advances this area of inquiry and ends with a hypothesis for future testing.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have studied the effects of platelets in OPC biology and remyelination. For this, they used mutant mice with lower levels of platelets as a demyelinating/remyelinating scenario, as well as in a model with large numbers of circulating platelets.

      Strengths:

      -The work is very focused, with defined objectives.<br /> -The work is properly done.

      Revision comments:

      Having consulted the new version of the work by Amber et al., the modifications and the point-by-point cover letter explaining them give direct answers to my previous comments.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper examined whether circulating platelets regulate oligodendrocyte progenitor cell (OPC) differentiation for the link with multiple sclerosis (MS). They identified that the interaction with platelets enhances OPC differentiation although persistent contact inhibits the process in the long-term. The mouse model with increased platelet levels in the blood reduced mature oligodendrocytes, while how platelets might regulate OPC differentiation is not clear yet.

      Strengths:

      The use of both partial platelet depletion and thrombocytosis mouse models gives in vivo evidence. The presentation of platelet accumulation in a time-course manner is rigorous. The in vitro co-culture model tested the role of platelets in OPC differentiation, which was supportive of in vivo observations.

      Revision comments:

      Although the mechanisms are limited, the authors addressed the major experiments I suggested.

    1. Reviewer #2 (Public Review):

      Summary:

      Ma et al. employed a myeloid progenitor/microglia differentiation protocol to produce human-induced pluripotent stem cell (hiPSC)-derived microglia in order to examine the potential of microglial cell replacement as a treatment for retinal disorders. They characterized the iPSC-derived microglia by gene expression and in vitro assay analysis. By evaluating xenografted microglia in the partly microglia-depleted retina, the function of the microglia was further assessed.

      Overall, the study and the data are convincing, and xenografted microglia were also tested in a RPE injury paradigm.

    2. Reviewer #1 (Public Review):

      Summary:

      This paper reported a protocol of using human-induced pluripotent stem cells to generate cells expressing microglia-enriched genes and responding to LPS by drastically upregulation of proinflammatory cytokines. Upon subretinal transplantation in mice, hiPSC-derived cells integrated into the host retina and maintained retinal homeostasis while they responded to RPE injury by migration, proliferation, and phagocytosis. The findings revealed the potential of using hiPSC-derived cell transplantation for microglia replacement as a therapeutic strategy for retinal diseases.

      Strengths:

      The paper demonstrates a method of consistently generating a significant quantity of hiPSC-derived microglia-like cells for in vitro study or for in vivo transplantation. RNAseq analysis offers an opportunity for comprehensive transcriptome profiling of the derived cells. It is impressive that following transplantation, these cells were well integrated into the retina, migrated to the corresponding layers, adopted microglia-like morphologies, and survived for a long term without generating apparent harm. The work has laid a foundation for future utilization of hiPSC-derived microglia in lab and clinical applications.

      Weaknesses:

      (1) The primary weakness of the paper concerns its conclusion of having generated "homogenous mature microglia", partly based on the RNAseq analysis. However, the comparison of gene profiles was carried out only between "hiPSC-derived mature microglia" and the proliferating myeloid progenitors. While the transcriptome profiles revealed a trend of enrichment of microglia-like gene expression in "hiPSC-derived mature microglia" compared to proliferating myeloid progenitors, this is not sufficient to claim they are "mature microglia". It is important that one carries out a comparative analysis of the RNAseq data with those of primary human microglia, which may be done by leveraging the public database. To convincingly claim these cells are mature microglia, questions to be addressed include how similar the molecular signatures of these cells are compared with the fully differentiated primary microglia cell or if they remain progenitor-like or take on mosaic properties, and how they distinguish from macrophages.

      (2) While the authors attempted to demonstrate the functional property of "hiPSC-derived mature microglia" in culture, they used LPS challenge, which is an inappropriate assay. This is because human microglia respond poorly to LPS alone but need to be activated by a combination of LPS with other factors, such as IFNγ. Their data that "hiPSC-derived mature microglia" showed robust responses to LPS indeed implicates that these cells do not behave like mature human microglia.

      (3) The resolution of Figs. 4 - 6 is so low that even some of the text and labels are hardly readable. Based on the morphology shown in Fig. 4 and the statement in line 147, these hiPSC-derived "cells altered their morphology to a rounded shape within an hour of incubation and rapidly internalized the fluorescent-labeled particles". This is a peculiar response. Usually, microglia do not respond to fluorescent-labeled zymosan by turning into a rounded-shaped morphology within an hour when they internalize them. Such a behavior usually implicates weak phagocytotic capacity.

      (4) Data presented in Fig. 5 are not very convincing to support that transplanted cells were immunopositive for "human CD11b (Fig.5C), as well as microglia signature markers P2ry12 and TMEM119 (Fig.5D)" (line 167). The resolution and magnification of Fig. 5D are too low to tell the colocalization of tdT and human microglial marker immunolabeling. In the flat-mount images (C, I), hCD11b immunolabeling is not visible in the GCL or barely visible in the IPL. This should be discussed.

      (5) Microglia respond to injury by becoming active and losing their expression of the resting state microglial marker, such as P2ry12, which is used in Fig. 6 for the detection of migrated microglia. To confirm that these cells indeed respond to injury like native microglia, one should check for activated microglial markers and induction of pro-inflammatory cytokines in the sodium iodate-injury model.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 335 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a more general pangenome graph approach to investigate structural variants also in non-coding regions. The two main results of the study are that (1) the MTBC has a small pangenome with few accessory genes, and that (2) pangenome evolution is driven by deletions in sublineage-specific regions of difference. Combining the gene-based approach with a pangenome graph is innovative, and the former analysis is largely sound apart from a lack of information about the data set used. The graph part, however, requires more work and currently fails to support the second main result. Problems include the omission of important information and the confusing analysis of structural variants in terms of "regions of difference", which unnecessarily introduces reference bias. Overall, I very much like the direction taken in this article, but think that it needs more work: on the one hand by simply telling the reader what exactly was done, on the other by taking advantage of the information contained in the pangenome graph.

      Strengths:

      The authors put together a large data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, covering a large geographic area. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes in pangenome analysis.

      Weaknesses:

      The study does not quite live up to the expectations raised in the introduction. Firstly, while the importance of using a curated data set is emphasized, little information is given about the data set apart from the geographic origin of the samples (Figure 1). A BUSCO analysis is conducted to filter for assembly quality, but no results are reported. It is also not clear whether the authors assembled genomes themselves in the cases where, according to Supplementary Table 1, only the reads were published but not the assemblies. In the end, we simply have to trust that single-contig assemblies based on long-reads are reliable.

      One issue with long read assemblies could be that high rates of sequencing errors result in artificial indels when coverage is low, which in turn could affect gene annotation and pangenome inference (e.g. Watson & Warr 2019, https://doi.org/10.1038/s41587-018-0004-z). Some of the older long-read data used by the authors could well be problematic (PacBio RSII), but also their own Nanopore assemblies, six of which have a mean coverage below 50 (Wick et al. 2023 recommend 200x for ONT, https://doi.org/ 10.1371/journal.pcbi.1010905). Could the results be affected by such assembly errors? Are there lineages, for example, for which there is an increased proportion of RSII data? Given the large heterogeneity in data quality on the NCBI, I think more information about the reads and the assemblies should be provided.

      The part of the paper I struggled most with is the pangenome graph analysis and the interpretation of structural variants in terms of "regions of difference". To start with, the method section states that "multiple whole genomes were aligned into a graph using PanGraph" (l.159/160), without stating which genomes were for what reason. From Figure 5 I understand that you included all genomes, and that Figure 6 summarizes the information at the sublineage level. This should be stated clearly, at present the reader has to figure out what was done. It was also not clear to me why the authors focus on the sublineage level: a minority of accessory genes (107 of 506) are "specific to certain lineages or sublineages" (l. 240), so why conclude that the pangenome is "driven by sublineage-specific regions of difference", as the title states? What does "driven by" mean? Instead of cutting the phylogeny arbitrarily at the sublineage level, polymorphisms could be described more generally by their frequencies.

      I fully agree that pangenome graphs are the way to go and that the non-coding part of the genome deserves as much attention as the coding part, as stated in the introduction. Here, however, the analysis of the pangenome graph consists of extracting variants from the graph and blasting them against the reference genome H37Rv in order to identify genes and "regions of difference" (RDs) that are variable. It is not clear what the authors do with structural variants that yield no blast hit against H37Rv. Are they ignored? Are they included as new "regions of difference"? How many of them are there? etc. The key advantage of pangenome graphs is that they allow a reference-free, full representation of genetic variation in a sample. Here reference bias is reintroduced in the first analysis step.

      Along similar lines, I find the interpretation of structural variants in terms of "regions of difference" confusing, and probably many people outside the TB field will do so. For one thing, it is not clear where these RDs and their names come from. Did the authors use an annotation of RDs in the reference genome H37Rv from previously published work (e.g. Bespiatykh et al. 2021)? This is important basic information, its lack makes it difficult to judge the validity of the results. The Bespiatykh et al. study uses a large short-read data (721 strains) set to characterize diversity in RDs and specifically focuses on the sublineage-specific variants. While the authors cite the paper, it would be relevant to compare the results of the two studies in more detail.

      As far as I understand, "regions of difference" have been used in the tuberculosis field to describe structural variants relative to the reference genome H37Rv. Colloquially, regions present in H37Rv but absent in another strain have been called "deletions". Whether these polymorphisms have indeed originated through deletion or through insertion in H37Rv or its ancestors requires a comparison with additional strains. While the pangenome graph does contain this information, the authors do not attempt to categorize structural variants into insertions and deletions but simply seem to assume that "regions of difference" are deletions. This, as well as the neglect of paralogs in the "classical" pangenome analysis, puts a question mark behind their conclusion that deletion drives pangenome evolution in the MTBC.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports.

      Strengths:

      A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that were previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated the limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed.

      Weaknesses:

      The only major weakness was the limited number of isolates from certain lineages and the over-representation others, which was also acknowledged by the authors. However, since the case is made that the MTBC has a closed pangenome, the inclusion of additional genomes would not result in the identification of any new genes. This is a strong statement without an illustration/statistical analysis to support this.

    1. Reviewer #2 (Public Review):

      Summary:

      The study explores a new strategy of lysin-derived antimicrobial peptide-primed screening to find peptidoglycan hydrolases from bacterial proteomes. Using this strategy authors identified five peptidoglycan hydrolases from A. baumannii. They further tested their antimicrobial activities on various Gram-positive and Gram-negative pathogens.

      Strengths:

      Overall, the study is good and adds new members to the peptidoglycan hydrolases family. The authors also show that these lysins have bactericidal activities against both Gram-positive and Gram-negative bacteria. The crystal structure data is good, and reveals different thermostablility to the peptidoglycan hydrolases. Structural data also reveals that PhAb10 and PHAb11 form thermostable dimers and data is corroborated by generating variant protein defective in supporting intermolecular bond pairs. The mice bacterial infection shows promise for the use of these hydrolases as antimicrobial agents.

      Weaknesses:

      While the authors have employed various mechanisms to justify their findings, some aspects are still unclear. Only CFU has been used to test bactericidal activity. This should also be corroborated by live/dead assay. Moreover, SEM or TEM analysis would reveal the effect of these peptidoglycan hydrolases on Gram-negative /Gram-positive cell envelopes. The authors claim that these hydrolases are similar to T4 lysozyme, but they have not correlated their findings with already published findings on T4 lysozyme. T4 lysozyme has a C-terminal amphipathic helix with antimicrobial properties. Moreover, heat, denatured lysozyme also shows enhanced bactericidal activity due to the formation of hydrophobic dimeric forms, which are inserted in the membrane. Authors also observe that heat-denatured PHAb10 and PHAb11 have bactericidal activity but no enzymatic activity. These findings should be corroborated by studying the effect of these holoenzymes/ truncated peptides on bacterial cell membranes. Also, a quantitative peptidoglycan cleavage assay should be performed in addition to the halo assay. Including these details would make the work more comprehensive.

    2. Reviewer #1 (Public Review):

      Summary:

      Li Zhang et al. characterized two new Gram-negative endolysins identified through an AMP-targeted search in bacterial proteomes. These endolysins exhibit broad lytic activity against both Gram-negative and Gram-positive bacteria and retain significant antimicrobial activity even after prolonged exposure to high temperatures (100{degree sign}C for 1 hour). This stability is attributed to a temperature-reversible transition from a dimer to a monomer. The authors suggest several potential applications, such as complementing heat sterilization processes or being used in animal feed premixes that undergo high-temperature pelleting, which I agree with.

      Strengths:

      The claims are well-supported by relevant and complementary assays, as well as extensive bioinformatic analyses.

      Weaknesses:

      There are numerous statements in the introduction and discussion sections that I currently do not agree with and consider need to be addressed. Therefore, I recommend major revisions.

      Major comments:

      Introduction and Discussion:

      The introduction and the discussion are currently too general and not focused. Furthermore, there are some key concepts that are missing and are important for the reader to have an overview of the current state-of-the-art regarding endolysins that target gram-negatives. Specifically, the concepts of 'Artilysins', 'Innolysins', and 'Lysocins' are not introduced. Besides this, the authors do not mention other high-throughput mining or engineering strategies for endolysins, such as e.g. the VersaTile platform, which was initially developed by Hans Gerstmans et al. for one of the targeted pathogens in this manuscript (i.e., Acinetobacter baumannii). Recent works by Niels Vander Elst et al. have demonstrated that this VersaTile platform can be used to high-throughput screen and hit-to-lead select endolysins in the magnitude tens of thousands. Lastly, Roberto Vázquez et al. have recently demonstrated with bio-informatic analyses that approximately 30% of Gram-negative endolysin entries have AMP-like regions (hydrophobic short sequences), and that these entries are interesting candidates for further wet lab testing due to their outer membrane penetrating capacities. Therefore, I fully disagree with the statement being made in the introduction that endolysin strategies to target Gram-negatives are 'in its infancy' and I urge the authors to provide a new introduction that properly gives an overview of the Gram-negative endolysin field.

      Results:

      It should be mentioned that the halo assay is a qualitative assay for activity testing. I personally do not like that the size of the halos is used to discriminate in endolysin activity. In this reviewer's opinion, the size of the halo is highly dependent on (i) the molecular size of the endolysin as smaller proteins can diffuse further in the agar, and (ii) the affinity of the CBD subdomain of the endolysin for the bacterial peptidoglycan. It should also be said that in the halo assay, there is a long contact time between the endolysin and the bacteria that are statically embedded in the agar, which can result in false positive results. How did the authors mitigate this?

      Testing should have been done at equimolar concentrations. If the authors decided to e.g. test 50 µg/mL for each protein, how was this then compensated for differences in molecular weight? For example, if PHAb10 and PHAb11 have smaller molecular sizes than PHAb7, 8, and 9, there is more protein present in 50 µg/mL for the first two compared to the others, and this would explain the higher decrease in bacterial killing (and possibly the larger halos).

    1. Reviewer #1 (Public Review):

      Summary:

      The authors show that upon treatment with Doxorubicin (Doxo), there is an increase in senescence and inflammatory markers in the muscles. They also show these genes get upregulated in C2C12 myoblasts when treated with conditioned media or 15d-PGJ2. 15dPGJ2 induces cell death in the myoblasts, decreases proliferation (measured by cell numbers), and decreases differentiation and fusion. 15d-PGJ2 modified Cys184 of HRas, which is required for its activation as indicated by the FRET analysis with RAF RBD. They also showed that 15d-PGJ2 activates ERK signaling, but not Akt signaling, through the electrophilic center. 15d-PGJ2 inhibits Golgi localization of HRAS (only WT, not C181 or C184 mutant). They also showed that expressing the WT HRas followed by 15d-PGJ2 treatment led to a decrease in the levels of MHC mRNA and protein, and this defect is dependent on C184. This is a well-written manuscript with interesting insights into the mechanism of action of 15d-PGJ2. However, some clarification and experiments will help the paper advance the field significantly.

