10,000 Matching Annotations
  1. Apr 2024
    1. Reviewer #2 (Public Review):

      Summary:

      This study by Mendes et al provides novel key insights into the role of chemotaxis and immune cell recruitment into the hypothalamus in the development of diet-induced obesity. Specifically, the authors reveal that although transcriptional changes in hypothalamic resident microglia following exposure to high-fat feeding are minor, there are compelling transcriptomic differences between resident microglia and microglia recruited to the hypothalamus, and these are sexually dimorphic. Using independent loss-of-function studies, the authors also demonstrate an important role of CXCR3 and hypothalamic CXCL10 in the hypothalamic recruitment of CCR2+ positive cells on metabolism following exposure to high-fat diet-feeding in mice. This manuscript puts forth conceptually novel evidence that inhibition of chemotaxis-mediated immune cell recruitment accelerates body weight gain in high-fat diet-feeding, suggesting that a subset of microglia that express CXCR3 may confer protective, anti-obesogenic effects.

      Strengths:

      The work is exciting and relevant given the prevalence of obesity and the consequences of inflammation in the brain on perturbations of energy metabolism and ensuant metabolic diseases. Hypothalamic inflammation is associated with disrupted energy balance, and activated microglia within the hypothalamus resulting from excessive caloric intake and saturated fatty acids are often thought to be mediators of impairment of hypothalamic regulation of metabolism. The present work reports a novel notion in which immune cells recruited into the hypothalamus that express chemokine receptor CXCR3 may have a protective role against diet-induced obesity. In vivo studies reported herein demonstrate that inhibition of CXCR3 exacerbates high-fat diet-induced body weight gain, increases circulating triglycerides and fasting glucose levels, worsens glucose tolerance, and increases the expression of orexigenic neuropeptides, at least in female mice.

      This work provides a highly interesting and needed overview of preclinical and clinical brain inflammation, which is relevant to readers with an interest in metabolism and immunometabolism in the context of obesity.

      Using flow cytometry, cell sorting, and transcriptomics including RNA-sequencing, the manuscript provides novel insights into transcriptional landscapes of resident and recruited microglia in the hypothalamus. Importantly, sex differences are investigated.

      Overall, the manuscript is perceived to be highly interesting, relevant, and timely. The discussion is thoughtful, well-articulated, and a pleasure to read and felt to be of interest to a broad audience.

      Weaknesses:

      There were no major weaknesses perceived. Some comments for potential textual additions to the results/discussion are listed in recommendations to authors.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.

      Strengths:

      Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study. The authors have appropriately addressed a few concerns about statistical significance and the relationship between their findings and previous studies of the possible roles of Txnip on GLUT1 expression and localization on the surfaces of RPE cells.

    2. Reviewer #2 (Public Review):

      The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.

      Strengths

      - The follow-up study builds on innovative ground by exploring the impact of TxnipC247S and its combination with HSP90AB1 knockdown on cone survival, offering novel therapeutic pathways.<br /> - Testing of different Txnip deletion mutants provides a nuanced understanding of its functional domains, contributing valuable insights into the mechanism of action in RP treatment.<br /> - The findings regarding GLUT1 clearance and the differential effects of Txnip mutants on cone and RPE cells lay the groundwork for targeted gene therapy in RP.

      Comments on revised version:

      The researchers answered our questions and included additional discussion in the manuscript.

    1. Reviewer #2 (Public Review):

      In their manuscript entitled "BEND2 is a crucial player in oogenesis and reproductive aging", the authors present their findings that full-length BEND2 is important for repair of meiotic double strand break repair in spermatocytes, regulation of LINE-1 elements in spermatocytes, and proper oocyte meiosis and folliculogenesis in females. The manuscript utilizes an elegant system to specifically ablate the full-length form of BEND2 which has been historically difficult to study due to its location on the X chromosome and male sterility of global knockout animals.

      While the manuscript is an overall excellent addition to the field, it would significantly benefit from a few additional experiments, as well as some additional clarification/elaboration.

      The claim that BEND2 is required for ovarian reserve establishment is not supported, as the authors only look at folliculogenesis and oocyte abundance starting at one week of age, after the reserve is formed. Analysis of earlier time points would be much more convincing and would parse the role of BEND2 in the establishment vs. maintenance of this cell population. In spermatocytes, the authors demonstrate a loss of nuclear BEND2 in their mutant but do not comment on the change in localization (which is now cytoplasmic) of the remaining protein in these animals. This may have true biological significance and a discussion of this should be more thoroughly explored.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors investigate the role of BEND2, a novel regulator of meiosis, in both male and female fertility. Huang et al have created a mouse model where the full-length BEND2 transcript is depleted but the truncated BEND2 version remains. This mouse model is fertile, and the authors used it to study the role of BEND2 on both male and female meiosis. Overall, the full-length BEND2 appears dispensable for male meiosis. The more interesting phenotype was observed in females. Females exhibit a lower ovarian reserve suggesting that full-length BEND2 is involved in the establishment of the primordial follicle pool.

      Strengths:

      The authors generated a mouse model that enabled them to study the role of BEND2 in meiosis. The role of BEND2 in female fertility is novel and enhances our knowledge of genes involved in the establishment of the primordial follicle pool.

      Weaknesses:

      The manuscript extensively explores the role of BEND2 in male meiosis; however, a more interesting result was obtained from the study of female mice. Only a few experiments were performed using female mice, therefore, more experiments should be performed to complete the story of the role of BEND2 on female fertility. In addition, the title and abstract of the manuscript do not align with the story, as female fertility is only a small portion of the data compared to the male fertility section.

    3. Reviewer #3 (Public Review):

      Summary:

      Huang et al. investigated the phenotype of Bend2 mutant mice which expressed a truncated isoform. This mutant male showed increasing apoptosis due to unrepaired double-strand breaks. However, this mutant male has fertility, and this enabled them to analyze Bend2 function in females. They revealed that Bend2 mutation in females showed decreasing follicle numbers which leads to loss of ovarian reserve.

      Strengths:

      Since their Bend2 mutant males were fertile, they were able to analyze the function of Bend2 in females and they revealed that loss of Bend2 causes less follicle formation.

      Weaknesses:

      Why the phenotype of their mutant male is different from previous work (Ma et al.) is not clear enough although they discuss it.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors conducted a time-resolved EEG decoding study where they presented sequences of dot locations (4 locations onscreen) or single elements of those sequences, presented at the correct temporal epoch for if they had been presented in the full sequence. They were interested in examining whether presenting single items would activate representations of the anticipated following events that were never presented. Stimuli were presented for 100 ms and separated by 200 ms ISIs. They also had pattern estimation blocks with 600 ms ISIs. They found indeed, that anticipated events could be decoded at their correct moment in time, although future anticipated elements could not.

      The decoding of presented dots was fairly confined to the diagonal of the decoding matrix (training time x testing time), suggesting little temporal generalisation. This was in contrast with successor representations which were temporally more diffuse. The subsequent successor could be decoded but not future successors.

      Strengths:

      I liked this paper. The design was simple and clean and the implications of the findings are clear. The authors achieved their aims with this design, with the results supporting the conclusions. The findings will be of interest to a range of researchers studying learning and perception mechanisms, as well as the more generic role of prediction in the brain.

      Weaknesses:

      The sample size is fairly low for an EEG study. The authors justify it according to a previous Hogendoorn study, but not according to effect sizes in that study and particular power values.

      For understandable reasons, the long ISI blocks were presented before the main test blocks (I would have made the same decision) but there is the risk that participants then come to expect stimuli at larger temporal separations in the main blocks. I do wonder whether this is part of the reason for the greater temporal generalisation for anticipated event representations.

      Additional context:

      My memory of Ekman et al. 2017 is that single events (presented at position 1) elicited predictive activation of anticipated future events, but that there was a temporal compression. The present study appears to show no temporal compression but that the representations are activated at the correct moment in time. This seems like a potentially interesting difference and one with mechanistic implications for the field.

    2. Reviewer #1 (Public Review):

      Summary:

      Li and colleagues describe an experiment whereby sequences of dots in different locations were presented to participants while electroencephalography (EEG) was recorded. By presenting fixed sequences of dots in different locations repeatedly to participants, the authors assumed that participants had learned the sequences during the experiment. The authors also trained classifiers using event-related potential (ERP) data recorded from separate experimental blocks of dots presented in a random (i.e., unpredictable) order. Using these trained classifiers, the authors then assessed whether patterns of brain activity could be detected that resembled the neural response to a dot location that was expected, but not presented. They did this by presenting an additional set of sequences whereby only one of the dots in the learned sequence appeared, but not the other dots. They report that, in these sequences with omitted stimuli, patterns of EEG data resembled the visual response evoked by a dot location for stimuli that could be expected, but were not presented. Importantly, this only occurred for an omitted dot stimulus that would be expected to appear immediately after the dot that was presented in these partial sequences.

      This exciting finding complements previous demonstrations of the ability to decode expected (but not presented) stimuli in Blom et al. (2020) and Robinson et al. (2020) that are cited in this manuscript. It suggests that the visual system is able to generate patterns of activity that resemble expected sensory events, approximately at times at which an observer would expect them.

      Strengths:

      The experiment was carefully designed and care was taken to rule out some confounding factors. For example, gaze location was tracked over time, and deviations from fixation were marked, in order to minimise the contributions of saccades to above-chance decoding of dot position. The use of a separate block of dots (with unpredictable locations) to train the classifiers was also useful in isolating visual responses evoked by each dot location independently of any expectations that might be formed during the experiment. A large amount of data was also collected from each participant, which is important when using classifiers to decode stimulus features from EEG data. This careful approach is commendable and draws on best practices from existing work.

      Weaknesses:

      While there was clear evidence of careful experiment design, there are some aspects of the data analysis and results that significantly limit the inferences that can be drawn from the data. Both issues raised here relate to the use of pre-stimulus baselines and associated problems. As these issues are somewhat technical and may not be familiar to many readers, I will try to unpack each line of reasoning below. Here, it should be noted that these problems are complex, and similar issues often go undetected even by highly experienced EEG researchers.

      Relevant to both issues, the authors derived segments of EEG data relative to the time at which each dot was presented in the sequences (or would have appeared when the stimuli were omitted in the partial sequences). Segments were derived that spanned -100ms to 300ms relative to the actual or expected onset of the dot stimulus. The 300ms post-stimulus time period corresponds to the duration of each dot in the sequence (100ms) plus the inter-stimulus interval (ISI) that was 200ms in duration before the next dot appeared (or would be expected to appear in the partial sequences). Importantly, a pre-stimulus baseline was applied to each of these segments of data, meaning that the average amplitude at each electrode between -100ms and 0ms relative to (actual or expected) stimulus onset was subtracted from each segment of data (i.e., each epoch in common EEG terminology). While this type of baseline subtraction procedure is commonplace in EEG studies, in this study design it is likely to cause problematic effects that could plausibly lead to the patterns of results reported in this manuscript.

      First of all, the authors compare event-related potentials (ERPs) evoked by dots in the full as compared to partial sequences, to test a hypothesis relating to attentional tuning. They reported ERP amplitude differences across these conditions, for epochs corresponding to when a dot was presented to a participant (i.e., excluding epochs time-locked to omitted dots). However, these ERP comparisons are complicated by the fact that, in the full sequences, dot presentations are preceded by the presentation of other dots in the sequence. This means that ERPs evoked by the preceding dots in the full sequences will overlap in time with the ERPs corresponding to the dots presented at the zero point in the derived epochs. Importantly, this overlap would not occur in the partial sequence conditions, where only one dot was presented in the sequence. This essentially makes any ERP comparisons between full and partial sequences very difficult to interpret, because it is unclear if ERP differences are simply a product of overlapping ERPs from previously presented dots in the full sequence conditions. For example, there are statistically significant differences observed even in the pre-stimulus baseline period for this ERP analysis, which likely reflects the contributions ERPs evoked by the preceding dots in the full sequences, which are absent in the partial sequences.

      The problems with interpreting this data are also compounded by the use of pre-stimulus baselines as described above. Importantly, the use of pre-stimulus baselines relies on the assumption that the ERPs in the baseline period (here, the pre-stimulus period) do not systematically differ across the conditions that are compared (here, the full vs. partial sequences). This assumption is violated due to the overlapping ERPs issue described just above. Accordingly, the use of the pre-stimulus baseline subtraction can produce spurious effects in the time period after stimulus onset (for examples see Feuerriegel & Bode, 2022, Neuroimage). This also makes it very difficult to meaningfully compare the ERPs following dot stimulus onset in these analyses.

      The second issue relates to the use of pre-stimulus baselines and concerns the key finding reported in the paper: that EEG patterns corresponding to expected but omitted events can be decoded in the partial sequences. In the partial sequences, there are two critical epochs that were derived: One time-locked to the presentation of the dot, and another that was time-locked to 300ms after the dot was presented (i.e. when the next dot would be expected to appear). The latter epoch was used to test for representations of expected, but omitted, stimulus locations.

      For the epochs in which the dots were presented, above-chance decoding can be observed spanning a training time range from around 100-300ms and a testing time range of a similar duration (see the plot in Figure 4b). This plot indicates that, during the time window of around 200-300ms following dot stimulus onset, the position of the dot can be decoded not only from trained classifiers using the same time windows spanning 200-300ms, but also using classifiers trained using earlier time windows of around 100-200ms.

      This is important because the 200-300ms time period after dot onset in the partial sequences is the window used for pre-stimulus baseline subtraction when deriving epochs corresponding to the first successor representation (i.e., the first stimulus that might be expected to follow from the presented dot, but did not actually appear). In other words, the 200-300ms time window from dot onset corresponds to the -100 to 0 ms time window in the first successor epochs. Accordingly, the pattern that is indicative of the preceding, actually presented dot position would be subtracted from the EEG data used to test for the successor representation. Notably, the first successor condition would always be in another visual field quadrant (90-degree rotated or the opposite quadrant) as stated in the methods. In other words, the omitted stimulus would be expected to appear in the opposite vertical and/or horizontal visual hemifield as compared to the previously presented dot in these partial sequences.

      This is relevant because ERPs tend to show reversed polarity across hemifields. For example, a stimulus presented in the right hemifield will have reversed polarity patterns at the same electrode as compared to an equivalent stimulus presented in the left hemifield (e.g., Supplementary Figure 3 in the comparable study of Blom et al., 2020). By subtracting the ERP patterns evoked by the presented dot in the partial sequences during the time period of 200-300ms (corresponding to the -100 to 0ms baseline window), this would be expected to bias patterns of EEG data in the first successor epochs to resemble stimulus positions in opposite hemifields. This could plausibly produce above-chance decoding accuracy in the time windows identified in Figure 5a, where the training time windows broadly correspond to the periods of above-chance decoding during 200-300ms from dot stimulus onset in Figure 4b.

      In other words, the above-chance decoding of the first successor representation may plausibly be an artefact of the pre-stimulus baseline subtraction procedure used when deriving the epochs. This casts some doubt as to whether genuine successor representations were actually detected in the study. Additional tests for successor representations using ERP baselines prior to the presented dot in the partial sequences may be able to get around this, but such analyses were not presented, and the code and data were not accessible at the time of this review.

      Although the study is designed well and a great amount of care was taken during the analysis stage, these issues with ERP overlap and baseline subtraction raise some doubts regarding the interpretability of the findings in relation to the analyses currently presented.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors investigated how predicted stimuli are represented in posterior regions of the brain by recording electroencephalography during a visual sequence learning task. After learning the spatial order in which four stimuli were presented within a fixed sequence, participants were shown partial sequences - i.e., sequences in which only one element of the sequence was presented. By examining the decoding accuracy of the omitted stimuli, the authors aimed to investigate whether anticipated stimuli are (pro)actively represented in the expected spatial location at the expected time.

      Strengths and Weaknesses:

      The study successfully replicated previous findings on omitted stimuli within a predicted sequence (Ekman et al., 2023), while providing novel information regarding the temporal dynamics of predictive representation. Nevertheless, this outcome is not entirely surprising, as similar temporal dynamics were observed in a previous study employing a different task (Kok et al., 2017). The high level of scientific rigor is evident, as demonstrated by the numerous control analyses. Additionally, the results are particularly intriguing in terms of discerning the nature of the prepared representation, spanning from early perceptual to late attentional representations. Unfortunately, this distinction is not investigated in detail, thus allowing for alternative interpretations of the results.

      The connection between the findings and the literature on priority maps could benefit from further clarification. There is room for a clearer delineation of how much of the representation can be ascribed to a perceptual prediction mechanism versus an attentional (post-perceptual) spatial cueing process. Although the latter can be readily connected to the concept of a priority map guiding spatial attention, the relationship between the priority map and perceptual prediction remains somewhat ambiguous. Noteworthy, an explanation of the results in terms of spatial cueing does not necessarily require a perceptual predictive mechanism. The significant decoding of the location of the omitted stimulus might be attributed to the preceding stimulus orienting attention towards the following location. While this potential explanation was not explicitly addressed in the study, it presents an intriguing avenue for further investigation.

      The study provides valuable insight into how omitted, yet predicted stimuli are represented in the brain and its dynamics. While the research is commendable, addressing the outlined limitations would enhance its impact in the field. Specifically, the spatial location decoding results do not disentangle between perceptual prediction (i.e., the features of the expected stimulus) and attentional processes (i.e., the cueing of the to-be-attended location),

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Shah et al. explore the function of an understudied neural circuitry from the dLS -> LHA -> RVM in mediating stress-induced analgesia. They initially establish this neural circuitry through a series of intersectional tracings. Subsequently, they conduct behavioral tests, coupled with optogenetic or chemogenetic manipulations, to confirm the involvement of this pathway in promoting analgesia. Additionally, fiber photometry experiments are employed to investigate the activity of each brain region in response to stress and pain.

      Strengths:

      Overall, the study is comprehensive, and the findings are compelling.

      Weaknesses:

      One noteworthy concern arises regarding the overarching hypothesis that restrained-induced stress promotes analgesia. A more direct interpretation suggests that intense struggling, rather than stress per se, activates the dLS -> LHA -> RVM pathway that may drive analgesic responses.

    2. Reviewer #1 (Public Review):

      The manuscript entitled "A septo-hypothalamic-medullary circuit directs stress-induced analgesia" by Shah et al., showed that the dLS-to-LHA circuit is sufficient and necessary for stress-induced analgesia (SIA), which is mediated by the rostral ventromedial medulla (RVM) in a opioid-dependent manner. This study is interesting and important and the conclusions are largely supported by the data. I have a few concerns as follows:

      (1) The present data show that activation of dLS neurons produces SIA, however, this manipulation is non-specific. It may be better to see the effect of specific manipulation of stress-activated c-Fos positive neurons in the dLS using a combination of the Tet-Off system and chemogenetic/optogenetic tools.

      (2) Depending on its duration, and intensity, stress can exert potent and bidirectional modulatory effects on pain, either reducing pain (SIA) or exacerbating it (stress-induced hyperalgesia, SIH). Is the circuit in the manuscript involved in SIH?

      (3) It is well-accepted that opioid and cannabinoid receptors participate in the SIA, and the evidence is especially strong for the RVM endocannabinoid system. Given this, why did the authors focus their study on the opioid system?

      (4) Does silencing of the dLS neurons affect stress-induced anxiety-like behaviors? Alternatively, what is the relationship between SIA and the level of stress-induced anxiety?

      (5) Direct electrophysiological evidence should be provided to confirm the efficacy of the MP-CNO.

      (6) Is the LHA a specific downstream target for SIA, and is the LHA involved in stress-induced anxiety-like behaviors?

      (7) Do LHA neurons have direct projections to the RVM? If yes, what is its role in the SIA?

    1. Reviewer #2 (Public Review):

      To enable robust production of hematopoietic progenitors in-vitro, Petazzi et al examined the role of transcription factors in the arterial hemogenic endothelium. They use IGFBP2 as a candidate gene to increase the directed differentiation of iPSCs into hematopoietic progenitors. They have established a novel induced-CRISPR mediated activation strategy to drive the expression of multiple endogenous transcription factors and show enhanced production of hematopoietic progenitors through expansion of the arterial endothelial cells. Further, upregulation of IGFBP2 in the arterial cells facilitates the metabolic switch from glycolysis to oxidative phosphorylation, inducing hematopoietic differentiation. While the overall study and resources generated are good, assertions in the manuscript are not entirely supported by the experimental data and some claims need further experimental validation.

    2. Reviewer #1 (Public Review):

      Summary:

      The work from Petazzi et al. aimed at identifying novel factors supporting the differentiation of human hematopoietic progenitors from induced pluripotent stem cells (iPSCs). The authors developed an inducible CRISPR-mediated activation strategy (iCRISPRa) to test the impact of newly identified candidate factors on the generation of hematopoietic progenitors in vitro. They first compared previously published transcriptomic data of iPSC-derived hemato-endothelial populations with cells isolated ex vivo from the aorta-gonad-mesonephros (AGM) region of the human embryo and they identified 9 transcription factors expressed in the aortic hemogenic endothelium that were poorly expressed in the in vitro differentiated cells. They then tested the activation of these candidate factors in an iPSC-based culture system supporting the differentiation of hematopoietic progenitors in vitro. They found that the IGF binding protein 2 (IGFBP2) was the most upregulated gene in arterial endothelium after activation and they demonstrated that IGFBP2 promotes the generation of functional hematopoietic progenitors in vitro.

      Strengths:

      The authors developed an extremely useful doxycycline-inducible system to activate the expression of specific candidate genes in human iPSC. This approach allows us to simultaneously test the impact of 9 different transcription factors on in vitro differentiation of hematopoietic cells, and the system appears to be very versatile and applicable to a broad variety of studies.

      The system was extensively validated for the expression of 1 transcription factor (RUNX1) in both HeLa cells and human iPSC, and a detailed characterization of this test experiment was provided.

      The authors exhaustively demonstrated the role of IGFBP2 in promoting the generation of functional hematopoietic progenitors in vitro from iPSCs. Even though the use of IGFBP2-interacting proteins IGF1 and IGF2 have been previously reported in human iPSC-derived hematopoietic differentiation in vitro (Ditadi and Sturgeon, Methods 2016; Ng et al., Nature Biotechnology 2016), and IGFBP-2 itself has been shown to promote adult HSC expansion ex vivo (Zhang et al., Blood 2008), its role on supporting in vitro hematopoiesis was demonstrated here for the first time.

      Weaknesses:

      Although the authors performed a very thorough characterization of the system in proof-of-principle experiments activating a single transcription factor, the data provided when 9 independent factors were used is not sufficient to fully validate the experimental strategy. Indeed, in the current version of the manuscript, it is not clear whether the results presented in both the scRNAseq analysis and the functional assays are the consequence of the simultaneous activation of all 9 TF or just a subset of them. This is essential to establish whether all the proposed factors play a role during embryonic hematopoiesis, and a more complete analysis of the scRNAseq dataset could help clarify this aspect.

      Similarly, the data presented in the manuscript are not sufficient to clarify at what stage of the endothelial-to-hematopoietic transition (EHT) the TF activation has an impact. Indeed, even though the overall increase of functional hematopoietic progenitors is fully demonstrated, the assays proposed in the manuscript do not clarify whether this is due to a specific effect at the endothelial level or to an increased proliferation rate of the generated hematopoietic progenitors. Similar conclusions can be applied to the functional validation of IGFBP2 in vitro.

      The overall conclusions are sometimes vague and not always supported by the data. For instance, the authors state that the CRISPR activation strategy resulted in transcriptional remodeling and a steer in cell identity, but they do not specify which cell types are involved and at what level of the EHT process this is happening. In the discussion, the authors also claim that they provided evidence to support that RUNX1T1 could regulate IGFBP2 expression. However, this is exclusively based on the enrichment of RUNX1T1 gRNA in cells expressing higher levels of IGFBP2 and it does not demonstrate any direct or indirect association of the two factors.

    1. Joint Public Review:

      In their revised manuscript additional experiments have been conducted competently, and the interpretation of experiments regarding exit from the ER are convincing. They collectively indicate that the phase partitioning behaviour of the TMDs do not have a significant effect on exit from the ER; they all exit the ER very slowly unless they carry a short cytoplasmic domain from LAT which is sufficient to accelerate ER exit. This data is consistent with available literature supporting a role for a ER-exit signal. Along with new experiments in their revision, they have also toned down the assertion that their data rule out a phase partitioning mechanism at the ER.

      The authors, however, continue to interpret their experiments regarding Golgi exit of the transmembrane peptides (with luminal and cytoplasmic domains) as conclusive evidence of the role of lipid rafts in exit from the Golgi. This is once again based on correlation of the phase partitioning behaviour of these proteins in GPMVs, phase separated at low temperatures. They argue that this represents very strong evidence that trafficking out of the Golgi is driven by phase separation. The reviewers consider that there are a number of potential issues with the final model that need to be addressed.

      We reiterate that:

      (1) the phase segregation in the GPMV at low temperatures is dictated by thermodynamics given its composition and the measurement temperature. However at physiological temperatures at which membrane trafficking is taking place these GPMVs will not exhibit phase separation. Hence it is difficult to argue that a sorting mechanism based solely on the partitioning of the synthetic TM constructs into liquid ordered domain detected at low temperatures in GPMVs provide an explanation of the explanation of the differential kinetics of traffic of the LAT TMD and the allL-TMD constructs, although there is a strong correlation with its phase partitioning behaviour.

      (2) The fluctuations of lipid composition resembling lo-domains if persisting at higher temperatures and its conversion into a sorting domain will require a cellular mechanism, that may or may not retain similar properties of these lipidic environments. Additionally, TMDs from TfR/VsVG and GPI prefer different domains in the GPMV assays (Table S1) yet they traffic to the cell surface equally rapidly.

      (3) The authors fail to discuss the point raised about the relatively high colocalization of TfR with the GPI probe (seen in Fig 5E) in the Golgi. This is inconsistent with their explanation of traffic correlating with partitioning into distinct domains in the Golgi, since TfR and GPI probes show an opposite preference for lo versus ld domains in cooled GPMVs. TMD-allL and the LAT-allL are segregated from TfR in the Golgi, and end up in a different final destination (ie lysosomes). This could represent yet another membrane specialisation in the Golgi for lysosomal traffic. The segregation that the authors report in the Golgi is therefore not a convincing argument for phase preferences in GPMVs dictating the trafficking behaviour of these molecules towards the plasma membrane.

      (4) Despite the authors' claim in their rebuttal that 'we feel that GPMVs are a useful tool for quantifying protein preference for ordered (raft) membrane domains and that this preference is a useful proxy for the raft-associated behavior ... biological membrane with a relevant and measurable cellular outcome, specifically inter-organelle trafficking rates." -several caveats for these observations need to be addressed before they constitute strong evidence for the raft model of membrane trafficking proposed. Phase partitioning in GPMVs is just another operational definition and while more refined (ie the data is derived from the membrane of interest, ie, the plasma membrane) it is not very different conceptually from quantitative measurements of detergent-insolubility.

      (5) Further work is necessary to establish that ordered domains are formed at the Golgi at physiological temperatures, into which these proteins may partition; subsequently, there must be a mechanism that selectively traffics these proteins towards the cell surface.

      (6) The authors continue to conflate thermodynamic phase separation mechanisms with the real possibility of the formation of functional sorting domains by cellular mechanisms that likely involve lipidic interactions, adding to the confusion in the literature.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript describes the identification and isolation of several phage from deep sea isolates of Lentisphaerae strains WC36 and zth2. The authors observe induction of several putative chronic phages with the introduction of additional polysaccharides to the media. The authors suggest that two of the recovered phage genomes encode AMGs associated with polysaccharide use. The authors also suggest that adding the purified phage to cultures of Pseudomonas stutzeri 273 increased the growth of this bacteria due to augmented polysaccharide use genes from the phage.

      While the findings were of interest and relevance to the field, it is my opinion that several of the analysis fall short of supporting the key assertions presented.

      Strengths:

      Interesting isolate pf deep sea Lentisphaerae strains which will undoubtedly further our understanding of deep sea microbial life.

      Weaknesses:

      Many of the findings are consistent with a phage contamination in the polysaccharide stock solution.

      The genes presented as AMGs are largely well known and studied phage genes which play a role in infection cycles.

      The evidence that the isolated phage can infect Pseudomonas stutzeri 273 is lacking, putting into question the dependent results.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper investigates virus-host interactions in deep-sea bacteriophage systems which employ a seemingly mutualistic approach to viral replication in which the virus aids host cell polysaccharide import and utilization via metabolic reprogramming. The hypothesis being tested is supported with solid and convincing evidence and the findings are potentially generalizable with implications for our understanding of polysaccharide-mediated virus-host interactions and carbon cycles in marine ecosystems more broadly.

      Strengths:

      This paper synthesizes sequencing and phylogenic analyses of two Lentisphaerae bacteria and three phage genomes; electron microscopy imaging of bacterial/phage particles; differential gene expression analyses; differential growth curve analyses, and differential phage proliferation assays to extract insights into whether laminarin and starch can induce both host growth and phage proliferation. The data presented convincingly demonstrate that both host culture density and phage proliferation increase as a result having host, phage, and polysaccharide carbon source together in culture.

      Weaknesses (suggestions for improvement):

      The article would be strengthened by the following additional experiment: providing the phage proteins hypothesized to be aiding host cell growth (red genes from Figure 5...TonB system energizer ExbB, glycosidases, etc) individually or in combination on plasmids rather than within the context of the actual phage itself to see if such additional genes are necessary and sufficient to realize the boosts in host cell growth/saturation levels observed in the presence of the phages tested.

      The paper would also benefit from additional experiments focused on determining how the polysaccharide processing, transport, and metabolism genes are being used by the phages to either directly increase viral infection/replication or else to indirectly do so by supporting the growth of the host in a more mutualistic manner (i.e. by improving their ability to import, degrade, and metabolize polysaccharides).

      The introduction would benefit from a discussion of what is known regarding phage and/or viral entry pathways that utilize carbohydrate anchors during host entry. The discussion could also be improved by linking the work presented to the concept of "selfishness" in bacterial systems (see for instance Giljan, G., Brown, S., Lloyd, C.C. et al. Selfish bacteria are active throughout the water column of the ocean. ISME COMMUN. 3, 11 (2023) https://doi.org/10.1038/s43705-023-00219-7). The bacteria under study are gram negative and it was recently demonstrated (https://www.nature.com/articles/ismej201726) that "selfish" bacteria sequester metabolizable polysaccharides in their periplasm to advantage. It is plausible that the phages may be hijacking this "selfishness" mechanism to improve infectivity and ENTRY rather than helping their hosts to grow and profilerate so they can reap the benefits of simply having more hosts to infect. The current work does not clearly distinguish between these two distinct mechanistic possibilities. The paper would be strengthened by at least a more detailed discussion of this possibility as well as the author's rationale for interpreting their data as they do to favor the "mutualistic" interpretation. In the same light, the paper would benefit from a more careful choice of words which can also help to make such a distinction more clear/evident/intentional. As currently written the authors seem to be actively avoiding giving insights wrt this question.

      Finally, I would be interested to know if the author's sequencing datasets might be used to inform the question raised above by using bacterial immunity systems such as CRISPR/Cas9. For example, if the phage systems studied are truly beneficial/mutualistic for the bacteria then it's less likely that there would be evidence of targeted immunity against that particular phage that has the beneficial genes that support polysaccharide metabolism.

    1. Reviewer #1 (Public Review):

      This manuscript examines the individual and dual effects of CHIP and LOY in MI employing a cohort of ~460 individuals. CHIP is assessed by NGS and LOY is assessed by PCR. The threshold for CHIP is set at 2% (an arbitrary cutoff that is often used) and LOY at 9% (according to the Discussion text - this reviewer may have missed the section that describes why this threshold was employed). The investigation assessed whether LOY could modulate inflammation, atherosclerotic burden, or MI risk associated with CHIP. Neither CHIP nor LOY independently affected hsCRP, atherosclerotic burden, or MI incidence, nor did LOY presence diminish these outcomes in CHIP+ male subjects.

      This study represents the first dual analysis of CHIP and LOY on CVD outcomes. The results are largely negative, contradictory to other studies (many with much larger sample sizes). I would attribute the limitation of sample size as a major contributor to the negative data. While the negative data are suspect, the "positive" finding that LOY abolishes the prognostic significance of CHIP on MI is of interest (and consistent with what is understood from mechanistic studies).

      Overall, I enjoyed reading the paper, and it is of interest to the research community. However, I disagree with some of the authors' interpretations of the data. Generally, many conclusions on CHIP interpretation are based on the comparison of findings from very large datasets that have been evaluated by shallow NGS DNA sequencing. These studies lack sensitivity and accuracy, but this is counterbalanced by their very large sample sizes. Thus, they draw conclusions from the sickest individuals (ICD codes) with the largest clones (explaining the 10% VAF threshold). Here, the study has a well-phenotyped cohort, but as far as this reviewer can tell, the DNA sequencing is "shallow" NGS. Typically, to assess smaller datasets, investigators employ an error-correction method (DNA barcodes, duplex sequencing, etc.) for the sensitivity and accuracy of calling variants. Thus, the current study appears to suffer from this limitation (small sample sizes combined with NGS).

      While the "negative" data from this study are inconclusive, the positive data (i.e. CHIP being prognostic for MI in the absence but not presence of MI) is of interest. Thus, the investigators may want to consider a shorter report that largely focuses on this finding.

    2. Reviewer #2 (Public Review):

      Summary:

      The preprint by Fawaz et al. presents the findings of a study that aimed to assess the relationship between somatic mutations associated with clonal hematopoiesis (CHIP) and the prevalence of myocardial infarction (MI). The authors conducted targeted DNA sequencing analyses on samples from 149 MI patients and 297 non-MI controls from a separate cohort. Additionally, they investigated the impact of the loss of the Y chromosome (LOY), another somatic mutation frequently observed in clonally expanded blood cells. The results of the study primarily demonstrate no significant associations, as neither CHIP nor LOY were found to be correlated with an increased prevalence of MI. Of note, the null findings regarding CHIP are in conflict with several larger studies in the literature.

