10,000 Matching Annotations
  1. May 2024
    1. Joint Public Review:

      In this study, Kashio et al examined the role of TRPV4 in regulating perspiration in mice. They find coexpression of TRPV4 with the chloride channel ANO1 and aquaporin 5, which implies possible coupling of heat sensing through TRPV4 to ion and water excretion through the latter channels. Calcium imaging of eccrine gland cells revealed that the TRPV4 agonist GSK101 activates these cells in WT mice, but not in TRPV4 KO. This effect is reduced with cold-stimulating menthol treatment. Temperature-dependent perspiration in mouse skin, either with passive heating or with ACh stimulation, was reduced in TRPV4 KO mice. Functional studies in mice - correlating the ability to climb a slippery slope to properly regulate skin moisture levels - reveal potential dysregulation of foot pad perspiration in TRPV4 KO mice, which had fewer successful climbing attempts. Lastly, a correlation of TRPV4 to hypohydrosis in humans was shown, as anhidrotic skin showed reduced levels of TRPV4 expression compared to normohidrotic or control skin.

      Overall this is an interesting study on how TRPV4 regulates perspiration.

      (1) The functional relationship between TRPV3 and ANO1 remains correlative.

      (2) Littermate controls were not used, but TRPV4ko were backcrossed onto the WT strain.

      (3) In general, the results support the authors' claims that TRPV4 activity is a necessary component of sweat gland secretion, which may have important implications for controlling perspiration; secretion from other glands where TRPV4 may be expressed remains a possibility given the lack of us of exocrine-specific knockouts.

    1. Reviewer #1 (Public Review):

      In this study, Gu at al., investigated the role of the central noradrenaline system from LC to VLPO in the recovery of consciousness induced by midazolam. Combining pharmacology, optogenetics/chemogenetics, they found that the LC to VLPO NE circuits are essential for consciousness rebooting after midazolam, activation of this circuit strongly speeded up the recovery process, dependent on alpha1 adrenergic receptors in the VLPO neurons. The topic is important and their findings are of some interest.<br /> However, substantial improvements are needed in the language, for grammar, clarity, and layout. There are significant experimental errors (see below 1-2). Further experiments are required to support their main conclusions.

      (1) One major issue arises in Figure 4, the recording of VLPO Ca2+ activity. In Lines 211-215, they stated that they injected AAV2/9-DBH-GCaMP6m into the VLPO, while activating LC NE neurons. As they claimed in line 157, DBH is a specific promoter for NE neurons. This implies an attempt to label NE neurons in the VLPO, which is problematic because NE neurons are not present in the VLPO. This raises concerns about their viral infection strategy since Ca activity was observed in their photometry recording. This means that DBH promoter could randomly label some non-NE neurons. Is DBH promoter widely used? The authors should list references. Additionally, they should quantify the labeling efficiency of both DBH and TH-cre throughout the paper.<br /> (2) A similar issue arises with chemogenetic activation in Fig. 5 L-R, the authors used TH-cre and DIO-Gq virus to label VLPO neurons. Were they labelling VLPO NE or DA neurons for recording? The authors have to clarify this.<br /> (3) Another related question pertains to the specificity of LC NE downstream neurons in the VLPO. For example, do they preferentially modulate GABAergic or glutamatergic neurons?<br /> (4) In Figure 1A-D, in the measurement of the dosage-dependent effect of Mida in LORR, were they only performed one batch of testing? If more than one batch of mice were used, error bar should be presented in 1B. Also, the rationale of testing TH expression levels after Mid is not clear. Is TH expression level change related to NE activation specifically? If so, they should cite references.<br /> (5) Regarding the photometry recording of LC NE neurons during the entire process of midazolam injection in Fig. 2 and Fig. 4, it is unclear what time=0 stands for. If I understand correctly, the authors were comparing spontaneous activity during the four phases. Additionally, they only show traces lasting for 20s in Fig. 2F and Fig. 4L. How did the authors select data for analysis, and what criteria were used? The authors should also quantify the average Ca2+ activity and Ca2+ transient frequency during each stage instead of only quantifying Ca2+ peaks. In line 919, the legend for Figure 2D, they stated that it is the signal at the BLA; were they also recorded from the BLA?

    2. Reviewer #2 (Public Review):

      Summary:

      This article mainly explores the neural circuit mechanism of recovery of consciousness after midazolam administration and proves that the LC-VLPO NEergic neural circuit helps to promote the recovery of midazolam, and this effect is mainly caused by α1 adrenergic receptors. (α1-R) mediated.

      Strengths:

      This article uses innovative methods such as optogenetics and fiber optic photometry in the experimental methods section to make the stimulation of neuronal cells more precise and the stimulation intensity more accurate in experimental research. In addition, fiber optic photometry adds confidence to the results of calcium detection in mouse neuronal cells.

      This article explains the results from the entire system down to cells, and then cells gradually unfold to explain the entire mechanism. The entire explanation process is logical and orderly. At the same time, this article conducted a large number of rescue experiments, which greatly increased the credibility of the experimental conclusions.

      Throughout the full text and all conclusions, this article has elucidated the neural circuit mechanism of recovery of consciousness after midazolam administration and successfully verified that the LC-VLPO NEergic neural circuit helps promote the recovery of midazolam.

      The conclusions of this article are crucial to ameliorate the complications of its abuse. It will pinpoint relevant regions involved in midazolam response and provide a perspective to help elucidate the dynamic changes in neural circuits in the brain during altered consciousness and suggest a promising approach towards the goal of timely recovery from midazolam. New research avenues.

      At the same time, this article also has important clinical translation significance. The application of clinical drug midazolam and animal experiments have certain guiding significance for subsequent related clinical research.

    1. Reviewer #1 (Public Review):

      Summary:

      In this MS, Muenker and colleagues, explore the intracellular mechanics of a range of animal adherent cells. The study is based on the use of an optical tweezer set up, which allows to apply oscillatory forces on endocytosed/phagocytosed glass beads with a large frequency range (from ~1 to 1000 Hz) , allowing to probe cytoplasm material properties at multiple time scales. By switching off the laser trap, the authors also record the positional fluctuations of beads, to extract passive rheological signatures. The combination of both methods allow to fit 6 parameters (from power law fits) that allow to characterize the viscous and elastic nature of the cytoplasm material as well as an effective active energy driven by cellular metabolism. Using these methodologies, the authors first establish/confirm, using HeLa cells, that the cytoplasm is more solid like at short frequencies, and more fluid like at higher frequencies, and that these material states depend on both microtubules and actin cytoskeleton. The manuscript then go on to explore how these parameters evolve in other 6 cell types including muscles, highly migratory and epithelial cells. These results show for instance that muscle cells are much stiffer, while migratory cells are more fluid like with an increased active energy. Finally using statistical methods and principal component analysis, the authors establish some mechanical fingerprints (activity, fluidity and resistance) that allow to distinguish cell's mechanical state and relate it to their particular functions.

      Strengths:

      Overall this is a very well-executed work, which provides a large body of rigorous numbers and data to understand the regulation of cytoplasm mechanics and its relation to cell state/function.

      Weaknesses:

      A limit of the paper is that the biological mechanisms by which intracellular mechanics is modulated (e.g. among cell types) remains unexplored and only briefly discussed. Yet this limit is greatly offset by the rigor of the approach.

    2. Reviewer #2 (Public Review):

      Summary:

      By analyzing cells' frequency-dependent viscoelastic properties and intracellular activity through microrheology, Münker et al simplify the complex active mechanical state into six key parameters that constitute the mechanical fingerprint. They apply this concept to cells treated with cytoskeleton-inhibiting drugs. Additionally, a comprehensive statistical analysis across various cell types shows how cells coordinate their mechanical properties within a defined phase-space marked by activity, mechanical resistance, and fluidity.

      Strengths:

      (1) The distribution of the six parameters: they have been well characterized based on established theories, and they can be used to understand cell-type-specific biomechanical differences. The examples of muscle cells and immune cells were profound and informative.<br /> (2) Efforts to perform dimension reduction of parameter space into activity (E), fluidity (C1) and resistance (A) are insightful and will be helpful for future characterization of cell mechanics.

      Weaknesses:

      (1) The most difficult part of the method is the part with actin polymerization inhibition with cytochalasin B. The data shows that viscoelastic parameters as well as active energy parameters are unaffected by cytochalasin B. It is reasonable to expect that elasticity will reduce and fluidity will increase upon application of such a drug. The stiffness-reducing effect was observed only when CB was used with nocodazole most likely because of phagocytosis of the bead, which is governed by microtubule. The use of other actin-depolymerizing drugs such as latrunculin A would be needed to test actin's role in mechanical fingerprints. If actin's role is only explained by accompanying microtubule inhibition, it is not a convenient system to directly test the mechano-adaptation process.<br /> (2) Depolymerization of MT with nocodazole did not reduce the solid-like property A. Adding discussion and comparison with other papers in the literature using nocodazole will be helpful in understanding why.<br /> (3) Overall, the usefulness of the concept of mechanical fingerprints and comparisons with other cell mechanics studies (from other groups) will make this manuscript stronger.

    3. Reviewer #3 (Public Review):

      Summary:

      Cells and tissues are viscoelastic materials. However, metabolic processes that underly survival, growth and migration render the cell as an active matter at non-equilibrium. These two facts contribute to the difficulty of probing mechanical properties especially with sub-cellular resolution. However, the concept that the mechanical phenotype can be indicative of normal physiology necessitates approaches of defining the cellular phenotype. Here, Muenker et al evokes a powerful argument for mapping intracellular mechanics using optical tweezer- active microrheology. They present a suite of parameters towards a definition of a mechanical fingerprint. This is a compelling idea. There are some concerns as detailed below

      Strengths:

      These are technically challenging experiments and the authors provide systematic approaches to probe a system at non-equilibrium.

      Weaknesses:

      The importance of the mechanical fingerprint is diluted due to some missing controls needed for biological relevance.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Kroll et al. conduct an in-depth behavioral analysis of F0 knockouts of 4 genes associated with late-onset Alzheimer's Disease (AD), together with 3 genes associated with early-onset AD. Kroll and colleagues developed a web application (ZOLTAR) to compare sleep-associated traits between genetic mutants with those obtained from a panel of small molecules to promote the identification of affected pathways and potential therapeutic interventions. The authors make a set of potentially important findings vis-à-vis the relationship between AD-associated genes and sleep. First, they find that loss-of-function in late-onset AD genes universally results in nighttime sleep loss, consistent with the well-supported hypothesis that sleep disruption contributes to Alzheimer's-related pathologies. psen-1, an early-onset associated AD gene, which the authors find is principally responsible for the generation of AB40 and AB42 in zebrafish, also shows a slight increase in activity at night and slight decreases in nighttime sleep. Conversely, psen-2 mutations increase daytime sleep, while appa/appb mutations have no impact on sleep. Finally, using ZOLTAR, the authors identify serotonin receptor activity as potentially disrupted in sorl1 mutants, while betamethasone is identified as a potential therapeutic to promote reversal of psen2 knockout-associated phenotypes.

      This is a highly innovative and thorough study, yet a handful of key questions remain. First, are nighttime sleep loss phenotypes observed in all knockouts for late-onset AD genes in the larval zebrafish a valid proxy for AD risk? For those mutants that cause nighttime sleep disturbances, do these phenotypes share a common underlying pathway? e.g. Do 5-HT reuptake inhibitors promote sleep across all 4 late-onset genes in addition to psen1? Can 5-HT reuptake inhibitors reverse other AD-related pathologies in zebrafish? Can compounds be identified that have a common behavioral fingerprint across all or multiple AD risk genes? Do these modify sleep phenotypes? Finally, the web-based platform presented could be expanded to facilitate comparison of other behavioral phenotypes, including stimulus-evoked behaviors. Finally, the authors propose but do not test the hypothesis that sorl1 might regulate localization/surface expression of 5-HT2 receptors. This could provide exciting / more convincing mechanistic support for the assertion that serotonin signaling is disrupted upon loss of AD-associated genes. Despite these important considerations, this study provides a valuable platform for high-throughput analysis of sleep phenotypes and correlation with small-molecule-induced sleep phenotypes.

      Strengths:

      - Provides a useful platform for comparison of sleep phenotypes across genotypes/drug manipulations.

      - Presents convincing evidence that nighttime sleep is disrupted in mutants for multiple late-onset AD-related genes.

      - Provides potential mechanistic insights for how AD-related genes might impact sleep and identifies a few drugs that modify their identified phenotypes

      Weaknesses:

      - Exploration of potential mechanisms for serotonin disruption in sorl1 mutants is limited.

      - The pipeline developed can only be used to examine sleep-related / spontaneous movement phenotypes and stimulus-evoked behaviors are not examined.

      - Comparisons between mutants/exploration of commonly affected pathways are limited.

    2. Reviewer #2 (Public Review):

      Summary:

      This work delineates the larval zebrafish behavioral phenotypes caused by the F0 knockout of several important genes that increase the risk for Alzheimer's disease. Using behavioral pharmacology, comparing the behavioral fingerprint of previously assayed molecules to the newly generated knockout data, compounds were discovered that impacted larval movement in ways that suggest interaction with or recovery of disrupted mechanisms.

      Strengths:

      This is a well-written manuscript that uses newly developed analysis methods to present the findings in a clear, high-quality way. The addition of an extensive behavioral analysis pipeline is of value to the field of zebrafish neuroscience and will be particularly helpful for researchers who prefer the R programming language. Even the behavioral profiling of these AD risk genes, regardless of the pharmacology aspect, is an important contribution. The recovery of most behavioral parameters in the psen2 knockout with betamethasone, predicted by comparing fingerprints, is an exciting demonstration of the approach. The hypotheses generated by this work are important stepping stones to future studies uncovering the molecular basis of the proposed gene-drug interactions and discovering novel therapeutics to treat AD or co-occurring conditions such as sleep disturbance.

      Weaknesses:

      - The overarching concept of the work is that comparing behavioral fingerprints can align genes and molecules with similarly disrupted molecular pathways. While the recovery of the psen2 phenotypes by one molecule with the opposite phenotype is interesting, as are previous studies that show similar behaviorally-based recoveries, the underlying assumption that normalizing the larval movement normalizes the mechanism still lacks substantial support. There are many ways that a reduction in movement bouts could be returned to baseline that are unrelated to the root cause of the genetically driven phenotype. An ideal experiment would be to thoroughly characterize a mutant, such as by identifying a missing population of neurons, and use this approach to find a small molecule that rescues both behavior and the cellular phenotype. If the connection to serotonin in the sorl1 was more complete, for example, the overarching idea would be more compelling.

      - The behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram is based on a small number of animals. The KO Euclidean distance measure is also more spread out than for the other datasets, and it looks like only five or so fish are driving the group difference. It also appears as though the numbers were also from two injection series. While there is nothing obviously wrong with the data, I would feel more comfortable if such a strong statement of a result from a relatively subtle phenotype were backed up by a higher N or a stable line. It is not impossible that the observed difference is an experimental fluke. If something obvious had emerged through the HCR, that would have also supported the conclusions. As it stands, if no more experiments are done to bolster the claim, the confidence in the strength of the link to serotonin should be reduced (possibly putting the entire section in the supplement and modifying the discussion). The discussion section about serotonin and AD is interesting, but I think that it is excessive without additional evidence.

      - The authors suggest two hypotheses for the behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram. While the first is tested, and found to not be supported, the second is not tested at all ("Ruling out the first hypothesis, sorl1 knockouts may react excessively to a given spike in serotonin." and "Second, sorl1 knockouts may be overly sensitive to serotonin itself because post-synaptic neurons have higher levels of serotonin receptors."). Assuming that the finding is robust, there are probably other reasons why the mutants could have a different sensitivity to this molecule. However, if this particular one is going to be mentioned, it is surprising that it was not tested alongside the first hypothesis. This work could proceed without a complete explanation, but additional discussion of the possibilities would be helpful or why the second hypothesis was not tested.

      - The authors claim that "all four genes produced a fairly consistent phenotype at night". While it is interesting that this result arose in the different lines, the second clutch for some genes did not replicate as well as others. I think the findings are compelling, regardless, but the sometimes missing replicability should be discussed. I wonder if the F0 strategy adds noise to the results and if clean null lines would yield stronger phenotypes. Please discuss this possibility, or others, in regard to the variability in some phenotypes.

      - In this work, the knockout of appa/appb is included. While APP is a well-known risk gene, there is no clear justification for making a knockout model. It is well known that the upregulation of app is the driver of Alzheimer's, not downregulation. The authors even indicate an expectation that it could be similar to the other knockouts ("Moreover, the behavioural phenotypes of appa/appb and psen1 knockout larvae had little overlap while they presumably both resulted in the loss of Aβ." and "Comparing with early-onset genes, psen1 knockouts had similar night-time phenotypes, but loss of psen2 or appa/appb had no effect on night-time sleep."). There is no reason to expect similarity between appa/appb and psen1/2. I understand that the app knockouts could unveil interesting early neurodevelopmental roles, but the manuscript needs to be clarified that any findings could be the opposite of expectation in AD.

    3. Reviewer #3 (Public Review):

      In this manuscript by Kroll and colleagues, the authors describe combining behavioral pharmacology with sleep profiling to predict disease and potential treatment pathways at play in AD. AD is used here as a case study, but the approaches detailed can be used for other genetic screens related to normal or pathological states for which sleep/arousal is relevant. The data are for the most part convincing, although generally the phenotypes are relatively small and there are no major new mechanistic insights. Nonetheless, the approaches are certainly of broad interest and the data are comprehensive and detailed.

      A notable weakness is the introduction, which overly generalizes numerous concepts and fails to provide the necessary background to set the stage for the data.

      Major points

      (1) The authors should spend more time explaining what they see as the meaning of the large number of behavioral parameters assayed and specifically what they tell readers about the biology of the animal. Many are hard to understand--e.g. a "slope" parameter.

      (2) Because in the end the authors did not screen that many lines, it would increase confidence in the phenotypes to provide more validation of KO specificity. Some suggestions include:<br /> a. The authors cite a psen1 and psen2 germline mutant lines. Can these be tested in the FramebyFrame R analysis? Do they phenocopy F0 KO larvae?<br /> b. psen2KO is one of the larger centerpieces of the paper. The authors should present more compelling evidence that animals are truly functionally null. Without this, how do we interpret their phenotypes?<br /> c. Related to the above, for cd2AP and sorl1 KO, some of the effect sizes seem to be driven by one clutch and not the other. In other words, great clutch-to-clutch variability. Should the authors increase the number of clutches assayed?

      (3) The authors make the point that most of the AD risk genes are expressed in fish during development. Is there public data to comment on whether the genes of interest are expressed in mature/old fish as well? Just because the genes are expressed early does not at all mean that early-life dysfunction is related to future AD (though this could be the case, of course). Genes with exclusive developmental expression would be strong candidates for such an early-life role, however. I presume the case is made because sleep studies are mainly done in juvenile fish, but I think it is really a pretty minor point and such a strong claim does not even need to be made.

      (4) A common quandary with defining sleep behaviorally is how to rectify sleep and activity changes that influence one another. With psen2 KOs, the authors describe reduced activity and increased sleep during the day. But how do we know if the reduced activity drives increased behavioral quiescence that is incorrectly defined as sleep? In instances where sleep is increased but activity during periods during wake are normal or elevated, this is not an issue. But here, the animals might very well be unhealthy, and less active, so naturally they stop moving more for prolonged periods, but the main conclusion is not sleep per se. This is an area where more experiments should be added if the authors do not wish to change/temper the conclusions they draw. Are psen2 KOs responsive to startling stimuli like controls when awake? Do they respond normally when quiescent? Great care must be taken in all models using inactivity as a proxy for sleep, and it can harm the field when there is no acknowledgment that overall health/activity changes could be a confound. Particularly worrisome is the betamethasone data in Figure 6, where activity and sleep are once again coordinately modified by the drug.

      (5) The conclusions for the serotonin section are overstated. Behavioural pharmacology purports to predict a signaling pathway disrupted with sorl1 KO. But is it not just possible that the drug acts in parallel to the true disrupted pathway in these fish? There is no direct evidence for serotonin dysfunction - that conclusion is based on response to the drug. Moreover, it is just 1 drug - is the same phenotype present with another SSRI? Likewise, language should be toned down in the discussion, as this hypothesis is not "confirmed" by the results (consider "supported"). The lack of measured serotonin differences further raises concern that this is not the true pathway. This is another major point that deserves further experimental evidence, because without it, the entire approach (behavioral pharm screen) seems more shaky as a way to identify mechanisms. There are any number of testable hypotheses to pursue such as a) Using transient transgenesis to visualize 5HT neuron morphology (is development perturbed: cell number, neurite morphology, synapse formation); b) Using transgenic Ca reporters to assay 5HT neuron activity.

    1. Reviewer #1 (Public Review):

      In this study, Hoops et al. showed that Netrin-1 and UNC5c can guide dopaminergic innervation from nucleus accumbens to cortex during adolescence in rodent models. They found that these dopamine axons project to the prefrontal cortex in a Netrin-1 dependent manner and knocking down Netrin-1 disrupted motor and learning behaviors in mice. Furthermore, the authors used hamsters, a seasonal model that is affected by the length of daylight, to demonstrate that the guidance of dopamine axons is mediated by the environmental factor such as daytime length and in sex dependent manner.

      Regarding the cell type specificity of Netrin-1 expression, the authors began by stating "this question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present." This statement contradicts the exact issue regarding the specificity issue I raised. They then went on to show the RNAscope data for Netriin-1 in Figure 2, which showed Netrin-1 mRNA was actually expressed quite ubiquitously in anterior cingulate cortex, dorsopeduncular cortex, infralimbic cortex, prelimbic cortex, etc. In addition, contrary to the authors' statement that Netrin-1 is a "secreted protein", the confocal images in Figure 1 in the rebuttal letter actually show Netrin-1 present in "granule-like" organelles inside the cytoplasm of neurons. Finally, the authors presented Figure 7 to indicate the location where virus expressing Netrin-1 shRNA might be located. Again, the brain region targeted was quite focal and most likely did not cover all the Netrin-1+ brain regions in Figure 2. Collectively, these results raised more questions regarding the specificity of Netrin-1 expression in brain regions that are behaviorally relevant to this study.

      With respect to the effectiveness of Netrin-1 knockdown in the animals in this study, the authors cited data in HEK293 cells (Figure 5), which did not include any statistics, and previously published in vivo data in a separate, independent study (Figure 6). They do not provide any data regarding the effectiveness of Netrin-1 knockdown in THIS study.

      Similar concerns regarding UNC5C knockdown (points #6, #7, and #8) were not adequately addressed.

      In brief, while this study provides a potential role of Netrin-1-UNC5C in target innervation of dopaminergic neurons and its behavioral output in risk-taking, the data lack sufficient evidence to firmly establish the cause-effect relationship.

    2. Reviewer #2 (Public Review):

      In this manuscript, Hoops et al., using two different model systems, identified key developmental changes in Netrin-1 and UNC5C signaling that correspond to behavioral changes and are sensitive to environmental factors that affect the timing of development. They found that Netrin-1 expression is highest in regions of the striatum and cortex where TH+ axons are travelling, and that knocking down Netrin-1 reduces TH+ varicosities in mPFC and reduces impulsive behaviors in a Go-No-Go test. Further, they show that the onset of Unc5 expression is sexually dimorphic in mice, and that in Siberian hamsters, environmental effects on development are also sexually dimorophic. This study addresses an important question using approaches that link molecular, circuit and behavioral changes. Understanding developmental trajectories of adolescence, and how they can be impacted by environmental factors, is an understudied area of neuroscience that is highly relevant to understanding the onset of mental health disorders. I appreciated the inclusion of replication cohorts within the study.

    3. Reviewer #3 (Public Review):

      This study from the Flores group aims at understanding neuronal circuit changes during adolescence which is an ill-defined, transitional period involving dramatic changes in behavior and anatomy. They focus on DA innervation of the prefrontal cortex, and their interaction with the guidance cue Netrin-1. They propose DA axons in the PFC increase in the postnatal period, and their density is reduced in a Netrin 1 knockdown, suggesting that Netrin abets the development of this mesocortical pathway. In such mice impulsivity gauged by a go-no-go task is reduced. They then provide some evidence that Unc5c is developmentally regulated in DA axons. Finally they use an interesting hamster model, to study the effect of light hours on mesocortical innervation, and make some interesting observations about the timing of innervation and Unc5c expression, and the fact that females housed in winter day length conditions display an accelerated innervation of the prefrontal cortex.

      Comments on the revision. Several points were addressed; some remain to be addressed.

      4. It's not clear to me that TH doesn't stain noradrenergic axons in the PFC. See Islam and Blaess, 2021, and references therein.

      6. The Netrin knockdown data provided is from a previous study/samples.

      8. While the authors make the argument that the behavior is linked to DA, they still haven't formally tested it, in my opinion.

      13. Fig 3, UNc 5c levels are not yet quantified. Furthermore, I agree with the previous reviewer that Unc5C knockdown would corroborate key aspects of the model.

      New - Developmental trajectory of prefrontal TH-positive axons from early adolescence to adulthood is similar in male and female rats, (Willing Juraska et al., 2017). This needs discussion.

      Editors note:<br /> should you choose to revise your manuscript, please include degrees of freedom in your statistical reporting.

    1. Reviewer #1 (Public Review):

      Summary:

      This study trained a CNN for visual word classification and supported a model that can explain key functional effects of the evoked MEG response during visual word recognition, providing an explicit computational account from detection and segmentation of letter shapes to final word-form identification.

      Strengths:

      This paper not only bridges an important gap in modeling visual word recognition, by establishing a direct link between computational processes and key findings in experimental neuroimaging studies, but also provides some conditions to enhance biological realism.

      Weaknesses:

      The interpretation of CNN results, especially the number of layers in the final model and its relationship with the processing of visual words in the human brain, needs to be further strengthened.

    2. Reviewer #2 (Public Review):

      van Vliet and colleagues present the results of a study correlating internal states of a convolutional neural network trained on visual word stimuli with evoked MEG potentials during reading.

      In this study, a standard deep learning image recognition model (VGG-11) trained on a large natural image set (ImageNet) that begins illiterate but is then further trained on visual word stimuli, is used on a set of predefined stimulus images to extract strings of characters from "noisy" words, pseudowords and real words. This methodology is used in hopes of creating a model that learns to apply the same nonlinear transforms that could be happening in different regions of the brain - which would be validated by studying the correlations between the weights of this model and neural responses. Specifically, the aim is that the model learns some vector embedding space, as quantified by the spread of activations across a layer's units (L2 Norm after ReLu Activation Function), for the different kinds of stimuli, that creates a parameterized decision boundary that is similar to amplitude changes at different times for a MEG signal. More importantly, the way that the stimuli are ordered or ranked in that space should be separable to the degree we see separation in neural activity. This study shows that the activation corresponding to five different broad classes of stimuli statistically correlates with three specific components in the ERP. However, I believe there are fundamental theoretical issues that limit the implications of the results of this study.

      As has been shown over many decades, many potential computational algorithms, with varied model architectures, can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that the late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      Another example of the mismatch between this model and the visual cortex is the lack of feedback connections in the model. Within the visual cortex, there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical-level processes feeds back to letter-level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for the reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in the visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point, it is unclear what novel contributions can be gleaned from correlating low-dimensional model weights from these computational models with human neural data.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors investigate the extent to which the responses of different layers of a vision model (VGG-11) can be linked to the cascade of responses (namely, type-I, type-II, and N400) in the human brain when reading words. To achieve maximal consistency, they add noisy-activations to VGG and finetune it on a character recognition task. In this setup, they observe various similarities between the behavior of VGG and the brain when when presented with various transformations of the words (added noise, font modification, etc).

      Strengths:

      - The paper is well-written and well-presented.

      - The topic studied is interesting.

      - The fact that the response of the CNN on unseen experimental contrasts such as adding noise correlated with previous results on the brain is compelling.

      Weaknesses:

      - The paper is rather qualitative in nature. In particular, the authors show that some resemblance exists between the behavior of some layers and some parts of the brain, but it is hard to quantitively understand how strong the resemblances are in each layer, and the exact impact of experimental settings such as the frequency balancing (which seems to only have a very moderate effect according to Figure 5).

      - The experiments only consider a rather outdated vision model (VGG).

    1. Reviewer #1 (Public Review):

      Summary:

      The authors are looking to assess fragmentomics effects using the Delfi method in exonic regions (Exome sequencing). They argue that this is to make the test more cost effective by extracting this information from exome sequencing.

      Strengths:

      Well written and explained. Different ML approaches tried.

      Weaknesses:

      To assess fragmentomics in WES, it doesn't seem valid to downsample WGS. WES is generated by a different library preparations so to answer this question, it would be necessary to try this in WES samples. The coverage of WES is generally done much higher because this is necessary to assess mutation calls therefore the approach of combining seems flawed because these were not generated by the same experiment.

      The authors do not really show why they included longer fragment sizes in their model that had previously been excluded from the original Delfi publication

      As a proof of concept this is a good idea but really needs a bit of a rethink on the utility and impact.

    2. Reviewer #2 (Public Review):

      Apiwat Sangphukieo et al. have developed machine learning models, exomeDELFI and xDELFI trained on 4 public datasets comprising 721 cfDNA samples. They demonstrate the exomeDELFI model utilizing DNA from whole exome, exhibits higher AUC values compared to the original DELFI model at equal whole-genome sequencing depth for distinguishing patients with and without cancer. Additionally, the xDELFI model, integrating coverage of overall fragments, fragments within 3 fragment size thresholds (short, medium, long) and fragment size distribution (FSD), resulting in 2,952 features, shows improved enhanced prediction performance. Furthermore, the authors have devised a multiclass machine learning model capable of classifying the tissue of origin for eight cancer types, using distinct tissue-specific fragmentomic patterns in cfDNA from whole-exome regions.

      However, the conclusions drawn in this paper rely heavily on cross-validation of machine learning models constructed from hundreds of samples but employing thousands of features, posing a risk of overfitting. Thus, more rigorous validation is warranted.

      (1) The claim in line 18 is misleading. The authors assert that the high cost of whole-genome sequencing (WGS) limited the application of cfDNA in clinic, and therefore imply their model are more cost-efficient by using fewer DNA molecules only originated from exosmic regions. However, WGS is essential in their analysis. Instead of using whole-exome sequencing data, they extracted DNA molecules from WGS data which fall within gene exome regions for feature extraction and downstream analysis, resulting in the same cost for DNA sequencing. In this regard, xDELFI, which selectively uses DNA from exomic regions, demonstrates inferior performance compared to the DELFI model using all WGS data (AUC: 0.896 vs. 0.920) at the same cost using same WGS data.

      (2) The utilization of WGS data from 4 distinct datasets (Jiang et al., 2015, Snyder et al., 2016, Cristiano et al., 2019 and Sun et al., 2019) raises concerns about potential batch effects arising from different DNA library preparation kits (e.g., Kapa Library Preparation Kit (Kapa Biosystems); ThruPLEX DNA-seq kits (Rubicon Genomics); NEBNext DNA Library Prep Kit for Illumina (New England Biolabs); and KAPA HTP Library Preparation Kit (Kapa Biosystems), receptivity). Each kit may induce varying pre-analytical effects on cfDNA fragmentomic features, as evidenced by differing size distribution profiles (e.g., in Fig.4 in Jiang et al., 2015, the cfDNA size distribution profiles show the major peak at ~166 bp with frequency of ~3%. However, in Fig.1B in Snyder et al., 2016, the major peak at ~166 bp is ~2%). To enhance the robustness of their models, the authors should develop sophisticated normalization pipeline to mitigate batch effects and split training and testing sets without mixing any dataset. The author should demonstrate their model performs equally well between training and testing sets and across different datasets.

      (3) The uneven distribution of cancer patients across different datasets introduces another layer of complexity, potentially confounding the analysis of tissue of origin. In line 300, the authors find that liver, colorectal, and lung cancers had the highest prediction accuracy in their models. However, the cancer patient distribution is not even across different datasets (e.g., liver cancer patients are all from Jiang et al., 2015; colorectal cancer patients are mostly from Sun et al., 2019, and Cristiano et al., 2019; and lung cancer patients are mainly from Cristiano et al., 2019. The potential pre-analytical differences in each dataset, coupled with overwhelming cancer types in each database, underscores the importance of addressing these discrepancies to ensure the validity of tissue of origin predictions.

      (4) In Line 145, the authors mention selection of features used in the xDELFI model but did not specify the number of remaining features in each fragmentomic category post-selection. Providing this information would enhance the transparency and reproducibility of their methodology.

    1. Reviewer #1 (Public Review):

      Summary:

      The study used root tips from semi-hydroponic tea seedlings. The strategy followed sequential steps to draw partial conclusions.

      Initially, protoplasts obtained from root tips were processed for scRNA-seq using the 10x Genomics platform. The sequencing data underwent pre-filtering at both the cell and gene levels, leading to 10,435 cells. These cells were then classified into eight clusters using t-SNE algorithms. The present study scrutinised cell typification through protein sequence similarity analysis of homologs of cell type marker genes. The analysis was conducted to ensure accuracy using validated genes from previous scRNA-seq studies and the model plant Arabidopsis thaliana. The cluster cell annotation was confirmed using in situ RT-PCR analyses. This methodology provided a comprehensive insight into the cellular differentiation of the sample under study. The identified clusters, spanning 1 to 8, have been accurately classified as xylem, epidermal, stem cell niche, cortex/endodermal, root cap, cambium, phloem, and pericycle cells.

      Then, the authors performed a pseudo-time analysis to validate the cell cluster annotation by examining the differentiation pathways of the root cells. Lastly, they created a differentiation heatmap from the xylem and epidermal cells and identified the biological functions associated with the highly expressed genes.

      Upon thoroughly analysing the scRNA-seq data, the researchers delved into the cell heterogeneity of nitrate and ammonium uptake, transport, and nitrogen assimilation into amino acids. The scRNA-seq data was validated by in situ RT-PCR. It allows the localisation of glutamine and alanine biosynthetic enzymes along the cell clusters and confirms that both constituent the primary amino acid metabolism in the root. Such investigation was deemed necessary due to the paramount importance of these processes in theanine biosynthesis since this molecule is synthesised from glutamine and alanine-derived ethylamine.

      Afterwards, the authors analysed the cell-specific expression patterns of the theanine biosynthesis genes, combining the same molecular tools. They concluded that theanine biosynthesis is more enriched in cluster 8 "pericycle cells" than glutamine biosynthesis (Lines 271-272). However, the statement made in Line 250 states that the highest expression levels of genes responsible for glutamine biosynthesis were observed in Clusters 1, 3, 4, 6, and 8, leading to an unclear conclusion.

      The regulation of theanine biosynthesis by the MYB transcription factor family is well-established. In particular, CsMYB6, a transcription factor expressed specifically in roots, has been found to promote theanine biosynthesis by binding to the promoter of the TSI gene responsible for theanine synthesis. However, their findings indicate that CsMYB6 expression is present in Cluster 3 (SCN), Cluster 6 (cambium cells), and Cluster 1 (xylem cells) but not in Cluster 8 (pericycle cells), which is known for its high expression of CsTSI. Similarly, their scRNA-seq data indicated that CsMYB40 and CsHHO3, which activate and repress CsAlaDC expression, respectively, did not show high expression in Cluster 1 (the cell cluster with high CsAlaDC expression). Based on these findings, the authors hypothesised that transcription factors and target genes are not necessarily always highly expressed in the same cells. Nonetheless, additional evidence is essential to substantiate this presumption.

      Lastly, the authors have discovered a novel transcription factor belonging to the Lateral Organ Boundaries Domain (LBD) family known as CsLBD37 that can co-regulate the synthesis of theanine and the development of lateral roots. The authors observed that CsLBD37 is located within the nucleus and can repress the CsAlaDC promoter's activity. To investigate this mechanism further, the authors conducted experiments to determine whether CsLBD37 can inhibit CsAlaDC expression in vivo. They achieved this by creating transiently CsLBD37-silenced or over-expression tea seedlings through antisense oligonucleotide interference and generation of transgenic hairy roots. Based on their findings, the authors hypothesise that CsLBD37 regulates CsAlaDC expression to modulate the synthesis of ethylamine and theanine.

      Additionally, the available literature suggests that the transcription factors belonging to the Lateral Organ Boundaries Domain (LBD) family play a crucial role in regulating the development of lateral roots and secondary root growth. Considering this, they confirmed that pericycle cells exhibit a higher expression of CsLBD37. A recent experiment revealed that overexpression of CsLBD37 in transgenic Arabidopsis thaliana plants led to fewer lateral roots than the wild type. From this observation, the researchers concluded that CsLBD37 regulates lateral root development in tea plants. I respectfully submit that the current conclusion may require additional research before it can be considered definitive.

      Further efforts should be made to investigate the signalling mechanisms that govern CsLBD37 expression to arrive at a more comprehensive understanding of this process. In the context of Arabidopsis lateral root founder cells, the establishment of asymmetry is regulated by LBD16/ASL18 and other related LBD/ASL proteins, as well as the AUXIN RESPONSE FACTORs (ARF7 and ARF19). This is achieved by activating plant-specific transcriptional regulators such as LBD16/ASL18 (Go et al., 2012, https://doi.org/10.1242/dev.071928). On the other hand, other downstream homologues of LBD genes regulated by cytokinin signalling play a role in secondary root growth (Ye et al., 2021, https://doi.org/10.1016/j.cub.2021.05.036). It is imperative to shed light on the hormonal regulation of CsLBD37 expression in order to gain a comprehensive understanding of its involvement in the morphogenic process.

      Strength:

      The manuscript showcases significant dedication and hard work, resulting in valuable insights that serve as a fundamental basis for generating knowledge. The authors skillfully integrated various tools available for this type of study and meticulously presented and illustrated every step involved in the survey. The overall quality of the work is exceptional, and it would be a valuable addition to any academic or professional setting.

      Weaknesses:

      In its current form, the article presents certain weaknesses that need to be addressed to improve its overall quality. Specifically, the authors' conclusions appear to have been drawn in haste without sufficient experimental data and a comprehensive discussion of the entire plant. It is strongly advised that the authors devote additional effort to resolving the abovementioned issues to bolster the article's credibility and dependability. This will ensure that the article is of the highest quality, providing readers with reliable and trustworthy information.

    2. Reviewer #2 (Public Review):

      Summary:

      In their manuscript, Lin et al. present a comprehensive single-cell analysis of tea plant roots. They measured the transcriptomes of 10,435 cells from tea plant root tips, leading to the identification and annotation of 8 distinct cell clusters using marker genes. Through this dataset, they delved into the cell-type-specific expression profiles of genes crucial for the biosynthesis, transport, and storage of theanine, revealing potential multicellular compartmentalization in theanine biosynthesis pathways. Furthermore, their findings highlight CsLBD37 as a novel transcription factor with dual regulatory roles in both theanine biosynthesis and lateral root development.

      Strengths:

      This manuscript provides the first single-cell dataset analysis of roots of the tea plants. It also enables detailed analysis of the specific expression patterns of the gene involved in theanine biosynthesis. Some of these gene expression patterns in roots were further validated through in-situ RT-PCR. Additionally, a novel TF gene CsLBD37's role in regulating theanine biosynthesis was identified through their analysis.

      Weaknesses:

      Several issues need to be addressed:

      (1) The annotation of single-cell clusters (1-8) in Figure 2 could benefit from further improvement. Currently, the authors utilize several key genes, such as CsAAP1, CsLHW, CsWAT1, CsIRX9, CsWOX5, CsGL3, and CsSCR, to annotate cell types. However, it is notable that some of these genes are expressed in only a limited number of cells within their respective clusters, such as CsAAP1, CsLHW, CsGL3, CsIRX9, and CsWOX5. It would be advisable to utilize other marker genes expressed in a higher percentage of cells or employ a combination of multiple marker genes for more accurate annotation.

      (2) Figure 3 could enhance clarity by displaying the trajectory of cell differentiation atop the UMAP, similar to the examples demonstrated by Monocle 3.

      (3) The identification of CsLBD37 primarily relies on bulk RNA-seq data. The manuscript could benefit from elaborating on the role of the single-cell dataset in this context.

      (4) The manuscript's conclusions predominantly rely on the expression patterns of key genes. This reliance might stem from the inherent challenges of tea research, which often faces limitations in exploring molecular mechanisms due to the lack of suitable genetic and molecular methods. The authors may consider discussing this point further in the discussion section.

    3. Reviewer #3 (Public Review):

      Summary:

      Lin et al., performed a scRNA-seq-based study of tea roots, as an example, to elucidate the biosynthesis and regulatory processes for theanine, a root-specific secondary metabolite, and established the first map of tea roots comprised of 8 cell clusters. Their findings contribute to deepening our understanding of the regulation of the synthesis of important flavor substances in tea plant roots. They have presented some innovative ideas.

      It is notable that the authors - based on single-cell analysis results - proposed that TFs and target genes are not necessarily always highly expressed in the same cells. Many of the important TFs they previously identified, along with their target genes (CsTSI or CsAlaDC), were not found in the same cell cluster. Therefore, they proposed a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. Since it is not known whether the theanine content is absolutely high in the cell cluster 1 containing a high CsAlaDC expression level (due to the lack of cell cluster theanine content determination, which may be a current technical challenge), it is difficult to determine whether this non-coexpressing cell cluster 1 is a precise regulatory mechanism for inhibiting theanine content in plants. In fact, there are actually a small number of cells where TFs and CsAlaDC are simultaneously highly expressed, but the quantity is insufficient to form a separate cluster. However, these few cells may be sufficient to meet the current demands for theanine synthesis. This possibility may better align with some previous experiments and validation results in this study. Moreover, I feel that under normal conditions, plants may not mobilize a large number of cells to synthesize a particular substance. Perhaps, cell cluster 1 is actually a type of cell that inhibits the synthesis of theanine, aiming to prevent excessive theanine production? I do not oppose the model proposed by the author, but I feel there is a possibility as I mentioned. If it seems reasonable, the author may consider adding it to an appropriate position in the discussion.

    1. Reviewer #1 (Public Review):

      In this study, Sarver and colleagues carried out an exhaustive analysis of the functioning of various components (Complex I/II/IV) of the mitochondrial electron transport chain (ETC) using a real-time cell metabolic analysis technique (commonly referred as Seahorse oxygen consumption rate (OCR) assay). The authors aimed to generate an atlas of ETC function in about 3 dozen tissue types isolated from all major mammalian organ systems. They used a recently published improvised method by which ETC function can be quantified in freshly frozen tissues. This method enabled them to collect data from almost all organ systems from the same mouse and use many biological replicates (10 mice/experiment) required for an unbiased and statistically robust analysis. Moreover, they studied the influence of sex (male and female) and aging (young adult and old age) on ETC function in these organ systems. The main findings of this study are (1) cells in the heart and kidneys have very active ETC complexes compared to other organ systems, (2) the sex of the mice has little influence on the ETC function, and (3) aging undermined the mitochondrial function in most tissue, but surprisingly in some tissue aging promoted the activity of ETC complexes (e.g., Quadriceps, plantaris muscle, and Diaphragm). Although this study provides a comprehensive outlook on the ETC function in various tissues, the main caveat is that it's too technical and descriptive. The authors didn't invest much effort in putting their findings in the context of the biological function of the tissue analyzed, i.e., some tissues might be more glycolytic than others and have low ETC activity. Also, it is unclear what slight changes in the activity of one or the other ETC complex mean in terms of mitochondrial ATP production. Likely, these small changes reported do not affect the mitochondrial respiration. With such a detailed dataset, the study falls short of deriving more functionally relevant conclusions about the heterogeneity of mitochondrial function in various tissues. In the current format, the readers get lost in the large amount of data presented in a technical manner. Also, it is highly recommended that all the raw data and the values be made available as an Excel sheet (or other user-friendly formats) as a resource to the community.

      Major concerns

      (1) In this study, the authors used the method developed by Acin-Perez and colleagues (EMBO J, 2020) to analyze ETC complex activities in mitochondria derived from the snap-frozen tissue samples. However, the preservation of cellular/mitochondrial integrity in different types of tissues after being snap-frozen was not validated. Additionally, the conservation of mitochondrial respiration in snap-frozen tissues might differ, especially in those derived from old mice. For example, quadriceps (young male/female), plantaris (young male/female), intestinal segments (duodenum), and pancreas preparations show almost no activity (nearly flat OCR in Seahorse assays). For such a comprehensive study, the author must at least validate those tissues where the OCR plots looked suboptimal with the mitochondrial preparations derived from the fresh tissue. Since aging has been identified as the most important effector in this study, it is essential to validate how aging affects respiration in various fresh frozen tissues. Such analysis will ensure that the results presented are not due to the differential preservation of the mitochondrial respiration in the frozen tissue. In addition, such validations will further strengthen the conclusions and promote the broad usability of this "new" method.

      (2) In this study, the authors sampled the maximal activity of ETC complex I, II, and IV, but throughout the manuscript, they discussed the data in the context of mitochondrial function. However, it is unclear how the changes in CI, CII, and CIV activity affect overall mitochondrial function (if at all) and how small changes seen in the maximal activity of one or more complexes affect the efficiency and efficacy of ATP production (OxPhos). The authors report huge variability between the activity of different complexes - in some tissues all three complexes (CI, CII, and CIV) and often in others, just one complex was affected. For example, as presented in Figure 4, there is no difference in CI activity in the hippocampus and cerebellum, but there is a slight change in CII and CIV activity. In contrast, in heart atria, there is a change in the activity of CI but not in CII and CIV. However, the authors still suggest that there is a significant difference in mitochondrial activity (e.g., "Old males showed a striking increase in mitochondrial activity via CI in the heart atria....reduced mitochondrial respiration in the brain cortex..." - Lines 5-7, Page 9). Until and unless a clear justification is provided, the authors should not make these broad claims on mitochondrial respiration based on small changes in the activity of one or more complexes (CI/CII/CIV). With such a data-heavy and descriptive study, it is confusing to track what is relevant and what is not for the functioning of mitochondria.

      (3) What do differences in the ETC complex CI, CII, and CIV activity in the same tissue mean? What role does the differential activity of these complexes (CI, CII, and CIV) play in mitochondrial function? What do changes in Oxphos mean for different tissues? Does that mean the tissue (cells involved) shift more towards glycolysis to derive their energy? In the best world, a few experiments related to the glycolytic state of the cells would have been ideal to solidify their finding further. The authors could have easily used ECAR measurements for some tissues to support their key conclusions.

      (4) The authors further analyzed parameters that significantly changed across their study (Figure 7, 98 data points analyzed). The main caveat of such analysis is that some tissue types would be represented three or even more times (due to changes in the activity of all three complexes - CI, CII, and CIV, and across different ages and sexes), and some just once. Such a method of analysis will skew the interpretation towards a few over-represented organ/tissue systems. Perhaps the authors should separately analyze tissue where all three complexes are affected from those with just one affected complex.

      (5) The current protocol does not provide cell-type-specific resolution and will be unable to identify the cellular source of mitochondrial respiration. This becomes important, especially for those organ systems with tremendous cellular heterogeneity, such as the brain. The authors should discuss whether the observed changes result from an altered mitochondria respiratory capacity or if changes in proportions of cell types in the different conditions studied (young vs. aged) might also contribute to differential mitochondrial respiration.

      (6) Another critical concern of this study is that the same datasets were repeatedly analyzed and reanalyzed throughout the study with almost the same conclusion - namely, aging affects mitochondrial function, and sex-specific differences are limited to very few organs. Although this study has considerable potential, the authors missed the chance to add new insights into the distinct characteristics of mitochondrial activity in various tissue and organ systems. The author should invest significant efforts in putting their data in the context of mitochondrial function.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors utilize a new technique to measure mitochondrial respiration from frozen tissue extracts, which goes around the historical problem of purifying mitochondria prior to analysis, a process that requires a fair amount of time and cannot be easily scaled up.

      Strengths:

      A comprehensive analysis of mitochondrial respiration across tissues, sexes, and two different ages provides foundational knowledge needed in the field.

      Weaknesses:

      While many of the findings are mostly descriptive, this paper provides a large amount of data for the community and can be used as a reference for further studies. As the authors suggest, this is a new atlas of mitochondrial function in mouse. The inclusion of a middle aged time point and a slightly older young point (3-6 months) would be beneficial to the study.

    3. Reviewer #3 (Public Review):

      The aim of the study was to map, a) whether different tissues exhibit different metabolic profiles (this is known already), what differences are found between female and male mice and how the profiles changes with age. In particular, the study recorded the activity of respirasomes, i.e. the concerted activity of mitochondrial respiratory complex chains consisting of CI+CIII2+CIV, CII+CIII2+CIV or CIV alone.

      The strength is certainly the atlas of oxidative metabolism in the whole mouse body, the inclusion of the two different sexes and the comparison between young and old mice. The measurement was performed on frozen tissue, which is possible as already shown (Acin-Perez et al, EMBO J, 2020).