      Strengths:

      The data clearly shows that 15d-PGJ2 has a negative role in the myoblast cells and that it leads to modification of HRas protein. Moreover, the induction of biosynthetic enzymes in the PGD2 pathway also supports the induction of 15d-PGJ2 in Doxorubicin-treated cells. Both conditioned media experiments and the 15d-PGJ2 experiments show that 15d-PGJ2 could be the active component secreted by the senescent myoblasts.

      Weaknesses:

      The genes that are upregulated in the muscles upon injection with Doxo are also markers for inflammation. Since Doxo is also known to induce systemic inflammation, it is important to delineate these two effects (Inflammatory cells vs senescent cells). The expression of beta Gal and other markers of senescence in the tissue sections will help to delineate these.

      In Figure 2, where the defect in the differentiation of myoblasts upon treatment with 15d-PGJ2 is shown, most of the cells die within 48 hours at higher concentrations, making it difficult to perform the experiments. This also shows that 15d-PGJ2 was toxic to these cells. Lower concentrations show a decrease in the differentiation based on the lower number of nuclei in fibers and low expression of MyoD, MyoG, and MHC. However, it is unclear if this is due to increased cell death or defective differentiation. It would be a lot more informative if the cell count, cell division, and cell death could be plotted for these concentrations of the drug during the experiment. Also, in the myoblast experiments, are the effects of treatment with Dox reversible?

      In Figure 3, most of the experiments are done at a high concentration, which induces almost complete cell death within 48 hours. Even at such a high concentration of 15dPGJ2, the increase in ERK phosphorylation is minimal.

      The experiment Figure 4C shows that C181 and C84 mutants of the HRas show higher levels in Golgi compared with WT. However, this could very well be due to the defect in palmitoylation rather than the modification with 15d-PGJ2. Though the authors allude to the possibility that intracellular redistribution of HRas by 15d-PGJ2 requires C181 palmitoylation, the direct influence of C184 modification on C181 palmitoylation is not shown. To have a meaningful conclusion, the authors need to compare the palmitoylation and modification with 15d-PGJ2.

      To test if the inhibition of myoblast differentiation depends on HRas, they overexpressed the HRas and mutants in the C2C12 lines. However, this experiment does not take the endogenous HRAs into consideration, especially when interpreting the C184 mutant. An appropriate experiment to test this would be to knock down or knock out HRas (or make knock-in mutations of C184) and show that the effect of 15d-PGJ2 disappears. Moreover, in this specific experiment, it is difficult to interpret without a control with no HRas construct and another without the 15d-PGJ2 treatment.

      Moreover, the overall study does not delineate the toxic effects of 15d-PGJ2 from its effect on the differentiation.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Swarang and colleagues identified the lipid metabolite 15d-PGJ2 as a potential component of senescent myoblasts. They proposed that 15d-PGJ2 inhibits myoblast proliferation and differentiation by binding and regulating HRas, suggesting its potential as a target for restoring muscle homeostasis post-chemotherapy.

      Strengths:

      The regulation of HRas by 15d-PGJ2 is well controlled.

      Weaknesses:

      (1) I still think the novelty is limited by previous published findings. The authors themselves noted that the accumulation of 15d-PGJ2 in senescent cells has been reported in various cell types, including human fibroblasts, HEPG2 hepatocellular carcinoma cells, and HUVEC endothelial cells (PMCID: PMC8501892). Although the current study observed similar activation of 15d-PGJ2 in myoblasts, it appears to be additive rather than fundamentally novel. The covalent adduct of 15d-PGJ2 with Cys-184 of H-Ras was reported over 20 years ago (PMID: 12684535), and the biochemical principles of this interaction are likely universal across different cell types. The regulation of myogenesis by both HRas and 15d-PGJ2 has also been previously extensively reported (PMID: 2654809, 1714463, 17412879, 20109525, 11477074). The main conceptual novelty may lie in the connection between these points in myoblasts. But as discussed in another comment, the use of C2C12 cells as a model for senescence study is questionable due to the lack of the key regulator p16. The findings in C2C12 cells may not accurately represent physiological-relevant myoblasts. It is recommended that these findings be validated in primary myoblasts to strengthen the study's conclusions.

      (2) The C2C12 cell line is not an ideal model for senescence study.<br /> C2C12 cells are a well-established model for studying myogenesis. However, their suitability as a model for senescence studies is questionable. C2C12 cells are immortalized and do not undergo normal senescence like primary cells as C2C12 cells are known to have a deleted p16/p19 locus, a crucial regulator of senescence (PMID: 20682446). The use of C2C12 cells in published studies does not inherently validate them as a suitable senescence model. These studies may have limitations, and the appropriateness of the C2C12 model depends on the specific research goals.<br /> In the study by Moustogiannis et al. (PMID: 33918414), they claimed to have aged C2C12 cells through multiple population doublings. However, the SA-β-gal staining in their data, which is often used to confirm senescence, showed almost fully confluent "aged" C2C12 cells. This confluent state could artificially increase SA-β-gal positivity, suggesting that these cells may not truly represent senescence. Moreover, the "aged" C2C12 cells exhibited normal proliferation, which contradicts the definition of senescence. Similar findings were reported in another study of C2C12 cells subjected to 58 population doublings (PMID: 21826704), where even at this late stage, the cells were still dividing every 2 or 3 days, similar to younger cells at early passages. More importantly, I do know how the p16 was detected in that paper since the locus was already mutated. In terms of p21, there was no difference in the proliferative C2C12 cells at day 0.<br /> In the study by Moiseeva et al. in 2023 (PMID: 36544018), C2C12 cells were used for senescence modeling for siRNA transfection. However, the most significant findings were obtained using primary satellite cells or confirmed with complementary data.<br /> In conclusion, while molecular changes observed in studies using C2C12 cells may be valid, the use of primary myoblasts is highly recommended for senescence studies due to the limitations and questionable senescence characteristics of the C2C12 cell line.

      (3) Regarding source of increased PGD in the conditioned medium, I want to emphasize that it's unclear whether the PGD or its metabolites increase in response to DNA damage or the senescence state. Thus, using a different senescent model to exclude the possibility of DNA damage-induced increase will be crucial.

      (4) Similarly for the in vivo Doxorubicin (Doxo) injection, both reviewers have raised concerns about the potential side effects of Doxo, including inflammation, DNA damage, and ROS generation. These effects could potentially confound the results of the study. The physiological significance of this study will heavily rely on the in vivo data. However, the in vivo senescence component is confounded by the side effects of Doxo.

      (5) Figure 2A lacks an important control from non-senescent cells during the measurement of C2C12 differentiation in the presence of conditioned medium. The author took it for granted that the conditioned medium from senescent cells would inhibit myogenesis, relying on previous publications (PMID: 37468473). However, that study was conducted in the context of myotonic dystrophy type 1. To support the inhibitory effect in the current experimental settings, direct evidence is required. It would be necessary to include another control with conditioned medium from normal, proliferative C2C12 cells.

      (6) Statistical analyses problems.<br /> Only t-test was used throughout the study even when there are more than two groups. Please have a statistician to evaluate the replicates and statistical analyses used.<br /> For the 15d-PGJ2/cell concentration measurements in Figure 1F, there were only two replicates, which was provided in the supplementary table after required. Was that experiment repeated with more biological replicates?<br /> For figure 1C, Fig 1F, 1G, 1J, 2C, 2E, 3A, 3E, 3F, 4D, 4E, please include each data points in bar graphs as used in Fig 1D, or at least provide how many biological replicates were used for each experiment?<br /> There is no error bar in a lot of control groups (Fig 2C, 2E, 3EF, 4E, S4B).<br /> For qPCR data in Figure 1C, the author responded in that the data in was plotted using 2-ΔCT instead of 2-ΔΔCT to show the variability in the expression of mRNAs isolated from animals treated with Saline. This statement does not align with the method section. Please revise.

      (7) For Figure 1, the title may not be appropriate as there is insufficient data to support the inhibition of myoblast differentiation.

    1. Reviewer #1 (Public Review):

      Summary:

      Zheng et al. study the 'glass' transitions that occurs in proteins at ca. 200K using neutron diffraction and differential isotopic labeling (hydrogen/deuterium) of the protein and solvent. To overcome limitations in previous studies, this work is conducted in parallel with 4 proteins (myoglobin, cytochrome P450, lysozyme and green fluorescent protein) and experiments were performed at a range of instrument time resolutions (1ns - 10ps). The author's data looks compelling, and suggests that transitions in the protein and solvent behavior are not coupled and contrary to some previous reports, the apparent water transition temperature is a 'resolution effect'; i.e. instrument response limited. This is likely to be important in the field, as a reassessment of solvent 'slaving' and the role of the hydration shell on protein dynamics should be reassessed in light of these findings.

      Strengths:

      The use of multiple proteins and instruments with a rate of energy resolution/ timescales.

      Weaknesses:

      The paper could be organised to better allow the comparison of the complete dataset collected.<br /> The extent of hydration clearly influences the protein transition temperature. The authors suggest that "water can be considered here as lubricant or plasticizer which facilitates the motion of the biomolecule." This may be the case, but the extent of hydration may also alter the protein structure.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript entitled "Decoupling of the Onset of Anharmonicity between a Protein and Its Surface Water around 200 K" by Zheng et al. presents a neutron scattering study trying to elucidate if at the dynamical transition temperature water and protein motions are coupled. The origin of the dynamical transition temperature is highly debated since decades and specifically its relation to hydration.

      Strengths:

      The study is rather well conducted, with a lot of efforts to acquire the perdeuterated proteins, and some results are interesting.

      Weaknesses:<br /> The MD data presented appears to be missing description of the methods used.<br /> If these data support the authors claim that different levels of hydration do not affect the protein structure, careful analysis of the MD simulation data should be presented that show the systems are properly equilibrated under each condition. Additionally, methods are needed to describe the MD parameters and methods used, and for how long the simulations were run.

    1. Reviewer #1 (Public Review):

      Summary:

      The present paper introduces Oscillation Component Analysis (OCA), in analogy to ICA, where source separation is underpinned by a biophysically inspired generative model. It puts the emphasis on oscillations, which is a prominent characteristic of neurophysiological data.

      Strengths:

      Overall, I find the idea of disambiguating data-driven decompositions by adding biophysical constrains useful, interesting and worth pursuing. The model incorporates both a component modelling of oscillatory responses that is agnostic about the frequency content (e.g. doesn't need bandpass filtering or predefinition of bands) and a component to map between sensor and latent-space. I feel these elements can be useful in practice.

      Weaknesses:

      Lack of empirical support: I am missing empirical justification of the advantages that are theoretically claimed in the paper. I feel the method needs to be compared to existing alternatives.

      Comments on the revised version: This concern has been addressed in the revised version.

    1. Reviewer #1 (Public Review):

      Summary:

      This study identifies new types of interactions between Drosophila gustatory receptor neurons (GRNs) and shows that these interactions influence sensory responses and behavior. The authors find that HCN, a hyperpolarization-activated cation channel, suppresses the activity of GRNs in which it is expressed, preventing those GRNs from depleting the sensillum potential, and thereby promotes the activity of neighboring GRNs in the same sensilla. HCN is expressed in sugar GRNs, so HCN dampens excitation of sugar GRNs and promotes excitation of bitter GRNs. Impairing HCN expression in sugar GRNs depletes the sensillum potential and decreases bitter responses, especially when flies are fed on a sugar-rich diet, and this leads to decreased bitter aversion in a feeding assay. The authors' conclusions are supported by genetic manipulations, electrophysiological recordings, and behavioral assays.

      Strengths:

      (1) Non-synaptic interactions between neurons that share an extracellular environment (sometimes called "ephaptic" interactions) have not been well-studied, and certainly not in the insect taste system. A major strength of this study is the new insight it provides into how these interactions can impact sensory coding and behavior.

      (2) The authors use many different types of genetic manipulations to dissect the role of HCN in GRN function, including mutants, RNAi, overexpression, ectopic expression, and neuronal silencing. Their results convincingly show that HCN impacts the sensillum potential and has both cell-autonomous and nonautonomous effects that go in opposite directions. Temporally controlled RNAi experiments suggest that the effect is not due to developmental changes. There are a couple of conflicting or counterintuitive results, but the authors discuss potential explanations.

      (3) Experiments comparing flies raised on different food sources suggest an explanation for why the system may have evolved the way that it did: when flies live in a sugar-rich environment, their bitter sensitivity decreases, and HCN expression in sugar GRNs helps to counteract this decrease. New experiments in the revised paper show the timecourse of how sugar diet affects GRN responses and sensillum potential.

      Weaknesses/Limitations:

      (1) The RNAi Gal80ts experiment only compares responses of experimental flies housed at different temperatures without showing control flies (e.g. Gal4/+ and UAS/+ controls) to confirm that observed differences are not due to nonspecific effects of temperature. Certainly temperature cannot account for sugar and bitter GRN firing rates changing in opposite directions, but it may have some kind of effect.

      (2) The experiments where flies are put on sugar vs. sorbitol food show that the diet clearly affects GRN responses and sensillum potential, even for food exposures as short as 1-4 hours, but it is not clear to what extent the GRNs in the labellum are being stimulated during those incubation periods. The flies are most likely not feeding over a 1 hour period if they were not starved beforehand, in which case it is not clear how many times the labellar GRNs would contact the food substrate.

      (3) The authors mention that HCN may impact the resting potential in addition to changing the excitability of the cell through various mechanisms. It would be informative to record the resting potential and other neuronal properties, but this is very difficult for GRNs, so the current study is not able to determine exactly how HCN affects GRN activity.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors show that HCN loss-of-function mutation causes a decrease in spiking in bitter GRNs (bGRN) while leaving sweet GRN (sGRN) response in the same sensillum intact. They show that a perturbation of HCN channels in sweet-sensing neurons causes a similar decrease while increasing the response of sugar neurons. They were also able to rescue the response by exogenous expression. Ectopic expression of HCN in bitter neurons had no effect. Next, they measure the sensillum potential and find that sensillum potential is also affected by HCN channel perturbation. These findings lead them to speculate that HCN in sGRN increases sGRN spiking, which in turn affects bGRNs. To test this idea, they carried out multiple perturbations aimed at decreasing sGRN activity. They found that reducing sGRN activity by either using receptor mutant or by expressing Kir (a K+ channel) in sGRN increased bGRN responses. These responses also increase the sensillum potential. Finally, they show that these changes are behaviorally relevant as conditions that increase sGRN activity decrease avoidance of bitter substances.

      Strengths:

      There is solid evidence that perturbation of sweet GRNs affects bitter GRN in the same sensillum. The measurement of transsynaptic potential and how it changes is also interesting and supports the author's conclusion

      Weaknesses:

      The ionic basis of how perturbation in GRN affects the transepithelial potential, which in turn affects the second neuron, is unclear.

    3. Reviewer #3 (Public Review):

      Ephaptic inhibition between neurons housed in the same sensilla has been long discovered in flies, but the molecular basis underlying this inhibition is underexplored. Specifically, it remains poorly understood which receptors or channels are important for maintaining the transepithelial potential between the sensillum lymph and the hemolymph (known as the sensillum potential), and how this affects the excitability of neurons housed in the same sensilla.

      Lee et al. used single-sensillum recordings (SSR) of the labellar taste sensilla to demonstrate that the HCN channel, Ih, is critical for maintaining sensillum potential in flies. Ih is expressed in sugar-sensing GRNs (sGRNs) but affects the excitability of both the sGRNs and the bitter-sensing GRNs (bGRNs) in the same sensilla. Ih mutant flies have decreased sensillum potential, and bGRNs of Ih mutant flies have a decreased response to the bitter compound caffeine. Interestingly, ectopic expression of Ih in bGRNs also increases sGRN response to sucrose, suggesting that Ih-dependent increase in sensillum potential is not specific to Ih expressed in sGRNs. The authors further demonstrated, using both SSR and behavior assays, that exposure to sugars in the food substrate is important for the Ih-dependent sensitization of bGRNs. The experiments conducted in this paper are of interest to the chemosensory field. The observation that Ih is important for the activity in bGRNs albeit expressed in sGRNs is especially fascinating and highlights the importance of non-synaptic interactions in the taste system.