      Strengths:

      Overall, this is a useful research work on an emerging risk factor for cardiovascular disease (CVD). The use of a targeted sequencing approach is a strength, as it offers higher sensitivity than the whole exome sequencing approaches used in many previous studies.

      Weaknesses:

      Reporting null findings is definitely relevant in an emerging field such as the role of somatic mutations in cardiovascular disease. Nevertheless, the study suffers from severe limitations, which casts doubts on the authors' conclusions, as detailed below:

      (1) The small sample size of the study population is a critical limitation, particularly when reporting null findings that conflict (partly) with positive findings in much larger studies, totaling hundreds of thousands of individuals (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023; Zhao et al, JAMA Cardio 2024). The authors claim that they have 90% power to detect an effect size of CHIP on MI comparable to that in a previous report (Jaiswal et al, NEJM 2017). However, the methodology used to estimate statistical power is not described. Furthermore, the work by Jaiswal et al (NEJM 2017) showed a hazard ratio of approx. 2.0, but more recent work in much larger populations suggests that the overall effect of CHIP on atherosclerotic CVD is smaller, most likely due to the heterogeneity of effects of different mutated genes (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023; Zhao et al, JAMA Cardio 2024). In addition, several analyses in the current manuscript are conducted separately in MI(+) (n= 149) and MI(-) (N=297) individuals, further limiting statistical power. Power is still lower in the investigation of the effects of LOY and its interaction with CHIP, as only men are included in these analyses. Overall, I believe the study is severely underpowered, which calls into question the validity of the reported null findings.

      (2) Related to the above, it is widely accepted that the effects of CHIP on CVD are highly heterogeneous, as some mutated genes appear to have a strong impact on atherosclerosis, whereas the effect of others is negligible (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023, among others). TET2 mutations are frequently considered a "positive control", given the multiple lines of evidence suggesting that these mutations confer a higher risk of atherosclerotic disease. However, no association with MI or related variables was found for TET2 mutations in the current work. Reporting the statistical power specifically for assessing the effect of TET2 mutations would enhance the interpretation of these results.

      (3) One of the most essential features of CHIP is the tight correlation with age. In this study, the effect of age on CHIP (Supplementary Tables S5, S6) seems substantially milder than in previous studies. Given the relatively weak association with age here, it is not surprising that no association with MI or atherosclerotic disease was found, considering that this association would have a much smaller effect size. In addition, there are previous reports of sex-related differences in the prevalence of CHIP, is there an association between CHIP and age after adjusting for sex?

      (4) The mutated genes included in the definition of "CHIP" here are markedly different than those in most previous studies, particularly when considering specifically the studies that demonstrated an association between CHIP and atherosclerotic CVD. For instance, the definition of CHIP in this manuscript includes genes such as ANKRD26, CALR, CCND2, and DDX41... that are not prototypical CHIP genes. This is unlikely to have a major impact on the main results, as the vast majority of mutations detected are indeed in bona fide CHIP genes, but it should be at least acknowledged. Furthermore, the strategy used here for the CHIP variant calling and curation seems substantially different than that used in previous studies, which precludes a direct comparison. This is important because such differences in the definition of CHIP and the curation of variants are the basis of most conflicting findings in the literature regarding the effects of this condition. Ideally, the authors should conduct sensitivity analyses restricted to prototypical CHIP genes, using the criteria that have been previously established in the field (e.g. Vlasschaert et al, Blood 2023).

      (5) An important limitation of the current study is the cross-sectional design of most of the analyses. For instance, it is not surprising that no association is found between CHIP and prevalent atherosclerosis burden by ultrasound imaging, considering that many individuals may have developed atherosclerosis years or decades before the expansion of the mutant clones, limiting the possible effect of CHIP on atherosclerosis burden. Similarly, the analysis of the relationship between CHIP and a history of MI may be confounded by the potential effects of MI on the expansion of mutant clones. In this context, it is noteworthy that the only positive results here are found in the analysis of the relationship between CHIP at baseline and incident MI development over follow-up. Increasing the sample size for these longitudinal analyses would provide deeper insights into the relationship between CHIP and MI.

      (6) The description of some analyses lacks detail, but it seems that statistical analyses were exclusively adjusted for age or age and sex. The lack of adjustment for conventional cardiovascular risk factors in statistical analyses may confound results, particularly given the marked differences in several variables observed between groups.

      (7) The variant allele fraction (VAF) threshold for identifying clinically relevant clonal hematopoiesis is still a subject of debate. The authors state that subjects without any detectable mutation or with mutations with a VAF below 2% were considered non-CHIP carriers. While this approach is frequent in the field, it likely misses many impactful mutations with lower VAFs. Such false negatives could contribute to the null findings reported here. Ideally, the authors should determine the lower detection limit of their sequencing approach (either computationally or through serial dilution experiments) and identify the threshold of VAF that can be detected reliably with their sequencing assay. The association between CHIP and MI should then be evaluated considering all mutations above this VAF threshold, in addition to sensitivity analyses with other thresholds frequent in the literature, such as 1% VAF, 2% VAF, and 10% VAF.

      (8) The authors should justify the use of 3D vascular ultrasound imaging exclusively in the supra-aortic trunk. I am not familiar with this technique, but it seems to be most typically used to evaluate atherosclerosis burden in superficial vascular beds such as carotids or femorals. I am concerned about the potential impact of tissue depth on the accurate quantification of atherosclerosis burden in the current study (e.g. https://doi.org/10.1016/j.atherosclerosis.2016.03.002). It is unclear whether the carotids or femorals were imaged in the study population.

      (9) The specific criteria used to define LOY need to be justified. LOY is stated to be defined based on a "A cut off of 9% of cells with mLOY defined the detection of a mLOY based on the study of 30 men of less than 40 years who had a normal karyotype as assessed by conventional cytogenetic study." As acknowledged by the authors, this definition of LOY is substantially different than that used in recent studies employing the same technique to detect LOY (Mas-Peiro et al, EHJ 2023). In addition, it seems essential to provide more detailed information on the ddPCR assay used to determine LOY, including the operating range and, more importantly, the lower limit of detection (%LOY) of the assay. A dilution series of a control DNA with no LOY would be helpful in this context.

      (10) Our understanding of the relationship between CHIP and CVD is evolving fast, and the manuscript should be considered in the context of recent literature in the field. For instance, the recent work by Zhao et al (JAMA Cardio 2024, doi:10.1001/jamacardio.2023.5095) should be considered, as it used a similar targeted DNA sequencing approach as the one used here, but found a clear association between CHIP and coronary heart disease (in a population of 6181 individuals).

      (11) The use of subjective terms like "comprehensive" or "thorough" in the title of the manuscript does not align with the objective nature of scientific reporting.

    1. Reviewer #1 (Public Review):

      This study by Porter et al reports on outcomes from a small, open-label, pilot randomized clinical trial comparing dornase-alfa to best available care in patients hospitalized with COVID-19 pneumonia. As the number of randomized participants is small, investigators describe also a contemporary cohort of controls and the study concludes with decrease of inflammation (reflected by CRP levels) after 7 days of treatment but no other statistically significant clinical benefit.

      I read with interest this manuscript and I find the idea about treatment of COVID-19 patients with dornase-alfa novel and inspiring. I have some major concerns about the methodology the authors followed in this RCT.

      My major concerns are:

      (1) The authors have chosen a primary outcome that cannot be at least considered as clinically relevant or interesting. After 3 years of the pandemic with so much research, why investigate if a drug reduces CRP levels as we already have marketed drugs that provide beneficial clinical outcomes such as dexamethasone, anakinra, tocilizumab and baricitinib.

      (2) ΙΤΤ analysis is not followed

    2. Reviewer #2 (Public Review):

      Interesting work with an original and appealing hypothesis. The authors performed an open-label trial comparing nebulized dornase alfa to best available care in COVID-19, reaching the primary outcome of CRP reduction over the first week of intervention. The main weaknesses of the study are the small sample size, the lack of randomization for the majority of the participants, and the lack of blinding. The authors have sufficiently addressed the issues raised, provided that these weaknesses are highlighted in the limitations section.

    1. Reviewer #1 (Public Review):

      I have reviewed, with interest, the manuscript "Psychological stress disturbs bone metabolism via miR-335-3p/Fos signaling in osteoclast". The described findings are relevant and useful for daily practice in periodontology. The paper is concise, professionally written, and easy to read. In this study, Jiayao et al. revealed the role of miR-335-3p in psychological stress-induced osteoporosis. CUMS mice were constructed to observe the femur phenotype, osteoclasts were identified as the primary research object, and miRNA-seq was used to find the key miRNAs linking the brain and peripheral tissues. This study showed that the expression of miR-335-3p was simultaneously reduced in mice's NAC, serum, and bone under psychological stress. The miR-335-3p/Fos/NFATC1 signaling pathway was validated in osteoclasts to reveal the potential mechanism of enhanced osteoclast activity under psychological stress. From a new perspective of miRNAs, this study indicates a possible cause of disturbed bone metabolism due to psychological stress and may suggest a new approach to treating osteoporosis.

    2. Reviewer #2 (Public Review):

      Zhang et al. established chronic unpredictable mild stress (CUMS) mouse model, which displayed osteoporosis phenotype, suggesting a potential correlation between psychological stress and bone metabolism. They found that miRNA candidate miR-335-3p is downregulated in the long bone of CUMS mice through microRNA sequencing and qRT-PCR experiments. They further demonstrated that miR-335-3p attenuates osteoclast activity via inhibiting Fos signaling, which can induce NFATC1 expression and regulate osteoclast activity.

      Strengths:

      The authors established CUMS mouse model and confirmed the osteoporosis phenotype through careful characterization of bone and analysis of osteoclast activity. They performed microRNA sequencing to identify the miRNA candidate regulating the bone loss in the CUMS mouse model. They also validated the expression of miR-335-3p and interfered with the function of miR-335-3p through an in vitro assay. Overall, the findings from this study provide important hints for the correlation between psychological stress and bone metabolism.

      Weakness:

      The data provided by the authors are preliminary, especially the mechanistic insight, which needs to be enhanced. The authors have shown that miR-335-3p expression was altered in the CUMS mouse model and the change of its expression regulated osteoclast activity. The validation should be conducted in vivo, and the mechanism behind this should be investigated further.

    1. Reviewer #1 (Public Review):

      Existing literature suggests that brain structures implicated in memory such as the hippocampus, and reward/punishment processing such as the striatal regions are also engaged in learning and value-based decision-making. However, how the contributions of these regions to learning and value-based decision-making change over time, particularly in children where these neural systems show protracted maturation was not studied systematically. This is the question the authors are aiming to address in this work in which children 6-to-7-years-old were recruited for a neuroimaging study that involves taking structural scans from this cohort to investigate how they correlate with changes in the way children approach a reinforcement learning task in which they learn to identify the better shape between 2 options through trial-and-error.

      Particular strengths of the paper are longitudinally following up a cohort of small children and engaging them in a value-based decision-making task so that the relationship between neural maturation and improvements in reinforcement learning can be studied reliably. Towards this end, the authors make use of well-established computational modelling approaches to extract key parameters such as learning rates (which designate the speed of learning from expected versus actual outcomes) or choice stochasticity (which designate the inherent variation in people's decisions and the tendency to explore between the options) from children's choices so that their structural neural correlates can be established. As a part of this endeavour, the authors rely on methodological choices which do not warrant much criticism. Their data visualization choices are particularly spot-on and highly informative about the details of the raw data.

      Also considering the importance of the hippocampal system in human memory, the key contribution of the paper is that the volumetric increases in hippocampus size between 2 assessment points correlated selectively with the delayed, but not immediate, learning score which refers to the learning condition in which the outcome feedback is given to the children after a 5-seconds delay. Although the authors also demonstrate evidence to suggest that changes in the striatal volume are also implicated in learning performance, this was more general as associations were found for both immediate and delayed feedback conditions. Thus, the paper makes an important contribution to the fields of developmental and decision neuroscience. An important question arising from the authors' findings could be that, whether the hippocampus maintains this selective role in value-based learning during the course of neuronal development, for example, whether a similar association would be found in children 8-to-9 years old. A better understanding of how these developmental trajectories map onto changes in learning and decision-making can inform fields outside neuroscience, for example tailoring educational approaches onto neural development pathways to boost learning efficiency in young children.

    2. Reviewer #2 (Public Review):

      Summary:

      This is an interesting and impressive study that provides a rare opportunity to learn about brain-behaviour links of learning systems at a relatively early stage of development.

      The main strengths are that the authors followed a relatively large group of children over 2 years and used a reinforcement learning task aimed at assessing learning that depends on both the striatum and the hippocampus. The authors also included a thorough overview of the computational models and the choices they made. I think this paper would be of considerable interest and contributes to knowledge about how learning and memory systems change with development.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors goal here was to explore how a non hebbian form of plasticity, heterosynaptic LTP, could shape neuronal responses and learning. They used several conceptually and technically innovative approaches to answer this. First, they identified a behavioral paradigm that was a subthreshold training paradigm (stimulation of thalamic inputs with a footshock), which could be 'converted' to a memory via homosynaptic LTP (HFS of thalamic inputs). They then find that stimulation of 'cortical' inputs could also convert the subthreshold stimulation to a lasting memory, and that this was associated with a change in neuronal response, akin to LTP. Finally, they provide some slice work which demonstrated that stimulation of cortical inputs could stabilize LTP at thalamic inputs.

      Strengths:

      (1) The approach was innovative and asked an important question in the field.

      (2) The studies are, for the most part, quite rigorous, using a novel dual opsin approach to probe multiple inputs in vivo.

      (3) The authors explore neural responses both in vivo and ex vivo, as well as leveraging a 'simple' behavior output of freezing.

    2. Reviewer #2 (Public Review):

      Summary

      Faress et al. address how synaptic plasticity (i.e. potentiation induced by high frequency stimulation, HFS) induced at different time points and pathways relative to those active during initial learning can transform memories. They adopt an experimental design developed by Nabavi et al, 2014 to optogenetically induce a weak fear memory by pairing an optical conditioned stimulus (CS) at thalamo-LA synapses with a footshock unconditioned stimulus (US) in male mice. Homosynaptic HFS delivered in the same pathway before or after conditioning transforms the weak memory into a stronger one. Leveraging a new dual wavelength optogenetic approach in vivo, they also show that heterosynaptic (cortico-LA) HFS directly following the opto-conditioning can transform the thalamo-LA induced fear memory, or create a memory when directly delivered after unpaired conditioning. Lastly, they demonstrate that heterosynaptic potentiation of the thalamo-LA pathway accompanies the strengthening of fear memory in freely moving mice. The authors conclude that a transient experience (i.e. weak memory) can be transformed into a stable one by non-Hebbian forms of plasticity.

      Strengths

      This study uses well-defined and elegant optogenetic manipulations of distinct neural pathways in awake behaving mice combined with in vivo recordings, which allows to directly manipulate and monitor synaptic strength and memory. It addresses an interesting, timely, and important question.

      Weaknesses

      A key experiment with in vivo monitoring of LFPs and behavior (Fig. 5a-c) seems a bit underpowered and input-output curves (extended data 5c) not entirely convincing.<br /> Ex vivo slice experiments (Fig. 5d-f) are not well aligned with in vivo experimental conditions. While they provide proof of principle, this is not entirely novel (see Fonseca et al, 2013).

      Significance and impact

      The conclusions are well supported by the data. The significance of the study lies in showing in vivo, that plasticity induced at different times or synaptic pathways than those engaged during learning can modify a memory and the synaptic strength in the neural pathway related to that memory. While heterosynaptic and timing-dependent effects in synaptic plasticity have been described largely ex vivo on shorter time scales, the discovery of lasting behavioral effects on memory is novel. The study was enabled by a combination of clever approaches: creation of a "synthetic" pathway-specific association and a novel dual opsin approach in vivo to probe the role of plasticity in a converging second pathway at the same time.<br /> This work broadens our understanding of how Hebbian and non-Hebbian forms of plasticity shape neural activity and associative memory and is of broad interest to the neuroscience community.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a strong paper that sets the foundation for future work that will explore the innervation of the giant fiber, allowing experiments that will link molecular/developmental mechanisms to circuit function at a level of resolution that has not previously been possible. In the course of this work the investigators discover an axon-axon competition that reflects the order of innervation of the target. In addition, a host of reagents are developed that will be of wide use in dissecting this system.

      Strengths:

      (1) The developmental, functional and connectomic characterization of the wiring pattern to be dissected is impressively thorough and quantitative.<br /> (2) The reagents that the authors establish will be foundational to subsequent effort.<br /> (3) The discovery that axon-axon competition is involved in patterning this system, and might combined with innervation order to give a deterministic outcome is an interesting one (and might be useful to address variation in cell number (see below)!

      Weaknesses:

      (1) In my opinion, the authors miss an opportunity to leverage their connectomics characterization somewhat more. That is, from characterization of the connectomes of two flies, the authors describe substantial variation in the number of pre-synaptic cells providing inputs (for example, in FAFB, there are 55 LC4 cells, while in the hemibrain, there are 71 - almost 30 percent more), yet the number of total synapses provided by each class of cell types is remarkably stereotyped 2442 synapses versus 2290 synapses). And the ratio of LC4 to LPLC2 synapses is even more stereotyped... As this kind of stereotypy would be consistent with the authors competition model, but inconsistent with a model in which each cell makes a similar number of synapses (which would be the model from the periphery of the visual system), the authors should comment a bit more on what they see. Perhaps the wiring model the authors advocate for compensates for what appears to be quite significant variation in the numbers of LC neurons?

      (2) I appreciate how the authors pivoted to interpreting their results using Kir2.1 to reflect the effects of cell ablation. However, I worry that since the mechanism behind Kir2.1 mediated ablation is unknown, there could be other effects associated with this perturbation, creating indirect effects that alter LPLC2 cells somehow. I would therefore ask that the authors repeat these experiments with a more standard cell ablation strategy (such as a light gated caspase, or ricin). More crucially, the author's model that arrival order is functionally important would be greatly strengthened if they did the reciprocal ablation of LPLC2 and asked what happens to LC4. One could easily imagine a model in which these two cell types mutually compete for real estate, after an initial bias is set by arrival order.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors investigate axonal and synapse development in two distinct visual feature-encoding neurons (VPN), LC4 and LPLC2. They first show that they occupy distinct regions on the GF dendrites, and likely arrive sequentially. Analysis of the VPNs' morphology throughout development, and synaptic gene and protein expression data reveals the temporal order of maturation. Functional analysis then shows that LPLC2 occupancy of the GF dendrites is constrained by LC4 presence.

      Strengths:

      The authors investigate an interesting and very timely topic, which will help to understand how neurons coordinate their development. The manuscript is very well written, and data are of high quality, that generally support the conclusions drawn (but see some comments for Fig. 2 below). A thorough descriptive analysis of the LC4/LPLC2 to GF connectivity is followed by some functional assessment showing that one neuron's occupancy of the GF dendrite depend on another.<br /> The manuscripts uses versatile methods to look at membrane contact, gene and protein expression (using scRNAseq data and state-of-the art genetic tools) and functional neuronal properties. I find it especially interesting and elegant how the authors combine their findings to highlight the temporal trajectory of development in this system.

      Weaknesses:

      After reading the summary, I was expecting a more comprehensive analysis of many VPNs, and their developmental relationships. For a better reflection of the data, the summary could state that the authors investigate *two* visual projection neurons (VPNs) and that ablation *of one cell type of VPNs* results in the expansion of the remaining VPN territory.

      The manuscript is falling a bit short of putting the results into the context of what is known about synaptic partner choice/competition between different neurons during neuronal or even visual system development. Lots of work has been done in the peripheral the visual system, from the Hiesinger lab and others. Both the introduction and the discussion section should elaborate on this.

      The one thing that the manuscript does not unambiguously show is when the connections between LC4 and LPLC2 become functional.

      Figure 2:<br /> Figure 2A-C: I found the text related to that figure hard to follow, especially when talking about filopodia. Overall, life imaging would probably clarify at which time point there really are dynamic filopodia. For this study, high magnification images of what the authors define as filopodia would certainly help.<br /> L137ff: This section talks about filopodia between 24-48 hAPF, but only 36h APF is shown in A, where one could see filopodia. The other time points are shown in B and C, but number of filopodia is not quantified.<br /> L143: "filopodia were still present, but visibly shorter": This is hard to see, and again, not quantified.<br /> L144f: "from 72h APF to eclosion, the volume of GF dendrites significantly decreased": this is not actually quantified, comparisons are only done to 24, 36 and 48 h APF.<br /> Furthermore, 72h APF is not shown here, but in Figure 2D, so either show here, or call this figure panel already?

      Figure 2D/E: to strengthen the point that LC4 and LPLC2 arrive sequentially, it would help to show all time points analyzed in Figure D/E.

      L208: "significant increase ... from 60h APF to 72h APF": according to the figure caption, this comparison is marked by "+" but there is no + in the figure itself.

      Figure 3:<br /> A key point of the manuscript is the sequential arrival of different VPN classes. So then why is the scRNAseq analysis in Figure 3 shown pooled across VPNs? Certainly, the reader at this point is interested in temporal differences in gene expression. The class-specific data are somewhat hidden in Supp. Fig. 9, and actually do not show temporal differences. This finding should be presented in the main data.

      L438: "silencing LC4 by expressing Kir2.1... reduced the GF response": Is this claim backed by some quantification?

      Figure 4K: Do the control data have error bars, which are just too small to see? And what is tested against what? Is blue vs. black quantified as well? What do red, blue, and black asterisks indicate? Please clarify in figure caption.

      Optogenetics is mentioned in methods (in "fly rearing", in the genotypes, and there is an extra "Optogenetics" section in methods), but no such data are shown in the manuscripts. (If the authors have those data, it would be great to know when the VPN>GF connections become functional!)

      Methods:

      Antibody concentrations are not given anywhere and will be useful information for the reader

      Could the authors please give more details on the re-analysis of the scRNAseq dataset? How did you identify cell type clusters in there, for example?

      L785 and L794: I am curious. Why is it informative to mention what was *not* done?

      Custom-written analysis code is mentioned in a few places. Is this code publicly available?

    3. Reviewer #3 (Public Review):

      Summary:

      In this work, MacFarland et.al. show that difference in the time of contact between axons of LC4 and LPLC2 visual projection neurons (VPNs) in the optic glomeruli and dendrites of large descending neuron, the giant fiber (GF) shapes the differential connectivity between these neurons.

      Strengths:

      The authors analyzed the development of a well-known circuit between GF dendrites and LC4 andLPLC2 axons using different approaches. Additionally, they developed an ex-vivo patch clamping technique to show, together with correlative RNA-sequencing data, that contact site restriction is not dependent on neuronal activity. Based on this study, the connectivity pattern between GF and the adjacent different sets of VPNs now provides a very interesting model to investigate developmental programs that lead to synaptic specificity.

      Weaknesses:

      Following are the concerns that significantly impact the veracity of conclusions drawn based on the data provided.

      (1) All the data related to the activity of VPNs and GF and how this activity is related to the connectivity and/or maintaining and stabilizing this connectivity is correlative. The expression profiles of synaptic molecules (only at RNA level) over time or the appearance of pre and post synaptic proteins or the spontaneous spike patterns in GF do not show the role of activity in synapse specificity program. Synaptic molecules have been previously shown to be present at presynaptic sites without being involved in activity (Chen et al., 2014, Jin et al., 2018). To show whether activity is indeed not required for connectivity for either of the cell types (LC4 and LPLC2), they should silence each and also both cell types as early as possible (with the LC4 driver that does not ablate them) and then quantify the contacts with GF. In the same vein, the authors should knock down components of the synaptic machinery as early as possible to show directly the effect on 1) contact formation and 2) contact stabilization. For example, authors state in the lines 267-269 "VPN cholinergic machinery arrives too late to contribute to the initial targeting and localization of VPN axons on GF dendrites. Cholinergic activity instead is likely to participate in VPN and GF synapse refinement and stabilization." This statement would only be valid if the authors knock down the cholinergic machinery and find the contact numbers unchanged in the early stages but significantly different in later stages in comparison to the controls. Furthermore, authors only show increase in the VAChT and ChAT in the presynaptic cells but do not show if the cholinergic receptor AChRs are even expressed in GF cells or at what point they are expressed. Without these receptor expression, cholinergic system might not even be involved in the process. Also, there might be other neurotransmitter systems involved. Authors should at least check if other neurotransmitter systems are expressed in these cells, both pre-and post-synaptic.<br /> Line 371-374: "In the later stages of development, the frequency of synaptic events increase as gap junction proteins are downregulated and cholinergic presynaptic machinery is upregulated to enhance and stabilize synapses with intended synaptic partners while refining unintended contacts". The authors did not show the activity they observed in GF is due to the contacts they make with LC4s and LPLC2s. The functionality of these contacts can be shown by silencing the LC4s and LPLC2s and then doing the patch clamping in GF to see a decrease in the activity. Further, the authors did not show that the reduction in contacts are only by refining "unintended" contacts. There is no evidence that can support this statement.

      (2) In the LC4 ablation experiments, authors claim that LC4_4 split Gal4 line is expressed around 18APF, prior to GF LC4 initial contact (Line 387). However, authors do not show the time point of first contact between GF dendrites and LC4 cells. In Fig. 2 the first time point shown is at P36, where there is already significant overlap between GF dendrites and LC4 axons. Authors should show the very first time point where they see any, even if minimal, overlap and/or contact between GFs and LC4s. Once the LC4s are ablated, is the increase in the colocalization between GF and LPLC2 due to LPLC2s increasing their contact numbers or due to them not decreasing the maximum contact numbers that the authors observed at P72 (Fig 2G)? In other words, once the LC4s are ablated, what would the new graph for temporal contact numbers for LPLC2 look like and how it would compare to Fig2G?

      (3) If the developmental stages for different lines match, that would be more helpful for comparison. Also, as the authors analyzed expression every 12 hours from 0APF, the panel should also contain earlier time points (e.g. P0, P12) for all lines. This is critical to understand at what point the axons of LC4, LPLC2 and LPLC1 reach their position. From the scale bar in Supp Fig.4, it seems LC4 axons have already reached final position at P24 and there is no extension between P24 and P60. Do the authors know at what point LC4 axons start extending and reach the final position? If the LC4 and LPLC2 arbors are already separated medio-laterally even before GF dendrites extend towards them, it would explain why GF dendrites extending from medial region of the brain would encounter LC4 axons first and LPLC2 axons later, just based on their localization in space.<br /> Further to this point, the authors show in the section two of the paper that it is the GF dendrites that extend, elaborate and refine during the phase the authors analyzed and the authors do not show any morphological change in the axons of the VPNs. Therefore, the title of the paper is 'axon arrival times and physical occupancy establish visual projection neuron integration on developing dendrites in the Drosophila optic glomeruli' is slightly misguided.

      (4) In the absence of LC4s, does the LPLC1 and GF colocalization increase or do they still stay disconnected?

      (5) Does the absence of LC4s have any effect on GF arbor complexity? Does the graph in Fig 2B and C change? Can the increase in colocalization between LPLC2 and GF be at least partially due to the expansion of GF dendritic volume?

      (6) Why is there a segregation in the medial-lateral axis but not in the dorso-ventral axis? Wouldn't the same segregation mechanism be in play in both axes? Also, the authors should clarify if this reduction in dorsal-ventral distribution is because dorso-ventral expansion of GF dendrites beyond the LC4 and LPLC2 axons? Theoretically that would seem to make the LC4s move more ventrally and LPLC2 move more dorsally in comparison to the total arbor.

      (7) Why the LPLC2 medial connections are regarded as "mistargeting" in the heading of Supplemental Figure 1? Both in EM data and in some of the confocal datasets, these connections are observed. What is the criteria to label a connection "mistargeting" if it is observed, albeit occasionally, both in EM and confocal datasets?

      (8) In Line 126-127, authors state that "we sought to determine how the precise VPN localization along GF dendrites arises across development". However, based in EM and microscopic data, there is considerable variability in the contact numbers and distribution. With such variability present, how can the localization be termed "precise"? Authors should clarify.

    1. Reviewer #1 (Public Review):

      The manuscript by Poltavski and colleagues describes the discovery of previously unreported enteric neural crest-derived cells (ENCDC) which are marked by Pax2 and originating from the Placodes. By creating multiple conditional mouse mutants, the authors demonstrate these cells are a distinct population from the previously reported ENCDCs which originate from the Vagal neural crest cells and express Wnt1.

      These Pax2-positive ENCDCs are affected due to the loss of both Ret and Ednrb highlighting that these cells are also ultimately part of the canonical processes governing ENCDC and enteric nervous system (ENS) development. The authors also make explant cultures from the mouse GI tract to detect how Ednrb signaling is important for Ret signaling pathways in these cells and rediscovers the interactions between these 2 pathways. One important observation the authors make is that CGRP-positive neurons in the adult distal colon seem to be primarily derived from these Pax2-positive ENCDCs, which are significantly reduced in the Ednrb mutants, thus highlighting the role of Ednrb in maintaining this neuronal type.

      I appreciate the amount of work the authors have put into generating the mouse models to detect these cells, but there isn't any new insight on either the nature of ENCDC development or the role of Ret and Ednrb. Also, there are sophisticated single-cell genomics methods to detect rare cell type/states these days and the authors should either employ some of those themselves in these mouse models or look at extensively publicly available single-cell datasets of the developing wildtype and mutant mouse and human ENS to map out the global transcriptional profile of these cells. A more detailed analysis of these Pax2-positive cells would be really helpful to both the ENS community as well as researchers studying gut motility disorders.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Poltavski and colleagues explores the relative contributions of Pax2- and Wnt1- lineage-derived cells in the enteric nervous system (ENS) and how they are each affected by disruptions in Ret and Endrb signaling. The current understanding of ENS development in mice is that vagal neural crest progenitors derived from a Wnt1+ lineage migrate into and colonize the developing gut. The sacral neural crest was thought to make a small contribution to the hindgut in addition but recent work has questioned that contribution and shown that the ENS is entirely populated by the vagal crest (PMID: 38452824). GDNF-Ret and Endothelin3-Ednrb signaling are both known to be essential for normal ENS development and loss of function mutations are associated with a congenital disorder called Hirschsprung's disease. The transcription factor Pax2 has been studied in CNS and cranial placode development but has not been previously implicated in ENS development. In this work, the authors begin with the unexpected observation that conditional knockout of Ednrb in Pax2-expressing cells causes a similar aganglionosis, growth retardation, and obstructed defecation as conditional knockout of Ednrb in Wnt1-expressing cells. The investigators then use the Pax2 and Wnt1 Cre transgenic lines to lineage-trace ENS derivatives and assess the effects of loss of Ret or Ednrb during embryonic development in these lineages. Finally, they use explants from the corresponding embryos to examine the effects of GDNF on progenitor outgrowth and differentiation.

      Strengths:

      - The manuscript is overall very well illustrated with high-resolution images and figures. Extensive data are presented.

      - The identification of Pax2 expression as a lineage marker that distinguishes a subset of cells in the ENS that may be distinct from cells derived from Wnt1+ progenitors is an interesting new observation that challenges the current understanding of ENS development.

      - Pax2 has not been previously implicated in ENS development - this manuscript does not directly test that role but hints at the possibility.

      - Interrogation of two distinct signaling pathways involved in ENS development and their relative effects on the two purported lineages.

      Weaknesses:

      - The major challenge with interpreting this work is the use of two transgenic lines, rather than knock-ins, Wnt1-Cre and Pax2-Cre, which are not well characterized in terms of fidelity to native gene expression and recombination efficiency in the ENS. If 100% of cells that express Wnt1 do not express this transgene or if the Pax2 transgene is expressed in cells that do not normally express Pax2, then these observations would have very different interpretations and not support the conclusions made. The two lineages are never compared in the same embryo, which also makes it difficult to assess relative contributions and renders the evidence more circumstantial than definitive.

      - Visualization of the Pax2-Cre and Wnt-1Cre induced recombination in cross-sections at postnatal ages would help with data interpretation. If there is recombination induced in the mesenchyme, this would particularly alter the interpretation of Ednrb mutant experiments, since that pathway has been shown to alter gut mesenchyme and ECM, which could indirectly alter ENS colonization.

      - No consideration of glia - are these derived from both lineages?

      - No discussion of how these observations may fit in with recent work that suggests a mesenchymal contribution of enteric neurons (PMID: 38108810).

    1. Joint Public Review:

      Summary:

      This manuscript investigates how energetic demands affect the sleep-wake cycle in Drosophila larvae. L2 stage larvae do not show sleep rhythm and long-term memory (LTM), however, L3 larvae do. The authors manipulate food content to provide insufficient nutrition, which leads to more feeding, no LTM, and no sleep even in older larvae. Similarly, activation of NPF neurons suppresses sleep rhythm. Furthermore, they try to induce a sleep-like state using pharmacology or genetic manipulations in L2 larvae, which can mimic some of the L3 behaviours. A key experimental finding is that activation of DN1a neurons activate the downstream DH44 neurons, as assayed by GCaMP calcium imaging. This occurs only in third instar and not in second instar, in keeping with the development of sleep-wake and feeding separation. The authors also show that glucose metabolic genes are required in Dh44 neurons to develop sleep rhythm and that DH44 neurons respond differently in malnutrition or younger larvae.

      Strengths:

      Previous studies from the same lab have shown the sleep is required for LTM formation in the larvae, and that this requires DN1a and DH44 neurons. The current work builds upon this observation and addresses in more detail when and how this might develop. The authors can show that low quality food exposure and enhanced feeding during larval stage of Drosophila affects the formation of sleep rhythm and long-term memory. This suggests that the development of sleep and LTM are only possible under well fed and balanced nutrition in fly larvae. Non-sleep larvae were fed in low sugar conditions and indeed, the authors also find glucose metabolic genes to be required for a proper sleep rhythm. The paper presents precise genetic manipulations of individual classes of neurons in fly larvae followed by careful behavioural analysis. The authors also combine thermogenetic or peptide bath application experiments with direct calcium imaging of specific neurons.