      Weakness:

      The assay reveals the maximum capacity of enzyme activity, which is an artificial situation and may differ from in vivo respiration, as the authors themselves discuss. The material used was a very crude preparation of cells containing mitochondria and other cytosolic compounds and organelles. Thus, the conditions are not well defined and the respiratory chain activity was certainly uncoupled from ATP synthesis. Preparation of more pure mitochondria and testing for coupling would allow evaluation of additional parameters: P/O ratios, feedback mechanism, basal respiration, and ATP-coupled respiration, which reflect in vivo conditions much better. The discussion is rather descriptive and cautious and could lead to some speculations about what could cause the differences in respiration and also what consequences these could have, or what certain changes imply.

      Nevertheless, this study is an important step towards this kind of analysis.

    1. Reviewer #1 (Public Review):

      Summary

      Type 1 diabetes mellitus (T1DM) progression is accelerated by oxidative stress and apoptosis. Eugenol (EUG) is a natural compound previously documented as anti-inflammatory, anti-oxidative, and anti-apoptotic. In this manuscript by Jiang et al., the authors study the effects of EUG on T1DM in MIN6 insulinoma cells and a mouse model of chemically induced T1DM. The authors show that EUG increases nuclear factor E2-related factor 2 (Nrf2) levels. This results in a reduction of pancreatic beta-cell damage, apoptosis, oxidative stress markers, and a recovery of insulin secretion. The authors highlight these effects as indicative of the therapeutic potential of EUG in managing T1DM.

      Strengths

      Relevant, timely, and addresses an interesting question in the field. The authors consistently observe enhanced beta cell functionality following EUG treatment, which makes the compound a promising candidate for T1DM therapy.

      Weaknesses

      The in vivo experiments have too few biological replicates. With an n=3 (as all figure legends indicate) in complex mouse studies such as these, drawing robust conclusions becomes challenging. It is important to reproduce these results in a larger cohort, to validate the conclusions of the authors. Another big concern is the lack of quantifications and statistical analysis throughout the manuscript. Although the authors claim statistical significance in various experiments, the limited information provided makes it difficult to verify. The authors use vague and minimal descriptions of their experiments, which further reduces the reader's comprehension and the reproducibility of the experiments. Finally, the use of Min6 cells as a model for pancreatic beta cells is a strong limitation of this study. Future studies should seek to reproduce these findings in a more translational model and use more relevant in vitro cell systems (eg. Islets).

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors consider the effects of eugenol (EUG), a plant-produced substance known to reduce oxidative stress in various cellular contexts via Nrf2, in alleviating the effects of streptozotocin (STZ), a known rodent beta cell toxin. They claim that EUG treatment would be useful for T1D therapy.

      Strengths:

      The experiments shown are sufficiently clear and rather convincing in documenting that eugenol can revert the effects of streptozotocin on animal physiology as well as beta cell oxidative stress and cell death via activation of Nrf2.

      Weaknesses:

      In my view, there are major concerns with the basic premises of the manuscript.

      (1) While oxidative stress may be implicated in T1D they are neither the primary nor the main reason for autoimmune beta cell destruction. In T1DM, ER stress rather than oxidative stress is the main intracellular mediator of cell death. Thus, the abstract statement that 'oxidative stress plays a major role in T1D' is an exaggeration.

      (2) Streptozotocin induces beta cell death through mechanisms that only partially overlap with autoimmune beta cell destruction. The main players ie beta cell / immune system crosstalk and T-cell mediated cell death are not present in the STZ model.

      In short, because the interplay between the immune system and beta cell-intrinsic factors that trigger and accelerate the disease is completely missing, STZ treatment cannot be used as a T1DM model when beta cell demise mechanisms are concerned. The statement that STZ-treated mice are, in this context, a T1DM model, is misleading.

      There are inconsistencies in the manuscript. Mechanistically, the manuscript remains at a rather superficial level demonstrating that the eugenol effects are mediated by Nrf2 upregulation and a downregulation of its partner inhibitor protein Keap1. How is eugenol penetrating the cell, is there a receptor that could be potentially targeted? Are there intermediary proteins that convey the effect to the Nrf2/Keap1 complex or is eugenol directly disrupting their interaction? What are direct downstream Nrf2 effectors? Besides, streptozotocin is also a powerful DNA alkylating agent. Are these effects mitigated by EUG?

    3. Reviewer #3 (Public Review):

      Summary:

      This study by Jiang et al. aims to establish the streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mouse model in vivo and the STZ-induced pancreatic β cell MIN6 cell model in vitro to explore the protective effects of Eugenol (EUG) on T1DM. The authors tried to elucidate the potential mechanism by which EUG inhibits the NRF2-mediated anti-oxidative stress pathway. Overall, this study is well executed with solid data, offering an intriguing report from animal studies for a potential new treatment strategy for T1DM.

      Strengths:

      The in vivo efficacy study is comprehensive and solid. Given that STZ-induced T1DM is a devastating and harsh model, the in vivo efficacy of this compound is really impressive.

      Weaknesses:

      The Mechanism is linked with the anti-oxidant property of the compound, which is common for many natural compounds, such as flavonoids and polyphenol. However, rarely, this kind of compound has been successfully developed into therapeutics in clinical usage. Indeed, if that is the case, Vitamin C or Vitamin E could be used here as the positive control.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors used a coarse-grained DNA model (cgNA+) to explore how DNA sequences and CpG methylation/hydroxymethylation influence nucleosome wrapping energy and the probability density of optimal nucleosomal configuration. Their findings indicate that both methylated and hydroxymethylated cytosines lead to increased nucleosome wrapping energy. Additionally, the study demonstrates that methylation of CpG islands increases the probability of nucleosome formation.

      Strengths:

      The major strength of this method is that the model explicitly includes elastic constraints on the positions of phosphate groups facing a histone octamer, as DNA-histone binding site constraints. The authors claim that their model enhances the accuracy and computational efficiency and allows comprehensive calculations of DNA mechanical properties and deformation energies.

      Weaknesses:

      A significant limitation of this study is that the parameter sets for the methylated and hydroxymethylated CpG steps in the cgNA+ model are derived from all-atom molecular dynamics (MD) simulations that suggest that both methylated and hydroxymethylated cytosines increase DNA stiffness and nucleosome wrapping energy (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 2021). It could predispose the coarse-grained model to replicate these findings. Notably, conflicting results from other all-atom MD simulations, such as those by Ngo T in Nat. Commun. 2016, shows that hydroxymethylated cytosines increase DNA flexibility, contrary to methylated cytosines. If the cgNA+ model was trained on these later parameters or other all-atom force fields, different conclusions might be obtained regarding the effects of methylated and hydroxymethylation on nucleosome formation.

      Despite the training parameters of the cgNA+ model, the results presented in the manuscript indicate that methylated cytosines increase both DNA stiffness and nucleosome wrapping energy. However, when comparing nucleosome occupancy scores with predicted nucleosome wrapping energies and optimal configurations, the authors find that methylated CGIs exhibit higher nucleosome occupancies than unmethylated ones, which seems to contradict their findings from the same paper which showed that increased stiffness should reduce nucleosome formation affinity. In the manuscript, the authors also admit that these conclusions "apparently runs counter to the (perhaps naive) intuition that high nucleosome forming affinity should arise for fragments with low wrapping energy". Previous all-atom MD simulations (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 202; Ngo T, et al. Nat. Commun. 20161) show that the stiffer DNA upon CpG methylation reduces the affinity of DNA to assemble into nucleosomes or destabilizes nucleosomes. Given these findings, the authors need to address and reconcile these seemingly contradictory results, as the influence of epigenetic modifications on DNA mechanical properties and nucleosome formation are critical aspects of their study.<br /> Understanding the influence of sequence-dependent and epigenetic modifications of DNA on mechanical properties and nucleosome formation is crucial for comprehending various cellular processes. The authors' study, focusing on these aspects, will definitely garner interest from the DNA methylation research community.

    2. Reviewer #2 (Public Review):

      Summary:

      This study uses a coarse-grained model for double-stranded DNA, cgNA+, to assess nucleosome sequence affinity. cgNA+ coarse-grains DNA on the level of bases and accounts also explicitly for the positions of the backbone phosphates. It has been proven to reproduce all-atom MD data very accurately. It is also ideally suited to be incorporated into a nucleosome model because it is known that DNA is bound to the protein core of the nucleosome via the phosphates.

      It is still unclear whether this harmonic model parametrized for unbound DNA is accurate in describing DNA inside the nucleosome. Previous models by other authors, using more coarse-grained models of DNA, have been rather successful in predicting base pair sequence-dependent nucleosome behavior. This is at least the case as far as DNA shape is concerned whereas assessing the role of DNA bendability (something this paper focuses on) has been consistently challenging in all nucleosome models, to my knowledge.

      It is thus of major interest whether this more sophisticated model is also more successful in handling this issue. As far as I can tell the work is technically sound and properly accounts for not only the energy required in wrapping DNA but also entropic effects, namely the change in entropy that DNA experiences when going from the free state to the bound state. The authors make an approximation here which seems to me to be a reasonable first step.

      Of interest is also that the authors have the parameters at hand to study the effect of methylation of CpG-steps. This is especially interesting as it allows us to study a scenario where changes in the physical properties of base pair steps via methylation might influence nucleosome positioning and stability in a cell-type-specific way.

      Overall, this is an important contribution to the question of how the sequence affects nucleosome positioning and affinity. The findings suggest that cgNA+ has something new to offer. But the problem is complex, also on the experimental side, so many questions remain open.

      Strengths:

      The authors use their state-of-the-art coarse-grained DNA model which seems ideally suited to be applied to nucleosomes as it accounts explicitly for the backbone phosphates.

      Weaknesses:

      (1) According to the abstract the authors consider two "scalar measures of the sequence-dependent propensity of DNA to wrap into nucleosomes". One is the bending energy and the other, is the free energy. Specifically in the latter, the authors take the difference between the free energies of the wrapped and the free DNA. Whereas the entropy of the latter can be calculated exactly, they assume that the bound DNA always has the same entropy (independent of sequence) in its more confined state. The problem is the way in which this is written (e.g. below Eq. 6) which is hard to understand. The authors should mention that the negative of Eq. 6 is what physicists call free energy, namely especially the free energy difference between bound and free DNA.

      (2) In Eq. 5 the authors introduce penalty coefficients c_i. They write that values are "set by numerical experiment to keep distances ... within the ranges observed in the PDB structure, while avoiding sterical clashes in DNA." This is rather vague, especially since it is unclear to me what type of sterical clashes might occur. Figure 1 shows then a comparison between crystal structures and simulated structures. They are reasonably similar but standard deviations in the fluctuations of the simulation are smaller than in the experiments. Why did the authors not choose smaller c_i-values to have a better fit? Do smaller values lead to unwanted large fluctuations that would lead to steric clashes between the two DNA turns? I also wonder what side views of the nucleosomes look like (experiments and simulations) and whether in this side view larger fluctuations of the phosphates can be observed in the simulation that would eventually lead to turn-turn clashes for smaller c_i-values.

    3. Reviewer #3 (Public Review):

      Summary:

      In this study, the authors utilize biophysical modeling to investigate differences in free energies and nucleosomal configuration probability density of CpG islands and nonmethylated regions in the genome. Toward this goal, they develop and apply the cgNA+ coarse-grained model, an extension of their prior molecular modeling framework.

      Strengths:

      The study utilizes biophysical modeling to gain mechanistic insight into nucleosomal occupancy differences in CpG and nonmethylated regions in the genome.

      Weaknesses:

      Although the overall study is interesting, the manuscripts need more clarity in places. Moreover, the rationale and conclusion for some of the analyses are not well described.

    1. Reviewer #1 (Public Review):

      Summary:

      HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase1 is predicted to be involved in Acetyl-CoA metabolic process and mevalonate-cholesterol pathway. To induce diet-induced diabetes, they fed wild-type littermates either a standard chow (Control) or a high fat-high sucrose (HFHG) diet, where the diet composition consisted of 60% fat, 20% protein, and 20% carbohydrate (H10060, Hfkbio, China). The dietary regimen was maintained for 14 weeks. Throughout this period, body weight and fasting blood glucose (FBG) levels were measured on a weekly basis. Although the authors induced diabetes with a diet also rich in fat, the cholesterol concentration or metabolism was not investigated. After the treatment, were the animals with endothelial dysfunction? How was the blood pressure of the animals?

      Strengths:

      To explore the potential role of circHMGCS1 in regulating endothelial cell function, the authors cloned exons 2-7 of HMGCS1 into lentiviral vectors for ectopic overexpression of circHMGCS1 (Figure S2). The authors could use this experiment as a concept proof and investigate the glucose concentration in the cell culture medium. Is the pLV-circ HMGCS1 transduction in HUVEC increasing the glucose release? (Line 163)

      Weaknesses:

      (1) Pg 20. The cells were transfected with miR-4521 mimics, miR-inhibitor, or miR-NC and incubated for 24 hours. Subsequently, the cells were treated with PAHG for another 24 hours.

      Were the cells transfected with lipofectanine? The protocol or the lipofectamine kit used should be described. The lipofectamine protocol suggests using an incubation time of 72 hours. Why did the authors incubate for only 24 hours?

      If the authors did the mimic and inhibitor curves, these should be added to the supplementary figures. Please, describe the miRNA mimic and antagomir concentration used in cell culture.

      (2) Pg 20, line 507. What was the miR-4521 agomiR used to treatment of the animals?

      (3) Figure 1B. The results are showing the RT-qPCR for only 5 circRNA, however, the results show 48 circRNAs were upregulated, and 18 were downregulated (Figure S1D). Why were the other cicRNAs not confirmed? The circRNAs upregulated with high expression are not necessarily with the best differential expression comparing control vs. PAHG groups. Furthermore, Figure 1A and S1D show circRNAs downregulated also with high expression. Why were these circRNAs not confirmed?

      (4) Figure 1B shows the relative circRNAs expression. Were host genes expressed in the same direction?

      (5) Line 128. The circRNA RT-qPCR methodology was not described. The methodology should be described in detail in the Methods Session.

      (6) Line 699. The relative gene expression was calculated using the 2-ΔΔCt method. This is not correct, the expression for miRNA and gene expression are represented in percentage of control.

      (7) Line 630. Detection of ROS for tissue and cells. The methodology for tissue was described, but not for cells.

      (8) Line 796. RNA Fluorescent In Situ Hybridization (RNA-FISH). Figure 1F shows that the RNA-Fluorescence in situ hybridization (RNA-FISH) confirmed the robust expression of cytoplasmic circHMGCS1 in HUVECs (Figure 1F). However, in the methods, lines 804 and 805 described the probes targeting circMAP3K5 and miR-4521 were applied to the sections. Hybridization was performed in a humid chamber at 37{degree sign}C overnight. Is it correct?

      (9) Line 14. Fig 1-H. The authors discuss qRT-PCR demonstrated that circHMGCS1 displayed a stable half-life exceeding 24 h, whereas the linear transcript HMGCS1 mRNA had a half-life less than 8 h (Figure 1H).<br /> Several of the antibodies may contain trace amounts of RNases that could degrade target RNA and could result in loss of RNA hybridization signal or gene expression. Thus, all of the solutions should contain RNase inhibitors. The HMGCS1 mRNA expression could be degraded over the incubation time (0-24hs) leading to incorrect results. Moreover, in the methods is not mentioned if the RNAse inhibitor was used. Please, could the authors discuss and provide information?

      (10) Further experiments demonstrated that the overexpression of circHMGCS1 stimulated the expression of adhesion molecules (VCAM1, ICAM1, and ET-1) (Figures 2B and 2C), suggesting that circHMGCS1 is involved in VED. How were these genes expressed in the RNA-seq?

      (11) Line 256. By contrast, the combined treatment of circHMGCS1 and miR-4521 agomir did not significantly affect the body weight and blood glucose levels. OGTT and ITT experiments demonstrated that miR-4521 agomir considerably enhanced glucose tolerance and insulin resistance in diabetic mice (Figures 5C, 5D, and Figures S5B and S5C). Why didi the miR-4521 agomir treatment considerably enhance glucose tolerance and insulin resistance in diabetic mice, but not the blood glucose levels?

      (12) In the experiments related to pull-down, the authors performed Biotin-coupled miR-4521 or its mutant probe, which was employed for circHMGCS1 pull-down. This result only confirms the Luciferase experiments shown in Figure 4A. The experiment that the authors need to perform is pull-down using a biotin-labeled antisense oligo (ASO) targeting the circHMGCS1 backsplice junction sequence followed by pulldown with streptavidin-conjugated magnetic beads to capture the associated miRNAs and RNA binding proteins (RBPs). Also, the ASO pulldown assay can be coupled to miRNA RT-qPCR and western blotting analysis to confirm the association of miRNAs and RBPs predicted to interact with the target circRNA.

      (13) In Figure 5, the authors showed that the results suggest that miR-4521 can inhibit the occurrence of diabetes, whereas circHMGCS1 specifically dampens the function of miR-4521, weakening its protective effect against diabetes. In this context, what are the endogenous target genes for the miR-4521 that could be regulating diabetes?

      (14) In the western blot of Figure 5, the β-actin band appears to be different from the genes analyzed. Was the same membrane used for the four proteins? The Ponceau S membrane should be provided.

      (15) Why did the authors use AAV9, since the AAV9 has a tropism for the liver, heart, skeletal muscle, and not to endothelial vessels?

    2. Reviewer #2 (Public Review):

      Summary:

      The authors observed an aggravated vascular endothelial dysfunction upon overexpressing circHMGCS1 and inhibiting miR-4521. This study discovered that circHMGCS1 promotes arginase 1 expression by sponging miR-4521, which accelerated the impairment of vascular endothelial function.

      Strengths:

      The study is systematic and establishes the regulatory role of the circHMGCS1-miR-4521 axis in diabetes-induced cardiovascular diseases.

      Weaknesses:

      (1) The authors selected the miR-4521 as the target based on their reduced expression upon circHMGCS1 overexpression. Since the miRNA level is downregulated, the downstream target gene is expected to be upregulated even in the absence of circRNA. The changes in miRNA expression opposite to the levels of target circRNA could be through Target RNA-Directed MicroRNA Degradation. In addition, miRNA can also be stabilized by circRNAs. Hence, selecting miRNA targets based on opposite expression patterns and concluding miRNA sponging by circRNA needs further evidence of direct interactions.

      (2) The majority of the experiments were performed with an overexpression vector which can generate a lot of linear RNAs along with circRNAs. The linear RNAs produced by the overexpression vectors can have a similar effect to the circRNA due to sequence identity.

      (3) There is a lack of data of circHMGCS1 silencing and its effect on target miRNA & mRNAs.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a well-written and detailed manuscript showing important results on the molecular profile of 4 different cohorts of female patients with lung cancer.

      The authors conducted comprehensive multi-omic profiling of air-pollution-associated LUAD to study the roles of the air pollutant BaP. Utilizing multi-omic clustering and mutation-informed interface analysis, potential novel therapeutic strategies were identified.

      Strengths:

      The authors used several different methods to identify potential novel targets for therapeutic interventions.

      Weaknesses:

      Statistical test results need to be provided in comparisons between cohorts.

    2. Reviewer #2 (Public Review):

      Summary:

      Zhang et al. performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC) in China. These analyses reveal that XWLC is a distinct subtype of LUAD and that BaP is a major risk factor associated with EGFR G719X mutations found in the XWLC cohort. Four subtypes of XWLC were classified with unique features based on multi-omics data clustering.

      Strengths:

      The authors made great efforts in performing several large-scale proteogenomic analyses and characterizing molecular features of XWLCs. Datasets from this study will be a valuable resource to further explore the etiology and therapeutic strategies of air-pollution-associated lung cancers, particularly for XWLC.

      Weaknesses:

      (1) While analyzing and interpreting the datasets, however, this reviewer thinks that authors should provide more detailed procedures of (i) data processing, (ii) justification for choosing methods of various analyses, and (iii) justification of focusing on a few target gene/proteins in the datasets for further validation in the main text.

      (2) Importantly, while providing the large datasets, validating key findings is minimally performed, and surprisingly there is no interrogation of XWLC drug response/efficacy based on their findings, which makes this manuscript descriptive and incomplete rather than conclusive. For example, testing the efficacy of XWLC response to afatinib combined with other drugs targeting activated kinases in EGFR G719X mutated XWLC tumors would be one way to validate their datasets and new therapeutic options.

      (3) The authors found MAD1 and TPRN are novel therapeutic targets in XWLC. Are these two genes more frequently mutated in one subtype than the other 3 XWLC subtypes? How these mutations could be targeted in patients?

      (4) In Figures 2a and b: while Figure 2a shows distinct genomic mutations among each LC cohort, Figure 2b shows similarity in affected oncogenic pathways (cell cycle, Hippo, NOTCH, PI3K, RTK-RAS, and WNT) between XWLC and TNLC/CNLC. Considering that different genomic mutations could converge into common pathways and biological processes, wouldn't these results indicate commonalities among XWLC, TNLC, and CNLC? How about other oncogenic pathways not shown in Figure 2b?

      (5) In Figure 2c, how and why were the four genes (EGFR, TP53, RBM10, KRAS) selected? What about other genes? In this regard, given tumor genome sequencing was done, it would be more informative to provide the oncoprints of XWLC, TSLC, TNLC, and CNLC for complete genomic alteration comparison.

      (6) Supplementary Table 11 shows a number of mutations at the interface and length of interface between a given protein-protein interaction pair. Such that, it does not provide what mutation(s) in a given PPI interface is found in each LC cohort. For example, it fails to provide whether MAD1 R558H and TPRN H550Q mutations are found significantly in each LC cohort.

      (7) Figure 7c and d are simulation data not from an actual binding assay. The authors should perform a biochemical binding assay with proteins or show that the mutation significantly alters the interaction to support the conclusion.

    3. Reviewer #3 (Public Review):

      Summary:

      The manuscript from Zhang et al. utilizes a multi-omics approach to analyze lung adenocarcinoma cases in female never smokers from the Xuanwei area (XWLC cohort) compared with cases associated with smoking or other endogenous factors to identify mutational signatures and proteome changes in lung cancers associated with air pollution. Mutational signature analysis revealed a mutation hotspot, EGFR-G719X, potentially associated with BaP exposure, in 20% of the XWLC cohort. This correlated with predicted MAPK pathway activations and worse outcomes relative to other EGFR mutations. Multi-omics clustering, including RNA-seq, proteomics, and phosphoproteomics identified 4 clusters with the XWLC cohort, with additional feature analysis pathway activation, genetic differences, and radiomic features to investigate clinical diagnostic and therapeutic strategy potential for each subgroup. The study, which nicely combines multi-modal omics, presents potentially important findings, that could inform clinicians with enhanced diagnosis and therapeutic strategies for more personalized or targeted treatments in lung adenocarcinoma associated with air pollution. The authors successfully identify four distinct clusters with the XWLC cohort, with distinct diagnostic characteristics and potential targets. However, many validating experiments must be performed, and data supporting BaP exposure linkage to XWLC subtypes is suggestive but incomplete to conclusively support this claim. Thus, while the manuscript presents important findings with the potential for significant clinical impact, the data presented are incomplete in supporting some of the claims and would benefit from validation experiments.

      Strengths:

      Integration of omics data from multimodalities is a tremendous strength of the manuscript, allowing for cross-modal comparison/validation of results, functional pathway analysis, and a wealth of data to identify clinically relevant case clusters at the transcriptomic, translational, and post-translational levels. The inclusion of phosphoproteomics is an additional strength, as many pathways are functional and therefore biologically relevant actions center around activation of proteins and effectors via kinase and phosphatase activity without necessarily altering the expression of the genes or proteins.

      Clustering analysis provides clinically relevant information with strong therapeutic potential both from a diagnostic and treatment perspective. This is bolstered by the individual microbiota, radiographic, wound healing, outcomes, and other functional analyses to further characterize these distinct subtypes.

      Visually the figures are well-designed and presented and for the most part easy to follow. Summary figures/histograms of proteogenomic data, and specifically highlighted genes/proteins are well presented.

      Molecular dynamics simulations and 3D binding analysis are nice additions.

      While I don't necessarily agree with the authors' interpretation of the microbiota data, the experiment and results are very interesting, and clustering information can be gleaned from this data.

      Weaknesses:

      Statistical methods for assessing significance may not always be appropriate.

      Necessary validating experiments are lacking for some of the major conclusions of the paper.

      Many of the conclusions are based on correlative or suggestive results, and the data is not always substantive to support them.

      Experimental design is not always appropriate, sometimes lacking necessary controls or large disparity in sample sizes.

      Conclusions are sometimes overstated without validating measures, such as in BaP exposure association with the identified hotspot, kinase activation analysis, or the EMT function.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript reports the substrate-bound structure of SiaQM from F. nucleatum, which is the membrane component of a Neu5Ac-specific Tripartite ATP-dependent Periplasmic (TRAP) transporter. Until recently, there was no experimentally derived structural information regarding the membrane components of the TRAP transporter, limiting our understanding of the transport mechanism. Since 2022, there have been 3 different studies reporting the structures of the membrane components of Neu5Ac-specific TRAP transporters. While it was possible to narrow down the binding site location by comparing the structures to proteins of the same fold, a structure with substrate bound has been missing. In this work, the authors report the Na+-bound state and the Na+ plus Neu5Ac state of FnSiaQM, revealing information regarding substrate coordination. In previous studies, 2 Na+ ion sites were identified. Here, the authors also tentatively assign a 3rd Na+ site. The authors reconstitute the transporter to assess the effects of mutating the binding site residues they identified in their structures. Of the 2 positions tested, only one of them appears to be critical to substrate binding.

      Strengths:

      The main strength of this work is the capture of the substrate-bound state of SiaQM, which provides insight into an important part of the transport cycle.

      Weaknesses:

      The main weakness is the lack of experimental validation of the structural findings. The authors identified the Neu5Ac binding site, but only tested 2 residues for their involvement in substrate interactions, which was very limited. The authors tentatively identified a 3rd Na+ binding site, which if true would be an impactful finding, but this site was not tested for its contribution to Na+ dependent transport, and the authors themselves report that the structural evidence is not wholly convincing. This lack of experimental validation undermines the confidence of the findings. However, the reporting of these new data is important as it will facilitate follow-up studies by the authors or other researchers.

    2. Reviewer #2 (Public Review):

      In this exciting new paper from the Ramaswamy group at Purdue, the authors provide a new structure of the membrane domains of a tripartite ATP-independent periplasmic (TRAP) transporter for the important sugar acid, N-acetylneuraminic acid or sialic acid (Neu5Ac). While there have been a number of other structures in the last couple of years (the first for any TRAP-T) this is the first to trap the structure with Neu5Ac bound to the membrane domains. This is an important breakthrough as in this system the ligand is delivered by a substrate-binding protein (SBP), in this case, called SiaP, where Neu5Ac binding is well studied but the 'hand over' to the membrane component is not clear. The structure of the membrane domains, SiaQM, revealed strong similarities to other SBP-independent Na+-dependent carriers that use an elevator mechanism and have defined Na+ and ligand binding sites. Here they solve the cryo-EM structure of the protein from the bacterial oral pathogen Fusobacterium nucleatum and identify a potential third (and theoretically predicted) Na+ binding site but also locate for the first time the Neu5Ac binding site. While this sits in a region of the protein that one might expect it to sit, based on comparison to other transporters like VcINDY, it provides the first molecular details of the binding site architecture and identifies a key role for Ser300 in the transport process, which their structure suggests coordinates the carboxylate group of Neu5Ac. The work also uses biochemical methods to confirm the transporter from F. nucleatum is active and similar to those used by selected other human and animal pathogens and now provides a framework for the design of inhibitors of these systems.

      The strengths of the paper lie in the locating of Neu5Ac bound to SiaQM, providing important new information on how TRAP transporters function. The complementary biochemical analysis also confirms that this is not an atypical system and that the results are likely true for all sialic acid-specific TRAP systems.

      The main weakness is the lack of follow-up on the identified binding site in terms of structure-function analysis. While Ser300 is shown to be important, only one other residue is mutated and a much more extensive analysis of the newly identified binding site would have been useful.

    3. Reviewer #3 (Public Review):

      The manuscript by Goyal et al reports substrate-bound and substrate-free structures of a tripartite ATP-independent periplasmic (TRAP) transporter from a previously uncharacterized homolog, F. nucleatum. This is one of the most mechanistically fascinating transporter families, by means of its QM domain (the domain reported in his manuscript) operating as a monomeric 'elevator', and its P domain functioning as a substrate-binding 'operator' that is required to deliver the substrate to the QM domain; together, this is termed an 'elevator with an operator' mechanism. Remarkably, previous structures had not demonstrated the substrate Neu5Ac bound. In addition, they confirm the previously reported Na+ binding sites and report a new metal binding site in the transporter, which seems to be mechanistically relevant. Finally, they mutate the substrate binding site and use proteoliposomal uptake assays to show the mechanistic relevance of the proposed substrate binding residues.

      The structures are of good quality, the functional data is robust, the text is well-written, and the authors are appropriately careful with their interpretations. Determination of a substrate-bound structure is an important achievement and fills an important gap in the 'elevator with an operator' mechanism. Nevertheless, I have concerns with the data presentation, which in its current state does not intuitively demonstrate the discussed findings. Furthermore, the structural analysis appears limited, and even slight improvements in data processing and resulting resolution would greatly improve the authors' claims. I have several suggestions to hopefully improve the clarity and quality of the manuscript.

    1. Reviewer #1 (Public Review):

      In this manuscript by Wu et al., the authors present the high resolution cryoEM structures of the WT Kv1.2 voltage-gated potassium channel. Along with this structure the authors have solved several structures of mutants or experimental conditions relevant to the slow inactivation process that these channels undergo and which is not yet completely understood.

      One of the main findings is the determination of the structure of a mutant (W366F) that is thought to correspond to the slow inactivated state. These experiments confirm results in similar mutants in different channels from Kv1.2 that indicate that inactivation is associated with an enlarged selectivity filter.

      Another interesting structure is the complex of Kv1.2 with the pore blocking toxin Dendrotoxin 1. The results shown in the revised version indicate that the mechanism of block is similar to that of related blocking-toxins, in which a lysine residue penetrates in the pore. Surprisingly, in these new structures, the bound toxin results in a pore with empty external potassium binding sites.

      The quality of the structural data presented in this revised manuscript is very high and allows for unambiguous assignment of side chains. The conclusions are supported by the data. This is an important contribution that should further our understanding of voltage-dependent potassium channel gating. In the revised version, the authors have addressed my previous specific comments, which are appended below.

      (1) In the main text's reference to Figure 2d residues W18' and S22' are mentioned but are not labeled in the insets.

      (2) On page 8 there is a discussion of how the two remaining K+ ions in binding sites S3 and S4 prevent permeation K+ in molecular dynamics. However, in Shaker, inactivated W434F channels can sporadically allow K+ permeation with normal single-channel conductance but very reduced open times and open probability at not very high voltages.

      (3) The structures of WT in the absence of K+ shows a narrower selectivity filter, however Figure 4 does not convey this finding. In fact, the structure in Figure 4B is constructed in such an angle that it looks as if the carbonyl distances are increased, perhaps this should be fixed. Also, it is not clear how the distances between carbonyls given in the text on page 12 are measured. Is it between adjacent or kitty-corner subunits?

      (4) It would be really interesting to know the authors opinion on the driving forces behind slow inactivation. For example, potassium flux seems to be necessary for channels to inactivate, which might indicate a local conformational change is the trigger for the main twisting events proposed here.

    2. Reviewer #2 (Public Review):

      Cryo_EM structures of the Kv1.2 channel in the open, inactivated, toxin complex and in Na+ are reported. The structures of the open and inactivated channels are merely confirmatory of previous reports. The structures of the dendrotoxin bound Kv1.2 and the channel in Na+ are new findings that will of interest to the general channel community.

      Review of the resubmission:

      I thank the authors for making the changes in their manuscript as suggested in the previous review. The changes in the figures and the additions to the text do improve the manuscript. The new findings from a further analysis of the toxin channel complex are welcome information on the mode of the binding of dendrotoxin.

      A few minor concerns:<br /> (1) Line 93-96, 352: I am not sure as to what is it the authors are referring to when they say NaK2P. It is either NaK or NaK2K. I don't think that it has been shown in the reference suggested that either of these channels change conformation based on the K+ concentration. Please check if there is a mistake and that the Nichols et. al. reference is what is being referred to.

      (2) Line 365: In the study by Cabral et. al., Rb+ ions were observed by crystallography in the S1, S3 and S4 site, not the S2 site. Please correct.

    3. Reviewer #3 (Public Review):

      Wu et al. present cryo-EM structures of the potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and presumably sodium-bound states at 3.2 Å, 2.5 Å, 2.8 Å, and 2.9 Å. The work builds on a large body of structural work on Kv1.2 and related voltage-gated potassium channels. The manuscript presents a plethora of structural work, and the authors are commended on the breadth of the studies. The structural studies are well-executed. Although the findings are mostly confirmatory, they do add to the body of work on this and related channels. Notably, the authors present structures of DTx-bound Kv1.2 and of Kv1.2 in a low concentration of potassium (which may contain sodium ions bound within the selectivity filter). These two structures add considerable new information. The DTx structure has been markedly improved in the revised version and the authors arrive at well-founded conclusions regarding its mechanism of block. Regarding the Na+ structure, the authors claim that the structure with sodium has "zero" potassium - I caution them to make this claim. It is likely that some K+ persists in their sample and that some of the density in the "zero potassium" structure may be due to K+ rather than Na+. This can be clarified by revisions to the text and discussion. I do not think that any additional experiments are needed. Overall, the manuscript is well-written, a nice addition to the field, and a crowning achievement for the Sigworth lab.

      Most of this reviewer's initial comments have been addressed in the revised manuscript. Some comments remain that could be addressed by revisions of the text.

      Specific comments on the revised version:<br /> Quotations indicate text in the manuscript.<br /> (1) "While the VSD helices in Kv1.2s and the inactivated Kv1.2s-W17'F superimpose very well at the top (including the S4-S5 interface described above), there is a general twist of the helix bundle that yields an overall rotation of about 3o at the bottom of the VSD."

      Comment: This seemed a bit confusing. I assume the authors aligned the complete structures - the differences they indicate seem to be slight VSD repositioning relative to the pore rather than differences between the VSD conformations themselves. The authors may wish to clarify. As they point out in the subsequent paragraph, the VSDs are known to be loosely associated with the pore.

      (2) Comment: The modeling of DTx into the density is a major improvement in the revision. Figure 3 displays some interactions between the toxin and Kv1.2 - additional side views of the toxin and the channel might allow the reader to appreciate the interactions more fully. The overall fit of the toxin structure into the density is somewhat difficult to assess from the figure. (The authors might consider using ChimeraX to display density and model in this figure.)

      (3) "We obtained the structure of Kv1.2s in a zero K+ solution, with all potassium replaced with sodium, and were surprised to find that it is little changed from the K+ bound structure, with an essentially identical selectivity filter conformation (Figure 4B and Figure 4-figure supplement 1)."

      Comment: It should be noted in the manuscript that K+ and Na+ ions cannot be distinguished by the cryo-EM studies - the densities are indistinguishable. The authors are inferring that the observed density corresponds to Na+ because the protein was exchanged from K+ into Na+ on a gel filtration (SEC) column. It is likely that a small amount of K+ remains in the protein sample following SEC. I caution the authors to claim that there is zero K+ in solution without measuring the K+ content of the protein sample. Additionally, it should be considered that K+ may be present in the blotting paper used for cryo-EM grid preparation (our laboratory has noted, for example, a substantial amount of Ca2+ in blotting paper). The affinity of Kv1.2 for K+ has not been determined, to my knowledge - the authors note in the Discussion that the Shaker channel has "tight" binding for K+. It seems possible that some portion of the density in the selectivity filter could be due to residual K+. This caveat should be clearly stated in the main text and discussion. More extensive exchange into Na+, such as performing the entire protein purification in NaCl, or by dialysis (as performed for obtaining the structure of KcsA in low K+ by Y. Zhou et al. & Mackinnon 2001), would provide more convincing removal of K+, but I suspect that the Kv1.2 protein would not have sufficient biochemical stability without K+ to endure this treatment. One might argue that reduced biochemical stability in NaCl could be an indication that there was a meaningful amount of K+ in the final sample used for cryo-EM (or in the particles that were selected to yield the final high-resolution structure).

      (4) Referring to the structure obtained in NaCl: "The ion occupancy is also similar, and we presume that Kv1.2 is a conducting channel in sodium solution."

      Comment: Stating that "Kv1.2 is a conducting channel in sodium solution" and implying that conduction of Na+ is achieved by an analogous distribution of ion binding sites as observed for K+ are strong statements to make - and not justified by the experiments provided. Electrophysiology would be required to demonstrate that the channel conducts sodium in the absence of K+. More complete ionic exchange, better control of the ionic conditions (Na+ vs K+), and affinity measurements for K+ would be needed to determine the distribution of Na+ in the filter (as mentioned above). At minimum, the authors should revise and clarify what the intended meaning of the statement "we presume that Kv1.2 is a conducting channel in sodium solution". As mentioned above, it seems possible/likely that a portion of the density in the filter may be due to K+.

    1. Reviewer #1 (Public Review):

      General comments:

      This paper investigates the pH-specific enzymatic activity of mouse acidic mammalian chitinase (AMCase) and aims to elucidate its function's underlying mechanisms. The authors employ a comprehensive approach, including hydrolysis assays, X-ray crystallography, theoretical calculations of pKa values, and molecular dynamics simulations to observe the behavior of mouse AMCase and explore the structural features influencing its pH-dependent activity.

      The study's key findings include determining kinetic parameters (Kcat and Km) under a broad range of pH conditions, spanning from strong acid to neutral. The results reveal pH-dependent changes in enzymatic activity, suggesting that mouse AMCase employs different mechanisms for protonation of the catalytic glutamic acid residue and the neighboring two aspartic acids at the catalytic motif under distinct pH conditions.<br /> The novelty of this research lies in the observation of structural rearrangements and the identification of pH-dependent mechanisms in mouse AMCase, offering a unique perspective on its enzymatic activity compared to other enzymes. By investigating the distinct protonation mechanisms and their relationship to pH, the authors reveal the adaptive nature of mouse AMCase, highlighting its ability to adjust its catalytic behavior in response to varying pH conditions. These insights contribute to our understanding of the pH-specific enzymatic activity of mouse AMCase and provide valuable information about its adaptation to different physiological conditions.<br /> Overall, the study enhances our understanding of the pH-dependent activity and catalytic properties of mouse AMCase and sheds light on its adaptation to different physiological pH environments.

      Comments on revised version:

      In their revised manuscript, the authors have made significant efforts to address the reviewers' comments.

    1. Reviewer #3 (Public Review):

      In this manuscript, the authors explored the interaction between the pattern recognition receptor MDA5 and 5'ppp-RNA in the Miiuy croaker. They found that MDA5 can serve as a substitute for RIG-I in detecting 5'ppp-RNA of Siniperca cheilinus rhabdovirus (SCRV) when RIG-I is absent in Miiuy croaker. Furthermore, they observed MDA5's recognition of 5'ppp-RNA in chickens (Gallus gallus), a species lacking RIG-I. Additionally, the authors documented that MDA5's functionality can be compromised by m6A-mediated methylation and degradation of MDA5 mRNA, orchestrated by the METTL3/14-YTHDF2/3 regulatory network in Miiuy croaker during SCRV infection. This impairment compromises the innate antiviral immunity of fish, facilitating SCRV's immune evasion. These findings offer valuable insights into the adaptation and functional diversity of innate antiviral mechanisms in vertebrates.

    2. Reviewer #1 (Public Review):

      This study offers valuable insights into host-virus interactions, emphasizing the adaptability of the immune system. Readers should recognize the significance of MDA5 in potentially replacing RIG-I and the adversarial strategy employed by 5'ppp-RNA SCRV in degrading MDA5 mediated by m6A modification in different species, further indicating that m6A is a conservational process in the antiviral immune response.

      However, caution is warranted in extrapolating these findings universally, given the dynamic nature of host-virus dynamics. The study provides a snapshot into the complexity of these interactions, but further research is needed to validate and extend these insights, considering potential variations across viral species and environmental contexts. Additionally, it is noted that the main claims put forth in the manuscript are only partially supported by the data presented.

    3. Reviewer #2 (Public Review):

      This manuscript by Geng et al. aims to demonstrate that MDA5 compensates for the loss of RIG-I in certain species, such as teleofish miiuy croacker. The authors use siniperca cheats rhabdovirus (SCRV) and poly(I:C) to demonstrate that these RNA ligands induce an IFN response in an MDA5-dependent manner in m.miiuy derived cells. Furthermore, they show that MDA5 requires its RD domain to directly bind to SCRV RNA and to induce an IFN response. They use in vitro synthesized RNA with a 5'triphosphate (or lacking a 5'triphosphate as a control) to demonstrate that MDA5 can directly bind to 5'-triphosphorylated RNA. The second part of the paper is devoted to m6A modification of MDA5 transcripts by SCRV as an immune evasion strategy. The authors demonstrate that the modification of MDA5 with m6A is increased upon infection and that this causes increased decay of MDA5 and consequently a decreased IFN response.

      - One critical caveat in this study is that it does not address whether ppp-SCRV RNA induces IRF3-dimerization and type I IFN induction in an MDA5 dependent manner. The data demonstrate that mmiMDA5 can bind to triphosphorylated RNA (Fig. 4D). In addition, triphosphorylated RNA can dimerize IRF3 (4C). However, a key experiment that ties these two observations together is missing.<br /> - Specifically, although Fig. 4C demonstrates that 5'ppp-SCRV RNA induces dimerization (unlike its dephosphorylated or capped derivatives), this does not proof that this happens in an MDA5-dependent manner. This experiment should have been done in WT and siMDA5 MKC cells side-by-side to demonstrate that the IRF3 dimerization that is observed here is mediated by MDA5 and not by another (unknown) protein. The same holds true for Fig. 4J.<br /> - Fig 1C-D: these experiments are not sufficiently convincing, i.e. the difference in IRF3 dimerization between VSV-RNA and VSV-RNA+CIAP transfection is minimal.<br /> - Fig. 2N and 2O: why did the authors decide to use overexpression of MDA5 to assess the impact of STING on MDA5-mediated IFN induction? This should have been done in cells transfected with SCRV or polyIC (as in 2D-G) or in infected cells (as in 2H-K). In addition, it is a pity that the authors did not include an siMAVS condition alongside siSTING, to investigate the relative contribution of MAVS versus STING to the MDA5-mediated IFN response. Panel O suggests that the IFN response is completely dependent on STING, which is hard to envision.<br /> - Fig. 3F and 3G: where are the mock-transfected/infected conditions? Given that ectopic expression of hMDA5 is known to cause autoactivation of the IFN pathway, the baseline ISG levels should be shown (ie. In absence of a stimulus or infection). Normalization of the data does not reveal whether this is the case and is therefore misleading.<br /> - Fig. 4F and 4G: can the authors please indicate in the figure which area of the gel is relevant here? The band that runs halfway the gel? If so, the effects described in the text are not supported by the data (i.e. the 5'OH-SCRV and 5'pppGG-SCRV appear to compete with Bio-5'ppp-SCRV as well as 5'ppp-SCRV).<br /> - My concerns about Fig. 5 remain unaltered. The fact that MDA5 is an ISG explains its increased expression and increased methylation pattern. The authors should at the very least mention in their text that MDA5 is an ISG and that their observations may be partially explained by this fact.

    1. Reviewer #1 (Public Review):

      This manuscript presents a pipeline incorporating a deep generative model and peptide property predictors for the de novo design of peptide sequences with dual antimicrobial/antiviral functions. The authors synthesized and experimentally validated three peptides designed by the pipeline, demonstrating antimicrobial and antiviral activities, with one leading peptide exhibiting antimicrobial efficacy in animal models. However, the manuscript as it stands, has several major limitations on the computational side.

      Major issues:

      (1) The choice of GAN as the generative model. There are multiple deep generative frameworks (e.g., language models, VAEs, and diffusion models), and GANs are known for their training difficulty and mode collapse. Could the authors elaborate on the specific rationale behind choosing GANs for this task?

      (2) The pipeline is supposed to generate peptides showing dual properties. Why were antiviral peptides not used to train the GAN? Would adding antiviral peptides into the training lead to a higher chance of getting antiviral generations?

      (3) For the antimicrobial peptide predictor, where were the contact maps of peptides sourced from?

      (4) Morgan fingerprint can be used to generate amino acid features. Would it be better to concatenate ESM features with amino acid-level fingerprints and use them as node features of GNN?

      (5) Although the number of labeled antiviral peptides may be limited, the input features (ESM embeddings) should be predictive enough when coupled with shallow neural networks. Have the authors tried simple GNNs on antiviral prediction and compared the prediction performance to those of existing tools?

      (6) Instead of using global alignment to get match scores, the authors should use local alignment.

      (7) How novel are the validated peptides? The authors should run a sequence alignment to get the most similar known AMP for each validated peptide, and analyze whether they are similar.

      (8) Only three peptides were synthesized and experimentally validated. This is too few and unacceptable in this field currently. The standard is to synthesize and characterize several dozens of peptides at the very least to have a robust study.

    2. Reviewer #2 (Public Review):

      Summary:

      This study marks a noteworthy advance in the targeted design of AMPs, leveraging a pioneering deep-learning framework to generate potent bifunctional peptides with specificity against both bacteria and viruses. The introduction of a GAN for generation and a GCN-based AMPredictor for MIC predictions is methodologically robust and a major stride in computational biology. Experimental validation in vitro and in animal models, notably with the highly potent P076 against a multidrug-resistant bacterium and P002's broad-spectrum viral inhibition, underpins the strength of their evidence. The findings are significant, showcasing not just promising therapeutic candidates, but also demonstrating a replicable means to rapidly develop new antimicrobials against the threat of drug-resistant pathogens.

      Strengths:

      The de novo AMP design framework combines a generative adversarial network (GAN) with an AMP predictor (AMPredictor), which is a novel approach in the field. The integration of deep generative models and graph-encoding activity regressors for discovering bifunctional AMPs is cutting-edge and addresses the need for new antimicrobial agents against drug-resistant pathogens. The in vitro and in vivo experimental validations of the AMPs provide strong evidence to support the computational predictions. The successful inhibition of a spectrum of pathogens in vitro and in animal models gives credibility to the claims. The discovery of effective peptides, such as P076, which demonstrates potent bactericidal activity against multidrug-resistant A. baumannii with low cytotoxicity, is noteworthy. This could have far-reaching implications for addressing antibiotic resistance. The demonstrated activity of the peptides against both bacterial and viral pathogens suggests that the discovered AMPs have a wide therapeutic potential and could be effective against a range of pathogens.

    3. Reviewer #3 (Public Review):

      Summary:

      Dong et al. described a deep learning-based framework of antimicrobial (AMP) generator and regressor to design and rank de novo antimicrobial peptides (AMPs). For generated AMPs, they predicted their minimum inhibitory concentration (MIC) using a model that combines the Morgan fingerprint, contact map, and ESM language model. For their selected AMPs based on predicted MIC, they also use a combination of antiviral peptide (AVP) prediction models to select AMPs with potential antiviral activity. They experimentally validated 3 candidates for antimicrobial activity against S. aureus, A. baumannii, E. coli, and P. aeruginosa, and their toxicity on mouse blood and three human cell lines. The authors select their most promising AMP (P076) for in vivo experiments in A. baumannii-infected mice. They finally test the antiviral activity of their 3 AMPs against viruses.

      Strengths:

      -The development of de novo antimicrobial peptides (AMPs) with the novelty of being bifunctional (antimicrobial and antiviral activity).

      -Novel, combined approach to AMP activity prediction from their amino acid sequence.

      Weaknesses:

      -I missed justification on why training AMPs without information of their antiviral activity would generate AMPs that could also have antiviral activity with such high frequency (32 out of 104).

      -The justification for AMP predictor advantages over previous tools lacks rationale, comparison with previous tools (e.g., with the very successful AMP prediction approach described by Ma et al. 10.1038/s41587-022-01226-0), and proper referencing.

      -Experimental validation of three de novo AMPs is a very low number compared to recent similar studies.

      -I have concerns regarding the in vivo experiments including i) the short period of reported survival compared to recent studies (0.1038/s41587-022-01226-0, 10.1016/j.chom.2023.07.001, 0.1038/s41551-022-00991-2) and ii) although in Figure 2 f and g statistics have been provided, log scale y-axis would provide a better comparative representation of different conditions.

      -I had difficulty reading the story because of the use of acronyms without referring to their full name for the first time, and incomplete annotation in figures and captions.

    1. Reviewer #1 (Public Review):

      Summary:

      This work shows, based on basic laboratory investigations of in vitro grown bacteria as well as human bone samples, that conventional bacterial culture can substantially underrepresent the quantity of bacteria in infected tissues. This has often been mentioned in the literature, however, relatively limited data has been provided to date. This manuscript compares culture to a digital droplet PCR approach, which consistently showed greater levels of bacteria across the experiments (and for two different strains).

      Strengths:

      Consistency of findings across in vitro experiments and clinical biopsies. There are real-world clinical implications for the findings of this study.

      Weaknesses:<br /> No major weaknesses. Only 3 human samples were analyzed, although the results are compelling.