      Comments on the revised version:

      The authors performed additional analyses/experiments to address my previous major points. I'm satisfied with most of their answers:

      (1) Sensilla types are labeled in all figures. Proper GAL4 and UAS controls were added to the figures.<br /> (2) Fig. 2A was added to illustrate the important concepts of SP. Fig. 5E was added to show a working model, which could be better but is alright.<br /> (3) Although not in my list of major points, I appreciate the newly added Fig. 5A and 5B, which demonstrate the long-lasting effect of exposure to sugars.<br /> (4) Post-stimulus histogram was added for Fig. 4.<br /> (5) Regarding the expression of Ih in bGRNs and sGRNs, the authors referred to their preprint (Lee et al., 2023, Fig 5C, D, suppl movie 1 and 2). The authors stated that "On the other hand, bGRNs labeled by Gr66a-LexA appeared to colocalize only partially with GFP when the confocal stacks were examined image by image." This interpretation unfortunately does not align with my viewing of the images and the movies. Just looking at the images and the movies alone, one would conclude that Ih is indeed expressed in both bGRNs and sGRNs. Notably, the Ih-TG4.0 is expressed in other non-neuronal cells in the labellum. That being said, I agree with the authors that even if Ih is indeed expressed in bGRNs, it would not affect SP (Fig. 1C, D of this paper, Fig. 5B of Lee et al., 2023 preprint), so I think the authors have addressed my major concern.

    1. Reviewer #1 (Public Review):

      Summary:

      This study reports on the thermophilization of bird communities in a network of islands with varying areas and isolation in China. Using data from 10 years of transect surveys, the authors show that warm-adapted species tend to gradually replace cold-adapted species, both in terms of abundance and occurrence. The observed trends in colonisations and extinctions are related to the respective area and isolation of islands, showing an effect of fragmentation on the process of thermophilization.

      Strengths:

      Although thermophilization of bird communities has been already reported in different contexts, it is rare that this process can be related to habitat fragmentation, despite the fact that it has been hypothesized for a long time that it could play an important role. This is made possible thanks to a really nice study system in which the construction of a dam has created this incredible Thousand Islands lake. Here, authors do not simply take observed presence-absence as granted and instead develop an ambitious hierarchical dynamic multi-species occupancy model. Moreover, they carefully interpret their results in light of their knowledge of the ecology of the species involved.

      Weaknesses:

      Despite the clarity of this paper on many aspects, I see a strong weakness in the authors' hypotheses, which obscures the interpretation of their results. Looking at Figure 1, and in many sentences of the text, a strong baseline hypothesis is that thermophilization occurs because of an increasing colonisation rate of warm-adapted species and extinction rate of cold-adapted species. However, there does not need to be a temporal trend! Any warm-adapted species that colonizes a site has a positive net effect on CTI; similarly, any cold-adapted species that goes extinct contributes to thermophilization.

      Another potential weakness is that fragmentation is not clearly defined. Generally, fragmentation sensu lato involves both loss of habitat area and changes in the spatial structure of habitats (i.e. fragmentation per se). Here, both area and isolation are considered, which may be slightly confusing for the readers if not properly defined.

    2. Reviewer #2 (Public Review):

      Summary:

      This study addresses whether bird community reassembly in time is related to climate change by modelling a widely used metric, the community temperature index (CTI). The authors first computed the temperature index of 60 breeding bird species thanks to distribution atlases and climatic maps, thus obtaining a measure of the species realized thermal niche.

      These indices were aggregated at the community level, using 53 survey transects of 36 islands (repeated for 10 years) of the Thousand Islands Lake, eastern China. Any increment of this CTI (i.e. thermophilization) can thus be interpreted as a community reassembly caused by a change in climate conditions (given no confounding correlations).

      The authors show thanks to a mix of Bayesian and frequentist mixed effect models to study an increment of CTI at the island level, driven by both extinction (or emigration) of cold-adapted species and colonization of newly adapted warm-adapted species. Less isolated islands displayed higher colonization and extinction rates, confirming that dispersal constraints (created by habitat fragmentation per se) on colonization and emigration are the main determinants of thermophilization. The authors also had the opportunity to test for habitat amount (here island size). They show that the lack of microclimatic buffering resulting from less forest amount (a claim backed by understory temperature data) exacerbated the rates of cold-adapted species extinction while fostering the establishment of warm-adapted species.

      Overall these findings are important to range studies as they reveal the local change in affinity to the climate of species comprising communities while showing that the habitat fragmentation VS amount distinction is relevant when studying thermophilization. As is, the manuscript lacks a wider perspective about how these results can be fed into conservation biology, but would greatly benefit from it. Indeed, this study shows that in a fragmented reserve context, habitat amount is very important in explaining trends of loss of cold-adapted species, hinting that it may be strategic to prioritize large habitats to conserve such species. Areas of diverse size may act as stepping stones for species shifting range due to climate change, with small islands fostering the establishment of newly adapted warm-adapted species while large islands act as refugia for cold-adapted species. This study also shows that the removal of dispersal constraints with low isolation may help species relocate to the best suitable microclimate in a heterogenous reserve context.

      Strength:

      The strength of the study lies in its impressive dataset of bird resurveys, that cover 10 years of continued warming (as evidenced by weather data), 60 species in 36 islands of varying size and isolation, perfect for disentangling habitat fragmentation and habitat amount effects on communities. This distinction allows us to test very different processes mediating thermophilization; island area, linked to microclimatic buffering, explained rates for a variety of species. Dispersal constraints due to fragmentation were harder to detect but confirms that fragmentation does slow down thermophilization processes.

      This study is a very good example of how the expected range shift at the biome scale of the species materializes in small fragmented regions. Specifically, the regional dynamics the authors show are analogous to what processes are expected at the trailing and colonizing edge of a shifting range: warmer and more connected places display the fastest turnover rates of community reassembly. The authors also successfully estimated extinction and colonization rates, allowing a more mechanistic understanding of CTI increment, being the product of two processes.

      The authors showed that regional diversity and CTI computed only by occurrences do not respond in 10 years of warming, but that finer metrics (abundance-based, or individual islands considered) do respond. This highlights the need to consider a variety of case-specific metrics to address local or regional trends. Figure Appendix 2 is a much-appreciated visualization of the effect of different data sources on Species thermal Index (STI) calculation.

      The methods are long and diverse, but they are documented enough so that an experienced user with the use of the provided R script can follow and reproduce them.

      Weaknesses:

      While the overall message of the paper is supported by data, the claims are not uniformly backed by the analysis. The trends of island-specific thermophilization are very credible (Figure 3), however, the variable nature of bird observations (partly compensated by an impressive number of resurveys) propagate a lot of errors in the estimation of species-specific trends in occupancy, abundance change, and the extinction and colonization rates. This materializes into a weak relationship between STI and their respective occupancy and abundance change trends (Figure 4a, Figure 5, respectively), showing that species do not uniformly contribute to the trend observed in Figure 3. This is further shown by the results presented in Figure 6, which present in my opinion the topical finding of the study. While a lot of species rates response to island areas are significant, the isolation effect on colonization and extinction rates can only be interpreted as a trend as only a few species have a significant effect. The actual effect on the occupancy change rates of species is hard to grasp, and this trend has a potentially low magnitude (see below).

      While being well documented, the myriad of statistical methods used by the authors ampere the interpretation of the figure as the posterior mean presented in Figure 4b and Figure 6 needs to be transformed again by a logit-1 and fed into the equation of the respective model to make sense of. I suggest a rewording of the caption to limit its dependence on the method section for interpretation.

      By using a broad estimate of the realized thermal niche, a common weakness of thermophilization studies is the inability to capture local adaptation in species' physiological or behavioral response to a rise in temperature. The authors however acknowledge this limitation and provide specific examples of how species ought to evade high temperatures in this study region.

    3. Reviewer #3 (Public Review):

      Summary:

      Juan Liu et al. investigated the interplay between habitat fragmentation and climate-driven thermophilization in birds in an island system in China. They used extensive bird monitoring data (9 surveys per year per island) across 36 islands of varying size and isolation from the mainland covering 10 years. The authors use extensive modeling frameworks to test a general increase in the occurrence and abundance of warm-dwelling species and vice versa for cold-dwelling species using the widely used Community Temperature Index (CTI), as well as the relationship between island fragmentation in terms of island area and isolation from the mainland on extinction and colonization rates of cold- and warm-adapted species. They found that indeed there was thermophilization happening during the last 10 years, which was more pronounced for the CTI based on abundances and less clearly for the occurrence-based metric. Generally, the authors show that this is driven by an increased colonization rate of warm-dwelling and an increased extinction rate of cold-dwelling species. Interestingly, they unravel some of the mechanisms behind this dynamic by showing that warm-adapted species increased while cold-dwelling decreased more strongly on smaller islands, which is - according to the authors - due to lowered thermal buffering on smaller islands (which was supported by air temperature monitoring done during the study period on small and large islands). They argue, that the increased extinction rate of cold-adapted species could also be due to lowered habitat heterogeneity on smaller islands. With regards to island isolation, they show that also both thermophilization processes (increase of warm and decrease of cold-adapted species) were stronger on islands closer to the mainland, due to closer sources to species populations of either group on the mainland as compared to limited dispersal (i.e. range shift potential) in more isolated islands.

      The conclusions drawn in this study are sound, and mostly well supported by the results. Only a few aspects leave open questions and could quite likely be further supported by the authors themselves thanks to their apparent extensive understanding of the study system.

      Strengths:

      The study questions and hypotheses are very well aligned with the methods used, ranging from field surveys to extensive modeling frameworks, as well as with the conclusions drawn from the results. The study addresses a complex question on the interplay between habitat fragmentation and climate-driven thermophilization which can naturally be affected by a multitude of additional factors than the ones included here. Nevertheless, the authors use a well-balanced method of simplifying this to the most important factors in question (CTI change, extinction, and colonization, together with habitat fragmentation metrics of isolation and island area). The interpretation of the results presents interesting mechanisms without being too bold on their findings and by providing important links to the existing literature as well as to additional data and analyses presented in the appendix.

      Weaknesses:

      The metric of island isolation based on the distance to the mainland seems a bit too oversimplified as in real life the study system rather represents an island network where the islands of different sizes are in varying distances to each other, such that smaller islands can potentially draw from the species pools from near-by larger islands too - rather than just from the mainland. Thus a more holistic network metric of isolation could have been applied or at least discussed for future research. The fact, that the authors did find a signal of island isolation does support their method, but the variation in responses to this metric could hint at a more complex pattern going on in real-life than was assumed for this study.<br /> Further, the link between larger areas and higher habitat diversity or heterogeneity could be presented by providing evidence for this relationship. The authors do make a reference to a paper done in the same study system, but a more thorough presentation of it would strengthen this assumption further.

      Despite the general clear patterns found in the paper, there were some idiosyncratic responses. Those could be due to a multitude of factors which could be discussed a bit better to inform future research using a similar study design.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors isolated and cultured pulmonary artery smooth muscle cells (PASMC) and pulmonary artery adventitial fibroblasts (PAAF) of the lung samples derived from the patients with idiopathic pulmonary arterial hypertension (PAH) and the healthy volunteers. They performed RNA-seq and proteomics analyses to detail the cellular communication between PASMC and PAAF, which are the main target cells of pulmonary vascular remodeling during the pathogenesis of PAH. The authors revealed that PASMC and PAAF retained their original cellular identity and acquired different states associated with the pathogenesis of PAH, respectively.

      Strengths:

      Although previous studies have shown that PASMC and PAAF cells each have an important role in the pathogenesis of PAH, there have been scarce reports focusing on the interactions between PASMC and PAAF. These findings may provide valuable information for elucidating the pathogenesis of pulmonary arterial hypertension.

      Weaknesses:

      The results of proteome analysis using primary culture cells in this paper seem a bit insufficient to draw conclusions. In particular, the authors described "We elucidated the involvement of cellular crosstalk in regulating cell state dynamics and identified pentraxin-3 and hepatocyte growth factor as modulators of PASMC phenotypic transition orchestrated by PAAF." However, the presented data are considered limited and insufficient.

    2. Reviewer #2 (Public Review):

      Summary:

      Utilizing a combination of transcriptomic and proteomic profiling as well as cellular phenotyping from source-matched PASMC and PAAFs in IPAH, this study sought to explore a molecular comparison of these cells in order to track distinct cell fate trajectories and acquisition of their IPAH-associated cellular states. The authors also aimed to identify cell-cell communication axes in order to infer mechanisms by which these two cells interact and depend upon external cues. This study will be of interest to the scientific and clinical communities of those interested in pulmonary vascular biology and disease. It also will appeal to those interested in lung and vascular development as well as multi-omic analytic procedures.

      Strengths:

      (1) This is one of the first studies using orthogonal sequencing and phenotyping for the characterization of source-matched neighboring mesenchymal PASMC and PAAF cells in healthy and diseased IPAH patients. This is a major strength that allows for direct comparison of neighboring cell types and the ability to address an unanswered question regarding the nature of these mesenchymal "mural" cells at a precise molecular level.

      (2) Unlike a number of multi-omic sequencing papers that read more as an atlas of findings without structure, the inherent comparative organization of the study and presentation of the data were valuable in aiding the reader in understanding how to discern the distinct IPAH-associated cell states. As a result, the reader not only gleans greater insight into these two interacting cell types in disease but also now can leverage these datasets more easily for future research questions in this space.

      (3) There are interesting and surprising findings in the cellular characterizations, including the low proliferative state of IPAH-PASMCs as compared to the hyperproliferative state in IPAH-PAAFs. Furthermore, the cell-cell communication axes involving ECM components and soluble ligands provided by PAAFs that direct cell state dynamics of PASMCs offer some of the first and foundational descriptions of what are likely complex cellular interactions that await discovery.

      (4) Technical rigor is quite high in the -omics methodology and in vitro phenotyping tools used.

      Weaknesses:

      There are some weaknesses in the methodology that should temper the conclusions:

      (1) The number of donors sampled for PAAF/PASMCs was small for both healthy controls and IPAH patients. Thus, while the level of detail of -omics profiling was quite deep, the generalizability of their findings to all IPAH patients or Group 1 PAH patients is limited.

      (2) While the study utilized early passage cells, these cells nonetheless were still cultured outside the in vivo milieu prior to analysis. Thus, while there is an assumption that these cells do not change fundamental behavior outside the body, that is not entirely proven for all transcriptional and proteomic signatures. As such, the major alterations that are noted would be more compelling if validated from tissue or cells derived directly from in vivo sources. Without such validation, the major limitation of the impact and conclusions of the paper is that the full extent of the relevance of these findings to human disease is not known.

      (3) While the presentation of most of the manuscript was quite clear and convincing, the terminology and conclusions regarding "cell fate trajectories" throughout the manuscript did not seem to be fully justified. That is, all of the analyses were derived from cells originating from end-stage IPAH, and otherwise, the authors were not lineage tracing across disease initiation or development (which would be impossible currently in humans). So, while the description of distinct "IPAH-associated states" makes sense, any true cell fate trajectory was not clearly defined.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors generated a novel transgenic mouse line OpalinP2A-Flpo-T2A-tTA2 to specifically label mature oligodendrocytes, and at the same time their embryonic origins by crossing with a progenitor cre mouse line. With this clever approach, they found that LGE/CGE-derived OLs make minimum contributions to the neocortex, whereas MGE/POA-derived OLs make a small but lasting contribution to the cortex. These findings are contradictory to the current belief that LGE/CGE-derived OPCs make a sustained contribution to cortical OLs, whereas MGE/POA-derived OPCs are completely eliminated. Thus, this study provides a revised and more comprehensive view on the embryonic origins of cortical oligodendrocytes. To specifically label mature oligodendrocytes, and at the same time their embryonic origins by crossing with a progenitor cre mouse line. With this clever approach, they found that LGE/CGE-derived OLs make minimum contributions to the neocortex, whereas MGE/POA-derived OLs make a small-but-lasting contribution to to cortex. These findings are contradictory to the current belief that LGE/CGE-derived OPCs make a sustained contribution to cortical OLs, whereas MGE/POA-derived OPCs are completely eliminated. Thus, this study has provided a revised and updated view on the embryonic origins of cortical oligodendrocytes.