      Weaknesses:

      The authors tried to induce sleep in younger L2 larvae, however the behavioral results suggest that they were not able to induce proper sleep behaviour as in normal L3 larvae. Thus, they cannot show that sleep during L2 stage would be sufficient to form LTM.<br /> The authors suggest that larval Dh44 neurons may integrate "information about the nutritional environment through the direct sensing of glucose levels to modulate sleep-wake rhythm development". They identify glucose metabolism genes (e.g., Glut1) in the downstream DH44 neurons as being required for the organization of the sleep-wake-feeding rhythm, and that CCHa signaling in DN1a signaling to the DH44 cells via the receptor. However, how this is connected is not well explained. Do the authors think that the nutrient sensing is only occurring in the DH44 neurons and not in DN1a or other neurons? Would not knocking down glucose metabolism in any neuron lead to a functional defect? What is the evidence that Dh44 neurons are specific sensors of nutritional state? For example, do the authors think that e.g. the overexpression of Glut1 in Dh44 neurons, a manipulation that can increase transport of glucose into cells, would rescue the effects of low-sugar food?<br /> Some of the genetic controls seem to be inconsistent suggesting some genetic background effects. In Figure 2B, npf-gal4 flies without the UAS show no significant circadian change in sleep duration, whereas UAS-TrpA flies do. The genetic control data in Figure 2D are also inconsistent. Npf-Gal4 seems to have some effect by itself without the UAS. The same is not seen with R76G11-Gal4. Suppl Fig 2: Naïve OCT and AM preference in L3 expressing various combinations of the transgenes show significant differences. npf-Gal4 alone seems to influence preference.<br /> The sleep duration and bout number/length data are highly variable.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript gives a broad overview of how to write NeuroML, and a brief description of how to use it with different simulators and for different purposes - cells to networks, simulation, optimization, and analysis. From this perspective, it can be an extremely useful document to introduce new users to NeuroML.

      However, the manuscript itself seems to lose sight of this goal in many places, and instead, the description at times seems to target software developers. For example, there is a long paragraph on the board and user community. The discussion on simulator tools seems more for developers, not users. All the information presented at the level of a developer is likely to be distracting to readers..

      Strengths:

      The modularity of NeuroML is indeed a great advantage. For example, the ability to specify the channel file allows different channels to be used with different morphologies without redundancy. The hierarchical nature of NeuroML also is commendable, and well illustrated in Figures 2a through c.

      The number of tools available to work with NeuroML is impressive.

      The abstract, beginning, and end of the manuscript present and discuss incorporating NeuroML into research workflows to support FAIR principles.

      Having a Python API and providing examples using this API is fantastic. Exporting to NeuroML from Python is also a great feature.

      Weaknesses:

      Though modularity is a strength, it is unclear to me why the cell morphology isn't also treated similarly, i.e., specify the morphology of a multi-compartmental model in a separate file, and then allow the cell file to specify not only the files containing channels, but also the file containing the multi-compartmental morphology, and then specify the conductance for different segment groups. Also, after pynml_write_neuroml2_file, you would not have a super long neuroML file for each variation of conductances, since there would be no need to rewrite the multi-compartmental morphology for each conductance variation.

      This would be especially important for optimizations, if each trial optimization wrote out the neuroML file, then including the full morphology of a realistic cell would take up excessive disk space, as opposed to just writing out the conductance densities. As long as cell morphology must be included in every cell file, then NeuroML is not sufficiently modular, and the authors should moderate their claim of modularity (line 419) and building blocks (551). In addition, this is very important for downloading NeuroML-compliant reconstructions from NeuroMorpho.org. If the cell morphology cannot be imported, then the user has to edit the file downloaded from NeuroMorpho.org, and provenance can be lost. Also, Figure 2d loses the hierarchical nature by showing ion channels, synapses, and networks as separate main branches of NeuroML.

      In Figure 5, the difference between the core and native simulator is unclear. What is involved in helper scripts? I thought neurons could read NeuroML? If so, why do you need the export simulator-specific scripts? In addition, it seems strange to call something the "core" simulation engine, when it cannot support multi-compartmental models. It is unclear why "other simulators" that natively support NeuroML cannot be called the core. It might be more helpful to replace this sort of classification with a user-targeted description. The authors already state which simulators support NeuroML and which ones need code to be exported. In contrast, lines 369-370 mention that not all NeuroML models are supported by each simulator. I recommend expanding this to explain which features are supported in each simulator. Then, the unhelpful separation between core and native could be eliminated.

      The body of the manuscript has so much other detail that I lose sight of how NeuroML supports FAIR. It is also unclear who is the intended audience. When I get to lines 336-344, it seems that this description is too much detail for the audience. The paragraph beginning on line 691 is a great example of being unclear about who is the audience. Does someone wanting to develop NeuroML models need to understand XSD schema? If so, the explanation is not clear. XSD schema is not defined and instead explains NeuroML-specific aspects of XSD. Lines 734-735 are another example of explaining to code developers (not model developers).

    2. Reviewer #2 (Public Review):

      Summary:

      Developing neuronal models that are shareable, reproducible, and interoperable allows the neuroscience community to make better use of published models and to collaborate more effectively. In this manuscript, the authors present a consolidated overview of the NeuroML model description system along with its associated tools and workflows. They describe where different components of this ecosystem lay along the model development pathway and highlight resources, including documentation and tutorials, to help users employ this system.

      Strengths:

      The manuscript is well-organized and clearly written. It effectively uses the delineated model development life cycle steps, presented in Figure 1, to organize its descriptions of the different components and tools relating to NeuroML. It uses this framework to cover the breadth of the software ecosystem and categorize its various elements. The NeuroML format is clearly described, and the authors outline the different benefits of its particular construction. As primarily a means of describing models, NeuroML also depends on many other software components to be of high utility to computational neuroscientists; these include simulators (ones that both pre-date NeuroML and those developed afterwards), visualization tools, and model databases.

      Overall, the rationale for the approach NeuroML has taken is convincing and well-described. The pointers to existing documentation, guides, and the example usages presented within the manuscript are useful starting points for potential new users. This manuscript can also serve to inform potential users of features or aspects of the ecosystem that they may have been unaware of, which could lower obstacles to adoption. While much of what is presented is not new to this manuscript, it still serves as a useful resource for the community looking for information about an established, but perhaps daunting, set of computational tools.

      Weaknesses:

      The manuscript in large part catalogs the different tools and functionalities that have been produced through the long development cycle of NeuroML. As discussed above, this is quite useful, but it can still be somewhat overwhelming for a potential new user of these tools. There are new user guides (e.g., Table 1) and example code (e.g. Box 1), but it is not clear if those resources employ elements of the ecosystem chosen primarily for their didactic advantages, rather than general-purpose utility. I feel like the manuscript would be strengthened by the addition of clearer recommendations for users (or a range of recommendations for users in different scenarios).

      For example, is the intention that most users should primarily use the core NeuroML tools and expand into the wider ecosystem only under particular circumstances? What are the criteria to keep in mind when making that decision to use alternative tools (scale/complexity of model, prior familiarity with other tools, etc.)? The place where it seems most ambiguous is in the choice of simulator (in part because there seem to be the most options there) - are there particular scenarios where the authors may recommend using simulators other than the core jNeuroML software?

      The interoperability of NeuroML is a major strength, but it does increase the complexity of choices facing users entering into the ecosystem. Some clearer guidance in this manuscript could enable computational neuroscientists with particular goals in mind to make better strategic decisions about which tools to employ at the outset of their work.

    1. Reviewer #2 (Public Review):

      Summary:

      While a significant portion of immunotherapy research has focused on the pivotal role of T cells in tumor immunity, their effectiveness may be limited by the suppressive nature of the tumor environment. On the other hand, myeloid cells are commonly found within tumors and can withstand these adverse conditions. However, these cells often adopt an immunosuppressive phenotype when infiltrating tumors. Therefore, manipulating myeloid cells could potentially enhance the anti-tumor potential of immunotherapy.<br /> In this manuscript, Farhat-Younes and colleagues have demonstrated that activating the IgM receptor signaling in myeloid cells induces an oxygen burst, the secretion of Granzyme B, and the lysis of adjacent tumor cells. Furthermore, they have outlined a strategy to utilize these features to generate CAR macrophages. However, they have identified a limitation: the expression of scFv in myeloid cells induces ER stress and the degradation of misfolded proteins. To address this issue, chimeric receptors were designed based on the high-affinity FcγRI for IgG. When macrophages transfected with these receptors were exposed to tumor-binding IgG, extensive tumor cell killing, and the release of reactive oxygen species and Granzyme B were observed.

      Strengths:

      In general, I consider this work to be significant, and the results are compelling. It emphasizes the specific considerations and requirements for successful manipulation in myeloid cells, which could further advance the field of cellular engineering for the benefit of immunotherapy

      Following the revision of the original manuscript, I can clearly state that my concerns have been addressed and the article has been improved.

    1. Reviewer #2 (Public Review):

      This preprint by Pokrovsky and coworkers is a descriptive study reporting on non-breeding itinerant behaviour of an intrapalearctic migratory raptor, the rough-legged buzzard, and relating such non-breeding movements to snow cover across the European non-breeding range. The article is based on long-term GPS tracking data from a relatively large (n=43) sample of individuals that were equipped with state-of-the-art tracking devices in the Russian Arctic during 2013-2019. The results show that, upon breeding, buzzards migrated rapidly to southern non-breeding areas, located in open areas north of the Black and Caspian seas, where they perform continuous directional movements at a slower pace, initially moving SW (Oct to Jan) and then progressively moving NE (Feb to Apr) before embarking on rapid spring migration. It is suggested that such itinerant behaviour follows variation (expansion and retreat) of snow cover across the non-breeding range.

      The results are potentially useful for researchers investigating the ecological drivers of bird movement patterns. The analytical framework appears solid, although some details on the analyses (requested during the previous review round) are still unclear and have not been modified despite explicit requests. Significant weaknesses in the theoretical framework persist in the revised version, including unwarranted claiming of novelty, overselling of importance of the study, and overinterpretation of the data. Below are key points that the authors did not consider when revising their manuscript.

      (1) The authors underemphasize the fact that what they term 'fox-trot' migration is actually a well-known patterns for many other migratory species, both in the Nearctic and in the Afro-Palearctic migration systems. Such behaviour has previously been identified as 'itinerant' or 'non-breeding itinerancy', involving an alternation of stopovers and movements between different short-term non-breeding residency areas, or even slow continuous movements, and it seems that the pattern the authors report for this particular species is perfectly in line with such previous evidence. For instance, this is well-documented among migratory raptors, such as the Montagu's harrier, lesser kestrels or black kites, that exploit Sahelian savannahs, where large spatio-temporal variation in greenness and hence resource availability occurs. And, besides the mentioned cuckoos and nightingales, there are studies of red-backed shrikes suggesting the same, as well as of tree swallows in the Nearctic. Therefore, the authors should avoid claiming novelty for this study and introducing unnecessary and confusing new terms in the literature (i.e. the 'fox-trot' migration patterns) when these are definitely not strictly needed as they have been previously observed and defined otherwise. Sentences such as 'We used the rough-legged buzzard as a model..." are also similarly unwarranted. This is simply a descriptive studies reporting on such behaviour in yet another migratory species. The whole introduction is pervaded by a faulty logic. The authors first introduce a new (unwarranted) term based on previous evidence from other studies (none of which felt any need to introduce and describe it); then they assume, for unclear reasons, that the species they are studying should behave in that way; even more worryingly, based on these assumptions, they make specific predictions on how this species should behave, without any sound biological reason for these predictions. I admit I hardly see any scientific logic in this approach.

      (2) The species has a very standard migration for a short-distance migrant, by all means. It moves to non-breeding areas, and once there it slowly moves towards the south in autumn and back again in spring, until it departs for pre-breeding migration. This is no different from other trans-Saharan migratory raptor species that spend the non-breeding period in the Sahel. Whether the species perform any short/medium term stopover (frequenting the same are for some days) during the non-breeding stage (between end of autumn migration and onset of spring migration), as is the case of most species showing non-breeding itinerancy, is not reported. The authors only show a slower pace of movement during the non-breeding period compared to autumn and spring migration, without providing any further details. This hinders comparisons with other previous studies.

      (3) The current title is unnecessarily general (it may recall rather a review or meta-analysis) and not adequately describing the content of the manuscript. In order to be informative, the title should more tightly reflect the content of the article. A valid alternative would be 'Itinerant non-breeding behaviour of an intra-Palaearctic migratory raptor', as it would be far more adequate and informative.

      (4) The text, particularly the Introduction and the Discussion, would greatly benefit from profound reframing in light of the above comments. Upon reading the first sentence of the introduction, it looks surprising that the authors based their suggestion for 'fox-trot' migration based on a very outdated article on the migration of Montagu's harrier based on sparse ring recovery data which merely suggests the existence of 'movements' within the non-breeding areas (i.e. non-breeding itinerancy), while subsequent large scale satellite tracking studies of this species provided compelling evidence for non-breeding area itinerancy (and again, no mention of 'fox-trot' whatsoever). The discussion is entirely framed around potential issues related to accurate monitoring of population size and trends, which the author surprisingly refer to 'conservation implications'. As I already mentioned in my previous review, the 'conservation implications' of this study are nearly negligible. At best, it suggests that caution should be applied when interpreting population trends of migratory species based on non-breeding area counts only, a pattern that is already well known for decades (consider the long-running IWC coordinated by Wetlands International!). In addition, Christmas Bird Count, a long-term monitoring program of AOS, is mentioned without any accurate reference to what it actually is, assuming that any reader would be familiar with a very peculiar monitoring scheme of the Nearctic region.

      The final paragraph epitomizes how authors are overstating the importance of this study, claiming for non-existent novelty and even 'discovery': "Our study has identified and characterized a new pattern of migratory behavior, the 'foxtrot migration', along with the associated concept of 'dynamic range'. This discovery has significant implications for conservation strategies and adequate representation of non-breeding habitats".

    1. Reviewer #1 (Public Review):

      Summary:

      For many years, there has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, using state-of-the-art imaging techniques, they examined spike synchrony of hippocampal cells during locomotion and immobility states. In contrast to conventional understanding of the hippocampus, the authors demonstrated that hippocampal place cells exhibit prominent synchronous spikes locked to theta oscillations.

      Strengths:

      The voltage imaging used in this study is a highly novel method that allows recording not only suprathreshold-level spikes but also subthreshold-level activity. With its high frame rate, it offers time resolution comparable to electrophysiological recordings. Moreover, it enables the visualization of actual cell locations, allowing for the examination of spatial properties (e.g., Figure 4G).

      Weaknesses:

      There is a notable deviation from several observations obtained through conventional electrophysiological recordings. Particularly, as mentioned below in detail, the considerable differences in baseline firing rates and no observations of ripple-triggered firing patterns raise some concerns about potential artifacts from imaging and analsyis, such as cell toxicity, abnormal excitability, and false detection of spikes. While these findings are intriguing if the validity of these methods is properly proven, accepting the current results as new insights is challenging.

    2. Reviewer #2 (Public Review):

      Summary:

      This study employed voltage imaging in the CA1 region of the mouse hippocampus during the exploration of a novel environment. The authors report synchronous activity, involving almost half of the imaged neurons, occurred during periods of immobility. These events did not correlate with SWRs, but instead, occurred during theta oscillations and were phased-locked to the trough of theta. Moreover, pairs of neurons with high synchronization tended to display non-overlapping place fields, leading the authors to suggest these events may play a role in binding a distributed representation of the context.

      Strengths:

      Technically this is an impressive study, using an emerging approach that allows single-cell resolution voltage imaging in animals, that while head-fixed, can move through a real environment. The paper is written clearly and suggests novel observations about population-level activity in CA1.

      Weaknesses:

      The evidence provided is weak, with the authors making surprising population-level claims based on a very sparse data set (5 data sets, each with less than 20 neurons simultaneously recorded) acquired with exciting, but less tested technology. Further, while the authors link these observations to the novelty of the context, both in the title and text, they do not include data from subsequent visits to support this. Detailed comments are below:

      (1) My first question for the authors, which is not addressed in the discussion, is why these events have not been observed in the countless extracellular recording experiments conducted in rodent CA1 during the exploration of novel environments. Those data sets often have 10x the neurons simultaneously recording compared to these present data, thus the highly synchronous firing should be very hard to miss. Ideally, the authors could confirm their claims via the analysis of publicly available electrophysiology data sets. Further, the claim of high extra-SWR synchrony is complicated by the observation that their recorded neurons fail to spike during the limited number of SWRs recorded during behavior- again, not agreeing with much of the previous electrophysiological recordings.

      (2) The authors posit that these events are linked to the novelty of the context, both in the text, as well as in the title and abstract. However, they do not include any imaging data from subsequent days to demonstrate the failure to see this synchrony in a familiar environment. If these data are available it would strengthen the proposed link to novelty if they were included.

      (3) In the discussion the authors begin by speculating the theta present during these synchronous events may be slower type II or attentional theta. This can be supported by demonstrating a frequency shift in the theta recording during these events/immobility versus the theta recording during movement.

      (4) The authors mention in the discussion that they image deep-layer PCs in CA1, however, this is not mentioned in the text or methods. They should include data, such as imaging of a slice of a brain post-recording with immunohistochemistry for a layer-specific gene to support this.

    3. Reviewer #3 (Public Review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected in the other side of the brain, and the investigation is flawed due to multiple problems with the point process analyses. The synchrony terminology refers to dozens of milliseconds as opposed to the millisecond timescale referred to in prior work, and the interpretations do not take into account theta phase locking as a simple alternative explanation.

      Weaknesses:

      The two main messages of the manuscript indicated in the title are not supported by the data. The title gives two messages that relate to CA1 pyramidal neurons in behaving head-fixed mice: (1) synchronous ensembles are associated with theta (2) synchronous ensembles are not associated with ripples.

      There are two main methodological problems with the work: (1) experimentally, the theta and ripple signals were recorded using electrophysiology from the opposite hemisphere to the one in which the spiking was monitored. However, both signals exhibit profound differences as a function of location: theta phase changes with the precise location along the proximo-distal and dorso-ventral axes, and importantly, even reverses with depth. And ripples are often a local phenomenon - independent ripples occur within a fraction of a millimeter within the same hemisphere, let alone different hemispheres. Ripples are very sensitive to the precise depth - 100 micrometers up or down, and only a positive deflection/sharp wave is evident. (2) The analysis of the point process data (spike trains) is entirely flawed. There are many technical issues: complex spikes ("bursts") are not accounted for; differences in spike counts between the various conditions ("locomotion" and "immobility") are not accounted for; the pooling of multiple CCGs assumes independence, whereas even conditional independence cannot be assumed; etc.

      Beyond those methodological issues, there are two main interpretational problems: (1) the "synchronous ensembles" may be completely consistent with phase locking to the intracellular theta (as even shown by the authors themselves in some of the supplementary figures). (2) The definition of "synchrony" in the present work is very loose and refers to timescales of 20-30 ms. In previous literature that relates to synchrony of point processes, the timescales discussed are 1-2 ms, and longer timescales are referred to as the "baseline" which is actually removed (using smoothing, jittering, etc.).

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes P. falciparum population structure in Zanzibar and mainland Tanzania. 282 samples were typed using molecular inversion probes. The manuscript is overall well written and shows clear population structure. It follows a similar manuscript published earlier this year, which typed a similar number of samples collected mostly in the same sites around the same time. The current manuscript extends this work by including a large number of samples from coastal Tanzania, and by including clinical samples, allowing for a comparison with asymptomatic samples.

      The two studies made overall very similar findings, including strong small-scale population structure, related infections on Zanzibar and the mainland, near-clonal expansion on Pemba, and frequency of markers of drug resistance.

      Strengths:

      The overall results show a clear pattern of population structure. The finding of highly related infections detected in close proximity shows local transmission and can possibly be leveraged for targeted control.

      Comments on revised version:

      The authors have addressed my comments.

    2. Reviewer #1 (Public Review):

      Summary:

      Zanzibar archipelago is close to achieve malaria elimination, but despite the implementation of effective control measures there is still low level seasonal malaria transmission. This could be due to the frequent importation of malaria from the mainland Tanzania and Kenya, reservoir of asymptomatic infections and competent vectors. To investigate population structure and gene flow of P. falciparum in Zanzibar and mainland Tanzania, they used 178 samples from mainland Tanzania and 213 from Zanzibar that were previously sequenced using molecular inversion probes (MIPs) panels targeting single nucleotide polymorphisms (SNPs). They performed Principal Component Analysis (PCA) and identity by descent (IBD) analysis to assess genetic reladness between isolates. Parasites from coastal mainland Tanzania contribute for the genetic diversity in parasite population in Zanzibar. Despite this, there is a pattern of isolation by distance and microstructure within the achipelago, and evidence of local sharing of highly related strains sustaining malaria transmission in Zanzibar that are important targets for interventions such as mass drug administration and vector control, in addition to measures against imported malaria.

      Strengths:

      This study presents important samples to understand population structure and gene flow between mainland Tanzania and Zanzibar, especially from rural Bagamoyo District, where malaria transmission persists and there is a major port of entry to Zanzibar. In addition, this study includes a larger set of SNPs, providing more robustness for analyzes such as PCA and IBD. Therefore, the conclusions of this paper are well supported by data.

      Comments on revised version:

      The authors answered all my questions.

    1. Reviewer #1 (Public Review):

      Granados-Aparici et al., investigate somatic-germline interactions in female mice. Mammalian oocytes are nurtured in multi-cellular ovarian follicles and communication with surrounding somatic cells is critical for oocyte development. This study focused on transzonal projections (TZP) extending from granulosa cells to the surface of oocytes and document the importance of SMAD4, a TGF- β mediator, in regulating the TZPs. They propose a model in which individual TZPs contact the surface of the oocyte and stably attaches if there is sufficient N-cadherin. In SMAD4-depleted cells, there is insufficient N-cadherin to stabilize the attachment. The TZP continues to elongate but eventually retracts. Their model is well supported by their experimental evidence and the manuscript is both well-formulated and written.

      Comments on revised version:

      The authors have addressed the issues raised in the original review.

    2. Reviewer #2 (Public Review):

      Summary:

      This study proposed a new mechanism by which TGF-beta signaling pathway promotes contacts between oocyte and the surrounding somatic cells in mouse, by regulating the numbers of transzonal projections (TZPs).

      Strengths:

      The conditional Smad4 knockout and three-dimensional observation of transzonal projections are solid and sufficiently support the major conclusions.

      Comments on revised version:

      The authors have adequately addressed the reviewers' questions and comments.

    1. Reviewer #1 (Public Review):

      Recognition of bacterial lipopolysaccharide by Toll-like Receptor 4 is an essential molecular event triggering inflammation and overcoming Recognition of bacterial lipopolysaccharide by Toll-like Receptor 4 is an essential molecular event in triggering inflammation and overcoming infection by gram-negative bacteria. However, TLR4 has recently been found to respond to other endogenously derived ligands. This has implicated TLR4 signaling in the development of disease pathology, for example, Alzheimer's disease, through the recognition of amyloid-beta. Intriguingly, the signaling response to these non-bacterial-derived ligands differs from that of bacterial-derived LPS, suggesting mechanistic differences between endogenous and bacterial-derived agonists. In this work, the authors set out to characterize these mechanistic differences. TLR4 signals through two large macromolecular complexes that assemble at activated receptors: the Myddosome and Triffosome. One hypothesis the authors aimed to test was that different ligands alter these signaling complexes' kinetics and nano-scale features. The authors focused on testing this hypothesis by examining the formation of the Myddosome in live cells. A significant strength of the paper is that the authors developed technological innovations to address this problem. Using a nanopipette delivery mechanism combined with light sheet microscopy, the authors could observe Myddosome signaling in the whole cell volume of live macrophages. This allowed them to accurately quantify the Myddosome number, size, and kinetics of complex formation and compare cells stimulated with amyloid-beta and LPS. The authors discovered differences in Myddosomes formed under LPS versus amyloid-beta stimulation. In general, amyloid-beta TLR4 stimulation resulted in slower Myddosome formation with altered morphology. One limitation of the work, which the authors point out in the discussion, is that they could not distinguish signaling-competent Myddosomes. Future work will be needed to understand whether these amyloid beta induced Myddosomes assembly have a similar or altered complement of downstream signaling proteins (such as the IRAK4/1 and TRAF6). Secondly, the structural basis for how TLR4 would distinguish between different radically agonists remains speculative, and will need further investigation. Nonetheless, this paper is important for the technological innovation to look at the molecular dynamics of signal transduction, a technology that could be adapted to study other receptor signaling pathways.

      It is already known that the subcellular location of intracellular TLRs is important for limiting the recognition of self-derived ligands and maintaining tolerance. This work hints at another possible layer of regulation: that a cell surface TLR (TLR4) generates diverse signaling outcomes to extrinsic or intrinsically derived agonists by changing the dynamic behavior of signaling proteins. If correct (and much further work is required to understand endogenous TLR ligands better), it might suggest that the innate immune system employs the same molecular hardware but with altered kinetics to distinguish between exogenous and endogenous inflammatory signals. Thus, pathological aggregates or markers of sterile inflammation might be recognized and responded to by a specific signaling program that is defined kinetically. It will be an interesting direction for future studies to investigate whether and how diverse pathogen and endogenous inflammatory signals modulate the dynamics of signaling complexes.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper carries out an impressive and exhaustive non-sense mutagenesis using deep mutational scanning (DMS) of the gonadotropin-releasing hormone receptor for the WT protein and two single point mutations that I) influences TM insertion (V267T) and ii) influences protein stability (W107A) and then measures the effect of these mutants on correct plasma membrane expression (PME).

      Overall, most mutations decreased mGnRHR PME levels in all three backgrounds, indicating poor mutational tolerance under these conditions. The W107A variant wasn't really recoverable with low levels of plasma membrane localisation. For the V267T variant, most additional mutations were more deleterious than WT based on correct trafficking, indicating a synergistic effect. As one might expect, there was a higher degree of positive correlation between V267T/W107A mutants and other mutants located in TM regions, confirming that improper trafficking was a likely consequence of membrane protein co-translational folding. Nevertheless, context is important, as positive synergistic mutants in the V27T could be negative in the W107A background and vice versa. Taken together, this important study highlights the complexity of membrane protein folding in dissecting the mechanism-dependent impact of disease-causing mutations related to improper trafficking.

      Strengths:

      This is a novel and exhaustive approach to dissect how receptor mutations under different mutational backgrounds related to co-translational folding, could influence membrane protein trafficking.

      Weaknesses:

      The premise for the study requires an in-depth understanding of how the single point mutations analysed effect membrane protein folding in context of DMS, but the single point mutants used could do with further validation. The V267T mutant only reduced MP insertion by 10% and the effect of W107A on protein stability was not assessed. Furthermore, plasma membrane expression has been used as a proxy for incorrect membrane protein folding, but this not necessarily be the case, as even correctly folded membrane proteins may not be trafficked correctly, at least, under heterologous expression conditions. In addition, mutations can effect trafficking and potential post-translational modifications, like glycosylation.

    2. Reviewer #2 (Public Review):

      Summary:

      In this paper, Chamness and colleagues make a pioneering effort to map epistatic interactions among mutations in a membrane protein. They introduce thousands of mutations to the mouse GnRH Receptor (GnRHR), either under wild-type background or two mutant backgrounds, representing mutations that destabilize GnRHR by distinct mechanisms. The first mutant background is W107A, destabilizing the tertiary fold, and the second, V276T, perturbing the efficiency of cotranslational insertion of TM6 to the membrane, which is essential for proper folding. They then measure surface expression of these three mutant libraries, using it as a proxy for protein stability, since misfolded proteins do not typically make it to the plasma membrane. The resulting dataset is then used to shed light on how diverse mutations interact epistatically with the two genetic background mutations. Their main conclusion is that epistatic interactions vary depending on the degree of destabilization and the mechanism through which they perturb the protein. The mutation V276T forms primarily negative (aggravating) epistatic interactions with many mutations, as is common to destabilizing mutations in soluble proteins. Surprisingly, W107A forms many positive (alleviating) epistatic interactions with other mutations. They further show that the locations of secondary mutations correlate with the types of epistatic interactions they form with the above two mutants.

      Strengths:

      Such a high throughput study for epistasis in membrane proteins is pioneering, and the results are indeed illuminating. Examples of interesting findings are that: (1) No single mutation can dramatically rescue the destabilization introduced by W107A. (2) Epistasis with a secondary mutation is strongly influenced by the degree of destabilization introduced by the primary mutation. (3) Misfolding caused by mis-insertion tends to be aggravated by further mutations. The discussion of how protein folding energetics affects epistasis (Fig. 7) makes a lot of sense and lays out an interesting biophysical framework for the findings.

      Weaknesses:

      The major weakness comes from the potential limitations in the measurements of surface expression of severely misfolded mutants. It seems that only about 5% of the W107A makes it to the plasma membrane compared to wild-type. This point is discussed quite fairly in the paper. (Figures 2 and 3). This might be a low starting point from which to accurately measure the effects of secondary mutations. I am concerned about the extent to which surface expression can report on protein stability, especially when it comes to double mutants where each mutation alone severely decreases surface expression. It is possible that in these cases, both the single and double mutants are completely misfolded, beyond repair. The surface-expressed proteins in such mutants may not be stable, folded or active at all, and the authors do not provide any indication that the combined effects of the mutations are derived from effects on folding stability or misfolding. Therefore, the reason for the epistatic effects of these mutations is hard to interpret, leaving a notable gap in our understanding. However, I find that this point is discussed much more fairly in the current manuscript.

      With that said, I believe that the results regarding the epistasis of V276T with other mutations are strong and very interesting on their own.

      Another concern relates to the measurements of the epistatic effects of mutations in the background of the V107A mutation. I am concerned about their measurement accuracy. Firstly, the authors note that the surface immunostaining measurements of these mutants are on average only 2-fold above background, which is quite a low signal-to-noise regimen. Secondly, I believe that the authors still haven't demonstrated the reproducibility of their surface expression measurements. To showcase the reproducibility, the authors show the correlation of two biological replicates in Figure S3. However, these are shown only for the 251 mutations that passed a reproducibility filter, after the authors "discarded variant scores for which the difference in percentile rank across the two replicates was greater than 25%. " . this means that all mutations that showed irreproducible results were filtered out before the analysis in Figure S3. It is, therefore, no surprise that the remaining mutations are highly reproducible, and such an analysis cannot serve as an indication of the reproducibility. It remains possible that a large fraction of the surface immunostaining scores of the V107A variants are dominated by noise and that their correlation in these two replicates might be random and may not necessarily be reproduced in a third replicate, for example.

    1. Reviewer #1 (Public Review):

      This manuscript describes soluble Uric Acid (sUA) as an endogenous inhibitor of CD38, affecting CD38 activity and NAD+ levels both in vitro and in vivo. Importantly, the inhibition constants calculated support the claim that sUA inhibits CD38 under physiological conditions. These findings are of extreme importance to understanding the regulation of an enzyme that has been shown to be the main NAD+/NMN-degrading enzyme in mammals, which impacts several metabolic processes and has major implications for understanding aging diseases. The manuscript is well written, the figures are self-explanatory, and in the experiments presented, the data is very solid. The authors discuss the main limitations of the study, especially in regard to the in vivo results. As a whole, I believe that this is a very interesting manuscript that will be appreciated by the scientific community and that opens a lot of new questions in the field of metabolism and aging. I found some issues that I believe constitute a weakness in the manuscript, and although they do not require new experiments, they may be considered by the authors for discussion in the final version of the manuscript.

      The authors acknowledge the existence of several previous papers involving pharmacological inhibition of CD38 and their impact on several models of metabolism and aging. However, they only cite reviews. Given the focus of the manuscript, I believe that the seminal original papers should be cited.

      Related to the previous comment, the authors show that they have identified the functional group on sUA that inhibits CD38, 1,3-dihydroimidazol-2-one. How does this group relate with previous structures that were shown to inhibit CD38 and do not have this chemical structure? Is sUA inhibiting CD38 in a different site? A crystallographic structure of CD38-78c is available in PDB that could be used to study or model these interactions.

      Although the mouse model used to manipulate sUA levels is not ideal, the authors discuss its limitations, and importantly, they have CD38 KO mice as control. However, all the experiments were performed in very young mice, where CD38 expression is low in most tissues (10.1016/j.cmet.2016.05.006). This point should be mentioned in the discussion and maybe put in the context of variations of sUA levels during aging.

    2. Reviewer #2 (Public Review):

      Summary:

      This is an interesting work where Wen et al. aimed to shed light on the mechanisms driving the protective role of soluble uric acid (sUA) toward avoiding excessive inflammation. They present biochemical data to support that sUA inhibits the enzymatic activity of CD38 (Figures 1 and 2). In a mouse model of acute response to sUA and using mice deficient in CD38, they find evidence that sUA increases the plasma levels of nicotinamide nucleotides (NAD+ and NMN) (Figure 3) and that sUA reduces the plasma levels of inflammasome-driven cytokines IL-1b and IL-18 in response to endotoxin, both dependent on CD38 (Figure 4). Their work is an important advance in the understanding of the physiological role of sUA, with mechanistic insight that can have important clinical implications.

      Strengths:

      The authors present evidence from different approaches to support that sUA inhibits CD38, impacts NAD+ levels, and regulates inflammatory responses through CD38.

      Weaknesses:

      The authors investigate macrophages as the cells impacted by sUA to promote immunoregulation, proposing that inflammasome inhibition occurs through NAD+ accumulation and sirtuin activity due to sUA inhibition of CD38. Unfortunately, the study still lacks data to support this model, as they could not replicate their in vivo findings using murine bone marrow-derived macrophages, a standard model to assess inflammasome activation. Without an alternative approach, the study lacks data to establish in vitro that sUA inhibition of CD38 reduces inflammasome activation in macrophages - consequently, they cannot determine yet if both NAD+ accumulation and sirtuin activity in macrophages is a mechanism leading to sUA role in vivo.

