eLife assessment
This study presents a fundamental finding on how levels of m6A levels are controlled, invoking a consolidated model where degradation of modified RNAs in the cytoplasm plays a primary role in shaping m6A patterns and dynamics, rather than needing active regulation by m6A erasers and other related processes. The evidence is compelling and uses transcriptome-wide data and mechanistic modeling. However, it is possible that m6A-erasers will have roles in specific developmental contexts or conditions, so this model may not apply universally.