      Strengths:

      The authors have generated a novel transgenic mouse line to specifically label mature differentiated oligodendrocytes, which is very useful for tracing the final destiny of mature myelinating oligodendrocytes. Also, the authors carefully compared the distribution of three progenitor cre mouse lines and suggested that Gsh-cre also labeled dorsal OLs, contrary to the previous suggestion that it only marks LGE-derived OPCs. In addition, the author also analyzed the relative contributions of OLs derived from three distinct progenitor domains in other forebrain regions (e.g. Pir, ac). Finally, the new transgenic mouse lines and established multiple combinatorial genetic models will facilitate future investigations of the developmental origins of distinct OL populations and their functional and molecular heterogeneity.

      Comments on latest version: In this revised and improved manuscript, the authors have adequately addressed my concerns, and I have no further issues to raise.

    2. Reviewer #3 (Public Review):

      In the manuscript entitled "Embryonic Origins of Forebrain Oligodendrocytes Revisited by Combinatorial Genetic Fate Mapping," Cai et al. used an intersectional/subtractional strategy to genetically fate-map the oligodendrocyte populations (OLs) generated from medial ganglionic eminence (NKX2.1+), lateral ganglionic eminences, and dorsal progenitor cells (EMX1+). Specifically, they generated an OL-expressing reporter mouse line OpalinP2A-Flpo-T2A-tTA2 and bred with region-specific neural progenitor-expressing Cre lines EMX1-Cre for dOL and NKX2.1-Cre for MPOL. They used a subtractional strategy in the OpalinFlp::Emx1Cre::Nkx2.1Cre::RC::FLTG mouse line to predict the origins of OLs from lateral/caudal ganglionic eminences (LC). With their genetic tools, the authors concluded that neocortical OLs primarily consist of dOLs. Although the populations of OLs (dOLs or MP-OLs) from Emx1+ or Nkx2.1+ progenitors are largely consistent with previous findings, they observed that MP-OLs contribute minimally but persist into adulthood without elimination as in the previous report (PMID: 16388308).

      Intriguingly, by using an indirect subtraction approach, they hypothesize that both Emx1-negative and Nkx2.1-negative cells represent the progenitors from lateral/caudal ganglionic eminences (LC), and conclude that neocortical OLs are not derived from the LC region. This is in contrast to the previous observation for the contribution of LC-expressing progenitors (marked by Gsx2-Cre) to neocortical OLs (PMID: 16388308). The authors claim that Gsh2 is not exclusive to progenitor cells in the LC region (PMID: 32234482). However, Gsh2 exhibits high enrichment in the LC during early embryonic development. The presence of a small population of Gsh2-positive cells in the late embryonic cortex could originate/migrate from Gsh2-positive cells in the LC at earlier stages (PMID: 32234482). Consequently, the possibility that cortical OLs derived from Gsh2+ progenitors in LC could not be conclusively ruled out. Notably, a population of OLs migrating from the ventral to the dorsal cortical region was detected after eliminating dorsal progenitor-derived OLs (PMID: 16436615).

      The indirect subtraction data for LC progenitors drawn from the OpalinFlp-tdTOM reporter in Emx1-negative and Nkx2.1-negative cells in the OpalinFlp::Emx1Cre::Nkx2.1Cre::RC::FLTG mouse line present some caveats that could influence their conclusion. The extent of activity from the two Cre lines in the OpalinFlp::Emx1Cre::Nkx2.1Cre::RC::FLTG mice remains uncertain. The OpalinFlp-tdTOM expression could occur in the presence of either Emx1Cre or Nkx2.1Cre, raising questions about the contribution of the individual Cre lines. To clarify, the authors should compare the tdTOM expression from each individual Cre line, OpalinFlp::Emx1Cre::RC::FLTG or OpalinFlp::Nkx2.1Cre::RC::FLTG, with the combined OpalinFlp::Emx1Cre::Nkx2.1Cre::RC::FLTG mouse line. This comparison is crucial as the results from the combined Cre lines could appear similar to only one Cre line active.

      Overall, the authors provided intriguing findings regarding the origin and fate of oligodendrocytes from different progenitor cells in embryonic brain regions. However, further analysis is necessary to substantiate their conclusion about the fate of LC-derived OLs convincingly.

      Comments on latest version: The overall responses by the authors are satisfactory.

    1. Reviewer #1 (Public Review):

      Gout, a prevalent form of arthritis among the elderly, exhibits an intricate relationship with age and gut microbiota. The authors found that gut microbiota plays a crucial role in determining susceptibility to age-related gout. They observed that age-related gut microbiota regulated the activation of the NLRP3 inflammasome pathway and modulated uric acid metabolism. "Younger" microbiota has a positive impact on the gut microbiota structure of old or aged mice, enhancing butanoate metabolism and butyric acid content. Finally, they found butyric acid exerts a dual effect, inhibiting inflammation in acute gout and reducing serum uric acid levels. This work's insight emphasizes the potential of a "young" gut microbiome in mitigating senile gout. The whole study was interesting, but there were some minor errors in the overall writing of the paper. The author should carefully check the spelling of the words in the text and the case consistency of the group names.

    2. Reviewer #2 (Public Review):

      Summary:

      In their manuscript titled "Microbiota from Young Mice Counteracts Susceptibility to Age-Related Gout through Modulating Butyric Acid Levels in Aged Mice," the authors report that fecal transplantation from young mice into old mice alleviates susceptibility to gout. The gut microbiota in young mice is found to inhibit activation of the NLRP3 inflammasome pathway and reduce uric acid levels in the blood in the gout model.

      Strengths:

      They focused on the butanoate metabolism pathway based on the results of metabolomics analysis after fecal transplantation and identified butyrate as the key factor in mitigating gout susceptibility. In general, this is a well-performed study.

      Weaknesses:

      The discussion on the current results and previous studies regarding the effect of butyrate on gout symptoms is insufficient. The authors need to provide a more thorough discussion of other possible mechanisms and relevant literature.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript addresses an important and emerging area of research-the relationship between gut microbiota and age-related gout. The innovative aspect of this research is the demonstration that transplanting gut microbiota from young to aged mice can alleviate gout symptoms and modulate uric acid levels by increasing butyric acid levels. However, significant problems remain in the overall experimental design and manuscript writing.

      Some critical comments are provided below:

      (1) The data quality still needs to be improved. There are many outliers in the experimental data shown in some figures, e.g. Figure 2D-G. The presence of these outliers makes the results unreliable. The author should thoroughly review the data analysis in the manuscript. In addition, a couple of western blot bands, such as IL-1β in Figure 3C, are not clear enough, please provide clearer western blot results again to support the conclusion.

      (2) As shown in Figure 1G-I, foot thickness and IL-1β content in foot tissues of the Aged+Abx group were significantly reduced, but there was no difference in serum uric acid level. In addition, the Abx-untreated group should be included at all ages.

      (3) Since FMT (Figure 4) and butyrate supplementation (Figure 8) have different effects on uric acid synthesis enzyme and excretion, different mechanisms may lie behind these two interventions. Transplantation with significantly enriched single strains from young mice, such as Bifidobacterium and Akkermansia, is the more reliable approach to reveal the underlying mechanism between gut microbiota and gout.

      (4) In Figure 2F, the results showed the IL-1β, IL-6, and TNF-α content in serum, which was inconsistent with the authors' manuscript description (Line 171).

      (5) Figures 2F-H duplicate Supplementary Figures S1B-D. The authors should prepare the article more carefully to avoid such mistakes.

      (6) In lines 202-206, the authors stated that the elevated serum uric acid levels in the Young+Old or Young+Aged groups, but there is no difference in the results shown in Figure 4A.

      (7) Please visualize the results in Table 2 in a more intuitive manner.

      (8) The heatmap in Figure 7A cannot strongly support the conclusion "the butyric acid content in the faeces of Young+PBS group was significantly higher than that in the Aged+PBS group". The author should re-represent the visual results and provide a reasonable explanation. In addition, please provide the ordinate unit of Supplementary Figure 7A-H.

      (9) Uncropped original full-length western blot should be provided.

    1. Reviewer #1 (Public Review):

      The paper submitted by Yogesh and Keller explores the role of cholinergic input from the basal forebrain (BF) in the mouse primary visual cortex (V1). The study aims to understand the signals conveyed by BF cholinergic axons in the visual cortex, their impact on neurons in different cortical layers, and their computational significance in cortical visual processing. The authors employed two-photon calcium imaging to directly monitor cholinergic input from BF axons expressing GCaMP6 in mice running through a virtual corridor, revealing a strong correlation between BF axonal activity and locomotion. This persistent activation during locomotion suggests that BF input provides a binary locomotion state signal. To elucidate the impact of cholinergic input on cortical activity, the authors conducted optogenetic and chemogenetic manipulations, with a specific focus on L2/3 and L5 neurons. They found that cholinergic input modulates the responses of L5 neurons to visual stimuli and visuomotor mismatch, while not significantly affecting L2/3 neurons. Moreover, the study demonstrates that BF cholinergic input leads to decorrelation in the activity patterns of L2/3 and L5 neurons.

      This topic has garnered significant attention in the field, drawing the interest of many researchers actively investigating the role of BF cholinergic input in cortical activity and sensory processing. The experiments and analyses were thoughtfully designed and conducted with rigorous standards, providing evidence of layer-specific differences in the impact of cholinergic input on neuronal responses to bottom-up (visual stimuli) and top-down inputs (visuomotor mismatch).

    2. Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal and finds no evidence for modulation of cholinergic axons by locomotion velocity. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality.

    1. Reviewer #1 (Public Review):

      Summary:

      The circuit mechanism underlying the formation of grid cell activity and the organization of grid cells in the medial entorhinal cortex (MEC) is still unclear. To understand the mechanism, the current study investigated synaptic interactions between stellate cells (SC) and PV+ interneurons (IN) in layer 2 of the MEC by combing optogenetic activations and paired patch-clamp recordings. The results convincingly demonstrated highly structured interactions between these neurons: specific and direct excitatory-inhibitory interactions existed at the scale of grid cell phase clusters, and indirect interactions occurred at the scale of grid modules.

      Strengths:

      Overall, the manuscript is very well written, the approaches used are clever, and the data were thoroughly analyzed. The study conveyed important information for understanding the circuit mechanism that shapes grid cell activity. It is important not only for the field of MEC and grid cells, but also for broader fields of continuous attractor networks and neural circuits.

      Weaknesses:

      (1) The study largely relies on the fact that ramp-like wide-field optogenetic stimulation and focal optogenetic activation both drove asynchronous action potentials in SCs, and therefore, if a pair of PV+ INs exhibited correlated activity, they should receive common inputs. However, it is unclear what criteria/thresholds were used to determine the level of activity asynchronization, and under these criteria, what percentage of cells actually showed synchronized or less asynchronized activity. A notable percentage of synchronized or less asynchronized SCs could complicate the results, i.e., PV+ INs with correlated activity could receive inputs from different SCs (different inputs), which had synchronized activity. More detailed information/statistics about the asynchronization of SC activity is necessary for interpreting the results.

      (2) The hypothesis about the "direct excitatory-inhibitory" synaptic interactions is made based on the GABAzine experiments in Figure 4. In the Figure 8 diagram, the direct interaction is illustrated between PV+ INs and SCs. However, the evidence supporting this "direct interaction" between these two cell types is missing. Is it possible that pyramidal cells are also involved in this interaction? Some pieces of evidence or discussions are necessary to further support the "direction interaction".

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Huang et al. employed optogenetic stimulation alongside paired whole-cell recordings in genetically defined neuron populations of the medial entorhinal cortex to examine the spatial distribution of synaptic inputs and the functional-anatomical structure of the MEC. They specifically studied the spatial distribution of synaptic inputs from parvalbumin-expressing interneurons to pairs of excitatory stellate cells. Additionally, they explored the spatial distribution of synaptic inputs to pairs of PV INs. Their results indicate that both pairs of SCs and PV INs generally receive common input when their relative somata are within 200-300 ums of each other. The research is intriguing, with controlled and systematic methodologies. There are interesting takeaways based on the implications of this work to grid cell network organization in MEC.

      Major concerns

      (1) Results indicate that in brain slices, nearby cells typically share a higher degree of common input. However, some proximate cells lack this shared input. The authors interpret these findings as: "Many cells in close proximity don't seem to share common input, as illustrated in Figures 3, 5, and 7. This implies that these cells might belong to separate networks or exist in distinct regions of the connectivity space within the same network.".

      Every slice orientation could have potentially shared inputs from an orthogonal direction that are unavoidably eliminated. For instance, in a horizontal section, shared inputs to two SCs might be situated either dorsally or ventrally from the horizontal cut, and thus removed during slicing. Given the synaptic connection distributions observed within each intact orientation, and considering these distributions appear symmetrically in both horizontal and sagittal sections, the authors should be equipped to estimate the potential number of inputs absent due to sectioning in the orthogonal direction. How might this estimate influence the findings, especially those indicating that many close neurons don't have shared inputs?

      (2) The study examines correlations during various light-intensity phases of the ramp stimuli. One wonders if the spatial distribution of shared (or correlated) versus independent inputs differs when juxtaposing the initial light stimulation phase, which begins to trigger spiking, against subsequent phases. This differentiation might be particularly pertinent to the PV to SC measurements. Here, the initial phase of stimulation, as depicted in Figure 7, reveals a relatively sparse temporal frequency of IPSCs. This might not represent the physiological conditions under which high-firing INs function.

      While the authors seem to have addressed parts of this concern in their focal stim experiments by examining correlations during both high and low light intensities, they could potentially extract this metric from data acquired in their ramp conditions. This would be especially valuable for PV to SC measurements, given the absence of corresponding focal stimulation experiments.

      (3) Re results from Figure 2: Please fully describe the model in the methods section. Generally, I like using a modeling approach to explore the impact of convergent synaptic input to PVs from SCs that could effectively validate the experimental approach and enhance the interpretability of the experimental stim/recording outcomes. However, as currently detailed in the manuscript, the model description is inadequate for assessing the robustness of the simulation outcomes. If the IN model is simply integrate-and-fire with minimal biophysical attributes, then the findings in Fig 2F results shown in Fig 2F might be trivial. Conversely, if the model offers a more biophysically accurate representation (e.g., with conductance-based synaptic inputs, synapses appropriately dispersed across the model IN dendritic tree, and standard PV IN voltage-gated membrane conductances), then the model's results could serve as a meaningful method to both validate and interpret the experiments.

    3. Reviewer #3 (Public Review):

      Summary:

      This paper presents convincing data from technically demanding dual whole-cell patch recordings of stellate cells in medial entorhinal cortex slice preparations during optogenetic stimulation of PV+ interneurons. The authors show that the patterns of postsynaptic activation are consistent with dual recorded cells close to each other receiving shared inhibitory input and sending excitatory connections back to the same PV neurons, supporting a circuitry in which clusters of stellate cells and PV+IN interact with each other with much weaker interactions between clusters. These data are important to our understanding of the dynamics of functional cell responses in the entorhinal cortex. The experiments and analysis are quite complex and would benefit from some revisions to enhance clarity.

      Strengths:

      These are technically demanding experiments, but the authors show quite convincing differences in the correlated response of cell pairs that are close to each other in contrast to an absence of correlation in other cell pairs at a range of relative distances. This supports their main point of demonstrating anatomical clusters of cells receiving shared inhibitory input.

      Weaknesses:

      The overall technique is complex and the presentation could be more clear about the techniques and analysis. In addition, due to this being a slice preparation they cannot directly relate the inhibitory interactions to the functional properties of grid cells which was possible in the 2-photon in vivo imaging experiment by Heys and Dombeck, 2014.