    3. Reviewer #3 (Public Review):

      Summary:

      In the present manuscript, the authors propose that soluble Uric acid (sUA) is an enzymatic inhibitor of the NADase CD38 and that it controls levels of NAD modulating inflammatory response. Although interesting the studies are at this stage preliminary and validation is needed.

      Strengths:

      The study characterizes the potential relevance of sUA in NAD metabolism.

      Weaknesses:

      (1) A full characterization of the effect of sUA in other NAD-consuming and synthesizing enzymes is needed to validate the statement that the mechanism of regulation of NAD by sUA is mediated by CD38, The CD38 KO may not serve as the ideal control since it may saturate NAD levels already. Analysis of multiple tissues is needed.

      (2) The physiological role of sUA as an endogenous inhibitor of CD38 needs stronger validation (sUA deficient model?).

      (3) Flux studies would also be necessary to make the conclusion stronger.

    1. Reviewer #1 (Public Review):

      Summary:

      In "1 Exploring the Spatial Distribution of Persistent SARS-CoV-2 Mutations -Leveraging mobility data for targeted sampling" Spott et al. combine SARS-CoV-2 genomic data alongside granular mobility data to retrospectively evaluate the spread of SARS-CoV-2 alpha lineages throughout Germany and specifically Thuringia. They further prospectively identified districts with strong mobility links to the first district in which BQ.1.1 was observed to direct additional surveillance efforts to these districts. The additional surveillance effort resulted in the earlier identification of BQ.1.1 in districts with strong links to the district in which BQ.1.1 was first observed.

      Strengths:

      There are two important strengths of this work. The first is the scale and detail in the data that has been generated and analyzed as part of this study. Specifically, the authors use 6,500 SARS-CoV-2 sequences and district-level mobility data within Thuringia. I applaud the authors for making a subset of their analyses public e.g. on the associated micro react page.

      Further, the main focus of the article is on the potential utility of mobility-directed surveillance sequences. While I may certainly be mistaken, I have not seen this proposed elsewhere, at least in the context of SARS-CoV-2. The authors were further able to test this concept in a real-world setting during the emergence of BQ.1.1. This is a unique real-world evaluation of a novel surveillance sequencing strategy and there is considerable value in publishing this analysis.

      Weaknesses:

      The article is quite strong and I find the analyses to generally be rigorous. However, there are places where I believe the text should be modified to slightly weaken the conclusions drawn from the presented analyses. Specific examples include:

      - It seems the mobility-guided increased surveillance included only districts with significant mobility links to the origin district and did not include any "control" districts (those without strong mobility links). As such, you can only conclude that increasing sampling depth increased the rate of detection for BQ.1.1., not necessarily that doing so in a mobility-guided fashion provided an additional benefit. I absolutely understand the challenges of doing this in a real-world setting and think that the work remains valuable even with this limitation, but I would like the lack of control districts to be more explicitly discussed.

      - Line 313: While this work has reliably shown that the spread of Alpha was slower in Thuringia, I don't think there have been sufficient analyses to conclude that this is due to the lack of transportation hubs. My understanding is that only mobility within Thuringia has been evaluated here and not between Thuringia and other parts of Germany.

      - Line 333 (and elsewhere): I'm not convinced, based on the results presented in Figure 2, that the authors have reliably identified a sampling bias here. This is only true if you assume (as in line 235) that the variant was in these districts, but that hasn't actually been demonstrated here. While I recognize that for high-prevalence variants there is a strong correlation between inflow and variant prevalence, low-prevalence variants by definition spread less and may genuinely be missing from some districts. To support this conclusion that they identified a bias, I'd like to see some type of statistical model that is based e.g. on the number of sequences, prevalence of a given variant in other districts, etc. Alternatively, the language can be softened ("putative sampling bias").

    2. Reviewer #2 (Public Review):

      In the manuscript, the authors combine SARS-CoV-2 sequence data from a state in Germany and mobility data to help in understanding the movement of the virus and the potential to help decide where to focus sequencing. The global expansion in sequencing capability is a key outcome of the public health response. However, there remains uncertainty about how to maximise the insights the sequence data can give. Improved ability to predict the movement of emergent variants would be a useful public health outcome. Also knowing where to focus sequencing to maximising insights is also key. The presented case study from one State in Germany is therefore a useful addition to the literature. Nevertheless, I have a few comments.

      One of the key goals of the paper is to explore whether mobile phone data can help predict the spread of lineages. However, it appears unclear whether this was actually addressed in the analyses. To do this, the authors could hold out data from a period of time, and see whether they can predict where the variants end up being found.

      The abstract presents the mobility-guided sampling as a success, however, the results provide a much more mixed result. Ultimately, it's unclear what having this strategy really achieved. In a quickly moving pandemic, it is unclear what hunting for extra sequences of a specific, already identified, variant really does. I'm not sure what public health action would result, especially given the variant has already been identified.

      Relatedly, it is unclear to me whether simply relying on spatial distance would not be an alternative simpler approach than mobile phone data. From Figure 2, it seems clear that a simple proximity matrix would work well at reconstructing viral flow. The authors could compare the correlation of spatial, spatial proximity, and CDR data.

    1. Reviewer #1 (Public Review):

      Summary:

      The presented study focuses on the role of formin-like 2 (FMNL2) in oocyte meiosis. The authors assessed FMNL2 expression and localization in different meiotic stages and subsequently, by using siRNA, investigated the role of FMNL2 in spindle migration, polar body extrusion, and distribution of mitochondria and endoplasmic reticulum (ER) in mouse oocytes.

      Strengths:

      Novelty in assessing the role of formin-like 2 in oocyte meiosis

      Weaknesses:

      Overstating some of the presented data

      Unconvincing analysis of the endoplasmic reticulum and mitochondria distribution

      The authors addressed all my comments. The section materials and methods was improved. However, some statements still need to be clarified, as they seem to be overstated. I'm still not convinced about the main findings. For example, the analysis of ER and mitochondria distribution was based on a subjective assessment of clustering in meiosis I oocytes, and it's missing objective parameters and timing of the analysis.

      Comments on revised version:

      The authors addressed all my comments. The section materials and methods was improved. However, some statements still need to be clarified, as they seem to be overstated.

    2. Reviewer #2 (Public Review):

      Summary:

      This research involves conducting experiments to determine the role of Fmnl2 during oocyte meiosis I.

      Strengths:

      Identifying the role of Fmnl2 during oocyte meiosis I is significant.

      Weaknesses:

      The quantitative analysis and the used approach to perturb FMNL2 function would benefit from more confirmatory approaches and rigorous analysis.

      Comments on revised version:

      The authors addressed most of my comments. However, some comments were not addressed convincingly.

      My concern is still valid. The authors used only one approach to knockdown FMNL2 which is "siRNA-mediated knockdown". Using an additional approach to inhibit FMNL2 (Trim-Away or morpholino,..) would be beneficial to confirm that the effect of siRNA-mediated knockdown of FMNL2 is specific.

      Response 1: In the author's response, they mentioned that successful migration was quantified based on the contact between the spindle pole and the oocyte cortex.<br /> After spindle migration, it is very common for the spindle to be close to (but not in contact with) the cortex for a considerable time. The spindle pole comes in contact with the cortex later (just before anaphase onset and polar body extrusion). Fig. 3A shows an example where at 9 h, the spindle is already migrated but did not come in contact with the cortex until 9:30 h. Based on Fig. 3B,C, the authors assessed spindle migration in fixed oocytes, making it impossible to fix all oocytes at the time of spindle contact with the cortex. Also,<br /> the representative images in Fig. 3C do not show spindle staining to assess the contact between the spindle and the cortex.<br /> Overall, I still believe that the distance between the spindle and the cortex is more accurate for quantifying spindle migration.

      Response 2: The authors mentioned, "we made appropriate modifications to the relevant descriptions of immunoprecipitation experiments". I can't find these modifications in the manuscript. The authors need to state clearly that the immunoprecipitation results do not necessarily reflect meiotic oocytes specifically because these experiments were done using the whole ovary which contains both somatic cells and oocytes.

      Response 5: The authors mentioned that "Based on our observations, during the extrusion of the first polar body in oocytes, there is a temporary occurrence of cellular morphological fragmentation due to cortical reorganization". Unfortunately, this means that the live imaging system in the authors' laboratory is not ideal for oocyte maturation. Several publications show normal oocyte morphology during cytokinesis. Please delete or replace Fig. 2E.

    1. Reviewer #1 (Public Review):

      Summary:

      HIV associated nephropathy (HIVAN) is a rapidly progressing form of kidney disease that manifests secondary to untreated HIV infection, and is predominantly seen in individuals of African descent. Tg26 mice carrying an HIV transgene lacking gag and pol exhibit high levels of albuminuria and rapid decline in renal function that recapitulates many features of HIVAN in humans. HIVAN is seen predominantly in individuals carrying two copies of missense variants in the APOL1 gene, and the authors have previously shown that APOL1 risk variant mRNA induces activity of the double strand RNA sensor kinase PKR. Because of the tight association between the APOL1 risk genotype and HIVAN, the authors hypothesized that PKR activation may mediate the renal injury in Tg26 mice, and tested this hypothesis by treating mice with a commonly used PKR inhibitory compound called C16. Treatment with C16 substantially attenuated renal damage in the Tg26 model as measured by urinary albumin/creatinine ratio, urinary NGAL/creatinine ratio and improvement in histology. The authors then performed bulk and single-nucleus RNAseq on kidneys from mice from different treatment groups to identify pathways and patterns of cell injury associated with HIV transgene expression as well as to determine the mechanistic basis for the effect of C16 treatment. They show that proximal tubule nuclei from Tg26 mice appear to have more mitochondrial transcripts which was reversed by C16 treatment and suggest that this may provide evidence of mitochondrial dysfunction in this model. They explore this hypothesis by showing there is a decrease in the expression of nuclear encoded genes and proteins involved in oxidative phosphorylation as well as a decrease in respiratory capacity via functional assessment of respiration in tubule and glomerular preparations from these mouse kidneys. All of these changes were reversed by C16 treatment. The authors propose the existence of a novel injured proximal tubule cell-type characterized by the leak of mitochondrial transcripts into the nucleus (PT-Mito). Analysis of HIV transgene expression showed high level expression in podocytes, consistent with the pronounced albuminuria that characterizes this model and HIVAN, but transcripts were also detected in tubular and endothelial cells. Because of the absence of mitochondrial transcripts in the podocytes, the authors speculate that glomerular mitochondrial dysfunction in this model is driven by damage to glomerular endothelial cells.

      Strengths:

      The strengths of this study include the comprehensive transcriptional analysis of the Tg26 model, including an evaluation of HIV transgene expression, which has not been previously reported. This data highlights that HIV transcripts are expressed in a subset of podocytes, consistent with the highly proteinuric disease seen in mouse and humans. However, transcripts were also seen in other tubular cells, notably intercalated cells, principal cells and injured proximal tubule cells. Though the podocyte expression makes sense, the relevance of the tubular expression to human disease is still an open question.

      The data in support of mitochondrial dysfunction are also robust and rely on combined evidence from downregulation of transcripts involved in oxidative phosphorylation, decreases in complex I and II as determined by immunoblot, and assessments of respiratory capacity in tubular and glomerular preparations. These data are largely consistent with other preclinical renal injury model reported in the literature as well as previous, less thorough assessments in the Tg26 model.

      Weaknesses:

      The key weakness of the study lies in the use of a PKR inhibitor with questionable specificity. C16 has been reported to inhibit numerous other kinases including cyclin CDKs and GSK3α and -β, and this means that the conclusions of this study with respect to the role of PKR are highly questionable. The rationale for the dose used was not provided (and is lower than used in other publications with C16), and in the absence of drug exposure data and assessment of target engagement, it is difficult to ascertain whether substantial inhibition of PKR was achieved.

      A second key weakness lies in the identification of the PT-Mito cell cluster. Though the authors provide some rationale for the identification of this specific cell type, it seems equally plausible the cells merely reflect a high background capture of mitochondria in a subset of droplets. The IHC analysis that was provided is not convincing enough to support the claim and more careful high resolution imaging and in situ hybridization (with appropriate quantitation) will be needed to provide substantive support for the presence of a proximal tubule cell type with mitochondrial transcript that are trafficked to the nucleus.

      Revision summary:

      The authors have revised the manuscript to acknowledge the potential limitations of the C16 tool compound used and have performed some additional analyses that suggest the PT-Mito population can be identified in samples from KPMP. The authors added some control images for the in situ hybridizations, which are helpful, though they don't get to the core issue of limited resolution to determine whether mitochondrial RNA is present in the nuclei of injured PT cells. Some additional work has been done to show that C16 treatment results in a decrease in phospho-PKR, a readout of PKR inhibition. These changes strengthen the manuscript by providing some evidence for the translatability of the PT-mito cluster to humans and some evidence for on-target activity for C16. It would be helpful if the authors could quantify the numbers of cells in IHC with nuclear transcripts as well as pointing out some specific examples in the images provided, as comparator data for the snRNAseq studies in which 3-6% of cortex cells had evidence of nuclear mitochondrial transcripts.

    2. Reviewer #2 (Public Review):

      Summary:

      Numerous studies by the authors and other groups have demonstrated an important role for HIV gene expression kidney cells in promoting progressive chronic kidney disease, especially HIV associated nephropathy. The authors had previously demonstrated a role for protein kinase R (PKR) in a non-HIV transgenic model of kidney disease (Okamoto, Commun Bio, 2021). In this study, the authors used innovative techniques including bulk and single nuclear RNAseq to demonstrate that mice expressing a replication-incompetent HIV transgene have prominent dysregulation of mitochondrial gene expression and activation of PKR and that treatment of these mice with a small molecule PKR inhibitor ameliorated the kidney disease phenotype in HIV-transgenic mice. They also identified STAT3 as a key upstream regulator of kidney injury in this model, which is consistent with previously published studies. Other important advances include identifying the kidney cell types that express the HIV transgene and have dysregulation of cellular pathways.

      Strengths:

      Major strengths of the study include the use of a wide variety of state-of-the-art molecular techniques to generate important new data on the pathogenesis of kidney injury in this commonly used model of kidney disease and the identification of PKR as a potential druggable target for the treatment of HIV-induced kidney disease. The authors also identify a potential novel cell type within the kidney characterized by high expression of mitochondrial genes.

      Weaknesses:

      Though the HIV-transgenic model used in these studies results in a phenotype that is very similar to HIV-associated nephropathy in humans, the model has several limitations that may prevent direct translation to human disease, including the fact that mice lack several genetic factors that are important contributors to HIV and kidney pathogenesis in humans. Additional studies are therefore needed to confirm these findings in human kidney disease.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring virulence-attenuating mutations in the key coding regions. They showed that intranasal inoculation with the candidate vaccine-induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the lungs and protected against a wild-type SARS-CoV-2 strain with D614G mutation and the latest Omicron subvariant (BA.5) strain. The neutralizing antibodies induced by BK2102 persisted for the long term (up to 364 days). Furthermore, they confirmed the safety of the proposed vaccine using transgenic (Tg) mice expressing human ACE2 (hACE2).

      Strengths:

      The authors followed a robust methodology to establish the proposed vaccine's protective effect and safety profile in the hamsters and transgenic mice expressing human ACE2.

      Weaknesses:

      (1) A comparative safety assessment of the available m-RNA and live attenuated vaccines will be necessary. The comparison should include details of the doses, neutralizing antibody titers with duration of protection, tissue damage in the various organs, and other risks, including virulence reversal.

      (2) The vaccine's effect on primates is doubtful. The study fails to explain why only two of four monkeys developed neutralizing antibodies. Information about the vaccine's testing in monkeys is also missing: What was the level of protection and duration of the persistence of neutralizing antibodies in monkeys? Were the tissue damages and other risks assessed?

      (3) The vaccine's safety in immunosuppressed individuals or individuals with chronic diseases should be assessed. Authors should make specific comments on this aspect.

      (4) The candidate vaccine has been tested with a limited number of SARS-CoV-2 strains. Of note, the latest Omicron variants have lesser virulence than many early variants, such as the alfa, beta, and delta strains.

      (5) Limitations of the study have not been discussed.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript "Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple attenuation mechanisms" by Suzuki-Okutani et al., the authors evaluate the attenuation, immunogenicity, and protection efficacy of a live-attenuated SARS-CoV-2 vaccine candidate (BK2102) against SARS-CoV-2.

      Strengths:

      The authors demonstrate that intranasal inoculation of BK2102 is safe and able to induce humoral and cellular immune responses in hamsters, without apparent signs of damage in the lungs, that protects against homologous SARS-CoV-2 and Omicron BA.5 challenge. Safety of BK2102 was further confirmed in a new hACE2 transgenic mouse model generated by the authors.

      Weaknesses:

      No major weaknesses were identified, however, this reviewer notes the following:

      The authors missed the opportunity to include a mRNA vaccine to demonstrate that the immunity and protection efficacy of their live attenuated vaccine BK2102 is better than a mRNA vaccine.

      One of the potential advantages of live-attenuated vaccines is their ability to induce mucosal immunity. It would be great if the authors included experiments to assess the mucosal immunity of their live-attenuated vaccine BK2102.

    3. Reviewer #3 (Public Review):

      Summary:

      Suzuki-Okutani and collogues reported a new live-attenuated SARS-CoV-2 vaccine (BK2102) containing multiple deletion/substitution mutations. They show that the vaccine candidate is highly attenuated and demonstrates a great safety profile in multiple animal models (hamsters and Tg-Mice). Importantly, their data show that single intranasal immunization with BK2102 leads to strong protection of hamsters against D614G and BA.5 challenge in both lungs and URT (nasal wash). Both humoral and cellular responses were induced, and neutralization activity remained for >360 after a single inoculation.

      Strengths:

      The manuscript describes a comprehensive study that evaluates the safety, immunogenicity, and efficacy of a new live-attenuated vaccine. Strengths of the study include (1) strong protection against immune evasive variant BA.5 in both lungs and NW; (2) durability of immunity for >360 days; (3) confirmation of URT protection through a transmission experiment.

      While first-generation COVID-19 vaccines have achieved much success, new vaccines that provide mucosal and durable protection remain needed. Thus, the study is significant.

      Weaknesses:

      Lack of a more detailed discussion of this new vaccine approach in the context of reported live-attenuated SARS-CoV-2 vaccines in terms of its advantages and/or weaknesses.

      Antibody endpoint titers could be presented.

      Lack of elaboration on immune mechanisms of protection at the upper respiratory tract (URT) against an immune evasive variant in the absence of detectable neutralizing antibodies.

    1. Reviewer #1 (Public Review):

      Overview:

      The authors construct a pair of E. coli populations that differ by a single gene duplication in a selectable fluorescent protein. They then evolve the two populations under differing selective regimes to assess whether the end result of the selective process is a "better" phenotype when starting with duplicated copies. Importantly, their starting duplicated population is structured to avoid the duplication-amplification process often seen in bacterial artificial evolution experiments. They find that while duplication increases robustness and speed of adaptation, it does not result in more highly adapted final states, in contrast to Ohno's hypothesis.

      Major comments:

      This is an excellent study with a very elegant experimental setup that allows a precise examination of the role of duplication in functional evolution, exclusive of other potential mechanisms. My main concern is to clarify some of the arguments relating to Ohno's hypothesis.

      I think my main confusion on first reading the manuscript was in the precise definition of Ohno's hypothesis. I think this confusion was mine and not the authors, but it is likely common and could be addressed.

      Most evolutionary biologists think of gene duplication as making neofunctionalization "easier" by providing functional redundancy and a larger mutational target, such that the evolutionary process of neofunctionalization is faster (as the authors observed). In this framework, the final evolved state might not differ when selection is applied to duplicated copies or a single-copy gene. Ohno's hypothesis, by contrast, argues that there generally exist adaptive conflicts between the ancestral function and the "desired" novel function, such that strong selection on a single-copy gene cannot produce the evolutionary optima that selection on two copies would. This idea is hinted at in the quotation from Ohno in paragraph 2 of the introduction. However, the sentences that follow I don't think reinforce this concept well enough and lead to some confusion.

      With that definition in mind, I agree with the authors' conclusion that these data do not support Ohno's hypothesis. My quibble would be that what is actually shown here is that adaptive conflict in function is not universal: there are cases where a single gene can be optimized for multiple functions just as well as duplicated copies. I do not think the authors have, however, refuted the possibility that such adaptive conflicts are nonetheless a significant barrier to evolutionary innovation in the absence of gene duplication generally. Perhaps just a sentence or two to this effect might be appropriate.

      I also think the authors need to clarify their approach to normalizing fluorescence between the two populations to control for the higher relative protein expression of the population with a duplicated gene. Since each population was independently selected with the highest fluorescing 60% (or less) of the cells selected, I think this normalization is appropriate. Of course, if the two populations were to compete against each other, this dosage advantage of the duplicates would itself be a selective benefit. Even as it is, the dosage advantage should be a source of purifying selection on the duplication, and perhaps this should be noted.

      Finally, I am slightly curious about the nature of the adaptations that are evolving. The authors primarily discuss a few amino-acid changing mutations that seem to fix early in the experiment. Looking at Figure 3, it however, appears that the populations are still evolving late in the experiment, and so presumably other changes are occurring later on. Do the authors believe that perhaps expression changes to increase protein levels are driving these later changes?

    2. Reviewer #2 (Public Review):

      Summary:

      Drawing from tools of synthetic biology, Mihajlovic et al. use a cleverly designed experimental system to dissect Ohno's hypothesis, which describes the evolution of functional novelty on the gene-level through the process of duplication & divergence.

      Ohno's original idea posits that the redundancy gained from having two copies of the same gene allows one of them to freely evolve a new function. To directly test this, the authors make use of a fluorescent protein with two emission maxima, which allows them to apply different selection regimes (e.g. selection for green AND blue, or, for green NOT blue). To achieve this feat without being distracted by more complex evolutionary dynamics caused by the frequent recombination between duplicates, the authors employ a well-controlled synthetic system to prevent recombination: Duplicates are placed on a plasmid as indirect repeats in a recombination-deficient strain of E.coli. The authors implement their directed evolution approach through in vitro mutagenesis and selection using fluorescent-activated cell sorting. Their in-depth analysis of evolved mutants in single-copy versus double-copy genotypes provides clear evidence for Ohno's postulate that redundant copies experience relaxed purifying selection. In contrast to Ohno's original postulate, however, the authors go on to show that this does not in fact lead to more rapid phenotypic evolution, but rather, the rapid inactivation of one of the copies.

      Strengths:

      This paper contributes with great experimental detail to an area where the literature predominantly leans on genomics data. Through the use of a carefully designed, well-controlled synthetic system the authors are able to directly determine the phenotype & genotype of all individuals in their evolving populations and compare differences between genotypes with a single or double copy of coGFP. With it they find clear evidence for what critics of Ohno's original model have termed "Ohno's dilemma", the rapid non-functionalization by predominantly deleterious mutations.

      Including an expressed but non-functional coGFP in (phenotypically) single copy genotypes provides an especially thoughtful control that allows determining a baseline dN/dS ratio in the absence of selection. All in all the study is an exciting example of how the clever use of synthetic biology can lead to new insights.

      Weaknesses:

      The major weakness of the study is tied to its biggest strength (as often in experimental biology there is a trade-off between 'resolution' and 'realism').

      The paper ignores an important component of the evolutionary process in favour of an in-depth characterization of how two vs one copy evolve. Specifically, by employing a recombination-deficient strain and constructing their duplicates as inverted repeats their experimental design completely abolishes recombination between the two copies.

      This is problematic for two reasons:

      i) In nature, new duplicates do not arise as inverted, but rather as direct (tandem) repeats and - as the authors correctly point out - these are very unstable, due to the fact that repeated DNA is prone to recA-dependent homologous recombination (which arise orders of magnitude more frequently than point mutations).

      ii) This instability often leads to further amplification of the duplicates under dosage selection both in the lab and in the wild (e.g. Andersson & Hughes, Annu. Rev. Genet. 2009), and would presumably also be an outcome under the current experimental set-up if it was not prevented from happening?

      So in sum, recombination between duplicate genes is not merely a nuisance in experiments, but occurring at extremely high frequencies in nature (such that the authors needed to devise a clever engineering solution to abolish it), and is often observed in evolving populations, be it in the laboratory or the wild.

      The manuscript sells controlling of copy number as a strength. And clearly, without it, the same insights could not be gained. However, if the basis for the very process of what Ohno's model describes is prevented from happening for the process to be studied, then, for reasons of clarity and context this needs pointing out, especially, to readers less familiar with the principles of molecular evolution.

      Connected to this, there are several places in the introduction and the discussion where I feel that the existing literature, in particular models put forward since Ohno that invoke dosage selection (such as IAD) end up being slightly misrepresented.

      My point is best exemplified in line 1 of Discussion: "To test Ohno's hypothesis and to distinguish its predictions from those of competing hypotheses, it is necessary to maintain a constant and stable copy number of duplicated genes during experimental evolution."

      I think this statement is simply not true and might be misleading. To take the exaggerated position of a devil's advocate, the goal of evolutionary biology should be to find out how evolution actually proceeds in nature most of the time, rather than creating laboratory systems that manage to recapitulate influential ideas.

      While fixing copy number may be a necessary step to understand how one copy evolves if a second one is present, it seems that if Ohno's hypothesis only works out in recA-deficient bacterial strains and on engineered inverted repeats, that Ohno might have missed one crucial aspect of how paralogs evolve. The mentioned competing hypotheses have been put forward to (a) address Ohno's dilemma (which the present study beautifully demonstrates exists under their experimental conditions) and (b) to reflect a commonly observed evolutionary process in bacteria (dosage gain in response to selection, e.g. a classic way of gaining antibiotic resistance). Fixing the copy number allowed the authors to show which predictions of Ohno's model hold up and which don't (under these specific conditions). But they do so without even preventing the processes described by alternative models from happening, so the experimental system is hardly appropriate to distinguish between Ohno & alternatives. Therefore, I think it could be made clearer that the experimental system is great to look at certain aspects Ohno's hypothesis in detail, but it can only inform us about a universe without recombination.

      (1) Citing the works by ref 8, 26, 27 to merely state that "in some copies were gained and some were lost (ref 6, ref 25)" makes it seem as if fixing at 2 copies is some sort of sensible average. Yet ref 6 (Dhar et al.) specifically states that dosage is the most important response. Moreover, in this study gene copies are lost, but plasmid copies are gained instead. In Holloway et al. 2007 (ref 25), the 2 copies resided on different plasmids, so entirely different underlying molecular genetics might be at work (high cost of plasmid maintenance, and competitive binding on both proteins onto the respective (off)-target, where either way selection favored a single copy, so a different situation altogether). In both cited studies, fixing the copy would have prohibited learning something about the process of duplication & divergence.

      Hence this statement seems to distract the readers from the main message, which seems that preventing recombination experimentally allows to follow the divergence of each copy and studying a response that does not involve dosage-increase.

      (2) "These studies highlighted the importance of gene duplication in providing fast adaptation under changing environmental conditions but they focused on the importance of gene dosage." I think this constructs a false dichotomy. Instead, these studies pointed out that dosage (and with it, selection for dosage) is an important part of the equation that might have been missed by Ohno.

      (3) "Such models are also easier to test experimentally, because they do not require precise control of gene copy number. The necessary tests can even benefit from massive gene amplifications8. Although Ohno's hypothesis is more difficult to test experimentally (...)" - again, I feel the wording is slightly misleading. The point is not that IAD is easier to test and Ohno's model is harder to test in laboratory experiments, rather, experiments (and some more limited observations of naturally evolving populations) seem to suggest that in reality evolution proceeds (more often?) according to IAD rather than Ohno's neofunctionalization hypothesis. However, as the authors point out, it will be exciting to see their clever experimental system used to test other genes and conditions to get a more comprehensive understanding of what gene- and selection- parameter values would overcome Ohno's dilemma.

    1. Reviewer #1 (Public Review):

      In their manuscript "Spindle assembly checkpoint-dependent mitotic delay is required for cell division in absence of centrosomes," Farrell and colleagues employ carefully chosen approaches to assay mitotic timeliness in the absence of centrosomes in mammalian culture cells, namely the mechanism behind it and its function. The authors acknowledge prior work well and present their data succinctly, clearly, and with a clear logical flow of experiments. The experiments are thoughtfully designed and presented, with appropriate controls in place.

      The authors' model whereby centrosome separation and its early definition of poles mediates timely mitosis without relying on a SAC-dependent delay is compelling, and the authors' data are consistent with it. They show using two different MPS1 inhibitors that acentrosomal cell division fails, supporting their claims that a SAC-dependent delay is required in these instances. Furthermore, they show that reintroducing a time delay is sufficient to restore cell division, but inhibiting a different aspect of SAC function does not restore cell division. Next, the authors rule out polyploidy as a potential confounding factor for requiring a SAC-dependent delay, and instead demonstrate that inhibiting centrosome separation by Eg5 inhibition is sufficient to require this delay for mitotic progression. The authors' findings overall support their proposed model.

      Probing what aspects of centrosomes protect against a requirement for SAC-dependent delays would strengthen the work and specifically the conclusion that centrosomes provide "two-ness". For example, the authors could examine division in a population of cells with only one centrosome. Seeing some restoration of mitotic progression in the absence of SAC-dependent delays would suggest that even one centrosome with uninhibited Eg5 is sufficient to negate SAC-dependent delays, and would limit models for what exactly centrosomes contribute. This would help disentangle the roles of actual centrosomes and their biochemical cues, Eg5-driven centrosome separation, and early definition of poles on mitotic progression in the absence of SAC-dependent delays. Making a high fraction of cells with one centrosome could be achieved by using centrinone for a shorter time.

      Comments on revised version:

      The main point from the initial review does not appear to be addressed in the revised version. As such, the comments on the revised version remain the same.

    2. Reviewer #2 (Public Review):

      Centrosomes are an integral part of cell division in most animal cells. There are notable exceptions, however, such as oocytes and plants. In addition, some animal cells can be engineered to lack centrosomes yet they can still manage to complete mitosis. This paper uses a couple of methods (PLK4 inhibition and deletion of SASS6) to remove centrosomes from an immortalized cell line. Indeed, a strength of the paper is that similar results are obtained using both protocols to generate acentrosomal cells. The authors find acentrosomal cells take longer to divide, mostly due to a longer metaphase. The paper is based on the finding that inhibition of MPS1 results in a failure to divide, and the hypothesis that a SAC - dependent delay is required for these acentrosomal cells to divide.

      The finding that MPS1 inhibition results in a failure to division is interesting. This is investigated by analyzing cells where AurB, APC or Eg5 (to generate monastral spindles) have been inhibited. My concerns are that the results are not conclusive that the effect of MPS1 is on cell cycle regulation. There is not enough data to make a conclusion as to why inhibition of MPS1 results in cell division failure.

      1) An example is how to interpret the effect of Aurora B inhibition, which does not block acentrosomal cell division. If Aurora B is required for SAC activity, it suggests this effect of MPS1 may be a function other than SAC. Given the complexity of the SAC, it would be informative to test other SAC components. Instead, the authors conclude that the mitotic delay caused by MPS is required for acentrosomal cell division. I don't think they have ruled out, or even addressed other functions of MPS1.

      2) The authors find that when both the APC and MPS1 are inhibited, the cells eventually divide. These results are intriguing, but hard to interpret. The authors suggest that the failure to divide in MPS1-inhibited cells is because they enter anaphase, and then must back out. This is hard to understand and there is not data supporting some kind of aborted anaphase. Is the division observed with double inhibition some sort of bypass of the block caused by MPS1 inhibition alone? It is not clear why inhibition of APC causes increased cell division when MPS1 is inhibited.

      3) The authors characterize MTOC formation in these cells, which is also interesting. MTOCs are established after NEB in acentrosomal cells. Indeed, forming these MTOCs is probably a key mechanism for how these cells complete a division, like mouse oocytes.

      Following this, the results with inhibiting Eg5 are interesting. The double inhibition of MPS1 and Eg5 results in division failure, like MPS1 inhibition in acentrosomal cells. Thus, there is a cell division block when the centrioles fail to divide. This result raises the possibility that failure to make a bipolar spindle, or the presence of a monopolar spindle, is the problem. In the absence of a bipolar spindle, a SAC induced delay is required for spindle assembly. This is a possibility but there are multiple interpretations of these results. Primarily, these results do not show the MPS1 effect on acentrosomal cells is SAC related. That a SAC mediated delay is required for acentrosmomal spindle assembly is not the only conclusion.

      Comments on revised version:

      It appears that very few changes have been made. These are all suggestions in the writing and interpretation.

      It's disappointing the most of the readouts are cell division success. There is a lack of data about what happens in the MPS1 knockdowns, such as microtubule attachment to KTs and localization/ activity of checkpoint proteins or downstream factors. More mechanistic insights may be found by testing other checkpoint proteins or assaying more metrics for spindle assembly and cell cycle progression. Or if inducing cell cycle delay suppresses the MPS1 effect. These experiments would implicate cell cycle factors as being required for acentrosomal spindle assembly while ruling out a requirement for MPS1 in spindle assembly.

      The paper is well written. But some of the terminology could be improved and some descriptions of the cytology are confusing. Some clear definitions of terms may help. The authors refer to an "extended mitosis" (line 73) and then "exit in the absence of cell division" (line 96) when MPS1 is inhibited. Both are misleading and don't tell the full story. These cells attempt to divide and then fail, resulting in one cell. Use of terms like "spread back out", "rounding up", and "sitting down" seems like jargon and should at least be defined. The term "timely two-ness" (line 23-24) is also not helpful. A brief discussion of data on MPS1 function in mouse and fly acentrosomal meiosis might be appropriate. A comparison would be interesting since loss of MPS1 in acentrosomal oocytes does not have such a drastic block in cell division.

    1. Reviewer #3 (Public Review):

      Summary:

      Day et al. introduced high-throughput expansion microscopy (HiExM), a method facilitating the simultaneous adaptation of expansion microscopy for cells cultured in a 96-well plate format. The distinctive features of this method include 1) the use of a specialized device for delivering a minimal amount (~230 nL) of gel solution to each well of a conventional 96-well plate, and 2) the application of the photochemical initiator, Irgacure 2959, to successfully form and expand the toroidal gel within each well.