    2. Reviewer #2 (Public Review):

      In this study, the authors address discrepancies in determining the local bacterial burden in osteomyelitis between that determined by culture and enumeration by DNA-directed assay. Discrepancies between culture and other means of bacterial enumeration are long established and highlighted by Staley and Konopka's classic, "The great plate count anomaly" (1985). Here, the authors first present data demonstrating the emergence of discrepancies between CFU counts and genome copy numbers detected by PCR in S. aureus strains infecting osteocyte-like cells. They go on to demonstrate PCR evidence that S. aureus can be detected in bone samples from sites meeting a widely accepted clinico-pathological definition of osteomyelitis. They conclude their approach offers advantages in quantifying intracellular bacterial load in their in vitro "co-culture" system.

      WEAKNESSES

      (A) My main concern here is the significance of these results outside the model osteocyte system used by this group. Although they carefully avoid over-interpreting their results, there is a strong undercurrent suggesting their approach could enhance aetiologic diagnosis in osteomyelitis and that enumeration of the infecting pathogen might have clinical value. In the first place molecular diagnostics such as 16S rDNA-directed PCR are well established in identifying pathogens that don't grow. Secondly, it is hard to see how enumeration could have value beyond in vitro and animal model studies since serial samples will rarely be available from clinical cases.

      (B) I have further concerns regarding interpretation of the combined bacterial and host cell-directed PCRs against the CFU results. Significance is attached to the relatively sustained genome counts against CFU declines. On the one hand it must be clearly recognised that detection of bacterial genomes does not equate to viable bacterial cells with potential for further replication or production of pathogenic factors. Of equal importance is the potential contribution of extracellular DNA from lysed bacteria and host cells to these results. The authors must clarify what steps, if any, they have taken to eliminate such contributions for both bacteria and host cells. Even the treatment with lysotaphin may have coated their osteocyte cultures with bacterial DNA, contributing downstream to the ddPCR results presented.

      STRENGTHS

      (C) On the positive side, the authors provide clear evidence for the value of the direct buffer extraction system they used as well as confirming the utility of ddPCR for quantification. In addition, the successful application of MinION technology to sequence the EF-Tu amplicons from clinical samples is of interest.

      (D) Moreover, the phenomenology of the infection studies indicating greater DNA than CFU persistence and differences between the strains and the different MOI inoculations are interesting and well-described, although I have concerns regarding interpretation.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Vuong and colleagues reports a study that pooled data from 3 separate longitudinal study that collectively spanned an observation period of over 15 years. The authors examined for correlation between viraemia measured at various days from illness onset with thrombocytopaenia and severe dengue, according to the WHO 2009 classification scheme. The motivation for this study is both to support the use of viraemia measurement as a prognostic indicator of dengue and also to, when an antiviral drug becomes licensed for use, guide the selection of patients for antiviral therapy. They found that the four DENVs show differences in peak and duration of viraemia and that viraemia levels before day 5 but not those after from illness onset correlated with platelet count and plasma leakage at day 7 onwards. They concluded that the viraemia kinetics call for early measurement of viraemia levels in the early febrile phase of illness.

      Strengths:

      This is a unique study due to the large sample size and longitudinal viraemia measurements in the study subjects. The data addresses a gap in information in the literature, where although it has been widely indicated that viraemia levels are useful when collected early in the course of illness, this is the first time anyone has systematically examined this notion. The inclusion of correlation between rate of viraemia decline and risk of severe dengue/plasma leakage further strengthens the relevance of this paper to those interested in anti-dengue therapeutic research and development.

      Weaknesses:

      The study only analysed data from dengue patients in Vietnam. Moreover, the majority of these patients had DENV-1 infection; few had DENV-4 infection. The data could thus be skewed by the imbalance in the prevalence of the different types of DENV during the period of observation. The use of patient-reported time of symptom onset as a reference point for viraemia measurement is pragmatic although there is subjectivity and thus noise in the data.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors have carried out a comprehensive analysis regarding the kinetics of viraemia and clinical disease severity.

      Strengths:

      The manuscript provides important information, especially regarding the time of clearance of the virus and disease severity.

      Weaknesses:

      Due to the lower number of patients with primary dengue, cannot get an idea regarding viraemia kinetics and disease severity for different serotypes during primary infection.

    1. Reviewer #1 (Public Review):

      Summary:

      Authors previously demonstrated that species-specific variation in primate CD4 impacts its ability to serve as a functional receptor for diverse SIVs. Here, Warren and Barbachano-Guerrero et al. perform population genetics analyses and functional characterization of great ape CD4 with a particular focus on gorillas, which are natural hosts of SIVgor. They first used ancestral reconstruction to derive the ancestral hominin and hominid CD4. Using pseudotyped viruses representing a panel of envelopes from SIVcpz and HIV strains, they find that these ancestral reconstructions of CD4 are more similar to human CD4 in terms of being a broadly susceptible entry receptor (in the context of mediating entry into Cf2Th cells stably expressing human CCR5). In contrast, extant gorilla and chimpanzee CD4 are functional entry receptors for a narrower range of HIV and SIVcpz isolates. Based on these differences, authors next surveyed gorilla sequences and identified several CD4 haplotypes, specifically in the region encoding the CD4 D1 domain, which directly contacts the viral glycoprotein and thus may impact the interaction. Consistent with this possibility, authors demonstrated that gorilla CD4 haplotypes are, on average, less capable of supporting entry than human CD4, and that some are largely unable to function as SIV entry receptors. Interestingly, individual residues found at key positions in the gorilla CD4 D1 when tested in the context of human CD4 reduce entry of some virions pseudotyped with diverse SIVcpz envelopes, suggesting that individual amino acids can in part explain the observed differences across gorilla CD4 haplotypes. Finally, the authors perform statistical tests to infer that CD4 from great apes with endemic SIV (i.e., chimpanzees and gorillas) but not non-reservoirs (i.e., orangutans, bonobos) or recent spillover hosts (i.e., humans), have been subject to selection as a result of pressure from endemic SIV.

      The conclusions of this paper are mostly well supported by data.

      Strengths:

      (1) The functional assays are appropriate to test the stated hypothesis, and the authors use a broad diversity of envelopes from HIV and SIVcpz strains. Authors also partially characterize one potential mechanism of gorilla CD4 resistance - receptor glycosylation at the derived N15 found in 5/6 gorilla haplotypes.

      (2) Ancestral reconstruction provides a particularly interesting aspect of the study, allowing authors to infer the ancestral state of hominid CD4 relative to modern CD4 from gorillas and chimpanzees. This, coupled with evidence supporting SIV-driven selection of gorilla CD4 diversity and the characterization of functional diversity of extant haplotypes provides several interesting findings.

      Weaknesses:

      (3). The major inference of the work is that SIV infection of gorillas drove the observed diversity in gorilla CD4. This is supported by the majority of SNPs being localized to the CD4 D1, which directly interacts with envelope, and the demonstrated functional consequences of that diversity for viral entry. However, SIVgor (to the best of my knowledge) only infects Western lowland gorillas (Gorilla gorilla gorilla), and one Gorilla gorilla diehli and three Gorilla beringei graueri individuals were included in the haplotype and allele frequency analyses. The presence of these haplotypes or the presence of similar allele frequencies in Eastern lowland and mountain gorillas would impact this conclusion. It would be helpful for the authors to clarify this point.

      (4) The authors appear to use a somewhat atypical approach to assess intra-population selection to compensate for relatively small numbers of NHP sequences (Fig. 6). However, they do not cite precedence for the robustness of the approach or the practice of grouping sequences from multiple species for the endemic vs other comparison. They also state in the methods that some genes encoded in the locus were removed from the analysis "because they have previously been shown to directly interact with a viral protein." This seems to undercut the analysis, and prevents alternative explanations for the observed diversity in CD4 (e.g., passenger mutations from selection at a neighboring locus).

      (5) Data in Figure 5 is graphed as % infected cells instead of virus titer (TDU/mL). It's unclear why this is the case, and prevents a comparison to data in Figure 2 and Figure 4.

      (6) The lack of pseudotyping with SIVgor envelope is a surprising omission from this study, that would help to contextualize the findings. Similarly, building gorilla CD4 haplotype SNPs onto the hominin ancestor (as opposed to extant human CD4) may provide additional insights that are meaningful towards understanding the evolutionary trajectory of gorilla CD4.

      Comments on revised version:

      In the revised manuscript, the authors more appropriately contextualize conclusions that can be made based on their data versus inferences, which are now much more clearly described in the discussion. The authors also included more references to substantiate claims, additional description of methodology, and provided well-reasoned responses to the weaknesses described in my primary review.

      Re: #3. As the authors point out, we do not know if eastern gorillas were at one time exposed to SIV. The authors use a variety of phylogenetic and functional approaches to infer that SIVcpz is the selective pressure-shaping gorilla CD4. While I agree this is a highly likely scenario, the allelic diversity of CD4 across gorilla subpopulations raises multiple evolutionary scenarios consistent with the data.

      Re: #4. The explanation provided by the authors is reasonable. However, a demonstration that this approach is robust to potential factors that might skew the data (e.g., recombination) is argued but not tested. Part of the concern here is that the study is limited by very small sample sizes, and to the best of my knowledge, grouping sequences from multiple species to make claims about selection is not an established practice. The authors note in their response that they confirmed the existence of CD4 alleles in this study with those identified in 100 gorilla individuals from Russell et al. 2021 (unavailable to the authors at the time of submission) - a re-analysis that includes that data from Russell et al. 2021 would have strengthened the analyses.

    2. Reviewer #2 (Public Review):

      Lentiviral infection of primate species has been linked to the rapid mutational evolution of numerous primate genes that interact with these viruses, including genes that inhibit lentiviruses as well as genes required for viral infection. In this manuscript, Warren et al. provide further support for the diversification of CD4, the lentiviral entry receptor, to resist lentiviral infection in great ape populations. This work builds on their prior publication (Warren et al. 2019, PMCID: PMC6561292 ) and that of other groups (e.g., Russell et al. 2021, PMCID: PMC8020793; Bibollet-Ruche et al. 2019, PMCID: PMC6386711) documenting both sequence and functional diversity in CD4, specifically within (1) the CD4 domain that binds to the lentiviral envelope and (2) great ape populations with endemic lentiviruses. Thus, the paper's finding that gorilla populations exhibit diverse CD4 alleles that differ in their susceptibility to lentiviral infection is well demonstrated both here and in a prior publication.

      Strengths:

      By reconstructing the CD4 sequence from the ancestor of gorillas and chimpanzees, the authors document that modern species have evolved more resistance to (admittedly modern) lentiviruses. They also deconstruct the molecular basis of this resistance by showing that one mutation, which adds a glycosylation site to CD4, is sufficient to confer lentiviral resistance to the susceptible human allele.

      Weaknesses:

      Warren et al. also pursue two novel lines of evidence to suggest that lentiviruses are the causative driver of great ape CD4 diversification, which seems likely from a logical perspective but is difficult to prove. First, they demonstrate that resistance to lentiviral infection is a derived trait in chimpanzees and gorillas, which have been co-evolving with endemic lentiviruses, but not in humans, which only recently acquired HIV. Nevertheless, these three examples are insufficient to prove that derived resistance is not stochastic or due to drift. The argument would be strengthened by demonstrating that bonobo and orangutan CD4, which also do not have endemic lentiviruses, resemble the ancestral and human susceptibility to great-ape-infecting lentiviruses.

      Second, Warren et al. provide a population genetic argument that only endemically infected primates exhibit diversifying selection, again arguing for endemic lentiviruses being the evolutionary driver. The authors compare SNP occurrence in CD4 to neighboring genes, demonstrating that non-synonymous SNP frequency is only elevated in endemically infected species. Moreover, these amino-acid-coding changes are significantly concentrated in the CD4 domain that binds the lentiviral envelope. This is a creative analysis to overcome the problem of very small sample sizes, with very few great ape individuals sequenced. However, the small number of species compared (2-4 in each group) also limits the power of the analysis. Expanding the analysis to Old World Monkey species that do or do not have endemic lentiviruses, as well as great apes, would strengthen this argument.

      Overall, this manuscript lends additional support to a well-documented example of a host-virus arms race: that of lentiviruses and the viral entry receptor.

    1. Joint Public Review:

      The premise of this work carries great potential. Namely, developing a humanized mouse system in which features of adaptive immunity that contribute to inflammatory demyelination can be interrogated will allow for traction into therapeutics currently unavailable to the field. Immediate questions stemming from the current study include the potential effect of ex vivo activation of PBMCs (or individual T and B cells) in vitro prior to transfer as well as the TCR and BCR repertoire of CNS vs peripheral lymphocytes before and after immunization. This group has been thoughtful and clever about their approach (e.g. use of subjects treated with natalizumab), which gives hope that fundamental aspects of pathogenesis will be uncovered by this form of modeling MS disease.

      Multiple sclerosis is an inflammatory and demyelinating disease of the central nervous system where immune cells play an important role in disease pathobiology. Increased incidence of disease in individuals carrying certain HLA class-II genes plus studies in animal models suggests that HLA-DRB1*15 restricted CD4 T cells might be responsible for disease initiation, and other immune cells such as B cells, CD8 T cells, monocytes/macrophages, and dendritic cells (DC) also contribute to disease pathology. However, a direct role of human immune cells in disease is lacking to a lag between immune activation and the first sign of clinical disease. Therefore, there is an emphasis on understanding whether immune cells from HLA-DR15+ MS patients differ from HLA-DR15+ healthy controls in their phenotype and pro-inflammatory capacity. To overcome this, authors have used severely immunodeficient B2m-NOG mice that lack B, T cells and NK cells and have defective innate immune responses and engrafted PBMCs from 3 human donors (HLA-DR15+ MS and HI donors, HLA-DR13+ MS donor) in these B2m-NOG mice to determine whether they can induce CNS inflammation and demyelination like MS.

      The study's strength is the use of PBMCs from HLADRB1-typed MS subjects and healthy control, the use of NOG mice, the characterization of immune subsets (revealing some interesting observations), CNS pathology etc. Weaknesses are lack of phenotype in mice and no disease phenotype even in humanized mice immunized for disease using standard disease induction protocol employed in an animal model of MS, and lack of mechanistic data on why CD8 T cells are more enriched than CD4+ T cells. The last point is important as postmortem human MS patients' brain tissue had been shown to have more CD8+ T cells than CD4+ T cells.

      Thus, this work is an important step in the right direction as previous humanized studies have not used HLA-DRB1 typed PBMCs however the weaknesses as highlighted above are limitations in the model.

    1. Reviewer #1 (Public Review):

      I'll begin by summarizing what I understand from the results presented, and where relevant how my understanding seems to differ from the authors' claims. I'll then make specific comments with respect to points raised in my previous review (below), using the same numbering. Because this is a revision I'll try to restrict comments here to the changes made, which provide some clarification, but leave many issues incompletely addressed.

      As I understand it the main new result here is that certain recurrent network architectures promote emergence of coordinated grid firing patterns in a model previously introduced by Kropff and Treves (Hippocampus, 2008). The previous work very nicely showed that single neurons that receive stable spatial input could 'learn' to generate grid representations by combining a plasticity rule with firing rate adaptation. The previous study also showed that when multiple neurons were synaptically connected their grid representations could develop a shared orientation, although with the recurrent connectivity previously used this substantially reduced the grid scores of many of the neurons. The advance here is to show that if the initial recurrent connectivity is consistent with that of a line attractor then the network does a much better job of establishing grid firing patterns with shared orientation.

      Beyond this point, things become potentially confusing. As I understand it now, the important influence of the recurrent dynamics is in establishing the shared orientation and not in its online generation. This is clear from Figure S3, but not from an initial read of the abstract or main text. This result is consistent with Kropff and Treves' initial suggestion that 'a strong collateral connection... from neuron A to neuron B... favors the two neurons to have close-by fields... Summing all possible contributions would result in a field for neuron B that is a ring around the field of neuron A.' This should be the case for the recurrent connections now considered, but the evidence provided doesn't convincingly show that attractor dynamics of the circuit are a necessary condition for this to arise. My general suggestion for the authors is to remove these kind of claims and to keep their interpretations more closely aligned with what the results show.

      Major (numbered according to previous review)

      (1) Does the network maintain attractor dynamics after training? Results now show that 'in a trained network without feedforward Hebbian learning the removal of recurrent collaterals results in a slight increase in gridness and spacing'. This clearly implies that the recurrent collaterals are not required for online generation of the grid patterns. This point needs to be abundantly clear in the abstract and main text so the reader can appreciate that the recurrent dynamics are important specifically during learning.<br /> (2) Additional controls for Figure 2 to test that it is connectivity rather than attractor dynamics (e.g. drawing weights from Gaussian or exponential distributions). The authors provide one additional control based on shuffling weights. However, this is far from exhaustive and it seems difficult on this basis to conclude that it is specifically the attractor dynamics that drive the emergence of coordinated grid firing.<br /> (3) What happens if recurrent connections are turned off? The new data clearly show that the recurrent connections are not required for online grid firing, but this is not clear from the abstract and is hard to appreciate from the main text.<br /> (4) This is addressed, although the legend to Fig. S2D could provide an explanation / definition for the y-axis values.<br /> (5) Given the 2D structure of the network input it perhaps isn't surprising that the network generates 2D representations and this may have little to do with its 1D connectivity. The finding that the networks maintain coordinated grids when recurrent connections are switched off supports my initial concern and the authors explanation, to me at least, remain confusing. I think it would be helpful to consider that the connectivity is specifically important for establishing the coordinated grid firing, but that the online network does not require attractor dynamics to generate coordinated grid firing.<br /> (6) Clarity of the introduction. This is somewhat clearer, but I wonder if it would be hard for someone not familiar with the literature to accurately appreciate the key points.<br /> (7) Remapping. I'm not sure why this is ill posed. It seems the proposed model can not account for remapping results (e.g. Fyhn et al. 2007). Perhaps the authors could just clearly state this as a limitation of the model (or show that it can do this).

      Previous review:

      This study investigates the impact of recurrent connections on grid fields generated in networks trained by adjusting the strength of feedforward spatial inputs. The main result is that if the recurrent connections in the network are given a 1D continuous attractor architecture, then aligned grid firing patterns emerge in the network following training. Detailed analyses of the low dimensional dynamics of the resulting networks are then presented. The simulations and analyses appear carefully carried out.

      The feedforward model investigated by the authors (previously introduced by Kropff & Treves, 2008) is an interesting and important alternative to models that generate grid firing patterns through 2-dimensional continuous attractor network (CAN) dynamics. However, while both classes of model generate grid fields, in making comparisons the manuscript is insufficiently clear about their differences. In particular, in the CAN models grid firing is a direct result of their 2-D architecture, either a torus structure with a single activity bump (e.g. Guanella et al. 2007, Pastoll et al. 2013), or sheet with multiple local activity bumps (Fuhs & Touretzky, Burak & Fiete, 2009). In these models, spatial input can anchor the grid representations but is not necessary for grid firing. By contrast, in the feedforward models neurons transform existing spatial inputs into a grid representation. Thus, the two classes of model implement different computations; CANs path integrate, while the feedforward models transform spatial representations. A demonstration that a 1D CAN generates coordinated 2D grid fields would be surprising and important, but its less clear why coordination between grids generated by the feedforward mechanism would be surprising. As written, it's unclear which of these claims the study is trying to make. If the former, then the conclusion doesn't appear well supported by the data as presented, if the latter then the results are perhaps not so unexpected, and the imposed attractor dynamics may still not be relevant.

      Whichever claim is being made, it could be helpful to more carefully evaluate the model dynamics given predictions expected for the different classes of model. Key questions that are not answered by the manuscript include:

      - At what point is the 1D attractor architecture playing a role in the models presented here? Is it important specifically for training or is it also contributing to computation in the fully trained network?

      - Is an attractor architecture required at all for emergence of population alignment and gridness? Key controls missing from Figure 2 include training on networks with other architectures. For example, one might consider various architectures with randomly structured connectivity (e.g. drawing weights from exponential or Gaussian distributions).

      - In the trained models do the recurrent connections substantially influence activity in the test conditions? Or after training are the 1D dynamics drowned out by feedforward inputs?

      - What is the low dimensional structure of the input to the network? Can the apparent discrepancy between dimensionality of architecture and representation be resolved by considering structure of the inputs, e.g. if the input is a 2 dimensional representation of location then is it surprising that the output is too?

      - What happens to representations in the trained networks presented when place cells remap? Is the 1D manifold maintained as expected for CAN models, or does it reorganise?

    2. Reviewer #3 (Public Review):

      Summary:

      The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact that grid cell population activity patterns (within a module) span a toroidal manifold. The proposal is based on a class of models that were extensively studied in the past, in which grid cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism, this leads to patterning of the inputs from place cells to grid cells such that the spatial activity patterns are organized as an array of localized firing fields with hexagonal order. I refer to these models below as feedforward models.

      It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections between grid cells can lead to alignment of their spatial response patterns. This idea was revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such models, the population activity pattern spans a manifold with toroidal topology. The main new contributions in the present paper are (i) in considering a form of recurrent connectivity that was not directly addressed before. (ii) in applying topological analysis to simulations of the model. (iii) in interpreting the results as a potential explanation for the observations of Gardner et al.

      Strengths:

      The exploration of learning in a feedforward model, when recurrent connectivity in the grid cell layer is structured in a ring topology, is interesting. The insight that this not only align the grid cells in a common direction but also creates a correspondence between their intrinsic coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is interesting as well, and the paper as a whole may influence future theoretical thinking on the mechanisms giving rise to the properties of grid cells.

      Weaknesses:

      (1) In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning, in addition to the location on a 2d plane, and therefore involved a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane. The novelty here is that the initial connectivity is structured uniquely according to latent coordinates residing on a ring.

      (2) The paper refers to the initial connectivity within the grid cell layer as one that produces an attractor. However, it is not shown that this connectivity, on its own, indeed sustains persistent attractor states. Furthermore, it is not clear whether this is even necessary to obtain the results of the model. It seems possible that (possibly weaker) connections with ring topology, that do not produce attractor dynamics but induce correlations between neurons with similar locations on the ring would be sufficient to align the spatial response patterns during the learning of feedforward weights.

      (3) Given that all the grid cells are driven by an input from place cells that span a 2d manifold, and that the activity in the grid cell network settles on a steady state which is uniquely determined by the inputs, it is expected that the manifold of activity states in the grid cell layer, corresponding to inputs that locally span a 2d surface, would also locally span a 2d plane. The result is not surprising. My understanding is that this result is derived as a prerequisite for the topological analysis, and it is therefore quite technical.

      (4) The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. Under the scenario in which grid cell responses are aligned (i.e. all neurons develop spatial patterns with the same spacing and orientation) it is already quite clear, even without any topological analysis that the emerging topology of the population activity is a torus.

      However, the toroidal topology of grid cells in reality has been observed by Gardner et al also in the wagon wheel environment, in sleep, and close to boundaries (whereas here the analysis is restricted to the a sub-region of the environment, far away from the walls). There is substantial evidence based on pairwise correlations that it persists also in various other situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not clear that the mechanism proposed in the present paper would generate toroidal topology of the population activity in more complex environments. In fact, it seems likely that it will not do so, and this is not explored in the manuscript.

      (5) Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, this preservation across environments is not expected. Moreover, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      (6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Thus, the highly clustered phases obtained in the model (Fig. S1) seem incompatible with the experimental reality. I suspect that this may be related to the difficulty in identifying the topology of a torus in persistent homology analysis based on the transpose of the matrix M.

      (7) The motivations stated in the introduction came across to me as weak. As now acknolwledged in the manuscript, attractor models can be fully compatible with distortions of the hexagonal spatial response patterns - they become incompatible with this spatial distortions only if one adopts a highly naive and implausible hypothesis that the attractor state is updated only by path integration. While attractor models are compatible with distortions of the spatial response pattern, it is very difficult to explain why the population activity patterns are tightly preserved across multiple conditions without a rigid two-dimentional attractor structure. This strong prediction of attractor models withstood many experimental tests - in fact, I am not aware of any data set where substantial distortions of the toroidal activity manifold were observed, despite many attempts to challenge the model. This is the main motivation for attractor models. The present model does not explain these features, yet it also does not directly offer an explanation for distortions in the spatial response pattern.

      (8). There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses (a leak time constant and/or synaptic time constants). I generally favor simple models without lots of complexity, yet within this style of modelling, the formulation adopted in this manuscript is unconventional, introducing a difficulty in interpreting synaptic weights as being weak or strong, and a difficulty in interpreting the model in the context of other studies.

      In my view, the weaknesses discussed above limit the ability of the model, as it stands, to offer a compelling explanation for the toroidal topology of grid cell population activity patterns, and especially the rigidity of the manifold across environments and behavioral states. Still, the work offers an interesting way of thinking on how the toroidal topology might emerge.

    1. Reviewer #1 (Public Review):

      Summary:

      This study examined the role of statistical learning in pain perception, suggesting that individuals' expectations about a sequence of events influence their perception of pain intensity. They incorporated the components of volatility and stochasticity into their experimental design and asked participants (n = 27) to rate the pain intensity, their prediction, and their confidence level. They compared two different inference strategies: Bayesian inference vs. heuristic-employing Kalman filters and model-free reinforcement learning. They showed that the expectation-weighted Kalman filter best explained the temporal pattern of participants' ratings. These results provide evidence for a Bayesian inference perspective on pain, supported by a computational model that elucidates the underlying process.

      Strengths:

      - Their experimental design included a wide range of input intensities and the levels of volatility and stochasticity. With elaborated computational models, they provide solid evidence that statistical learning shapes pain.

      Weaknesses:

      - Relevance to clinical pain: While the authors underscore the relevance of their findings to chronic pain, they did not include data pertaining to clinical pain.

    2. Reviewer #3 (Public Review):

      The study investigated how statistical aspects of temperature sequences, such as manipulations of stochasticity (i.e., randomness of a sequence) and volatility (i.e., speed at which a sequence unfolded) influenced pain perception. Using an innovative stimulation paradigm and computational modelling of perceptual variables, this study demonstrated that perception is weighted by expectations. Overall, the findings support the conclusion that pain perception is mediated by expectations in a Bayesian manner. The provision of additional details during the review process strengthens the reliability of this conclusion. The methods presented offer tools and frameworks for further research in pain perception and can be extended to investigations into chronic pain processes.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper investigates the neural population activity patterns of the medial frontal cortex in rats performing a nose poking timing task using in vivo calcium imaging. The results showed neurons that were active at the beginning and end of the nose poking and neurons that formed sequential patterns of activation that covaried with the timed interval during nose poking on a trial-by-trial basis. The former were not stable across sessions, while the latter tended to remain stable over weeks. The analysis on incorrect trials suggests the shorter non-rewarded intervals were due to errors in the scaling of the sequential pattern of activity.

      Strengths:

      This study measured stable signals using in vivo calcium imaging during experimental sessions that were separated by many days in animals performing a nose poking timing task. The correlation analysis on the activation profile to separate the cells in the three groups was effective and the functional dissociation between beginning and end, and duration cells was revealing. The analysis on the stability of decoding of both the nose poking state and poking time was very informative. Hence, this study dissected a neural population that formed sequential patterns of activation that encoded timed intervals.

      Weaknesses:

      It is not clear whether animals had enough simultaneously recorded cells to perform the analyzes of Figures 2-4. In fact, rat 3 had 18 responsive neurons which probably is not enough to get robust neural sequences for the trial-by-trial analysis and the correct and incorrect trial analysis. In addition, the analysis of behavioral errors could be improved. The analysis in Figure 4A could be replaced by a detailed analysis on the speed, and the geometry of neural population trajectories for correct and incorrect trials. In the case of Figure 4G is not clear why the density of errors formed two clusters instead of having a linear relation with the produce duration. I would be recommendable to compute the scaling factor on neuronal population trajectories and single cell activity or the computation of the center of mass to test the type III errors.

      Due to the slow time resolution of calcium imaging, it is difficult to perform robust analysis on ramping activity. Therefore, I recommend downplaying the conclusion that: "Together, our data suggest that sequential activity might be a more relevant coding regime than the ramping activity in representing time under physiological conditions."

    2. Reviewer #2 (Public Review):

      In this manuscript, Li and collaborators set out to investigate the neuronal mechanisms underlying "subjective time estimation" in rats. For this purpose, they conducted calcium imaging in the prefrontal cortex of water-restricted rats that were required to perform an action (nosepoking) for a short duration to obtain drops of water. The authors provided evidence that animals progressively improved in performing their task. They subsequently analyzed the calcium imaging activity of neurons and identify start, duration, and stop cells associated with the nose poke. Specifically, they focused on duration cells and demonstrated that these cells served as a good proxy for timing on a trial-by-trial basis, scaling their pattern of actvity in accordance with changes in behavioral performance. In summary, as stated in the title, the authors claim to provide mechanistic insights into subjective time estimation in rats, a function they deem important for various cognitive conditions.

      This study aligns with a wide range of studies in system neuroscience that presume that rodents solve timing tasks through an explicit internal estimation of duration, underpinned by neuronal representations of time. Within this framework, the authors performed complex and challenging experiments, along with advanced data analysis, which undoubtedly merits acknowledgement. However, the question of time perception is a challenging one, and caution should be exercised when applying abstract ideas derived from human cognition to animals. Studying so-called time perception in rats has significant shortcomings because, whether acknowledged or not, rats do not passively estimate time in their heads. They are constantly in motion. Moreover, rats do not perform the task for the sake of estimating time but to obtain their rewards are they water restricted. Their behavior will therefore reflects their motivation and urgency to obtain rewards. Unfortunately, it appears that the authors are not aware of these shortcomings. These alternative processes (motivation, sensorimotor dynamics) that occur during task performance are likely to influence neuronal activity. Consequently, my review will be rather critical. It is not however intended to be dismissive. I acknowledge that the authors may have been influenced by numerous published studies that already draw similar conclusions. Unfortunately, all the data presented in this study can be explained without invoking the concept of time estimation. Therefore, I hope the authors will find my comments constructive and understand that as scientists, we cannot ignore alternative interpretations, even if they conflict with our a priori philosophical stance (e.g., duration can be explicitly estimated by reading neuronal representation of time) and anthropomorphic assumptions (e.g., rats estimate time as humans do). While space is limited in a review, if the authors are interested, they can refer to a lengthy review I recently published on this topic, which demonstrates that my criticism is supported by a wide range of timing experiments across species (Robbe, 2023). In addition to this major conceptual issue that cast doubt on most of the conclusions of the study, there are also several major statistical issues.

      Main Concerns

      (#1) The authors used a task in which rats must poke for a minimal amount of time (300 ms and then 1500 ms) to be able to obtain a drop of water delivered a few centimeters right below the nosepoke. They claim that their task is a time estimation task. However, they forget that they work with thirsty rats that are eager to get water sooner than later (there is a reason why they start by a short duration!). This task is mainly probing the animals ability to wait (that is impulse control) rather than time estimation per se. Second, the task does not require to estimate precisely time because there appear to be no penalties when the nosepokes are too short or when they exceed. So it will be unclear if the variation in nosepoke reflects motivational changes rather than time estimation changes. The fact that this behavioral task is a poor assay for time estimation and rather reflects impulse control is shown by the tendency of animals to perform nose-pokes that are too short, the very slow improvement in their performance (Figure 1, with most of the mice making short responses), and the huge variability. Not only do the behavioral data not support the claim of the authors in terms of what the animals are actually doing (estimating time), but this also completely annhilates the interpretation of the Ca++ imaging data, which can be explained by motivational factors (changes in neuronal activity occurring while the animals nose poke may reflect a growing sens of urgency to check if water is available).

      (#2) A second issue is that the authors seem to assume that rats are perfectly immobile and perform like some kind of robots that would initiate nose pokes, maintain them, and remove them in a very discretized manner. However, in this kind of task, rats are constantly moving from the reward magazine to the nose poke. They also move while nose-poking (either their body or their mouth), and when they come out of the nose poke, they immediately move toward the reward spout. Thus, there is a continuous stream of movements, including fidgeting, that will covary with timing. Numerous studies have shown that sensorimotor dynamics influence neural activity, even in the prefrontal cortex. Therefore, the authors cannot rule out that what the records reflect are movements (and the scaling of movement) rather than underlying processes of time estimation (some kind of timer). Concretely, start cells could represent the ending of the movement going from the water spout to the nosepoke, and end cells could be neurons that initiate (if one can really isolate any initiation, which I doubt) the movement from the nosepoke to the water spout. Duration cells could reflect fidgeting or orofacial movements combined with an increasing urgency to leave the nose pokes.

      (#3) The statistics should be rethought for both the behavioral and neuronal data. They should be conducted separately for all the rats, as there is likely interindividual variability in the impulsivity of the animals.

      (#4) The fact that neuronal activity reflects an integration of movement and motivational factors rather than some abstract timing appears to be well compatible with the analysis conducted on the error trials (Figure 4), considering that the sensorimotor and motivational dynamics will rescale with the durations of the nose poke.

      (#5) The authors should mention upfront in the main text (result section) the temporal resolution allowed by their Ca+ probe and discuss whether it is fast enough in regard of behavioral dynamics occurring in the task.

    1. Reviewer #1 (Public Review):

      Summary:

      This work studies spatio-temporal patterns of structure-function coupling in developing brains, using a large set of imaging data acquired from children aged 5-22. Magnetic resonance imaging data of brain structure and function were obtained from a publicly available database, from which structural and functional features and measures were derived. The authors examined the spatial patterns of structure-function coupling and how they evolve with brain development. This work further sought correlations of brain structure-function coupling with behavior and explored evolutionary, microarchitectural and genetic bases that could potentially account for the observed patterns.

      Strength:

      The strength of this work is the use of currently available state-of-the-art analysis methods, along with a large set of high-quality imaging data, and comprehensive examinations of structure-function coupling in developing brains. The results are comprehensive and illuminating.

      Weakness:

      As with most other studies, transcriptomic and cellular architectures of structure-function coupling were characterized only on the basis of a common atlas in this work.

      The authors have achieved their aims in this study, and the findings provide mechanistic insights into brain development, which will inspire further basic and clinical studies along this line.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programing library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

      Strengths:

      The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs. In addition, the documentation website provided by the authors is very informative, allowing users to get quickly started with Vermouth.

      Weaknesses:

      Although the Vermouth library is designed as a general tool for topology generation for molecular simulations, only its applications with MARTINI have been demonstrated in the current study. Thus, the claimed generality of Vermouth remains to be exmained. The authors may consider to point out this in their manuscript.

    2. Reviewer #2 (Public Review):

      This work introduces a Vermouth library framework to enhance software development within the Martini community. Specifically, it presents a Vermouth-powered program, Martinize2, for generating coarse-grained structures and topologies from atomistic structures. In addition to introducing the Vermouth library and the Martinize2 program, this paper illustrates how Martinize2 identifies atoms, maps them to the Martini model, generates topology files, and identifies protonation states or post-translational modifications. Compared with the prior version, the authors provide a new figure to show that Martinize2 can be applied to various molecules, such as proteins, cofactors, and lipids. To demonstrate the general application, Martinize2 was used for converting 73% of 87,084 protein structures from the template library, with failed cases primarily blamed on missing coordinates.

      I was hoping to see some fundamental changes in the resubmitted version. To my disappointment, the manuscript remains largely unchanged (even the typo I pointed out previously was not fixed). I do not doubt that Martinize2 and Vermouth are useful to the Martini community, and this paper will have some impact. The manuscript is very technical and limited to the Martini community. The scientific insight for the general coarse-grained modeling community is unclear. The goal of the work is ambitious (such as high-throughput simulations and whole-cell modeling), but the results show just a validation of Martinize2. This version does not reverse my previous impression that it is incremental. As I pointed out in my previous review (and no response from the authors), all the issues associated with the Martini model are still there, e.g. the need for ENM. In this shape, I feel this manuscript is suitable for a specialized journal in computational biophysics or stays as part of the GitHub repository.

    3. Reviewer #3 (Public Review):

      The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications. After the revisions provided by the authors, I recommend minor revision.

      The authors have addressed most of my concerns provided previously. Specifically, showcasing the capability of coarse-graining other types of molecules (Figure 7) is a useful addition, especially for the booming field of therapeutic macrocycles.

      My only additional concern is that to justify Martinize2 and Vermouth as a "high-throughput" method, the speed of these tools needs to be addressed in some form in the manuscript as a guideline to users.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle are important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be related to hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamic systems.

      Weaknesses:

      (1) Connecting structure and function

      In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main Figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      (2) Explain intra-collective and inter-collective selection better for readers.

      The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. A clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.

      I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main Figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck is imposed on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      (4) Consideration of environmental stochasticity.

      The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      (5) Assumption about mutation rates

      If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      (6) Minor points

      In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.

      In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

    2. Reviewer #2 (Public Review):

      The authors provide an analytical framework to model the artificial selection of the composition of communities comprised of strains growing at different rates. Their approach takes into account the competition between the targeted selection at the level of the meta-community and the selection that automatically favors fast-growing cells within each replicate community. Their main finding is a tipping point or path-dependence effect, whereby compositions dominated by slow-growing types can only be reached by community-level selection if the community does not start and never crosses into a range of compositions dominated by fast growers during the dynamics.

      These results seem to us both technically correct and interesting. We commend the authors on their efforts to make their work reproducible even when it comes to calculations via extensive appendices, though perhaps a table of contents and a short description of these appendices at the start of SI would help navigate them.

      The main limitation in the current form of the article is that it could clarify how its assumptions and findings differ from and improve upon the rest of the literature:

      - Many studies discuss the interplay between community-level evolution and species- or strain-level evolution. But "evolution" can be a mix of various forces, including selection, drift/randomness, and mutation/innovation.

      - This work's specificity is that it focuses strictly on constant community-level selection versus constant strain-level selection, all other forces being negligible (neither stochasticity nor innovation/mutation matter at either level, as we try to clarify now).

      - Regarding constant community-level selection, it is only briefly noted that "once a target frequency is achieved, inter-collective selection is always required to maintain that frequency due to the fitness difference between the two types" [pg. 3 {section sign}2]. In other words, action from the selector is required indefinitely to maintain the community in the desired state. This assumption is found in a fraction of the literature, but is still worth clarifying from the start as it can inform the practical applicability of the results.

      - More importantly, strain-level evolution also boils down here to pure selection with a constant target, which is less usual in the relevant literature. Here, (1) drift from limited population sizes is very small, with no meaningful counterbalancing of selection, (2) pure exponential regime with constant fitness, no interactions, no density- or frequency-dependence, (3) there is no innovation in the sense that available types are unchanging through time (no evolution of traits such as growth rate or interactions) and (4) all the results presented seem unchanged when mutation rate mu = 0 (as noted in Appendix III), meaning that the conclusions are not "about" mutation in any meaningful way.

      - Furthermore, the choice of mutation mechanism is peculiar, as it happens only from slow to fast grower: more commonly, one assumes random non-directional mutations, rather than purely directional ones from less fit to fitter (which is more of a "Lamarckian" idea). Given that mutation does not seem to matter here, this choice might create unnecessary opposition from some readers or could be considered as just one possibility among others.

      It would be helpful to have all these points stated clearly so that it becomes easy to see where this article stands in an abundant literature and contributes to our understanding of multi-level evolution, and why it may have different conclusions or focus than others tackling very similar questions.

      Finally, a microbial context is given to the study, but the assumptions and results are in no way truly tied to that context, so it should be clear that this is just for flavor.

    3. Reviewer #3 (Public Review):

      The authors address the process of community evolution under collective-level selection for a prescribed community composition. They mostly consider communities composed of two types that reproduce at different rates, and that can mutate one into the other. Due to such differences in 'fitness' and to the absence of density dependence, within-collective selection is expected to always favour the fastest grower, but the collective-level selection can oppose this tendency, to a certain extent at least. By approximating the stochastic within-generation dynamics and solving it analytically, the authors show that not only high frequencies of fast growers can be reproducibly achieved, aligned with their fitness advantage. Small target frequencies can also be maintained, provided that the initial proportion of fast growers is sufficiently small. In this regime, similar to the 'stochastic corrector' model, variation upon which selection acts is maintained by a combination of demographic stochasticity and of sampling at reproduction. These two regions of achievable target compositions are separated by a gap, encompassing intermediate frequencies that are only achievable when the bottleneck size is small enough or the number of communities is (disproportionately) larger.

      A similar conclusion, that stochastic fluctuations can maintain the system over evolutionary time far from the prevalence of the faster-growing type, is then confirmed by analyzing a three-species community, suggesting that the qualitative conclusions of this study are generalizable to more complex communities.

      I expect that these results will be of broad interest to the community of researchers who strive to improve community-level selection, but are often limited to numerical explorations, with prohibitive costs for a full characterization of the parameter space of such embedded populations. The realization that not all target collective functions can be as easily achieved and that they should be adapted to the initial conditions and the selection protocol is also a sobering message for designing concrete applications.

      A major strength of this work is that the qualitative behaviour of the system is captured by an analytically solvable approximation so that the extent of the 'forbidden region' can be directly and generically related to the parameters of the selection protocol.

      I however found the description of the results too succinct and I think that more could be done to unpack the mathematical results in a way that is understandable to a broader audience. Moreover, the phenomenon the authors characterize is of purely ecological nature. Here, mutations of the growth rate are, in my understanding, neither necessary (non-trivial equilibria can be maintained also when \mu =0) nor sufficient (community-level selection is necessary to keep the system far from the absorbing state) for the phenomenon described. Calling this dynamics community evolution reflects a widespread ambiguity, and is not ascribable just to this work. I find that here the authors have the opportunity to make their message clearer by focusing on the case where the 'mutation' rate \mu vanishes (Equations 39 & 40 of the SI) - which is more easily interpretable, at least in some limits - while they may leave the more general equations 3 & 4 in the SI. Combined with an analysis of the deterministic equations, that capture the possibility of maintaining high frequencies of fast growers, the authors could elucidate the dynamics that are induced by the presence of a second level of selection, and speculate on what would be the result of real open-ended evolution (not encompassed by the simple 'switch mutations' generally considered in evolutionary game theory), for instance discussing the invasibility (or not) of mutant types with slightly different growth rates.

      The single most important model hypothesis that I would have liked to be discussed further is that the two types do not interact. Species interactions are not only essential to achieve inheritance of composition in the course of evolution but are generally expected to play a key role even on ecological time scales. I hope the authors plan to look at this in future work.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Kume et al examined the role of the protein Semaphorin 4a in steady-state skin homeostasis and how this relates to skin changes seen in human psoriasis and imiquimod-induced psoriasis-like disease in mice. The authors found that human psoriatic skin has reduced expression of Sema4a in the epidermis. While Sema4a has been shown to drive inflammatory activation in different immune populations, this finding suggested Sema4a might be important for negatively regulating Th17 inflammation in the skin. The authors go on to show that Sema4a knockout mice have skin changes in key keratinocyte genes, increased gdT cells, and increased IL-17 similar to differences seen in non-lesional psoriatic skin, and that bone marrow chimera mice with WT immune cells and Sema4a KO stromal cells develop worse IMQ-induced psoriasis-like disease, further linking expression of Sema4a in the skin to maintaining skin homeostasis. The authors next studied downstream pathways that might mediate the homeostatic effects of Sema4a, focusing on mTOR given its known role in keratinocyte function. As with the immune phenotypes, Sema4a KO mice had increased mTOR activation in the epidermis in a similar pattern to mTOR activation noted in non-lesional psoriatic skin. The authors next targeted the mTOR pathway and showed rapamycin could reverse some of the psoriasis-like skin changes in Sema4a KO mice, confirming the role of increased mTOR in contributing to the observed skin phenotype.

      Strengths:

      The most interesting finding is the tissue-specific role for Sema4a, where it has previously been considered to play a mostly pro-inflammatory role in immune cells, this study shows that when expressed by keratinocytes, Sema4a plays a homeostatic role that when missing leads to the development of psoriasis-like skin changes. This has important implications in terms of targeting Sema4a pharmacologically. It also may yield a novel mouse model to study mechanisms of psoriasis development in mice separate from the commonly used IMQ model. The included experiments are well-controlled and executed rigorously.

      Weaknesses:

      A weakness of the study is the lack of tissue-specific Sema4a knockout mice (e.g. in keratinocytes only). The authors did use bone marrow chimeras, but only in one experiment. This work implies that psoriasis may represent a Sema4a-deficient state in the epidermal cells, while the same might not be true for immune cells. Indeed, in their analysis of non-lesional psoriasis skin, Sema4a was not significantly decreased compared to control skin, possibly due to compensatory increased Sema4a from other cell types. Unbiased RNA-seq of Sema4a KO mouse skin for comparison to non-lesional skin might identify other similarities besides mTOR signaling. Indeed, targeting mTOR with rapamycin reveres some of the skin changes in Sema4a KO mice, but not skin thickness, so other pathways impacted by Sema4a may be better targets if they could be identified. Utilizing WTKO chimeras in addition to global KO mice in the experiments in Figures 6-8 would more strongly implicate the separate role of Sema4a in skin vs immune cell populations and might more closely mimic non-lesional psoriasis skin.

    2. Reviewer #2 (Public Review):

      Summary:

      Kume et al. found for the first time that Semaphorin 4A (Sema4A) was downregulated in both mRNA and protein levels in L and NL keratinocytes of psoriasis patients compared to control keratinocytes. In peripheral blood, they found that Sema4A is not only expressed in keratinocytes but is also upregulated in hematopoietic cells such as lymphocytes and monocytes in the blood of psoriasis patients. They investigated how the down-regulation of Sema4A expression in psoriatic epidermal cells affects the immunological inflammation of psoriasis by using a psoriasis mice model in which Sema4A KO mice were treated with IMQ. Kume et al. hypothesized that down-regulation of Sema4A expression in keratinocytes might be responsible for the augmentation of psoriasis inflammation. Using bone marrow chimeric mice, Kume et al. showed that KO of Sema4A in non-hematopoietic cells was responsible for the enhanced inflammation in psoriasis. The expression of CCL20, TNF, IL-17, and mTOR was upregulated in the Sema4AKO epidermis compared to the WT epidermis, and the infiltration of IL-17-producing T cells was also enhanced.

      Strengths:

      Decreased Sema4A expression may be involved in psoriasis exacerbation through epidermal proliferation and enhanced infiltration of Th17 cells, which helps understand psoriasis immunopathogenesis.

      Weaknesses:

      The mechanism by which decreased Sema4A expression may exacerbate psoriasis is unclear as yet.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the role of CD47 and TSP1 in extramedullary erythropoiesis by utilization of both global CD47-/- mice and TSP1-/- mice.

      Strengths:

      Flow cytometry combined with spleen bulk and single cell transcriptomics were employed. The authors found that stress-induced erythropoiesis markers were increased in CD47-/- spleen cells, particularly genes that are required for terminal erythroid differentiation. Moreover, CD47 dependent erythroid precursors population was identified by spleen scRNA sequencing. In contrast, the same cells were not detected in TSP1-/- spleen. These findings provide strong evidence to support the conclusion that differential role of CD47 and TSP1 in extramedullary erythropoiesis in mouse spleen. Furthermore, the relevance of the current finding to the prevalent side effect (anemia) of anti-CD47 mediated cancer therapy has been discussed in the Discussion section.

    2. Reviewer #3 (Public Review):

      The authors used existing mouse models to compare the effects of ablating the CD47 receptor and its signaling ligand Thrombospondin. They analyze the cell composition of the spleens from CD47-KO and Thsp-KO using Flow Cytometry and single cell sequencing and focus mostly on early hematopoietic and erythroid populations. The data broadly shows that splenomegaly in the CD47-KO is largely due to an increase in committed erythroid progenitors, whereas the Thsp-KO shows a slight depletion of committed erythroid progenitors but is otherwise similar to WT in splenic cell composition. Thus, both their datasets supports the main conclusions of the study. One caveat of the single-cell dataset is that, insofar as the authors have explored and presented it, a clear picture of the mechanism driving extra medullary erythropoiesis in CD47-KO is lacking. This would be extremely valuable since one of the stated translational implications of this study is to assess and remedy the anemia caused by anti-CD47 therapy used in subtypes of AML. Nevertheless, this study provides novel insights into a putative role of Thsp-CD47 signaling in triggering definitive erythropoiesis in the mouse spleen in response to anemic stress and constitutes a good resource for researchers seeking to understand extramedullary erythropoiesis. This study also has generated data that will enable exploration of the possible adverse effects of using anti-CD47 therapies to treat AML.

    1. Reviewer #1 (Public Review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      While the manuscript is generally well-structured, some clarification and some minor corrections are needed.

    2. Reviewer #2 (Public Review):

      In recent years, lots of researchers have tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high-resolution mass spectrometry. This study adds to this effort. The authors studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using a biochemistry method and used MS identification technology to confirm it. The results extend our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find their conclusion to be a little speculative, and unfortunately, it also doesn't totally support the conclusion that the authors provided. In addition, regarding the figure arrangement, lots of the supplementary figures are not mentioned, and tables are not all placed in context.

      Major concerns:

      -In the opinion of this reviewer, is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." This should be modified to delete the "in the prokaryotes", unless the authors get new or more evidence in the other prokaryotes for the existence of the AhCobQ.

