Reviewer #2 (Public Review):
Summary:
This paper documents an attempt to accurately determine the locations and boundaries of the anatomically and functionally defined layers in macaque primary visual cortex using voltage signals recorded from a high-density electrode array that spans the full depth of cortex with contacts at 20 um spacing. First, the authors attempt to use current source density (CSD) analysis to determine layer locations, but they report a striking failure because the results vary greatly from one electrode penetration to the next and because the spatial resolution of the underlying local field potential (LFP) signal is coarse compared to the electrical contact spacing. The authors thus turn to examining higher frequency signals related to action potentials and provide evidence that these signals reflect changes in neuronal size and packing density, response latency and visual selectivity.
Strengths:
There is a lot of nice data to look at in this paper that shows interesting quantities as a function of depth in V1. Bringing all of these together offers the reader a rich data set: CSD, action potential shape, response power and coherence spectrum, and post-stimulus time response traces. Furthermore, data are displayed as a function of eye (dominant or non-dominant) and for achromatic and cone-isolating stimuli.
This paper takes a strong stand in pointing out weaknesses in the ability of CSD analysis to make consistent determinations about cortical layering in V1. Many researchers have found CSD to be problematic, and the observations here may be important to motivate other researchers to carry out rigorous comparisons and publish their results, even if they reflect negatively on the value of CSD analysis.
The paper provides a thoughtful, practical and comprehensive recipe for assigning traditional cortical layers based on easily-computed metrics from electophysiological recordings in V1, and this is likely to be useful for electrophysiologists who are now more frequently using high-density electrode arrays.
Weaknesses:
Much effort is spent pointing out features that are well known, for example, the latency difference associated with different retinogeniculate pathways, the activity level differences associated with input layers, and the action potential shape differences associated with white vs. gray matter. These have been used for decades as indicators of depth and location of recordings in visual cortex as electrodes were carefully advanced. High density electrodes allow this type of data to now be collected in parallel, but at discrete, regular sampling points. Rather than showing examples of what is already accepted, the emphasis should be placed on developing a rigorous analysis of how variable vs. reproducible are quantitative metrics of these features across penetrations, as a function of distance or functional domain, and from animal to animal. Ultimately, a more quantitative approach to the question of consistency is needed to assess the value of the methods proposed here.
Another important piece of information for assessing the ability to determine layers from spiking activity is to carry out post-mortem histological processing so that the layer determination made in this paper could be compared to anatomical layering.
On line 162, the text states that there is a clear lack of consistency across penetrations, but why should there be consistency: how far apart in the cortex were the penetrations? How long were the electrodes allowed to settle before recording, how much damage was done to tissue during insertion? Do you have data taken over time - how consistent is the pattern across several hours, and how long was the time between the collection of the penetrations shown here?
The impact of the paper is lessened because it emphasizes consistency but not in a consistent manner. Some demonstrations of consistency are shown for CSDs, but not quantified. Figure 4A is used to make a point about consistency in cell density, but across animals, whereas the previous text was pointing out inconsistency across penetrations. What if you took a 40 or 60 um column of tissue and computed cell density, then you would be comparing consistency across potentially similar scales. Overall, it is not clear how all of these different metrics compare quantitatively to each other in terms of consistency.
In many places, the text makes assertions that A is a consistent indicator of B, but then there appear to be clear counterexamples in the data shown in the figures. There is some sense that the reasoning is relying too much on examples, and not enough on statistical quantities.
Overall
Overall, this paper makes a solid argument in favor of using action potentials and stimulus driven responses, instead of CSD measurements, to assign cortical layers to electrode contacts in V1. It is nice to look at the data in this paper and to read the authors' highly educated interpretation and speculation about how useful such measurements will be in general to make layer assignments. It is easy to agree with much of what they say, and to hope that in the future there will be reliable, quantitative methods to make meaningful segmentations of neurons in terms of their differentiated roles in cortical computation. How much this will end up corresponding to the canonical layer numbering that has been used for many decades now remains unclear.