      Strengths:

      This configuration eliminates the need for transferring gels to other dishes or wells, thereby enhancing the throughput and reproducibility of parallel expansion microscopy. This methodological uniqueness indicates the applicability of HiExM in detecting subtle cellular changes on a large scale.

      Weaknesses:

      To demonstrate the potential utility of HiExM in cell phenotyping, drug studies, and toxicology investigations, the authors treated hiPS-derived cardiomyocytes with a low dose of doxycycline (dox) and quantitatively assessed changes in nuclear morphology. However, this reviewer is not fully convinced of the validity of this specific application. Furthermore, some data about the effect of expansion require reconsideration.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful, and the data generally support the conclusions.

      Strengths:

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.

      Weaknesses:

      (1) Based on the exceedingly small volume of solution used to form the hydrogel in the well, there may be many unexpanded cells in the well and possibly underneath the expanded hydrogel at the end of this. How would this affect the image acquisition, analysis, and interpretation of HiExM data?

      (2) It is unclear why the expansion factor is so variable between plates (e.g., Figure 2H). This should be discussed in more detail.

      (3) The authors claim that CF dyes are more resistant to bleaching than other dyes. However, in Figure. S3, it appears that half of the CF dyes tested still show bleaching, and no data is shown supporting the claim that Alexa dyes bleach. It would be helpful to include data supporting the claim that Alexa dyes bleach more than CF dyes and the claim that CF dyes in general are resistant to bleaching should be modified to more accurately reflect the data shown.

      (4) Related to the above point, it appears that Figure S11 may be missing the figure legend. This makes it hard to understand how HiExM can use other photo-inducible polymerization methods and dyes other than CF dyes.

      (5) The use of automated high-content imaging is impressive. However, it is unclear to me how the increased search space across the extended planar area and focal depths in expanded samples is overcome. It would be helpful to explain this automated imaging strategy in more detail.

      (6) The general method of imaging pre- and post-expansion is not entirely clear to me. For example, on page 5 the authors state that pre-expansion imaging was done at the center of each gel. Is pre-expansion imaging done after the initial gel polymerization? If so, this would assume that the gelation itself has no effect on cell size and shape if these gelled but not yet expanded cells are used as the reference for calculating expansion factor and isotropy.

      (7) In the dox experiments, are only 4 expanded nuclei analyzed? It is unclear in the Figure 3 legend what the replicates are because for the unexpanded cells, it says the number of nuclei but for expanded it only says n=4. If only 4 nuclei are analyzed, this does not play to the strengths of HiExM by having high throughput.

      (8) I am not sure if the analysis of dox-treated cells is accurate for the overall phenotype because only a single slice at the midplane is analyzed. It would be helpful to show, at least in one or two example cases, that this trend of changing edge intensity occurs across the whole 3D nucleus.

      (9) It would be helpful to provide an actual benchmark of imaging speed or throughput to support the claims on page 8 that HiExM can be combined with autonomous imaging to capture thousands of cells a day. What is the highest throughput you have achieved so far?

    3. Reviewer #2 (Public Review):

      Summary:

      In the present work, the authors present an engineering solution to sample preparation in 96-well plates for high-throughput super-resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit the expansion of the gel. A device was engineered that can spot a small droplet of hydrogel solution and keep it in place as it polymerizes. It occupies only a small portion of space at the center of each well, the gel can expand into all directions, and imaging and staining can proceed by liquid handling robots and an automated microscope.

      Strengths:

      In contrast to Reference 8, the authors' system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high-throughput exM and high-throughout super-resolution microscopy, which is a timely and important goal.

      Weaknesses:

      The assay they chose to demonstrate what high-throughput ExM could be useful for, is not very convincing. But for this reviewer that is not important.

    1. Reviewer #1 (Public Review):

      Summary:

      Zanetti et al. use biophysical and cellular assays to investigate the interaction of the birnavirus VP3 protein with the early endosome lipid PI3P. The major novel finding is that the association of the VP3 protein with an anionic lipid (PI3P) appears to be important for viral replication, as evidenced through a cellular assay on FFUs.

      Strengths:

      Supports previously published claims that VP3 may associate with early endosomes and bind to PI3P-containing membranes. The claim that mutating a single residue (R200) critically affects early endosome binding and that the same mutation also inhibits viral replication suggests a very important role for this binding in the viral life cycle.

      Weaknesses:

      The manuscript is relatively narrowly focused: one bimolecular interaction between a host cell lipid and one protein of an unusual avian virus (VP3-PI3P). Aspects of this interaction have been described previously. Additional data would strengthen claims about the specificity and some technical issues should be addressed. Many of the core claims would benefit from additional experimental support to improve consistency.

    2. Reviewer #2 (Public Review):

      Summary:

      Birnavirus replication factories form alongside early endosomes (EEs) in the host cell cytoplasm. Previous work from the Delgui lab has shown that the VP3 protein of the birnavirus strain infectious bursal disease virus (IBDV) interacts with phosphatidylinositol-3-phosphate (PI3P) within the EE membrane (Gimenez et al., 2018, 2020). Here, Zanetti et al. extend this previous work by biochemically mapping the specific determinants within IBDV VP3 that are required for PI3P binding in vitro, and they employ in silico simulations to propose a biophysical model for VP3-PI3P interactions.

      Strengths:

      The manuscript is generally well-written, and much of the data is rigorous and solid. The results provide deep knowledge into how birnaviruses might nucleate factories in association with EEs. The combination of approaches (biochemical, imaging, and computational) employed to investigate VP3-PI3P interactions is deemed a strength.

      Weaknesses:

      (1) Concerns about the sources, sizes, and amounts of recombinant proteins used for co-flotation: Figures 1A, 1B, 1G, and 4A show the results of co-flotation experiments in which recombinant proteins (control His-FYVE v. either full length or mutant His VP3) were either found to be associated with membranes (top) or non-associated (bottom). However, in some experiments, the total amounts of protein in the top + bottom fractions do not appear to be consistent in control v. experimental conditions. For instance, the Figure 4A western blot of His-2xFYVE following co-flotation with PI3P+ membranes shows almost no detectable protein in either top or bottom fractions. Reading the paper, it was difficult to understand which source of protein was used for each experiment (i.e., E. coli or baculovirus-expressed), and this information is contradicted in several places (see lines 358-359 v. 383-384). Also, both the control protein and the His-VP3-FL proteins show up as several bands in the western blots, but they don't appear to be consistent with the sizes of the proteins stated on lines 383-384. For example, line 383 states that His-VP3-FL is ~43 kDa, but the blots show triplet bands that are all below the 35 kDa marker (Figures 1B and 1G). Mass spectrometry information is shown in the supplemental data (describing the different bands for His-VP3-FL) but this is not mentioned in the actual manuscript, causing confusion. Finally, the results appear to differ throughout the paper (see Figures 1B v. 1G and 1A v. 4A).

      (2) Possible "other" effects of the R200D mutation on the VP3 protein. The authors performed mutagenesis to identify which residues within patch 2 on VP3 are important for association with PI3P. They found that a VP3 mutant with an engineered R200D change (i) did not associate with PI3P membranes in co-floatation assays, and (ii) did not co-localize with EE markers in transfected cells. Moreover, this mutation resulted in the loss of IBDV viability in reverse genetics studies. The authors interpret these results to indicate that this residue is important for "mediating VP3-PI3P interaction" (line 211) and that this interaction is essential for viral replication. However, it seems possible that this mutation abrogated other aspects of VP3 function (e.g., dimerization or other protein/RNA interactions) aside from or in addition to PI3P binding. Such possibilities are not mentioned by the authors.

      (3) Interpretations from computational simulations. The authors performed computational simulations on the VP3 structure to infer how the protein might interact with membranes. Such computational approaches are powerful hypothesis-generating tools. However, additional biochemical evidence beyond what is presented would be required to support the authors' claims that they "unveiled a two-stage modular mechanism" for VP3-PI3P interactions (see lines 55-59). Moreover, given the biochemical data presented for R200D VP3, it was surprising that the authors did not perform computational simulations on this mutant. The inclusion of such an experiment would help tie together the in vitro and in silico data and strengthen the manuscript.

    3. Reviewer #3 (Public Review):

      Summary:

      infectious bursal disease virus (IBDV) is a birnavirus and an important avian pathogen. Interestingly, IBDV appears to be a unique dsRNA virus that uses early endosomes for RNA replication that is more common for +ssRNA viruses such as for example SARS-CoV-2.

      This work builds on previous studies showing that IBDV VP3 interacts with PIP3 during virus replication. The authors provide further biophysical evidence for the interaction and map the interacting domain on VP3.

      Strengths:

      Detailed characterization of the interaction between VP3 and PIP3 identified R200D mutation as critical for the interaction. Cryo-EM data show that VP3 leads to membrane deformation.

      Weaknesses:

      The work does not directly show that the identified R200 residues are directly involved in VP3-early endosome recruitment during infection. The majority of work is done with transfected VP3 protein (or in vitro) and not in virus-infected cells.

      Additional controls such as the use of PIP3 antagonizing drugs in infected cells together with a colocalization study of VP3 with early endosomes would strengthen the study.

      In addition, it would be advisable to include a control for cryo-EM using liposomes that do not contain PIP3 but are incubated with HIS-VP3-FL. This would allow ruling out any unspecific binding that might not be detected on WB.

      The authors also do not propose how their findings could be translated into drug development that could be applied to protect poultry during an outbreak. The title of the manuscript is broad and would improve with rewording so that it captures what the authors achieved.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an important work showing that loss of LRRK function causes late-onset dopaminergic neurodegeneration in a cell-autonomous manner. One of the LRRK members, LRRK2, is of significant translational importance as mutations in LRRK2 cause late-onset autosomal dominant Parkinson's disease (PD). While many in the field assume that LRRK2 mutant causes PD via increased LRRK2 activity (i.e., kinase activity), it is not a settled issue as not all disease-causing mutant LRRK2 exhibits increased activity. Further, while LRRK2 inhibitors are under clinical trials for PD, the consequence of chronic, long-term LRRK2 inhibition is unknown. Thus, studies evaluating the long-term impact of LRRK deficit have important translational implications. Moreover, because LRRK proteins, particularly LRRK2, are known to modulate immune response and intracellular membrane trafficking, the study's results and the reagents will be valuable for others interested in LRRK function.

      Strengths:

      This report describes a mouse model where LRRK1 and LRRK2 genes are conditionally deleted in dopaminergic neurons. Previously, this group showed that while loss of LRRK2 expression does not cause brain phenotype, loss of both LRRK1 and LRRK2 causes a later onset, progressive degeneration of catecholaminergic neurons, dopaminergic (DAergic) neurons in the substantia nigra (SN) and noradrenergic neurons in the Locus Coeruleus (LC). However, because LRRK genes are widely expressed with some peripheral phenotypes, it was unknown if the neurodegeneration in LRRK double Knock Out (DKO) was cell autonomous. To rigorously test this question, the authors generated a double conditional KO allele where both LRRK1 and LRRK2 genes were targeted to contain loxP sites. This was beyond what is usually required as most investigators might just have combined one KO allele with another floxed allele. The authors provide a rigorous validation showing that the Driver (DAT-Cre) is expressed in most DAergic neurons in SN and that LRRK levels are decreased selectively in the ventral midbrain. Using these mice, the authors show that the number of DA neurons is average at 15 but significantly decreased at 20 months of age. Moreover, the authors show that the number of apoptotic neurons is increased by ~2X in aged SN, demonstrating increased ongoing cell death and activated microglia. The degeneration is limited to DA neurons as LC neurons are not lost, and this population does not express DAT. Overall, the mouse genetics and experimental analysis were performed rigorously, and the results were statistically sound and compelling.

      Weakness:

      I only have a few minor comments. First, in PD and other degenerative conditions, axon and terminal loss occur prior to cell bodies. It might be beneficial to show the status of DAergic markers in the striatum. Second, previous studies indicate that very little, if any, LRRK1 is expressed in SN DAergic neurons. This also the case with the Allen Brain Atlas profile. Thus, the authors should discuss the discrepancy, as they imply significant LRRK1 expression in DA neurons.

      Revision:

      I appreciate the authors revising the manuscript with additional data that have clarified my prior comments. They now show that TH levels in the striatum decrease with SNpc neurons. Further, while there is some disagreement regarding the expression LRRK1 in SNpc, the authors provide a convincing case that LRRK1 function is important in SNpc DA neurons.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Shen and collaborators described the generation of conditional double knockout (cDKO) mice lacking LRRK1 and LRRK2 selectively in DAT-positive dopaminergic neurons. The Authors asked whether selective deletion of both LRRK isoforms could lead to a Parkinsonian phenotype, as previously reported by the same group in germline double LRRK1 and LRRK2 knockout mice (PMID: 29056298). Indeed, cDKO mice developed a late reduction of TH+ neurons in SNpc that partially correlated with the reduction of NeuN+ cells. This was associated with increased apoptotic cell and microglial cell numbers in SNpc. Unlike the constitutive DKO mice described earlier, cDKO mice did not replicate the dramatic increase in autophagic vacuole numbers. The study supports the authors' hypothesis that loss of function rather than gain of function of LRRK2 leads to Parkinson's Disease.

      Strengths:

      For the first time, the study described a model in which both the Parkinson's disease-associated gene LRRK2 and its homolog LRRK1 are deleted selectively in dopaminergic neurons. This offers a new tool to understand the physiopathological role of LRRK2 and the compensating role of LRRK1 in modulating dopaminergic cell function.

      Weaknesses:

      The model has no construct validity since loss of function mutations of LRRK2 are well tolerated in humans and do not lead to Parkinson's disease. The evidence of a Parkinsonian phenotype in these conditional knockout mice is limited and should be considered preliminary.

    3. Reviewer #3 (Public Review):

      Kang, Huang, and colleagues have provided new data to address concerns regarding confirmation of LRRK1 and LRRK2 deletion in their mouse model and the functional impact of the modest loss of TH+ neurons observed in the substantia nigra of their double KO mice. In the revised manuscript, the new data around the characterization of the germline-deleted LRRK1 and LRRK2 mice add confidence that LRRK1 and LRRK2 can be deleted using the genetic approach. They have also added new text to the discussion to try and address some of the comments and questions raised regarding how LRRK1/2 loss may impact cell survival and the implications of this work for PD-linked variants in LRRK2 and therapeutic approaches targeting LRRK2. The new data provides additional support for the author's claims.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors present a detailed study of a nearly complete Entomophthora muscae genome assembly and annotation, along with comparative analyses among related and non-related entomopathogenic fungi. The genome is one of the largest fungal genomes sequenced, and the authors document the proliferation and evolution of transposons and presence/absence of related genetic machinery to explore how this may have occurred. There has also been an expansion in gene number, which appears to contain many "novel" genes unique to E. muscae. Functionally, the authors were interested in CAZymes, proteases, circadian clock related genes (due to entomopathogenicity/ host manipulation), other insect pathogen specific genes, and secondary metabolites. There are many interesting findings including expansions in trahalases, unique insulinase and another peptidase, and some evidence for RIP in Entomophthoralean fungi. The authors performed a separate study examining E. muscae species complex and related strains. Specifically, morphological traits were measured for strains and then compared to the 28S+ITS-based phylogeny, showing little informativeness of these morpho characters with high levels of overlap.

      This work represents a big leap forward in genomics of non-Dikarya fungi and large fungal genomes. Most of the gene homologs have been studied in species that diverged hundreds of millions of years ago, and therefore using standard comparative genomic approaches are not trivial and still relatively little is known. This paper provides many new hypotheses and potential avenues of research about fungal genome size expansion, entomopathogenesis in zygomycetes, and cellular functions like RIP and circadian mechanisms.

      Strengths:

      There are many strengths to this study. It represents a massive amount of work and a very thorough functional analysis of the gene content in these fungi (which are largely unsequenced and definitely understudied). Too often comparative genomic work will focus on one aspect and leave the reader wondering about all the other ways genome(s) are unique or different from others. This study really dove in and explored the relevant aspects of the E. muscae genome.

      The authors used both a priori and emergent properties to shape their analyses (by searching for specific genes of interest and by analyzing genes underrepresented, expanded, or unique to their chosen taxa), enabling a detailed review of the genomic architecture and content. Specifically, I'm impressed by the analysis of missing genes (pFAMs) in E. muscae, none of which are enriched in relatives, suggesting this fungus is really different not by gene loss, but by its gene expansions.

      Analyzing species-level boundaries and the data underlying those (genetic or morphological) is not something frequently presented in comparative genomic studies, however, here it is a welcome addition as the target species of the study is part of a species complex where morphology can be misleading and genetic data is infrequently collected in conjunction with the morphological data.

      Weaknesses:

      The conclusions of this paper are well supported, and I think the clarifications and improvements made to the manuscript in the revision process have greatly improved the paper.

    1. Reviewer #2 (Public Review):

      Summary:

      This study reveals that short-term social isolation increases social behavior at a reunion, and a population of hypothalamic preoptic area neurons become active after social interaction following short-term isolation (POAiso neurons). Effectively utilizing a TRAP activity-dependent labeling method, the authors inhibit or activate the POAiso neurons and find that these neurons are involved in controlling various social behaviors, including ultrasonic vocalization, investigation, and mounting in both male and female mice. This work suggests a complex role for the POA in regulating multiple aspects of social behavior, beyond solely controlling male sexual behaviors.

      Strengths:

      A few studies have shown that optogenetic activation of the POA in females promotes vocalization and mounting behavior, similar to the effects observed in males. However, those were the results of artificially stimulating POA neurons, and it was unknown whether POA neurons play a role in naturally occurring female social behaviors. This paper clearly demonstrates that there exists a population of POA neurons that are necessary for naturally evoked female social vocalizations and mounting behaviors.

      Weaknesses:

      The authors conclude that "In the current study, we identify and characterize a population of preoptic hypothalamic neurons that contribute to the effects of short-term social isolation on the social behaviors of mice." This is an interesting hypothesis, but in my opinion, critical control experiments are missing to support this claim.

      All the activity-dependent labeling experiments with TRAP mice, including the subsequent neural activity manipulation experiments (Figures 2, 3, 4, 5E-F), were conducted by labeling neurons only in socially isolated animals, not group-housed animals. The authors labeled neurons after 30-minute social interactions, raising the possibility that the labeled neurons simply represent a "social interaction/behavior population" (mediating mounting and USVs in females and males) rather than a set of neurons specific to social isolation.

      I strongly recommend including experimental groups that involve labeling neurons after 30-minute social interactions in group-housed female or male mice and inhibit TRAPed neurons after social isolation or activate TRAPed neurons after group housing. If manipulating the group-housed TRAP neurons has similar effects to manipulating the isolated TRAP neurons, it would suggest the current labeling paradigm is not isolating neurons specific to the effect of social isolation per se. Rather, the neurons may mediate more general social interaction or motivation-related activities. Given the known role of POA in male mating behavior, a group-housed TRAP experiment in males with a female visitor is especially important for understanding the selectivity of the labeled cells.

      Without proper controls, referring to the labeled neurons as "POAiso" neurons is potentially misleading. The data thus far suggests these neurons may predominantly reflect a "POA social behavior" population rather than a set of cells distinctly responsive to isolated housing.

      Overall, this paper is well-written and provides valuable new data on the neural circuit for female social behaviors and the potentially complex role of POA in social behavior control.

    2. Reviewer #1 (Public Review):

      Summary:

      Zhao et al. perform a series of experiments aimed at identifying the role of the preoptic area (POA) in controlling the impact of social isolation on same-sex female social behavior. They focus their manuscript on the effects of short-term (3d) isolation and females, both of which have been relatively understudied, making the overall topic of the manuscript exciting and important.

      Strengths:

      The work highlighted is well designed, the experiments original, and the manuscript is elegant and clearly written. The strengths of the manuscript lie in the attention to multiple facets of social behavior (investigation, mounting, USVs), sex differences, and the use of multiple loss- and gain-of-function approaches.

      Weaknesses:

      The main weaknesses of the paper are a lack of significance in key findings, and relatedly, concluding effects from insignificant findings. Additional elements could be improved to help strengthen this overall well-rounded and intriguing set of results.

    3. Reviewer #3 (Public Review):

      Summary:

      How short-term isolation acts on the brain to promote social behavior remains incompletely understood. The authors found that social interactions after a period of acute isolation increased investigation promoted mounting, and increased the production of ultrasonic vocalizations (USVs). This was true for females during same-sex interactions as well as for males interacting with females. Concomitant with these increased behavioral readouts, cFos expression in the preoptic area of the hypothalamus (POA) was found to increase selectively in single-housed females. Chemogenetic silencing of these POA neurons attenuated all three behavioral measures in socially isolated females. Surprisingly, ablation of the same POA neurons decreased mounting duration without impacting social investigation or USV production. While optogenetic activation was sufficient to evoke USV production, it did not affect either mounting or social investigation. In males, chemogenetic silencing of POA neurons decreased mounting but not other behaviors. Together, these data point towards a role of POA neurons in mediating social behaviors after acute isolation but the exact nature of that control appears to depend on the choice of perturbation method, sex, and social context in complex ways that are hard to parse. This study is an essential first step; additional experiments will be needed to explain the apparent discrepancy between the various circuit perturbation results and to gain a more comprehensive understanding of the role of POA in social isolation.

      Strengths:

      The goal of understanding the neural circuit mechanisms underlying acute social isolation is clearly important and topical. Using a state-of-the-art technique to tag specific neurons that were active during certain behavioral epochs, the authors managed to identify the POA as a critical circuit locus for the effects of social isolation. The experimental design is perfectly reasonable and the quality of the data is good. The control experiments (Figures 2B-D) showing that chemogenetic inactivation of other hypothalamic regions (AH and VMH) do not affect social behavior is indeed quite satisfying and points towards a specific role of POA within the hypothalamus. Using a combination of behavioral assays, activity-dependent neural tagging, and circuit manipulation techniques, the authors present convincing evidence for the role of the preoptic area of the hypothalamus in mediating certain behaviors following social isolation. These data are likely to be a valuable resource for understanding how hypothalamic circuits adjust to the challenges of social isolation.

      Weaknesses:

      While the authors should be commended for performing and reporting multiple circuit perturbation experiments (e.g., chemogenetics, ablation), the conflicting effects on behavior are hard to interpret without additional experiments. For example, chemogenetic silencing of the POA neurons (using DREADDs) attenuated all three behavioral measures but the ablation of the same POA neurons (using CASPACE) decreased mounting duration without impacting social investigation or USV production. Similarly, optogenetic activation of POA neurons was sufficient to generate USV production as reported in earlier studies but mounting or social investigation remained unaffected. Do these discrepancies arise due to the efficiency differences between DREADD-mediated silencing vs. Casp3 ablation? Or does the chemogenetic result reflect off-manifold effects on downstream circuitry whereas a more permanent ablation strategy allows other brain regions to compensate due to redundancy? It is important to resolve whether these arise due to technical reasons or whether these reflect the underlying (perhaps messy) logic of neural circuitry. Therefore, while it is clear that POA neurons likely contribute to multiple behavioral readouts of social isolation, understanding their exact roles in any greater detail will require further experiments.

    1. Reviewer #2 (Public Review):

      The paper has two main merits. Firstly, it documents a new and important characteristic of the re-organization of the brains of the deaf, namely its variability. The search for a well-defined set of functions for the deprived auditory cortex of the deaf has been largely unsuccessful, with several task-based approaches failing to deliver unanimous results. Now, one can understand why this was the case: most likely there isn't a fixed one well-defined set of functions supported by an identical set of areas in every subject, but rather a variety of functions supported by various regions. In addition, the paper extends the authors' previous findings from blind subjects to the deaf population. It demonstrates that the heightened variability of connectivity in the deprived brain is not exclusive to blindness, but rather a general principle that applies to other forms of deprivation. On a more general level, this paper shows how sensory input is a driver of the brain's reproducible organization.

      The method and the statistics are sound, the figures are clear, and the paper is well-written. The sample size is impressively large for this kind of study.

      The main weakness of the paper is not a weakness, but rather a suggestion on how to provide a stronger basis for the authors' claims and conclusions. I believe this paper could be strengthened by including in the analysis at least one of the already published deaf/hearing resting-state fMRI datasets (e.g. Andin and Holmer, Bonna et al., Ding et al.) to see if the effects hold across different deaf populations. The addition of a second dataset could strengthen the evidence and convincingly resolve the issue of whether delayed sign language acquisition causes an increase in individual differences in functional connectivity to/from Broca's area. Currently, the authors may not have enough statistical power to support their findings.

      Secondly, the authors could more explicitly discuss the broad implications of what their results mean for our understanding of how the architecture of the brain is determined by the genetic blueprint vs. how it is determined by learning (page 9). There is currently a wave of strong evidence favoring a more "nativist" view of brain architecture, for example, face- and object- sensitive regions seem to be in place practically from birth (see e.g. Kosakowski et al., Current Biology, 2022). The current results show what is the role played by experience.

    2. Reviewer #1 (Public Review):

      This experiment sought to determine what effect congenital/early-onset hearing loss (and associated delay in language onset) has on the degree of inter-individual variability in functional connectivity to the auditory cortex. Looking at differences in variability rather than group differences in mean connectivity itself represents an interesting addition to the existing literature. The sample of deaf individuals was large, and quite homogeneous in terms of age of hearing loss onset, which are considerable strengths of the work. The experiment appears well conducted and the results are certainly of interest. I do have some concerns with the way that the project has been conceptualized, which I share below.

      The authors should provide careful working definitions of what exactly they think is occurring in the brain following sensory deprivation. Characterizing these changes as 'large-scale neural reorganization' and 'compensatory adaptation' gives the impression that the authors believe that there is good evidence in support of significant structural changes in the pathways between brain areas - a viewpoint that is not broadly supported (see Makin and Krakauer, 2023). The authors report changes in connectivity that amount to differences in coordinated patterns of BOLD signal across voxels in the brain; accordingly, their data could just as easily (and more parsimoniously) be explained by the unmasking of connections to the auditory cortex that are present in typically hearing individuals, but which are more obvious via MR in the absence of auditory inputs.

      I found the argument that the deaf use a single modality to compensate for hearing loss, and that this might predict a more confined pattern of differential connectivity than had been previously observed in the blind to be poorly grounded. The authors themselves suggest throughout that hearing loss, per se, is likely to be driving the differences observed between deaf and typically-hearing individuals; accordingly, the suggestion that the modality in which intentional behavioral compensation takes place would have such a large-scale effect on observed patterns of connectivity seems out of line.

      The analyses highlighting the areas observed to be differentially connected to the auditory cortex and areas observed to be more variable in their connectivity to the auditory cortex seem somewhat circular. If the authors propose hearing loss as a mechanism that drives this variability in connectivity, then it is reasonable to propose hypotheses about the directionality of these changes. One would anticipate this directionality to be common across participants and thus, these areas would emerge as the ones that are differently connected when compared to typically hearing folks.

      While the authors describe collecting data on the etiology of hearing loss, hearing thresholds, device use, and rehabilitative strategies, these data do not appear in the manuscript, nor do they appear to have been included in models during data analysis. Since many of these factors might reasonably explain differences in connectivity to the auditory cortex, this seems like an omission.

    3. Reviewer #3 (Public Review):

      Summary:

      This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      - The manuscript is well written.

      - The methods are clearly described and appropriate.

      - Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes.

      - The results are interesting and novel.

      Weaknesses:

      - Analyses were conducted for task-based data rather than resting-state data. It was unclear whether groups differed in task performance. If congenitally deaf individuals found the task more difficult this could lead to changes in FC.

      - No differences in overall activation between groups were reported. Activation differences between groups could lead to differences in FC. For example, lower activation may be associated with more noise in the data, which could translate to reduced FC.

      - Figure 2B shows higher FC for congenitally deaf individuals than normal-hearing individuals in the insula, supplementary motor area, and cingulate. These regions are all associated with task effort. If congenitally deaf individuals found the task harder (lower performance), then activation in these regions could be higher, in turn, leading to FC. A study using resting-state data could possibly have provided a clearer picture.

      - The correlation between the FC map and the FC variability map is 0.3. While significant using permutation testing, the correlation is low, and it is not clear how great the overlap is.

    1. Reviewer #1 (Public Review):

      Summary:

      Zheng and colleagues assessed the real-world efficacy of SARS-CoV-2 vaccination against re-infection following the large omicron wave in Shanghai in April 2022. The study was performed among previously vaccinated individuals. The study successfully documents a small but real added protective benefit of re-vaccination, though this diminishes in previously boosted individuals. Unsurprisingly, vaccine preventative efficacy was higher if the vaccine was given in the month before the 2nd large wave in Shanghai. The re-infection rate of 24% suggests that long-term anti-COVID immunity is very difficult to achieve. The conclusions are largely supported by the analyses. These results may be useful for planning the timing of subsequent vaccine rollouts.

      Strengths:

      The strengths of the study are a very large and unique cohort based on synchronously timed single infection among individuals with well-documented vaccine histories. Statistical analyses seem appropriate. As with any cohort study, there are potential confounders and the possibility of misclassification and the authors outline limitations nicely in the discussion.

      Weaknesses:

      (1) Partially and fully vaccinated are never defined and it is difficult to understand how this differs from single, and double, booster vaccines. The figures including all of these groups are a bit confusing for this reason.

      (2) Figure 3 is a bit challenging to interpret because it is a bit atypical to compare each group to a different baseline (ie 2V-I-V vs 2V-I). I would label the y-axis 2V-I-V vs 2V-I (change all of the labels) to make this easier to understand.

      (3) A 15% reduction in infection is quite low. It would be helpful to discuss if any quantitative or qualitative signals suggest at least a reduction in severe outcomes such as death, hospitalization, ER visits, or long COVID. I am not sure that a 15% reduction in cases supports extra vaccination without some other evidence of added benefit.

      (4) Why exclude the 74962 unvaccinated from the analysis. it would be interesting to see if getting vaccinated post-infection provides benefits to this group

      (5) Pudong should be defined for those who do not live in China.

      (6) The discussion about healthcare utilization bias is welcomed and well done. It would be great to speculate on whether this bias might favor the null or alternative hypothesis.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper evaluates the effect of COVID-19 booster vaccination on reinfection in Shanghai, China among individuals who received primary COVID-19 vaccination followed by initial infection, during an Omicron wave.

      Strengths:

      A large database is collated from electronic vaccination and infection records. Nearly 200,000 individuals are included in the analysis and 24% became reinfected.

      Weaknesses:

      The article is difficult to follow in terms of the objectives and individuals included in various analyses. There appear to be important gaps in the analysis. The electronic data are limited in their ability to draw causal conclusions.

      More detailed comments:

      In multiple places (abstract, introduction), the authors frame the work in terms of understanding the benefit of booster vaccination among individuals with hybrid immunity (vaccination + infection). However, their analysis population does not completely align with this framing. As best as I can tell, only individuals who first received COVID-19 vaccination, and subsequently experienced infection, were included. Why the analysis does not also consider individuals who were infected and then vaccinated is not clear.

      In vaccine effectiveness analyses, why was time since initial infection not examined as a modifier of the booster effect? Time since the onset of the Omicron wave is only loosely tied to the immune status of the individual.

      The effect of booster vaccination on preventing symptomatic vs. asymptomatic reinfection does not appear to have been evaluated; this is a key gap in the analysis and it would seem the data would support it.

      In lines 105-108, the demographic description of the analysis population is incomplete. Is sex or gender identity being described? Are any individuals non-binary? What is the age distribution? (Only the proportions 20-39 and under 6 are stated.)

      Figure 1 consort diagram is confusing. In the last row, are the two boxes independent or overlapping sets of individuals? Are all included in secondary analyses?

    1. Reviewer #2 (Public Review):

      In the manuscript, the authors highlighted the importance of T-cell receptor (TCR) analysis and the lack of amino acid embedding methods specific to this domain. The authors proposed a novel bi-directional context-aware amino acid embedding method, catELMo, adapted from ELMo (Embeddings from Language Models), specifically designed for TCR analysis. The model is trained on TCR sequences from seven projects in the ImmunoSEQ database, instead of the generic protein sequences. They assessed the effectiveness of the proposed method in both TCR-epitope binding affinity prediction, a supervised task, and the unsupervised TCR clustering task. The results demonstrate significant performance improvements compared to existing embedding models. The authors also aimed to provide and discuss their observations on embedding model design for TCR analysis: 1) Models specifically trained on TCR sequences have better performance than models trained on general protein sequences for the TCR-related tasks; and 2) The proposed ELMo-based method outperforms TCR embedding models with BERT-based architecture. The authors also provided a comprehensive introduction and investigation of existing amino acid embedding methods. Overall, the paper is well-written and well-organized.

      The work has originality and has potential prospects for immune response analysis and immunotherapy exploration. TCR-epitope pair binding plays a significant role in T cell regulation. Accurate prediction and analysis of TCR sequences are crucial for comprehending the biological foundations of binding mechanisms and advancing immunotherapy approaches. The proposed embedding method presents an efficient context-aware mathematical representation for TCR sequences, enabling the capture and analysis of their structural and functional characteristics. This method serves as a valuable tool for various downstream analyses and is essential for a wide range of applications.

    2. Reviewer #3 (Public Review):

      In this study, Zhang and colleagues proposed an ELMo-based embedding model (catELMo) for TCRβ CDR3 amino acid sequences. They showed the effectiveness of catELMo in both supervised TCR binding prediction and unsupervised clustering, surpassing existing methods in accuracy and reducing annotation costs. The study provides insights on the effect of model architectures to TCR specificity prediction and clustering tasks.

      The authors have addressed our prior critiques of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Franke et al. explore and characterize color response properties across primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake 2P imaging to define the spectral response properties of visual interneurons in layer 2/3. They find that opponent responses are more pronounced at photopic light levels, and that diversity in color opponent responses exists across the visual field, with green ON/ UV OFF responses more strongly represented in the upper visual field. This is argued to be relevant for the detection of certain features that are more salient when using chromatic space, possibly due to noise reduction. In the revised version, Franke et al. have addressed the potential pitfalls in the discussion, which is an important point for the non-expert reader. Thus, this study provides a solid characterization of the color properties of V1 and is a valuable addition to visual neuroscience research.