      -I was confused about the arrangement of the supplementary results. There are no citations for Figures S9-S19.

      -No data are included for Tables S1-S6.

      -The load control is not all integrated. All of the load controls with whole PAGE gel or whole membrane western blot results should be provided. Without these whole results, it is not convincing to come to the conclusion that the authors have.

      -The materials & methods section should be thoroughly reviewed. It is unclear to me what exactly the authors are describing in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, purification conditions, etc.

      -Relevant information should be included about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

    3. Reviewer #3 (Public Review):

      Summary:

      This study reports on a novel NAD+ and Zn2+-independent protein lysine deacetylase (KDAC) in Aeromonas hydrophila, termed AhCobQ (AHA_1389). This protein is annotated as a CobQ/CobB/MinD/ParA family protein and does not show similarity with known NAD+-dependent or Zn2+-dependent KDACs. The authors show that AhCobQ has NAD+ and Zn2+-independent deacetylase activity with acetylated BSA by western blot and MS analyses. They also provide evidence that the 195-245 aa region of AhCobQ is responsible for the deacetylase activity, which is conserved in some marine prokaryotes and has no similarity with eukaryotic proteins. They identified target proteins of AhCobQ deacetylase by proteomic analysis and verified the deacetylase activity using site-specific acetyllysine-incorporated target proteins. Finally, they show that AhCobQ activates isocitrate dehydrogenase by deacetylation at K388.

      Strengths:

      The finding of a new type of KDAC has a valuable impact on the field of protein acetylation. The characters (NAD+ and Zn2+-independent deacetylase activity in an unknown domain) shown in this study are very unexpected.

      Weaknesses:

      (1) As the characters of AhCobQ are very unexpected, to convince readers, MSMS data would be needed to exactly detect deacetylation at the target site in deacetylase activity assays. The authors show the MSMS data in assays with acetylated BSA, but other assays only rely on western blot.

      (2) They prepared site-specific Kac proteins and used them in deacetylase activity assays. The incorporation of acetyllysine at the target site needs to be confirmed by MSMS and shown as supplementary data.

      (3) The authors imply that the 195-245 aa region of AhCobQ may represent a new domain responsible for deacetylase activity. The feature of the region would be of interest but is not sufficiently described in Figure 5. The amino acid sequence alignments with representative proteins with conserved residues would be informative. It would be also informative if the modeled structure predicted by AlphaFold is shown and the structural similarity with known deacetylases is discussed.

    1. Reviewer #1 (Public Review):

      Summary:

      Plasmodium vivax can persist in the liver of infected individuals in the form of dormant hypnozoites, which cause malaria relapses and are resistant to most current antimalarial drugs. This highlights the need to develop new drugs active against hypnozoites that could be used for radical cure. Here, the authors capitalize on an in vitro culture system based on primary human hepatocytes infected with P. vivax sporozoites to screen libraries of repurposed molecules and compounds acting on epigenetic pathways. They identified a number of hits, including hydrazinophthalazine analogs. They propose that some of these compounds may act on epigenetic pathways potentially involved in parasite quiescence. To provide some support to this hypothesis, they document DNA methylation of parasite DNA based on 5-methylcytosine immunostaining, mass spectrometry, and bisulfite sequencing.

      Strengths:<br /> -The drug screen itself represents a huge amount of work and, given the complexity of the experimental model, is a tour de force.<br /> -The screening was performed in two different laboratories, with a third laboratory being involved in the confirmation of some of the hits, providing strong support that the results were reproducible.<br /> -The screening of repurposing libraries is highly relevant to accelerate the development of new radical cure strategies.

      Weaknesses:

      -The manuscript is composed of two main parts, the drug screening itself and the description of DNA methylation in Plasmodium pre-erythrocytic stages. Unfortunately, these two parts are loosely connected. First, there is no evidence that the identified hits kill hypnozoites via epigenetic mechanisms. The hit compounds almost all act on schizonts in addition to hypnozoites, therefore it is unlikely that they target quiescence-specific pathways. At least one compound, colforsin, seems to selectively act on hypnozoites, but this observation still requires confirmation. Second, while the description of DNA methylation is per se interesting, its role in quiescence is not directly addressed here. Again, this is clearly not a specific feature of hypnozoites as it is also observed in P. vivax and P. cynomolgi hepatic schizonts and in P. falciparum blood stages. Therefore, the link between DNA methylation and hypnozoite formation is unclear. In addition, DNA methylation in sporozoites may not reflect epigenetic regulation occurring in the subsequent liver stages.

      -The mode of action of the hit compounds remains unknown. In particular, it is not clear whether the drugs act on the parasite or on the host cell. Merely counting host cell nuclei to evaluate the toxicity of the compounds is probably acceptable for the screen but may not be sufficient to rule out an effect on the host cell. A more thorough characterization of the toxicity of the selected hit compounds is required.

      -There is no convincing explanation for the differences observed between P. vivax and P. cynomolgi. The authors question the relevance of the simian model but the discrepancy could also be due to the P. vivax in vitro platform they used.

      -Many experiments were performed only once, not only during the screen (where most compounds were apparently tested in a single well) but also in other experiments. The quality of the data would be increased with more replication.

      -While the extended assay (12 days versus 8 days) represents an improvement of the screen, the relevance of adding inhibitors of core cytochrome activity is less clear, as under these conditions the culture system deviates from physiological conditions.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, inhibitors of the P. vivax liver stages are identified from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library as well as a 773-member collection of epigenetic inhibitors. This study led to the discovery that epigenetics pathway inhibitors are selectively active against P. vivax and P. cynomolgi hypnozoites. Several inhibitors of histone post-translational modifications were found among the hits and genomic DNA methylation mapping revealed the modification on most genes. Experiments were completed to show that the level of methylation upstream of the gene (promoter or first exon) may impact gene expression. With the limited number of small molecules that act against hypnozoites, this work is critically important for future drug leads. Additionally, the authors gleaned biological insights from their molecules to advance the current understanding of essential molecular processes during this elusive parasite stage.

      Strengths:<br /> -This is a tremendously impactful study that assesses molecules for the ability to inhibit Plasmodium hypnozoites. The comparison of various species is especially relevant for probing biological processes and advancing drug leads.

      -The SI is wonderfully organized and includes relevant data/details. These results will inspire numerous studies beyond the current work.

    3. Reviewer #3 (Public Review):

      Although this work represents a massive screening effort to find new drugs targeting P. vivax hypnozoites, the authors should balance their statement that they identified targetable epigenetic pathways in hypnozoites.

      • They should emphasize the potential role of the host cell in the presentation of the results and the discussion, as it is known that other pathogens modify the epigenome of the host cell (i.e. toxoplasma, HIV) to prevent cell division. Also, hydrazinophtalazines target multiple pathways (notably modulation of calcium flux) and have been shown to inhibit DNA-methyl transferase 1 which is lacking in Plasmodium.

      • In a drug repurposing approach, the parasite target might also be different than the human target.

      • The authors state that host-cell apoptotic pathways are downregulated in P. vivax infected cells (p. 5 line 162). Maybe the HDAC inhibitors and DNA-methyltransferase inhibitors are reactivating these pathways, leading to parasite death, rather than targeting parasites directly.

      It would make the interpretation of the results easier if the authors used EC50 in µM rather than pEC50 in tables and main text. It is easy to calculate when it is a single-digit number but more complicated with multiple digits.

      Authors mention hypnozoite-specific effects but in most cases, compounds are as potent on hypnozoite and schizonts. They should rather use "liver stage specific" to refer to increased activity against hypnozoites and schizonts compared to the host cell. The same comment applies to line 351 when referring to MMV019721. Following the same idea, it is a bit far-fetched to call MMV019721 "specific" when the highest concentration tested for cytotoxicity is less than twice the EC50 obtained against hypnozoites and schizonts.

      Page 5 lines 187-189, the authors state "...hydrazinophtalazines were inactive when tested against P. berghei liver schizonts and P. falciparum asexual blood stages, suggesting that hypnozoite quiescence may be biologically distinct from developing schizonts". The data provided in Figure 1B show that these hydrazinophtalazines are as potent in P. vivax schizonts than in P. vivax hypnozoites, so the distinct activity seems to be Plasmodium species specific and/or host-cell specific (primary human hepatocytes rather than cell lines for P. berghei) rather than hypnozoite vs schizont specific.

      Why choose to focus on cadralazine if abandoned due to side effects? Also, why test the pharmacokinetics in monkeys? As it was a marketed drug, were no data available in humans?

      In the counterscreen mentioned on page 6, the authors should mention that the activity of poziotinib in P. berghei and P. cynomolgi is equivalent to cell toxicity, so likely not due to parasite specificity.

      To improve the clarity and flow of the manuscript, could the authors make a recapitulative table/figure for all the data obtained for poziotinib and hydrazinophtalazines in the different assays (8-days vs 12-days) and laboratory settings rather than separate tables in main and supplementary figures. Maybe also reorder the results section notably moving the 12-day assay before the DNA methylation part.

      The isobologram plot shows an additive effect rather than a synergistic effect between cadralazine and 5-azacytidine, please modify the paragraph title accordingly. Please put the same axis scale for both fractional EC50 in the isobologram graph (Figure 2A).

      Concerning the immunofluorescence detection of 5mC and 5hmC, the authors should be careful with their conclusions. The Hoechst signal of the parasites is indistinguishable because of the high signal given by the hepatocyte nuclei. The signal obtained with the anti-5hmC in hepatocyte nuclei is higher than with the anti-5mC, thus if a low signal is obtained in hypnozoites and schizonts, it might be difficult to dissociate from the background. In blood stages (Figure S18), the best to obtain a good signal is to lyse the red blood cell using saponin, before fixation and HCl treatment.

      To conclude that 5mC marks are the predominate DNA methylation mark in both P. falciparum and P. vivax, authors should also mention that they compare different stages of the life cycle, that might have different methylation levels.

      Also, the authors conclude that "[...] 5mC is present at low level in P. vivax and P. cynomolgi sporozoites and could control liver stage development and hypnozoite quiescence". Based on the data shown here, nothing, except presence the of 5mC marks, supports that DNA methylation could be implicated in liver stage development or hypnozoite quiescence.

      How many DNA-methyltransferase inhibitors were present in the epigenetic library? Out of those, none were identified as hits, maybe the hydrazinophtalazines effect is not linked to DNMT inhibition but another target pathway of these molecules like calcium transport?

      The authors state (line 344): "These results corroborate our hypothesis that epigenetic pathways regulate hypnozoites". This conclusion should be changed to "[...] that epigenetic pathways are involved in P. vivax liver stage survival" because:<br /> • The epigenetic inhibitors described here are as active on hypnozoite than liver schizonts.<br /> • Again, we cannot rule out that the host cell plays a role in this effect and that the compound may not act directly on the parasite.

      The same comment applies to the quote in lines 394 to 396. There is no proof in the results presented here that DNA methylation plays any role in the effect of hydrazinophtalazines in the anti-plasmodial activity obtained in the assay.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors established an in vitro triple co-culture BBB model and demonstrated its advantages compared with the mono or double co-culture BBB model. Further, the authors used their established in vitro BBB model and combined it with other methodologies to investigate the specific mechanism that co-culture with astrocytes but also neurons enhanced the integrity of endothelial cells.

      Strengths:

      The results persuasively showed the established triple co-culture BBB model well mimicked several important characteristics of BBB compared with the mono-culture BBB model, including better barrier function and in vivo/in vitro correlation. The human-derived immortalized cells used made the model construction process faster and more efficient, and have a better in vivo correlation without species differences. This model is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.

      Based on the previous experimental results, detailed studies investigated how co-culture with neurons and astrocytes promoted claudin-5 and VE-cadherin in endothelial cells, and the specific signaling mechanisms were also studied. Interestingly, the authors found that neurons also released GDNF to promote barrier properties of brain endothelial cells, as most current research has focused on the promoting effect of astrocytes-derived GDNF on BBB. Meanwhile, the author also validated the functions of GDNF for BBB integrity in vivo by silencing GDNF in mouse brains. Overall, the experiments and data presented support their claim that, in addition to astrocytes, neurons also have a promoting effect on the barrier function of endothelial cells through GDNF secretion.

      Weaknesses:

      Although the authors demonstrated a highly usable for predicting the BBB permeability, recorded TEER measurements are still far from the human BBB in vivo reported measurements of TEER, and expression of transporters was not promoted by co-culture, which may lead to the model being unsuitable for studying drug transport mediated by transporters on BBB.

    2. Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues developed a new in vitro blood-brain barrier model that is relatively simple yet outperforms previous models. By incorporating a neuroblastoma cell line, they demonstrated increased electrical resistance and decreased permeability to small molecules.

      Strengths:

      The authors initially elucidated the soluble mediator responsible for enhancing endothelial functionality, namely GDNF. Subsequently, they elucidated the mechanisms by which GDNF upregulates the expression of VE-cadherin and Claudin-5. They further validated these findings in vivo, and demonstrated predictive value for molecular permeability as well. The study is meticulously conducted and easily comprehensible. The conclusions are firmly supported by the data, and the objectives are successfully achieved. This research is poised to advance future investigations in BBB permeability, leakage, dysfunction, disease modeling, and drug delivery, particularly in high-throughput experiments. I anticipate an enthusiastic reception from the community interested in this area. While other studies have produced similar results with tri-cultures (PMID: 25630899), this study notably enhances electrical resistance compared to previous attempts.

      Weaknesses:

      Considerable effort has been directed towards developing in vitro models that more closely resemble their in vivo counterparts, utilizing stem cell-derived NVU cells. Although these examples are currently rudimentary, they offer better BBB mimicry than Yang's study.

      Additionally, some instances might benefit from more robust statistical tests; nonetheless, I do not think this would significantly alter the experimental conclusions.

      Similar experiments with tri-cultures yielding analogous results have been reported by other authors (PMID: 25630899). TEER values are a bit higher than the aforementioned experiments; however, this study has values at least one order of magnitude lower than physiological levels.

    1. Reviewer #2 (Public Review):

      Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.

      The conclusions of this study are mostly well supported by data.

    2. Reviewer #3 (Public Review):

      Distant metastasis is the major cause of death in patients with breast cancer. In this manuscript, Liu et al. show that RGS10 deficiency elicits distant metastasis via epithelial-mesenchymal transition in breast cancer. As a prognostic indicator of breast cancer, RGS10 regulates the progress of breast cancer and affects tumor phenotypes such as epithelial-mesenchymal transformation, invasion, and migration. The conclusions of this paper are mostly well supported by data.

    3. Reviewer #1 (Public Review):

      The paper has shown the expression of RGS10 is related to the molecular subtype, distant metastasis, and survival status of breast cancer. The study utilizes bioinformatic analyses, human tissue samples, and in vitro and in vivo experiments which strengthen the data. RGS10 was validated to inhibit EMT through a novel mechanism dependent on LCN2 and miR-539-5p, thereby reducing cancer cell proliferation, colony formation, invasion, and migration. The study elaborated on the function of RGS10 in influencing the prognosis and biological behavior which could be considered as a potential drug target in breast cancer.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper is focused on the role of Cadherin Flamingo (Fmi) - also called Starry night (stan) - in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that express activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which makes continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind.

      The authors show that clonal loss of Fmi by an allele or by RNAi in the RasV12, scrib-i tumors suppresses their growth in both the eye disc (continuous clones) and wing disc (discrete clones). The authors attributed this result to less killing of WT neighbors when Myc over-expressing clones lacking Fmi, but another interpretation (that Fmi regulates clonal growth) is equally as plausible with the current results. Next, the authors show that scrib-RNAi clones that are normally out-competed by WT cells prior to adult stages are present in higher numbers when WT cells are depleted for Fmi. They then examine death in RasV12, scrib-i ey-FLP clones, or in discrete hs-FLP UAS-Myc clones. They state that they see death in WT cells neighboring RasV12, scrib-i clones in the eye disc (Figures 4A-C). Next, they write that RasV12, scrib-I cells become losers (i.e., have apoptosis markers) when Fmi is removed. Neither of these results are quantified and thus are not compelling. They state that a similar result is observed for Myc over-expression clones that lack Fmi, but the image was not compelling, the results are not quantified and the controls are missing (Myc over-expressing clones alone and Fmi clones alone). They then want to test whether Myc over-expressing clones have more proliferation. They show an image of a wing disc that has many small Myc overexpressing clones with and without Fmi. The pHH3 results support their conclusion that Myc overexpressing clones have more pHH3, but I have reservations about the many clones in these panels (Figures 5L-N). They show that the cell competition roles of Fmi are not shared by another PCP component and are not due to the Cadherin domain of Fmi. The authors appear to interpret their results as Fmi is required for winner status. Overall, some of these results are potentially interesting and at least partially supported by the data, but others are not supported by the data.

      Strengths:

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      (1) In the Myc over-expression experiments, the increased size of the Myc clones could be because they divide faster (but don't outcompete WT neighbors). If the authors want to conclude that the bigger size of the Myc clones is due to out-competition of WT neighbors, they should measure cell death across many discs of with these clones. They should also assess if reducing apoptosis (like using one copy of the H99 deficiency that removes hid, rpr, and grim) suppresses winner clone size. If cell death is not addressed experimentally and quantified rigorously, then their results could be explained by faster division of Myc over-expressing clones (and not death of neighbors). This could also apply to the RasV12, scrib-i results.

      (2) This same comment about Fmi affecting clone growth should be considered in the scrib RNAi clones in Figure 3.

      (3) I don't understand why the quantifications of clone areas in Figures 2D, 2H, 6D are log values. The simple ratio of GFP/RFP should be shown. Additionally, in some of the samples (e.g., fmiE59 >> Myc, only 5 discs and fmiE59 vs >Myc only 4 discs are quantified but other samples have more than 10 discs). I suggest that the authors increase the number of discs that they count in each genotype to at least 20 and then standardize this number.

      (4) There is a typo when referring to Figures 3C-D. It should be Figure 2C-D.

      (5) Figure 4 - shows examples of cell death. Cas3 is written on the figure but Dcp-1 is written in the results. Which antibody was used? The authors need to quantify these results. They also need to show that the death of cells is part of the phenotype, like an H99 deficiency, etc (see above).

      (6) It is well established that clones overexpressing Myc have increased cell death. The authors should consider this when interpreting their results.

      (7) A better characterization of discrete Fmi clones would also be helpful. I suggest inducing hs-flp clones in the eye or wing disc and then determining clone size vs twin spot size and also examining cell death etc. If such experiments have already been done and published, the authors should include a description of such work in the preprint.

      (8) We need more information about the expression pattern of Fmi. Is it expressed in all cells in imaginal discs? Are there any patterns of expression during larval and pupal development?

      (9) Overall, the paper is written for specialists who work in cell competition and is fairly difficult to follow, and I suggest re-writing the results to make it accessible to a broader audience.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a comprehensive mechanistic understanding. Induction of apoptosis and JNK activation are general outcomes, but it is important to determine how they are specifically induced in Fmi-depleted clones. The authors should take advantage of the power of fly genetics and conduct a series of genetic epistasis analyses.

      (2) The depletion of Fmi may not have had a significant impact on cell competition; instead, it is more likely to have solely facilitated the induction of apoptosis.

      (3) To make a solid conclusion for Figure 1, the authors should investigate whether complete removal of Fmi by a mutant allele affects tumor growth induced by expressing RasV12 and scrib RNAi throughout the eye.

      (4) The authors should test whether the expression level of Fmi (both mRNA and protein) changes during tumorigenesis and cell competition.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Bosch and colleagues describe an unexpected function of Flamingo, a core component of the planar cell polarity pathway, in cell competition in the Drosophila wing and eye disc. While Flamingo depletion has no impact on tumour growth (upon induction of Ras and depletion of Scribble throughout the eye disc), and no impact when depleted in WT cells, it specifically tunes down winner clone expansion in various genetic contexts, including the overexpression of Myc, the combination of Scribble depletion with activation of Ras in clones or the early clonal depletion of Scribble in eye disc. Flamingo depletion reduces the proliferation rate and increases the rate of apoptosis in the winner clones, hence reducing their competitiveness up to forcing their full elimination (hence becoming now "loser"). This function of Flamingo in cell competition is specific to Flamingo as it cannot be recapitulated with other components of the PCP pathway, and does not rely on the interaction of Flamingo in trans, nor on the presence of its cadherin domain. Thus, this function is likely to rely on a non-canonical function of Flamingo which may rely on downstream GPCR signaling.

      This unexpected function of Flamingo is by itself very interesting. In the framework of cell competition, these results are also important as they describe, to my knowledge, one of the only genetic conditions that specifically affect the winner cells without any impact when depleted in the loser cells. Moreover, Flamingo does not just suppress the competitive advantage of winner clones, but even turns them into putative losers. This specificity, while not clearly understood at this stage, opens a lot of exciting mechanistic questions, but also a very interesting long-term avenue for therapeutic purposes as targeting Flamingo should then affect very specifically the putative winner/oncogenic clones without any impact in WT cells.

      The data and the demonstration are very clean and compelling, with all the appropriate controls, proper quantification, and backed-up by observations in various tissues and genetic backgrounds. I don't see any weakness in the demonstration and all the points raised and claimed by the authors are all very well substantiated by the data. As such, I don't have any suggestions to reinforce the demonstration.

      While not necessary for the demonstration, documenting the subcellular localisation and levels of Flamingo in these different competition scenarios may have been relevant and provided some hints on the putative mechanism (specifically by comparing its localisation in winner and loser cells).

      Also, on a more interpretative note, the absence of the impact of Flamingo depletion on JNK activation does not exclude some interesting genetic interactions. JNK output can be very contextual (for instance depending on Hippo pathway status), and it would be interesting in the future to check if Flamingo depletion could somehow alter the effect of JNK in the winner cells and promote downstream activation of apoptosis (which might normally be suppressed). It would be interesting to check if Flamingo depletion could have an impact in other contexts involving JNK activation or upon mild activation of JNK in clones.

      Strengths:

      - A clean and compelling demonstration of the function of Flamingo in winner cells during cell competition.

      - One of the rare genetic conditions that affects very specifically winner cells without any impact on losers, and then can completely switch the outcome of competition (which opens an interesting therapeutic perspective in the long term)

      Weaknesses:

      - The mechanistic understanding obviously remains quite limited at this stage especially since the signaling does not go through the PCP pathway.

    1. Reviewer #1 (Public Review):

      Summary:

      This study shows a new mechanism of GS regulation in the archaean Methanosarcina maze and clarifies the direct activation of GS activity by 2-oxoglutarate, thus featuring another way in which 2-oxoglutarate acts as a central status reporter of C/N sensing.

      Mass photometry and single particle cryoEM structure analysis convincingly show the direct regulation of GS activity by 2-OG promoted formation of the dodecameric structure of GS. The previously recognized small proteins GlnK1 and Sp26 seem to play a subordinate role in GS regulation, which is in good agreement with previous data. Although these data are quite clear now, there remains one major open question: how does 2-OG further increase GS activity once the full dodecameric state is achieved (at 5 mM)? This point needs to be reconsidered.

      Strengths:

      Mass photometry reveals a dynamic mode of the effect of 2-OG on the oligomerization state of GS. Single particle Cryo-EM reveals the mechanism of 2-OG mediated dodecamer formation.

      Weaknesses:

      It is not entirely clear, how very high 2-OG concentrations activate GS beyond dodecamer formation.

      The data presented in this work are in stark contrast to the previously reported structure of M. mazei GS by the Schumacher lab. This is very confusing for the scientific community and requires clarification. The discussion should consider possible reasons for the contradictory results.

      Importantly, it is puzzling how Schumacher could achieve an apo-structire of dodecameeric GS? If 2-OG is necessary for dodecameric formation, this should be discussed. If GlnK1 doesn't form a complex with the dodecameric GS, how could such a complex be resolved there?

      In addition, the text is in principle clear but could be improved by professional editing. Most obviously there is insufficient comma placement.

    2. Reviewer #2 (Public Review):

      Summary:

      Herdering et al. introduced research on an archaeal glutamine synthetase (GS) from Methanosarcina mazei, which exhibits sensitivity to the environmental presence of 2-oxoglutarate (2-OG). While previous studies have indicated 2-OG's ability to enhance GS activity, the precise underlying mechanism remains unclear. Initially, the authors utilized biophysical characterization, primarily employing a nanomolar-scale detection method called mass photometry, to explore the molecular assembly of Methanosarcina mazei GS (M. mazei GS) in the absence or presence of 2-OG. Similar to other GS enzymes, the target M. mazei GS forms a stable dodecamer, with two hexameric rings stacked in tail-to-tail interactions. Despite approximately 40% of M. mazei GS existing as monomeric or dimeric entities in the detectable solution, the majority spontaneously assemble into a dodecameric state. Upon mixing 2-OG with M. mazei GS, the population of the dodecameric form increases proportionally with the concentration of 2-OG, indicating that 2-OG either promotes or stabilizes the assembly process. The cryo-electron microscopy (cryo-EM) structure reveals that 2-OG is positioned near the interface of two hexameric rings. At a resolution of 2.39 Å, the cryo-EM map vividly illustrates 2-OG forming hydrogen bonds with two individual GS subunits as well as with solvent water molecules. Moreover, local side-chain reorientation and conformational changes of loops in response to 2-OG further delineate the 2-OG-stabilized assembly of M. mazei GS.

      Strengths & Weaknesses:

      The investigation studies the impact of 2-oxoglutarate (2-OG) on the assembly of Methanosarcina mazei glutamine synthetase (M mazei GS). Utilizing cutting-edge mass photometry, the authors scrutinized the population dynamics of GS assembly in response to varying concentrations of 2-OG. Notably, the findings demonstrate a promising and straightforward correlation, revealing that dodecamer formation can be stimulated by 2-OG concentrations of up to 10 mM, although GS assembly never reaches 100% dodecamerization in this study. Furthermore, catalytic activities showed a remarkable enhancement, escalating from 0.0 U/mg to 7.8 U/mg with increasing concentrations of 2-OG, peaking at 12.5 mM. However, an intriguing gap arises between the incomplete dodecameric formation observed at 10 mM 2-OG, as revealed by mass photometry, and the continued increase in activity from 5 mM to 10 mM 2-OG for M mazei GS. This prompts questions regarding the inability of M mazei GS to achieve complete dodecamer formation and the underlying factors that further enhance GS activity within this concentration range of 2-OG.

      Moreover, the cryo-electron microscopy (cryo-EM) analysis provides additional support for the biophysical and biochemical characterization, elucidating the precise localization of 2-OG at the interface of two GS subunits within two hexameric rings. The observed correlation between GS assembly facilitated by 2-OG and its catalytic activity is substantiated by structural reorientations at the GS-GS interface, confirming the previously reported phenomenon of "funnel activation" in GS. However, the authors did not present the cryo-EM structure of M. mazei GS in complex with ATP and glutamate in the presence of 2-OG, which could have shed light on the differences in glutamine biosynthesis between previously reported GS enzymes and the 2-OG-bound M. mazei GS.

      Furthermore, besides revealing the cryo-EM structure of 2-OG-bound GS, the study also observed the filamentous form of GS, suggesting that filament formation may be a universal stacking mechanism across archaeal and bacterial species. However, efforts to enhance resolution to investigate whether the stacked polymer is induced by 2-OG or other factors such as ions or metabolites were not undertaken by the authors, leaving room for further exploration into the mechanisms underlying filament formation in GS.

    3. Reviewer #3 (Public Review):

      Summary:

      The current manuscript investigates the effect of 2-oxoglutarate and the Glk1 protein as modulators of the enzymatic reactivity of glutamine synthetase. To do this, the authors rely on mass photometry, specific activity measurements, and single-particle cryo-EM data.

      From the results obtained, the authors convey that glutamine synthetase from Methanosarcina mazei exists in a non-active monomeric/dimeric form under low concentrations of 2-oxoglutarate, and its oligomerization into a dodecameric complex is triggered by higher concentration of 2-oxoglutarate, also resulting in the enhancement of the enzyme activity.

      Strengths:

      Glutamine synthetase is a crucial enzyme in all domains of life. The dodecameric fold of GS is recurrent amongst prokaryotic and archaea organisms, while the enzyme activity can be regulated in distinct ways. This is a very interesting work combining protein biochemistry with structural biology.

      The role of 2-OG is here highlighted as a crucial effector for enzyme oligomerization and full reactivity.

      Weaknesses:

      Various opportunities to enhance the current state-of-the-art were missed. In particular, omissions of the ligand-bound state of GnK1 leave unexplained the lack of its interaction with GS (in contradiction with previous results from the authors). A finer dissection of the effect and role of 2-oxoglurate are missing and important questions remain unanswered (e.g. are dimers relevant during early stages of the interaction or why previous GS dodecameric structures do not show 2-oxoglutarate).

    1. Reviewer #1 (Public Review):

      The paper meticulously explores various conformations and states of the ribosome-translocon complex. Employing advanced techniques such as cryoEM structural determination and AlphaFold modeling, the study delves into the dynamic nature of the ribosome-translocon complex. The findings from these analyses unveil crucial insights, significantly advancing our understanding of the co-translational translocation process in cellular mechanisms.

      To begin with, the authors employed a construct comprising the first two transmembrane domains of rhodopsin as a model for studying protein translocation. They conducted in vitro translation, followed by the purification of the ribosome-translocon complex, and determined its cryoEM structures. An in-depth analysis of their ribosome-translocon complex structure revealed that the nascent chain can pass through the lateral gate of translocon Sec61, akin to the behavior of a Signaling Peptide. Additionally, Sec61 was found to interact with 28S rRNA helix 24 and the ribosomal protein uL24. In summary, their structural model aligns with the through-pore model of insertion, contradicting the sliding model.

      Secondly, the authors successfully identified RAMP4 in their ribosome-translocon complex structure. Notably, the transmembrane domain of RAMP4 mimics the binding of a Signaling Peptide at the lateral gate of Sec61, albeit without unplugging. Intriguingly, RAMP4 is exclusively present in the non-multipass translocon ribosome-translocon complex, not in those containing multipass translocon. This observation suggests that co-translational translocation specifically occurs in the Sec61 channel that includes bound RAMP4. Additionally, the authors discovered an interaction between the C-tail of ribosomal proteins uL22 and the translocon Sec61, providing valuable insights into the nascent chain's behavior.

      Moving on to the third point, the focused classification unveiled TRAP complex interactions with various components. The authors propose that the extra density observed in their novel ribosome-translocon complex can be attributed to calnexin, a major binder of TRAP according to previous studies. Furthermore, the new structure reveals a TRAP-OSTA interaction. This newly identified TRAP-OSTA interaction offers a potential explanation for why patients with TRAP delta defects exhibit congenital disorders of glycosylation.

      In conclusion, this paper presents a robust contribution to the field with its thorough structural and modeling analyses. The significance of the findings is evident, providing valuable insights into the intricate mechanisms of protein co-translational translocation. The well-crafted writing, meticulous analyses, and clear figures collectively contribute to the overall strength of the paper.

    2. Reviewer #2 (Public Review):

      Summary:

      In the manuscript Lewis and Hegde present a structural study of the ribosome-bound multipass translocon (MPT) based on re-analysis of cryo-EM single particle data of ribosome-MPTs processing the multipass transmembrane substrate RhoTM2 from a previous publication (Smalinskaité et al, Nature 2022) and AlphaFold2 multimer modeling. Detailed analysis of the laterally open Sec61 is obtained from PAT-less particles.

      The following major claims are made:

      - TMs can bind similarly to the Sec61 lateral gate as signal peptides.

      - Ribosomal H59 is in immediate proximity to basic residues of TMs and signal peptides, suggesting it may contribute to the positive-inside rule.

      - RAMP4/SERP1 binds to the Sec61 lateral gate and the ribosome near 28S rRNA's helices 47, 57, and 59 as well as eL19, eL22, and eL31.

      - uL22 C-terminal tail binds H24/47 blocking a potential escape route for nascent peptides to the cytosol.

      - TRAP and BOS compete for binding to Sec61 hinge.

      - Calnexin TM binds to TRAPg.

      - NOMO wedges between TRAP and MPT.

      Strengths:

      The manuscript contains numerous novel new structural analyses and their potential functional implications. While all findings are exciting, the highlight is the discovery of RAMP4/SERP1 near the Sec61 lateral gate. Overall, the strength is the thorough and extensive structural analysis of the different high-resolution RTC classes as well as the expert bioinformatic evolutionary analysis.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have previously described a way to boost WNT/CTNNB1 signaling in a tissue-specific manner, by directing an RSPO2 mutant protein (RSPO2RA) to a liver-specific receptor (ASGR1/2). This is done by fusing the RSPO2RA to an antibody that binds ASGR1/2.

      Here the authors describe two new antibodies, 8M24 and 8G8, with similar effects. 8M24 shows specificity for ASGR1, while 8G8 has broader affinity for mouse/human ASGR1/2.<br /> The authors resolve and describe the crystal structure of the hASGR1CRD:8M24 complex and the hASGR2CRD:8G8 complex in great detail, which help explain the specificities of the 8M24 and 8G8 antibodies. Their epitopes are non-overlapping.<br /> Upon fusion of the antibodies to an RSPO2RA (an RSPO mutant), these antibodies are able to enhance WNT signaling by promoting the ASGR1-mediated clearance of ZNRF3/RNF43, thereby increasing cell surface expression of FZD. This has previously also been shown to be the case for RSPO2RA fused to an anti-ASGR1 antibody 4F3 - and the paper also tests how the antibodies compare to the 4F3 fusion.

      Strengths:

      (1) One challenge in treating diseases, is the fact that one would like therapeutics to be highly specific - not just in terms of their target (e.g. aimed at a specific protein of interest) but also in terms of tissue specificity (i.e. affecting only tissue X but leaving all others unaffected). This study broadens the collection of antibodies that can be used for this purpose and thus expands a potential future clinical toolbox.

      (2) The authors have addressed questions raised after a first round of review, e.g. by showing that ASGR1 is itself indeed ubiquitinated.

      Weaknesses:

      (1) Some questions remain as to how 8M24 and 8G8 compare to 4F3.

      (2) Some questions remain as to the specificity of the approach: the initial goal was not to also downregulate ASGR1 per se, so this targeting to a specific receptor/membrane protein is not trivial and/or neutral.

    1. Reviewer #1 (Public Review):

      The manuscript presents novel results on the regulation of Drosophila wing growth by the protocadherins Ds and Fat. The manuscript performs a more careful analysis of disc volume, larval size, and the relationship between the two, in normal and mutant larvae, and after localized knockdown or overexpression of Fat and Ds. Not all of the results are equally surprising given the previous work on Fat, Ds, and their regulation of disc growth, pupariation, and the Hippo pathway, but the presentation and detail of the presented data is new. The most novel results concern the scaling of gradients of Fat and Ds protein during development, a largely unstudied gradient of Fat protein, and using overexpression of Ds to argue that changes in the Ds gradient do not underlie the slowing and halting of cell divisions during development.

    2. Reviewer #2 (Public Review):

      This manuscript from Liu et al. examines the role of Fat and Dachsous, two transmembrane proto-cadherins that function both in planar cell polarity and in tissue growth control mediated by the Hippo pathway. The authors developed a new method for measuring growth of the wing imaginal disc during late larval development and then used this approach to examine the effects of disruption of Fat/Dachsous function on disc growth. The authors show that during mid to late third instar the wing imaginal disc normally grows in a linear rather than exponential fashion and that this occurs due to slowing of the mitotic cell cycle as the disc grows during this period. Consistent with their known role in regulating Hippo pathway activity, this slowing of growth is disrupted by loss of Fat/Dachsous function. The authors also observed a previously unreported gradient of Fat protein across the wing blade. However, graded expression of Fat or Dachsous is not necessary for proper growth regulation in the late third instar because ectopic Dachsous expression, which affects gradients of both Dachsous and Fat, has no growth phenotype.

    1. Reviewer #1 (Public Review):

      Muscle models are important tools in the fields of biomechanics and physiology. Muscle models serve a wide variety of functions, including validating existing theories, testing new hypotheses, and predicting forces produced by humans and animals in health and disease. This paper attempts to provide an alternative to Hill-type muscle models that includes contributions of titin to force enhancement over multiple time scales. Due to the significant limitations of Hill-type models, alternative models are needed and therefore the work is important and timely.

      The effort to include a role for titin in muscle models is a major strength of the methods and results. The results clearly demonstrate the weaknesses of Hill models and the advantages of incorporating titin into theoretical treatments of muscle mechanics. Another strength is to address muscle mechanics over a large range of time scales.

      The authors succeed in demonstrating the need to incorporate titin in muscle models, and further show that the model accurately predicts in situ force of cat soleus (Kirsch et al. 1994; Herzog & Leonard, 2002) and rabbit posts myofibrils (Leonard et al. 2010). However, it remains unclear whether the model will be practical for use with data from different muscles or preparations. Several ad hoc modifications were described in the paper, and the degree to which the model requires parameter optimization for different muscles, preparations and experiment types remains unclear.

    2. Reviewer #2 (Public Review):

      This model of skeletal muscle includes springs and dampers which aim to capture the effect of crossbridge and titin stiffness during the stretch of active muscle. While both crossbridge and titin stiffness have previously been incorporated, in some form, into models, this model is the first to simultaneously include both. The authors suggest that this will allow for the prediction of muscle force in response to short-, mid- and long-range stretches. All these types of stretch are likely to be experienced by muscle during in vivo perturbations, and are known to elicit different muscle responses. Hence, it is valuable to have a single model which can predict muscle force under all these physiologically relevant conditions. In addition, this model dramatically simplifies sarcomere structure to enable this muscle model to be used in multi-muscle simulations of whole-body movement.

      In order to test this model, its force predictions are compared to 3 sets of experimental data which focus on short-, mid- and long-range perturbations, and to the predictions of a Hill-type muscle model. The choice of data sets is excellent and provide a robust test of the model's ability to predict forces over a range of length perturbations. However, I find the comparison to a Hill-type muscle model to be somewhat limiting. It is well established that Hill-type models do not have any mechanism by which they can predict the effect of active muscle stretch. Hence, that the model proposed here represents an improvement over such a model is not a surprise. Many other models, some of which are also simple enough to be incorporated into whole-body simulations, have incorporated mechanistic elements which allow for the prediction of force responses to muscle stretch. And it is not clear from the results presented here that this model would outperform such models.

      The paper begins by outlining the phenomenological vs mechanistic approaches taken to muscle modelling, historically. It appears, although is not directly specified, that this model combines these approaches. A somewhat mechanistic model of the response of the crossbridges and titin to active stretch is combined with a phenomenological implementation of force-length and force-velocity relationships. This combination of approaches may be useful improving the accuracy of predictions of muscle models and whole-body simulations, which is certainly a worthy goal. However, it also may limit the insight that can be gained. For example, it does not seem that this model could reflect any effect of active titin properties on muscle shortening. In addition, it is not clear to me, either physiologically or in the model, what drives the shift from the high stiffness in short-range perturbations to the somewhat lower stiffness in mid-range perturbations.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In the paper by Choi et al., the authors aimed to develop base editing strategies to convert CAG repeats to CAA repeats in the huntingtin gene (HTT), which causes Huntington's disease (HD). They hypothesized that this conversion would delay disease onset by shortening the uninterrupted CAG repeat. Using HEK-293T cells as a model, the researchers employed cytosine base editors and guide RNAs (gRNAs) to efficiently convert CAG to CAA at various sites within the CAG repeat. No significant indels, off-target edits, transcriptome alterations, or changes in HTT protein levels were detected. Interestingly, somatic CAG repeat expansion was completely abolished in HD knock-in mice carrying CAA-interrupted repeats.

      Strengths:<br /> This study represents the first proof-of-concept exploration of the cytosine base editing technique as a potential treatment for HD and other repeat expansion disorders with similar mechanisms.

      Weaknesses:<br /> Given that HD is a neurodegenerative disorder, it is crucial to determine the efficiency of the base editing strategies tested in this manuscript and their feasibility in relevant cells affected by HD and the brain, which needed to be improved in this manuscript.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In a proof-of-concept study with the aspiration of developing a treatment to delay HD onset, Choi et al. design and test an A>G DNA base editing strategy to exploit the recently established inverse relationship between the number of uninterrupted CAG repeats in polyglutamine repeat expansions and the age-of-onset of Huntington's Disease (HD). Most of the study is devoted to optimizing a base editing strategy typified by BE4max and gRNA2. The base editing is performed in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats.

      Weaknesses:<br /> Genotypic data on DNA editing are not portrayed in a clear manner consistent with the study's goal, namely reducing the number of uninterrupted CAG repeats by a clinically relevant amount according to the authors' least square approximated mean age-at-onset. No phenotypic data are presented to show that editing performed in either model would lead to reduced hallmarks of HD onset.

      More evidence is needed to support the central claims and therapeutic potential needs to be more adequate.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In human patients with Huntington's disease (HD), caused by a CAG repeat expansion mutation, the number of uninterrupted CAG repeats at the genomic level influences age-at-onset of clinical signs independent of the number of polyglutamine repeats at the protein level. In most patients, the CAG repeat terminates with a CAA-CAG doublet. However, CAG repeat variants exist that either do not have that doublet or have two doublets. These variants consequently differ in their number of uninterrupted CAG repeats, while the number of glutamine repeats is the same as both CAA and CAG codes for glutamine. The authors first confirm that a shorter uninterrupted CAG repeat number in human HD patients is associated with developing the first clinical signs of HD later. They predict that introducing a further CAA-CAG doublet will result in years of delay of clinical onset. Based on this observation, the authors tested the hypothesis that turning CAG to CAA within a CAG repeat sequence using base editing techniques will benefit HD biology. They show that, indeed, in HD cell models (HEK293 cells expressing 16/17 CAG repeats; a single human stem cell line carrying a CAG repeat expansion in the fully penetrant range with 42 CAG repeats), their base editing strategies do induce the desired CAG-CAA conversion. The efficiency of conversion differed depending on the strategy used. In stem cells, delivery posed a problem, so to test allele specificity, the authors then used a HEK 293 cell line with 51 CAG repeats on the expanded allele. Conversion occurred in both alleles with huntingtin protein and mRNA levels; transcriptomics data was unchanged. In knock-in mice carrying 110 CAG repeats, however, base editing did not work as well for different, mainly technical, reasons.

      Strengths:<br /> The authors use state-of-the-art methods and carefully and thoroughly designed experiments. The data support the conclusions drawn. This work is a very valuable translation from the insight gained from large GWAS studies into HD pathogenesis. It rightly emphasises the potential this has as a causal treatment in HD, while the authors also acknowledge important limitations.

      Weaknesses:<br /> They could dedicate a little more to discussing several of the mentioned challenges. The reader will better understand where base editing is in HD currently and what needs to be done before it can be considered a treatment option. For instance,

      -It is important to clarify what can be gained by examining again the relationship between uninterrupted CAG repeat length and age-at-onset. Could the authors clarify why they do this and what it adds to their already published GWAS findings? What is the n of datasets?<br /> -What do they think an ideal conversion rate would be, and how that could be achieved?<br /> -Is there a dose-effect relationship for base editing, and would it be realistic to achieve the ideal conversion rate in target cells, given the difficulties described by the authors in differentiated neurons from stem cells?<br /> - The liver is a good tool for in-vivo experiments examining repeat instability in mouse models. However, the authors could comment on why they did not examine the brain.<br /> - Is there a limit to judging the effects of base editing on somatic instability with longer repeats, given the difficulties in measuring long CAG repeat expansions?<br /> - Given the methodological challenges for assessing HTT fragments, are there other ways to measure the downstream effects of base editing rather than extrapolate what it will likely be?<br /> - Sequencing errors could mask low-level, but biologically still relevant, off-target effects (such as gRNA-dependent and gRNA-independent DNA, Off-targets, RNA off-targets, bystander editing). How likely is that?<br /> - How worried are the authors about immune responses following base editing? How could this be assessed?

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors used a multi-alternative decision task and a multidimensional signal-detection model to gain further insight into the cause of perceptual impairments during the attentional blink. The model-based analyses of behavioural and EEG data show that such perceptual failures can be unpacked into distinct deficits in visual detection and discrimination, with visual detection being linked to the amplitude of late ERP components (N2P and P3) and discrimination being linked to the coherence of fronto-parietal brain activity.

      Strengths:

      The main strength of this paper lies in the fact that it presents a novel perspective on the cause of perceptual failures during the attentional blink. The multidimensional signal-detection modelling approach is explained clearly, and the results of the study show that this approach offers a powerful method to unpack behavioural and EEG data into distinct processes of detection and discrimination.

      Weaknesses:

      While the model-based analyses are compelling, the paper also features some analyses that seem misguided, or, at least, insufficiently motivated and explained. Specifically, in the introduction, the authors raise the suggestion that the attentional blink could be due to a reduction in sensitivity or a response bias. The suggestion that a response bias could play a role seems misguided, as any response bias would be expected to be constant across lags, while the attentional blink effect is only observed at short lags. Thus, it is difficult to understand why the authors would think that a response bias could explain the attentional blink.

      A second point of concern regards the way in which the measures for detection and discrimination accuracy were computed. If I understand the paper correctly, a correct detection was defined as either correctly identifying T2 (i.e., reporting CW or CCW if T2 was CW or CCW, respectively, see Figure 2B), or correctly reporting T2's absence (a correct rejection). Here, it seems that one should also count a misidentification (i.e., incorrect choice of CW or CCW when T2 was present) as a correct detection, because participants apparently did detect T2, but failed to judge/remember its orientation properly in case of a misidentification. Conversely, the manner in which discrimination performance is computed also raises questions. Here, the authors appear to compute accuracy as the average proportion of T2-present trials on which participants selected the correct response option for T2, thus including trials in which participants missed T2 entirely. Thus, a failure to detect T2 is now counted as a failure to discriminate T2. Wouldn't a more proper measure of discrimination accuracy be to compute the proportion of correct discriminations for trials in which participants detected T2?

      My last point of critique is that the paper offers little if any guidance on how the inferred distinction between detection and discrimination can be linked to existing theories of the attentional blink. The discussion mostly focuses on comparisons to previous EEG studies, but it would be interesting to know how the authors connect their findings to extant, mechanistic accounts of the attentional blink. A key question here is whether the finding of dissociable processes of detection and discrimination would also hold with more meaningful stimuli in an identification task (e.g., the canonical AB task of identifying two letters shown amongst digits). There is evidence to suggest that meaningful stimuli are categorized just as quickly as they are detected (Grill-Spector & Kanwisher, 2005; Grill-Spector K, Kanwisher N. Visual recognition: as soon as you know it is there, you know what it is. Psychol Sci. 2005 Feb;16(2):152-60. doi: 10.1111/j.0956-7976.2005.00796.x. PMID: 15686582.). Does that mean that the observed distinction between detection and discrimination would only apply to tasks in which the targets consist of otherwise meaningless visual elements, such as lines of different orientations?

    2. Reviewer #2 (Public Review):

      Summary:

      The authors had two aims: First, to decompose the attentional blink (AB) deficit into the two components of signal detection theory; sensitivity and bias. Second, the authors aimed to assess the two subcomponents of sensitivity; detection and discrimination. They observed that the AB is only expressed in sensitivity. Furthermore, detection and discrimination were doubly dissociated. Detection modulated N2p and P3 ERP amplitude, but not frontoparietal beta-band coherence, whereas this pattern was reversed for discrimination.

      Strengths:

      The experiment is elegantly designed, and the data - both behavioral and electrophysiological - are aptly analyzed. The outcomes, in particular the dissociation between detection and discrimination blinks, are consistently and clearly supported by the results. The discussion of the results is also appropriately balanced.

      Weaknesses:

      The lack of an effect of stimulus contrast does not seem very surprising from what we know of the nature of AB already. Low-level perceptual factors are not thought to cause AB. This is fine, as there are also other, novel findings reported, but perhaps the authors could bolster the importance of these (null) findings by referring to AB-specific papers, if there are indeed any, that would have predicted different outcomes in this regard.

      On an analytical note, the ERP analysis could be finetuned a little more. The task design does not allow measurement of the N2pc or N400 components, which are also relevant to the AB, but the N1 component could additionally be analyzed. In doing so, I would furthermore recommend selecting more lateral electrode sites for both the N1, as well as the P1. Both P1 and N1 are likely not maximal near the midline, where the authors currently focused their P1 analysis.

      Impact & Context:

      The results of this study will likely influence how we think about selective attention in the context of the AB phenomenon. However, I think its impact could be further improved by extending its theoretical framing. In particular, there has been some recent work on the nature of the AB deficit, showing that it can be discrete (all-or-none) and gradual (Sy et al., 2021; Karabay et al., 2022, both in JEP: General). These different faces of target awareness in the AB may be linked directly to the detection and discrimination subcomponents that are analyzed in the present paper. I would encourage the authors to discuss this potential link and comment on the bearing of the present work on these previous behavioral findings.

    3. Reviewer #3 (Public Review):

      Summary:

      In the present study, the authors aimed to achieve a better understanding of the mechanisms underlying the attentional blink, that is, a deficit in processing the second of two target stimuli when they appear in rapid succession. Specifically, they used a concurrent detection and identification task in- and outside of the attentional blink and decoupled effects of perceptual sensitivity and response bias using a novel signal detection model. They conclude that the attentional blink selectively impairs perceptual sensitivity but not response bias, and link established EEG markers of the attentional blink to deficits in stimulus detection (N2p, P3) and discrimination (fronto-parietal high-beta coherence), respectively. Taken together, their study suggests distinct mechanisms mediating detection and discrimination deficits in the attentional blink.