    1. Reviewer #1 (Public Review):

      Summary:

      In this very interesting study, Agha and colleagues show that two types of Chx10-positive neurons (V2a neurons) have different anatomical and electrophysiological properties and receive distinct patterns of excitatory and inhibitory inputs as a function of speed during fictive swimming in the larval zebrafish. Using single cell fills they show that one cell type has a descending axon ("descending V2as"), while the other cell type has both a descending axon and an ascending axon ("bifurcating V2as"). In the Chx10:GFP line, descending V2as display strong GFP labeling, while bifurcating V2as display weak GFP labeling. The bifurcating V2as are located more laterally in the spinal cord. These two cell types have different electrophysiological properties as revealed by patch-clamp recordings. Positive current steps indicated that descending V2as comprise tonic spiking or bursting neurons. Bifurcating V2as comprise chattering or bursting neurons. The two types of V2a neurons display different recruitment patterns as a function of speed. Descending tonic and bifurcating chattering neurons are recruited at the beginning of the swimming bout, at fast speeds (swimming frequency above 30 Hz). Descending bursting neurons were preferentially recruited at the end of swimming bouts, at low speeds (swimming frequency below 30 Hz), while bifurcating bursting neurons were recruited for a broader swimming frequency range. The two types of V2a neurons receive distinct patterns of excitatory and inhibitory inputs during fictive locomotion. In descending V2as, when speed increases: i) excitatory conductances increase in fast neurons and decreases in slow neurons; ii) inhibitory conductances increase in fast neurons and increases in slow neurons. In bifurcating V2as, when speed increases: i) excitatory conductances increase in fast neurons but does not change in slow neurons; ii) inhibitory conductances increase in fast neurons and does not change in slow neurons. The timing of excitatory and inhibitory inputs was then studied. In descending V2as, fast neurons receive excitatory and inhibitory inputs that are in anti-phase with low contrast in amplitude and are both broadly distributed over the phase. The slow neurons receive two peaks of inhibition, one in anti-phase with the excitatory inputs and another just after the excitation. In bifurcating V2as, fast neurons receive two peaks of inhibition, while the slow ones receive anti-phase inhibition. They also show that silencing Dmrt3-labeled dI6 interneurons disrupted rhythm generation selectively at high speed.

      Strengths:

      This study focuses on the diversity of V2a neurons in zebrafish, an interesting cell population playing important roles in locomotor control and beyond, from fish to mammal. The authors provide compelling evidence that two subtypes of V2as show distinct anatomical, electrophysiological, speed-dependent spiking activity, and receive distinct synaptic inputs as a function of speed. This opens the door to future investigation of the inputs and outputs of these neurons. Finding ways to activate or inhibit specifically these cells would be very helpful in the years to come. The authors also provide an interesting speed-dependent circuit mechanism for rhythm generation.

      Weaknesses:

      No major weakness detected. The experiments were carefully done, and the data are of high quality.

    2. Reviewer #2 (Public Review):

      Summary:

      Animals exhibit different speeds of locomotion. In vertebrates, this is thought to be implemented by different groups of spinal interneurons and motor neurons. A fundamental assumption in the field has been that neural mechanisms that generate and sustain the rhythm at different locomotor speeds are the same. In this study the authors challenge this view. Using rigorous in vivo electrophysiology during fictive locomotion combined with genetics, the authors provide a detailed analysis of cellular and synaptic properties of different subtypes of spinal V2a neurons that play a crucial role in rhythm generation. Importantly, they are able to show that speed related subsets of V2a neurons have distinct cellular and synaptic properties and maybe utilizing different mechanisms to implement different locomotor speeds.

      Strengths:

      The authors fully utilize the zebrafish model system and solid electrophysiological analyses to study active and passive properties of speed related V2a subsets. Identification of V2a subtype is based directly on their recruitment at different locomotor speeds and not on indirect markers like soma size, D-V position etc. Throughout the article, the authors have cleverly used standard electrophysiological tests and analysis to tease out different neuronal properties and link it to natural activity. For example, in Figures 2 and 4, the authors make comparisons of V2a spiking with current steps and during fictive swims showing spike rates measured with current steps are physiologically relevant and observed during natural recruitment. The experiments done are rigorous and well controlled.

      The major claim of the manuscript is well substantiated by Figure 6 and 7. The authors have done rigorous experiments with statistical analysis to show that reciprocal inhibition is important for rhythmogenesis at fast speeds while recurrent inhibition is key at slow speeds. Furthermore, in Figure 7, a specific loss of reciprocal inhibition is shown to disrupt rhythmogenesis at high speeds but not at lower frequencies. These additions in the revised manuscript make the study extremely compelling.

      The Discussion is well-written and does an excellent job in putting this current study in the context of what is previously known. The addition of a working model in Figure 8 does a great job in summing these exciting and novel findings.

      Weaknesses:

      None noted.

    3. Reviewer #3 (Public Review):

      The manuscript by Agha et al. explores mechanisms of rhythmicity in V2a neurons in larval zebrafish. Two subpopulations of V2a neurons are distinguishable by anatomy, connectivity, level of GFP, and speed-dependent recruitment properties consistent with V2a neurons involved in rhythm generation and pattern formation. The descending neurons proposed to be consistent with rhythm generating neurons are active during either slow or fast locomotion, and their firing frequencies during current steps are well matched with the swim frequency they firing during. The bifurcating (patterning neurons) are active during a broader swim frequency range unrelated to their firing during current steps. All of the V2a neurons receive strong inhibitory input but the phasing of this input is based on neuronal type and swim speed the neuron is active, with prominent in-phase inhibition in slow descending V2a neurons and bifurcating V2a neurons active during fast swimming. Antiphase inhibition is observed in all V2a neurons but it is the main source of rhythmic inhibition in fast descending V2a neurons and bifurcating neurons active during slow swimming. The authors suggest that properties supporting rhythmic bursting are not directly related to locomotor speed but rather to functional neuronal subtypes.

      Strengths:

      This is a well-written paper with many strengths including the rigorous approach. Many parameters, including projection pattern, intracellular properties, inhibition received, and activity during slow/fast swimming were obtained from the same neuron. This links up very well with prior data from the lab on cell position, birth order, morphology/projections, and control of MN recruitment to provide a comprehensive overview of the functioning of V2a interneuronal populations in the larval zebrafish. The added dI6 silencing experiments strengthen the claims made regarding the roles of reciprocal inhibition in rhythm and pattern at fast and slow speeds. The overall conclusions are well supported by the data.

      Weaknesses:

      The main weaknesses have been addressed in the revision.

    1. Reviewer #1 (Public Review):

      While there are many models for sequence retrieval, it has been difficult to find models that vary the speed of sequence retrieval dynamically via simple external inputs. While recent works have proposed some mechanisms, the authors here propose a different one based on heterogeneous plasticity rules. Temporally symmetric plasticity kernels (that do not distinguish between the order of pre and post spikes, but only their time difference) are expected to give rise to attractor states, asymmetric ones to sequence transitions. The authors incorporate a rate-based, discrete-time analog of these spike-based plasticity rules to learn the connections between neurons (leading to connections similar to Hopfield networks for attractors and sequences). They use either a parametric combination of symmetric and asymmetric learning rules for connections into each neuron, or separate subpopulations having only symmetric or asymmetric learning rules on incoming connections. They find that the latter is conducive to enabling external inputs to control the speed of sequence retrieval.

      Comments on revised version:

      The authors have addressed most of the points of the reviewers.

      A major substantive point raised by both reviewers was on the biological plausibility of the learning.

      The authors have added a section in the Discussion. This remains an open question, however the discussion suffices for the current paper.

    1. Reviewer #2 (Public Review):

      Summary:

      This study examined the role of a prefrontal cortex cell type in active avoidance behavior. The authors conduct a series of behavioral experiments incorporating fiber photometry and optogenetic silencing. The results indicate that prefrontal parvalbumin (PV) neurons play a permissive role in performing signaled active avoidance learning, for which details are sorely lacking. Notably, infralimbic parvalbumin activity resolves incompatible defensive responses to threat by suppressing conditional freezing in order to permit active instrumental controlling responses. The overall findings provide a significant contribution to our understanding of mechanisms that support aversively motivated instrumental learning and may provide insight into both stress vulnerability and resilience processes.

      Strengths:

      The writing and presentation of data is clear. The authors use a number of temporally-relevant methods and analyses that identify a novel prefrontal mechanism in resolving the conflict between competing actions (freezing vs escape avoidance). The authors conduct an extensive number of experiments to demonstrate that the uncovered prefrontal mechanism is selective for the initiation of avoidance under threat circumstances, not reward settings or general features of movement.

      Weaknesses:

      The study exclusively focuses on parvalbumin cells, thus questions remain whether the present findings are specific to parvalbumin or applicable to other prefrontal interneuron subtypes. The exact mechanisms that coordinate infralimbic parvalbumin cell activity and threat avoidance behavior are not explored.

    2. Reviewer #3 (Public Review):

      Summary:

      Here the authors study the role of parvalbumin (PV) expressing neurons in the ventromedial prefrontal cortex (vMPFC) of mice in active avoidance behavior using fiber photometry and optogenetic inhibition.

      Strengths:

      The methods are appropriate, the experiments are well done, and the results are all consistent with the conceptual model in which vmPFC PV neurons inhibit freezing to enable avoidance movements. There are good controls to rule out a role for cue offset in triggering changes in PV neuron activity, or for a nonspecific role of vmPFC PV neurons in movement initiation.

      Weaknesses:

      Although potential mechanisms, i.e., the impact of PV neuron activity on the broader circuit, are discussed, they are not directly examined here. There is some discordance between changes in neural activity and behavior: in Figure 4C, the relationship between PV neuron activity and movement emerges almost immediately during learning, but successful active avoidance emerges much more gradually. Again, this is discussed and plausible explanations for this discrepancy are provided.

    1. Reviewer #1 (Public Review):

      Summary:

      Peterson et al., present a series of experiments in which the Pavlovian performance (i.e. time spent at a food cup/port) of male and female rats is assessed in various tasks in which context/cue/outcome relationships are altered. The authors find no sex differences in context-irrelevant tasks, and no such differences in tasks in which the context signals that different cues will earn different outcomes. They do find sex differences, however, when a single outcome is given and context cues must be used to ascertain which cue will be rewarded with that outcome (Ctx-dep O1 task). Specifically, they find that males acquired the task faster, but that once acquired, performance of the task was more resilient in female rats against exposures to a stressor. Finally, they show that these sex differences are reflected in differential rates of c-fos expression in all three subregions of rat OFC, medial, lateral and ventral, in the sense that it is higher in females than males, and only in the animals subject to the Ctx-dep O1 task in which sex differences were observed.

      Strengths:

      • Well written<br /> • Experiments elegantly designed<br /> • Robust statistics<br /> • Behaviour is the main feature of this manuscript, rather than any flashy techniques or fashionable lab methodologies, and luckily the behaviour is done really well.<br /> • For the most part I think the conclusions were well supported, although I do have some slightly different interpretations to the authors in places.

      Weaknesses:

      The authors have done an excellent job of addressing all previous weaknesses. I have no further comments.

    2. Reviewer #2 (Public Review):

      Summary:

      A bidirectional occasion-setting design is used to examine sex differences in the contextual modulation of reward-related behaviour. It is shown that females are slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behaviour was more robust in female rats (i.e., less within-session variability and greater resistance to stress) and this was also associated with increased OFC activation.

      Strengths:

      The authors use sophisticated behavioural paradigms to study the hierarchical contextual modulation of behaviour. The behavioural controls are particularly impressive and do, to some extent, support the specificity of the conclusions. The analyses of the behavioural data are also elegant, thoughtful, and rigorous.

      Weaknesses:

      The authors have addressed the major weaknesses that I identified in a previous review.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript reports an experiment that compared groups of rats acquisition and performance of a Pavlovian bi-conditional discrimination, in which the presence of one cue, A, signals that the presentation of one CS, X, will be followed by a reinforcer and a second CS, Y, will be nonreinforced. Periods of cue A alternated with periods of cue B, which signaled the opposite relationship, cue X is nonreinforced and cue Y is reinforced. This is a conditional discrimination problem in which the rats learned to approach the food cup in the presence of each CS conditional on the presence of the third background cue. The comparison groups consisted of the same conditional discrimination with the exception that each CS was paired with a different reinforcer. This makes the problem easier to solve as the background is now priming a differential outcome. A third group received simple discrimination training of X reinforced and Y nonreinforced in cues A and B, and the final group were trained with X and Y reinforced on half the trials (no discrimination). The results were clear that the latter two discrimination learning procedures resulted in rapid learning in comparison to the first. Rats required about 3 times as many 4-session blocks to acquire the bi-conditional discrimination than the other two discrimination groups. Within the biconditional discrimination group, female and male rats spent the same amount of time in the food cup during the rewarded CS, but females spent more time in the food cup during CS- than males. The authors interpret this as a deficit in discrimination performance in females on this task and use a measure that exaggerates the difference in CS+ and CS_ responding (a discrimination ratio) to support their point. When tested after acute restraint stress, the male rats spent less time in the food cup during the reinforced CS in comparison to the female rats, but did not lose discrimination performance entirely. The was also some evidence of more fos positive cells in the orbitofrontal cortex in females. Overall, I think the authors were successful in documenting performance on the biconditional discrimination task, showing that it is more difficult to perform than other discriminations is valuable and consistent with the proposal that accurate performance requires encoding of conditional information (which the authors refer to as "context"). There is evidence that female rats spend more time in the food cup during CS-, but this I hesitate to agree that this is an important sex difference. There is no cost to spending more time in the food cup during CS- and they spend much less time there than during CS+. Males and females also did not differ in their CS+ responding, suggesting similar levels of learning, A number of factors could contribute to more food cup time in CS-, such as smaller body size and more locomotor activity. The number of food cup entries during CS+ and CS- was not reported here. Nevertheless, I think the manuscript will make a useful contribution to the field and hopefully lead readers to follow up on these types of tasks. One area for development would be to test the associative properties of the cues controlling the conditional discrimination, can they be shown to have the properties of Pavlovian occasion setting stimuli? Such work would strengthen the justification/rationale for using the term "context" and "occasion setter" to refer to these stimuli in this task in the way the authors do in this paper.

      Strengths:

      Nicely designed and conducted experiment.<br /> Documents performance difference by sex.

      Weaknesses:

      Overstatement of sex differences.<br /> Inconsistent, confusing, and possibly misleading use of terms to describe/imply the underlying processes contributing to performance.

    1. Reviewer #1 (Public Review):

      Summary:

      This interesting study investigates the neurobiological mechanisms underlying the stable operation and maintenance of functionally appropriate rhythmic motor patterns during changing environmental conditions - temperature in this study in the crab Cancer borealis stomatogastric neural pattern generating network producing the pyloric motor rhythm, which is naturally subjected to temperature perturbations over a substantial range. This study is relevant to the general problem that some rhythmic motor systems adjust to changing environmental conditions and state changes by increasing the cycle frequency in a smooth monotonic fashion while maintaining the relative timing of different network activity pattern phases that determine proper motor coordination. How this is achieved mechanistically in complex dynamic motor networks is not understood, particularly how the frequency and phase adjustments are achieved as conditions change while avoiding operational instabilities on different time scales. The authors specifically studied the contributions of the hyperpolarization-activated inward current (Ih), which is involved in rhythm control, to the adjustments of frequency and phases in the pyloric rhythmic pattern as the temperature was altered from 11 degrees C to 21 degrees C. They present strong evidence that this current is a critical biophysical feature in the ability of this system to adjust transiently and persistently to temperature perturbations appropriately. After blocking Ih in the pyloric network with cesium, the network was unable to reliably produce its characteristic rapid and smooth increase in the frequency of the triphasic rhythmic motor pattern in response to increasing temperature or its typical steady-state increase in frequency over this Q10 temperature range.

      Strengths:

      (1) The authors addressed this problem by technically rigorous experiments in the crab Cancer borealis stomatogastric ganglion (STG) in vitro, which readily allows for neuronal activity recording in a behaviorally and architecturally defined rhythmic neural circuit in conjunction with the application of blockers of Ih and synaptic receptors to disrupt circuit interactions. This approach is an effective way to experimentally investigate how complex rhythmic networks, at least in poikilotherms, mechanistically adjust to environmental perturbations such as temperature.

      (2) While previous work demonstrated that Ih increases in pyloric neurons as temperature increases, the authors here establish that this increase is necessary for normal responses of STG neural activity to temperature, which consist of a smooth monotonic increase in the frequency of rhythmic activity with increasing temperature.

      (3) The data shows that blocking Ih with cesium causes the frequency to transiently decrease ("jags") when the temperature increases and then increases after the temperature stabilizes at a steady state, revealing a non-monotonic frequency response to temperature perturbations.