      My remaining concerns are based more on the interpretation. I'm still not convinced by the statement "This type of color-opponency in the receptive field center of V1 neurons was not present in the receptive field center of retinal ganglion cells and, therefore, is likely computed by integrating center and surround information downstream of the retina." and I would suggest rewording it in the abstract.

      As discussed previously and now nicely added to the discussion, it is difficult to make a direct comparison given the different stimulus types used to characterize the retina and V1 recordings and the different levels of adaptation in both tissues. I will leave this point to the discussion, which allows for a more nuanced description of the phenomenon. Why do I think this is important? In the introduction, the authors argue that "the discrepancy [of previous studies] may be due to differences in stimulus design or light levels." However, while different light levels can be tested in V1, this cannot be done properly in the retina with 2P experiments. To address this, one would have to examine color-opponency in RGC terminals in vivo, which is beyond the scope of this study. Addressing these latter points directly in the discussion would, in my opinion, only strengthen the study.

    2. Reviewer #2 (Public Review):

      Summary:

      Franke et al. characterize the representation of color in the primary visual cortex of mice, highlighting how this changes across the visual field. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet colors were presented in random combinations. Clustering of responses revealed a set of functional cell-types based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have different spatial distributions across V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths:

      The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      Weaknesses:

      While the study presents convincing evidence about the asymmetric distribution of color-opponent neurons in V1, the paper would greatly benefit from a more in-depth discussion of the caveats related to the conclusions drawn about their origin. This is particularly relevant regarding the conclusion drawn about the contribution of color opponent neurons in the retina. The mismatch between retinal color opponency and V1 color opponency could imply that this feature is not solely inherited from the retina, however, there are other plausible explanations that are not discussed here. Direct evidence for this statement remains weak.

      In addition, the paper would benefit from adding explicit neuron counts or percentages to the quadrants of each of the density plots in Figures 2-5. The variance explained by the principal components does not capture the percentage of color opponent cells. Additionally, there appear to be some remaining errors in the figure legend and labels that have not been addressed (e.g. '??' in Fig 2 legend).

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

    3. Reviewer #3 (Public Review):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. The results are interesting and many aspects of the experiments and conclusions are well done; several technical concerns, however, limit the support for several main conclusions,

      Limitations of stimulus choice<br /> The paper relies on responses to a large (37.5 degree diameter) modulated spot and surround region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells (it is twice the area of the average V1 receptive field). As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot (and, e.g., how much of the true neural surround samples the center spot vs the surround region). Most importantly, the surrounds of most of the recorded cells will be strongly activated by the central spot. This brings into question statements in the paper about selective activation of center and surround (e.g. page 2, right column). This in turn raises questions about several subsequent analyses that rely on selective center and surround activation.

      Comparison with retina<br /> A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. For example, the stimulus used for the V1 experiments almost certainly strongly stimulates both center and surround of retinal ganglion cells. The text focuses on color opponency in the receptive field centers of retinal ganglion cells, but center-surround opponency seems at least as relevant for such large spots. This issue needs to be described more clearly and earlier in the paper.

      Limitations associated with ETA analysis<br /> One of the reviewers in the previous round of reviews raised the concern that the ETA analysis may not accurately capture responses of cells with nonlinear receptive field properties such as On/Off cells. This possibility and whether it is a concern should be discussed.

      Discrimination performance poor<br /> Discriminability of color or luminance is used as a measure of population coding. The discrimination performance appears to be quite poor - with 500-1000 neurons needed to reliably distinguish light from dark or green from UV. Intuitively I would expect that a single cell would provide such discrimination. Is this intuition wrong? If not, how do we interpret the discrimination analyses?

    1. Reviewer #1 (Public Review):

      Summary:

      Willems and colleagues test whether unexpected shock omissions are associated with reward-related prediction errors by using an axiomatic approach to investigate brain activation in response to unexpected shock omission. Using an elegant design that parametrically varies shock expectancy through verbal instructions, they see a variety of responses in reward-related networks, only some of which adhere to the axioms necessary for prediction error. In addition, there were associations between omission-related responses and subjective relief. They also use machine learning to predict relief-related pleasantness, and find that none of the a priori "reward" regions were predictive of relief, which is an interesting finding that can be validated and pursued in future work.

      Strengths:

      The authors pre-registered their approach and the analyses are sound. In particular, the axiomatic approach tests whether a given region can truly be called a reward prediction error. Although several a priori regions of interest satisfied a subset of axioms, no ROI satisfied all three axioms, and the authors were candid about this. A second strength was their use of machine learning to identify a relief-related classifier. Interestingly, none of the ROIs that have been traditionally implicated in reward prediction error reliably predicted relief, which opens important questions for future research.

      Weaknesses:

      To ensure that the number of omissions is similar across conditions, the task employs inaccurate verbal instructions; i.e. 25% of shocks are omitted, regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, or 0%. Given previous findings on interactions between verbal instruction and experiential learning (Doll et al., 2009; Li et al., 2011; Atlas et al., 2016), it seems problematic a) to treat the instructions as veridical and b) average responses over time. Based on these prior work, it seems reasonable to assume that participants would learn to downweight the instructions over time through learning (particularly in the 100% and 0% cases); this would be the purpose of prediction errors as a teaching signal. The authors do recognize this and perform a subset analysis in the 21 participants who showed parametric increases in anticipatory SCR as a function of instructed shock probability, which strengthened findings in the VTA/SN; however given that one third of participants (n=10) did not show parametric SCR in response to instructions, it seems like some learning did occur. As prediction error is so important to such learning, a weakness of the paper is that conclusions about prediction error might differ if dynamic learning were taken into account.

    2. Reviewer #2 (Public Review):

      The question of whether the neural mechanisms for reward and punishment learning are similar has been a constant debate over the last two decades. Numerous studies have shown that the midbrain dopamine neurons respond to both negative and salient stimuli, some of which can't be well accounted for by the classic RL theory (Delgado et al., 2007). Other research even proposed that aversive learning can be viewed as reward learning, by treating the omission of aversive stimuli as a negative PE (Seymour et al., 2004).

      Although the current study took an axiomatic approach to search for the PE encoding brain regions, which I like, I have major concerns regarding their experimental design and hence the results they obtained. My biggest concern comes from the false description of their task to the participants. To increase the number of "valid" trials for data analysis, the instructed and actual probabilities were different. Under such a circumstance, testing axiom 2 seems completely artificial. How does the experimenter know that the participants truly believe that the 75% is more probable than, say, the 25% stimulation? The potential confusion of the subjects may explain why the SCR and relief report were rather flat across the instructed probability range, and some of the canonical PE encoding regions showed a rather mixed activity pattern across different probabilities. Also for the post-hoc selection criteria, why pick the larger SCR in the 75% compared to the 25% instructions? How would the results change if other criteria were used?

      To test axiom 3, which was to compare the 100% stimulation to the 0% stimulation conditions, how did the actual shock delivery affect the fMRI contrast result? It would be more reasonable if this analysis could control for the shock delivery, which itself could contaminate the fMRI signal, with extra confound that subjects may engage certain behavioral strategies to "prepare for" the aversive outcome in the 100% stimulation condition. Therefore, I agree with the authors that this contrast may not be a good way to test axiom 3, not only because of the arguments made in the discussion but also the technical complexities involved in the contrast.

      Comments on revised version:

      I want to thank the authors for their thorough and comprehensive work in revising this manuscript. I agree with the authors that learning paradigms might not be a necessity when it comes to study the PE signals, but I don't particularly agree with some of the responses in the rebuttal letter ("Furthermore, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted."). This is of course correct description for the conditioning paradigm, but the same can be said for an instructed design: the aversive outcome was either delivered or not. That being said, adopting the instructed design itself is legitimate in my opinion.

      My main concern, which the authors spent quite some length in the rebuttal letter to address, still remains about the validity for different instructed probabilities. Although subjects were told that the trials were independent, the big difference between 75% and 25% would more than likely confuse the subjects, especially given that most of us would fall prey to the Gambler's fallacy (or the law of small numbers) to some degree. When the instruction and subjective experience collides, some form of inference or learning must have occurred, making the otherwise straightforward analysis more complex. Therefore, I believe that a more rigorous/quantitative learning modeling work can dramatically improve the validity of the results. Of course, I also realize how much extra work is needed to append the computational part but without it there is always a theoretical loophole in the current experimental design.

      As the authors mentioned in the rebuttal letter, "selecting participants only if their anticipatory SCR monotonically increased with each increase in instructed probability 0% < 25% < 50% < 75% < 100%, N = 11 participants", only ~1/3 of the subjects actually showed strong evidence for the validity of the instructions. This further raises the question of whether the instructed design, due to the interference of false instruction and the dynamic learning among trials, is solid enough to test the hypothesis.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors conducted a human fMRI study investigating the omission of expected electrical shocks with varying probabilities. Participants were informed of the probability of shock and shock intensity trial-by-trial. The time point corresponding to the absence of the expected shock (with varying probability) was framed as a prediction error producing the cognitive state of relief/pleasure for the participant. fMRI activity in the VTA/SN and ventral putamen corresponded to the surprising omission of a high probability shock. Participants' subjective relief at having not been shocked correlated with activity in brain regions typically associated with reward-prediction errors. The overall conclusion of the manuscript was that the absence of an expected aversive outcome in human fMRI looks like a reward-prediction error seen in other studies that use positive outcomes.

      Strengths:

      Overall, I found this to be a well-written human neuroimaging study investigating an often overlooked question on the role of aversive prediction errors, and how they may differ from reward-related prediction errors. The paper is well-written and the fMRI methods seem mostly rigorous and solid.

      Comments on revised version:

      The authors were extremely responsive to the comments and provided a comprehensive rebuttal letter with a lot of detail to address the comments. The authors clarified their methodology, and rationale for their task design, which required some more explanation (at least for me) to understand. Some of the design elements were not clear to me in the original paper.

      The initial framing for their study is still in the domain of learning. The paper starts off with a description of extinction as the prime example of when threat is omitted. This could lead a reader to think the paper would speak to the role of prediction errors in extinction learning processes. But this is not their goal, as they emphasize repeatedly in their rebuttal letter. The revision also now details how using a conditioning/extinction framework doesn't suit their experimental needs.

      It is reasonable to develop a new task to answer their experimental questions. By no means is there a requirement to use a conditioning/extinction paradigm to address their questions. As they say, "it is not necessary to adopt a learning paradigm to study omission responses", which I agree with.

      But the authors seem to want to have it both ways: they frame their paper around how important prediction errors are to extinction processes, but then go out of their way to say how they can't test their hypotheses with a learning paradigm.

      Part of their argument that they needed to develop their own task "outside of a learning context" goes as follows:<br /> (1) "...conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, the magnitude-related axiom cannot be tested."<br /> (2) "....in conditioning tasks people generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intra-individual variability in the PE responses"<br /> (3) "...because of the relatively low signal to noise ratio in fMRI measures, fear extinction studies often pool across trials to compare omission-related activity between early and late extinction, which further reduces the necessary variability to properly evaluate the probability axiom"

      These points seem to hinge on how tasks are "generally" constructed. However, there are many adaptations to learning tasks:<br /> (1) There is no rule that conditioning can't include different levels of aversive outcomes following different cues. In fact, their own design uses multiple cues that signal different intensities and probabilities. Saying that conditioning "generally only include one level of aversive outcome" is not an explanation for why "these paradigms are not tailored" for their research purposes. There are also several conditioning studies that have used different cues to signal different outcome probabilities. This is not uncommon, and in fact is what they use in their study, only with an instruction rather than through learning through experience, per se.<br /> (2) Conditioning/extinction doesn't have to occur fast. Just because people "generally learn fast" doesn't mean this has to be the case. Experiments can be designed to make learning more challenging or take longer (e.g., partial reinforcement). And there can be intra-individual differences in conditioning and extinction, especially if some cues have a lower probability of predicting the US than others. Again, because most conditioning tasks are usually constructed in a fairly simplistic manner doesn't negate the utility of learning paradigms to address PE-axioms.<br /> (3) Many studies have tracked trial-by-trial BOLD signal in learning studies (e.g., using parametric modulation). Again, just because other studies "often pool across trials" is not an explanation for these paradigms being ill-suited to study prediction errors. Indeed, most computational models used in fMRI are predicated on analyzing data at the trial level.

      Again, the authors are free to develop their own task design that they think is best suited to address their experimental questions. For instance, if they truly believe that omission-related responses should be studied independent of updating. The question I'm still left puzzling is why the paper is so strongly framed around extinction (the word appears several times in the main body of the paper), which is a learning process, and yet the authors go out of their way to say that they can only test their hypotheses outside of a learning paradigm.

      The authors did address other areas of concern, to varying extents. Some of these issues were somewhat glossed over in the rebuttal letter by noting them as limitations. For example, the issue with comparing 100% stimulation to 0% stimulation, when the shock contaminates the fMRI signal. This was noted as a limitation that should be addressed in future studies, bypassing the critical point.

    1. Reviewer #1 (Public Review):

      Summary:

      The process of taste perception is significantly more intricate and complex in Lepidopteran insects. This investigation provides valuable insights into the role of Gustatory receptors and their dynamics in the sensation of sucrose, which serves as a crucial feeding cue for insects. The article highlights the differential sensitivity of Grs to sucrose and their involvement in feeding and insect behavior.

      Strengths:

      To support the notion of the differential specificity of Gr to sucrose, this study employed electrophysiology, ectopic expression of Grs in Xenopus, genome editing, and behavioral studies on insects. This investigation offers a fundamental understanding of the gustation process in lepidopteran insects and its regulation of feeding and other gustation-related physiological responses. This study holds significant importance in advancing our comprehension of lepidopteran insect biology, gustation, and feeding behavior.

      Weaknesses:

      While this manuscript demonstrates technical proficiency, there exists an opportunity for additional refinement to optimize comprehensibility for the intended audience. Several crucial sugars have been overlooked in the context of electrophysiology studies and should be incorporated. Furthermore, it is imperative to consider the potential off-target effects of Gr knock-out on other Gr expressions. This investigation focuses exclusively on Gr6 and Gr10, while neglecting a comprehensive narrative regarding other Grs involved in sucrose sensation.

    2. Reviewer #2 (Public Review):

      Summary:

      To identify sugar receptors and assess the capacity of these genes the authors first set out to identify behavioral responses in larva and adult as well as physiological response. They used phylogenetics and gene expression (RNAseq) to identify candidates for sugar reception. Using first an in vitro oocyte system they assess the responses to distinct sugars. A subsequent genetic analysis shows that the Gr10 and Gr6 genes provide stage specific functions in sugar perception.

      Strengths:

      A clear strength of the manuscript is the breadth of techniques employed allowing a comprehensive study in a non-canonical model species.

      Weaknesses:

      There are no major weaknesses in the study for the current state of knowledge in this species. Since it is much basic work to establish a broader knowledge, context with other modalities remain unknown. It might have been possible to probe certain context known from the fruit fly, which would have strengthened the manuscript.

    1. Reviewer #1 (Public Review):

      Summary

      This study identifies a family of solute transports in the enteric protist, Blastocystis, that may mediate the transport of glycolytic intermediates across the mitochondrial membrane. The study builds on previous observations suggesting that Blastocystis (and other Stramenopiles) are unusual in having a compartmentalized glycolytic pathway with enzymes involved in upper and lower glycolysis being located in the cytosol and mitochondria, respectively. In this study, the authors identified two putative Stamenopile metabolite transporters that are related to plant di/tricarboxylic acid transporters that might mediate the transport of glycolytic intermediates across the mitochondrial membrane. These GIC-transporters were localized to the Blastocystis mitochondrion using specific rabbit antibodies and shown to bind several glycolytic intermediates (including GAP, DHAP and PEP) based on thermostability shift assays. Direct evidence for transport activity was obtained by reconstituting native proteins in proteoliposomes and measuring uptake of 14C-malate or 35S-sulphate against unlabelled substrates. This assay showed that GIC-2 transported DHAP, GAP and PEP. However, significant transport activity was not observed for bGIC-2. Overall, the study provides strong, but not conclusive evidence that bGIC-2 is involved in transporting glycolytic intermediates across the inner membrane of the mitochondria, while the function of GIC-1 remains unclear, despite exhibiting the same metabolite binding properties as bGIC-2 n thermostability assays.

      Strengths:

      Overall, the findings are of interest in the context of understanding the diversity of core metabolic pathways in evolutionarily diverse eukaryotes, as well as the process by which cytosolic glycolysis evolved in most eukaryotes. The experiments are carefully performed and clearly described.

      Weaknesses:

      The main weakness of the study is the lack of direct evidence that either bGIC-1 and/or bGIC2 are active in vivo. While it is appreciated that the genetic tools for disrupting GIC genes in Blastocystis are limited/lacking, are there opportunities to ectopically express or delete these genes in other genetically tractable Stamenopiles, such as Phaeodactylum triconuteum?

      The authors demonstrate that both bGIC-1 and bGIC-2 are targeted to the mitochondrion, based on immunofluorescence studies. However, the precise localization and topology of these carriers in the inner or outer membrane is not defined. The conclusions of the study would be strengthened if the authors could show that one/both transporters are present in the inner membrane using protease protection experiments following differential solubilization of the outer and inner mitochondrial membranes.

      It is not clear why hetero-exchange reactions were not performed for bGIC-1 (only for bGIC-2).

      In both their previous study (Bartulos et al (2018) and the current study, the authors have shown that Blastocystis express a TPI-GAPDH fusion protein which is located to the mitochondrion. The presence of the TPI domain in the mitochondrial matrix would obviate the need for bGIC-1/2 triose transporters and decrease their value as drug targets. It is noted that Blastocystis still retains some TPI activity in the cytosol, presumably due to expression of a second cytoplasmic isoform, which could account for the presence of the bGIC transporters. However, some discussion on the role of this mitochondrial TPI-GAPDG fusion protein in Blastocystis and other Stramenopiles would be useful.

      The summary slide (Fig 7) in the revised manuscript no longer shows PEP being used as a countersolute for the import of G3P and DHAP. Although it complicates the story, the role of PEP as a counter solute should be shown for completeness and also to make sense of some of the statements in the discussion. In particular, as noted by the authors, mitochondrial PEP could be exported back to the cytsol and converted to pyruvate and/or lactate to generate ATP and NAD, although at the expense of ATP synthesis in the mitochondria.

    2. Reviewer #2 (Public Review):

      In this manuscript, the authors set out to identify transporters that must exist in Stramenophiles due to the fact that the second half of glycolysis appears to be conducted in the mitochondria. They hypothesize that a Stramenophile-specific clade of transporters related to the dicarboxylate carriers are likely the relevant family and then go on to test two proteins from Blastocystis due to the infectious disease relevance of this organism. They show rather convincingly that these two proteins are expressed and are localized to the mitochondria in the native organism. The purified proteins bind to glycolytic intermediates and one of them, GIC-2, transports several glycolytic intermediates in vitro. This is a very solid and well-executed study that clearly demonstrates that bCIC-2 can transport glycolytic intermediates.

      (1) The major weakness is that the authors aren't able to show that this protein actually has this function in the native organism. This could be impossible due to the lack of genetic tools in Blastocystis, but it leaves us without absolute confidence that bGIC-2 is the important glycolytic intermediate mitochondrial transporter (or even that it has this function in vivo).

      (2) My impression is that the authors under-emphasize the fact that the hDIC also binds (and is stabilized by) glycolytic intermediates (G3P and 3PG). In the opinion of this reviewer, this might change my interpretation about the uniqueness of the bGIC proteins. They act on additional glycolytic intermediates, but it's not unique.

    3. Reviewer #3 (Public Review):

      Summary:

      Unlike most eukaryotes Blastocystis has a branched glycolysis pathway, which is split between the cytoplasm and the mitochondrial matrix. An outstanding question was how the glycolytic intermediates generated in the 'preparatory' phase' are transported into the mitochondrial matrix for the 'pay off' phase. Here, the authors use bioinformatic analysis to identify two candidate solute carrier genes, bGIC-1 and bGIC-2, and use biochemical and biophysical methods to characterise their substrate specificity and transport properties. The authors demonstrate that bGIC-2 can transport dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate and phosphoenolpyruvate, establishing this protein as the 'missing link' connecting the two split branches of glycolysis in this branch of single celled eukaryotes. The authors also present their data on bGIC-1, which suggests a role in anion transport and bOGC, which is a close functional homologue of the human oxoglutarate carrier (hOGC, SLC25A11) and human dicarboxylate carrier (hDIC, SLC25A10).

      Strengths:

      The results are presented in a clear and logical arrangement, which nicely leads the reader through the process of gene identification and subsequent ligand screening and functional reconstitution. The results are compelling and well supported - the thermal stabilisation data is supported by the exchange studies. Caveats, where apparent, are discussed and rational explanations given.

      Weaknesses:

      The study does not contain any significant weaknesses in my view. I would like to see the authors include the initial rate plots used in the main figures (possibly as insets), so we can observe the data points used for these calculations. It would also have been interesting to include the AlphaFold models for bGIC-1 and bGIC-2 and a discussion/rationalisation for the substrate specificity discussed in the study.

    1. Reviewer #1 (Public Review):

      Summary:

      Previous work demonstrated a strong bias in the percept of an ambiguous Shepard tone as either ascending or descending in pitch, depending on the preceding contextual stimulus. The authors recorded human MEG and ferret A1 single-unit activity during presentation of stimuli identical to those used in the behavioral studies. They used multiple neural decoding methods to test if context-dependent neural responses to ambiguous stimulus replicated the behavioral results. Strikingly, a decoder trained to report stimulus pitch produced biases opposite to the perceptual reports. These biases could be explained robustly by a feed-forward adaptation model. Instead, a decoder that took into account direction selectivity of neurons in the population was able to replicate the change in perceptual bias.

      Strengths:

      This study explores an interesting and important link between neural activity and sensory percepts, and it demonstrates convincingly that traditional neural decoding models cannot explain percepts. Experimental design and data collection appear to have been executed carefully. Subsequent analysis and modeling appear rigorous. The conclusion that traditional decoding models cannot explain the contextual effects on percepts is quite strong.

      Weaknesses:

      Beyond the very convincing negative results, it is less clear exactly what the conclusion is or what readers should take away from this study. The presentation of the alternative, "direction aware" models is unclear, making it difficult to determine if they are presented as realistic possibilities or simply novel concepts. Does this study make predictions about how information from auditory cortex must be read out by downstream areas? There are several places where the thinking of the authors should be clarified, in particular, around how this idea of specialized readout of direction-selective neurons should be integrated with a broader understanding of auditory cortex.

    2. Reviewer #2 (Public Review):

      The authors aim to better understand the neural responses to Shepard tones in auditory cortex. This is an interesting question as Shepard tones can evoke an ambiguous pitch that is manipulated by a proceeding adapting stimulus, therefore it nicely disentangles pitch perception from simple stimulus acoustics.

      The authors use a combination of computational modelling, ferret A1 recordings of single neurons, and human EEG measurements.

      Their results provide new insights into neural correlates of these stimuli. However, the manuscript submitted is poorly organized, to the point where it is near impossible to review. We have provided Major Concerns below. We will only be able to understand and critique the manuscript fully after these issues have been addressed to improve the readability of the manuscript. Therefore, we have not yet reviewed the Discussion section.

      Major concerns

      Organization/presentation<br /> The manuscript is disorganized and therefore difficult to follow. The biggest issue is that in many figures, the figure subpanels often do not correspond to the legend, the main body, or both. Subpanels described in the text are missing in several cases. Many figure axes are unlabelled. There is an inconsistent style of in-text citation between figures and the main text. The manuscript contains typos and grammatical errors. My suggestions for edits below therefore should not be taken as an exhaustive list. I ask the authors to consider the following only a "first pass" review, and I will hopefully be able to think more deeply about the science in the second round of revisions after the manuscript is better organized.

      Frequency and pitch<br /> The terms "frequency" and "pitch" seem to be used interchangeably at times, which can lead to major misconceptions in a manuscript on Shepard tones. It is possible that the authors confuse these concepts themselves at times (e.g. Fig 5), although this would be surprising given their expertise in this field. Please check through every use of "frequency" and "pitch" in this manuscript and make sure you are using the right term in the right place. In many places, "frequency" should actually be "fundamental frequency" to avoid misunderstanding.

      Insufficient detail or lack of clarity in descriptions<br /> There seems to be insufficient information provided to evaluate parts of these analysis, most critically the final pitch-direction decoder (Fig 6), which is a major finding. Please clarify.

    3. Reviewer #3 (Public Review):

      Summary:

      This is an elegant study investigating possible mechanisms underlying the hysteresis effect in the perception of perceptually ambiguous Shepard tones. The authors make a fairly convincing case that the adaptation of pitch direction sensitive cells in auditory cortex is likely responsible for this phenomenon.

      Strengths:

      The manuscript is overall well written. My only slight criticism is that, in places, particularly for non-expert readers, it might be helpful to work a little bit more methods detail into the results section, so readers don't have to work quite so hard jumping from results to methods and back.

      The methods seem sound and the conclusions warranted and carefully stated. Overall I would rate the quality of this study as very high, and I do not have any major issues to raise.

      Weaknesses:

      I think this study is about as good as it can be with the current state of the art. Generally speaking, one has to bear in mind that this is an observational, rather than an interventional study, and therefore only able to identify plausible candidate mechanisms rather than making definitive identifications. However, the study nevertheless represents a significant advance over the current state of knowledge, and about as good as it can be with the techniques that are currently widely available.

    1. Reviewer #1 (Public Review):

      In this manuscript, by using simulation, in vitro and in vivo electrophysiology, and behavioral tests, Peng et al. nicely showed a new approach for the treatment of neuropathic pain in mice. They found that terahertz (THz) waves increased Kv conductance and decreased the frequency of action potentials in pyramidal neurons in the ACC region. Behaviorally, terahertz (THz) waves alleviated neuropathic pain in the mouse model. Overall, this is an interesting study. The experimental design is clear, the data is presented well, and the paper is well-written. I have a few suggestions.

      (1) The authors provide strong theoretical and experimental evidence for the impact of voltage-gated potassium channels by terahertz wave frequency. However, the modulation of action potential also relies on non-voltage-dependent ion channels. For example, I noticed that the RMP was affected by THz application (Figure 3F) as well. As the RMP is largely regulated by the leak potassium channels (Tandem-pore potassium channels), I would suggest testing whether terahertz wave photons have also any impact on the Kleak channels as well.

      (2) The activation curves of the Kv currents in Figure 2h seem to be not well-fitted. I would suggest testing a higher voltage (>100 mV) to collect more data to achieve a better fitting.

      (3) In the part of behavior tests, the pain threshold increased after THz application and lasted within 60 mins. I suggest conducting prolonged tests to determine the end of the analgesic effect of terahertz waves.

      (4) Regarding in vivo electrophysiological recordings, the post-HFTS recordings were acquired from a time window of up to 20 min. It seems that the HFTS effect lasted for minutes, but this was not tested in vitro where they looked at potassium currents. This long-lasting effect of HFTS is interesting. Can the authors discuss it and its possible mechanisms, or test it in slice electrophysiological experiments?

      (5) How did the authors arrange the fiber for HFTS delivery and the electrode for in vivo multi-channel recordings? Providing a schematic illustration in Figure 4 would be useful.

      (6) Some grammatical errors should be corrected.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Peng et al., reported that 36THz high-frequency terahertz stimulation (HFTS) can suppress the activity of pyramidal neurons by enhancing the conductance of voltage-gated potassium channel. The authors also demonstrated the effectiveness of using 36THz HFTS for treating neuropathic pain.

      Strengths:

      The manuscript is well written and the conclusions are supported by robust results. This study highlighted the potential of using 36THz HFTS for neuromodulation.

      Weaknesses:

      More characterization of HFTS is needed, so the readers can have a better assessment of the potential usage of HFTS in their own applications.

      (1) It would be very helpful to estimate the volume of tissue that can be influenced by HFTS. It is not clear how 15 mins HFTS was chosen for this functional study. Does a longer time have a stronger effect? A better characterization of the relationship between the stimulus duration of HFTS and its beneficial effects would be very useful.

      (2) How long does the behavioral effect last after 15 minutes of HFTS? Figure 5b only presents the behavioral effect for one hour, but the pain level is still effectively reduced at this time point. The behavioral measurement should last until pain sensitization drops back to pre-stim level.

      (3) Although the manuscript only tested in ACC, it will also be useful to demonstrate the neural modulation effect on other brain regions. Would 36THz HFTS also robustly modulate activities in other brain regions? Or are different frequencies needed for different brain regions?

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript by Peng et al. presents intriguing data indicating that high-frequency terahertz stimulation (HFTS) of the anterior cingulate cortex (ACC) can alleviate neuropathic pain behaviors in mice. Specifically, the investigators report that terahertz (THz) frequency stimulation widens the selectivity filter of potassium channels thereby increasing potassium conductance and leading to a reduction in the excitability of cortical neurons. In voltage clamp recordings from layer 5 ACC pyramidal neurons in acute brain slice, Peng et al. show that HFTS enhances K current while showing minimal effects on Na current. Current clamp recording analyses show that the spared nerve injury model of neuropathic pain decreases the current threshold for action potential (AP) generation and increases evoked AP frequency in layer 5 ACC pyramidal neurons, which is consistent with previous studies. Data are presented showing that ex-vivo treatment with HFTS in slice reduces these SNI-induced changes to excitability in layer 5 ACC pyramidal neurons. The authors also confirm that HFTS reduces the excitability of layer 5 ACC pyramidal neurons via in vivo multi-channel recordings from SNI mice. Lastly, the authors show that HFTS is effective at reducing mechanical allodynia in SNI using both the von Frey and Catwalk analyses. Overall, there is considerable enthusiasm for the findings presented in this manuscript given the need for non-pharmacological treatments for pain in the clinical setting.

      Strengths:

      The authors use a multifaceted approach that includes modeling, ex-vivo and in-vivo electrophysiological recordings, and behavioral analyses. Interpretation of the findings is consistent with the data presented. This preclinical work in mice provides new insight into the potential use of directed high-frequency stimulation to the cortex as a primary or adjunctive treatment for chronic pain.

      Weaknesses:

      There are a few concerns noted that if addressed, would significantly increase enthusiasm for the study.

      (1) The left Na current trace for SNI + HFTS in Figure 2B looks to have a significant series resistance error. Time constants (tau) for the rate of activation and inactivation for Na currents would be informative.

      (2) It is unclear why an unpaired t-test was performed for paired data in Figure 2. Also, statistical methods and values for non-significant data should be presented.

      (3) It would seem logical to perform HFTS on ACC-Pyr neurons in acute slices from sham mice (i.e. Figure 3 scenario). These experiments would be informative given the data presented in Figure 4.

      (4) As the data are presented in Figure 4g, it does not seem as if SNI significantly increased the mean firing rate for ACC-Pyr neurons, which is observed in the slice. The data were analyzed using a paired t-test within each group (sham and SNI), but there is no indication that statistical comparisons across groups were performed. If the argument is that HFTS can restore normal activity of ACC-Pyr neurons following SNI, this is a bit concerning if no significant increase in ACC-Pyr activity is observed in in-vivo recordings from SNI mice.

      (5) The authors indicate that the effects of HFTS are due to changes in Kv1.2. However, they do not directly test this. A blocking peptide or dendrotoxin could be used in voltage clamp recordings to eliminate Kv1.2 current and then test if this eliminates the effects of HFTS. If K current is completely blocked in VC recordings then the authors can claim that currents they are recording are Kv1.1 or 1.2.

      (6) The ACC is implicated in modulating the aversive aspect of pain. It would be interesting to know whether HFTS could induce conditioned place preference in SNI mice via negative reinforcement (i.e. alleviation of spontaneous pain due to the injury). This would strengthen the clinical relevance of using HFTS in treating pain.

    1. Reviewer #1 (Public Review):

      Summary:

      In their paper, Hou and co-workers explored the use of a FRET sensor for endogenous g-sec activity in vivo in the mouse brain. They used AAV to deliver the sensor to the brain for neuron specific expression and applied NIR in cranial windows to assess FRET activity; optimizing as well an imaging and segmentation protocol. In brief they observe clustered g-sec activity in neighboring cells arguing for a cell non-autonomous regulation of endogenous g-sec activity in vivo.

      Weaknesses:

      Overall the authors provide a very limited data set and in fact only a proof of concept that their sensor can be applied in vivo. This is not really a research paper, but a technical note. With respect to their observation of clustered activity, the images do not convince me as they show only limited areas of interest: from these examples (for instance fig 5) one sees that merely all neurons in the field show variable activity and a clustering is not really evident from these examples. Even within a cluster, there is variability. With r values between 0.23 to .36, the correlation is not that striking. The authors herein do not control for expression levels of the sensor: for instance, can they show that in all neurons in the field, the sensor is equally expressed, but FRET activity is correlated in sets of neurons? Or are the FRET activities that are measured only in positively transduced neurons, while neighboring neurons are not expressing the sensor? Without such validation, it is difficult to make this conclusion.

      Secondly, I am lacking some more physiological relevance for this observation. The experiments are performed in wild-type mice, but it would be more relevant to compare this with a fadPSEN1 KI or a PSEN1cKO model to investigate the contribution of a gain of toxic function or LOF to the claimed cell non-autonomous activations. Or what would be the outcome if the sensor was targeted to glial cells?

      For this reviewer it is not clear what resolution they are measuring activity, at cellular or subcellular level? In other words are the intensity spots neuronal cell bodies? Given g-sec activity are in all endosomal compartments and at the cell surface, including in the synapse, does NIR imaging have the resolution to distinguish subcellular or surface localized activities? If cells 'communicate' g-sec activities, I would expect to see hot spots of activity at synapses between neurons: is this possible to assess with the current setup?