      Strengths:

      Major strengths of the present study include its innovative approach to investigating the mechanisms underlying the attentional blink, an elegant, carefully calibrated experimental paradigm, a novel signal detection model, and multifaceted data analyses using state-of-the-art model comparisons and robust statistical tests. The study appears to have been carefully conducted and the overall conclusions seem warranted given the results. In my opinion, the manuscript is a valuable contribution to the current literature on the attentional blink. Moreover, the novel paradigm and signal detection model are likely to stimulate future research.

      Weaknesses:

      Weaknesses of the present manuscript mainly concern the negligence of some relevant literature, unclear hypotheses, potentially data-driven analyses, relatively low statistical power, potential flaws in the EEG methods, and the absence of a discussion of limitations. In the following, I will list some major and minor concerns in detail.

      Major points

      Hypotheses:<br /> I appreciate the multifaceted, in-depth analysis of the given dataset including its high amount of different statistical tests. However, neither the Introduction nor the Methods contain specific statistical hypotheses. Moreover, many of the tests (e.g., correlations) rely on selected results of previous tests. It is unclear how many of the tests were planned a priori, how many more were performed, and how exactly corrections for multiple tests were implemented. Thus, I find it difficult to assess the robustness of the results.

      Power:<br /> Some important null findings may result from the rather small sample sizes of N = 24 for behavioral and N = 18 for ERP analyses. For example, the correlation between detection and discrimination d' deficits across participants (r=0.39, p=0.059) (p. 12, l. 263) and the attentional blink effect on the P1 component (p=0.050, no test statistic) (p. 14, 301) could each have been significant with one more participant. In my opinion, such results should not be interpreted as evidence for the absence of effects.

      Neural basis of the attentional blink:<br /> The introduction (e.g., p. 4, l. 56-76) and discussion (e.g., p. 19, 427-447) do not incorporate the insights from the highly relevant recent review by Zivony & Lamy (2022), which is only cited once (p. 19, l. 428). Moreover, the sections do not mention some relevant ERP studies of the attentional blink (e.g., Batterink et al., 2012; Craston et al., 2009; Dell'Acqua et al., 2015; Dellert et al., 2022; Eiserbeck et al., 2022; Meijs et al., 2018).

      Detection versus discrimination:<br /> Concerning the neural basis of detection versus discrimination (e.g., p. 6, l. 98-110; p. 18, l. 399-412), relevant existing literature (e.g., Broadbent & Broadbent, 1987; Hillis & Brainard, 2007; Koivisto et al., 2017; Straube & Fahle, 2011; Wiens et al., 2023) is not included.

      Pooling of lags and lag 1 sparing:<br /> I wonder why the authors chose to include 5 different lags when they later pooled early (100, 300 ms) and late (700, 900 ms) lags, and whether this pooling is justified. This is important because T2 at lag 1 (100 ms) is typically "spared" (high accuracy) while T2 at lag 3 (300 ms) shows the maximum AB (for reviews, see, e.g., Dux & Marois, 2009; Martens & Wyble, 2010). Interestingly, this sparing was not observed here (p. 43, Figure 2). Nevertheless, considering the literature and the research questions at hand, it is questionable whether lag 1 and 3 should be pooled.

      Discrimination in the attentional blink<br /> Concerning the claims that previous attentional blink studies conflated detection and discrimination (p. 6, l. 111-114; p. 18, l. 416), there is a recent ERP study (Dellert et al., 2022) in which participants did not perform a discrimination task for the T2 stimuli. Moreover, since the relevance of all stimuli except T1 was uncertain in this study, irrelevant distractors could not be filtered out (cf. p. 19, l. 437). Under these conditions, the attentional blink was still associated with reduced negativities in the N2 range (cf. p. 19, l. 427-437) but not with a reduced P3 (cf. p. 19, l 439-447).

      General EEG methods:<br /> While most of the description of the EEG preprocessing and analysis (p. 31/32) is appropriate, it also lacks some important information (see, e.g., Keil et al., 2014). For example, it does not include the length of the segments, the type and proportion of artifacts rejected, the number of trials used for averaging in each condition, specific hypotheses, and the test statistics (in addition to p-values).

      EEG filters:<br /> P. 31, l. 728: "The data were (...) bandpass filtered between 0.5 to 18 Hz (...). Next, a bandstop filter from 9-11 Hz was applied to remove the 10 Hz oscillations evoked by the RSVP presentation." These filter settings do not follow common recommendations and could potentially induce filter distortions (e.g., Luck, 2014; Zhang et al., 2024). For example, the 0.5 high-pass filter could distort the slow P3 wave. Mostly, I am concerned about the bandstop filter. Since the authors commendably corrected for RSVP-evoked responses by subtracting T2-absent from T2-present ERPs (p. 31, l. 746), I wonder why the additional filter was necessary, and whether it might have removed relevant peaks in the ERPs of interest.

      Coherence analysis:<br /> P. 33, l. 786: "For subsequent, partial correlation analyses of coherence with behavioral metrics and neural distances (...), we focused on a 300 ms time period (0-300 ms following T2 onset) and high-beta frequency band (20-30 Hz) identified by the cluster-based permutation test (Fig. 5A-C)." I wonder whether there were any a priori criteria for the definition and selection of such successive analyses. Given the many factors (frequency bands, hemispheres) in the analyses and the particular shape of the cluster (p. 49, Fig 5C), this focus seems largely data-driven. It remains unclear how many such tests were performed and whether the results (e.g., the resulting weak correlation of r = 0.22 in one frequency band and one hemisphere in one part of a complexly shaped cluster; p. 15, l. 327) can be considered robust.

      References<br /> Batterink, L., Karns, C. M., & Neville, H. (2012). Dissociable mechanisms supporting awareness: The P300 and gamma in a linguistic attentional blink task. Cerebral Cortex, 22(12), 2733-2744. https://doi.org/10.1093/cercor/bhr346<br /> Broadbent, D. E., & Broadbent, M. H. P. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception & Psychophysics, 42(2), 105-113. https://doi.org/10.3758/BF03210498<br /> Craston, P., Wyble, B., Chennu, S., & Bowman, H. (2009). The attentional blink reveals serial working memory encoding: Evidence from virtual and human event-related potentials. Journal of Cognitive Neuroscience, 21(3), 550-566. https://doi.org/10.1162/jocn.2009.21036<br /> Dell'Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicœur, P. (2015). The attentional blink impairs detection and delays encoding of visual information: Evidence from human electrophysiology. Journal of Cognitive Neuroscience, 27(4), 720-735. https://doi.org/10.1162/jocn_a_00752<br /> Dellert, T., Krebs, S., Bruchmann, M., Schindler, S., Peters, A., & Straube, T. (2022). Neural correlates of consciousness in an attentional blink paradigm with uncertain target relevance. NeuroImage, 264C, 119679. https://doi.org/10.1016/j.neuroimage.2022.119679<br /> Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71(8), 1683-1700. https://doi.org/10.3758/APP.71.8.1683<br /> Hillis, J. M., & Brainard, D. H. (2007). Distinct mechanisms mediate visual detection and identification. Current Biology, 17(19), 1714-1719. https://doi.org/10.1016/j.cub.2007.09.012<br /> Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., Luu, P., Miller, G. A., & Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1-21. https://doi.org/10.1111/psyp.12147<br /> Koivisto, M., Grassini, S., Salminen-Vaparanta, N., & Revonsuo, A. (2017). Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, 29(9), 1621-1631. https://doi.org/10.1162/jocn_a_01149<br /> Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.<br /> Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience & Biobehavioral Reviews, 34(6), 947-957. https://doi.org/10.1016/j.neubiorev.2009.12.005<br /> Meijs, E. L., Slagter, H. A., de Lange, F. P., & Gaal, S. van. (2018). Dynamic interactions between top-down expectations and conscious awareness. Journal of Neuroscience, 38(9), 2318-2327. https://doi.org/10.1523/JNEUROSCI.1952-17.2017<br /> Straube, S., & Fahle, M. (2011). Visual detection and identification are not the same: Evidence from psychophysics and fMRI. Brain and Cognition, 75(1), 29-38. https://doi.org/10.1016/j.bandc.2010.10.004<br /> Wiens, S., Andersson, A., & Gravenfors, J. (2023). Neural electrophysiological correlates of detection and identification awareness. Cognitive, Affective, & Behavioral Neuroscience. https://doi.org/10.3758/s13415-023-01120-5<br /> Zhang, G., Garrett, D. R., & Luck, S. J. (2024). Optimal filters for ERP research II: Recommended settings for seven common ERP components. Psychophysiology, n/a(n/a), e14530. https://doi.org/10.1111/psyp.14530

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript from So et al. describes what is suggested to be an improved protocol for single-nuclei RNA sequencing (snRNA-seq) of adipose tissue. The authors provide evidence that modifications to the existing protocols result in better RNA quality and nuclei integrity than previously observed, with ultimately greater coverage of the transcriptome upon sequencing. Using the modified protocol, the authors compare the cellular landscape of murine inguinal and perigonadal white adipose tissue (WAT) depots harvested from animals fed a standard chow diet (lean mice) or those fed a high-fat diet (mice with obesity).

      Strengths:

      Overall, the manuscript is well-written, and the data are clearly presented. The strengths of the manuscript rest in the description of an improved protocol for snRNA-seq analysis. This should be valuable for the growing number of investigators in the field of adipose tissue biology that are utilizing snRNA-seq technology, as well as those other fields attempting similar experiments with tissues possessing high levels of RNAse activity.

      Moreover, the study makes some notable observations that provide the foundation for future investigation. One observation is the correlation between nuclei size and cell size, allowing for the transcriptomes of relatively hypertrophic adipocytes in perigonadal WAT to be examined. Another notable observation is the identification of an adipocyte subcluster (Ad6) that appears "stressed" or dysfunctional and likely localizes to crown-like inflammatory structures where pro-inflammatory immune cells reside.

      Weaknesses:

      Analogous studies have been reported in the literature, including a notable study from Savari et al. (Cell Metabolism). This somewhat diminishes the novelty of some of the biological findings presented here. Moreover, a direct comparison of the transcriptomic data derived from the new vs. existing protocols (i.e. fully executed side by side) was not presented. As such, the true benefit of the protocol modifications cannot be fully understood.

    2. Reviewer #2 (Public Review):

      Summary:

      In the present manuscript So et al utilize single-nucleus RNA sequencing to characterize cell populations in lean and obese adipose tissues.

      Strengths:

      The authors utilize a modified nuclear isolation protocol incorporating VRC that results in higher-quality sequencing reads compared with previous studies.

      Weaknesses:

      The use of VRC to enhance snRNA-seq has been previously published in other tissues. The snRNA-seq snRNA-seq data sets presented in this manuscript, when compared with numerous previously published single-cell analyses of adipose tissue, do not represent a significant scientific advance.

      Figure 1-3: The snRNA-seq data obtained by the authors using their enhanced protocol does not represent a significant improvement in cell profiling for the majority of the highlighted cell types including APCs, macrophages, and lymphocytes. These cell populations have been extensively characterized by cytoplasmic scRNA-seq which can achieve sufficient sequencing depth, and thus this study does not contribute meaningful additional insight into these cell types. The authors note an increase in the number of rare endothelial cell types recovered, however this is not translated into any kind of functional analysis of these populations.

      Figure 4: The authors did not provide any evidence that the relative fluorescent brightness of GFP and mCherry is a direct measure of the nuclear size, and the nuclear size is only a moderate correlation with the cell size. Thus sorting the nuclei based on GFP/mCherry brightness is not a great proxy for adipocyte diameter. Furthermore, no meaningful insights are provided about the functional significance of the reported transcriptional differences between small and large adipocyte nuclei.

      Figure 5-6: The Ad6 population is highly transcriptionally analogous to the mAd3 population from Emont et al, and is thus not a novel finding. Furthermore, in the present data set, the authors conclude that Ad6 are likely stressed/dying hypertrophic adipocytes with a global loss of gene expression, which is a well-documented finding in eWAT > iWAT, for which the snRNA-seq reported in the present manuscript does not provide any novel scientific insight.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors aimed to improve single-nucleus RNA sequencing (snRNA-seq) to address current limitations and challenges with nuclei and RNA isolation quality. They successfully developed a protocol that enhances RNA preservation and yields high-quality snRNA-seq data from multiple tissues, including a challenging model of adipose tissue. They then applied this method to eWAT and iWAT from mice fed either a normal or high-fat diet, exploring depot-specific cellular dynamics and gene expression changes during obesity. Their analysis included subclustering of SVF cells and revealed that obesity promotes a transition in APCs from an early to a committed state and induces a pro-inflammatory phenotype in immune cells, particularly in eWAT. In addition to SVF cells, they discovered six adipocyte subpopulations characterized by a gradient of unique gene expression signatures. Interestingly, a novel subpopulation, termed Ad6, comprised stressed and dying adipocytes with reduced transcriptional activity, primarily found in eWAT of mice on a high-fat diet. Overall, the methodology is sound, the writing is clear, and the conclusions drawn are supported by the data presented. Further research based on these findings could pave the way for potential novel interventions in obesity and metabolic disorders, or for similar studies in other tissues or conditions.

      Strengths:

      • The authors developed a robust snRNA-seq technique that preserves the integrity of the nucleus and RNA across various tissue types, overcoming the challenges of existing methods.

      • They identified adipocyte subpopulations that follow adaptive or pathological trajectories during obesity.

      • The study reveals depot-specific differences in adipose tissues, which could have implications for targeted therapies.

      Weaknesses:

      • The adipose tissues were collected after 10 weeks of high-fat diet treatment, lacking the intermediate time points for identifying early markers or cell populations during the transition from healthy to pathological adipose tissue.

      • The expansion of the Ad6 subpopulation in obese iWAT and gWAT is interesting. The author claims that Ad6 exhibited a substantial increase in eWAT and a moderate rise in iWAT (Figure 4C). However, this adipocyte subpopulation remains the most altered in iWAT upon obesity. Could the authors elaborate on why there is a scarcity of adipocytes with ROS reporter and B2M in obese iWAT?

      • While the study provides extensive data on mouse models, the potential translation of these findings to human obesity remains uncertain.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper by Beath et. al. identifies a potential regulatory role for proteins involved in cytoplasmic streaming and maintaining the grouping of paternal organelles: holding sperm contents in the fertilized embryos away from the oocyte meiotic spindle so that they don't get ejected into the polar body during meiotic chromosome segregation. The authors show that by time-lapse video, paternal mitochondria (used as a readout for sperm and its genome) is excluded from yolk granules and maternal mitochondria, even when moving long distances by cytoplasmic streaming. To understand how this exclusion is accomplished, they first show that it is independent of both internal packing and the engulfment of the paternal chromosomes by maternal endoplasmic reticulum creating an impermeable barrier. They then test whether the control of cytoplasmic steaming affects this exclusion by knocking down two microtubule motors, Katanin and kinesis I. They find that the ER ring, which is used as a proxy for paternal chromosomes, undergoes extensive displacement with these treatments during anaphase I and interacts with the meiotic spindle, supporting their hypothesis that the exclusion of paternal chromosomes is regulated by cytoplasmic streaming. Next, they test whether a regulator of maternal ER organization, ATX-2, disrupts sperm organization so that they can combine the double depletion of ATX-2 and KLP-7, presumably because klp-7 RNAi (unlike mei-1 RNAi) does not affect polar body extrusion and they can report on what happens to paternal chromosomes. They find that the knockdown of both ATX-2 and KLP-7 produces a higher incidence of what appears to be the capture of paternal chromosomes by the meiotic spindle (5/24 vs 1/25). However, this capture event appears to halt the cell cycle, preventing the authors from directly observing whether this would result in the paternal chromosomes being ejected into the polar body.

      Strengths:

      This is a useful, descriptive paper that highlights a potential challenge for embryos during fertilization: when fertilization results in the resumption of meiotic divisions, how are the paternal and maternal genomes kept apart so that the maternal genome can undergo chromosome segregation and polar body extrusion without endangering the paternal genome? In general, the experiments are well-executed and analyzed. In particular, the authors' use of multiple ways to knock down ATX-2 shows rigor.

      Weaknesses:

      The paper makes a case that this regulation may be important but the authors should do some additional work to make this case more convincing and accessible for those outside the field. In particular, some of the figures could include greater detail to support their conclusions, they could explain the rationale for some experiments better and they could perform some additional control experiments with their double depletion experiments to better support their interpretations. Also, the authors' inability to assess the functional biological consequences of the capture of the sperm genome by the oocyte spindle should be discussed, particularly in light of the cell cycle arrest that they observe.

    2. Reviewer #2 (Public Review):

      Summary

      In this manuscript, Beath et al. use primarily C. elegans zygotes to test the overarching hypothesis that cytoplasmic mechanisms exit to prevent interaction between paternal chromosomes and the meiotic spindle, which are present in a shared zygotic cytoplasm after fertilization. Previous work, much of which by this group, had characterized cytoplasmic streaming in the zygote and the behavior of paternal components shortly after fertilization, primarily the clustering of paternal mitochondria and membranous organelles around the paternal chromosomes. This work set out to identify the molecular mechanisms responsible for that clustering and test the specific hypothesis that the "paternal cloud" helps prevent the association of paternal chromosomes with the meiotic spindle.

      Strengths

      This work is a collection of technical achievements. The data are primarily 3- and 4-channel time-lapse images of zygotes shortly after fertilization, which were performed inside intact animals. There are many instances in which the experiments show extreme technical skill, such as tracking the paternal chromosomes over large displacements throughout the volume of the embryo. The authors employ a wide variety of fluorescent reporters to provide a remarkably clear picture of what is going on in the zygote. These reagents and the novel characterization of these stages that they provide will be widely beneficial to the community.

      The data provide direct visualization of what had previously been a mostly hypothetical structure, the "paternal cloud," using simultaneous labeling of paternal DNA and mitochondria in combination with a variety of maternal proteins including maternal mitochondria, yolk granules, tubulin, and plasma membrane. Together, these images provided convincing evidence of the existence of this specified cytoplasmic domain. They go on to show that the knockdown of the ataxin-2 homolog ALX-2, a protein previously shown to affect ER dynamics, disrupted the paternal cloud, identifying a role for ER organization in this structure.

      The authors then used the system to test the functional consequences of perturbing the cytoplasmic organization. Consistent with the paternal cloud being a stable structure, it stayed intact during large movements the authors generated using previously published knockdowns (of mei-1/katanin and kinesin-13/kpl-7) that increased cytoplasmic streaming. They used this data to document instances in which the paternal chromosomes were likely to have been attached to the spindle. They concluded with direct evidence of spindle fibers connecting to the paternal chromatin upon knockdown of ATX-2 in combination with increased cytoplasmic streaming, providing strong, direct support for their overarching hypothesis.

      Weaknesses

      While the data is convincing, the narrative of the paper could be streamlined to highlight the novelty of the experiments and better articulate the aims. For example, the cloud of paternal mitochondria and membranous organelles was previously shown, but Figures 1-2 largely reiterate that observation. The innovation seems to be that the combination of ER, yolk, and maternal mitochondrial markers makes the existence of a specified domain more concrete. There are also some instances where more description is needed to make the conclusions from the images clear.

      The manuscript intersperses what read like basic characterizations of fluorescent markers that, as written, can distract from the main story. The authors characterized the dynamics of ER organization throughout the substages of meiosis and the permeability of the envelope of ER that surrounds the paternal chromatin, but it could be more clearly established how the ability to visualize these structures allowed them to address their aims. More background on what was previously known about ER organization in M-phase and the role of ataxin proteins specifically may help provide more continuity.

    3. Reviewer #3 (Public Review):

      Summary:

      This study by Beath et al. investigated the mechanisms by which sperm DNA is excluded from the meiotic spindle after fertilization. Time-lapse imaging revealed that sperm DNA is surrounded by paternal mitochondria and maternal ER that is permeable to proteins. By increasing cytoplasmic streaming using kinesin-13 or katanin RNAi, the authors demonstrated that limiting cytoplasmic streaming in the embryo is an important step that prevents the capture of sperm DNA by the oocyte meiotic spindle. Further experiments showed that the Ataxin-2 protein is required to hold paternal mitochondria together and close to the sperm DNA. Finally, double depletion of kinesin-13 and Ataxin-2 suggested an increased risk of meiotic spindle capture of sperm DNA.

      Overall, this is an interesting finding that could provide a new understanding of how meiotic spindle capture of sperm DNA and its accidental expulsion into the polar body is prevented. However, some conceptual gaps need to be addressed and further experiments and improved data analyses would strengthen the paper.

      • It would be helpful if the authors could discuss in good detail how they think maternal ER surrounds the sperm DNA and why is it not disrupted following Ataxin disruption.

      • Since important phenotypes revealed in RNAi experiments (e.g. kinesin-13 and ataxin-2 double depletion) are not very robust, the authors should consider toning down their conclusions and revising some of their section headings. I appreciate that they are upfront about some limitations, but they do nonetheless make strong concluding sentences.

      • The discussion section could be improved further to present the authors' findings in the larger context of current knowledge in the field.

      • The authors previously demonstrated that F-actin prevents meiotic spindle capture of sperm DNA in this system. However, the current manuscript does not discuss how the katanin, kinesin-13 and Ataxin-2 mechanisms could work together with previously established functions of F-actin in this process.

      • How can the authors exclude off-target effects in their RNAi depletion experiments? Can kinesin-13, katanin, and Ataxin phenotypes be rescued for instance?

      • How are the authors able to determine if the paternal genome was actually captured by the spindle? Does lack of movement definitively suggest capture without using a spindle marker?

    1. Joint Public Review:

      Summary:

      The study identified biallelic variants of DNAH3 in four unrelated Han Chinese infertile men through whole-exome sequencing, which contributes to abnormal sperm flagellar morphology and ultrastructure. To investigate the importance of DNAH3 in male infertility, the authors generated crispant DNAH3 knockout (KO) male mice. They observed that KO mice are also infertile, showing a severe reduction in sperm movement with abnormal IDA (inner dynein arms) and mitochondrion structure. Moreover, nonfunctional DNAH3 expression decreased the expression of IDA-associated proteins in the spermatozoa of patients and KO mice, which are involved in the disruption of sperm motility. Interestingly, the infertility of patients and KO mice was rescued by intracytoplasmic sperm injection (ICSI). Taken together, the authors propose that DNAH3 is a novel pathogenic gene for asthenoterozoospermia and male infertility.

      Strengths:

      This work investigates the role of DNAH3 in sperm mobility and male infertility and utilised gold-standard molecular biology techniques, showing strong evidence of its role in male infertility. All aspects of the study design and methods are well described and appropriate to address the main question of the manuscript. The conclusions drawn are consistent with the analyses conducted and supported by the data.

      Weaknesses:

      (1) The manuscript lacks a comparison with previous studies on DNAH3 in the Discussion section.

      (2) The variants of DNAH3 in four infertile men were identified through whole-exome sequencing. Providing an overview of the WES data would be beneficial to offer additional insights into whether other variants may contribute the infertility. This could also help explain why ICSI only works for two out of four patients with DNAH3 variants.

      (3) Quantification of images would help substantiate the conclusions, particularly in Figures 2, 3, 4, and 6. Improved images in Figures 3A, 4B, and 4C, would help increase confidence in the claims made.

    1. Reviewer #1 (Public Review):

      The goal of Knudsen-Palmer et al. was to define a biological set of rules that dictate the differential RNAi-mediated silencing of distinct target genes, motivated by facilitating the long-term development of effective RNAi-based drugs/therapeutics. To achieve this, the authors use a combination of computational modeling and RNAi function assays to reveal several criteria for effective RNAi-mediated silencing. This work provides insights into how (1) cis-regulatory elements influence the RNAi-mediated regulation of genes; (2) it is determined that genes can "recover" from RNAi-silencing signals in an animal; and 3) pUGylation occurs exclusively downstream of the dsRNA trigger sequence, suggesting 3º siRNAs are not produced. In addition, the authors show that the speed at which RNAi-silencing is triggered does not correlate with the longevity of the silencing. These insights are significant because they suggest that if we understand the rules by which RNAi pathways effectively silence genes with different transcription/processing levels then we can design more effective synthetic RNAi-based therapeutics targeting endogenous genes. The conclusions of this study are mostly supported by the data, but there are some aspects that need to be clarified.

      (1) The methods do not describe the "aged RNAi plates feeding assay" in Figure 2E. The figure legend states that "aged RNAi plates" were used to trigger weaker RNAi, but the detail explaining the experiment is insufficient. How aged is aged? If the goal was to effectively reduce the dsRNA load available to the animals, why not quantitatively titrate the dsRNA provided? Were worms previously fed on the plates, or was simply a lawn of bacteria grown until presumably the IPTG on the plate was exhausted?

      (2) Is the data presented in Figure 2F completed using the "aged RNAi plates" to achieve the partial silencing of dpy-7 observed? Clarification of this point would be helpful.

      (3) Throughout the manuscript the authors refer to "non-dividing cells" when discussing animals' ability to recover from RNA silencing. It is not clear what the authors specifically mean with the phrase "non-dividing cells", but as this is referred to in one of their major findings, it should be clarified. Do they mean the cells are somatic cells in aged animals, thus if they are "non-dividing" the siRNA pools within the cells cannot be diluted by cell division? Based on the methods, the animals of RNAi assays were L4/Young adults that were scored over 8 days after the initial pulse of dsRNA feeding. If this is the case, wouldn't these animals be growing into gravid adults after the feeding, and thus have dividing cells as they grew?

      (4) What are the typical expression levels/turnover of unc-22 and bli-1? Based on the results from the altered cis-regulatory regions of bli-1 and unc-22 in Figure 5, it seems like the transcription/turnover rates of each of these genes could also be used as a proof of principle for testing the model proposed in Figure 4. The strength of the model would be further increased if the RNAi sensitivity of unc-22 reflects differences in its transcription/turnover rates compared to bli-1.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Knudsen-Palmer et al. describes and models the contribution of MUT-16 and RDE-10 in the silencing through RNAi by the Argonaute protein NRDE-3 or others. The authors show that MUT-16 and RDE-10 constitute an intersecting network that can be redundant or not depending on the gene being targeted by RNAi. In addition, the authors provide evidence that increasing dsRNA processing can compensate for NRDE-3 mutants. Overall, the authors provide convincing evidence to understand the factors involved in RNAi in C. elegans by using a genetic approach.

      Major Strengths:

      The author's work presents a compelling case for understanding the intricacies of RNA interference (RNAi) within the model organism Caenorhabditis elegans through a meticulous genetic approach. By harnessing genetic manipulation, they delve into the role of MUT-16 and RDE-10 in RNAi, offering a nuanced understanding of the molecular mechanisms at play in two independent case study targets (unc-22 and bli-1).

      Major Weaknesses:

      (1) It is unclear how the molecular mechanisms of amplification are different under the MUT-16 and RDE-10 branches of the regulatory pathway, since they are clearly distinct proteins structurally. It would be interesting to do some small-RNA-seq of products generated from unc-22 and bli-1, on wild-type conditions and some of the mutants studied (eg. mut-16, rde-10 and mut-16 + rde-10). That would provide some insights into whether the products of the 2 amplifications are the same in all conditions, just changing in abundance, or whether they are distinct in sequence patterns.

      (2) In the same line, Figure 5 aims to provide insights into the sequence determinants that influence the RNAi of bli-1. It is unclear whether the changes in transcript stability dictated by the 3'UTR are the sole factor governing the preference for the MUT-16 and RDE-10 branches of the regulatory pathway. In line with the mutant jam297, it might be interesting to test whether factors like codon optimality, splicing, ... of the ORF region upstream from bli-1-dsRNA can affect its sensitivity to the MUT-16 and RDE-10 branches of the regulatory pathway.

    1. Reviewer #1 (Public Review):

      Summary:

      Clostridium thermocellum serves as a model for consolidated bioprocess (CBP) in lignocellulosic ethanol production, but yet faces limitations in solid contents and ethanol titers achieved by engineered strains thus far. The primary ethanol production pathway involves the enzyme aldehyde-alcohol dehydrogenase (AdhE), which forms long oligomeric structures known as spirosomes, previously characterized via the 3.5 Å resolution E. coli AdhE structure using single-particle cryo-EM. The present study describes the cryo-EM structure of the C. thermocellum ortholog, sharing 62% sequence identity with E. coli AdhE, resolved at 3.28 Å resolution. Detailed comparative structural analysis, including the Vibrio cholerae AdhE structure, was conducted. Integrating cryo-EM data with molecular dynamics simulations indicated that the aldehyde intermediate resides longer in the channel of the extended form, supporting the hypothesis that the extended spirosome represents the active form of AdhE.

      Strengths:

      The study conducts a comprehensive structural comparative analysis of oligomerization interfaces and the acetaldehyde channel across compact and extended conformations. Structural and computational results suggest the extended spirosome as the most likely active state of AdhE.

      Weaknesses:

      The overall resolution of the C. thermocellum structure is similar to the E. coli ortholog, which shares 62% sequence identity, and the oligomerization interfaces and the acetaldehyde channel were previously described.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Ziegler et al, entitled 'Structural characterization and dynamics of AdhE ultrastructure from Clostridium thermocellum: A containment strategy for toxic intermediates?" presents the atomic resolution cryo-EM structure of C. thermocellum AdhE showing that it show dominantly an extended form while E.coli AdhE shows dominantly a compact form. With comparative analysis of their C. thermocellum structure and the previous E.coli AdhE structure, they tried to reveal the mechanism by which C.thermocellum and E.coli show different dominant conformations. In addition, they also analyzed the substrate channel by comparative and computational approaches. Lastly, their computational analysis using CryoDRGN reveals conformational heterogeneity in the sample. Although this manuscript suggests a potential mechanism of the different features of AdhEs, this manuscript is very descriptive and does not provide sufficient data to support the authors' conclusions, which may be due to the lack of experimental data to support their findings from the computational analysis.

      Strengths:

      This manuscript provides the first C. thermocellum (Ct) AdhE structure and comparatively analyzed this structure with E.coli AdhE.

      Weaknesses:

      Their main conclusions obtained mostly by computational and comparative analysis are not supported by experimental data.

    3. Reviewer #3 (Public Review):

      This study describes the first structure of Gram-positive bacterial AdhE spirosomes that are in a native extended conformation. All the previous structures of AdhE spirosomes obtained come from Gram-negative bacterial species with native compact spirosomes (E. coli, V. cholerae). In E. coli, AdhE spirosomes can be found in two different conformational states, compact and extended, depending on the substrates and cofactors they are bound to.

      The high-resolution cryoEM structure of the extended C. thermocellum AdhE spirosomes produced in E. coli in an apo state (without any substrate or cofactors) is compared to the E. coli extended and compact AdhE spirosomes structures previously published. The authors have modeled (in Swiss-Model) the structure of compact C. thermocellum AdhE spirosomes, using E. coli compact AdhE spirosome conformation as a template, and performed molecular dynamics simulations. They have identified a channel in which the toxic reaction intermediate aldehyde could transit from the aldehyde dehydrogenase active site to the alcohol dehydrogenase active site, in an analogous manner to E. coli spirosomes. These findings are in line with the hypothesis that the extended spirosomes could correspond to the active form of the enzyme.

      In this work, the authors speculate that the C. thermocellum AdhE spirosomes could switch from the native extended conformation to a compact conformation, in a way that is inverse of E. coli spirosomes. Although attractive, this hypothesis is not supported by the literature. Amazingly, in some Gram-positive bacterial species (S. pneumoniae, S. sanguinis or C. difficile...), AdhE spirosomes are natively extended and have never been observed in a compact conformation. On the opposite, E. coli (and other Gram-negative bacteria) native AdhE spirosomes are compact and are able to switch to an extended conformation in the presence of the cofactors (NAD+, coA, and iron). The data presented as they are now are not convincing to confirm the existence of C. thermocellum AdhE spirosomes in a compact conformation.

    1. Reviewer #1 (Public Review):

      In their paper, Kang et al. investigate rigidity sensing in amoeboid cells, showing that, despite their lack of proper focal adhesions, amoeboid migration of single cells is impacted by substrate rigidity. In fact, many different amoeboid cell types can durotax, meaning that they preferentially move towards the stiffer side of a rigidity gradient.

      The authors observed that NMIIA is required for durotaxis and, building on this observation, they generated a model to explain how durotaxis could be achieved in the absence of strong adhesions. According to the model, substrate stiffness alters the diffusion rate of NMAII, with softer substrates allowing for faster diffusion. This allows for NMAII accumulation at the back, which, in turn, results in durotaxis.

      The experiments support the main message of the paper regarding durotaxis by amoeboid cells. In my opinion, a few clarifications on the mechanism proposed to explain this phenomenon could strengthen this research:

      (1) According to your model, the rear end of the cell, which is in contact with softer substrates, will have slower diffusion rates of MNIIA. Does this mean that bigger cells will durotax better than smaller cells because the stiffness difference between front and rear is higher? Is it conceivable to attenuate the slope of the durotactic gradient to a degree where smaller cells lose their ability to durotact, while longer cells retain their capacity for directional movement?

      (2) Where did you place the threshold for soft, middle, and stiff regions (Figure 6)? Is it possible that you only have a linear rigidity gradient in the center of your gel and the more you approach the borders, the flatter the gradient gets? In this case, cells would migrate randomly on uniform substrates. Did you perform AFM over the whole length of the gel or just in the central part?

      (3) In which region (soft, middle, stiff) did you perform all the cell tracking of the previous figures?

      (4) What is the level of confinement experienced by the cells? Is it possible that cells on the soft side of the gels experience less confinement due to a "spring effect" whereby the coverslips descending onto the cells might exert diminished pressure because the soft hydrogels act as buffers, akin to springs? If this were the case, cells could migrate following a confinement gradient.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors developed an imaging-based device that provides both spatial confinement and stiffness gradient to investigate if and how amoeboid cells, including T cells, neutrophils, and Dictyostelium, can durotax. Furthermore, the authors showed that the mechanism for the directional migration of T cells and neutrophils depends on non-muscle myosin IIA (NMIIA) polarized towards the soft-matrix-side. Finally, they developed a mathematical model of an active gel that captures the behavior of the cells described in vitro.

      Strengths:

      The topic is intriguing as durotaxis is essentially thought to be a direct consequence of mechanosensing at focal adhesions. To the best of my knowledge, this is the first report on amoeboid cells that do not depend on FAs to exert durotaxis. The authors developed an imaging-based durotaxis device that provides both spatial confinement and stiffness gradient and they also utilized several techniques such as quantitative fluorescent speckle microscopy and expansion microscopy. The results of this study have well-designed control experiments and are therefore convincing.

      Weaknesses:

      Overall this study is well performed but there are still some minor issues I recommend the authors address:

      (1) When using NMIIA/NMIIB knockdown cell lines to distinguish the role of NMIIA and NMIIB in amoeboid durotaxis, it would be better if the authors took compensatory effects into account.<br /> (2) The expansion microscopy assay is not clearly described and some details are missed such as how the assay is performed on cells under confinement.<br /> (3) In this study, an active gel model was employed to capture experimental observations. Previously, some active nematic models were also considered to describe cell migration, which is controlled by filament contraction. I suggest the authors provide a short discussion on the comparison between the present theory and those prior models.<br /> (4) In the present model, actin flow contributes to cell migration while myosin distribution determines cell polarity. How does this model couple actin and myosin together?

    1. Reviewer #1 (Public Review):

      Summary:

      The authors address cellular mechanisms underlying the early stages of Sjogren's syndrome, using a mouse model in which 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) is applied to stimulate the interferon gene (STING) pathway. They show that, in this model, salivary secretion in response to neural stimulation is greatly reduced, even though individual secretory cell calcium responses were enhanced. They attribute the secretion defect to reduced activation of Ca2+ -activated Cl- channels (TMEM16a), due to an increased distance between Ca2+ release channels (IP3 receptors) and TMEM16a which is expected to reduce the [Ca2+] sensed by TMEM16a. A variety of disruptions in mitochondria were also observed after DMXAA treatment, including reduced abundance, altered morphology, depolarization, and reduced oxygen consumption rate. The results of this study shed new light on some of the early events leading to the loss of secretory function in Sjogren's syndrome, at a time before inflammatory responses cause the death of secretory cells.

      Strengths:

      Two-photon microscopy enabled Ca2+ measurements in the salivary glands of intact animals in response to physiological stimuli (nerve stimulation). This approach has been shown previously by the authors as necessary to preserve the normal spatiotemporal organization of calcium signals that lead to secretion under physiological conditions.

      Superresolution (STED) microscopy allowed precise measurements of the spacing of IP3R and TMEM16a and the cell membranes that would otherwise be prevented by the diffraction limit. The measured increase of distance (from 84 to 155 nm) would be expected to reduce [Ca2+] at the TMEM16a channel.

      The authors effectively ruled out a variety of alternative explanations for reduced secretion, including changes in AQP5 expression, TMEM16a expression, localization, and Ca2+ sensitivity as indicated by Cl- current in response to defined levels of Ca2+.

      Weaknesses:

      While the Ca2+ distribution in the cells was less restricted to the apical region in DMXAA-treated cells, it is not clear that this is relevant to the reduced activation of TMEM16a. The way in which the change in Ca2+ distribution is quantified (apical/basal ratio) is not informative, as this is not what activates TMEM16a, but rather the local [Ca2+] at the channel.

      Despite the decreased level of secretion, Ca2+ signal amplitudes were higher in the treated cells, raising the question of how much this might compensate for the increased distance between IP3R and TMEM16a. The authors assume that the increased separation of IP3R and TMEM16a (and the resulting decrease in local [Ca2+]) outweighed the effect of higher global [Ca2+], but this important point was not addressed.

      The description of mitochondrial changes in abundance, morphology, membrane potential, and oxygen consumption rate were not well integrated into the rest of the paper. While they may be a facet of the multiple effects of STING activation and may occur during Sjogren's syndrome, their possible role in reducing secretion was not examined. As it stands, the mitochondrial results are largely descriptive and there is no evidence here that they contribute to the secretory phenotype.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes a very eloquent study of disrupted stimulus-secretion coupling in salivary acinar cells in the early stages of an animal model (DMXAA) of Sjogren's syndrome (SS). The study utilizes a range of technically innovative in vivo imaging of Ca signaling, in vivo salivary secretion, patch clamp electrophysiology to assess TMEM16a activity, immunofluorescence and electron microscopy, and a range of morphological and functional assays of mitochondrial function. Results show that in mice with DMXAA-induced Sjogren's syndrome, there was a reduced nerve-stimulation-induced salivary secretion, yet surprisingly the nerve-stimulation-induced Ca signaling was enhanced. There was also a reduced carbachol (CCh)-induced activation of TMEM16a currents in acinar cells from DMXAA-induced SS mice, whereas the intrinsic Ca-activated TMEM16a currents were unaltered, further supporting that stimulus-secretion coupling was impaired. Consistent with this, high-resolution STED microscopy revealed that there was a loss of close physical spatial coupling between IP3Rs and TMEM16a, which may contribute to the impaired stimulus-secretion coupling. Furthermore, the authors show that the mitochondria were both morphologically and functionally impaired, suggesting that bioenergetics may be impaired in salivary acinar cells of DMXAA-induced SS mice.

      Strengths:

      Overall, this is an outstanding manuscript, that will have a huge impact on the field. The manuscript is beautifully well-written with a very clear narrative. The experiments are technically innovative, very well executed, and with a logical design The data are very well presented and appropriately analyzed and interpreted.

    3. Reviewer #3 (Public Review):

      Summary:

      The pathomechanism underlying Sjögren's syndrome (SS) remains elusive. The authors have studied if altered calcium signaling might be a factor in SS development in a commonly used mouse model. They provide a thorough and straightforward characterization of the salivary gland fluid secretion, cytoplasmic calcium signaling, mitochondrial morphology, and respiration. A special strength of the study is the spectacular in vivo imaging, very few if any groups could have succeeded with the studies. The authors show that the cytoplasmic calcium signaling is upregulated in the SS model and the Ca2+ regulated Cl- channels are normally localized and function, but still fluid secretion is suppressed. They also find altered localization of the IP3R and speculate about lesser exposure of Cl- channels to high local [Ca2+]. In addition, they describe changes in mitochondrial morphology and function that might also contribute to the attenuated secretory response. Although the exact contribution of calcium and mitochondria to secretory dysfunction remains to be determined, the results seem to be useful for a range of scientists.

      Specific points to consider:

      (1) Are all the effects of DMXAA mediated through STING? DMXAA has been reported to inhibit NAD(P)H quinone oxidoreductase (NQO1) PMID: 10423172, which might be relevant both for the calcium and mitochondrial phenotypes. I would recommend that the authors either test the dependency of the DMXAA effects on STING or avoid attributing all effects of DMXAA to STING.

      (2) "mitochondrial membrane potential (ΔΨm), the driving force of ATP production" the driving force is the electrochemical H+ gradient.

      (3) ΔΨm is assessed as decreased in the DMXAA model without a change in TMRE steady state. Higher post-uncoupler fluorescence caused a lesser uncoupler-sensitive pool. This is not a very common observation. Was the autofluorescence of the DMXAA-treated cells higher in the red channel?

      (4) The EM study indicated ER structure disruption. Are there any clues to the contribution of this to the augmented agonist/electrical stimulation-induced calcium signaling and decreased fluid secretion?

    1. Reviewer #1 (Public Review):

      Summary:

      The current manuscript provides an extensive in vivo analysis of two guidance pathways identifying multiple mechanisms that shape the bifurcation of DRG axons when forming the dorsal funiculus in the DREZ.

      Strengths:

      Multiple mouse mutant lines were used, together with complementary techniques; the results are very clear and compelling.<br /> The findings are very significant and clearly move forward our understanding of the regulation of axonal development at the DREZ.

      Weaknesses:

      No major weaknesses were found. As it is I have no recommendations that would increase the clarity or quality of the manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors conduct a detailed analysis of the molecular cues that control guidance of bifurcated dorsal root ganglion axons in a key region of the spinal cord called the dorsal funiculus. This is a specific case of axon guidance that occurs in a precise way. The authors knew that Slit was important but many axons still target correctly in Slit knockouts, suggesting a role for other guidance factors. Netrin1 is also expressed in this region, so they looked at netrin mutants. The authors found axons outside the DREZ in the Ntn1 mutants, and they show by single neuron genetic labeling that many of these come from DRG neurons. Quantified axonal tracing studies in Slit1/2, Ntn1, or triple mutant embryos supports the idea that Slit and Ntr1 have distinct functions in guidance and that the effect of their loss is additive. Interestingly none of these knockouts affect bifurcation itself but rather the guidance of one or both of the bifurcated axon terminals. Knockout of the Slit receptors (Robo1/2) or the Netrin 1 receptor (DCC) in embryos causes similar guidance defects to loss of the ligands, providing an additional confirmation of the requirement for both guidance pathways. This study expands understanding of the role of the axon guidance factors Ntr1/DCC and Slit/Robo in a specific axon guidance decision. The strength of the study is the careful axonal labeling and quantification, which allows the authors to establish precise consequences of the loss of each guidance factor or receptor.

    3. Reviewer #3 (Public Review):

      Summary:

      In this paper, Curran et al investigate the role of Ntn, Slit1 and Slit 2 in axon patterning of DRG neurons. The paper uses mouse genetics to perturb each guidance molecule and its corresponding receptor. Cre-based approaches and immunostaining of DRG neurons are used to assess the phenotypes. Overall, the study uses the strength of mouse genetics and imaging to reveal new genetic modifiers of DRG axons. The conclusions of the experiments match the presented results. The paper is an important contribution to the field, as evidence that dorsal funiculus formation is impacted by Ntn and Slit signaling. The paper clearly demonstrates molecules that impact the patterning of the dorsal funiculus formation, which can provide a foundation for future studies on the specific steps in that patterning that require the studied molecules.

      Strengths:

      The manuscript uses the advantage of mouse genetics to investigate axon patterning of DRG neurons. The work does a great job of assessing individual phenotypes in single and double mutants. This reveals an intriguing cooperative and independent function of Ntn, Slit1 and Slit2 in DRG axon patterning. The sophisticated triple mutant analysis is lauded and provides important insight.

      Weaknesses:

      Overall, the manuscript is sound in technique and analysis. While not a weakness, the paper provides the foundation for future studies that investigate the specific molecular mechanisms of each step in the patterning of the dorsal funiculus.

    1. Reviewer #2 (Public Review):

      The authors sought to establish the role played by N343 glycosylation on the SARS-CoV-2 S receptor binding domain structure and binding affinity to the human host receptor ACE2 across several variants of concern. The work includes both computational analysis in the form of molecular dynamics simulations and experimental binding assays between the RBD and ganglioside receptors.

      The work extensively samples the conformational space of the RBD beginning with atomic coordinates representing both the bound and unbound states and computes molecular dynamics trajectories until equilibrium is achieved with and without removing N343 glycosylation. Through comparison of these simulated structures, the authors are able to demonstrate that N343 glycosylation stabilizes the RBD. Prior work had demonstrated that glycosylation at this site plays an important role in shielding the RBD core and in this work the authors demonstrate that removal of this glycan can trigger a conformational change to reduce water access to the core without it. This response is variant dependent and variants containing interface substitutions which increase RBD stability, including Delta substitution L452R, do not experience the same conformational change when the glycan is removed. The authors also explore structures corresponding to Alpha and Beta in which no structure-reinforcing substitutions were identified and two Omicron variants in which other substitutions with an analogous effect to L452R are present.

      The authors experimentally assessed these inferred structural changes by measuring the binding affinity of the RBD for the oligosaccharides of the monosialylated gangliosides GM1os and GM2os with and without the glycan at N343. While GM1os and GM2os binding is influenced by additional factors in the Beta and Omicron variants, the comparison between Delta and Wuhan-hu-1 is clear: removal of the glycan abrogated binding for Wuhan-hu-1 and minimally affected Delta as predicted by structural simulations.

      In summary, these findings suggest, in the words of the authors, that SARS-CoV-2 has evolved to render the N-glycosylation site at N343 "structurally dispensable". This study emphasizes how glycosylation impacts both viral immune evasion and structural stability which may in turn impact receptor binding affinity and infectivity. Mutations which stabilize the antigen may relax the structural constraints on glycosylation opening up avenues for subsequent mutations which remove glycans and improve immune evasion. This interplay between immune evasion and receptor stability may support complex epistatic interactions which may in turn substantially expand the predicted mutational repertoire of the virus relative to expectations which do not take into account glycosylation.

    2. Reviewer #3 (Public Review):

      Summary:

      The receptor binding domain of SARS-Cov-2 spike protein contains two N-glycans which have been conserved the variants observed in these last 4 years. Through the use of extensive molecular dynamics, the authors demonstrate that even if glycosylation is conserved, the stabilization role of glycans at N343 differs among the strains. They also investigate the effect of this glycosylation on the binding of RBD towards sialylated gangliosides, also as a function of evolution

      Strengths:

      The molecular dynamics characterization is well performed and demonstrates differences on the effect of glycosylation as a factor of evolution. The binding of different strains to human gangliosides shows variations of strong interest. Analyzing structure function of glycans on SARS-Cov-2 surface as a function of evolution is important for the surveillance of novel variants, since it can influence their virulence.

      Weaknesses:

      The revised article does not hold significant weaknesses

    1. Reviewer #1 (Public Review):

      Summary:

      The study by Seo et al highlights knowledge gaps regarding the role of cerebellar complex spike (CS) activity during different phases of learning related to optokinetic reflex (OKR) in mice. The novelty of the approach is twofold: first, specifically perturbing the activity of climbing fibers (CFs) in the flocculus (as opposed to disrupting communication between the inferior olive (IO) and its cerebellar targets globally); and second, examining whether disruption of the CS activity during the putative "consolidation phase" following training affects OKR performance.

      The first part of the results provides adequate evidence supporting the notion that optogenetic disruption of normal CF-Purkinje neuron (PN) signaling results in the degradation of OKR performance. As no effects are seen in OKR performance in animals subjected to optogenetic irradiation during the memory consolidation or retrieval phases, the authors conclude that CF function is not essential beyond memory acquisition. However, the manuscript does not provide a sufficiently solid demonstration that their long-term activity manipulation of CF activity is effective, thus undermining the confidence of the conclusions.

      Strengths:

      The main strength of the work is the aim to examine the specific involvement of the CF activity in the flocculus during distinct phases of learning. This is a challenging goal, due to the technical challenges related to the anatomical location of the flocculus as well as the IO. These obstacles are counterbalanced by the use of a well-established and easy-to-analyse behavioral model (OKR), that can lead to fundamental insights regarding the long-term cerebellar learning process.

      Weaknesses:

      The impact of the work is diminshed by several methodological shortcomings.