      (4) The authors dissect some of the underlying neuronal and circuit dynamics, presenting evidence that after blocking Ih, the non-monotonic jags in the frequency response are mediated by intrinsic properties of pacemaker neurons, while in the steady state, Ih determined the overall frequency change (i.e., temperature sensitivity) through network interactions.

      (5) The authors' results highlight the existence of more complex dynamic responses to increasing temperature for the first time, suggesting a longer timescale process than previously recognized that may result from interactions between multiple channels and/or ion channel kinetics.

      Weaknesses:

      The involvement of Ih in achieving the frequency and phase adjustments as conditions change and allowing smooth transitions to avoid operational instabilities in other complex rhythmic motor netReviewer #2 (Public Review):

      Summary:

      Using the crustacean stomatogastric nervous system (STNS), the authors present an interesting study wherein the contribution of the Ih current to temperature-induced changes in the frequency of a rhythmically active neural circuit is evaluated. Ih is a hyperpolarization-activated cation current that depolarizes neurons. Under normal conditions, increasing the temperature of the STNS increases the frequency of the spontaneously active pyloric rhythm. Notably, under normal conditions, as temperature systematically increases, the concomitant increase in pyloric frequency is smooth (i.e., monotonic). By contrast, blocking Ih with extracellular cesium produces temperature-induced pyloric frequency changes that follow a characteristic sawtooth response (i.e., non-monotonic). That is, in cesium, increasing temperature initially results in a transient drop in pyloric frequency that then stabilizes at a higher frequency. Thus, the authors conclude that Ih establishes a mechanism that ensures smooth changes in neural network frequency during environmental disturbances, a feature that likely bestows advantages to the animal's function.

      The study describes several surprising and interesting findings. In general, the study's primary observation of the cesium-induced sawtooth response is remarkable. To my knowledge, this type of response has not yet been described in neurobiological systems, and I suspect that the unexpected response will be of interest to many readers.

      At first glance, I had some concerns regarding the use of extracellular cesium to understand network phenomena. Yes, extracellular cesium blocks Ih. But extracellular cesium has also been shown to block astrocytic potassium channels, at least in mammalian systems (i.e., K-IR, PMID: 10601465), and such a blockade can elevate extracellular potassium. I was heartened to see that the authors acknowledge the non-specificity of cesium (lines 320-325) and I agree with the authors' contention that "a first approximation most of the effects seen here can likely be attributed to Cs+ block of Ih". Upon reflecting on the potential confound, I was also reassured to see that extracellular cesium alone does not increase pyloric frequency, an effect that might be expected if cesium indirectly raises [K+]outside. I suggest including that point in the discussion.

      In summary, the authors present a solid investigation of a surprising biological phenomenon. In general, my comments are fairly minor. This is an interesting study.

      Strengths:

      A major strength of the study is the identification of an ionic conductance that mediates stable, monotonic changes in oscillatory frequency that accompany changes in the environment (i.e., temperature).

      Weaknesses:

      A potential experimental concern stems from the use of extracellular cesium to attribute network effects specifically to Ih. Previous work has shown that extracellular cesium also blocks inward-rectifier potassium channels expressed by astrocytes, and that such blockade may also elevate extracellular potassium, an action that generally depolarizes neurons. Notably, the authors address this potential concern in the discussion.works, for example, in homeotherms, is not established, so the present results may have limited general extrapolations.

    2. Reviewer #2 (Public Review):

      Summary:

      Using the crustacean stomatogastric nervous system (STNS), the authors present an interesting study wherein the contribution of the Ih current to temperature-induced changes in the frequency of a rhythmically active neural circuit is evaluated. Ih is a hyperpolarization-activated cation current that depolarizes neurons. Under normal conditions, increasing the temperature of the STNS increases the frequency of the spontaneously active pyloric rhythm. Notably, under normal conditions, as temperature systematically increases, the concomitant increase in pyloric frequency is smooth (i.e., monotonic). By contrast, blocking Ih with extracellular cesium produces temperature-induced pyloric frequency changes that follow a characteristic sawtooth response (i.e., non-monotonic). That is, in cesium, increasing temperature initially results in a transient drop in pyloric frequency that then stabilizes at a higher frequency. Thus, the authors conclude that Ih establishes a mechanism that ensures smooth changes in neural network frequency during environmental disturbances, a feature that likely bestows advantages to the animal's function.

      The study describes several surprising and interesting findings. In general, the study's primary observation of the cesium-induced sawtooth response is remarkable. To my knowledge, this type of response has not yet been described in neurobiological systems, and I suspect that the unexpected response will be of interest to many readers.

      At first glance, I had some concerns regarding the use of extracellular cesium to understand network phenomena. Yes, extracellular cesium blocks Ih. But extracellular cesium has also been shown to block astrocytic potassium channels, at least in mammalian systems (i.e., K-IR, PMID: 10601465), and such a blockade can elevate extracellular potassium. I was heartened to see that the authors acknowledge the non-specificity of cesium (lines 320-325) and I agree with the authors' contention that "a first approximation most of the effects seen here can likely be attributed to Cs+ block of Ih". Upon reflecting on the potential confound, I was also reassured to see that extracellular cesium alone does not increase pyloric frequency, an effect that might be expected if cesium indirectly raises [K+]outside. I suggest including that point in the discussion.

      In summary, the authors present a solid investigation of a surprising biological phenomenon. In general, my comments are fairly minor. This is an interesting study.

      Strengths:

      A major strength of the study is the identification of an ionic conductance that mediates stable, monotonic changes in oscillatory frequency that accompany changes in the environment (i.e., temperature).

      Weaknesses:

      A potential experimental concern stems from the use of extracellular cesium to attribute network effects specifically to Ih. Previous work has shown that extracellular cesium also blocks inward-rectifier potassium channels expressed by astrocytes, and that such blockade may also elevate extracellular potassium, an action that generally depolarizes neurons. Notably, the authors address this potential concern in the discussion.

    3. Reviewer #3 (Public Review):

      Summary:

      This paper presents a systematic analylsis of the role of the hyperpolarization-activated inward current (the h current) in the response of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab. In a detailed set of experiments, they analyze the effect of blocking h current with bath infusion of the h current blocker cesium (perfused as CsCl). They show interesting and reproducible effects that blockade of h current results in a period of frequency decrease after an upward step in temperature, followed by a slow increase in frequency.<br /> This contrasts with the normal temperature response that shows an increase in frequency with an increase in temperature without a downward "jag" in the frequency response. This is an important paper for showing the role of h current in stabilizing network dynamics in response to perturbations such as a temperature change.

      The major effects are shown very clearly and convincingly in a range of experiments with combined intracellular recording from neurons during changes in temperature.

      They also provide additional detailed analyses of the effect of picrotoxin on these changes, showing that most of the effects except for the loss of frequency increase, appear to indicate that these effects are due to the role of h current in the pacemaker neurons PD.

      Weaknesses :

      I know the Marder lab has detailed models of the pyloric rhythm. I am not saying they have to add modeling to this already extensive and detailed paper, but it would be useful to know how much of these temperature effects have been modeled successfully and which ones have never been shown in the models.

      They describe the ionic mechanism for the decrease and increase in frequency as a difference in temperature sensitivity of different components of the A current, but it seems like it is also a function of the time course of the response to change in temperature (i.e. the different components could have the same final effect of temperature but show a different time course of the change). They could mention any known data about the mechanism for how temperature is altering these channel kinetics and whether this indicates a change in time course of response to the same temperature, or a difference in actual steady-state temperature sensitivity.

    1. Reviewer #1 (Public Review):

      This work successfully identified and validated TRLs in hepatic metastatic uveal melanoma, providing new horizons for enhanced immunotherapy. Uveal melanoma is a highly metastatic cancer that, unlike cutaneous melanoma, has a limited effect on immune checkpoint responses, and thus there is a lack of formal clinical treatment for metastatic UM. In this manuscript, the authors described the immune microenvironmental profile of hepatic metastatic uveal melanoma by sc-RNAseq, TCR-seq, and PDX models. Firstly, they identified and defined the phenotypes of tumor-reactive T lymphocytes (TRLs). Moreover, they validated the activity of TILs by in vivo PDX modeling as well as in vitro co-culture of 3D tumorsphere cultures and autologous TILs. Additionally, the authors found that TRLs are mainly derived from depleted and late-activated T cells, which recognize melanoma antigens and tumor-specific antigens. Most importantly, they identified TRLs-associated phenotypes, which provide new avenues for targeting expanded T cells to improve cellular and immune checkpoint immunotherapy.

      Comments on revised manuscript

      The revised manuscript has addressed all my concerns.

    2. Reviewer #2 (Public Review):

      Summary:

      The study's goal is to characterize and validate tumor-reactive T cells in liver metastases of uveal melanoma (UM), which could contribute to enhancing immunotherapy for these patients. The authors used single-cell RNA and TCR sequencing to find potential tumor-reactive T cells and then used patient-derived xenograft (PDX) models and tumor sphere cultures for functional analysis. They discovered that tumor-reactive T cells exist in activated/exhausted T cell subsets and in cytotoxic effector cells. Functional experiments with isolated TILs show that they are capable of killing UM cells in vivo and ex vivo.

      Strengths:

      The study highlights the potential of using single-cell sequencing and functional analysis to identify T cells that can be useful for cell therapy and marker selection in UM treatment. This is important and novel as conventional immune checkpoint therapies are not highly effective in treating UM. Additionally, the study's strength lies in its validation of findings through functional assays, which underscores the clinical relevance of the research.

      Weaknesses:

      The manuscript may pose challenges for individuals with limited knowledge of single-cell analysis and immunology markers, making it less accessible to a broader audience.

    1. Reviewer #1 (Public Review):

      Summary:

      This is large-scale genomics and transcriptomics study of the epidemic community-acquired methicillin-resistant S. aureus clone USA300, designed to identify core genome mutations that drove the emergence of the clone. It used publicly available datasets and a combination of genome-wide association studies (GWAS) and independent principal-component analysis (ICA) of RNA-seq profiles to compare USA300 versus non-USA300 within clonal complex 8. By overlapping the analyses the authors identified a 38bp deletion upstream of the iron-scavenging surface-protein gene isdH that was both significantly associated with the USA300 lineage and with a decreased transcription of the gene.

      Strengths:

      Several genomic studies have investigated genomic factors driving the emergence of successful S. aureus clones, in particular USA300. These studies have often focussed on acquisition of key accessory genes or have focussed on a small number of strains. This study makes a smart use of publicly available repositories to leverage the sample size of the analysis and identify new genomics markers of USA300 success.

      The approach of combining large-scale genomics and transcriptomics analysis is powerful, as it allows to make some inferences on the impact of the mutations. This is particular important for mutations in intergenic regions, whose functional impact is often uncertain.

      The statistical genomics approaches are elegant and state-of-the-art and can be easily applied to other contexts or pathogens.

      Weaknesses:

      The main weakness of this work is that these data don't allow a casual inference on the role of isdH in driving the emergence of USA300. It is of course impossible to prove which mutation or gene drove the success of the clone, however, experimental data would have strengthen the conclusions of the authors in my opinion.

      Another limitation of this approach is that the approach taken here doesn't allow to make any conclusions on the adaptive role of the isdH mutation. In other words, it is still possible that the mutation is just a marker of USA300 success, due to other factors such as PVL, ACMI or the SCCmecIVa. This is because by its nature this analysis is heavy influenced by population structure. Usually, GWAS is applied to find genetic loci that are associated with a phenotype and are independent of the underlying population structure. Here, authors are using GWAS to find loci that are associated with a lineage. In other words, they are simply running a univariate analysis (likely a logistic regression) between genetic loci and the lineage without any correction for population structure, since population structure is the outcome. Therefore, this approach can't be applied to most phenotype-genotype studies where correction for population structure is critical.

      Finally, the approach used is complex and not easily reproduced to another dataset. Although I like DBGWAS and find the network analysis elegant, I would be interested in seeing how a simpler GWAS tool like Pyseer would perform.

    1. Joint Public Review:

      The present study explored the principles that allow cells to maintain complex subcellular proteinaceous structures despite the limited lifetimes of the individual protein components. This is particularly critical in the case of neurons, where the size and protein composition of synapses define synaptic strength and encode memory.

      PSD95 is an abundant synapse protein that acts as a scaffold in the recruitment of transmitter receptors and other signaling proteins and is required for proper memory formation. The authors used super-resolution microscopy to study PSD95 super-complexes isolated from the brains of mice expressing tagged PSD variants (Halo-Tag, mEos, GFP). Their results show compellingly that a large fraction (~25%) of super-complexes contains two PSD95 copies about 13 nm apart, that there is substantial turnover of PSD95 proteins in super-complexes over a period of seven days, and that ~5-20% of the super-complexes contain new and old PSD95 molecules. This percentage is higher in synaptic fractions as compared to total brain lysates, and highest in isocortex samples (~20%). These important findings support the notion put forward by Crick that sequential subunit replacement gives synaptic super-complexes long lifetimes and thus aids in memory maintenance. Overall, this is very interesting, providing key insights into how synaptic protein complexes are formed and maintained. On the other hand, the actual role of these PSD95 super-complexes in long-term memory storage remains unknown.

      Strengths

      (1) The study employed an appropriate and validated methodology.

      (2) Large numbers of PSD95 super-complexes from three different mouse models were imaged and analyzed, providing adequately powered sample sizes.

      (3) State-of-the-art super-resolution imaging techniques (PALM and MINFLUX) were used, providing a robust, high-quality, cross-validated analysis of PSD95 protein complexes that is useful for the community.

      (4) The result that PSD95 proteins in dimeric complexes are on average 12.7 nm apart is useful and has implications for studies on the nanoscale organization of PSD95 at synapses.

      (5) The finding that postsynaptic protein complexes can continue to exist while individual components are being renewed is important for our understanding of synapse maintenance and stability.

      (6) The data on the turnover rate of PSD95 in super-complexes from different brain regions provide a first indication of potentially meaningful differences in the lifetime of super-complexes between brain regions.

      Weaknesses

      (1) The manuscript emphasizes the hypothesis that stable super-complexes, maintained through sequential replacement of subunits, might underlie the long-term storage of memory. While an interesting idea, this notion requires considerably more research. The presented experimental data are indeed consistent with this notion, but there is no evidence that these complexes are causally related to memory storage.

      (2) Much of the presented work is performed on biochemically isolated protein complexes. The biochemical isolation procedures rely on physical disruption and detergents that are known to alter the composition and structure of complexes in certain cases. Thus, it remains unclear how the protein complexes described in this study relate to PSD95 complexes in intact synapses.

      (3) Because not all GFP molecules mature and fold correctly in vitro and the PSD95-mEos mice used were heterozygous, the interpretation of the corresponding quantifications is not straightforward.

      (4) It was not tested whether different numbers of PSD95 molecules per super-complex might contribute to different retention times of PSD95, e.g. in synaptic vs. total-forebrain super-complexes.

      (5) The conclusion that the population of 'mixed' synapses is higher in the isocortex than in other brain regions is not supported by statistical analysis.

      (6) The validity of conclusions regarding PSD95 degradation based on relative changes in the occurrence of SiR-Halo-positive puncta is limited.

    1. Reviewer #1 (Public Review):

      Summary:

      Bowler et al. present a thoroughly tested system for modularized behavioral control of navigation-based experiments, particularly suited for pairing with 2-photon imaging but applicable to a variety of techniques. This system, which they name behaviorMate, represents a valuable contribution to the field. As the authors note, behavioral control paradigms vary widely across laboratories in terms of hardware and software utilized and often require specialized technical knowledge to make changes to these systems. Having a standardized, easy-to-implement, and flexible system that can be used by many groups is therefore highly desirable. This work will be of interest to systems neuroscientists looking to integrate flexible head-fixed behavioral control with neural data acquisition.

      Strengths:

      The present manuscript provides compelling evidence of the functionality and applicability of behaviorMate. The authors report benchmark tests for real-time update speed between the animal's movement and the behavioral control, on both the treadmill-based and virtual reality (VR) setups. Further, they nicely demonstrate and quantify reliable hippocampal place cell coding in both setups, using synchronized 2-photon imaging. This place cell characterization also provides a concrete comparison between the place cell properties observed in treadmill-based navigation vs. visual VR in a single study, which itself is a helpful contribution to the field.