      Without some more validation and physiological relevant studies, it remains a single observation and rather a technical note paper, instead of a true research paper.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Hou et al is a short technical report which details the potential use of a recently developed FRET based biosensor for gamma-secretase activity (Houser et al 2020) for in vivo imaging in the mouse brain. Gamma-secretase plays a crucial role in Alzheimer disease pathology and therefore developing methodologies for precise in vivo measurements would be highly valuable to better understand AD pathophysiology in animal models.

      The current version of the sensor utilizes a pair of far-red fluorescent proteins fused to a substrate of the enzyme. Using live imaging, it was previously demonstrated it is possible to monitor gamma-secretase activity in cultured cells. Notably, this is a variant of a biosensor that was previously described using CFP-YFP variants FRET pair (Maesako et al, iScience. 2020). The main claim and hypothesis for the MS is that IR excitation and emission has considerable advantages in terms of depth of penetration, as well as reduction in autofluorescence. These properties would make this approach potentially suitable to monitor cellular level dynamics of Gama-secretase in vivo.

      The authors use confocal microscopy and show it is possible to detect fluorescence from single cortical cells. The paper described in detail technical information regarding imaging and analysis. The data presented in figures 5-8 details analysis of FRET ratio (FR) measurements within populations of cells. The authors claim it is possible to obtain reliable measurements at the level of individual cells. They compare the FR values across cells and mice and find a spatial correlation among neighboring cells. This is compared with data obtained after inhibition of endogenous gamma-secretase activity, which abolishes this correlation.

      Strengths:

      The authors describe in detail their experimental design and analysis for in vivo imaging of the reporter. The idea of using a far-red FRET sensor for in vivo imaging is novel and potentially useful to circumvent many of the pitfalls associated with intensity-based FRET imaging in complex biological environments (such as autofluorescence and scattering).

      Weaknesses:

      There are several critical points regarding validation of this approach and concerns with the data presented that must be addressed:

      (1) Regarding the variability and spatial correlation- the dynamic range of the sensor previously reported in vitro is in the range of 20-30% change (Houser et al 2020) whereas the range of FR detected in vivo is between cells is significantly larger (Fig. 3). This raises considerable doubts for specific detection of cellular activity (see point 3).<br /> (2) One direct way to test the dynamic range of the sensor in vivo, is to increase or decrease endogenous gamma-secretase activity and to ensure this experimental design allows to accurately monitor gamma-secretase activity. In the previous characterization of the reporter (Hauser et al 2020), DAPT application and inhibition of gamma-secretase activity results in increased FR (Figures 2 and 3 of Houser et al). This is in agreement with the design of the biosensor, since FR should be inversely correlated with enzymatic activity. Here, while the authors repeat the same manipulation and apply DAPT to block gamma-secretase activity, it seems to induce the opposite effect and reduces FR (comparing figures 8 with figures 5,6,7). First, there is no quantification comparing FR with and without DAPT. Moreover, it is possible to conduct this experiment in the same animals, meaning comparing FR before and after DAPT in the same mouse and cell populations. This point is absolutely critical- if indeed FR is reduced following DAPT application, this needs to be explained since this contradicts the basic design and interpretation of the biosensor.<br /> (3) For further validation, I would suggest including in vivo measurements with a sensor version with no biological activity as a negative control, for example, a mutation that prevents enzymatic cleavage and FRET changes. This should be used to showcase instrumental variability and would help to validate the variability of FR is indeed biological in origin. This would significantly strengthen the claims regarding spatial correlation within population of cells.<br /> (4) In general, confocal microcopy is not ideal for in vivo imaging. Although the authors demonstrate data collected using IR imaging increases penetration depth, out of focus fluorescence is still evident (Figure 4). Many previous papers have primarily used FLIM based analysis in combination with 2p microscopy for in vivo FRET imaging (Some examples: Ma et al, Neuron, 2018; Massengil et al, Nature methods, 2022; DIaz-Garcia et al, Cell Metabolism, 2017; Laviv et al, Neuron, 2020). This technique does not rely on absolute photon number and therefore has several advantage sin terms of quantification of FRET signals in vivo.<br /> It is therefore likely that use of previously developed sensors of gamma-secretase with conventional FRET pairs, might be better suited for in vivo imaging. This point should be at least discussed as an alternative.

    3. Reviewer #3 (Public Review):

      This paper builds on the authors' original development of a near infrared (NIR) FRET sensor by reporting in vivo real-time measurements for gamma-secretase activity in the mouse cortex. The in vivo application of the sensor using state of the art techniques is supported by a clear description and straightforward data, and the project represents significant progress because so few biosensors work in vivo. Notably, the NIR biosensor is detectable to ~ 100 µm depth in the cortex. A minor limitation is that this sensor has a relatively modest ΔF as reported in Houser et al, which is an additional challenge for its use in vivo. Thus, the data is fully dependent on post-capture processing and computational analyses. This can unintentionally introduce biases but is not an insurmountable issue with the proper controls that the authors have performed here.

      The observation of gamma-secretase signaling that spreads across cells is potentially quite interesting, but it can be better supported. An alternative interpretation is that there exist pre-formed and clustered hubs of high gamma-secretase activity, and that DAPT has stochastic or differential accessibility to cells within the cluster. This could be resolved by an experiment of induction, for example, if gamma-secretase activity is induced or activated at a specific locale and there was observed coordinated spreading to neighboring neurons with their sensor.

      Furthermore, to rule out the possibility that uneven viral transduction was not simply responsible for the observed clustering, it would be helpful to see an analysis of 670nm fluorescence alone.

    1. Reviewer #1 (Public Review):

      Summary:

      Zhang et al. demonstrate that CD4+ single positive (SP) thymocytes, CD4+ recent thymic emigrants (RTE), and CD4+ T naive (Tn) cells from Cd11c-p28-flox mice, which lack IL-27p28 selectively in Cd11c+ cells, exhibit a hyper-Th1 phenotype instead of the expected hyper Th2 phenotype. Using IL-27R-deficient mice, the authors confirm that this hyper-Th1 phenotype is due to IL-27 signaling via IL-27R, rather than the effects of monomeric IL-27p28. They also crossed Cd11c-p28-flox mice with autoimmune-prone Aire-deficient mice and showed that both T cell responses and tissue pathology are enhanced, suggesting that SP, RTE, and Tn cells from Cd11c-p28-flox mice are poised to become Th1 cells in response to self-antigens. Regarding mechanism, the authors demonstrate that SP, RTE, and Tn cells from Cd11c-p28-flox mice have reduced DNA methylation at the IFN-g and Tbx21 loci, indicating 'de-repression', along with enhanced histone tri-methylation at H3K4, indicating a 'permissive' transcriptional state. They also find evidence for enhanced STAT1 activity, which is relevant given the well-established role of STAT1 in promoting Th1 responses, and surprising given IL-27 is a potent STAT1 activator. This latter finding suggests that the Th1-inhibiting property of thymic IL-27 may not be due to direct effects on the T cells themselves.

      Strengths:

      Overall the data presented are high quality and the manuscript is well-reasoned and composed. The basic finding - that thymic IL-27 production limits the Th1 potential of SP, RTE, and Tn cells - is both unexpected and well described.

      Weaknesses:

      A credible mechanistic explanation, cellular or molecular, is lacking. The authors convincingly affirm the hyper-Th1 phenotype at epigenetic level but it remains unclear whether the observed changes reflect the capacity of IL-27 to directly elicit epigenetic remodeling in developing thymocytes or knock-on effects from other cell types which, in turn, elicit the epigenetic changes (presumably via cytokines). The authors propose that increased STAT1 activity is a driving force for the epigenetic changes and resultant hyper-Th1 phenotype. That conclusion is logical given the data at hand but the alternative hypothesis - that the hyper-STAT1 response is just a downstream consequence of the hyper-Th1 phenotype - remains equally likely. Thus, while the discovery of a new anti-inflammatory function for IL-27 within the thymus is compelling, further mechanistic studies are needed to advance the finding beyond phenomenology.

    2. Reviewer #2 (Public Review):

      Summary:

      Naïve CD4 T cells in CD11c-Cre p28-floxed mice express highly elevated levels of proinflammatory IFNg and the transcription factor T-bet. This phenotype turned out to be imposed by thymic dendritic cells (DCs) during CD4SP T cell development in the thymus [PMID: 23175475]. The current study affirms these observations, first, by developmentally mapping the IFNg dysregulation to newly generated thymic CD4SP cells [PMID: 23175475], second, by demonstrating increased STAT1 activation being associated with increased T-bet expression in CD11c-Cre p28-floxed CD4 T cells [PMID: 36109504], and lastly, by confirming IL-27 as the key cytokine in this process [PMID: 27469302]. The authors further demonstrate that such dysregulated cytokine expression is specific to the Th1 cytokine IFNg, without affecting the expression of the Th2 cytokine IL-4, thus proposing a role for thymic DC-derived p28 in shaping the cytokine response of newly generated CD4 helper T cells. Mechanistically, CD4SP cells of CD11c-Cre p28-floxed mice were found to display epigenetic changes in the Ifng and Tbx21 gene loci that were consistent with increased transcriptional activities of IFNg and T-bet mRNA expression. Moreover, in autoimmune Aire-deficiency settings, CD11c-Cre p28-floxed CD4 T cells still expressed significantly increased amounts of IFNg, exacerbating the autoimmune response and disease severity. Based on these results, the investigators propose a model where thymic DC-derived IL-27 is necessary to suppress IFNg expression by CD4SP cells and thus would impose a Th2-skewed predisposition of newly generated CD4 T cells in the thymus, potentially relevant in autoimmunity.

      Strengths:

      Experiments are well-designed and executed. The conclusions are convincing and supported by the experimental results.

      Weaknesses:

      The premise of the current study is confusing as it tries to use the CD11c-p28 floxed mouse model to explain the Th2-prone immune profile of newly generated CD4SP thymocytes. Instead, it would be more helpful to (1) give full credit to the original study which already described the proinflammatory IFNg+ phenotype of CD4 T cells in CD11c-p28 floxed mice to be mediated by thymic dendritic cells [PMID: 23175475], and then, (2) build on that to explain that this study is aimed to understand the molecular basis of the original finding.

      In its essence, this study mostly rediscovers and reaffirms previously reported findings, but with different tools. While the mapping of epigenetic changes in the IFNg and T-bet gene loci and the STAT1 gene signature in CD4SP cells are interesting, these are expected results, and they only reaffirm what would be assumed from the literature. Thus, there is only incremental gain in new insights and information on the role of DC-derived IL-27 in driving the Th1 phenotype of CD4SP cells in CD11c-p28 floxed mice.

      Altogether, the major issues of this study remain unresolved:

      (1) It is still unclear why the p28-deficiency in thymic dendritic cells would result in increased STAT1 activation in CD4SP cells. Based on their in vitro experiments with blocking anti-IFNg antibodies, the authors conclude that it is unlikely that the constitutive activation of STAT1 would be a secondary effect due to autocrine IFNg production by CD4SP cells. However, this possibility should be further tested with in vivo models, such as Ifng-deficient CD11c-p28 floxed mice. Alternatively, is this an indirect effect by other IFNg producers in the thymus, such as iNKT cells? It is necessary to explain what drives the STAT1 activation in CD11c-p28 floxed CD4SP cells in the first place.

      (2) It is also unclear whether CD4SP cells are the direct targets of IL-27 p28. The cell-intrinsic effects of IL-27 p28 signaling in CD4SP cells should be assessed and demonstrated, ideally by CD4SP-specific deletion of IL-27Ra, or by establishing bone marrow chimeras of IL-27Ra germline KO mice.

    1. Reviewer #1 (Public Review):

      Summary:

      Inflammatory T cells have been recognized to play an important role in human COPD lung tissue and animal models of emphysema. The authors have previously identified that Th17 cells regulate chronic inflammatory diseases, including in mice exposed to smoke or nanoparticulate carbon black (nCB). Here, the authors interrogate the role of Tc17 cells using similar mouse models. Investigating let-7 miRNA, which induces antigen-presenting cell activation and T cell-mediated Th17a inflammation, they show that the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), is a direct target of let-7 miRNA in T cells. Because RORγt expression is elevated in COPD patients and in mouse models of COPD, the authors generate a Let-7 overexpressing mouse in T cells and reduce RORγt expression and Th17 and Tc17 cell recruitment in nCB-exposed mice.

      Strengths:

      The authors use a previously published RNA-seq dataset (GSE57148) from lungs of control and COPD subjects to explore the involvement of Let-7 in emphysema. They further evaluate Let-7a expression by qPCR in lung tissue samples of smokers with emphysema and non-emphysema controls. Moreover, expression of Let-7a, Let-7b, Let-7d, and Let-7f in purified CD4+ T cells were inversely correlated with emphysema severity lungs. Similar findings were found in their mouse models (CS or nCB) in both lung tissue and isolated lung CD4+ and CD8+ T cells, with reduced let-7afd and let-7bc2 expression.

      Using mice harboring a conditional deletion of the let-7bc2 cluster in all T cells (let-7bc2LOF) derived from the CD4+CD8+ double-positive stage, the authors show enhanced emphysema in nCB- or CS-exposed mice with enhanced recruitment of macrophages and neutrophils to the lung. While CD8+IL17a+ Tc17 cells and CD4+ IL17a+ Th17 cells were increased in nCB-exposed control animals, only let-7bc2LOF mice showed an increase in CD8+IL17a+ Tc17 cells. Further, unexposed let-7bc2LOF and let-7afdLOF mice expressed greater RORγt expression in both CD8+ and CD4+ T cells.

      Generating a let-7 gain of function mouse with overexpression of let-7g in thymic double-positive-derived T cells, protein levels of RORγt were suppressed in CD8+ and CD4+ T cells of let-7GOF mice relative to controls. Let-7GOF mice treated with nCB showed similar lung alveolar distension as controls suggesting that increased let-7 expression does not protect the lung from emphysema. However, let-7GOF mice showed reduced lung Tc17 and Th17 cell populations and were resistant to the induction of RORγt after nCB exposure.

      Weaknesses:

      Limited data is shown on the let-7afdLOF mice. Does this mouse respond similarly to nCB as the let-7bc2LOF.<br /> Because the authors validate their findings from a previously published RNA-seq dataset in subjects with and without emphysema, the authors should include patient demographics from the data presented in Figure 1C-D.<br /> To validate their mouse models, the absence of Let-7 or enhanced Let-7 expression needs to be shown in isolated T cells from exposed mice.<br /> In Figure 3, the authors are missing the unexposed let-7bc2LOF group from all panels. This is again an issue in Figure 6 with the let-7GOF.<br /> Because the GOF mouse enhances Let-7g within T cells, the importance of Let-7g should be determined in human subjects. Why did the authors choose to overexpress Let-7g, the rationale is not clear.<br /> The purity of the CD4+ and CD8+ T cells is not shown and the full gating strategy should be included.<br /> The authors indicate that Tc17 and Th17 T cells were reduced in the GOF mouse, it remains unclear if macrophage or neutrophil recruitment is altered in GOF mice.

    2. Reviewer #2 (Public Review):

      Summary:

      This valuable study characterizes the requirement for individual let-7 clusters to limit the generation of IL-17 producing CD8 T cells and the severity of emphysema in mouse models. Mature let-7 family miRNAs originate from multiple loci, several of which have been reported and/or are reported here to be downregulated in emphysematous lung tissue and/or lung T cells. The results provided are convincing but incomplete, as the let-7 cluster with the most convincing effects on T cell cytokine production is not tested for effects on disease pathogenesis.

      Let-7 family miRNAs are largely redundant in function and originate from multiple genomic loci ("clusters"). Erice et al demonstrate that two individual clusters (let7afd and let7bc2) in mice regulate the generation of IL-17 producing CD8 T cells in vitro and in vivo in a model of emphysema. These cells also express higher levels of the IL-17-inducing transcription factor RORgt, encoded by Rorc, which the authors demonstrate to be a direct target of let-7. Since multiple let-7 family miRNAs are downregulated in T cells and lung tissue in emphysema, these data support a model in which reduced let-7 allows increased IL-17 production by T cells, contributing to disease pathogenesis.

      Strengths:

      The inclusion of miRNA and pri-miRNA expression data from sorted human lung T cells as well as mouse T cells from an emphysema model is a strength.

      The study includes complementary loss of function and gain of function experimental systems to test the effect of altered let-7 function, though it should be noted that these involved different let-7 family members and did not yield simple, complementary results for all experimental outcomes.

      The most important finding is that deletion of just one let-7 cluster ("Let7bc2") is sufficient to exacerbate emphysema in the nCB and CS models.

      Weaknesses:

      The human miRNA expression data that motivate functional analyses used sorted CD4+ T cells. The authors note that prior work on let-7 showed that it regulates Th17 (CD4) responses, yet this study's functional analyses are all focused on Tc17 (CD8) T cells. Data in this paper show that Tc17 cells are far less numerous than Th17 cells in the nCB and CS models of emphysema.

      Compared with Let7bc2 deletion, Let7afd deletion had a much larger effect on IL17 production by CD8 T cells in vitro, and it also had a larger effect on RORgt expression in untreated mice in vivo, especially in the lung. In the revised manuscript, the authors show that let7afdLOF mice have normal numbers of CD4 and CD8 T cells in the thymus and peripheral lymphoid organs and do not exhibit lung histopathology or inflammatory changes at baseline at least up to 6 months of age. As such, they are set up perfectly to test the requirement for Let7afd in the nCB and/or CS models. These experiments would add strength to the core novelty of this work - demonstration of the functional importance of individual let-7 clusters.

      The authors could do more to explain the complexity of the let7 miRNA family and the genomic clusters examined in this study. In particular, it would help to know the relationship between mouse Let7bc2 and corresponding human Let7 clusters. It would also be very helpful to know the relative expression of each mature let-7 family member in Tc17 cells. Are mature miRNAs derived from the Let7afd cluster more or less abundant?

      The provided evidence for the effect of Let7GOF has an important caveat that came to light during review. Let7g overexpression caused a marked reduction in Rorgt expression in T cells at baseline and in the setting of nCB challenge, and it reduced the frequency of IL17+ producing CD8 T cells in the lung to baseline levels. Yet there was no change in the MLI measurement of histopathology. However, the responses in the experiment shown in Fig. 6C-D are quite muted compared to those shown in Figure 2. In the response to reviewers, the authors speculate that an anti-inflammatory of doxycycline, required for induction of Let7g in this model, "could account for the differences in the magnitude of emphysemic response".

      Although RORgt is a great candidate to have direct effects on IL-17 expression, the mechanistic understanding of let-7 action on T cell differentiation and cytokine production is limited to this single target. As noted in the discussion, others have identified cytokine receptor targets that may play a role, but it is also likely others among the many targets of let-7 also contribute.

    1. Reviewer #1 (Public Review):

      Klupt, Fam, Zhang, Hang and colleagues present a novel study examining the function of sagA in E. faecium, including impacts on growth, peptidoglycan cleavage, cell separation, antibiotic sensitivity, NOD2 activation and modulation of cancer immunotherapy. This manuscript represents a substantial advance over their prior work, where they found that sagA-expressing strains (including naturally-expressing strains and versions of non-expressing strains forced to overexpress sagA) were superior in activating NOD2 and improving cancer immunotherapy. Prior to the current study, an examination of sagA mutant E. faecium was not possible and sagA was thought to be an essential gene.

      The study is overall very carefully performed with appropriate controls and experimental checks, including confirmation of similar densities of ΔsagA throughout. Results are overall interpreted cautiously and appropriately.

    1. Reviewer #1 (Public Review):

      This study presents a genetic and molecular analysis of the role of the cytoplasmic ub ligase Deltex (Dx) in regulating the Drosophila Wingless (Wg) pathway in the larval wing disc. The study exploits the strength of the fly system to uncover a series of genetic interactions between dx and wg and fz allele that support a role for Dx upstream of the Wg pathway. These are paired with molecular evidence that dx lof alleles lower Wg protein in 'source' cells at the DV margin, and that Dx associates with Arm and lowers its levels in a manner that can be rescued by pharmacological inhibition of the proteasome. The genetic data are solid but subject to alternative explanations based on the authors' model that Dx both inhibits and activates the pathway. The molecular data are suggestive, but need follow up tests of how Dx affects Wg spread, and how Dx mediates poly-ub of Arm, and the degree to which Dx shares this role with the validated Arm E3 ligase Slmb. Overall, the story is very interesting but has mechanistic gaps that lead to speculative models that require more rigorous study to clarify mechanism. Dx sharing a role in Arm degradation with the Slmb/APC destruction would have important implications for the many Wg/Wnt regulated processes in development and disease.

    2. Reviewer #2 (Public Review):

      The manuscript investigates the connections between the ubiquitin ligase protein deltex and the wingless pathway. Two different connections are proposed, one is function of deltex to modulate the gradient of wingless diffusion and hence modulate the spatial patter of wingless pathway targets, which regulate at different thresholds of wingless concentration. The second is a direct interaction between deltex and armadillo, a downstream component of the wingless pathway. Deltex is proposed to cause the degradation of armadillo resulting in suppression of wingless pathway activity. The results and conclusions of the manuscript are interesting and for the most part novel, although previously published work linking Notch and deltex to wingless signal regulation, and endocytosis to wingless gradient formation could be more extensively discussed. However neither of the two parts to the manuscript seem, in themselves sufficiently complete, and combining both parts together therefore seems to lack focus.

      The main issue with the manuscript is that much of the conclusions are inferred from genetic interactions in vivo between loss of function mutants and overexpression. While providing useful in vivo physiological context, this type of approach struggles to be able to make definitive conclusions on whether an interaction is due to direct or indirect mechanism, as the authors themselves conclude at the end of section 2.3. The problem is confounded by the fact that there is already documented much cross talk between the Notch signaling pathway and wingless at the transcriptional level, and deltex is already a Notch modulator that can alter wingless mRNA expression (See Hori et al 2004). Deltex in addition to promoting a ligand-independent Notch signal can also induce expression of Notch ligand, allowing further non-autonomous Notch activation and subsequent cell autonomous cis-inhibition of the initial deltex-induced signal. The dynamics and outcomes of the Notch signal response to deltex in vivo is therefore already very complicated to interpret before even considering to unravel indirect (via Notch) and direct interactions with wingless, although the two possibilities are not mutually exclusive. Whilst the revised manuscript does not completely overcome these limitations, further data and quantification have improved the support for the conclusions and there is a wider discussion of the relevant literature. The conclusions are interesting and add significantly to our understanding of the intersections between Wingless, Notch and trafficking regulators in an in vivo context.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an interesting study that utilizes a novel epigenome profiling technology (single molecule imaging) in order to demonstrate its utility as a readout of therapeutic response in multiple DIPG cell lines. Two different drugs were evaluated, singly and in combination. Sulfopin, an inhibitor of a component upstream of the MYC pathway, and Vorinostat, an HDAC inhibitor. Both drugs sensitised DIPG cells, but high (>10 micromolar) concentrations were needed to achieve half-maximal effects. The combination seemed to have some efficacy in vivo, but also produced debilitating side-effects that precluded the measurement of any survival benefit.

      Strengths:

      Interesting use of a novel epigenome profiling technology (single molecule imaging).

      Weaknesses:

      The use of this novel imaging technology ultimately makes up only a minor part of the study. The rest of the results, i.e. DIPG sensitivity to HDAC and MYC pathway inhibition, have already been demonstrated by others (Grasso Monje 2015; Pajovic Hawkins 2020, among others). The drugs have some interesting opposing effects at the level of the epigenome, demonstrated through CUT&RUN, but this is not unexpected in any way. The drugs evaluated here also didn't have higher efficacy, or efficacy at especially low concentrations, than inhibitors used in previous reports. The combination therapy attempted here also caused severe side effects in mice (dehydration/deterioration), such that an effect on survival could not be determined. I'm not sure this study advances knowledge of targeted therapy approaches in DIPGs, or if it iterates on previous findings to deliver new, or more efficient, mechanistic or therapeutic/pharmaclogic insights. It is a translational report evaluating two drugs singly and in combination, finding that although they sensitise cells in vitro, efficacy in vivo is limited at best, as this particular combination cannot progress to human translation.

    2. Reviewer #2 (Public Review):

      Summary:

      The study by Algranati et al. introduces an exciting and promising therapeutic approach for the treatment of H3-K27M pediatric gliomas, a particularly aggressive brain cancer predominantly affecting children. By exploring the dual targeting of histone deacetylases (HDACs) and MYC activation, the research presents a novel strategy that significantly reduces cell viability and tumor growth in patient-derived glioma cells and xenograft mouse models. This approach, supported by transcriptomic and epigenomic profiling, unveils the potential of combining Sulfopin and Vorinostat to downregulate oncogenic pathways, including the mTOR signaling pathway. While the study offers valuable insights, it would benefit from additional clarification on several points, such as the rationale behind the dosing decisions for the compounds tested, the specific contributions of MYC amplification and H3K27me3 alterations to the observed therapeutic effects, and the details of the treatment protocols employed in both in-vitro and in-vivo experiments.

      Clarification is needed on how doses were selected for the compounds in Figure S2A and throughout the study. Understanding the basis for these choices is crucial for interpreting the results and their potential clinical relevance. IC50s are calculated for specific patient derived lines, but it is not clear how these are used for selecting the dose.

      The introduction mentions MYC amplification in high-grade gliomas. It would be beneficial if the authors could delineate whether the models used exhibit varying degrees of MYC amplification and how this factor, alongside differences in H3K27me3, contributes to the observed effects of the treatment.

      In Figure 2A, the authors outline an optimal treatment timing for their in vitro models, which appears to be used throughout the figure. It would be helpful to know how this treatment timing was selected and also why Sulfopin is dosed first (and twice) before the vorinostat. Was this optimized?

      It should be clarified whether the dosing timeline for the combination drug experiments in Figure 3 aligns with that of Figure 2. This information is also important for interpreting the epigenetic and transcriptional profiling and the timing should be discussed if they are administered sequentially (also shown in Figure 2A).I have the same question for the mouse experiments in Figure 4.

      The authors mention that the mice all had severe dehydration and deterioration after 18 days. It would be helpful to know if there were differences in the side effects for different treatment groups? I would expect the combination to be the most severe. This is important in considering the combination treatment.

      Minor Points:

      (1) For Figure 1F, reorganizing the bars to directly compare the K27M and KO cell lines at each dose would improve readability of this figure.

      (2) In Figure 4D, it would be helpful to know how many cells were included (or a minimum included) to calculate the percentages.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors use in vitro grown cells and mouse xenografts to show that a combination of drugs, Sulfopin and Vorinostat, can impact the growth of cells derived from Diffuse midline gliomas, in particular the ones carrying the H3 K27M-mutations (clinically classified as DMG, H3 K27M-mutant). The authors use gene expression studies, and chromatin profiling to attempt to better understand how these drugs exert an effect on genome regulation. Their main findings are that the drugs reduce cell growth in vitro and in mouse xenografts of patient tumours, that DMG, H3 K27M-mutant tumours are particularly sensitive, identify potential markers of gene expression underlying this sensitivity, and broadly characterize the correlations between chromatin modification changes and gene expression upon treatment, identifying putative pathways that may be affected and underlie the sensitive (and thus how the drugs may affect the tumour cell biology).

      Strengths:

      It is a neat, mostly to-the-point work without exploring too many options and possibilities. The authors do a good job not overinterpreting data and speculating too much about the mechanisms, which is a very good thing since the causes and consequences of perturbing such broad epigenetic landscapes of chromatin may be very hard to disentangle. Instead, the authors go straight after testing the performance of the drugs, identifying potential markers and characterizing consequences.

      Weaknesses:

      If anything, the experiments done on Figure 3 could benefit from an additional replicate.

    1. Reviewer #1 (Public Review):

      The study provides strong evidence that some genes are conditionally essential in urine because of iron limitation.

      The authors raise the intriguing possibility that some mutants can "cheat" by benefitting from the surrounding cells that are phenotypically wild-type. The authors make it clear that the proposed cheating mechanism is speculation, but there is a missed opportunity to test this hypothesis. I did not understand the authors' rationale for not doing this experiment.

      In cases where there are disparities between studies, e.g., for genes inferred to be essential for serum resistance, it would be informative to test individual deletions for genes described as essential in only one study. The authors argue this is beyond the scope of the study. Their conclusions of the study are not impacted by the absence of these experiments, but readers will be left wondering which lists of conditionally essential genes are correct, or whether there are strain-dependent or condition-dependent contexts that influence conditional essentiality.

    2. Reviewer #3 (Public Review):

      In this study Gray and coworkers use a transposon mutant library in order to define: (i) essential genes for K. pneumoniae growth in LB medium, (ii) genes required for growth in urine, (iii) genes required for resistance to serum and complement mediated killing. Although there are previous studies, using a similar strategy, to describe essential genes for K. pneumoniae growth and genes required for serum resistance, this is the first work to perform such a study in urine. This is important because these types of pathogens can cause urinary tract infections. Moreover, the authors performed the work using a highly saturated library of mutants, which makes the results more robust, and used a clinically relevant strain from a pathotype for which similar studies have not been performed yet. Besides applying the transposon mutant library coupled with high-throughput sequencing, the authors validate some of the most relevant genes required for each condition using targeted mutagenesis. This is an important step to confirm that the results obtained from the library are reliable. Although this was done for only a small subset of the most significant genes. In addition, in vitro experiments involving complementation of urine with iron provide additional support to the results obtained with the mutants suggesting the importance of genes required for iron acquisition in a limiting-iron environment such as urine. Overall, the study is well-designed and written, and the methodology and analysis performed are adequate. The study would have benefited from in vivo experiments, including a mouse model of bacterial sepsis or urinary tract infections which could have demonstrated the role of some of the identified genes in the infection process. Nevertheless, the results obtained are informative for the scientific community since they pinpoint genes potentially more relevant in infections caused by K. pneumoniae. The identified genes could represent future targets for developing new therapies against a type of pathogen that is acquiring resistance to all available antibiotics. Although, as mentioned above, these potential targets should be confirmed using in vivo models.

      One potential weakness of the work is that the TnSeq analysis only included two replicates per condition, thus it is possible that some of the differences detected may not be reproducible in future studies, first of all those that are less significant. In this sense, hundreds of genes were detected to be theoretically relevant for bacterial resistance to complement in serum. It is possible that some of these genes represent false positives. Thus, confirmation of the relevance of these genes in resistance to complement should be performed in future studies.

    1. Reviewer #2 (Public Review):

      This manuscript illustrates the power of "combined" research, incorporating a range of tools, both old and new to answer a question. This thorough approach identifies a novel target in a well-established signalling pathway and characterises a new player in Drosophila CNS development.

      Largely, the experiments are carried out with precision, meeting the aims of the project, and setting new targets for future research in the field. It was particularly refreshing to see the use of multi-omics data integration and Targeted DamID (TaDa) findings to triage scRNA-seq data. Some of the TaDa methodology was unorthodox, however, this does not affect the main finding of the study. The authors (in the revised manuscript) have appropriately justified their TaDa approaches and mentioned the caveats in the main text.

      Their discovery of Spar as a neuropeptide precursor downstream of Alk is novel, as well as its ability to regulate activity and circadian clock function in the fly. Spar was just one of the downstream factors identified from this study, therefore, the potential impact goes beyond this one Alk downstream effector.

    2. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith. Yet, some small concerns remain around the behavioural analysis.

      In Fig. 8H and H' average sleep/day is ~100. Is this minutes of sleep? 100 min/day is far too low, is it a typo?

      The numbers for sleep bouts are also too low to me e.g. in Fig 9 number of sleep bouts avg around 4.

      In their response to reviewers the authors say these errors were fixed, yet the figures appear not to have been changed. Perhaps the old figures were left in inadvertently?

      The circadian anticipatory activity analyses could also be improved. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). This typically computed as the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition.

      In their response to reviewers, the authors have revised their anticipation analyses by quantifying the mean activity in the 6 hrs preceding light transition. However, in the method of Harrisingh et al., anticipation is the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition. Simply computing the activity in the 6hrs preceding light transition does not give a measure of anticipation, determining the ratio is key.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper explores the contribution of transgenerational effects to phenotypic variation in twenty-five phenotypes and transcript variation in the heart, liver, pituitary, whole embryo, and placenta. The authors use a powerful design, exploiting the use of consomics, and argue that there are no observable changes attributable to the differences in the parental origin of the four chromosomes they examine.

      Strengths:<br /> It's good to see a use for consomics. This is a powerful and useful design to address the problem they are tackling.

      Weaknesses:<br /> The difficulty faced by the authors is that they have interrogated only a small portion of the genome, using bulk RNA sequencing and a set of correlated phenotypes, thus restricting the conclusions they can draw from the absence of significant findings.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Gularte-Merida et al investigate the occurrence of transgenerational effects of non-transmitted parental alleles outside of the well-described effect of "genetic nurture." To achieve this they employed consomic male mice to generate an N2 and N3 population, allowing for the observation of effects due to non-transmitted paternal alleles while controlling for maternal care by using isogenic B6 dams. The authors conduct RNAseq, qPCR validation, and anatomical phenotyping measures to investigate the presence of non-genetic nurture TGE. The author's findings challenge the frequency of non-genetic nurture TGE, a meaningful contribution to the field. Overall, this is an ambitious study with important negative data. The authors are to be commended on this. This greatly strengthens the negative findings within the paper.

      The paper, however, is written extremely technically, with little detail, and is not currently suitable for the lay audience. The authors need to greatly increase the clarity of the writing and data presentation.

      Strengths:

      Elegant experimental design using consomic mouse populations.

      The use of a second replication cohort using the same genetic founders as the first study.

      Weaknesses:

      While much of the explanation of the methods is understandable by geneticists, the paper has implications outside of the genetics field. Overall, I suggest expanding the explanation and language for non-geneticists. This will allow the paper to reach a wider audience.

    3. Reviewer #3 (Public Review):

      Summary:

      Gularte-Mérida and colleagues took advantage of the existence of so-called consomic strains in the mouse, which result from the substitution of one of their chromosomes by that of another strain, to ask through appropriate crosses whether information carried by this substitution chromosome impacts progeny that do not inherit it. With one exception, the authors did not detect any significant effect for any of the four non-transmitted chromosomes tested. Given these results, the authors conclude that such effects, if they exist, must be extremely rare in the mouse.