      Most importantly, the key finding that prolonged optogenetic inhibition of CFs (for 30 min to 6 hours after the training period) must be complemented by the demonstration that the manipulation maintains its efficacy. In its current form, the authors only show inhibition by short-term optogenetic irradiation in the context of electrical-stimulation-evoked CSs in an ex vivo preparation. As the inhibitory effect of even the eNpHR3.0 is greatly diminished during seconds-long stimulations (especially when using the yellow laser as is done in this work (see Zhang, Chuanqiang, et al. "Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition." BMC biology 17.1 (2019): 1-17. ), we remain skeptical of the extent of inhibition during the long manipulations. In short, without a demonstration of effective inhibition throughout the putative consolidation phase (for example by showing a significant decrease in CS frequency throughout the irradiation period), the main claim of the manuscript of phase-specific involvement of CF activity in OKR learning can not be considered to be based on evidence.

      Second, the choice of viral targeting strategy leaves gaps in the argument for CF-specific mechanisms. CaMKII promoters are not selective for the IO neurons, and even the most precise viral injections always lead to the transfection of neurons in the surrounding brainstem, many of which project to the cerebellar cortex in the form of mossy fibers (MF). Figure 1Bii shows sparsely-labelled CFs in the flocculus, but possibly also MFs. While obtaining homogenous and strong labeling in all floccular CFs might be impossible, at the very least the authors should demonstrate that their optogenetic manipulation does not affect simple spiking in PNs.

      Finally, while the paper explicitly focuses on the effects of CF-evoked complex spikes in the PNs and not, for example, on those mediated by molecular layer interneurons or via direct interaction of the CF with vestibular nuclear neurons, it would be best if these other dimensions of CF involvement in cerebellar learning were candidly discussed.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to explore the role of climbing fibers (CFs) in cerebellar learning, with a focus on optokinetic reflex (OKR) adaptation. Their goal was to understand how CF activity influences memory acquisition, memory consolidation, and memory retrieval by optogenetically suppressing CF inputs at various stages of the learning process.

      Strengths:

      The study addresses a significant question in the cerebellar field by focusing on the specific role of CFs in adaptive learning. The authors use optogenetic tools to manipulate CF activity. This provides a direct method to test the causal relationship between CF activity and learning outcomes.

      Weaknesses:

      Despite shedding light on the potential role of CFs in cerebellar learning, the study is hampered by significant methodological issues that question the validity of its conclusions. The absence of detailed evidence on the effectiveness of CF suppression and concerns over tissue damage from optogenetic stimulation weakens the argument that CFs are not essential for memory consolidation. These challenges make it difficult to confirm whether the study's objectives were fully met or if the findings conclusively support the authors' claims. The research commendably attempts to unravel the temporal involvement of CFs in learning but also underscores the difficulties in pinpointing specific neural mechanisms that underlie the phases of learning. Addressing these methodological issues, investigating other signals that might instruct consolidation, and understanding CFs' broader impact on various learning behaviors are crucial steps for future studies.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors used target agnostic MBC sorting and activation methods to identify B cells and antibodies against sexual stages of Plasmodium falciparum. While they isolated some Mabs against PFs48/45 and PFs230, two well-known candidates for "transmission blocking" vaccines, these antibodies' efficacies, as measured by TRA, did not perform as well as other known antibodies. They also isolated one cross-reactive mAb to proteins containing glutamic acid-rich repetitive elements, that express at different stages of the parasite life cycle. They then determined the structure of the Fab with the highest protein binder they could determine through protein microarray, RESA, and observed homotypic interactions.

      Strengths:

      - Target agnostic B cell isolation (although not a novel methodology).<br /> - New cross-reactive antibody and mechanism (homotypic interactions) as demonstrated by structural data and other biophysical data.

      Weaknesses:

      The paper lacks clarity at times and could benefit from more transparency (showing all the data) and explanations.<br /> In particular:<br /> -define SIFA<br /> -define TRAbs<br /> -it is not possible to read the Supplementary Figure 6B and C panels.

    2. Reviewer #2 (Public Review):

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions.

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages.

    3. Reviewer #3 (Public Review):

      The manuscript from Amen et al reports the isolation and characterization of human antibodies that recognize proteins expressed at different sexual stages of Plasmodium falciparum. The isolation approach was antigen agnostic and based on the sorting, activation, and screening of memory B cells from a donor whose serum displays high transmission-reducing activity. From this effort, 14 antibodies were produced and further characterized. The antibodies displayed a range of transmission-reducing activities and recognized different Pf sexual stage proteins. However, none of these antibodies had higher TRA than previously described antibodies.

      The authors then performed further characterization of antibody B1E11K, which was unique in that it recognized multiple proteins expressed during sexual and asexual stages. Using protein microarrays, B1E11K was shown to recognize glutamate-rich repeats, following an EE-XX-EE pattern. An impressive set of biophysical experiments was performed to extensively characterize the interactions of B1E11K with various repeat motifs and lengths. Ultimately, the authors succeeded in determining a 2.6 A resolution crystal structure of B1E11K bound to a 16AA repeat-containing peptide. Excitingly, the structure revealed that two Fabs bound simultaneously to the peptide and made homotypic antibody-antibody contacts. This had only previously been observed with antibodies directed against CSP repeats.

      Overall I found the manuscript to be very well written, although there are some sections that are heavy on field-specific jargon and abbreviations that make reading unnecessarily difficult. For instance, 'SIFA' is never defined. Strengths of the manuscript include the target-agnostic screening approach and the thorough characterization of antibodies. The demonstration that B1E11K is cross-reactive to multiple proteins containing glutamate-rich repeats, and that the antibody recognizes the repeats via homotypic interactions, similar to what has been observed for CSP repeat-directed antibodies, should be of interest to many in the field.

    1. Reviewer #1 (Public Review):

      Throughout the paper, the authors do a fantastic job of highlighting caveats in their approach, from image acquisition to analysis. Despite this, some conclusions and viewpoints portrayed in this study do not appear well-supported by the provided data. Furthermore, there are a few technical points regarding the analysis that should be addressed.

      (1) Analysis of signaling traces

      - Relevance of "modeled signaling level": It is not clear whether this added complexity and potential for error (below) provides benefits over a more simple analysis such as taking the derivative (shown in Figure 3C). Could the authors provide evidence for the benefits? For example, does the "maximal response" given a simpler metric correlate less well with cell fate than that calculated from the fitted response?

      - Assumptions for "modeled signaling level": According to equation (1) Kaede levels are monotonically increasing. This is assumed given the stability of the fluorescent protein. However, this only holds for the "totally produced Kaede/fluorescence". Other metrics such as mean fluorescence can very well decrease over time due to growth and division. Does "intensity" mean total fluorescence? Visual inspection of the traces shown in Figure 2 suggests that "fluorescence intensity" can decrease. What does this mean for the inferred traces?

      - Estimation of Kaede reporter half-live: It is not clear how the mRNA stability of Kaede is estimated. It sounds like it was just assessed visually, which seems not entirely appropriate given the quantitative aspects of the rest of the study. Also, given that Shh signaling was inhibited on the level of Smoothened, it is not obvious how the dynamics of signaling shutdown affect the estimate. Most results in Figure 7 seem to be quite robust to the estimate of the half-live. That they are, might suggest that the whole analysis is unnecessary in the first place. However, not all are. Thus, it would be important to make this estimate more quantitative.

      (2) Assignment of fates and correlations

      - Error estimate for cell-type assignment: Trying to correlate signaling traces to cell fate decisions requires accurate cell fate assignment post-tracking. The provided protocol suggests a rather manual, expert-directed process of making those decisions. Can the authors provide any error-bound on those decisions, for example comparing the results obtained by two experts or something comparable? I am particularly concerned about the results regarding the higher degree of variability in the correlation between signaling dynamics and cell fate in the posterior neural tube. Here, the expression of Olig2 does not seem to segregate between different assigned fates, while it does so nicely in the anterior neural tube. This would suggest to me that cells in the posterior neural tube might not yet be fully committed to a fate or that there could be a relatively high error rate in assigning fates. Thus, the results could emerge from technical errors or differences in pure timing. Could the authors please comment on these possibilities?

      - Clustering and fates: One approach the authors use to analyze the correlation between signaling and fate is clustering of cell traces and comparison of the fate distributions in those clusters. There is a large number of clusters with only single traces, suggesting that the data (number of traces) might not be sufficient for this analysis. Furthermore, I am skeptical about clustering cells of different anterior-posterior identities together, given potential differences in the timing of signal reception and signaling. I am not convinced that this analysis reveals enough about how signaling maps to fate given the heterogeneity in traces in large clusters and the prevalence of extremely small clusters.

      - Signaling vector and hand-picked metrics: As an alternative approach, that might be better suited for their data, the authors then pick three metrics (based on their model-predicted signaling dynamics) and show that the maximal response is a very good predictor of fate for different anterior-posterior identities. Previous information-theoretic analysis of signaling dynamics has found that a whole time-vector of signaling can carry much more information than individual metrics (Selimkhanov et al, 2014, PMID: 25504722). Have the authors tried to use approaches that make use of the whole trace (such as simple classifiers (Granados et al, 2018, PMID: 29784812), or can comment on why this is not feasible for their data? The authors should at least make clear that their results present a lower bound to how accurately cells can make cell-fate decisions based on signaling dynamics.

      (3) Consequences of signaling heterogeneity

      The authors focus heavily on portraying that signaling dynamics are highly variable, which seems visually true at first glance. However, there is no metric used or a description given of what this actually means. Mainly, the variability seems to relate to the correlation between signaling and fate. However, given the data and analysis, I would argue that the decoding of signaling dynamics into fate is surprisingly accurate. So signaling dynamics that seem quite noisy and variable by visual inspection can actually be very well discriminated by cells, which to me appears very exciting.

      Indeed, simple features of signaling traces can predict cell fate as well as position (for anterior progenitors). Given that signaling should be a function of position, it naively seems as if signaling read-out could be almost perfect. It might be interesting to plot dorsal-ventral position vs the signaling metrics, to also investigate how Shh concentration/position maps to signaling dynamics, this would give an even more comprehensive view of signal transmission.

      There remains the discrepancy between signaling traces and fate in the posterior neural tube. The authors point towards differences in tissue architecture and difficulties in interpreting a "small" Shh gradient. However, the data seems consistent with differences in timing of cell-fate decisions between anterior and posterior cells. The authors show that fate does initially not correlate well with position in the posterior neural tube. So, signaling dynamics should likely also not, as they should rather be a function of position, given they are downstream of the Shh gradient. As mentioned above, not even Olig2 expression does segregate the assigned fates well. All this points towards a difference in the time of fate assignment between the anterior and posterior. Given likely delays in reporter protein production and maturation, it can thus not be expected that signaling dynamics correlate better with cell fate than the reporter "83%". Can the authors please discuss this possibility in the paper?

      Thus, while this paper represents an example of what the community needs to do to gain a better understanding of robust patterning under variability, the provided data is not always sufficient to make clear conclusions regarding the functional consequences of signaling dynamics.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, Xiong and colleagues examine the relationship between the profile of the morphogen Shh and the resulting cell fate decisions in the zebrafish neural tube. For this, the authors combine high-resolution live imaging of an established Shh reporter with reporter lines for the different progenitor types arising in the forming neural tube. One of the key observations in this manuscript is that, while, on average, cells respond to differences in Shh activity to adopt distinct progenitor fates, at the single cell level there is strong heterogeneity between Shh response and fate choices. Further, the authors showed that this heterogeneity was particularly prominent for the pMN fate, with similar Shh response dynamics to those observed in neighboring LFP progenitors.

      Strengths:

      It is important to directly correlate Shh activity with the downstream TFs marking distinct progenitor types in vivo and with single cell resolution. This additional analysis is in line with previous observations from these authors, namely in Xiong, 2013. Further, the authors show that cells in different anterior-posterior positions within the neural tube show distinct levels of heterogeneity in their response to Shh, which is a very interesting observation and merits further investigation.

      Weaknesses:

      This is a convincing work, however, adding a few more analyses and clarifications would, in my view, strengthen the key finding of heterogeneity between Shh response and the resulting cell fate choices.

    1. Reviewer #1 (Public Review):

      Summary:

      There is a long-standing idea that choices influence evaluation: options we choose are re-evaluated to be better than they were before the choice. There has been some debate about this finding, and the authors developed several novel methods for detecting these re-evaluations in task designs where options are repeatedly presented against several alternatives. Using these novel methods the authors clearly demonstrate this re-evaluation phenomenon in several existing datasets.

      Strengths:

      The paper is well-written and the figures are clear. The authors provided evidence for the behaviour effect using several techniques and generated surrogate data (where the ground truth is known) to demonstrate the robustness of their methods.

      Weaknesses:

      The description of the results of the fMRI analysis in the text is not complete: weakening the claim that their re-evaluation algorithm better reveals neural valuation processes.

    2. Reviewer #2 (Public Review):

      Summary:

      Zylberberg and colleagues show that food choice outcomes and BOLD signal in the vmPFC are better explained by algorithms that update subjective values during the sequence of choices compared to algorithms based on static values acquired before the decision phase. This study presents a valuable means of reducing the apparent stochasticity of choices in common laboratory experiment designs. The evidence supporting the claims of the authors is solid, although currently limited to choices between food items because no other goods were examined. The work will be of interest to researchers examining decision-making across various social and biological sciences.

      Strengths:

      The paper analyses multiple food choice datasets to check the robustness of its findings in that domain.

      The paper presents simulations and robustness checks to back up its core claims.

      Weaknesses:

      To avoid potential misunderstandings of their work, I think it would be useful for the authors to clarify their statements and implications regarding the utility of item ratings/bids (e-values) in explaining choice behavior. Currently, the paper emphasizes that e-values have limited power to predict choices without explicitly stating the likely reason for this limitation given its own results or pointing out that this limitation is not unique to e-values and would apply to choice outcomes or any other preference elicitation measure too. The core of the paper rests on the argument that the subjective values of the food items are not stored as a relatively constant value, but instead are constructed at the time of choice based on the individual's current state. That is, a food's subjective value is a dynamic creation, and any measure of subjective value will become less accurate with time or new inputs (see Figure 3 regarding choice outcomes, for example). The e-values will change with time, choice deliberation, or other experiences to reflect the change in subjective value. Indeed, most previous studies of choice-induced preference change, including those cited in this manuscript, use multiple elicitations of e-values to detect these changes. It is important to clearly state that this paper provides no data on whether e-values are more or less limited than any other measure of eliciting subjective value. Rather, the paper shows that a static estimate of a food's subjective value at a single point in time has limited power to predict future choices. Thus, a more accurate label for the e-values would be static values because stationarity is the key assumption rather than the means by which the values are elicited or inferred.

      There is a puzzling discrepancy between the fits of a DDM using e-values in Figure 1 versus Figure 5. In Figure 1, the DDM using e-values provides a rather good fit to the empirical data, while in Figure 5 its match to the same empirical data appears to be substantially worse. I suspect that this is because the value difference on the x-axis in Figure 1 is based on the e-values, while in Figure 5 it is based on the r-values from the Reval algorithm. However, the computation of the value difference measure on the two x-axes is not explicitly described in the figures or methods section and these details should be added to the manuscript. If my guess is correct, then I think it is misleading to plot the DDM fit to e-values against choice and RT curves derived from r-values. Comparing Figures 1 and 5, it seems that changing the axes creates an artificial impression that the DDM using e-values is much worse than the one fit using r-values.

      Relatedly, do model comparison metrics favor a DDM using r-values over one using e-values in any of the datasets tested? Such tests, which use the full distribution of response times without dividing the continuum of decision difficulty into arbitrary hard and easy bins, would be more convincing than the tests of RT differences between the categorical divisions of hard versus easy.

      Revaluation and reduction in the imprecision of subjective value representations during (or after) a choice are not mutually exclusive. The fact that applying Reval in the forward trial order leads to lower deviance than applying it in the backwards order (Figure 7) suggests that revaluation does occur. It doesn't tell us if there is also a reduction in imprecision. A comparison of backwards Reval versus no Reval would indicate whether there is a reduction in imprecision in addition to revaluation. Model comparison metrics and plots of the deviance from the logistic regression fit using e-values against backward and forward Reval models would be useful to show the relative improvement for both forms of Reval.

      Did the analyses of BOLD activity shown in Figure 9 orthogonalize between the various e-value- and r-value-based regressors? I assume they were not because the idea was to let the two types of regressors compete for variance, but orthogonalization is common in fMRI analyses so it would be good to clarify that this was not used in this case. Assuming no orthogonalization, the unique variance for the r-value of the chosen option in a model that also includes the e-value of the chosen option is the delta term that distinguishes the r and e-values. The delta term is a scaled count of how often the food item was chosen and rejected in previous trials. It would be useful to know if the vmPFC BOLD activity correlates directly with this count or the entire r-value (e-value + delta). That is easily tested using two additional models that include only the r-value or only the delta term for each trial.

      Please confirm that the correlation coefficients shown in Figure 11 B are autocorrelations in the MCMC chains at various lags. If this interpretation is incorrect, please give more detail on how these coefficients were computed and what they represent.

      The paper presents the ceDDM as a proof-of-principle type model that can reproduce certain features of the empirical data. There are other plausible modifications to bounded evidence accumulation (BEA) models that may also reproduce these features as well or better than the ceDDM. For example, a DDM in which the starting point bias is a function of how often the two items were chosen or rejected in previous trials. My point is not that I think other BEA models would be better than the ceDDM, but rather that we don't know because the tests have not been run. Naturally, no paper can test all potential models and I am not suggesting that this paper should compare the ceDDM to other BEA processes. However, it should clearly state what we can and cannot conclude from the results it presents.

      This work has important practical implications for many studies in the decision sciences that seek to understand how various factors influence choice outcomes. By better accounting for the context-specific nature of value construction, studies can gain more precise estimates of the effects of treatments of interest on decision processes. That said, there are limitations to the generalizability of these findings that should be noted.

      These limitations stem from the fact that the paper only analyzes choices between food items and the outcomes of the choices are not realized until the end of the study (i.e., participants do not eat the chosen item before making the next choice). This creates at least two important limitations. First, preferences over food items may be particularly sensitive to mindsets/bodily states. We don't yet know how large the choice deltas may be for other types of goods whose value is less sensitive to satiety and other dynamic bodily states. Second, the somewhat artificial situation of making numerous choices between different pairs of items without receiving or consuming anything may eliminate potential decreases in the preference for the chosen item that would occur in the wild outside the lab setting. It seems quite probable that in many real-world decisions, the value of a chosen good is reduced in future choices because the individual does not need or want multiples of that item. Naturally, this depends on the durability of the good and the time between choices. A decrease in the value of chosen goods is still an example of dynamic value construction, but I don't see how such a decrease could be produced by the ceDDM.

    1. Reviewer #1 (Public Review):

      Summary:

      Drosophila is one of the most studied model organisms to understand how neural circuits form and function to control intricate animal behaviors. The ventral nerve cord (VNC) part of the fly's CNS serves as a sensory processing and motor output center just like our spinal cord. Over the last decade, the VNC has become a fruitful platform to understand neural circuits responsible for motor behavior such as walking and flying. The missing resource was the complete connectome of the VNC neurons. This study provides this needed resource. The authors documented their approaches on how to generate the data from tissue preparation to computer-assisted reconstruction in a simple manner and left the in-depth analysis of the network features of the connecting neurons to two other well-written companion articles.

      Strengths:<br /> Unlike many other previously published EM datasets, the authors presented a ready-to-view connectome dataset of the adult fly VNC. Readers, without needing permission, can access the dataset to find their neurons of interest and determine their synaptic partners with a few clicks. The authors also share their novel approaches in a detailed manner for others to reproduce similar EM volumes for other tissues.

      Weaknesses:

      The reconstruction completion, around 50%, might be considered a weakness. However, the data appear to have ~ %50 completion across all different neuropils suggesting that sampling is homogenous and does not induce bias. Nevertheless, a higher percentage will give a more complete picture.

    2. Reviewer #2 (Public Review):

      Summary:

      Takemura et al. achieved a milestone in connectomics with their dense reconstruction of the Male Adult Nerve Cord (MANC) in Drosophila, revealing the neural circuitry of the primary premotor and motor domains in the CNS of the fruit fly. The team meticulously reconstructed neuron morphologies and synaptic connections and registered these data with light microscopy datasets (of driver lines for example), made neuronal lineage annotations and neurotransmitter predictions, providing the basis for new hypotheses about motor control. A description of the dataset and methods are presented here, while cell type annotations and characterisation of connectivity between brain descending neurons and motor neurons are provided in two companion papers, Marin et al. and Cheong, Eichler, Stürner et al., respectively. This dataset and analysis will provide a rich resource for future neuroscientific exploration.

      Strengths:

      The authors fully utilise a wealth of tools and techniques developed over the course of over a decade to produce a new publicly available dataset with an impressive number of reconstructed neurons and synapses. The precision and recall of connections are as high or higher than past datasets (e.g. the Hemibrain), pointing to the reliability of any downstream analyses performed on this connectome. These data are augmented with neurotransmitter identities, providing essential information for modelling and computational analysis. The MANC connectome can also be linked to genetic tools through registration to pre-existing light microscopy datasets, allowing experimentalists to test hypotheses made based on the connectome.

      Weaknesses:

      This dataset presents the nerve cord connectome of just a single animal, so connectivity variability and validity will be hard to assess. However, it is bilaterally reconstructed, which does allow comparison between bilaterally symmetrical neurons on the left and right sides of the nerve cord, increasing confidence in connections observed on both sides. Damage occurred to the nerves during sample preparation, which will have to be considered when analysing sensory connectivity.

    1. Erschienen: 2024-05-08 Genre: Studien-Report Die Autor:innen des neuen Global Electricity Reports des Thinktanks Ember gehen davon aus, dass 2023 der Höhepunkt der Treibhausgas-Emissionen durch die Stromerzeugunng erreicht wurde. Erstmals stammten 30% des weltweit erzeugten Stroms aus erneuerbaren Energien. Hinzu kommen fast 10% Strom aus Kernkraft. Die Kohlendioxidemissionen aus der Stromerzeugung erreichten allerdings ebenfalls einen Rekord, weil der Strombedarf stieg.<br /> https://www.zeit.de/wissen/umwelt/2024-05/gruener-strom-klimapolitik-energiewende-klimaschutz

    1. Reviewer #1 (Public Review):

      This is an important and very well conducted study providing novel evidence on the role of zinc homeostasis for the control of infection with the intracellular bacterium S. typhimurium also disentangling the underlying mechanisms and providing clear evidence on the importance of spatio-temporal distribution of (free) zinc within the cell.

      Comments:

      It would be important to provide more information on the genotype of mice. It is rather unlikely that C57Bl6 mice survive up to two weeks after i.p. injection of 1x10E5 bacteria.

      To be sure that macrophages Slc30A1 fl/fl LysMcre mice really have an impaired clearance of bacteria it would be important to rule out an effect of Slc30A1 deletion of bacterial phagocytosis and containment (f.e. evaluation of bacterial numbers after 30 min of infection).

      Does the addition of zinc to macrophages negatively affect iNOS transcription as previously observed for the divalent metal iron and is a similar mechanism also employed (CEBPß/NF-IL6 modulation) (Dlaska M et al. J Immunol 1999)?

      How does Zinc or TPEN supplementation to bacteria in LB medium affect the log growth of Salmonella?

    2. Reviewer #2 (Public Review):

      This paper explores the importance of zinc metabolism in host defense against the intracellular pathogen Salmonella Typhimurium. Using conditional mice with a deletion of the Slc30a1 zinc exporter, the authors show a critical role for zinc homeostasis in the pathogenesis of Salmonella. Specifically, mice deficient in Slc30a1 gene in LysM+ myeloid cells are hypersusceptible to Salmonella infection, and their macrophages show alter phenotypes in response to Salmonella. The study adds important new information on the role metal homeostasis plays in microbe host interactions. Despite the strengths, the manuscript has some weaknesses. The authors conclude that lack of slc30a1 in macrophages impairs nos2-dependent anti-Salmonella activity. However, this idea is not tested experimentally. In addition, the research presented on Mt1 is preliminary. The text related to Figure 7 could be deleted without affecting the overall impact of the findings.

    3. Reviewer #3 (Public Review):

      Na-Phatthalung et al observed that transcripts of the zinc transporter Slc30a1 was upregulated in Salmonella-infected murine macrophages and in human primary macrophages therefore they sought to determine if, and how, Slc30a1 could contribute to the control of bacterial pathogens. Using a reporter mouse the authors show that Slc30a1 expression increases in a subset of peritoneal and splenic macrophages of Salmonella-infected animals. Specific deletion of Slc30a1 in LysM+ cells resulted in a significantly higher susceptibility of mice to Salmonella infection which, counter to the authors conclusions, is not explained by the small differences in the bacterial burden observed in vivo and in vitro. Although loss of Slc30a1 resulted in reduced iNOS levels in activated macrophages, the study lacks experiments that mechanistically link loss of NO-mediated bactericidal activity to Salmonella survival in Slc30a1 deficient cells. The additional deletion of Mt1, another zinc binding protein, resulted in even lower nitrite levels of activated macrophages but only modest effects on Salmonella survival. By combining genetic approaches with molecular techniques that measure variables in macrophage activation and the labile zinc pool, Na-Phattalung et al successfully demonstrate that Slc30a1 and metallothionein 1 regulate zinc homeostasis in order to modulate effective immune responses to Salmonella infection. The authors have done a lot of work and the information that Slc30a1 expression in macrophages contributes to control of Salmonella infection in mice is a new finding that will be of interest to the field. Whether the mechanism by which SLC30A1 controls bacterial replication and/or lethality of infection involves nitric oxide production by macrophages remains to be shown.

    1. Reviewer #1 (Public Review):

      Sertonin is an important neurotransmitter and it synaptic concentration is controlled by re-uptake by the sodium-coupled serotonin transporter SERT. In this paper, some 6000 mutations of SERT were made and tested for surface expression and uptake of a serotonin analogue APP+. The SERT mutants were analysed and compared to the SERT structure and dynamics based on MD simulations. The authors have concluded that mutations located on surface exposed regions are tolerated whilst those involved in packing and structural integrity are not. Gain-of-function mutations map onto regions that in most cases favour opening of a solvent-exposed intracellular vestibule. Closure of the intracellular gate is thought to be rate-limiting to the transport cycle, and thus the evolutionary-based screen is consistent with the clustering of gain-of-function mutations.

      Strengths:<br /> This paper using a large unbiased data-set to probe the evolution of the serotonin transporter SERT for the substrate APP+. They have been able to compare both localisation and transport data, which is an interesting data-set. Using MD simulations they are further able to provide some rationale basis for the gain-of-function mutants.

      Weaknesses:<br /> They can only detect surface expression of myc-tagged SERT based on conjugation with a fluorescent anti-myc antibody. As such, they cannot distinguish between SERT mutants that abolish expression vs. those that are no longer trafficking to the plasma membrane. This is a downside, as it would have been interesting to know the fraction of SERT mutations disrupt trafficking. Indeed, the relationship between misfolding and targeting is poorly understood beyond the calnexin- calreticulin cycle. Furthermore, there seems to be a gap between the large-scale mutagenesis data and the MD simulations in which the main mechanistic conclusions seem to be based on (carried out in a separate publication). Thus, overall while the mutation data-set is impressive its not clear how this aids to our mechanistic understanding of SERT.

    2. Reviewer #2 (Public Review):

      The manuscript by Chan et al reports results of a systematic mutagenesis approach to study the surface expression and APP+ transport mechanism of serotonin transporter. They complement this experimental evidence with large-scale molecular simulations of the transporter in the presence of APP+. The use of deep mutagenesis and large-scale adaptive sampling simulations is impressive and could be very exciting contributions to the field.

      On the whole, the results appear to provide a fascinating insight into the effects of mutations on transport mechanisms, and how those interrelate with the structural fold and biophysical properties of a dynamic protein and its substrate pathways. A weakness of the conclusions based on the molecular simulation is that it relies on comparison with previously-published work involving non-identical simulation systems (i.e. different protonation states).

      Conclusions in this work about the origins of the sodium:serotonin 1:1 stoichiometry should also be considered in the context of the fact that there are two sodium ions bound in the structures of SERT, and more work is needed to explain why this ion is not also released/co-transported.

      Some of the methods require additional information to be provided to be reproducible, for example, for the Transition Path Theory results, and so it is not possible to assess these conclusions with the manuscript in its current form.

    3. Reviewer #3 (Public Review):

      The results of the deep mutagenesis screen represent a wealth of information on the expression and function of SERT that everyone studying this protein will appreciate. However, as the authors explain, the screen identified mutations that increased APP+ transport but inhibited transport of the cognate substrate, 5-HT. Because of the methods used, 5-HT could not be used as a substrate, somewhat limiting the usefulness of the screen.

      However, the authors have taken advantage of this limitation to address the mechanistic features of SERT that discriminate between 5-HT and APP+. From the position of mutations that augment APP+ transport, they have identified the aqueous pathway created in inward facing SERT conformations as a region of importance. Based on the MD simulations, transition to inward facing conformations is facilitated by 5-HT but less so by APP+. The authors conclude, quite reasonably, that mutations interfering with the stability of inward-closed SERT states could overcome the reduced ability of APP+ to open the pathway.

      Another reasonable conclusion based on the mutant screen, is that mutations detrimental to surface expression were found in packed hydrophobic regions of the protein, but similar mutations in the permeation pathways were less likely to decrease expression. The authors postulate that this provides an evolutionary advantage by maintaining the structural fold while allowing modification of ion and substrate binding and coupling sites, a reasonable but speculative conclusion.

      Not all gain-of-function mutations have to be specific to APP+. The authors point out that Ala173Gly converts SERT to the residue found in NET and DAT at this position. It would have been interesting to know how this mutation and others affect 5-HT transport. Indeed, the lack of any 5-HT transport measurements with the mutants is a glaring weakness of the manuscript.

    1. Reviewer #1 (Public Review):

      The authors report a high-quality genome assembly for a member of Xenacoelomorpha, a taxon that is at the center of the last remaining great controversies in animal evolution. The taxon and the species in question have "jumped around" the animal tree of life over the past 25 years, and seemed to have found their place as a sister-group to all remaining bilaterians. This hypothesis posits that the earliest split within Bilateria includes Xenacoelomorpha on the one hand and a clade known as Nephrozoa (Protostomia + Deuterostomia) on the other, and is thus referred to as the Nephrozoa hypothesis. Nephrozoa is supported by phylogenomic evidence, by a number of synapomorphic morphological characters in the Nephrozoa (namely, the presence of nephridia) and lack of some key bilaterian characters in Xenacoelomorpha, and by the presence of unique miRNAs in Nephrozoa.

      The Nephrozoa hypothesis has been challenged several times by the authors' groups who alternatively suggest placing Xenacoelomorpha within Deuterostomia as a sister group to a clade known as Ambulacraria. This hypothesis (the Xenambulacraria hypothesis) is supported by alternative phylogenomic datasets and by the shared presence of a number of unique molecular signatures. In this contribution, the authors aim to strengthen their case by providing full genome data for Xenoturbella bocki.<br /> The actual sequencing and analysis are technically and methodologically excellent. Some of the analyses were done several years ago using approaches that may now seem obsolete, but there is no reason not to include them. As a detailed report of a newly sequenced genome, the manuscript meets the highest standards.

      The authors emphasize a number of key findings. One is the fact that the genome is not as simple as one might expect from a "basal" taxon, and is on par with other bilaterian genomes and even more complex than the genome of secondarily simplified bilaterians. There is an implicit expectation here that the sister group to all Bilateria would represent the primitive state. This is of course not true, and the authors are aware of this, but it sometimes feels as though they are using this implicit assumption as a straw dog argument to say that since the genome is not as simple as expected, X. bocki must be nested within Bilateria. The authors get around this by acknowledging that their finding is consistent with a "weak version of the Nephrozoa hypothesis", which is essentially the Nephrozoa phylogenetic hypothesis without implicit assumptions of simplicity.

      Another finding is a refutation of the miRNA data supporting Nephrozoa. This is an important finding although it is somewhat flogging a dead horse, since there is already a fair amount of skepticism about the validity of the miRNA data (now over 20 years old) for higher-level phylogenetics.

      The finding that the authors feel is most important is gene presence-absence data that recovers a topology in which X. bocki is sister to Abulacraria. The problem is that the same tree does not support the monophyly of Xenacoelomorpha. This may be an artifact of fast evolving acoel genomes, as the authors suggest, but it still raises questions about the robustness of the data.

      In sum, the authors' results and analyses leave an open window for the Xenambulacraria hypothesis, but do not refute the Nephrozoa hypothesis. The manuscript is a valuable contribution to the debate but does not go a significant way towards its resolution.<br /> The manuscript has gone through several rounds of review and revision on a preprint server and is thus fairly clear of typos, inconsistencies and lack of clarity. The authors are honest and open in their interpretation of the results and their strengths.

    2. Reviewer #2 (Public Review):

      The manuscript describes the genome assembly and analysis of Xenoturbella bocki, a worm that bears many morphological features ascribed to basal bilateria. The authors aim to analyse this genome in an attempt to determine the phylogenetic position of X. bocki as a representative of Xenacoelomorpha and its associated acoelomorphs. In doing so, they want to inform the debate as to whether xenacoelomorph belong among, or is in fact paraphyletic to all bilaterians.

      This paper presents a high-quality assembly of the X. bocki genome. By virtue of the phylogenetic position of this species, this genome has considerable scientific interest. This assembly appears to be highly complete and is a strength of the paper. The further characterisation of the genome is well executed and presented. Solid results from this paper include a comprehensive description of the Hox genes, miRNA and neruopeptide repertoire, as well as a description of the linkage group and how they relate to the ancestral linkage groups.

      Where this paper is weaker is that for the central claims and questions of this paper, i.e,. the question of the phylogenetic position of xenacoelomorph and whether X. bocki is a slowly evolving, but otherwise representative member of this clade, remains insufficiently resolved.

      The authors have achieved the goal of describing the X. bocki genome very well. By contrast, it is unclear, based on the presented evidence, whether xenacoelomorph is truly a monophyletic group. The balance of the evidence seems to suggest that the X. bocki genome belongs within the bilateria group. However, it is unclear as to what is driving the position of the other acoels. Assumign that X. bocki and the other two species in that group are monophyletic, then the evidence will favour the authors' conclusion (but without clearly rejecting the alternatives).

      This paper will likely further animate the debate regarding this basal species, and also questions related to the ancestral characters of bilateria as a whole. In particular the results from the HOX and paraHOX clusters, may provide an interesting counterpoint to the previous results based on the acoels.

    1. Reviewer #1 (Public Review):

      Rubin et al. study chondrocyte columns in the prenatal and postnatal growth plate in 3D for the first time, using a novel analysis pipeline in which Confetti clones in the murine growth plate are analysed morphometrically. Prenatal chondrocytes were found not to be organised in columns parallel to the main orientation of the long bone, but rather, prenatal chondrocytes were commonly organised perpendicular to the main direction of growth. In the postnatal (P40) growth plate there was a diverse arrangement of columns, but more of the columns were vertically aligned

      I enjoyed reading the work and the analysis is rigorous. However, I think that it is not valid to state that columns do not form in the embryo. The data only supports the finding that strictly vertical columns do not form in the embryo, as the cells are still organised into columns, albeit with a range of orientations. I do not like the term "typically" aligned, as how can we know what is "typical" when orientation has never before been assessed in 3D... And the authors' data demonstrates that it is certainly not "typical" for chondrocyte to organise into vertical columns prenatally.

      It would be very interesting to delve deeper into the reason for the change in orientation of columns between pre- and post-natal. For example, does more circumferential growth happen prenatally as compared to postnatally? Is the rate of circumferential vs longitudinal growth different between prenatal and postnatal, and could the change in column orientation be responsible for a (possible) shift in the balance between longitudinal vs circumferential growth before vs after birth? The first sentence of the Discussion refers to the role of chondrocyte columns in driving bone elongation, but aren't they also involved in driving bone morphology?

      I feel describing the activity of the cells as "mis-rotations" which implies the orientations are not intentional. It is likely not accidental or mistaken that the chondrocytes align in the ways they do- the diaphysis is largely for longitudinal growth while the epiphyses, and lateral expansion of the joint is also important. I find the data in Figure 4 fascinating, especially the variation in orientations between the regions of the growth plate (from proximal to distal), with the most lateral orientation at the most proximal and distal ends- it would be nice to see more discussion of these variations and what they may be contributing to.

      The abstract focuses solely on the analysis of columns prenatally and would benefit from the inclusion of the data from the postnatal growth plate and from the chondrocyte rotations.

    2. Reviewer #2 (Public Review):

      The origin and function of proliferative chondrocyte columns in the growth plate that are generally aligned with predicted longitudinal growth vectors have been robustly debated since the implementation of clonal analysis and live cell imaging techniques more than a decade ago. In particular, live cell imaging demonstrated that in the proliferative zone, most daughter pairs rotate fully or partially after division to form columns of stacked cells and a minority of pairs fail to rotate. These observations and others led to a mechanistic model of column formation, but limitations in the live cell imaging methods that only visualize a single round of division and rotation left open an important question - what is the effect of different rotation profiles on column formation, bone growth, and morphology?

      This manuscript describes the use of an inducible lineage tracing system in the mouse combined with a novel image analysis pipeline to analyze column formation over multiple cell divisions. The main conclusion is that many clones generate single columns in postnatal mice (as expected), but clones in embryonic growth plate cartilage form clusters distributed laterally, not aligned with longitudinal growth. These findings are interpreted to suggest that column formation is not required for long bone growth in the embryo and that lateral expansion of proliferative chondrocyte clusters may drive an increase in bone width.

      Although these findings are intriguing and potentially impactful, there are important caveats to the approach that generate significant uncertainty in both the measurements and the conclusions. (1) The claim that embryonic growth plate chondrocytes do not form columns conflicts with the observation of columnar stacks in the clusters. (2) Interpretation of nuclear elevation data is based on the unproven assumption that nuclei should be stacked in cell columns. (3) Clonal analysis of proliferative chondrocyte cell division and stacking behaviors is only valid if clone labeling is initiated in a proliferative chondrocyte, not when the founder cell is a resting chondrocyte. The data are insufficient to validate this absolute requirement.

    3. Reviewer #3 (Public Review):

      The manuscript by Rubin and Agrawal et al presents a very nice imaging analysis of clonal cell organization in the fetal and late juvenile mouse growth cartilages. The authors have performed a thorough quantification of the orientations of clusters and of clones of cells with respect to the growth axis. They conclude that growth cartilage is not as strictly 'columnar' as has been commonly described, especially at the fetal stage. There is value to having such quantifications in the literature as a reminder that interpretations of phenotypes need to be rooted in the cell biology of the stage at hand, as emphasized by the authors. However, although the approach is comprehensive, aspects of the quantification methods are not described adequately to determine if they are correct for the questions. There are also some inequivalent comparisons to prior literature and an oversight of important published observations showing that some of these conclusions have been known for decades, though not as thoroughly quantitative. There have long been observations that some growth cartilages do not have proliferative columns oriented in the axis of growth and that not all columns of a growth cartilage are perfectly organized; these facts do not negate the observations that columnar organization does exist, as re-confirmed here, and that it correlates with and contributes to rapid growth rates. Each of these points is further elaborated below.

    1. Reviewer #1 (Public Review):

      This manuscript presents, for the first time, the utilization of PRV viral transneuronal tracing to elucidate the central coding and control mechanisms governing sympathetic nervous system (SNS) efferent signals to bone. This groundbreaking work not only holds promising research prospects but also establishes a robust foundation for understanding the neural regulation of bone metabolism.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this study, the authors have used virtual transneuronal tracing technology to identify for the first time the central sympathetic nervous system outflow sites that innervate bone.

      Strengths:<br /> The study provides a comprehensive atlas of the brain regions that potentially play a role in coding and decoding sympathetic nervous system signals to bone.

      Weaknesses:<br /> While the study provides compelling evidence for the brain-bone sympathetic nervous system neuroaxis, it is unclear if diseases that affect bone (e.g. diabetes, osteoporosis, kidney failure) disrupt brain-bone sympathetic neural circuits.

    3. Reviewer #3 (Public Review):

      It has been reported that the sympathetic nervous system (SNS) mediates bone metabolism and nociceptive functions. However, the exact localization and organization of the central SNS circuitry innervating bone and the brain sites have not been mapped and efferent SNS outflow to bone has not yet been characterized yet. Authors used pseudorabies (PRV) viral transneuronal tracing approach to identify central SNS outflow sites that innervate bone. The authors found that the central SNS outflow to bone originates from brain nuclei, sub-nuclei and regions of six brain divisions (midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus). The authors provided compelling evidence for a brain-bone SNS neuroaxis that may regulate bone metabolism and nociceptive functions, which provided a greater understanding of the neural regulation of bone metabolism and would stimulate further research into bone pain and the neural regulation of bone metabolism. Authors may discuss and summarize their results in detail for a better understanding of their findings and enhancing the manuscript's utility for readers.

    1. Reviewer #1 (Public Review):

      Garcia-Saldivar and colleagues present a manuscript investigating connections between diffusion-weighted imaging (DWI) parameters and paced finger tapping measures. A cohort of human participants (n=32) performed a paced finger tapping task with a synchronization-continuation paradigm, in which they were required to listen to a paced metronome, begin tapping in synchrony with it, and then continue tapping at the same rate without it. Both auditory and visual metronomes were used, at a range of intervals. All subjects received structural scans measuring DWI, with an emphasis on superficial and deep white matter structures. This latter analysis was the most innovative, as it allowed the authors to examine microstructural effects in short-range cortical connections.

      Behaviorally, the authors replicated some well-known effects in paced finger tapping, with better performance for auditory over visual rhythms, negative lag-1 autocorrelations, and best performance at a range of ~1.5Hz. For the DWI analyses, a large number of correlations were observed across a wide variety of connections with various brain regions. The most salient effects observed were a connection between asynchrony, only for the auditory condition, and connections between the right auditory and motor systems, around the duration of peak performance, as well as a "chronotopic" organization across parts of the corpus callosum, most notably in areas linking motor regions between hemispheres.

      Overall, this paper provides a critical missing link between measures of structural connectivity and rhythmic tapping abilities, pointing to some interesting possibilities for how tapping synchronization (at least for auditory intervals) is carried out. Negative aspects of the paper come from the largely exploratory aspects of the analysis, as well as potential biases from the low sample size.

    2. Reviewer #2 (Public Review):

      This is a valuable study of the relationships between aspects of white matter structure in the brain and the accuracy of tapping performance on auditory and visual versions of a synchronization-continuation task. The authors find brain-behaviour relationships between absolute asynchrony (precision of phase alignment between taps and stimulus events), but only for certain temporal rates (650 and 750 ms ISI, not 550, 850, or 950 ms ISI). Other behavioural metrics do not significantly correlate with white matter measures, and no visual condition behavioural metrics correlate either. The methodology and findings are solid, and of interest to those studying the neural mechanisms of timing.

      The question is interesting, as the neural mechanisms of timing, and the nature of how modality differences in timing arise, are important, given that certain modality differences in timing accuracy (e.g., auditory benefits relative to visual) are less striking in our closest evolutionary relatives. Overall, the methods are well-presented and both behavioural and neural measures are appropriate.

      The results are generally well-reported, although there is a lack of clarity about multiple comparison corrections for the number of separate behavioural metrics, different interval lengths examined, and the two sensory modalities.

      Some weaknesses:<br /> The use of absolute (unsigned) asynchrony as a measure of 'predictive' ability is not fully justified. Signed asynchrony may be a more informative measure of predictive ability, as (small) negative asynchronies (taps prior to event onset) are often interpreted as indicating prediction, whereas positive asynchronies (taps after the event onset) are not.<br /> The work may benefit from considering the 'phase' and 'period' nature of the different behavioural measures, as they may tap different aspects of timing. Separating the behavioural metrics into those reflecting phase synchrony versus period matching may be a useful distinction, as the period-related metrics are the ones that do not have evidence of correlation with brain metrics.<br /> The manuscript does not present a very clear framework for why certain measures might be predicted to correlate with white matter structure and others not, and the pattern of results is also not easily interpretable. This may just be the nature of the data, but it would help clarify if more justification for the selection of task and stimulus rates was presented, along with an idea of the predictions made by different theoretical approaches for what relationships between this particular set of behavioural and brain data might exist. Similarly, a more nuanced discussion might further explore the potential reasons for the lack of evidence for a relationship at shorter and longer auditory interval lengths, as well as for any of the visual condition measures.

      Overall, the authors find white-matter structure relationships with absolute asynchrony measures during auditory (but not visual) synchronization-continuation at certain rates. These findings appear reasonably justified.

    1. Reviewer #1 (Public Review):

      The manuscript demonstrates an analysis of the synaptic organization within the motor thalamus, emphasizing the interplay between the ventrolateral (VL) and ventroanterior (VA) nuclei and their respective inputs. The primary aim is to unravel the complexities of synaptic interactions among the motor cortex's layer 5 (M1L5), the cerebellum (Cb), and the basal ganglia output nuclei (GPi and SNr), which converge upon the VA/VL nuclei of the motor thalamus. This examination is executed using a combination of anatomical tracing, optogenetics, and electrophysiological recordings in mouse brain slices, which together yield novel insights into the motor control circuitry.

      The study uncovers that contrary to traditional models that presumed segregation, some motor thalamic neurons simultaneously integrate inputs from the cerebellum and basal ganglia. Furthermore, a subset of these neurons also receive convergent inputs from M1L5 and basal ganglia, underscoring the complexity of these synaptic networks. Notably, the study reveals that both M1L5 and Cb inputs exhibit driver-type synaptic properties, suggesting a significant impact on thalamic relay neurons.

      The functional implications of this synaptic convergence suggest a complex gating mechanism by the inhibitory outputs of the basal ganglia, which could modulate information flow within the motor thalamus. This modulation is significant not only for transthalamic information processing but also for the integration of cerebellar inputs to the motor cortex. The study also highlights direct projections from M1L5 to the motor thalamus, indicating a potential direct influence on thalamic activity, in addition to the known indirect influence through the cortico-basal ganglia-thalamo-cortical loop.

      The manuscript suggests that the traditional understanding of motor thalamic connectivity requires reconsideration, and it emphasizes the necessity of further investigation to understand fully the functional implications of this synaptic convergence. Future research may focus on more direct demonstrations of triple-input convergence and its behavioral consequences, as well as cross-species comparative studies to enhance the findings' applicability.

      While the study provides valuable contributions to our knowledge of the motor thalamus, illuminating the intricate synaptic architecture of the motor thalamus and setting the stage for future explorations that will deepen our comprehension of motor control and thalamic function.

    2. Reviewer #2 (Public Review):

      This study assesses how inputs from primary motor cortex layer 5 (M1L5), basal ganglia output nuclei (GPi and SNr), and cerebellum (Cb) converge onto motor thalamus nuclei (VA/VL).

      Methodology includes anatomical tracing, optogenetics and electrophysiological recordings in mouse brain slices.

      The major findings are:<br /> - Some motor thalamic neurons receive input from both cerebellar and basal ganglia. This is contrary to the common belief that assumes these two inputs are segregated in the motor thalamus.

      - Some motor thalamus neurons receive converging input from both motor cortex (M1L5) and basal ganglia.

      - Both M1L5 and Cb inputs to the motor thalamus have driver-type synaptic properties, indicating a strong influence on thalamic relay neurons.

      Functional implications are:<br /> - Given the inhibitory nature of basal ganglia output neurons, the converging inputs can allow for basal ganglia to gate information flow through the motor thalamus. This applies to transthalamic information, ie information conveyed through the thalamus across cortical regions, as well as cerebellar information flow to motor cortex.

      - The direct projection from M1L5 to motor thalamus suggests that motor cortex can affect motor thalamic activity not only indirectly, through the traditional cortico-basal ganglia-thalamo-cortical loop, but also through direct projections.

      The study is convincing and has important implications for the field. Methodology involves elegant viral techniques.

      The main weakness is that there is no direct functional demonstration of all the 3 inputs from motor cortex, cerebellum, and basal ganglia, converging onto the same cells in motor thalamus. All the recordings concern dual area stimulations, and the anatomical studies show a very small overlap of all the 3 inputs onto motor thalamus.

    1. Reviewer #1 (Public Review):

      This manuscript presents an exciting new method for separating insulin secretory granules using insulator-based dielectrophoresis (iDEP) of immunolabeled vesicles. The method has the advantage of being able to separate vesicles by subtle biophysical differences that do not need to be known by the experimenter, and hence could in principle be used to separate any type of organelle in an unbiased way. Any individual organelle ("particle") will have a characteristic ratio of electrokinetic to dielectrophoretic mobilities (EKMr) that will determine where it migrates in the presence of an electric field. Particles with different EKMr will migrate differently and thus can be separated. The present manuscript is primarily a methods paper to show the feasibility of the iDEP technique applied to insulin vesicles. Experiments are performed on cultured cells in low or high glucose, with the conclusion that there are several distinct subpopulations of insulin vesicles in both conditions, but that the distributions in the two conditions are different. As it is already known that glucose induces release of mature insulin vesicles and stimulates new vesicle biosynthesis and maturation, this finding is not necessarily new, but is intended as a proof of principle experiment to show that the technique works. This is a promising new technology based on solid theory that has the possibility to transform the study of insulin vesicle subpopulations, itself an emerging field. The technique development is a major strength of the paper. Also, cellular fractionation and iDEP experiments are performed well, and it is clear that the distribution of vesicle populations is different in the low and high glucose conditions. However, more work is needed to characterize the vesicle populations being separated, leaving open the possibility that the separated populations are not only insulin vesicles, but might consist of other compartments as well. It is also unclear whether the populations might represent immature and mature vesicles, distinct pools of mature vesicles such as the readily releasable pool and the reserve pool, or vesicles of different age. Without a better characterization of these populations, it is not possible to assess how well the iDEP technique is doing what is claimed.