      Documentation for installing and operating behaviorMate is available via the authors' lab website and linked in the manuscript.

      Weaknesses:

      The following comments are mostly minor suggestions intended to add clarity to the paper and provide context for its significance.

      (1) As VRMate (a component of behaviorMate) is written using Unity, what is the main advantage of using behaviorMate/VRMate compared to using Unity alone paired with Arduinos (e.g. Campbell et al. 2018), or compared to using an existing toolbox to interface with Unity (e.g. Alsbury-Nealy et al. 2022, DOI: 10.3758/s13428-021-01664-9)? For instance, one disadvantage of using Unity alone is that it requires programming in C# to code the task logic. It was not entirely clear whether VRMate circumvents this disadvantage somehow -- does it allow customization of task logic and scenery in the GUI? Does VRMate add other features and/or usability compared to Unity alone? It would be helpful if the authors could expand on this topic briefly.

      (2) The section on "context lists", lines 163-186, seemed to describe an important component of the system, but this section was challenging to follow and readers may find the terminology confusing. Perhaps this section could benefit from an accompanying figure or flow chart, if these terms are important to understand.

      (2a) Relatedly, "context" is used to refer to both when the animal enters a particular state in the task like a reward zone ("reward context", line 447) and also to describe a set of characteristics of an environment (Figure 3G), akin to how "context" is often used in the navigation literature. To avoid confusion, one possibility would be to use "environment" instead of "context" in Figure 3G, and/or consider using a word like "state" instead of "context" when referring to the activation of different stimuli.

      (3) Given the authors' goal of providing a system that is easily synchronizable with neural data acquisition, especially with 2-photon imaging, I wonder if they could expand on the following features:

      (3a) The authors mention that behaviorMate can send a TTL to trigger scanning on the 2P scope (line 202), which is a very useful feature. Can it also easily generate a TTL for each frame of the VR display and/or each sample of the animal's movement? Such TTLs can be critical for synchronizing the imaging with behavior and accounting for variability in the VR frame rate or sampling rate.

      (3b) Is there a limit to the number of I/O ports on the system? This might be worth explicitly mentioning.

      (3c) In the VR version, if each display is run by a separate Android computer, is there any risk of clock drift between displays? Or is this circumvented by centralized control of the rendering onset via the "real-time computer"?

    1. Reviewer #1 (Public Review):

      Summary:

      Qin and colleagues analysed data from the Human Connectome Project on four right-handed subgroups with different gyrification patterns in Heschl's gyrus. Based on these groups, the authors highlight the structure-function relationship of planum temporale asymmetry in lateralised language processing at the group level and next at the individual level. In particular, the authors propose that especially microstructural asymmetries are related to functional auditory language asymmetries in the planum temporale.

      Strengths:

      The study is interesting because of an ongoing and long-standing debate about the relationship between structural and functional brain asymmetries, and in particular whether structural brain asymmetries can be seen as markers of functional language brain lateralisation.

      In this debate, the relationship between Heschl's gyrus asymmetry and planum temporale asymmetry is rare and therefore valuable here. A large sample size and inter-rater reliability support the findings.

      Weaknesses:

      In this case of multiple brain measures, it would be important to provide the reader with some sort of effect size (e.g. Cohen's d) to help interpret the results. In addition, the authors highlight the microstructural results in spite of the macrostructural results. However, the macrostructural surface results are also strong. I would suggest either reducing the emphasis on micro vs macrostructural results or adding information to justify the microstructural importance.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors assessed the link between structural and functional lateralization in area PT, one of the brain areas that is known to exhibit strong structural lateralization, and which is known to be implicated in speech processing. Importantly, they included the sulcal configuration of Heschl's gyrus (HG), presenting either as a single or duplicated HG, in their analysis. They found several significant associations between microstructural indices and task-based functional lateralization, some of which depended on the sulcal configuration.

      Strengths:

      A clear strength is the large sample size (n=907), an openly available database, and the fact that HG morphology was manually classified in each individual. This allows for robust statistical testing of the effects across morphological categories, which is not often seen in the literature.

      Weaknesses:

      - Unfortunately, no left-handers were included in the study. It would have been a valuable addition to the literature, to study the effect of handedness on the observed associations, as many previous studies on this topic were not adequately powered. The fact that only right-handers were studied should be pointed out clearly in the introduction or even the abstract.

      - The tasks to quantify functional lateralization were not specifically designed to pick up lateralization. In the interest of the sample size, it is understandable that the authors used the available HCP-task-battery results, however, it would have been feasible to access another dataset for validation. A targeted subset of results, concerning for example the relationship between sulcal morphology and task-based functional lateralization, could be re-assessed using other open-access fMRI datasets.

      - The study is mainly descriptive and the general discussion of the findings in the larger context of brain lateralization comes a bit short. For example, are the observed effects in line with what we know from other 'language-relevant' areas? What could be the putative mechanisms that give rise to functional lateralization based on the microstructural markers observed? And which mechanisms might be underlying the formation of a duplicated HG?

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors trained a variational autoencoder (VAE) to create a high-dimensional "voice latent space" (VLS) using extensive voice samples, and analyzed how this space corresponds to brain activity through fMRI studies focusing on the temporal voice areas (TVAs). Their analyses included encoding and decoding techniques, as well as representational similarity analysis (RSA), which showed that the VLS could effectively map onto and predict brain activity patterns, allowing for the reconstruction of voice stimuli that preserve key aspects of speaker identity.

      Strengths:

      This paper is well-written and easy to follow. Most of the methods and results were clearly described. The authors combined a variety of analytical methods in neuroimaging studies, including encoding, decoding, and RSA. In addition to commonly used DNN encoding analysis, the authors performed DNN decoding and resynthesized the stimuli using VAE decoders. Furthermore, in addition to machine learning classifiers, the authors also included human behavioral tests to evaluate the reconstruction performance.

      Weaknesses:

      This manuscript presents a variational autoencoder (VAE) to evaluate voice identity representations from brain recordings. However, the study's scope is limited by testing only one model, leaving unclear how generalizable or impactful the findings are. The preservation of identity-related information in the voice latent space (VLS) is expected, given the VAE model's design to reconstruct original vocal stimuli. Nonetheless, the study lacks a deeper investigation into what specific aspects of auditory coding these latent dimensions represent. The results in Figure 1c-e merely tested a very limited set of speech features. Moreover, there is no analysis of how these features and the whole VAE model perform in standard speech tasks like speech recognition or phoneme recognition. It is not clear what kind of computations the VAE model presented in this work is capable of. Inclusion of comparisons with state-of-the-art unsupervised or self-supervised speech models known for their alignment with auditory cortical responses, such as Wav2Vec2, HuBERT, and Whisper, would strengthen the validation of the VAE model and provide insights into its relative capabilities and limitations.

      The claim that the VLS outperforms a linear model (LIN) in decoding tasks does not significantly advance our understanding of the underlying brain representations. Given the complexity of auditory processing, it is unsurprising that a nonlinear model would outperform a simpler linear counterpart. The study could be improved by incorporating a comparative analysis with alternative models that differ in architecture, computational strategies, or training methods. Such comparisons could elucidate specific features or capabilities of the VLS, offering a more nuanced understanding of its effectiveness and the computational principles it embodies. This approach would allow the authors to test specific hypotheses about how different aspects of the model contribute to its performance, providing a clearer picture of the shared coding in VLS and the brain.

      The manuscript overlooks some crucial alternative explanations for the discriminant representation of vocal identity. For instance, the discriminant representation of vocal identity can be either a higher-level abstract representation or a lower-level coding of pitch height. Prior studies using fMRI and ECoG have identified both types of representation within the superior temporal gyrus (STG) (e.g., Tang et al., Science 2017; Feng et al., NeuroImage 2021). Additionally, the methodology does not clarify whether the stimuli from different speakers contained identical speech content. If the speech content varied across speakers, the approach of averaging trials to obtain a mean vector for each speaker-the "identity-based analysis"-may not adequately control for confounding acoustic-phonetic features. Notably, the principal component 2 (PC2) in Figure 1b appears to correlate with absolute pitch height, suggesting that some aspects of the model's effectiveness might be attributed to simpler acoustic properties rather than complex identity-specific information.

      Methodologically, there are issues that warrant attention. In characterizing the autoencoder latent space, the authors initialized logistic regression classifiers 100 times and calculated the t-statistics using degrees of freedom (df) of 99. Given that logistic regression is a convex optimization problem typically converging to a global optimum, these multiple initializations of the classifier were likely not entirely independent. Consequently, the reported degrees of freedom and the effect size estimates might not accurately reflect the true variability and independence of the classifier outcomes. A more careful evaluation of these aspects is necessary to ensure the statistical robustness of the results.

    2. Reviewer #2 (Public Review):

      Summary:

      Lamothe et al. collected fMRI responses to many voice stimuli in 3 subjects. The authors trained two different autoencoders on voice audio samples and predicted latent space embeddings from the fMRI responses, allowing the voice spectrograms to be reconstructed. The degree to which reconstructions from different auditory ROIs correctly represented speaker identity, gender, or age was assessed by machine classification and human listener evaluations. Complementing this, the representational content was also assessed using representational similarity analysis. The results broadly concur with the notion that temporal voice areas are sensitive to different types of categorical voice information.

      Strengths:

      The single-subject approach that allows thousands of responses to unique stimuli to be recorded and analyzed is powerful. The idea of using this approach to probe cortical voice representations is strong and the experiment is technically solid.

      Weaknesses:

      The paper could benefit from more discussion of the assumptions behind the reconstruction analyses and the conclusions it allows. The authors write that reconstruction of a stimulus from brain responses represents 'a robust test of the adequacy of models of brain activity' (L138). I concur that stimulus reconstruction is useful for evaluating the nature of representations, but the notion that they can test the adequacy of the specific autoencoder presented here as a model of brain activity should be discussed at more length. Natural sounds are correlated in many feature dimensions and can therefore be summarized in several ways, and similar information can be read out from different model representations. Models trained to reconstruct natural stimuli can exploit many correlated features and it is quite possible that very different models based on different features can be used for similar reconstructions. Reconstructability does not by itself imply that the model is an accurate brain model. Non-linear networks trained on natural stimuli are arguably not tested in the same rigorous manner as models built to explicitly account for computations (they can generate predictions and experiments can be designed to test those predictions). While it is true that there is increasing evidence that neural network embeddings can predict brain data well, it is still a matter of debate whether good predictability by itself qualifies DNNs as 'plausible computational models for investigating brain processes' (L72). This concern is amplified in the context of decoding and naturalistic stimuli where many correlated features can be represented in many ways. It is unclear how much the results hinge on the specificities of the specific autoencoder architectures used. For instance, it would be useful to know the motivations for why the specific VAE used here should constitute a good model for probing neural voice representations.

      Relatedly, it is not clear how VAEs as generative models are motivated as computational models of voice representations in the brain. The task of voice areas in the brain is not to generate voice stimuli but to discriminate and extract information. The task of reconstructing an input spectrogram is perhaps useful for probing information content, but discriminative models, e.g., trained on the task of discriminating voices, would seem more obvious candidates. Why not include discriminatively trained models for comparison?

      The autoencoder learns a mapping from latent space to well-formed voice spectrograms. Regularized regression then learns a mapping between this latent space and activity space. All reconstructions might sound 'natural', which simply means that the autoencoder works. It would be good to have a stronger test of how close the reconstructions are to the original stimulus. For instance, is the reconstruction the closest stimulus to the original in latent space coordinates out of using the experimental stimuli, or where does it rank? How do small changes in beta amplitudes impact the reconstruction? The effective dimensionality of the activity space could be estimated, e.g. by PCA of the voice samples' contrast maps, and it could then be estimated how the main directions in the activity space map to differences in latent space. It would be good to get a better grasp of the granularity of information that can be decoded/ reconstructed.

      What can we make of the apparent trend that LIN is higher than VLS for identity classification (at least VLS does not outperform LIN)? A general argument of the paper seems to be that VLS is a better model of voice representations compared to LIN as a 'control' model. Then we would expect VLS to perform better on identity classification. The age and gender of a voice can likely be classified from many acoustic features that may not require dedicated voice processing.

      The RDM results reported are significant only for some subjects and in some ROIs. This presumably means that results are not significant in the other subjects. Yet, the authors assert general conclusions (e.g. the VLS better explains RDM in TVA than LIN). An assumption typically made in single-subject studies (with large amounts of data in individual subjects) is that the effects observed and reported in papers are robust in individual subjects. More than one subject is usually included to hint that this is the case. This is an intriguing approach. However, reports of effects that are statistically significant in some subjects and some ROIs are difficult to interpret. This, in my view, runs contrary to the logic and leverage of the single-subject approach. Reporting results that are only significant in 1 out of 3 subjects and inferring general conclusions from this seems less convincing.

      The first main finding is stated as being that '128 dimensions are sufficient to explain a sizeable portion of the brain activity' (L379). What qualifies this? From my understanding, only models of that dimensionality were tested. They explain a sizeable portion of brain activity, but it is difficult to follow what 'sizable' is without baseline models that estimate a prediction floor and ceiling. For instance, would autoencoders that reconstruct any spectrogram (not just voice) also predict a sizable portion of the measured activity? What happens to reconstruction results as the dimensionality is varied?

      A second main finding is stated as being that the 'VLS outperforms the LIN space' (L381). It seems correct that the VAE yields more natural-sounding reconstructions, but this is a technical feature of the chosen autoencoding approach. That the VLS yields a 'more brain-like representational space' I assume refers to the RDM results where the RDM correlations were mainly significant in one subject. For classification, the performance of features from the reconstructions (age/ gender/ identity) gives results that seem more mixed, and it seems difficult to draw a general conclusion about the VLS being better. It is not clear that this general claim is well supported.

      It is not clear why the RDM was not formed based on the 'stimulus GLM' betas. The 'identity GLM' is already biased towards identity and it would be stronger to show associations at the stimulus level.

      Multiple comparisons were performed across ROIs, models, subjects, and features in the classification analyses, but it is not clear how correction for these multiple comparisons was implemented in the statistical tests on classification accuracies.

      Risks of overfitting and bias are a recurrent challenge in stimulus reconstruction with fMRI. It would be good with more control analyses to ensure that this was not the case. For instance, how were the repeated test stimuli presented? Were they intermingled with the other stimuli used for training or presented in separate runs? If intermingled, then the training and test data would have been preprocessed together, which could compromise the test set. The reconstructions could be performed on responses from independent runs, preprocessed separately, as a control. This should include all preprocessing, for instance, estimating stimulus/identity GLMs on separately processed run pairs rather than across all runs. Also, it would be good to avoid detrending before GLM denoising (or at least testing its effects) as these can interact.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Lamothe et al. sought to identify the neural substrates of voice identity in the human brain by correlating fMRI recordings with the latent space of a variational autoencoder (VAE) trained on voice spectrograms. They used encoding and decoding models, and showed that the "voice" latent space (VLS) of the VAE performs, in general, (slightly) better than a linear autoencoder's latent space. Additionally, they showed dissociations in the encoding of voice identity across the temporal voice areas.

      Strengths:

      - The geometry of the neural representations of voice identity has not been studied so far. Previous studies on the content of speech and faces in vision suggest that such geometry could exist. This study demonstrates this point systematically, leveraging a specifically trained variational autoencoder.

      - The size of the voice dataset and the length of the fMRI recordings ensure that the findings are robust.

      Weaknesses:

      - Overall, the VLS is often only marginally better than the linear model across analysis, raising the question of whether the observed performance improvements are due to the higher number of parameters trained in the VAE, rather than the non-linearity itself. A fair comparison would necessitate that the number of parameters be maintained consistently across both models, at least as an additional verification step.

      - The encoding and RSM results are quite different. This is unexpected, as similar embedding geometries between the VLS and the brain activations should be reflected by higher correlation values of the encoding model.

      - The consistency across participants is not particularly high, for instance, S1 seemed to have demonstrated excellent performances, while S2 showed poor performance.

      - An important control analysis would be to compare the decoding results with those obtained by a decoder operating directly on the latent spaces, in order to further highlight the interest of the non-linear transformations of the decoder model. Currently, it is unclear whether the non-linearity of the decoder improves the decoding performance, considering the poor resemblance between the VLS and brain-reconstructed spectrograms.