      Major comments:

      (1) There is no attempt to relate the separated populations of vesicles to known subpopulations of insulin vesicles such as immature and mature vesicles, or the more recently characterized Syt9 and Syt7 vesicle subpopulations that differ in protein and lipid composition (Kreutzberger et al. 2020). Given that it is unclear exactly what populations of vesicles will be immunolabeled (see point #2 below), it is also possible that some of the "subpopulations" are other compartments being separated in addition to insulin vesicles. It will be important to examine other markers on these separated populations or to perform EM to show that they look like insulin vesicles.

      (2) An antibody to synaptotagmin V is used to immunolabel vesicles, but there has been confusion between synaptotagmins V and IX in the literature and it isn't clear what exactly is being recognized by this antibody (this reviewer actually thinks it is Syt 9). If it is indeed recognizing Syt 9, it might already be labeling a restricted population of insulin vesicles (Kreutzberger et al. 2020). The specificity of this antibody should be clarified. Furthermore, Figure 2 is not convincing at showing that this synaptotagmin antibody specifically labels insulin vesicles nor is there convincing colocalization of this synaptotagmin antibody with insulin vesicles. In the image shown, several cells show very weak or no staining of both insulin and the synaptotagmin. The highlighted cell appears to show insulin mainly in a perinuclear structure (probably the Golgi) rather than in mature vesicles (which should be punctate), and insulin is not particularly well-colocalized with the synaptotagmin. Other cells in the image appear to have even less colocalization of insulin and synaptotagmin, and there is no quantification of colocalization. It seems possible that this antibody is recognizing other compartments in the cell, which would change the interpretation of the populations measured in the iDEP experiments. It would also be good to perform synaptotagmin staining under glucose-stimulating conditions, in case this alters the localization.

      (3) The EKMr values of the vesicle populations between the low and high glucose conditions don't seem to precisely match. It is unclear if this just a technical limitation in comparing between experiments or instead suggests that glucose stimulation does not just change the proportion of vesicles in the subpopulations (i.e. the relative fluorescent intensities measured), but rather the nature of the subpopulations (i.e. they have distinct biophysical characteristics). This again gets to the issue of what these vesicle subpopulations represent. If glucose stimulation is simply converting immature to mature vesicles, one might expect it to change the proportion of vesicles, but not the biophysical properties of each subpopulation.

      (4) The title of the paper promises "isolation" of insulin vesicles, but the manuscript only presents separation and no isolation of the separated populations. Isolation of the separated populations is important to be able to better define what these populations are (see point #1 above). Isolation is also critical if this is to be a valuable technique in the future. Yet the paper is unclear on whether it is actually technically feasible to isolate the populations separated by iDEP. In line 367, it states "this method provides a mechanism for the isolation and concentration of fractions which show the largest difference between the two population patterns for further bioanalysis (imaging, proteomics, lipidomics, etc.)." However, in line 361 it says "developing the capability to port the collected individual boluses will enable downstream analyses such as mass spectrometry or electron microscopy," suggesting that true isolation of these populations is not yet feasible. This should be clarified.

    2. Reviewer #2 (Public Review):

      This manuscript used DC-iDEP, a technology previously used on other organelle preparations to isolate insulin secretory granules from INS1 cells based on differences in dielectrophoretic and electrokinetic properties of synaptotagmin V positive insulin granules.

      The major motivation presented for this work is to provide a methodology to allow for more sensitive isolation of subpopulations of granules allowing better understanding of the biochemical composition of these populations. This manuscript clearly demonstrates the ability of this technology to separate these subpopulations which will allow for future biochemical characterizations of insulin granules in future studies.

      After proving these subpopulations can be observed, this method was then utilized to show there are shifts in these subpopulations when granules are isolated from glucose stimulated cells. Overall the method of isolation is novel and could provide a tool for further characterization of purified secretory granules.

      The observation of glucose stimulation causing shifts in subpopulations is unsurprising. Glucose stimulation could cause a depletion of insulin and other secretory content from a subset of granules. It would be expected that this loss of content would cause a shift in electrochemical properties of the granules, but this is a nice confirmation that the isolation method has the sensitivity to delineate these changes.

      Major comments:

      (1) It is unclear what Synaptotagmin isoform is being looked at. Synaptotagmin V and IX have been repetitively interchanged in the literature. See note in syt IX section of "Moghadam and Jackson 2013 Front. Endocrinology" or read "Fukuda and Sagi-Eisenberg Calcium Bind Proteins 2008".

      The 386 aa. isoform that is abundant in PC12 cells has been robustly observed in INS1 cells in multiple studies and has been frequently referred to as syt IX. The sequence the antibody was raised against should be determined from the company where this was purchased and then this should be mapped to to which isoform of Synaptotagmin by sequence and clarified in the text.

      (2) Immunofluorescence of insulin and syt V is confusing. The example images do not appear to show robust punctate structures that are characteristic of secretory granules (in both the insulin and syt V stain).

      (3) In the discussion it says, "Finally, this method provides a mechanism for the isolation and concentration of fractions which show the largest difference between the two population patterns for further bioanalysis (imaging, proteomics, lipidomics, etc.) that otherwise would not be possible given the low-abundance components of these subpopulations."

      It would help to elaborate more on the yield and concentrations of isolated granules. This would give a better sense of what level of biochemical characterization could be performed on sub-populations of granules.

    3. Reviewer #3 (Public Review):

      The manuscript from Barekatain et al. is investigating heterogeneity within the population of insulin vesicles from an insulinoma cell line (INS-1E) in response to glucose stimulation. Prevailing dogma in the beta-cell field suggests that there are distinct pools of mature insulin granules, such as ready-releasable and a reserve pool, which contribute to distinct phases of insulin release in response to glucose stimulation. Whether these pools (and others) are distinct in protein/lipid composition or other aspects is not known, but has been suggested. In this manuscript, the authors use density gradient sedimentation to enrich for insulin vesicles, noting the existence of a number of co-purifying contaminants (ER and mitochondrial markers). Following immunolabeling with synaptotagmin V and fluorescent-conjugated secondary antibodies, insulin vesicles were applied to a microfluidic device and separated by dielectrophoretic and electrokinetic forces following an applied voltage. The equilibrium between these opposing forces was used to physically separate insulin granules. Here some differences were observed in the insulin (Syt V positive) granule populations, when isolated from cells that were either non-stimulated or stimulated with glucose, which has been suggested previously by other studies as noted by the authors; however in the current manuscript, the inclusion of a number of control experiments may provide a better context for what the data reveal about these changes.

      The major strength of the paper is in the use of the novel, highly sophisticated methodology to examine physical attributes of insulin granules and thus begin to provide some insight into the existence of distinct insulin granule populations within a beta-cell -these include insulin granules that are maturing, membrane-docked (i.e. readily releasable), in reserve, newly-synthesized, aged, etc. Whether physical differences exist between these various granule pools is not known. In this capacity, the technical abilities of the current manuscript may begin to offer some insight into whether these perceived distinctions are physical.

      The major weakness of the manuscript is that the study falls short in terms of linking the biology to the sophisticated changes observed and primarily focuses on differences in response to glucose. Without knowing what the various populations of granules are, it is challenging to understand what the changes in response to glucose mean.

      Specific concerns are as follows:

      (1) There is confusion on what the DC-iDEP separation between stimulated and stimulated cells reveals. Do these changes reflect maturation state of granules, nascent vs. old granules? Ready-releasable vs. reserve pool? The comments in the text seem to offer all possibilities.

      (2) It is unclear what we can infer regarding the physical changes of granules between the stimulated states of the cells. Without an understanding of the magnitude of the effect, it is unclear how biologically significant these changes are. For example, what degree of lipid or protein remodeling would be necessary to give a similar change?

      (3) The reliance on a single vesicle marker, Syt V, is concerning given that granule remodeling is the focus.

      (4) Additional confirmation that the isolated vesicles are in fact insulin granules would be helpful. As noted, granules were gradient enriched, but did carry contaminants. Note that the microscopy image provided does not provide any real validation for this marker.

      Further confirmation that the immune-isolated vesicles are in fact insulin granules should be included. EM with immunogold labeling post-SytV enrichment would be a potential methodology to confirm.

      (5) It would be useful to understand if the observed effects are specific to the INS-1E cell line or are a more universal effect of glucose on beta-cells.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript describes a model based on 5-state cellular automata of development of an infection. The model is motivated and qualitatively justified by time-resolved measurements of expression levels of viral, interferon-producing, and antiviral genes. The model is set up in such a way that the crucial difference in outcomes (infection spreading vs. confinement) depends on the initial fraction of special virus-sensing cells. Those cells (denoted as 'type a') cannot be infected and do not support the propagation of infection, but rather inhibit it in a somewhat autocatalytic way. Presumably, such feedback makes the transition between two outcomes very sharp: a minor variation in concentration of 'a' cells results in qualitative change from one outcome to another. As in any percolation-like system, the transition between propagation and inhibition of infection goes through a critical state with all its attributes, including a power-law distribution of the cluster size (corresponding to the fraction of infected cells) with a fairly universal exponent and a cutoff at the upper limit of this distribution.

      Strengths:

      The proposed model suggests a well-justified explanation for the frequently observed yet puzzling diversity of outcomes of viral infections such as COVID.

      Weaknesses:

      None.

    2. Reviewer #2 (Public Review):

      Xu et al. introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection. In this study, the author first analyzes the single-cell RNA sequencing data from experiments and identifies four clusters of cells at 48 hours post-viral infection, including susceptible cells (O), infected cells (V), IFN-secreting cells (N), and antiviral cells (A). Next, a cellular automaton model (NOVAa model) is introduced by assuming the existence of a transient pre-antiviral state (a). The model consists of an LxL lattice; each site represents one cell. The cells change their state following the rules depending on the interaction of neighboring cells. The model introduces a key parameter, p_a, representing the fraction of pre-antiviral state cells. Cell apoptosis is omitted in the model. Model simulations show a threshold-like behavior of the final attack rate of the virus when p_a changes continuously. There is a critical value p_c, so that when p_a < p_c, infections typically spread to the entire system, while at a higher p_a > p_c, the propagation of the infected state is inhibited. Moreover, the radius R that quantifies the diffusion range of N cells may affect the critical value p_c; a larger R yields a smaller value of the critical value p_c. The authors further examine the result with stochastic version dynamics, and the main findings are unchanged upon stochastic dynamics. The structure of clusters is different for different values of R; greater R leads to a different microscopic structure with fewer A and N cells in the final state. Compared with the single-cell RNA seq data, which implies a low fraction of IFN-positive cells of around 1.7%, the model simulation suggests R=5. The authors also explored a simplified version of the model, the OVA model, with only three states. The OVA model also has an outbreak size. The OVA model shows dynamics similar to the NOVAa model. However, the change in microstructure as a function of the IFN range R observed in the NOVAa model is not observed in the OVA model.

    3. Reviewer #3 (Public Review):

      Summary:

      This study considers how to model distinct host cell states that correspond to different stages of a viral infection: from naïve and susceptible cells to infected cells and a minority of important interferon-secreting cells that are the first line of defense against viral spread. The study first considers the distinct host cell states by analyzing previously published single-cell RNAseq data. Then an agent-based model on a square lattice is used to probe the dependence of the system on various parameters. Finally, a simplified version of the model is explored, and shown to have some similarity with the more complex model, yet lacks the dependence on the interferon range. By exploring these models one gains an intuitive understanding of the system, and the model may be used to generate hypotheses that could be tested experimentally, telling us "when to be surprised" if the biological system deviates from the model predictions.

      Strengths:

      - Clear presentation of the experimental findings and a clear logical progression from these experimental findings to the modeling.<br /> - The modeling results are easy to understand, revealing interesting behavior and percolation-like features.<br /> - The scaling results presented span several decades and are therefore compelling.<br /> - The results presented suggest several interesting directions for theoretical follow-up work, as well as possible experiments to probe the system (e.g. by stimulating or blocking IFN secretion).

      Weaknesses:

      - The fixed time-step of the agent-based modeling may introduce biases. I would consider simulating the system with Gillespie dynamics where the reaction rates depend on the ambient system parameters.<br /> - Single-cell RNAseq data requires careful handling or it may generate false leads. The strength of the RNAseq evidence presented is not clear.

      Two places where the manuscript could be extended:

      - Since the "range" of IFN is an important parameter, it makes sense to consider other lattice geometries other than the square lattice, which is somewhat pathological. Perhaps a hexagonal lattice would generalize better.<br /> - Tissues are typically three-dimensional, not two-dimensional. (Epithelium is an exception). It would be interesting to see how the modeling translates to the three-dimensional case. Percolations transitions are known to be very sensitive to the dimensionality of the system.

      Justification of claims and conclusions:

      The claims and conclusions are well justified.

    1. Reviewer #1 (Public Review):

      This paper can be seen as an extension of a recent study by two of the same authors [1]. In the previous paper, the authors considered two variants of the Moran process, labelled Model A and Model B, and examined differences between the evolutionary dynamics of these two models. They further described the site frequency spectra, expected allele counts, and expected singleton counts of these models, building on analytical results from prior studies, and used numerical simulations to investigate the models' evolutionary dynamics. Finally, they compared the site frequency spectra of the two models (using numerical simulations) to spectra derived from a small breast cancer data set (two sets of three samples).

      In the new paper, the authors consider the same two Moran process variants (Model A and Model B) and some related branching processes. As before, they compare the site frequency spectra and various summary statistics of these models, but here they present only numerical simulations (except that some prior analytical results are summarized in Appendix A, which are never referred to in the main text and seem unconnected to the study). They then compare the site frequency spectra of these models (again using numerical simulations) to those derived from the same breast cancer samples as before and thus infer some evolutionary parameters.

      The first main conclusion is that the critical branching process and the Moran process models behave similarly and generate similar site frequency spectra. This finding is unsurprising (indeed, the authors acknowledge that the result "has been expected"). For a reasonably large population size, the population size in the critical branching process has been shown to vary relatively little over time and the model is thus essentially a continuous time Moran process (see, for example, Equation 8.55 in ref 2). Nor is it surprising that the authors see stronger similarities when they select only the subset of branching process replicates in which the final population size is particularly close to the initial population size (this is because, in these replicates, the population size likely varies even less than usual).

      The second main conclusion is that, although "the mutational SFS alone is not adequate" to quantify the strength of selection, "All fitted values for the selective disadvantage of passenger mutations are nonzero, supporting the view that they exert deleterious selection during tumorigenesis". Although the question of whether mildly deleterious mutations play an important role in cancer evolution is of considerable interest, it's debatable whether the results presented here help resolve the issue.

      Many prominent researchers have called into question whether cancer evolutionary parameters can be reliably inferred from site frequency spectra (e.g., [3-7]), even using sophisticated statistical methods. The statistical approach used here (though not named as such in the paper) is a crude kind of approximate Bayesian computation. To improve the accuracy of the results, it would have been better to have set reasonably vague priors for the uncertain mutation rates, rather than fixing them arbitrarily. It would also have been better to have chosen a likelihood function explicitly based on an analysis of the sampling and error distributions, rather than just summing the absolute logged deviations. It is well known that "Checking the model is crucial to statistical analysis" and "A good Bayesian analysis, therefore, should include at least some check of the adequacy of the fit of the model to the data and the plausibility of the model for the purposes for which the model will be used" [8]. The authors' failure to describe any attempt to validate or check their model, using simulated data or otherwise, casts doubt on the reliability of their inferences.

      Putting aside the potential biassing effects of sampling error, measurement error, and the limitations of the authors' statistical method, it is well established that both population growth and spatial structure profoundly alter the shape of site frequency spectra in ways that can mimic the effects of selection (e.g. [9-11]). Indeed, Figures 3, 4 and 5 show that the critical and super-critical branching processes generate markedly different site frequency spectra. It follows that if the population dynamics and spatial structure of the mathematical model used for inference don't match those of the biological process that produced the data then any inferred evolutionary parameter values will be unreliable. Breast cancer has two indisputable ecological features that shape its evolutionary dynamics: the cell population expands by many orders of magnitude from a single cell, and the population is spatially structured. In the authors' mathematical model, the population size is initially 100 cells and either remains constant or varies little, and there is no spatial structure. These profound mismatches between model and data cast further doubt on what is supposed to be the paper's most important biological finding.

      In this paper the authors offer no justification for their decision to model breast cancer as a non-growing, non-spatial cell population. Nor do they engage with the extensive recent literature on the challenges of inferring evolutionary parameters from cancer site frequency spectra (they cite none of the many relevant papers listed at https://www.sottorivalab.org/neutral-evolution.html). Their 2022 paper [1] claims that, "it sometimes makes sense to consider cancer growth in the framework of constant-population models. Our models correspond to the situation in which a constant population of N "healthy" stem cells is gradually replaced by a growing clone of transformed cells with increasing fitness." No evidence was presented to support this hypothesis regarding breast cancer progression. On the other hand, a wealth of evidence supports the consensus view that, in breast cancer and other human solid tumours, the number of cells with unlimited proliferative potential is several orders of magnitude greater than 100 and grows over time (e.g. [12]).

      Analytic expressions for the site frequency spectra with neutral mutations are already known. It is well known that the site frequency spectrum of an exponentially growing population has a tail following a power law S_k ~ k^(-2) [13, 14]. Similarly, it is known that for the critical branching process or the Moran process, the site frequency spectrum at equilibrium is S_k ~ k^(-1) [13, 15]. Especially noteworthy yet uncited studies that use those results about site frequency spectra to make inferences based on sequencing data include ref 16, in which selection is inferred, and ref 17, in which evolutionary parameters of constant populations (healthy cell populations) are inferred.

      Although the paper is well written, the figures are ineffective in communicating the results. As others have put it, "A figure is meant to express an idea or introduce some facts or a result that would be too long (or nearly impossible) to explain only with words" and "If your figure is able to convey a striking message at first glance, chances are increased that your article will draw more attention from the community" [18]. On the contrary, Figures 3, 4, 5 and 6 are bewilderingly complicated, crowded, and repetitive. These figures comprise no fewer than fifty-six plots, each containing numerous curves or histograms, spread across four pages. To compare the results of different scenarios, the reader is presumably expected to put these figures side by side and try to spot the differences, hampered by inconsistent axis ranges, absence of axis labels, absence of titles, absence of legends, and unreliable captions ("cyan" seems to refer to pale blue, and "orange" to something closer to red). For example, the only notable difference between Figures 3 and 4 is in the shape of a single green curve in panel I. In the main text of a published paper, one would expect fewer, more carefully curated figures drawing attention to salient features, so that the reader can infer the main results with minimal effort. The rest can be put in supplementary figures.

      In summary, this paper adds somewhat to our understanding of some standard mathematical models; whether it tells us anything new about cancer is open to debate.

      References<br /> (1) Kurpas, Monika K., and Marek Kimmel. "Modes of selection in tumors as reflected by two mathematical models and site frequency spectra." Frontiers in Ecology and Evolution 10 (2022): 889438.<br /> (2) Bailey, Norman TJ. The elements of stochastic processes with applications to the natural sciences. John Wiley & Sons, 1964.<br /> (3) Tarabichi, Maxime, et al. "Neutral tumor evolution?." Nature Genetics 50.12 (2018): 1630-1633.<br /> (4) McDonald, Thomas O., Shaon Chakrabarti, and Franziska Michor. "Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution." Nature Genetics 50.12 (2018): 1620-1623.<br /> (5) Balaparya, Abdul, and Subhajyoti De. "Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data." Nature Genetics 50.12 (2018): 1626-1628.<br /> (6) Noorbakhsh, Javad, and Jeffrey H. Chuang. "Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures." Nature Genetics 49.9 (2017): 1288-1289.<br /> (7) Bozic, Ivana, Chay Paterson, and Bartlomiej Waclaw. "On measuring selection in cancer from subclonal mutation frequencies." PLoS Computational Biology 15.9 (2019): e1007368.<br /> (8) Neher, Richard A., and Oskar Hallatschek. "Genealogies of rapidly adapting populations." Proceedings of the National Academy of Sciences 110.2 (2013): 437-442.<br /> (9) Gelman, Andrew, et al. Bayesian data analysis (Third Edition). Chapman and Hall/CRC, 2014.<br /> (10) Fusco, Diana, et al. "Excess of mutational jackpot events in expanding populations revealed by spatial Luria-Delbrück experiments." Nature Communications 7.1 (2016): 12760.<br /> (11) Noble, Robert, et al. "Spatial structure governs the mode of tumour evolution." Nature Ecology & Evolution 6.2 (2022): 207-217.<br /> (12) Lawson, Devon A., et al. "Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells." Nature 526.7571 (2015): 131-135.<br /> (13) Gunnarsson, Einar B., Leder, Kevin, and Foo Jasmine. "Exact site frequency spectra of neutrally evolving tumors: A transition between power laws reveals a signature of cell viability" Theoretical Population Biology 142 (2021) 67-90<br /> (14) Durrett, Richard "Branching Process Models of Cancer" Springer (2015)<br /> (15) Durrett, Richard "Probability Models for DNA Sequence Evolution" Springer Science & Business media (2008)<br /> (16) Williams, Mark J. et al. "Quantification of subclonal selection in cancer from bulk sequencing data." Nature Genetics 50 (6). 895-903 (2018)<br /> (17) Moeller, Marius E. et al. "Measures of genetic diversification in somatic tissues at bulk and single-cell resolution" eLife (2024) 12:RP89780<br /> (18) Rougier, Nicolas P., Michael Droettboom, and Philip E. Bourne. "Ten simple rules for better figures." PLoS Computational Biology 10.9 (2014): e1003833.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors present a comparison of two models of cancer evolution with advantageous drivers and deleterious passengers: a fixed-population "Moran" model, and a "Branching Process" (BP) model with dynamic population size. The Moran model is more mathematically-tractable, but since cancer is a disease of uncontrolled growth, it is unclear to me how clinically-relevant it is to consider a model with constant population size. Intriguingly, both models can explain observed Site Frequency Spectrums (SFSs) in three breast cancers, which suggests that the Moran model may have some value. This distinction between the two models is addressed well.

      Strengths:

      The comparisons of the various BP models (extinction/non-extinction, and balanced/supercritical) are very interesting. The survivability of rare, fitness-disadvantaged clones has huge implications for treatment resistance in general - drug resistant clones are very often disadvantaged in the absence of drug. Clinical sequencing is, most decidedly, investigating population dynamics conditioned on non-extinction, however most published models do not condition on non-extinction - an unfortunate community oversight that this publication rectifies.

      Site Frequency Spectrums in three breast cancers are measured with unprecedented resolution to my knowledge (allele abundances below one in a thousand).

      Detailed description of the behavior of the various models.

      Weaknesses:

      I do not believe Moran B is a useful theoretical distinction between Moran A. Incorporating fitness effects into the birth process, instead of the death process, is generally mathematically equivalent when time is measured in generations (or cell divisions). Visible differences in the two models in Figures 2-6 by all accounts seem to be due to the fact that Moran B experiences more evolution in the balanced/driver-dominated case, and less evolution in the passenger dominated case. We generally do not use arbitrary time steps for this reason - we quantify time in 'generations'.

    1. Reviewer #1 (Public Review):

      Summary:

      This study offers a new perspective. ACTL7A and ACTL7B play roles in epigenetic regulation in spermiogenesis. Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization, and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. It has been reported that ACTL7A is localized on the acrosome in mouse sperms (Boëda et al., 2011). Previous studies have identified ACTL7A mutations (c.1118G>A:p.R373H; c.1204G>A:p.G402S, c.1117C>T:p.R373C), All these variants were located in the actin domain and were predicted to be pathogenic, affecting the number of hydrogen bonds or the arrangement of nearby protein structures (Wang et al., 2023; Xin et al., 2020; Zhao et al., 2023; Zhou et al., 2023). This work used AI to model the role of ACTL7A/B in the nucleosome remodeling complex and proposed a testis-specific conformation of SCRAP complex. This is different from previous studies.

      Strengths:

      This study provides a new perspective to reveal the additional roles of these proteins.

      Weaknesses:

      The results section contains a substantial background description. However, the results and discussion sections require streamlining. There is a lack of mutual support for data between the sections, and direct data to support the authors' conclusions are missing.

    2. Reviewer #2 (Public Review):

      Summary:

      How dynamics of gene expression accompany cell fate and cellular morphological changes is important for our understanding of molecular mechanisms that govern development and diseases. The phenomenon is particularly prominent during spermatogenesis, the process which spermatogonia stem cells develop into sperm through a series of steps of cell division, differentiation, meiosis, and cellular morphogenesis. The intricacy of various aspects of cellular processes and gene expression during spermatogenesis remains to be fully understood. In this study, the authors found that testis-specific actin-related proteins (which usually participate in modifying cells' cytoskeletal systems) ACTL7A and ACTL7B were expressed and localized in the nuclei of mouse spermatocytes and spermatids. Based on this observation, the authors analyzed protein sequence conservations of ACTL7B across dozens of species and identified a putative nuclear localization sequence (NLS) that is often responsible for the nuclear import of proteins that carry them. Using molecular biology experiments in a heterologous cell system, the authors verified the potential role of this internal NLS and found it indeed could facilitate the nuclear localization of marker proteins when expressed in cells. Using gene-deleted mouse models they generated previously, the authors showed that deletion of Actl7b caused changes in gene expression and mis-localization of nucleosomal histone H3 and chromatin regulator histone deacetylase HDAC1 and 2, supporting their proposed roles of ACTL7B in regulating gene expression. The authors further used alpha-Fold 2 to model the potential protein complexes that could be formed between the ARPs (ACTL7A and ACTL7B) and known chromatin modifiers, such as INO80 and SWI/SNF complexes and found that consistent with previous findings, it is likely that ACTL7A and ACTL7B interact with the chromatin-modifying complexes through binding to their alpha-helical HSA domain cooperatively. These results suggest that ACTL7B possesses novel functions in regulating chromatin structure and thus gene expression beyond conventional roles of cytoskeleton regulation, providing alternative pathways for understanding how gene expression is regulated during spermatogenesis and the etiology of relevant infertility diseases.

      Strengths:

      The authors provided sufficient background to the study and discussions of the results. Based on their previous research, this study utilized numerous methods, including protein complex structural modeling method alpha-fold 2 Multimers, to further investigate the functional roles of ACTL7B. The results presented here are in general of good quality. The identification of a potential internal NLS in ACTL7B is mostly convincing, in line with the phenotypes presented in the gene deletion model.

      Weaknesses:

      While the study offered an interesting new look at the functions of ARP proteins during spermatogenesis, some of the study is mainly theoretical speculations, including the protein complex formation. Some of the results may need further experimental verifications, for example, differentially expressed genes that were found in potentially spermatogenic cells at different developmental stages, in order to support the conclusions and avoid undermining the significance of the study.

    3. Reviewer #3 (Public Review):

      In this manuscript, Pierre Ferrer and colleagues explore the exciting possibility that, in the male germ line, the composition and function of deeply conserved chromatin remodeling complexes is fine-tuned by the addition of testis-specific actin-related proteins (ARPs). In this regard, the Authors aim to extend previously reported non-canonical (transcriptional) roles of ARPs in somatic cells to the unique developmental context of the germ line. The manuscript is focused on the potential regulatory role in post-meiotic transcription of two ARPs: ACTL7A and ACTL7B (particularly the latter). The canonical function of both testis-specific ARPs in spermatogenesis is well established, as they have been previously shown to be required for the extensive cellular morphogenesis program driving post-meiotic development (spermiogenesis). Disentangling the actual functions of ACTL7A and ACTL7B as transcriptional regulators from their canonical role in the profound morphological reshaping of post-meiotic cells (a process that also deeply impacts nuclear architecture and regulation) represents a key challenge in terms of interpreting the reported findings (see below).

      The authors begin by documenting, via fluorescence microscopy, the intranuclear localization of ACTL7B. This ARP is convincingly shown to accumulate in the nucleus of spermatocytes and spermatids. Using a series of elegant reporter-based experiments in a somatic cell line, the authors map the driver of this nuclear accumulation to a potential NLS sequence in the ACTL7B actin-like body domain. Ferrer and colleagues then performed a testicular RNA-seq analysis in ACTL7B KO mice to define the putative role of ACTL7B in male germ cell transcription. They report substantial changes to the testicular transcriptome - particularly the upregulation of several classes of genes - in ACTL7B KO mice. However, wild-type testes were used as controls for this experiment, thus introducing a clear confounding effect to the analysis (ACTL7B KO testes have extensive post-meiotic defects due to the canonical role of ACTL7B in spermatid development). Then, the authors employ cutting-edge AI-driven approaches to predict that both ACTL7A and ACTL7B are likely to bind to four key chromatin remodeling complexes. Although these predictions are based on a robust methodology, they would certainly benefit from experimental validation. Finally, the authors associate the loss of ACTL7B with decreased lysine acetylation and lower levels of the HDAC1 and HDAC3 chromatin remodelers in the nucleus of developing spermatids.

      Globally, these data may provide important insight into the unique processes male germ cells employ to sustain their extraordinarily complex transcriptional program. Furthermore, the concept that (comparably younger) testis-specific proteins can be incorporated into ancient chromatin remodeling complexes to modulate their function in the germ line is timely and exciting.

      It is my opinion that the manuscript would benefit from additional experimental validation to better support the authors' conclusions. In particular, I believe that addressing two critical points would substantially strengthen the message of the manuscript:

      (1) The proposed role of ACTL7B in post-meiotic transcriptional regulation temporally overlaps with the protein's previously reported canonical functions in spermiogenesis (PMID: 36617158 and 37800308). Indeed, the canonical functions of ACTL7B have been shown to have a profound effect at the level of spermatid morphology and to impact nuclear organization. This potentially renders the observed transcriptional deregulation in ACTL7B KO testes an indirect consequence of spermatid morphology defects. I acknowledge that it is experimentally difficult to disentangle the proposed intranuclear roles of ACTL7B from the protein's well-documented cytoplasmic function. Perhaps the generation of a NLS-scrambled ACTL7B variant could offer some insight. In light of the substantial investment this approach would represent, I would suggest, as an alternative, that instead of using wild-type testes as controls for the transcriptome and chromatin localization assays, the authors consider the possibility of using testicular tissue from a mutant with similarly abnormal spermiogenesis but due to transcription-independent defects. This would, in my opinion, offer a more suitable baseline to compare ACTL7B KO testes with.

      (2) The manuscript would greatly benefit if experimental validation of the AI-driven predictions were to be provided (in terms of the binding capacity of ACTL7A and ACTL7B to key chromatin remodeling complexes). More so it seems that the authors have the technical expertise / available mass spectrometry data required for this purpose (lines 664-665). Still on this topic, given the predicted interactions of ACTL7A and ACTL7B with the SRCAP, EP400, SMARCA2 and SMARCA4 complexes (Figure 7), it is rather counter-intuitive that the Authors chose for their immunofluorescence assays, in ACTL7B KO testes, to determine the chromatin localization of HDAC1 and HDAC3, rather than that of any of above four complexes.

    1. Reviewer #2 (Public Review):

      Summary:

      The goals of this study were to develop a genetic approach that would specifically and comprehensively target axo-axonic cells (AACs) throughout the brain and then to describe the patterns and characteristics of the targeted AACs in multiple, selected brain regions. The investigators have been successful in providing the most complete description of the regional distribution of putative (pAACs) throughout the brain to date. The supporting evidence is convincing, and the findings should serve as a guide for more detailed studies of AACs within each brain region and lead to new insights into their connectivity and functional organization of this important group of GABAergic interneurons.

      Strengths:

      The study has numerous strengths. A major strength is the development of a unique intersectional genetic strategy that uses cell lineage (Nkx2.1) and molecular (Unc5b or Pthlh) markers to identify AACs specifically and, apparently, nearly completely throughout the mouse brain. While AACs have been described previously in the cerebral cortex, hippocampus and amygdala, there has been no specific genetic marker that selectively identifies all AACs in these regions.

      Importantly, the current genetic strategy labels pAACs in additional brain regions, including the claustrum-insular complex, extended amygdala, and several olfactory centers in which AACs have not been previously recognized. In general, the findings provide support for the specificity of the methods for targeting AACs and include several examples of labeling near markers of axon initial segments, providing validation of their AAC identity.

      The descriptions and numerous low magnification images of the brain provide a roadmap for subsequent, detailed studies of AACs in numerous brain regions. The overview and summaries of the findings in the Abstract, Introduction and Discussion are particularly clear and helpful in placing the extensive regional descriptions of AACs in context.

      Weaknesses:

      Considering the unique and striking characteristics of AACs, it would have been ideal to include a clear, high resolution confocal image of an AAC from the Unc5b;Nkx2.1 mouse that would display the beauty of these cells with their numerous cartridges of axon terminals, emanating from a single AAC. While several cells are illustrated, the processes are often obscured by other labeling or the background created by the blue Dapi labeling. A high-resolution image of an isolated cell would not only support the identity of the cells as AACs but also demonstrate the potential advantages of their labeling for more detailed anatomical and neurophysiological studies. High magnification views of the axon terminals adjacent to AnkG-labeled axon initial segments are included and provide strong support for the identity of the cells. However, they cannot convey the extensiveness and patterns of the axonal arborizations of these cells.

      The intersectional genetic methods included use of the lineage marker Nkx2.1 with either Unc5b or Pthlh as the molecular marker. As described, the mice with intersectional targeting of Nkx2.1 and Unc5b appear to show the most specific brain-wide labeling for AACs, and the majority of the descriptions are from these mice. The targeting with Nkx2.1 and Pthlh is less convincing and there appears to be a disconnect between the descriptions and the images. While the descriptions emphasize that the labeling is very similar in the two types of mice, the images suggest distinct differences, including labeling of non AACs in striatum and layer 4 of the cortex in the Pthlh;Nkx2.1 mouse, as described in the manuscript. In addition, the Pthlh;Nkx2.1 mouse has higher cell targeting in some regions and fewer labeled cells in others. Perhaps it would be more accurate to present the Pthlh;Nkx2.1 mouse as differing from the Unc5b;Nkx2.1 mouse, but useful for AAC labeling in select regions and under some conditions, such as following tamoxifen administration at specific ages. As currently presented, the inclusion of the Pthlh;Nkx2.1 detracts from the otherwise convincing argument that the Unc5b;Nkx2.1 mouse provides a specific and comprehensive way to identify AACs.

    2. Reviewer #3 (Public Review):

      Summary:

      Raudales et al. aimed at providing an insight into the brain-wide distribution and synaptic connectivity of bona fide GABAergic inhibitory interneuron subtypes focusing on the axo-axonic cell (AAC), one of the most distinctive interneuron subtypes, which innervates the axon initial segments of glutamatergic projection neurons. They establish intersectional genetic strategies that enable them to specifically and comprehensively capture AACs based on their lineage (Nkx2.1) and marker expression (Unc5b, Pthlh). They find that AACs are deployed across essentially all the pallium-derived brain structures as well as anterior olfactory nucleus, taenia tecta, and lateral septum. They show that AACs in distinct areas and layers of the neocortex as well as different subregions of the hippocampal formation display unique soma and synaptic density and morphological variations. Rabies virus-based retrograde monosynaptic input tracing reveals that AACs in the neocortex, the hippocampus, and the basolateral amygdala receive synaptic inputs from common as well as specific brain regions and supports the utility of this novel genetic approach. This study elucidates brain-wide neuroanatomical features and morphological variations of AACs with solid techniques and analysis. Their novel AAC-targeting strategies will facilitate the study of their development and function in different brain regions. The conclusions in this paper are well supported by the data. However, there are a few minor comments.

      (1) The authors added a description about validation of ChCs in the method section: "Validation was conducted with high-magnification confocal microscopy and defined by a cell exhibiting at least two RFP-labelled axons colocalized with AIS labelled by AnkryinG or Phospho-IκBα". However, this does not clearly define pAACs themselves. If they follow this criteria, an RFP-labeled cell exhibiting only one synaptic cartridge that is colocalized with an AIS should be a pAAC. Is this what the authors are triying to say?

      On the other hand, in the response to reviewers, the authors apparently define pAACs in a different way, in which they more focus on the number of cells exhibiting cartridges that are associated with AISs in a certain anatomical region rather than the number of cartridges per cell.

      "For BNST we did not positively identify more than a few exhibiting overlap with AnkryinG/IκBα, so we currently leave them as pAACs"<br /> "Putative AAC (pAACs) refers to populations in which relatively few single cell examples of AACs exhibiting co-localized cartridges were found"

      The authors need to directly define pAACs.

      (2) In the response to reviewers, the authors claimed that both Pthlh and Unc5b mice are useful for studying developing AACs. It would be nice if they include this content in the text (e.g. Discussion).

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Rosenblum et al introduce a novel and automatic way of calculating sleep cycles from human EEG. Previous results have shown that the slope of the non-oscillatory component of the power spectrum (called the aperiodic or fractal component) changes with the sleep stage. Building on this, the authors present an algorithm that extracts the continuous-time fluctuations in the fractal slope and propose that peaks in this variable can be used to identify sleep cycle limits. Cycles defined in this way are termed "fractal cycles". The main focus of the article is a comparison of fractal and classical, manually defined sleep cycles in numerous datasets.

      Strengths:

      The manuscript amply illustrates through examples the strong overlap between fractal and classical cycle identification. Accordingly, a high percentage (81%) can be matched one-to-one between methods and sleep cycle duration is well correlated (around R = 0.5). Moreover, the methods track certain global changes in sleep structure in different populations: shorter cycles in children and longer cycles in patients medicated with REM-suppressing anti-depressants. Finally, a major strength of the results is that they show similar agreement between fractal and classical sleep cycle length in 5 different data sets, showing that it is robust to changes in recording settings and methods.

      These results suggest that the fractal cycle methodology could provide a valuable new method to study sleep architecture and avoid the time-consuming steps of manual cycle identification. Moreover, it has the potential to be applied to animal studies which rarely deal with sleep cycle structure.

      Weaknesses:

      The match between fractal and classical cycles is not one-to-one. For example, the fractal method identifies a correlation between age and cycle duration in adults that is not apparent with the classical method. This raises the question as to whether differences are due to one method being more reliable than another or whether they are also identifying different underlying biological differences. It is not clear for example whether the agreement between the two methods is better or worse than between two human scorers, which generally serve as a gold standard to validate novel methods. The authors provide some insight into differences between the methods that could account for differences in results. However, given that the fractal method is automatic it would be important to clearly identify criteria for recordings in which it will produce similar results to the classical method.

    2. Reviewer #2 (Public Review):

      Summary:

      This study focused on using strictly the slope of the power spectral density (PSD) to perform automated sleep scoring and evaluation of the durations of sleep cycles. The method appears to work well because the slope of the PSD is highest during slow-wave sleep, and lowest during waking and REM sleep. Therefore, when smoothed and analyzed across time, there are cyclical variations in the slope of the PSD, fit using an IRASA (Irregularly resampled auto-spectral analysis) algorithm proposed by Wen & Liu (2016).

      Strengths:

      The main novelty of the study is that the non-fractal (oscillatory) components of the PSD that are more typically used during sleep scoring can be essentially ignored because the key information is already contained within the fractal (slope) component. The authors show that for the most part, results are fairly consistent between this and conventional sleep scoring, but in some cases show disagreements that may be scientifically interesting.

      Weaknesses:

      One weakness of the study, from my perspective, was that the IRASA fits to the data (e.g. the PSD, such as in Figure 1B), were not illustrated. One cannot get a sense of whether or not the algorithm is based entirely on the fractal component or whether the oscillatory component of the PSD also influences the slope calculations. This should be better illustrated, but I assume the fits are quite good.

      The cycles detected using IRASA are called fractal cycles. I appreciate the use of a simple term for this, but I am also concerned whether it could be potentially misleading? The term suggests there is something fractal about the cycle, whereas it's really just that the fractal component of the PSD is used to detect the cycle. A more appropriate term could be "fractal-detected cycles" or "fractal-based cycle" perhaps?

      The study performs various comparisons of the durations of sleep cycles evaluated by the IRASA-based algorithm vs. conventional sleep scoring. One concern I had was that it appears cycles were simply identified by their order (first, second, etc.) but were not otherwise matched. This is problematic because, as evident from examples such as Figure 3B, sometimes one cycle conventionally scored is matched onto two fractal-based cycles. In the case of the Figure 3B example, it would be more appropriate to compare the duration of conventional cycle 5 vs. fractal cycle 7, rather than 5 vs. 5, as it appears is currently being performed.

      There are a few statements in the discussion that I felt were either not well-supported. L629: about the "little biological foundation" of categorical definitions, e.g. for REM sleep or wake? I cannot agree with this statement as written. Also about "the gradual nature of typical biological processes". Surely the action potential is not gradual and there are many other examples of all-or-none biological events.

      The authors appear to acknowledge a key point, which is that their methods do not discriminate between awake and REM periods. Thus their algorithm essentially detected cycles of slow-wave sleep alternating with wake/REM. Judging by the examples provided this appears to account for both the correspondence between fractal-based and conventional cycles, as well as their disagreements during the early part of the sleep cycle. While this point is acknowledged in the discussion section around L686. I am surprised that the authors then argue against this correspondence on L695. I did not find the "not-a-number" controls to be convincing. No examples were provided of such cycles, and it's hard to understand how positive z-values of the slopes are possible without the presence of some wake unless N1 stages are sufficient to provide a detected cycle (in which case, then the argument still holds except that its alterations between slow-wave sleep and N1 that could be what drives the detection).

      To me, it seems important to make clear whether the paper is proposing a different definition of cycles that could be easily detected without considering fractals or spectral slopes, but simply adjusting what one calls the onset/offset of a cycle, or whether there is something fundamentally important about measuring the PSD slope. The paper seems to be suggesting the latter but my sense from the results is that it's rather the former.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper shows that E. coli exhibits a chemotactic response to potassium by measuring both the motor response (using a bead assay) and the intracellular signaling response (CheY phosporylation level via FRET) to step changes in potassium concentration. They find increase in potassium concentration induces a considerable attractant response, with amplitude comparable to aspartate, and cells can quickly adapt (and generally over-adapt). The authors propose that the mechanism for potassium response is through modifying intracellular pH; they find both that potassium modifies pH and other pH modifiers induce similar attractant responses. It is also shown, using Tar- and Tsr-only mutants, that these two chemoreceptors respond to potassium differently. Tsr has a standard attractant response, while Tar has a biphasic response (repellent-like then attractant-like). Finally, the authors use computer simulations to study the swimming response of cells to a periodic potassium signal secreted from a biofilm and find a phase delay that depends on the period of oscillation.

      Strengths:

      The finding that E. coli can sense and adapt to potassium signals and the connection to intracellular pH is quite interesting and this work should stimulate future experimental and theoretical studies regarding the microscopic mechanisms governing this response. The evidence (from both the bead assay and FRET) that potassium induces an attractant response is convincing, as is the proposed mechanism involving modification of intracellular pH. The updated manuscript controls for the impact of pH on the fluorescent protein brightness that can bias the measured FRET signal. After correction the response amplitude and sharpness (hill coefficient) are comparable to conventional chemoattractants (e.g. aspartate), indicating the general mechanisms underlying the response may be similar. The authors suggest that the biphasic response of Tar mutants may be due to pH influencing the activity of other enzymes (CheA, CheR or CheB), which will be an interesting direction for future study.

      Weaknesses:

      The measured response may be biased by adaptation, especially for weak potassium signals. For other attractant stimuli, the response typically shows a low plateau before it recovers (adapts). In the case of potassium, the FRET signal does not have an obvious plateau following the stimuli of small potassium concentrations, perhaps due to the faster adaptation compared to other chemoattractants. It is possible cells have already partially adapted when the response reaches its minimum, so the measured response may be a slight underestimate of the true response. Mutants without adaptation enzymes appear to be sensitive to potassium only at much larger concentrations, where the pH significantly disrupts the FRET signal; more accurate measurements would require the development of new mutants and/or measurement techniques.

      Note added after the second revision: The authors made a reasonable argument regarding the effects of adaptation, which were estimated to be small.

    1. Reviewer #1 (Public Review):

      In this paper, the authors evaluate the utility of brain-age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain-age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.

      Comments on revised version:

      I thank the authors for the revision of the manuscript and for being more explicit about the inherent conceptual limitations of Brain Age / Brain Cognition. I have no further comments.

    1. Reviewer #1 (Public Review):

      In this work the authors propose a new regulatory role for one the most abundant circRNAs, circHIPK3. They demonstrate that circHIPK3 interacts with an RNA binding protein (IGF2BP2), sequestering it away from its target mRNAs. This interaction is shown to regulates the expression of hundreds of genes that share a specific sequence motif (11-mer motif) in their untranslated regions (3'-UTR), identical to one present in circHIPK3 where IGF2BP2 binds. The study further focuses on the specific case of STAT3 gene, whose mRNA product is found to be downregulated upon circHIPK3 depletion. This suggests that circHIPK3 sequesters IGF2BP2, preventing it from binding to and destabilizing STAT3 mRNA. The study presents evidence supporting this mechanism and discusses its potential role in tumor cell progression. These findings contribute to the growing complexity of understanding cancer regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of circHIPK3 which is not mediated by sequestering miRNAs but rather a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of studies. They provide both genome-wide analysis and a specific case (STAT3) which is relevant for cancer progression. Overall, the authors have significantly improved their manuscript in their revised version.

      Weaknesses:

      There are seemingly contradictory effects of circHIPK3 and STAT3 depletion in cancer progression. However, the authors have addressed these issues in their revised manuscript, incorporating potential reasons that might explain such complexity.

    2. Reviewer #2 (Public Review):

      The manuscript by Okholm and colleagues identified an interesting new instance of ceRNA involving a circular RNA. The data are clearly presented and support the conclusions. Quantification of the copy number of circRNA and quantification of the protein were performed, and this is important to support the ceRNA mechanism.

      This is the second rebuttal and the authors further improved the manuscript. The data are of interest for the large spectrum of readers of the journal.

    3. Reviewer #3 (Public Review):

      Summary:

      In Okholm et al., the authors evaluate the functional impact of circHIPK3 in bladder cancer cells. By knocking it down and performing an RNA-seq analysis, the authors found thousand deregulated genes which look unaffected by miRNAs sponging function and that are, instead, enriched for a 11-mer motif. Further investigations showed that the 11-mer motif is shared with the circHIPK3 and able to bind the IGF2BP2 protein. The authors validated the binding of IGF2BP2 and demonstrated that IGF2BP2 KD antagonizes the effect of circHIPK3 KD and leads to the upregulation of genes containing the 11-mer. Among the genes affected by circHIPK3 KD and IGF2BP2 KD, resulting in downregulation and upregulation respectively, the authors found STAT3 gene which also consistently leads to the concomitant upregulation of one of its targets TP53. The authors propose a mechanism of competition between circHIPK3 and IGF2BP2 triggered by IGF2BP2 nucleation, potentially via phase separation.

      Strengths:

      The number of circRNAs continues to drastically grow however the field lacks detailed molecular investigations. The presented work critically addresses some of the major pitfalls in the field of circRNAs and there has been a careful analysis of aspects frequently poorly investigated. The time-point KD followed by RNA-seq, investigation of miRNAs-sponge function of circHIPK3, identification of 11-mer motif, identification and validation of IGF2BP2, and the analysis of copy number ratio between circHIPK3 and IGF2BP2 in assessing the potential ceRNA mode of action have been extensively explored and, comprehensively convincing.

      Weaknesses:

      The authors addressed the majority of the weak points raised initially. However the role played by the circHIPK3 in cancer remains elusive and not elucidated in full in this study.

      Overall, the presented study surely adds some further knowledge in describing circHIPK3 function, its capability to regulate some downstream genes, and its interaction and competition for IGF2BP2. However, whereas the experimental part sounds technically logical, it remains unclear the overall goal of this study and the achieved final conclusions.

      This study is a promising step forward in the comprehension of the functional role of circHIPK3. These data could possibly help to better understand the circHIPK3 role in cancer

    1. Reviewer #1 (Public Review):

      This paper describes RNA-sensing guide RNAs for controlled activation of CRISPR modification. This works by having an extended guide RNA with a sequence that folds back onto the targeting sequence such that the guide RNA cannot hybridise to its genomic target. The CRISPR is "activated" by the introduction of another RNA, referred to as a trigger, that competes with this "back folding" to make the guide RNA available for genome targeting. The authors first confirm the efficacy of the approach using several RNA triggers and a GFP reporter that is activated by dCas9 fused to transcriptional activators. A major potential application of this technique is the activation of CRISPR in response to endogenous biomarkers. As these will typically be longer than the first generation triggers employed by the authors they test some extended triggers, which also work though not always to the same extent. They then introduce MODesign which may enable the design of bespoke or improved triggers. After that, they determine that the mode of activation by the RNA trigger involves cleavage of the RNA complexes. Finally, they test the potential for their system to work in a developmental setting - specifically zebrafish embryos. There is some encouraging evidence, though the effects appear more subtle than those originally obtained in cell culture.

      Overall, the potential of a CRISPR system that can be activated upon sensing an RNA is high and there are a myriad of opportunities and applications for it. This paper represents a reasonable starting point having developed such a system in principle.<br /> The weakness of the study is that it does not demonstrate that the system can be used in a completely natural setting. This would require an endogenous transcript as the RNA trigger with a clear readout. The authors now acknowledge this limitation in their revised manuscript. Future studies and experiments should focus on these aspects in order for the system to be employed to its full and intended potential.

    1. Reviewer #1 (Public Review):

      In the presence of predators, animals display attenuated foraging responses and increased defensive behaviors that serve to protect them from potential predatory attacks. Previous studies have shown that the basolateral nucleus of the amygdala (BLA) and the periaqueductal gray matter (PAG) are necessary for the acquisition and expression of conditioned fear responses. However, it remains unclear how BLA and PAG neurons respond to predatory threats when animals are foraging for food. To address this question, Kim and colleagues conducted in vivo electrophysiological recordings from BLA and PAG neurons and assessed approach-avoidance responses while rats search for food in the presence of a robotic predator.

      The authors observed that rats exhibited a significant increase in the latency to obtain the food pellets and a reduction in the pellet success rate when the predator robot was activated. A subpopulation of PAG neurons showing increased firing rate in response to the robot activation didn't change their activity in response to food pellet retrieval during the pre- or post-robot sessions. Optogenetic stimulation of PAG neurons increased the latency to procure the food pellet in a frequency- and intensity-dependent manner, similar to what was observed during the robot test. Combining optogenetics with single-unit recordings, the authors demonstrated that photoactivation of PAG neurons increased the firing rate of 10% of BLA cells. A subsequent behavioral test in 3 of these same rats demonstrated that BLA neurons responsive to PAG stimulation displayed higher firing rates to the robot than BLA neurons nonresponsive to PAG stimulation. Next, because the PAG does not project monosynaptically to the BLA, the authors used a combination of retrograde and anterograde neural tracing to identify possible regions that could convey robot-related information from PAG to the BLA. They observed that neurons in specific areas of the paraventricular nucleus of the thalamus (PVT) that are innervated by PAG fibers contained neurons that were retrogradely labeled by the injection of CTB in the BLA. In addition, PVT neurons showed increased expression of the neural activity marker cFos after the robot test, suggesting that PVT may be a mediator of PAG signals to the BLA.

      Overall, the idea that the PAG interacts with the BLA via the midline thalamus during a predator vs. foraging test is new and quite interesting. The authors have used appropriated tools to address their questions.

      In this revised version of the manuscript, the authors have made important modifications in the text, inserted new data analyses, and incorporated additional references, as recommended by the reviewers. These modifications have significantly improved the quality of the manuscript.

    2. Reviewer #2 (Public Review):

      The authors characterized activity of the dorsal periaqueductal gray (dPAG) - basolateral amygdala (BLA) circuit. They show that BLA cells that are activated by dPAG stimulation are also more likely to be activated by a robot predator. These same cells are also more likely to display synchronous firing.

      The authors also replicate prior results showing that dPAG stimulation evokes fear and the dPAG is activated by a predator.

      Lastly, the report performs anatomical tracing to show that the dPAG may act on the BLA via the paraventricular thalamus (PVT). Indeed, the PVT receives dPAG projections and also projects to the BLA. However, the authors do not show if the PVT mediates dPAG to BLA communication with any functional behavioral assay. Furthermore, the authors also do not thoroughly characterize the activity of BLA cells during the predatory assay.

      The major impact in the field would be to add evidence to their prior work, strengthening the view that the BLA can be downstream of the dPAG.

    3. Reviewer #3 (Public Review):

      In the present study, the authors examined how dPAG neurons respond to predatory threats and how dPAG and BLA communicate threat signals. The authors employed single-unit recording and optogenetics tools to address these issues in an 'approach food-avoid predator' paradigm. They characterized dPAG and BLA neurons responsive to a looming robot predator and found that dPAG opto-stimulation elicited fleeing and increased BLA activity. Importantly, they found that dPAG stimulation produces activity changes in subpopulations of BLA neurons related to predator detection, thus supporting the idea that dPAG conveys innate fear signals to the amygdala. In addition, injections of anterograde and retrograde tracers into the dPAG and BLA, respectively, along with the examination of c-FOS activity in midline thalamic relay stations, suggest that the paraventricular nucleus of the thalamus (PVT) may serve as a mediator of dPAG to BLA neurotransmission. Of relevance, the study helps to validate an important concept that dPAG mediates primal fear emotion and may engage upstream amygdalar targets to evoke defensive responses. The series of experiments provide a compelling case for supporting their conclusions. The study brings important concepts revealing dynamics of fear-related circuits particularly attractive to a broad audience, from basic scientists interested in neural circuits to psychiatrists.

    1. Reviewer #1 (Public Review):

      Summary:

      This work describes a new protein factor required for filamentous phage assembly. The protein PSB15 binds to the packaging signal of the ssDNA, Trx and cardiolipin. A mechanism how the phage DNA is targeted to the assembly site in the bacterial inner membrane is discussed.

      Strengths:

      The work describes a clever way to detect factors required for phage propagation by looking at the plaque size of pseudorevertants that arise after infection of a phage with a directed mutation in the packaging signal. This led to the detection of a phage protein expressed from ORF9, the PSB15.

      The authors convincingly show that PSB15 is expressed in infected cells and can complement a phage with a mutated orf9.

      Weaknesses:

      Given the fact that the phage LF-UK is not well explored, many open questions should be mentioned in the introduction. For the study, it is important to know if the phageLF-UK has a mimick or homolog of gV and gXI, and if not, whether PSB15 could take their role.

      I am not convinced of the proposition of their term "checkpoint". The truth is that the authors do not know the real purpose of PSB15. I do not see an advantage for a checkpoint that only adds an additional step to enter the phage assembly site. There must be a biochemical reason for the action of PSB15. Looking at Figure 7, the step from "Release" to "Loading" is just adding many unknowns, e.g. how to transfer the DNA, how to dispose of PSB15 and Trx? Also, in the previous step are three question marks that do not add any solid information.

      The in vivo study of subcellular localization is very questionable. Why is there a single fluorescent dot if there are thousands of PSB15 molecules expressed in the cell? I have my doubts that the conclusions the authors make here are correct and meaningful. The movies do not add anything significant.

    2. Reviewer #2 (Public Review):

      Secretion of the prototypical F-associated filamentous phage (Ff) of E. coli depends on the selective binding of a hairpin (the packaging signal, PS) by two phage encoded protein, pVII and pIX. PVII and pIX target the PS to IM channels formed by pI and pIV. However, integrative filamentous phages lack a homologue of pIX and pIV, and many of them also lack a homologue of pVII, raising questions on the assembly and secretion of new phages. In the manuscript, Yueh et al. present the identification of a phage-encoded protein, PSB15, which binds to the PS signal of a Xanthomonas integrative filamentous phage, ΦLf-UK. They showed that PSB15 is required for viral assembly and is conserved in several other integrative filamentous phages. They further analyzed how PSB15 binds to PS and demonstrated that it associates to the IM, which targets phage DNA to it. Finally, they show that thioredoxin, the only host protein that was found to be essential for Ff secretion, interacts with PSB15 and releases the PSB15-PS complex from the IM. These results are important because they elucidate a major step in the secretion of integrative filamentous phage, and the role of thioredoxin on filamentous phage secretion in general.

      I found the data and interpretation convincing. However, the presentation and description are confusing in places because the reader has to juggle between figures. A scheme depicting what is known and unknown in the integration of Ff phages and interactive filamentous phages in the introduction would be useful to the general reader.

    1. Joint Public Review:

      Summary

      This manuscript explores the transcriptomic identities of olfactory ensheathing cells (OECs), glial cells that support life-long axonal growth in olfactory neurons, as they relate to spinal cord injury repair. The authors show that transplantation of cultured, immunopurified rodent OECs at a spinal cord injury site can promote injury-bridging axonal regrowth. They then characterize these OECs using single-cell RNA sequencing, identifying five subtypes and proposing functional roles that include regeneration, wound healing, and cell-cell communication. They identify one progenitor OEC subpopulation and also report several other functionally relevant findings, notably, that OEC marker genes contain mixtures of other glial cell type markers (such as for Schwann cells and astrocytes), and that these cultured OECs produce and secrete Reelin, a regrowth-promoting protein that has been disputed as a gene product of OECs.

      This manuscript offers an extensive, cell-level characterization of OECs, supporting their potential therapeutic value for spinal cord injury and suggesting potential underlying repair mechanisms. The authors use various approaches to validate their findings, providing interesting images that show the overlap between sprouting axons and transplanted OECs, and showing that OEC marker genes identified using single-cell RNA sequencing are present in vivo, in both olfactory bulb tissue and spinal cord after OEC transplantation.

      Despite the breadth of information presented, however, further quantification of results and explanation of experimental approaches would be needed to support some of the authors' claims. Additionally, a more thorough discussion is needed to contextualize their findings relative to previous work.

      (1) Important quantification is lacking for the data presented. For example, multiple figures include immunohistochemistry or immunocytochemistry data (Figures 1, 5, 6), but they are presented without accompanying measures like fractions of cells labeled or comparisons against controls. As a result, for axons projecting via OEC bridges in Figure 1, it is unclear how common these bridges are in the presence or absence of OECs. For Figure 6., it is unclear whether cells having an alternative OEC morphology coincide with progenitor OEC subtype marker genes to a statistically significant degree. Similar quantification is missing in other types of data such as Western blot images (Fig. 9) and OEC marker gene data (for which p-values are not reported; Table S2).

      The addition of quantitative measures and, where appropriate, statistical comparisons with p-values or other significance measures, would be important for supporting the authors' claims and more rigorously conveying the results.

      (2) Some aspects of the experimental design that are relevant to the interpretation of the results are not explained. For example, OECs appear to be collected from only female rats, but the potential implications of this factor are not discussed.

      Additionally, it is unclear from the manuscript to what degree immunopurified cells are OECs as opposed to other cell types. The antibody used to retain OECs, nerve growth factor receptor p75 (Ngfr-p75), can also be expressed by non-OEC olfactory bulb cell types including astrocytes [1-3]. The possible inclusion of Ngfr-p75-positive but non-OEC cell types in the OEC culture is not sufficiently addressed. Such non-OEC cell types are also not distinguished in the analysis of single-cell RNA sequencing data (only microglia, fibroblasts, and OECs are identified; Figure 2). Thus, it is currently unclear whether results related to the OEC subtype may have been impacted by these experimental factors.

      (3) The introduction, while well written, does not discuss studies showing no significant effect of OEC implantation after spinal cord injury. The discussion also fails to sufficiently acknowledge this variability in the efficacy of OEC implantation. This omission amplifies bias in the text, suggesting that OECs have significant effects that are not fully reflected in the literature. The introduction would need to be expanded to properly address the nuance suggested by the literature regarding the benefits of OECs after spinal cord injury. Additionally, in the discussion, relating the current study to previous work would help clarify how varying observations may relate to experimental or biological factors.

      (a) Cragnolini, A.B. et al., Glia, (2009), doi: 10.1002/glia.20857.<br /> (b) Vickland H. et al., Brain Res., (1991), doi: 10.1016/0006-8993(91)91659-O.<br /> (c) Ung K. et al., Nat Commun., (2021), doi: 10.1038/s41467-021-25444-3.

    1. Reviewer #1 (Public Review):

      Summary:

      It seems as if the main point of the paper is about the new data related to rat fish although your title is describing it as extant cartilaginous fishes and you bounce around between the little skate and ratfish. So here's an opportunity for you to adjust the title to emphasize ratfish is given the fact that leader you describe how this is your significant new data contribution. Either way, the organization of the paper can be adjusted so that the reader can follow along the same order for all sections so that it's very clear for comparative purposes of new data and what they mean. My opinion is that I want to read, for each subheading in the results, about the the ratfish first because this is your most interesting novel data. Then I want to know any confirmation about morphology in little skate. And then I want to know about any gaps you fill with the cat shark. (It is ok if you keep the order of "skate, ratfish, then shark, but I think it undersells the new data).

      Strengths:

      The imagery and new data availability for ratfish are valuable and may help to determine new phylogenetically informative characters for understanding the evolution of cartilaginous fishes. You also allude to the fossil record.

      Opportunities:

      I am concerned about the statement of ratfish paedomorphism because stage 32 and 33 were not statistically significantly different from one another (figure and prior sentences). So, these ratfish TMDs overlap the range of both 32 and 33. I think you need more specimens and stages to state this definitely based on TMD. What else leads you to think these are paedomorphic? Right now they are different, but it's unclear why. You need more outgroups.

      Your headings for the results subsection and figures are nice snapshots of your interpretations of the results and I think they would be better repurposed in your abstract, which needs more depth.

      Historical literature is more abundant than what you've listed. Your first sentence describes a long fascination and only goes back to 1990. But there are authors that have had this fascination for centuries and so I think you'll benefit from looking back. Especially because several of them have looked into histology and development of these fishes.

      I agree that in the past 15 years or so a lot more work has been done because it can be done using newer technologies and I don't think your list is exhaustive. You need to expand this list and history which will help with your ultimate comparative analysis without you needed to sample too many new data yourself.

      I'd like to see modifications to figure 7 so that you can add more continuity between the characters, illustrated in figure 7 and the body of the text. Generally Holocephalans are the outgroup to elasmobranchs - right now they are presented as sister taxa with no ability to indicate derivation. Why isn't the catshark included in this diagram?

      In the last paragraph of the introduction, you say that "the data argue" and I admit, I am confused. Whose data? Is this a prediction or results or summary of other people's work? Either way, could be clarified to emphasize the contribution you are about to present.

    2. Reviewer #2 (Public Review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues. I have, however, some comments. Some information is lacking and should be added to the manuscript text. I also suggest changes in the result and the discussion section of the manuscript.

      Introduction:

      The reader gets the impression almost no research on chondrichthyan skeletal tissues was done before the 2010 ("last 15 years", L45). I suggest to correct that and to cite also previous studies on chondrichthyan skeletal tissues, this includes studies from before 1900.

      Material and Methods:

      Please complete L473-492: Three different Micro-CT scanners were used for three different species? ScyScan 117 for the skate samples. Catshark different scanner, please provide full details. Chimera Scncrotron Scan? Please provide full details for all scanning protocols.

      TMD is established in the same way in all three scanners? Actually not possible. Or, all specimens were scanned with the same scanner to establish TMD? If so please provide the protocol.

      Please complete L494 ff: Tissue embedding medium and embedding protocol is missing. Specimens have been decalcified, if yes how? Have specimens been sectioned non-decalcified or decalcified?

      Please complete L506 ff: Tissue embedding medium and embedding protocol is missing. Description of controls are missing.

      Results:

      L147: It is valuable and interesting to compare the degree of mineralisation in individuals from the three different species. It appears, however, not possible to provide numerical data for Tissue Mineral Density (TMD). First requirement, all specimens must be scanned with the same scanner and the same calibration values. This in not stated in the M&M section. But even if this was the case, all specimens derive from different sample locations and have, been preserved differently. Type of fixation, extension of fixation time in formalin, frozen, unfrozen, conditions of sample storage, age of the samples, and many more parameters, all influence TMD values. Likewise the relative age of the animals (adult is not the same as adult) influences TMD. One must assume different sampling and storage conditions and different types of progression into adulthood. Thus, the observation of different degrees of mineralisation is very interesting but I suggest not to link this observation to numerical values.

      Parts of the results are mixed with discussion. Sometimes, a result chapter also needs a few references but this result chapter is full of references.

      Based on different protocols, the staining characteristics of the tissue are analysed. This is very good and provides valuable additional data. The authors should inform the not only about the staining (positive of negative) abut also about the histochemical characters of the staining. L218: "fast green positive" means what? L234: "marked by Trichrome acid fuchsin" means what? And so on, see also L237, L289, L291<br /> Discussion

      Please completely remove figure 7, please adjust and severely downsize the discussion related to figure 7. It is very interesting and valuable to compare three species from three different groups of elasmobranchs. Results of this comparison also validate an interesting discussion about possible phylogenetic aspects. This is, however, not the basis for claims about the skeletal tissue organisation of all extinct and extant members of the groups to which the three species belong. The discussion refers to "selected representatives" (L364), but how representative are the selected species? Can there be a extant species that represents the entire large group, all sharks, rays or chimeras? Are the three selected species basal representatives with a generalist life style?

      Please completely remove the discussion about paedomorphosis in chimeras (already in the result section). This discussion is based on a wrong idea about the definition of paedomorphosis. Paedomorphosis can occur in members of the same group. Humans have paedormorphic characters within the primates, Ambystoma mexicanum is paedormorphic within the urodeals. Paedomorphosis does not extend to members of different vertebrate branches. That elasmobranchs have a developmental stage that resembles chimera vertebra mineralisation does not define chimera vertebra centra as paedomorphic. Teleost have a herocercal caudal fin anlage during development, that does not mean the heterocercal fins in sturgeons or elasmobranchs are paedomorphic characters.

      L432-435: In times of Gadow & Abott (1895) science had completely wrong ideas bout the phylogenic position of chondrichthyans within the gnathostomes. It is curious that Gadow & Abott (1895) are being cited in support of the paedomorphosis claim.

      The SCPP part of the discussion is unrelated to the data obtained by this study. Kawaki & WEISS (2003) describe a gene family (called SCPP) that control Ca-binding extracellular phosphoproteins in enamel, in bone and dentine, in saliva and in milk. It evolved by gene duplication and differentiation. They date it back to a first enamel matrix protein in conodonts (Reif 2006). Conodonts, a group of enigmatic invertebrates have mineralised structures but these structure are neither bone nor mineralised cartilage. Cat fish (6 % of all vertebrate species) on the other hand, have bone but do not have SCPP genes (Lui et al. 206). Other calcium binding proteins, such as osteocalcin, were initially believed to be required for mineralisation. It turned out that osteocalcin is rather a mineralisation inhibitor, at best it regulates the arrangement collagen fiber bundles. The osteocalcin -/- mouse has fully mineralised bone. As the function of the SCPP gene product for bone formation is unknown, there is no need to discuss SCPP genes. It would perhaps be better to finish the manuscript with summery that focuses on the subject and the methodology of this nice study.

    1. Reviewer #1 (Public Review):

      Summary:

      The main observation that the sperm from CRISP proteins 1 and 3 KO lines are post-fertilization less developmentally competent is convincing. However, the molecular characterization of the mechanism that leads to these defects and the temporal appearance of the defects requires additional studies.

      Strengths:

      The generation of these double mutant mice is valuable for the field. Moreover, the fact that the double mutant line of Crisp 1 and 3 is phenotypically different from the Crisp 1 and 4 line suggests different functions of these epididymis proteins. The methods used to demonstrate that developmental defects are largely due to post-fertilization defects are also a considerable strength. The initial characterization of these sperm has altered intracellular Ca2+ levels, and increased rates of DNA fragmentation are valuable.

      Weaknesses:

      The study is mechanistically incomplete because there is no direct demonstration that the absence of these proteins alters the epididymal environment and fluid, wherein during the passage through the epididymis the sperm become affected. Also, a direct demonstration of how the proteins in question cause or lead to DNA damage and increased Ca2+ requires further characterization.

    2. Reviewer #2 (Public Review):

      The authors showed that CRISP1 and CRISP3, secreted proteins in the epididymis, are required for early embryogenesis after fertilization through DNA integrity in cauda epididymal sperm. This paper is the first report showing that the epididymal proteins are required for embryogenesis after fertilization. However, some data in this paper (Table 1 and Figure 2A) are overlapped in a published paper (Curci et al., FASEB J, 34,15718-15733, 2020; PMID: 33037689). Furthermore, the authors did not address why the disruption of CRISP1/3 leads to these phenomena (the increased level of the intracellular Ca2+ level and impaired DNA integrity in sperm) with direct evidence. Therefore, if the authors can address the following comments to improve the paper's novelty and clarification, this paper may be worthwhile to readers.

    1. Reviewer #1 (Public Review):

      Summary:

      Using a cross-modal sensory selection task in head-fixed mice, the authors attempted to characterize how different rules reconfigured representations of sensory stimuli and behavioral reports in sensory (S1, S2) and premotor cortical areas (medial motor cortex or MM, and ALM). They used silicon probe recordings during behavior, a combination of single-cell and population-level analyses of neural data, and optogenetic inhibition during the task.

      Strengths:

      A major strength of the manuscript was the clarity of the writing and motivation for experiments and analyses. The behavioral paradigm is somewhat simple but well-designed and well-controlled. The neural analyses were sophisticated, clearly presented, and generally supported the authors' interpretations. The statistics are clearly reported and easy to interpret. In general, my view is that the authors achieved their aims. They found that different rules affected preparatory activity in premotor areas, but not sensory areas, consistent with dynamical systems perspectives in the field that hold that initial conditions are important for determining trial-based dynamics.

      I think this is a well-performed, well-written and interesting study that shows differences in rule representations in sensory and premotor areas, and finds that rules reconfigure preparatory activity in motor cortex to support flexible behavior.

    2. Reviewer #2 (Public Review):

      Summary:

      Chang et al. investigated neuronal activity firing patterns across various cortical regions in an interesting context-dependent tactile vs visual detection task, developed previously by the authors (Chevee et al., 2021; doi: 10.1016/j.neuron.2021.11.013). The authors report the important involvement of a medial frontal cortical region (MM, probably a similar location to wM2 as described in Esmaeili et al., 2021 & 2022; doi: 10.1016/j.neuron.2021.05.005; doi: 10.1371/journal.pbio.3001667) in mice for determining task rules.

      Strengths:

      The experiments appear to have been well carried out and the data well analysed. The manuscript clearly describes the motivation for the analyses and reaches clear and well-justified conclusions. I find the manuscript interesting and exciting!

      Weaknesses:

      I did not find any major weaknesses.

    3. Reviewer #3 (Public Review):

      Summary:

      This study examines context-dependent stimulus selection by recording neural activity from several sensory and motor cortical areas along a sensorimotor pathway, including S1, S2, MM, and ALM. Mice are trained to either withhold licking or perform directional licking in response to visual or tactile stimulus. Depending on the task rule, the mice must respond to one stimulus modality while ignoring the other. Neural activity to the same tactile stimulus is modulated by task in all the areas recorded, with significant activity changes in a subset of neurons and population activity occupying distinct activity subspaces. Recordings further reveal a contextual signal in the pre-stimulus baseline activity that differentiates task context. This signal is correlated with subsequent task modulation of neural activity. Comparison across brain areas shows that this contextual signal is stronger in frontal cortical regions than sensory regions. Analyses link this signal to behavior by showing that it tracks the behavioral performance switch during task rule transitions. Silencing activity in frontal cortical regions during the baseline period impairs behavioral performance.

      Strengths:

      This is a carefully done study with solid results and thorough controls. The authors identify a contextual signal in baseline neural activity that predicts rule-dependent decision-related activity. The comprehensive characterization across a sensorimotor pathway is another strength. Analyses and perturbation experiments link this contextual signal to animals' behavior. The results provide a neural substrate that will surely inspire follow-up mechanistic investigations.

      Weaknesses:

      None. The authors have further improved the manuscript during the revision with additional analyses.

      Impact:

      This study reports an important neural signature for context-dependent decision-making that has important implications for mechanisms of context-dependent neural computation in general.

    1. Reviewer #1 (Public Review):

      Summary:

      The classical pro/antisaccade task has become a valuable diagnostic tool in neurology and psychiatry (Antoniades et al., 2013, Vision Res). Although it is well-established that antisaccades require substantially longer latencies than prosaccades, the exact attentional mechanisms underlying these differences are not yet fully elucidated. This study investigates the separate influences of exogenous and endogenous attention on saccade generation. These two mechanisms are often confounded in classical pro/antisaccade tasks. In the current study, the authors build on their previous work using an urgent choice task (Salinas et al., 2019, eLife) to time-resolve the influences of exogenous and endogenous factors on saccade execution. The key contribution of the current study is to show that, when controlling for exogenous capture, antisaccades continue to require longer processing times. This longer processing time may be explained by a coupling between endogenous attention and saccade motor plans.

      Strengths:

      In the classical pro/antisaccade task the direction of exogenous capture (caused by the presentation of the cue) is typically congruent with the direction of prosaccades and incongruent with antisaccades. A key strength of the current study is the introduction of different experimental conditions that control for the effects of exogenous capture on saccade generation. In particular, Experiments 3 and 4 provide strong evidence for two independent (exogenous and endogenous) mechanisms that guide saccadic choices, acting at different times. Differences in timing for pro and antisaccades during the endogenous phase were consistent and independent of whether the exogenous capture biased early saccades toward the correct prosaccade direction or toward the correct antisaccade directions.

      As in previous studies by the same group (Salinas et al., 2019, eLife; Goldstein et al., 2023, eLife), the detailed analysis of the time course of goal-directed saccades allowed the authors to determine the exact, additional time of 30 ms that is necessary to generate a correct antisaccade versus prosaccade.

      Overall, the manuscript is very well written, and the data are presented clearly.

      Weaknesses:

      The main research question could be defined more clearly. In the abstract and at some points throughout the manuscript, the authors indicate that the main purpose of the study was to assess whether the allocation of endogenous attention requires saccade planning [e.g., ll.3-5 or ll.247-248]. While the data show a coupling between endogenous attention and saccades, they do not point to a specific direction of this coupling (i.e., whether endogenous attention is necessary to successfully execute a saccade plan or whether a saccade plan necessarily accompanies endogenous attention).

      Some of the analyses were performed only on subgroups of the participants. The reporting of these subgroup analyses is transparent and data from all participants are reported in the supplementary figures. Still, these subgroup analyses may make the data appear more consistent, compared to when data is considered across all participants. For instance, the exogenous capture in Experiments 1 and 2 appears much weaker in Figure 2 (subgroup) than Figure S3 (all participants). Moreover, because different subgroups were used for different analyses, it is often difficult to follow and evaluate the results. For instance, the tachometric curves in Figure 2 (see also Figure 3 and 4) show no motor bias towards the cue (i.e., performance was at ~50% for rPTs <75 ms). I assume that the subsequent analyses of the motor bias were based on a very different subgroup. In fact, based on Figure S2, it seems that the motor bias was predominantly seen in the unreliable participants. Therefore, I often found the figures that were based on data across all participants (Figures 7 and S3) more informative to evaluate the overall pattern of results.

    2. Reviewer #2 (Public Review):

      Goldstein et al. provide a thorough characterization of the interaction of attention and eye movement planning. These processes have been thought to be intertwined since at least the development of the Premotor Theory of Attention in 1987, and their relationship has been a continual source of debate and research for decades. Here, Goldstein et al. capitalize on their novel urgent saccade task to dissociate the effects of endogenous and exogenous attention on saccades towards and away from the cue. They find that attention and eye movements are, to some extent, linked to one another but that this link is transient and depends on the nature of the task. A primary strength of the work is that the researchers are able to carefully measure the timecourse of the interaction between attention and eye movements in various well-controlled experimental conditions. As a result, the behavioral interplay of two forms of attention (endogenous and exogenous) is illustrated at the level of tens of milliseconds as they interact with the planning and execution of saccades towards and away from the cued location. Overall, the results allow the authors to make meaningful claims about the time course of visual behavior, attention, and the potential neural mechanisms at a timescale relevant to everyday human behavior.

    3. Reviewer #3 (Public Review):

      Summary and overall evaluation:

      Human vision is inherently limited so that only a small part of a visual scene can be perceived at a given moment. To address this limitation, the visual system has evolved a number of strategies and mechanisms that work in concert. First, humans move their eyes using saccadic eye movements. This allows us to place the high-resolution region in the center of the eye's retina (the fovea centralis) on objects of interest so that these are sampled with high acuity. Second, salient, conspicuous stimuli that appear abruptly and/or differ strongly from the other stimuli in the scene, seem to automatically attract ("exogenous") attention, so that a large share of the neuronal "resources" for visual processing is devoted to the stimuli, which improves the perception of the stimuli. Third, stimuli that are important for the current task and the current behavioral goals can be prioritized by attention mechanisms ("endogenous" attention), which also secures their allocated share of processing resources and helps them be perceived. It is well-established that eye movements are closely linked to the mechanisms of attention (for a review, see Carrasco, 2011, cited in the manuscript). However, it is still unclear what role voluntary, endogenous attention plays in the control of saccadic eye movements.

      The present study used an experimental procedure involving time-pressure for responding, in order to uncover how the control of saccades by exogenous and endogenous attention unfolds over time. The findings of the study indicate that saccade planning was indeed influenced by the locus of endogenous attention, but that this influence was short-lasting and could be overcome quickly. Taken together, the present findings reveal new dynamics between endogenous attention and eye movement control, and lead the way for studying them using experiments under time pressure.

      The results provided by the present study advance our understanding of vision, eye movements, and their control by brain mechanisms for attention. In addition, they demonstrate how tasks involving time pressure can be used to study the dynamics of cognitive processes. Therefore, the present study seems highly important not only for vision science, but also for psychology, (cognitive) neuroscience, and related research fields more generally.

      Strengths:

      The experiments of the study are performed with great care and rigor and the data is analyzed thoroughly and comprehensively. Overall, the results support the authors' conclusions, so I have only minor comments (see below). Taken together, the findings seem important for a wide community of researchers in vision science, psychology, and neuroscience.

      Weaknesses (minor points):

      (1) In this experimental paradigm, participants must decide where to saccade based on the color of the cue in the visual periphery (they should have made a prosaccade toward a green cue and an antisaccade away from a magenta cue). Thus, irrespective of whether the cue signaled that a prosaccade or an antisaccade was to be made, the identity of the cue was always essential for the task (as the authors explain on p. 5, lines 129-138). Also, the location where the cue appeared was blocked, and thus known to the participants in advance, so that endogenous attention could be directed to the cue at the beginning of a trial (e.g., p. 5, lines 129-132). These aspects of the experimental paradigm differ from the classic prosaccade/antisaccade paradigm (e.g. Antoniades et al., 2013, Vision Research). In the classic paradigm, the identity of the cues does not have to be distinguished to solve the task, since there is only one stimulus that should be looked at (prosaccade) or away from (antisaccade), and whether a prosaccade or antisaccade was required is constant across a block of trials. Thus, in contrast to the present paradigm, in the classic paradigm, the participants do not know where the cue is about to appear, but they know whether to perform a prosaccade or an antisaccade based on the location of the cue.

      The present paradigm keeps the location of the cue constant in a block of trials by intention, because this ensures that endogenous attention is allocated to its location and is not overpowered by the exogenous capture of attention that would happen when a single stimulus appeared abruptly in the visual field. Thus, the reason for keeping the location of the cue constant seems convincing. However, I wondered what consequences the constant location would have for the task representations that persist across the task and govern how attention is allocated. In the classic paradigm, there is always a single stimulus that captures attention exogenously (as it appears abruptly). In a prosaccade block, participants can prioritize the visual transient caused by the stimulus, and follow it with a saccade to its coordinates. In an antisaccade block, following the transient with a saccade would always be wrong, so that participants could try to suppress the attention capture by the transient, and base their saccade on the coordinates of the opposite location. Thus, in prosaccade and antisaccade blocks, the task representations controlling how visual transients are processed to perform the task differ. In the present task, prosaccades and antisaccades cannot be distinguished by the visual transients. Thus, such a situation could favor endogenous attention and increase its influence on saccade planning, even though saccade planning under more naturalistic conditions would be dominated by visual transients. I suggest discussing how this (and vice versa the emphasis on visual transients in the classic paradigm) could affect the generality of the presented findings (e.g., how does this relate to the interpretation that saccade plans are obligatorily coupled to endogenous attention? See, Results, p. 10, lines 306-308, see also Deubel & Schneider, 1996, Vision Research).

      (2) Discussion (p. 16, lines 472-475): The authors suppose that "It is as if the exogenous response was automatically followed by a motor bias in the opposite direction. Perhaps the oculomotor circuitry is such that an exogenous signal can rapidly trigger a saccade, but if it does not, then the corresponding motor plan is rapidly suppressed regardless of anything else.". I think this interesting point should be discussed in more detail. Could it also be that instead of suppression, other currently active motor plans were enhanced? Would this involve attention? Some attention models assume that attention works by distributing available (neuronal) processing resources (e.g., Desimone & Duncan, 1995, Annual Review of Neuroscience; Bundesen, 1990, Psychological Review; Bundesen et al., 2005, Psychological Review) so that the information receiving the largest share of resources results in perception and is used for action, but this happens without the active suppression of information.

      (3) Methods, p. 19, lines 593-596: It is reported that saccades were scored based on their direction. I think more information should be provided to understand which eye movements entered the analysis. Was there a criterion for saccade amplitude? I think it would be very helpful to provide data on the distributions of saccade amplitudes or on their accuracy (e.g. average distance from target) or reliability (e.g. standard deviation of landing points). Also, it is reported that some data was excluded from the analysis, and I suggest reporting how much of the data was excluded. Was the exclusion of the data related to whether participants were "reliable" or "unreliable" performers?

      (4) Results, p. 9, lines 262-266: Some data analyses are performed on a subset of participants that met certain performance criteria. The reasons for this data selection seem convincing (e.g. to ensure empirical curves were not flat, line 264). Nevertheless, I suggest to explain and justify this step in more detail. In addition, if not all participants achieved an acceptable performance and data quality, this could also speak to the experimental task and its difficulty. Thus, I suggest discussing the potential implications of this, in particular, how this could affect the studied mechanisms, and whether it could limit the presented findings to a special group within the studied population.

    1. Reviewer #2 (Public Review):

      This manuscript illustrates the power of "combined" research, incorporating a range of tools, both old and new to answer a question. This thorough approach identifies a novel target in a well-established signalling pathway and characterises a new player in Drosophila CNS development.

      Largely, the experiments are carried out with precision, meeting the aims of the project, and setting new targets for future research in the field. It was particularly refreshing to see the use of multi-omics data integration and Targeted DamID (TaDa) findings to triage scRNA-seq data. Some of the TaDa methodology was unorthodox, however, this does not affect the main finding of the study. The authors (in the revised manuscript) have appropriately justified their TaDa approaches and mentioned the caveats in the main text.

      Their discovery of Spar as a neuropeptide precursor downstream of Alk is novel, as well as its ability to regulate activity and circadian clock function in the fly. Spar was just one of the downstream factors identified from this study, therefore, the potential impact goes beyond this one Alk downstream effector.

    2. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith.

      Editors' note: The authors have satisfactorily addressed the concerns raised in the previous rounds of review. These were related to the unconventional analysis of the TaDa data, the addition of other means of down regulated gene function, and the nature of analyses of behavioural data.

    1. Reviewer #1 (Public Review):

      Olszyński and colleagues present data showing variability from canonical "aversive calls", typically described as long 22 kHz calls rodents emit in aversive situations. Similarly long but higher-frequency (44 kHz) calls are presented as a distinct call type, including analyses both of their acoustic properties and animals' responses to hearing playback of these calls. While this work adds an intriguing and important reminder, namely that animal behavior is often more variable and complex than perhaps we would like it to be, there is some caution warranted in the interpretation of these data.

      The exclusive use of males is a major concern lacking adequate justification and should be disclosed in the title and abstract to ensure readers are aware of this limitation. With several reported sex differences in rat vocal behaviors this means caution should be exercised when generalizing from these findings. The occurrence of an estrus cycle in typical female rats is not justification for their exclusion. Note also that male rodents experience great variability in hormonal states as well, distinguishing between individuals and within individuals across time. The study of endocrinological influences on behavior can be separated from the study of said behavior itself, across all sexes. Similarly, concerns about needing to increase the number of animals when including all sexes are usually unwarranted (see Shansky [2019] and Phillips et al. [2023]).

      Regarding the analysis where calls were sorted using DBSCAN based on peak frequency and duration, my comment on the originally reviewed version stands. It seems that the calls are sorted by an (unbiased) algorithm into categories based on their frequency and duration, and because 44kHz calls differ by definition on frequency and duration the fact that the algorithm sorts them as a distinct category is not evidence that they are "new calls [that] form a separate, distinct group". I appreciate that the authors have softened their language regarding the novelty and distinctness of these calls, but the manuscript contains several instances where claims of novelty and specificity (e.g. the subtitle on line 193) is emphasized beyond what the data justifies.

      The behavioral response to call playback is intriguing, although again more in line with the hypothesis that these are not a distinct type of call but merely represent expected variation in vocalization parameters. Across the board animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls. This does raise interesting questions about how, ethologically, animals may interpret such variation and integrate this interpretation in their responses. However, the categorical approach employed here does not address these questions fully.

      I appreciate the amendment in discussing the idea of arousal being the key determinant for the increased emission of 44kHz, and the addition of other factors. Some of the items in this list, such as annoyance/anger and disgust/boredom, don't really seem to fit the data. I'm not sure I find the idea that rats become annoyed or disgusted during fear conditioning to be a particularly compelling argument. As such the list appears to be a collection of emotion-related words, with unclear potential associations with the 44kHz calls.

      Later in the Discussion the authors argue that the 44kHz aversive calls signal an increased intensity of a negative valence emotional state. It is not clear how the presented arguments actually support this. For example, what does the elongation of fear conditioning to 10 trials have to do with increased negative emotionality? Is there data supporting this relationship between duration and emotion, outside anthropomorphism? Each of the 6 arguments presented seems quite distant from being able to support this conclusion.

      In sum, rather than describing the 44kHz long calls as a new call type, it may be more accurate to say that sometimes aversive calls can occur at frequencies above 22 kHz. Individual and situational variability in vocalization parameters seems to be expected, much more so than all members of a species strictly adhering to extremely non-variable behavioral outputs.

      [Editors' note: The reviewer agrees that the additional analysis has ruled out the possibility that the calls are due to fatigue.]

    1. Reviewer #1 (Public Review):

      Summary:

      The authors assess the accuracy of short variant calling (SNPs and indels) in bacterial genomes using Oxford Nanopore reads generated on R10.4 flow cells from a very similar genome (99.5% ANI), examining the impact of variant caller choice (three traditional variant callers: bcftools, freebayes, and longshot, and three deep learning based variant callers: clair3, deep variant, and nano caller), base calling model (fast, hac and sup) and read depth (using both simplex and duplex reads).

      Strengths:

      Given the stated goal (analysis of variant calling for reads drawn from genomes very similar to the reference), the analysis is largely complete and results are compelling. The authors make the code and data used in their analysis available for re-use using current best practices (a computational workflow and data archived in INSDC databases or Zenodo as appropriate).

      Weaknesses:

      While the medaka variant caller is now deprecated for diploid calling, it is still widely used for haploid variant calling and should at least be mentioned (even if the mention is only to explain its exclusion from the analysis).

      Appraisal:

      The experiments the authors engaged in are well structured and the results are convincing. I expect that these results will be incorporated into "best practice" bacterial variant calling workflows in the future.

    2. Reviewer #2 (Public Review):

      Summary:

      Hall et al describe the superiority of ONT sequencing and deep learning-based variant callers to deliver higher SNP and Indel accuracy compared to previous gold-standard Illumina short-read sequencing. Furthermore, they provide recommendations for read sequencing depth and computational requirements when performing variant calling.

      Strengths:

      The study describes compelling data showing ONT superiority when using deep learning-based variant callers, such as Clair3, compared to Illumina sequencing. This challenges the paradigm that Illumina sequencing is the gold standard for variant calling in bacterial genomes. The authors provide evidence that homopolymeric regions, a systematic and problematic issue with ONT data, are no longer a concern in ONT sequencing.

      Weaknesses:

      (1) The inclusion of a larger number of reference genomes would have strengthened the study to accommodate larger variability (a limitation mentioned by the authors).

      (2) In Figure 2, there are clearly one or two samples that perform worse than others in all combinations (are always below the box plots). No information about species-specific variant calls is provided by the authors but one would like to know if those are recurrently associated with one or two species. Species-specific recommendations could also help the scientific community to choose the best sequencing/variant calling approaches.

      (3) The authors support that a read depth of 10x is sufficient to achieve variant calls that match or exceed Illumina sequencing. However, the standard here should be the optimal discriminatory power for clinical and public health utility (namely outbreak analysis). In such scenarios, the highest discriminatory power is always desirable and as such an F1 score, Recall and Precision that is as close to 100% as possible should be maintained (which changes the minimum read sequencing depth to at least 25x, which is the inflection point).

      (4) The sequencing of the samples was not performed with the same Illumina and ONT method/equipment, which could have introduced specific equipment/preparation artefacts that were not considered in the study. See for example https://academic.oup.com/nargab/article/3/1/lqab019/6193612.

    3. Reviewer #3 (Public Review):

      Hall et al. benchmarked different variant calling methods on Nanopore reads of bacterial samples and compared the performance of Nanopore to short reads produced with Illumina sequencing. To establish a common ground for comparison, the authors first generated a variant truth set for each sample and then projected this set to the reference sequence of the sample to obtain a mutated reference. Subsequently, Hall et al. called SNPs and small indels using commonly used deep learning and conventional variant callers and compared the precision and accuracy from reads produced with simplex and duplex Nanopore sequencing to Illumina data. The authors did not investigate large structural variation, which is a major limitation of the current manuscript. It will be very interesting to see a follow-up study covering this much more challenging type of variation.

      In their comprehensive comparison of SNPs and small indels, the authors observed superior performance of deep learning over conventional variant callers when Nanopore reads were basecalled with the most accurate (but also computationally very expensive) model, even exceeding Illumina in some cases. Not surprisingly, Nanopore underperformed compared to Illumina when basecalled with the fastest (but computationally much less demanding) method with the lowest accuracy. The authors then investigated the surprisingly higher performance of Nanopore data in some cases and identified lower recall with Illumina short read data, particularly from repetitive regions and regions with high variant density, as the driver. Combining the most accurate Nanopore basecalling method with a deep learning variant caller resulted in low error rates in homopolymer regions, similar to Illumina data. This is remarkable, as homopolymer regions are (or, were) traditionally challenging for Nanopore sequencing.

      Lastly, Hall et al. provided useful information on the required Nanopore read depth, which is surprisingly low, and the computational resources for variant calling with deep learning callers. With that, the authors established a new state-of-the-art for Nanopore-only variant, calling on bacterial sequencing data. Most likely these findings will be transferred to other organisms as well or at least provide a proof-of-concept that can be built upon.

      As the authors mention multiple times throughout the manuscript, Nanopore can provide sequencing data in nearly real-time and in remote regions, therefore opening up a ton of new possibilities, for example for infectious disease surveillance.

      However, the high-performing variant calling method as established in this study requires the computationally very expensive sup and/or duplex Nanopore basecalling, whereas the least computationally demanding method underperforms. Here, the manuscript would greatly benefit from extending the last section on computational requirements, as the authors determine the resources for the variant calling but do not cover the entire picture. This could even be misleading for less experienced researchers who want to perform bacterial sequencing at high performance but with low resources. The authors mention it in the discussion but do not make clear enough that the described computational resources are probably largely insufficient to perform the high-accuracy basecalling required.

    1. Reviewer #1 (Public Review):

      Summary:

      Winged seeds or ovules from the Devonian are crucial to understanding the origin and early evolutionary history of wind dispersal strategy. Based on exceptionally well-preserved fossil specimens, the present manuscript documented a new fossil plant taxon (new genus and new species) from the Famennian Series of Upper Devonian in eastern China and demonstrated that three-winged seeds are more adapted to wind dispersal than one-, two- and four-winged seeds by using mathematical analysis.

      Strengths:

      The manuscript is well organised and well presented, with superb illustrations. The methods used in the manuscript are appropriate.

      Weaknesses:

      I would only like to suggest moving the "Mathematical analysis of wind dispersal of ovules with 1-4 wings" section from the supplementary information to the main text, leaving the supplementary figures as supplementary materials.

    1. Reviewer #1 (Public Review):

      Summary:

      By combining an analysis of the evolutionary age of the genes expressed in male germ cells, a study of genes associated with spermatocyte protein-protein interaction networks and functional experiments in Drosophila, Brattig-Correia and colleagues provide evidence for an ancient origin of the genetic program underlying metazoan spermatogenesis. This leads to identifying a relatively small core set of functional interactions between deeply conserved gene expression regulators, whose impairment is then shown to be associated with cases of human male infertility.

      Strengths:

      In my opinion, the work is important for three different reasons. First, it shows that, even though reproductive genes can evolve rapidly and male germ cells display a significant level of transcriptional noise, it is still possible to obtain convincing evidence that a conserved core of functionally interacting genes lies at the basis of the male germ transcriptome. Second, it reports an experimental strategy that could also be applied to gene networks involved in different biological problems. Third, the authors make a compelling case that, due to its effects on human spermatogenesis, disruption of the male germ cell orthoBackbone can be exploited to identify new genetic causes of infertility.

      Weaknesses:

      The main strength of the general approach followed by the authors is, inevitably, also a weakness. This is because a study rooted in comparative biology is unlikely to identify newly emerged genes that may adopt key roles in processes such as species-specific gamete recognition. Additionally, using a TPM >1 threshold for protein-coding transcripts may exclude genes, such as those encoding proteins required for gamete fusion, which are thought to be expressed at a very low level. Although these considerations raise the possibility that the chosen approach may miss information that, depending on the species, could be potentially highly functionally important, this by no means reduces its value in identifying genes belonging to the conserved genetic program of spermatogenesis.

    2. Reviewer #2 (Public Review):

      Summary:

      This is a tour de force study that aims to understand the genetic basis of male germ cell development across three animal species (human, mouse, and flies) by performing a genetic program conservation analysis (using phylostratigraphy and network science) with a special emphasis on genes that peak or decline during mitosis-to-meiosis. This analysis, in agreement with previous findings, reveals that several genes active during and before meiosis are deeply conserved across species, suggesting ancient regulatory mechanisms. To identify critical genes in germ cell development, the investigators integrated clinical genetics data, performing gene knockdown and knockout experiments in both mice and flies. Specifically, over 900 conserved genes were investigated in flies, with three of these genes further studied in mice. Of the 900 genes in flies, ~250 RNAi knockdowns had fertility phenotypes. The fertility phenotypes for the fly data can be viewed using the following browser link: https://pages.igc.pt/meionav. The scope of target gene validation is impressive. Below are a few minor comments.

      (1) In Supplemental Figure 2, it is notable that enterocyte transcriptomes are predominantly composed of younger genes, contrasting with the genetic age profile observed in brain and muscle cells. This difference is an intriguing observation and it would be curious to hear the author's comments.

      (2) Regarding the document, the figures provided only include supplemental data; none of the main text figures are in the full PDF.

      (3) Lastly, it would be great to section and stain mouse testis to classify the different stages of arrest during meiosis for each of the mouse mutants in order to compare more precisely to flies.

      This paper serves as a vital resource, emphasizing that only through the analysis of hundreds of genes can we prioritize essential genes for germ cell development. its remarkable that about 60% of conserved genes have no apparent phenotype during germ cell development.

      Strengths:

      The high-throughput screening was conducted on a conserved network of 920 genes expressed during the mitosis-to-meiosis transition. Approximately 250 of these genes were associated with fertility phenotypes. Notably, mutations in 5 of the 250 genes have been identified in human male infertility patients. Furthermore, 3 of these genes were modeled in mice, where they were also linked to infertility. This study establishes a crucial groundwork for future investigations into germ cell development genes, aiming to delineate their essential roles and functions.

      Weaknesses:

      The fertility phenotyping in this study is limited, yet dissecting the mechanistic roles of these proteins falls beyond its scope. Nevertheless, this work serves as an invaluable resource for further exploration of specific genes of interest.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Anbarcia et al. re-evaluates the function of the enigmatic Rete Ovarii (RO), a structure that forms in close association with the mammalian ovary. The RO has generally been considered a functionless structure in the adult ovary. This manuscript follows up on a previous study from the lab that analyzed ovarian morphogenesis using high-resolution microscopy (McKey et al., 2022). The present study adds finer details to RO development and possible function by (1) identifying new markers for OR sub-regions (e.g. GFR1a labels the connecting rete) suggesting that the sub-regions are functionally distinct, (2) showing that the OR sub-regions are connected by a luminal system that allows transport of material from the extra-ovarian rete (EOR) to the inter-ovarian rete (IOG), (3) identifies proteins that are secreted into the OR lumen and that may regulate ovarian homeostasis, and finally, (4) better defines how the vasculature, nervous, and immune system integrates with the OR.

      Strengths:

      The data is beautifully presented and convincing. They show that the RO is composed of three distinct domains that have unique gene expression signatures and thus likely are functionally distinct.

      Weaknesses:

      It is not always clear what the novel findings are that this manuscript is presenting. It appears to be largely similar to the analysis done by McKey et al. (2022) but with more time points and molecular markers. The novelty of the present study's findings needs to be better articulated.