    1. Reviewer #1 (Public Review):

      Lu & Golomb combined EEG, artificial neural networks, and multivariate pattern analyses to examine how different visual variables are processed in the brain. The conclusions of the paper are mostly well supported, but some aspects of methods and data analysis would benefit from clarification and potential extensions.

      The authors find that not only real-world size is represented in the brain (which was known), but both retinal size and real-world depth are represented, at different time points or latencies, which may reflect different stages of processing. Prior work has not been able to answer the question of real-world depth due to the stimuli used. The authors made this possible by assessing real-world depth and testing it with appropriate methodology, accounting for retinal and real-world size. The methodological approach combining behavior, RSA, and ANNs is creative and well thought out to appropriately assess the research questions, and the findings may be very compelling if backed up with some clarifications and further analyses.

      The work will be of interest to experimental and computational vision scientists, as well as the broader computational cognitive neuroscience community as the methodology is of interest and the code is or will be made available. The work is important as it is currently not clear what the correspondence between many deep neural network models and the brain is, and this work pushes our knowledge forward on this front. Furthermore, the availability of methods and data will be useful for the scientific community.

      Some analyses are incomplete, which would be improved if the authors showed analyses with other layers of the networks and various additional partial correlation analyses.

      Clarity

      (1) Partial correlations methods incomplete - it is not clear what is being partialled out in each analysis. It is possible to guess sometimes, but it is not entirely clear for each analysis. This is important as it is difficult to assess if the partial correlations are sensible/correct in each case. Also, the Figure 1 caption is short and unclear.

      For example, ANN-EEG partial correlations - "Finally, we directly compared the timepoint-by-timepoint EEG neural RDMs and the ANN RDMs (Figure 3F). The early layer representations of both ResNet and CLIP were significantly correlated with early representations in the human brain" What is being partialled out? Figure 3F says partial correlation

      Issues / open questions

      (2) Semantic representations vs hypothesized (hyp) RDMs (real-world size, etc) - are the representations explained by variables in hyp RDMs or are there semantic representations over and above these? E.g., For ANN correlation with the brain, you could partial out hyp RDMs - and assess whether there is still semantic information left over, or is the variance explained by the hyp RDMs?

      (3) Why only early and late layers? I can see how it's clearer to present the EEG results. However, the many layers in these networks are an opportunity - we can see how simple/complex linear/non-linear the transformation is over layers in these models. It would be very interesting and informative to see if the correlations do in fact linearly increase from early to later layers, or if the story is a bit more complex. If not in the main text, then at least in the supplement.

      (4) Peak latency analysis - Estimating peaks per ppt is presumably noisy, so it seems important to show how reliable this is. One option is to find the bootstrapped mean latencies per subject.

      (5) "Due to our calculations being at the object level, if there were more than one of the same objects in an image, we cropped the most complete one to get a more accurate retinal size. " Did EEG experimenters make sure everyone sat the same distance from the screen? and remain the same distance? This would also affect real-world depth measures.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper aims to test if neural representations of images of objects in the human brain contain a 'pure' dimension of real-world size that is independent of retinal size or perceived depth. To this end, they apply representational similarity analysis on EEG responses in 10 human subjects to a set of 200 images from a publicly available database (THINGS-EEG2), correlating pairwise distinctions in evoked activity between images with pairwise differences in human ratings of real-world size (from THINGS+). By partialling out correlations with metrics of retinal size and perceived depth from the resulting EEG correlation time courses, the paper claims to identify an independent representation of real-world size starting at 170 ms in the EEG signal. Further comparisons with artificial neural networks and language embeddings lead the authors to claim this correlation reflects a relatively 'high-level' and 'stable' neural representation.

      Strengths:

      - The paper features insightful figures/illustrations and clear figures.

      - The limitations of prior work motivating the current study are clearly explained and seem reasonable (although the rationale for why using 'ecological' stimuli with backgrounds matters when studying real-world size could be made clearer; one could also argue the opposite, that to get a 'pure' representation of the real-world size of an 'object concept', one should actually show objects in isolation).

      - The partial correlation analysis convincingly demonstrates how correlations between feature spaces can affect their correlations with EEG responses (and how taking into account these correlations can disentangle them better).

      - The RSA analysis and associated statistical methods appear solid.

      Weaknesses:

      - The claim of methodological novelty is overblown. Comparing image metrics, behavioral measurements, and ANN activations against EEG using RSA is a commonly used approach to study neural object representations. The dataset size (200 test images from THINGS) is not particularly large, and neither is comparing pre-trained DNNs and language models, or using partial correlations.

      - The claims also seem too broad given the fairly small set of RDMs that are used here (3 size metrics, 4 ANN layers, 1 Word2Vec RDM): there are many aspects of object processing not studied here, so it's not correct to say this study provides a 'detailed and clear characterization of the object processing process'.

      - The paper lacks an analysis demonstrating the validity of the real-world depth measure, which is here computed from the other two metrics by simply dividing them. The rationale and logic of this metric is not clearly explained. Is it intended to reflect the hypothesized egocentric distance to the object in the image if the person had in fact been 'inside' the image? How do we know this is valid? It would be helpful if the authors provided a validation of this metric.

      - Given that there is only 1 image/concept here, the factor of real-world size may be confounded with other things, such as semantic category (e.g. buildings vs. tools). While the comparison of the real-world size metric appears to be effectively disentangled from retinal size and (the author's metric of) depth here, there are still many other object properties that are likely correlated with real-world size and therefore will confound identifying a 'pure' representation of real-world size in EEG. This could be addressed by adding more hypothesis RDMs reflecting different aspects of the images that may correlate with real-world size.

      - The choice of ANNs lacks a clear motivation. Why these two particular networks? Why pick only 2 somewhat arbitrary layers? If the goal is to identify more semantic representations using CLIP, the comparison between CLIP and vision-only ResNet should be done with models trained on the same training datasets (to exclude the effect of training dataset size & quality; cf Wang et al., 2023). This is necessary to substantiate the claims on page 19 which attributed the differences between models in terms of their EEG correlations to one of them being a 'visual model' vs. 'visual-semantic model'.

      - The first part of the claim on page 22 based on Figure 4 'The above results reveal that real-world size emerges with later peak neural latencies and in the later layers of ANNs, regardless of image background information' is not valid since no EEG results for images without backgrounds are shown (only ANNs).

      Appraisal of claims:

      While the method shows useful and interesting patterns of results can be obtained by combining contrasting behavioral/image metrics, the lack of additional control models makes the evidence for the claimed unconfounded representation of real-world size in EEG responses incomplete.

      Discussion of likely impact:

      The paper is likely to impact the field by showcasing how using partial correlations in RSA is useful, rather than providing conclusive evidence regarding neural representations of objects and their sizes.

      Additional context important to consider when interpreting this work:

      - Page 20, the authors point out similarities of peak correlations between models ('Interestingly, the peaks of significant time windows for the EEG × HYP RSA also correspond with the peaks of the EEG × ANN RSA timecourse (Figure 3D,F)'. Although not explicitly stated, this seems to imply that they infer from this that the ANN-EEG correlation might be driven by their representation of the hypothesized feature spaces. However this does not follow: in EEG-image metric model comparisons it is very typical to see multiple peaks, for any type of model, this simply reflects specific time points in EEG at which visual inputs (images) yield distinctive EEG amplitudes (perhaps due to stereotypical waves of neural processing?), but one cannot infer the information being processed is the same. To investigate this, one could for example conduct variance partitioning or commonality analysis to see if there is variance at these specific time-points that is shared by a specific combination of the hypothesis and ANN feature spaces.

      - Page 22 mentions 'The significant time-window (90-300ms) of similarity between Word2Vec RDM and EEG RDMs (Figure 5B) contained the significant time-window of EEG x real-world size representational similarity (Figure 3B)'. This is not particularly meaningful given that the Word2Vec correlation is significant for the entire EEG epoch (from the time-point of the signal 'arriving' in visual cortex around ~90 ms) and is thus much less temporally specific than the real-world size EEG correlation. Again a stronger test of whether Word2Vec indeed captures neural representations of real-world size could be to identify EEG time-points at which there are unique Word2Vec correlations that are not explained by either ResNet or CLIP, and see if those time-points share variance with the real-world size hypothesized RDM.

    3. Reviewer #3 (Public Review):

      The authors used an open EEG dataset of observers viewing real-world objects. Each object had a real-world size value (from human rankings), a retinal size value (measured from each image), and a scene depth value (inferred from the above). The authors combined the EEG and object measurements with extant, pre-trained models (a deep convolutional neural network, a multimodal ANN, and Word2vec) to assess the time course of processing object size (retinal and real-world) and depth. They found that depth was processed first, followed by retinal size, and then real-world size. The depth time course roughly corresponded to the visual ANNs, while the real-world size time course roughly corresponded to the more semantic models.

      The time course result for the three object attributes is very clear and a novel contribution to the literature. However, the motivations for the ANNs could be better developed, the manuscript could better link to existing theories and literature, and the ANN analysis could be modernized. I have some suggestions for improving specific methods.

      (1) Manuscript motivations<br /> The authors motivate the paper in several places by asking " whether biological and artificial systems represent object real-world size". This seems odd for a couple of reasons. Firstly, the brain must represent real-world size somehow, given that we can reason about this question. Second, given the large behavioral and fMRI literature on the topic, combined with the growing ANN literature, this seems like a foregone conclusion and undermines the novelty of this contribution.

      While the introduction further promises to "also investigate possible mechanisms of object real-world size representations.", I was left wishing for more in this department. The authors report correlations between neural activity and object attributes, as well as between neural activity and ANNs. It would be nice to link the results to theories of object processing (e.g., a feedforward sweep, such as DiCarlo and colleagues have suggested, versus a reverse hierarchy, such as suggested by Hochstein, among others). What is semantic about real-world size, and where might this information come from? (Although you may have to expand beyond the posterior electrodes to do this analysis).

      Finally, several places in the manuscript tout the "novel computational approach". This seems odd because the computational framework and pipeline have been the most common approach in cognitive computational neuroscience in the past 5-10 years.

      (2) Suggestion: modernize the approach<br /> I was surprised that the computational models used in this manuscript were all 8-10 years old. Specifically, because there are now deep nets that more explicitly model the human brain (e.g., Cornet) as well as more sophisticated models of semantics (e.g., LLMs), I was left hoping that the authors had used more state-of-the-art models in the work. Moreover, the use of a single dCNN, a single multi-modal model, and a single word embedding model makes it difficult to generalize about visual, multimodal, and semantic features in general.

      (3) Methodological considerations<br /> a) Validity of the real-world size measurement<br /> I was concerned about a few aspects of the real-world size rankings. First, I am trying to understand why the scale goes from 100-519. This seems very arbitrary; please clarify. Second, are we to assume that this scale is linear? Is this appropriate when real-world object size is best expressed on a log scale? Third, the authors provide "sand" as an example of the smallest real-world object. This is tricky because sand is more "stuff" than "thing", so I imagine it leaves observers wondering whether the experimenter intends a grain of sand or a sandy scene region. What is the variability in real-world size ratings? Might the variability also provide additional insights in this experiment?<br /> b) This work has no noise ceiling to establish how strong the model fits are, relative to the intrinsic noise of the data. I strongly suggest that these are included.

    1. Reviewer #1 (Public Review):

      Summary:

      Kv2 subfamily potassium channels contribute to delayed rectifier currents in virtually all mammalian neurons and are encoded by two distinct types of subunits: Kv2 alpha subunits that have the capacity to form homomeric channels (Kv2.1 and Kv2.2), and KvS or silent subunits (Kv5,6,8.9) that can assemble with Kv2.1 or Kv2.2 to form heteromeric channels with novel biophysical properties. Many neurons express both types of subunits and therefore have the capacity to make both homomeric Kv2 channels and heteromeric Kv2/KvS channels. Determining the contributions of each of these channel types to native potassium currents has been very difficult because the differences in biophysical properties are modest and there are no Kv2/KvS-specific pharmacological tools. The authors set out to design a strategy to separate Kv2 and Kv2/KvS currents in native neurons based on their observation that Kv2/KvS channels have little sensitivity to the Kv2 pore blocker RY785 but are blocked by the Kv2 VSD blocker GxTx. They clearly demonstrate that Kv2/KvS currents can be differentiated from Kv2 currents in native neurons using a two-step strategy to first selectively block Kv2 with RY785, and then block both with GxTx. The manuscript is beautifully written; takes a very complex problem and strategy and breaks it down so both channel experts and the broad neuroscience community can understand it.

      Strengths:

      The compounds the authors use are highly selective and unlikely to have significant confounding cross-reactivity to other channel types. The authors provide strong evidence that all Kv2/KvS channels are resistant to RY785. This is a strength of the strategy - it can likely identify Kv2/KvS channels containing any of the 10 mammalian KvS subunits and thus be used as a general reagent on all types of neurons. The limitation then of course is that it can't differentiate the subtypes, but at this stage, the field really just needs to know how much Kv2/KvS channels contribute to native currents and this strategy provides a sound way to do so.

      Weaknesses:

      The authors are very clear about the limitations of their strategy, the most important of which is that they can't differentiate different subunit combinations of Kv2/KvS heteromers. This study is meant to be a start to understanding the roles of Kv2/KvS channels in vivo. As such, this is a minor weakness, far outweighed by the potential of the strategy to move the field through a roadblock that has existed since its inception.

      The study accomplishes exactly what it set out to do: provide a means to determine the relative contributions of homomeric Kv2 and heteromeric Kv2/KvS channels to native delayed rectifier K+ currents in neurons. It also does a fabulous job laying out the case for why this is important to do.

    2. Reviewer #2 (Public Review):

      Summary:

      Silent Kv subunits and the channels containing these Kv subunits (Kv2/KvS heteromers) are in the process of discovery. It is believed that these channels fine-tune the voltage-activated K+ currents that repolarize the membrane potential during action potentials, with a direct effect on cell excitability, mostly by determining action potentials firing frequency.

      Strengths:

      What makes silent Kv subunits even more important is that, by being expressed in specific tissues and cell types, different silent Kv subunits may have the ability to fine-tune the delayed rectifying voltage-activated K+ currents that are one of the currents that crucially determine cell excitability in these cells. The present manuscript introduces a pharmacological method to dissect the voltage-activated K+ currents mediated by Kv2/KvS heteromers as a means of starting to unveil their importance, together with Kv2-only channels, to the cells where they are expressed.

      Weaknesses:

      While the method is effective in quantifying these currents in any isolated cell under an electric voltage clamp, it is ineffective as a modulating maneuver to perhaps address these currents in an in vivo experimental setting. This is an important point but is not a claim made by the authors. There are other caveats with the methods and data:

      (i) The need for a 'cocktail' of blockers to supposedly isolate Kv2 homomers and Kv2/KvS heteromers' currents from others may introduce errors in the quantification Kv2/KvS heteromers-mediated K+ currents and that is due to possible blockers off targets.

      (ii) During the electrophysiology experiments, the authors use a holding potential that is not as negative as it is needed for the recording of the full population of the Kv2/KvS channels. Depolarized holding potentials lead to a certain level of inactivation of the channels, that vary according to the KvS involved/present in that specific population of channels. As a reminder, some KvS promote inactivation and others prevent inactivation. Therefore, the data must be interpreted as such.

      (iii) The analysis of conductance activation by using tail currents is only accurate when dealing with non-inactivating conductances. Also, in dealing with a heterogenous population of Kv2/KvS heteromers, heterogenous K+ conductance deactivation kinetics is a must. Indeed, different KvS may significantly relate to different deactivation kinetics as well.

      (iv) Silent Kv subunits may be retained in the ER, in heterologous systems like CHO cells. This aspect may subestimate their expression in these systems. Nevertheless, the authors show similar data in CHO cells and in primary neurons.

      (v) The hallmark of silent Kv subunits is their effect on the time inactivation of K+ currents. As such, data should be shown throughout, preferably, from this perspective, but it was only done so in Figure 4G.

      (vi) Functional characterization of currents only, as suggested by the authors as a bona fide of Kv2 and Kv2/KvS currents, should not be solely trusted to classify the currents and their channel mediators.