      Strengths:

      This is a very convincing and impressive study, with effects assessed in almost 2500 mice. The negative results obtained should put to rest once and for all the notion that intergenerational, let alone transgenerational, non-DNA sequence-based inheritance via the male germline could be substantial in the mouse.

      Weaknesses:

      The terminology used (epigenetics, nurture-independent TGE, etc. ) is somewhat confusing and unnecessary.

    1. Joint Public Review:

      This manuscript by Yue et al. aims to understand the molecular mechanisms underlying the better reproductive outcomes of Tibetans at high altitude by characterizing the transcriptome and histology of full-term placenta of Tibetans and compare them to those Han Chinese at high elevations.

      The approach is innovative, and the data collected are valuable for testing hypotheses regarding the contribution of the placenta to better reproductive success of populations that adapted to hypoxia. The authors identified hundreds of differentially expressed genes (DEGs) between Tibetans and Han, including the EPAS1 gene that harbors the strongest signals of genetic adaptation. The authors also found that such differential expression is more prevalent and pronounced in the placentas of male fetuses than those of female fetuses, which is particularly interesting, as it echoes with the more severe reduction in birth weight of male neonates at high elevation observed by the same group of researchers (He et al., 2022).

      This revised manuscript addressed several concerns raised by reviewers in last round. However, we still find the evidence for natural selection on the identified DEGs--as a group--to be very weak, despite more convincing evidence on a few individual genes, such as EPAS1 and EGLN1.

      The authors first examined the overlap between DEGs and genes showing signals of positive selection in Tibetans and evaluated the significance of a larger overlap than expected with a permutation analysis. A minor issue related to this analysis is that the p-value is inflated, as the authors are counting permutation replicates with MORE genes in overlap than observed, yet the more appropriate way is counting replicates with EQUAL or MORE overlapping genes. Using the latter method of p-value calculation, the "sex-combined" and "female-only" DEGs will become non-significantly enriched in genes with evidence of selection, and the signal appears to solely come from male-specific DEGs. A thornier issue with this type of enrichment analysis is whether the condition on placental expression is sufficient, as other genomic or transcriptomic features (e.g., expression level, local sequence divergence level) may also confound the analysis.

      The authors next aimed to detect polygenic signals of adaptation of gene expression by applying the PolyGraph method to eQTLs of genes expressed in the placenta (Racimo et al 2018). This approach is ambitious but problematic, as the method is designed for testing evidence of selection on single polygenic traits. The expression levels of different genes should be considered as "different traits" with differential impacts on downstream phenotypic traits (such as birth weight). As a result, the eQTLs of different genes cannot be naively aggregated in the calculation of the polygenic score, unless the authors have a specific, oversimplified hypothesis that the expression increase of all genes with identified eQTL will improve pregnancy outcome and that they are equally important to downstream phenotypes. In general, PolyGraph method is inapplicable to eQTL data, especially those of different genes (but see Colbran et al 2023 Genetics for an example where the polygenic score is used for testing selection on the expression of individual genes).

      We would recommend removal of these analyses and focus on the discussion of individual genes with more compelling evidence of selection (e.g., EPAS1, EGLN1)

    1. Reviewer #1 (Public Review):

      In the study described in the manuscript, the authors identified Mecp2, a methyl-CpG binding protein, as a key regulator involved in the transcriptional shift during the exit of quiescent cells into the cell cycle. Their data show that Mecp2 levels were remarkably reduced during the priming/initiation stage of partial hepatectomy-induced liver regeneration and that altered Mecp2 expression affected the quiescence exit. Additionally, the authors identified Nedd4 E3 ligase that is required for downregulation of Mecp2 during quiescence exit. This is an interesting study with well-presented data that supports the authors' conclusions regarding the role of Mecp2 in transcription regulation during the G0/G1 transition. However, the significance of the study is limited by a lack of mechanistic insights into the function of Mecp2 in the process. This weakness can be addressed by identifying the signaling pathway(s) that trigger Mecp2 degradation during the quiescence exit.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors reported that miR-199b-5p is elevated in osteoarthritis (OA) patients. They also found that overexpression of miR-199b-5p induced OA-like pathological changes in normal mice and inhibiting miR-199b-5p alleviated symptoms in knee OA mice. They concluded that miR-199b-5p is not only a potential micro target for knee OA, but also provides a potential strategy for future identification of new molecular drugs.

      Strengths:

      The data are generated from both human patients and animal models. The data presented in this revised manuscript is solid and support their conclusions. The questions from reviewers are also properly addressed and the quality of this manuscript has been significantly improved.

      There are no significant weaknesses identified in this revised manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      The Authors identified miR-199b-5p is a potential OA target gene using serum exosomal small RNA-seq from human healthy and OA patients. Their RNA-seq results were further compared with publicly available datasets to validate their finding of miR-199b-5p. In vitro chondrocyte culture with miR-199b-5p mimic/inhibitor and in vivo animal models were used to evaluate the function of miR-199b-5p in OA. The possible genes that were potentially regulated by miR-199b-5p were also predicted (i.e., Fzd6 and Gcnt2) and then validated by using Luciferase assays.

      Strengths:

      (1) Strong in vivo animal models including pain tests.<br /> (2) Validate the binding of miR-199b-5p with Fzd6 and binding of miR-199b-5p with Gcnt2

      The authors have addressed my concerns.

    1. Reviewer #1 (Public review):

      The key discovery of the manuscript is that the authors found that genetically wild type females descended from Khdc3 mutants shows abnormal gene expression relating to hepatic metabolism, which persist over multiple generations and pass through both female and male lineages. They also find dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with Khdc3 mutant ancestry. These data provide solid evidence further support that phenotype can be transmitted to multiple generations without altering DNA sequence, supporting the involvement of epigenetic mechanisms. The authors further performed exploratory studies on the small RNA profiles in the oocytes of Khdc3-null females, and their wild type descendants, suggesting that altered small RNA expression could be a contributor of the observed phenotype transmission, although this has not been functionally validated.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript aimed to investigate the non-genetic impact of KHDC3 mutation on the liver metabolism. To do that they analyzed the female liver transcriptome of genetically wild type mice descended from female ancestors with a mutation in the Khdc3 gene. They found that genetically wild type females descended from Khdc3 mutants have hepatic transcriptional dysregulation which persist over multiple generations in the progenies descended from female ancestors with a mutation in the Khdc3 gene. This transcriptomic deregulation was associated with dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with female mutational ancestry. Furthermore, to determine whether small non-coding RNA could be involved in the maternal non-genetic transmission of the hepatic transcriptomic deregulation, they performed small RNA-seq of oocytes from Khdc3-/- mice and genetically wild type female mice descended from female ancestors with a Khdc3 mutation and claimed that oocytes of wild type female offspring from Khdc3-null females has dysregulation of multiple small RNAs.

      Finally, they claimed that their data demonstrates that ancestral mutation in Khdc3 can produce transgenerational inherited phenotypes.

      However, at this stage and considering the information provided in the paper, I think that these conclusions are too preliminary. Indeed, several controls/experiments need to be added to reach those conclusions.

      Additional context you think would help readers interpret or understand the significance of the work<br /> • Line 25: this first sentence is very strong and needs to be documented in the introduction.<br /> • Line 48: Reference 5 is not appropriate since the paper shows the remodeling of small RNA during post-testicular maturation of mammalian sperm and their sensibility to environment. Please, change it<br /> • Line 51: "implies" is too strong and should be replaced by « suggests »<br /> • Line 67: reference is missing<br /> Database, the accession numbers are lacking.<br /> • References showing the maternal transmission of non-genetically inherited phenotypes in mice via small RNA need to be added<br /> • Line 378: All RNA-Seq and small RNA-Seq data are available in the NCBI GEO

    1. Reviewer #1 (Public Review):

      Summary:

      In their article entitled "Formin-like 1 beta phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse", Javier Ruiz-Navarro and co-workers address the question of the mechanisms regulating the polarization of the microtubule organizing center (MTOC) and of the multivesicular bodies (MVB) at the immunological synapse (IS) in T lymphocytes.

      This work is a follow-up of previous studies published by the same team showing that TCR-stimulated protein kinase C delta(PKCdelta) phosphorylates FMNL1beta, which plays a crucial role in cortical actin reorganization at the IS, and controls MTOC/MVB polarization and thus exosome secretion by T lymphocytes at the IS.

      The authors first compare the amino acid sequences of FMNL2 and of FMNL1beta, to seek similarities in the DID-DAD auto-inhibition sequences and find that the sequence surrounding S1086 in the arginine-rich DAD of FMNL1beta displays high similarity to that around S1072 in FMNL2 which is phosphorylated by PKCdelta. They then interrogate the role of the phosphorylation of S1086 in the arginine-rich DAD of FMNL1betaby introducing S1086A and S1086D mutations that, respectively, cannot be phosphorylated or mimic the phosphorylated form of FMNL1beta, in cells expressing an FMNL1 shRNA.

      Using these tools, they show that:

      - FMNL1beta is phosphorylated by PMA an activator of PKCs.

      - The S1086A mutant of FMNL1beta does not restore the defect in MTOC and MVB polarization at the IS present in FMNL1 deficient T cells, whereas the phosphomimetic mutant does.

      - Although FMNL1betaphosphorylation at S1086 is necessary, it is not sufficient for MTOC polarization, since it does not restore the defect of polarization observed in PKCdelta deficient T cells.

      - FMNL1b translocates to the IS. This neither requires PKC expression nor phosphorylation of S1086.

      - Phosphorylation of FMNL1betaon S1086 regulates actin remodeling at the immune synapse.

      - Phosphorylation of FMNL1betaon S1086 regulates secretion of extracellular vesicles containing CD63 by T lymphocytes.

      Strengths:

      This work shows for the first time the role of the phosphorylation of FMNL1beta on S1086 on the regulation of the IS formation and secretion of extracellular vesicles by T lymphocytes.

      Weaknesses:

      Although of interest, this work has several weaknesses. First, all the experiments are performed in Jurkat T cells that may not recapitulate the regulation of polarization in primary T cells. Moreover, all the experiments analyzing the role of PKCdelta are performed in one clone of wt or PKCdelta KO Jurkat cells. This is problematic since clonal variation has been reported in Jurkat T cells. Moreover, the remodeling of F-actin at the IS lacks careful quantification as well as detailed analysis of the actin structure in mutant cells. Finally, although convincing, the defect in the secretion of vesicles by T cells lacking phosphorylation of FMNL1beta on S1086 is preliminary. It would be interesting to analyze more precisely this defect. The expression of the CD63-GFP in mutants by WB is not completely convincing. Are other markers of extracellular vesicles affected, e.g. CD3 positive?

    2. Reviewer #2 (Public Review):

      Summary:

      The authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization, and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. This is based on:<br /> (1) the documented role of FMNL1 proteins in IS formation;<br /> (2) their ability to regulate F-actin dynamics;<br /> (3) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation;<br /> (4) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified.

      They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance, and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      The data on F-actin clearance in Jurkat T cells knocked down for FMNL1 and expressing wild-type FMNL1 or the non-phosphorylatable or phosphomimetic mutants thereof would need to be further strengthened, as this is a key message of the manuscript. Also, the entire work has been carried out on Jurkat cells. Although this is an excellent model easily amenable to genetic manipulation and biochemical studies, the key finding should be validated on primary T cells.

    1. Reviewer #3 (Public Review):

      In this important work, the authors show compelling evidence that the Rapid Alkalinisation Factor1 (RALF1) peptide acts as an interlink between pectin methyl esterification status and FERONIA receptor-like kinase in mediating extracellular sensing. Moreover, the RALF1-mediated pectin perception is surprisingly independent of LRX-mediated extracellular sensing in roots. The authors also show that the peptide directly binds demethylated pectin and the positively charged amino acids are required for pectin binding as well as for its physiological activity.

      Some present findings are surprising; previously, the FERONIA extracellular domain was shown to bind pectin directly, and the mode of operation in the pollen tube involves the LRX8-RALF4 complex, which seems not the case for RALF1 in the present study. Although some aspects remain controversial, this work is a very valuable addition to the ongoing debate about this elusive complex regulation and signaling.

      The authors drafted the manuscript well, so I do not have a lot of criticism or suggestions. The experiments are well-designed, executed, and presented, and they solidly support the authors' claims.

    2. Reviewer #1 (Public Review):

      Summary:

      Rößling et al., report in this study that the perception of RALF1 by the FER receptor is mediated by the association of RALF1 with deesterified pectin, contributing to the regulation of the cell wall matrix and plasma membrane dynamics. In addition, they report that this mode of action is independent from the previously reported cell wall sensing mechanism mediated by the FER-LRX complex.

      This manuscript reproduces and aligns with the results from a recently published study (Liu et al., Cell) where they also report that RALF1 can interact with deesterified pectin, forming coacervates and promoting the recruitment of LLG-FER at the membrane.

    3. Reviewer #2 (Public Review):

      Summary:

      The study by Rößling et al. addresses the link between the biochemical constitution of the cell wall, in particular the methylesterification state of pectin with signalling induced by the extracellular RALF peptide. The work suggests that only in the presence of demethylesterifies pectin, RALF is able to trigger activation of its receptor FERONIA (FER).

      Remarkably, the application of RALF peptides leads to rather dramatic FER-dependent changes in wall integrity and plasma membrane invaginations not observed before. Interestingly, RALF can be out-titrated from the wall by short pectin fragments. In addition, the study provides further evidence for multiple FER-dependent pathways by showing the presence of LRX proteins is not required for the pectin/RALF mediated signalling.

      Strengths:

      This work provides fundamental insight into a complex emerging pathway, or perhaps several pathways, linking pectin sensing, pectin structure and RALF/FER signalling. The study provides convincing evidence that pectin methylesterase activity is required for RALF sensing, indicating that the physical interaction of RALFs with the cell wall is important for signalling. Beyond that, the study documents very clearly how profoundly RALF signalling can affect cell wall integrity and membrane topology.

      Weaknesses:

      The genetic material used by the authors to strengthen the connection of RALF signalling and PME activity might not be as suitable as an acute inhibition of PME activity.

      The PMEI3ox line generated by Peaucelle et al., 2008 is alcohol-inducible. Was expression of the PMEI induced during the experiments? As ethanol inducible systems can be rather leaky, it would not be surprising if PME activity would be reduced even without induction, but maybe this would warrant testing whether PMEI3 is actually overexpressed and/or whether PME activity is decreased. On a similar note, the PMEI5ox plants do not appear to show the typical phenotype described for this line. I personally don't think these lines are necessary to support the study. Short-term interference with PME activity (such as with EGCG) might be more meaningful than life-long PMEI overexpression, in light of the numerous feedback pathways and their associated potential secondary effects. This might also explain why EGCG leads to an increase in pH, as one would expect from decreased PME activity, while PMEI expression (caveats from above apply) apparently does not (Fig 3A-D).

      At least at first sight, the observation that OGs are able to titrate RALF from pectin binding seems at odds with the idea of cooperative binding with low affinity, leading to high avidity oligomers. Perhaps the can provide a speculative conceptual model of these interactions?

      I could not find a description of the OG treatment/titration experiments, but I think it would be important to understand how these were performed with respect to OG concentration, timing of the application, etc.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors report evidence for a microprotein of AtHB2-miP. The authors came across HB2 in a screen for alternative transcription start sites in Arabidopsis in response to white light or a white light followed by a far red light representative of shade. Out of 337 potential microproteins, authors selected AtHB2. At the beginning of the manuscript, it is investigated that an alternative transcription start site of HB2 gene can be used in response to far red light. The resulting shorter protein form seems to interact with HB2 protein forms, altering the localization of HB2 in transient expression assays. The functionality of HB2-miP overexpression has been addressed in transgenic Arabidopsis lines using a 35S promoter. The responses and phenotypes were compared with either WT or various types of athb2 mutant lines with disrupted HB2 gene. Such mutants and the 35S promoter-driven AtHB2-miP line showed various types of phenotypes versus each other that can be classified as mild or none, e.g. small effects on root growth, iron homeostasis gene expression, and iron contents.

      Strengths:

      The authors performed an interesting screen for alternative transcription start sites which resulted in 337 candidates (Figure 1A). Principally, it can be interesting to find that plants may use alternative start sites for HB2 in response to shading light. The authors provide evidence that alternative transcription start sites of HB2 can be present and used in response to FR. The possibility that potentially resulting small protein may have effects under FR light, causing alteration of root growth and physiology, is an interesting idea.

      Weaknesses:

      In the present manuscript, there are several signs of incomplete analysis.

      (1) The transient expression experiments are not conducted with much detail to demonstrate that indeed HB2 miP is produced and can interact with regular protein. The localization of HB2 was found to be linked with condensates, but perhaps not in the presence of HB2 miP. Clearly, the lack of quantitative and qualitative analysis hampers a clear assessment of this point.

      (2) The authors, unfortunately, did not provide the data of the screen to demonstrate which concrete candidates may have miPs and whether there is enrichment of certain functions. There is no supplemental table accompanying Figure 1A.

      (3) One of the major unclear points that is also not addressed in the discussion is that the function of miR is studied in overexpression plants (35S promoter::miP). The effects are only compared to wild type and various lines of HB2 knockouts or knockdowns, partly with fairly uncharacterized phenotypes. It can now not be clearly determined whether the miP effects are due to a regular function of miP or due to overexpression of it. A needed control would be a 35S::AtHB2 line, or better at least two different lines (only a single miP overexpression line investigated). Since it has not been assessed by deletion mutant analysis to determine which protein parts of miP are involved in the protein regulation, it cannot be ruled out that the observed miP effects are not naturally occurring but the result of ectopic expression of a protein. Clearly, the effect of miP would be ideally studied in an environment where the levels can be controlled and the resulting phenotypes and protein levels quantified.

      (4) It is not shown that the microprotein is generated in Arabidopsis in response to shade, e.g. through Western or fluorescence protein detection. The main idea that authors want to claim, namely that miP binds with regular protein and thereby controls its localization or activity has not been addressed in Arabidopsis. There are no localization experiments of HB2 protein data in the presence of miP in Arabidopsis.

      (5) The plants with altered HB2 forms seem to grow well and the recorded phenotypes are rather minor. Photos are not shown. At some point, the authors discuss that there could be redundancy or that HB miP might interact with other HB proteins. However, such protein interactions have not been experimentally investigated.

    2. Reviewer #2 (Public Review):

      The first portion of the manuscript centered on identifying and confirming the ATHB2 microprotein (ATHB2miP), which constitutes the core message of this study. Overall, I find no issue with the selection criteria employed for identifying alternative microprotein mRNA transcripts. However, I do have some queries that I hope the authors can address for clarity.

      (1) Upon reviewing the supplemental dataset where the authors listed the 377 unique novel miPs, along with those specifically in WL or shade treatments, I sought to comprehend the rationale behind focusing on ATHB2. Have the authors examined the shade response of all 377 potential microprotein candidates? Readers may be intrigued to learn how many of these candidates exhibit induction or repression under shade conditions, and whether such changes correlate positively or negatively with alterations in the full-length TSSs in response to shade. Essentially, I aim to discern the prevalence of microprotein production during shade responses and any shared characteristics among these microprotein transcripts. This inquiry also aims to uncover the existence of a common mechanism regulating microprotein transcription.

      (2) To confirm that ATHB2miP stems from an independent transcription event, the authors sequenced full-length cDNAs using PacBio isoseq. However, I find the information regarding isoseq missing from the manuscript. My assumption is that the full-length cDNAs were reverse transcribed from mRNAs isolated from whole seedlings, where mature mRNAs in the cytoplasm predominate, making it challenging to evaluate whether a specific mRNA undergoes post-transcriptional processing. One approach to confirming ATHB2miP as a product of independent transcription involves examining nascent mRNA produced in the nucleus. The authors may need to isolate nascent mRNAs associated with RNA Polymerase II in the nucleus from seedlings treated with shade for 45 min, and then perform reverse transcription and PacBio isoseq.

      (3) The authors noted the identification of two potential start codons, TTG and CTG, in the alternative TSS of ATHB2 using TISpredictor. Yet, it's imperative to identify the actual translation initiation site and the full-length sequence of ATHB2miP. I suggest the authors fuse an epitope tag (e.g., 3xFLAG) to the C-terminus of ATHB2 (utilizing the genomic sequence of ATHB2) and generate transgenic lines to be treated with shade to induce ATHB2miP-3xFLAG production. Affinity purification (anti-FLAG beads) and mass spectrometry can then identify the actual start site of ATHB2miP. This step is crucial, as the current ATHB2miP used may not be the exact sequence, and any observed phenotype could be artifacts arising from these lines.

      (4) My confusion arose when analyzing the results in Figures 1E - G. The authors didn't specify whether these plants were subjected to shade treatment. What are the sequences within the second intron and third exon excluded from pATHB2control::GUS that promote transcription and translation? Have the authors examined the sequence features? This information is pivotal and related to the above question #1 because it may tell us whether the sequence feature is shared by other miP candidates.

      The latter part of the manuscript focused on the functional characterization of ATHB2miP. The approaches adopted by the authors resemble those used in studying antimorphic (dominant negative) alleles. However, I have several concerns regarding the approaches and conclusions.

      (5) Firstly, as mentioned in question #3, the authors did not map the actual translation initiation site of ATHB2miP. Therefore, all constructs involving ATHB2miP, such as eGFP-ATHB2miP, BD-ATHB2miP, and mCherry-ATHB2miP in Figure 2, and 35S::miP in Figures 3-5, may contain extra amino acids in the N-terminus, given that epitope tags were all added to the N terminus. These additional amino acids could potentially impact the behavior of ATHB2miP and lead to artifacts. Identifying the translation initiation site in ATHB2miP would facilitate the development of tools to disrupt ATHB2miP expression without affecting full-length ATHB2 expression. For instance, if the "CTG" before the leucine zipper domain is confirmed as the translation initiation site, mutating it to another Leu codon (e.g., TTA) could generate transgenic lines using the genomic sequence of ATHB2, including this mutation, to evaluate the impact of losing ATHB2miP on shade responses.

      (6) Another concern pertains to the 35S::miP line utilized in Figures 3-5. The authors only presented results from one 35S::miP line, raising the possibility of T-DNA insertion disrupting an endogenous gene in the transgenic plant genome. It is essential to clarify how many individual T1 plants were generated and how many of them showed the same phenotype as the line used in the manuscript. Additionally, the use of the constitutive CaMV35S promoter could generate artifacts akin to neomorphic mutations. For example, the authors identified Cluster 1 genes that were only induced in 35S::miP, but not in t-athb2 or WT plants (Figure 3B); moreover, they found an overrepresentation of genes involved in root development in this cluster. This observation correlated well with the root phenotype of 35S::miP under the proximity shade (Figure 4D), in which the short-root phenotype was only observed in lines expressing 35S::miP. These data could be artifacts due to the constitutive expression of ATHB2miP in roots but didn't necessarily reflect the natural function of ATHB2miP.

      (7) Furthermore, I seek clarification regarding the rationale behind employing different shade conditions, including deep shade, canopy shade, and proximity shade, and the significance of treating plants with these conditions. The results were challenging to interpret, and I have reservations about some statements made. The authors claimed that ATHB2 acts as a growth repressor in deep shade but a growth promoter in the canopy and proximity shade (Lines 366-368). However, it appears that regardless of the shade conditions, most mutant and transgenic lines were not significantly different from WT (Figure 4C). Additionally, the definition of proximity shade in this manuscript (R:FR = 0.06) differs from that in Roig-Villanova & Martinez-Garcia (Front. Plant Sci., 2016; R:FR, 0.5-0.3). Clarity on this disparity would be appreciated.

      (8) In Figure 5, no statistical analyses were presented in Figure 5C. It remains unclear whether the differences observed are statistically significant. Moreover, the values appear quite similar among all three genotypes. Even if statistically significant, do these minor differences in Fe concentrations significantly impact plant physiology? Additionally, some statements related to Figure 5 do not align with the data presented. For instance, claims about longer hypocotyls in t-athb2, athb2∆, and atbh2∆LZ mutants compared to wild type under shade conditions on high iron media (lines 453-455) were not supported by the data in Figure 5D. Similarly, statements about the differences between mutants (lines 458-460) were not substantiated by the data.

    3. Reviewer #3 (Public Review):

      Summary and Strengths:

      In this interesting manuscript, the authors identify a large number of alternative transcription start sites (TSS) and focus their functional analysis on an alternative TSS that is expected to produce a micro-protein (miP) encoding the C-terminus of ATHB2 (ATHB2miP). ATHB2miP is expected to comprise the leucine zipper part of ATHB2 and hence interact with the full-length protein through this dimerization motif. Such interactions are shown using yeast two-hybrid and FRET-FLIM assays. ATHB2 is a well-known shade-induced gene that has been implicated in shade-regulated growth responses. The authors then test the potential role for ATHB2miP genetically by comparing several athb2 loss-of-function (LOF) alleles: one does not express either full-length ATHB2 or the short ATHB2miP (t-ATHB2), two CRISPR alleles give rise to frameshift mutations in the full-length transcript but still express a potentially functional short ATHB2miP (athb2deltaLZ and athb2delta). The authors also use plants that over and ectopically express ATHB2miP (35S:miP). Overall, the results are consistent with the hypothesis that ATHB2miP inhibits the function of ATHB2, which constitutes a novel negative feedback loop. Potentially ATHB2miP may also inhibit the activity of other related HD ZIP proteins (based on 35S:miP). The effects of these genetic alterations on shade-regulated hypocotyl growth are relatively modest. Effects on root growth are also investigated and in one intriguing case, the negative feedback model does not appear to explain the data (Figure 4D, effect on lateral roots, because for this phenotype 35S:miP is very different from the lof alleles). The authors also identify a potentially interesting link between shade-regulated hypocotyl growth and iron uptake. A number of text changes and corrections to the figures would be important for clarity. They primarily concern three issues: names of the alleles, names of the studied shade conditions, and statements about significant differences between genotypes. Also, it would be interesting to know whether the effects of ATHB2 on iron uptake are due to local effects of ATHB2. Is ATHB2 expressed in roots?

      Weaknesses:

      (1) The naming of the different shade conditions is difficult to follow and not consistent with the way most authors in the field call such conditions. Deep shade is ok (low PAR and low R/FR, WL, PAR 13microE, R/FR 0.13). This condition is clearly defined for experiments in Figure 4. However, data in Figure 1 also use Deep shade (line 174) but PAR is not defined there. I suggest that all light conditions are clearly defined in the figure legends and in the M&M (not the case in this ms). Regarding Canopy shade (WL, PAR 45microE, R/FR 0.15) and proximity shade (WL, PAR 45microE, R/FR 0.06), see lines 355-357, this nomenclature is unclear. First proximity shade has a higher R/FR ratio than canopy shade. Second for canopy shade (compared to the WL control) PAR should decrease which is not what is done here. What is called proximity shade and canopy shade are 2 WL conditions with different R/FR ratios, which are compared to WL controls with the same PAR. It would make more sense to call them proximity shade and indicate the different R/FR ratios. Finally, extensive literature from many plant species and numerous labs has shown that hypocotyl elongation increases with R/FR decreasing. In the data shown in Figure 4, it is the opposite. Hypocotyls in Canopy shade (WL, PAR 45microE, R/FR 0.15) are longer than those in proximity shade (WL, PAR 45microE, R/FR 0.06), while with these R/FR ratios the opposite is expected. Could this be a mistake in the text? Please check.

      (2) In several instances (in particular regarding data from Figures 4 and 5), the authors write that 2 genotypes are significantly different while the statistical analysis of the data does not support such statements. For example lines 392-395, the authors write that in WL the t-DNA mutant, both CRISPR mutants and 35S:miP lines all had significantly lower number of lateral roots than the WT. This is true for the t-DNA mutant (group bc, while the WT is in group a), however, all other genotypes are in group ab, hence not significantly different from the WT. Please carefully check all such statements about significant differences.

      (3) The naming of the CRISPR mutants is problematic. In particular athb2delta, such a name suggests that the gene is deleted (also suggested by Figure 4A), which is not the case in this CRISPR allele leading to a frameshift early in the coding sequence. This is particularly problematic because in this allele ATHB2miP is still expressed, while based on such a name one would expect that in this mutant both the full length and the miP are lost. Both CRISPR alleles lead to a frameshift and this should be clarified in Figure 4A and in the text.

      (4) Overall hypocotyl growth phenotypes of athb2 lof mutants and 35S:miP are similar and consistent with a model according to which ATHB2miP inhibits the full-length protein. However, this is not the case for the root phenotype described in 4D. It would be interesting to discuss this.

      (5) The authors propose a role for ATHB2 in the root, in particular linked to iron uptake. Is this due to a local effect of ATHB2 in the roots? Is ATHB2 expressed in roots? It would be very informative if the authors would show such data, e.g. using the reporter lines used in Figure 1. Are both the FL and the miP expressed in roots?

      (6) From the description regarding 5'PEAT.seq data presented in Figure 1 (see lines 174-177) it is not clear in which light conditions the seedlings were grown. It appears that samples were collected in 3 conditions. WL and after 45 and 90 minutes of low R/FR treatment. However, then the data is discussed collectively. Does the 12398 TSS correspond to what was found in all three conditions together? Are the authors showing shade-regulation of TSS? This is clearly the case for ATHB2miP. This needs to be clarified.

      (7) The way gene expression of low F/FR effects is done might conflate circadian effects and low R/FR effects because the samples from different light conditions are not collected at the same ZT. This is how I understood the text. If I'm wrong please clarify the text. If I am right, this potential problem should be mentioned in the text.

      (8) Could the authors envisage a way to genetically test the role of ATHB2miP by using an allele that makes the full length but not the miP? Currently, the authors use lof alleles that either make none of the transcripts (t-DNA) or potentially only the miP (CRISPR alleles). Overall, these alleles do not appear to differ in their phenotypes, suggesting that most of the effect of ATHB2miP is through ATHB2 FL. Having an allele only producing the FL would be nice (but technically I'm not sure how one could do that).

    1. Reviewer #1 (Public Review):

      Summary:

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon.

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.

      Strengths:

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.

      Weaknesses:

      Suggestions for refinement:

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1.

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing.

    2. Reviewer #2 (Public Review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Thronlow Lamson et al., the authors develop a "beads-on-a-string" or BOAS strategy to link diverse hemagglutinin head domains, to elicit broadly protective antibody responses. The authors are able to generate varying formulations and lengths of the BOAS and immunization of mice shows induction of antibodies against a broad range of influenza subtypes. However, several major concerns are raised, including the stability of the BOAS, that only 3 mice were used for most immunization experiments, and that important controls and analyses related to how the BOAS alone, and not the inclusion of diverse heads, impacts humoral immunity.

      Strengths:

      Vaccine strategy is new and exciting.

      Analyses were performed to support conclusions and improve paper quality.

      Weaknesses:

      Controls for how different hemagglutinin heads impact immunity versus the multivalency of the BOAS.

      Only 3 mice were used for most experiments.

      There were limited details on size exclusion data.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors describe a "beads-on-a-string" (BOAS) immunogen, where they link, using a non-flexible glycine linker, up to eight distinct hemagglutinin (HA) head domains from circulating and non-circulating influenzas and assess their immunogenicity. They also display some of their immunogens on ferritin NP and compare the immunogenicity. They conclude that this new platform can be useful to elicit robust immune responses to multiple influenza subtypes using one immunogen and that it can also be used for other viral proteins.

      Strengths:

      The paper is clearly written. While the use of flexible linkers has been used many times, this particular approach (linking different HA subtypes in the same construct resembling adding beads on a string, as the authors describe their display platform) is novel and could be of interest.

      Weaknesses:

      The authors did not compare to individuals HA ionized as cocktails and did not compare to other mosaic NP published earlier. It is thus difficult to assess how their BOAS compare.

      Other weaknesses include the rationale as to why these subtypes were chosen and also an explanation of why there are different sizes of the HA1 construct (apart from expression). Have the authors tried other lengths? Have they expressed all of them as FL HA1?

    3. Reviewer #3 (Public Review):

      This work describes the tandem linkage of influenza hemagglutinin (HA) receptor binding domains of diverse subtypes to create 'beads on a string' (BOAS) immunogens. They show that these immunogens elicit ELISA binding titers against full-length HA trimers in mice, as well as varying degrees of vaccine mismatched responses and neutralization titers. They also compare these to BOAS conjugated on ferritin nanoparticles and find that this did not largely improve immune responses. This work offers a new type of vaccine platform for influenza vaccines, and this could be useful for further studies on the effects of conformation and immunodominance on the resulting immune response. 

      Overall, the central claims of immunogenicity in a murine model of the BOAS immunogens described here are supported by the data. 

      Strengths included the adaptability of the approach to include several, diverse subtypes of HAs. The determination of the optimal composition of strains in the 5-BOAS that overall yielded the best immune responses was an interesting finding and one that could also be adapted to other vaccine platforms. Lastly, as the authors discuss, the ease of translation to an mRNA vaccine is indeed a strength of this platform. 

      One interesting and counter-intuitive result is the high levels of neutralization titers seen in vaccine-mismatched, group 2 H7 in the 5-BOAS group that differs from the 4-BOAS with the addition of a group 1 H5 RBD. At the same time, no H5 neutralization titers were observed for any of the BOAS immunogens, yet they were seen for the BOAS-NP. Uncovering where these immune responses are being directed and why these discrepancies are being observed would constitute informative future work. 

      There are a few caveats in the data that should be noted: 

      (1) 20 ug is a pretty high dose for a mouse and the majority of the serology presented is after 3 doses at 20 ug. By comparison, 0.5-5 ug is a more typical range (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380945/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980174/). Also, the authors state that 20 ug per immunogen was used, including for the BOAS-NP group, which would mean that the BOAS-NP group was given a lower gram dose of HA RBD relative to the BOAS groups. 

      (2) Serum was pooled from all animals per group for neutralization assays, instead of testing individual animals. This could mean that a single animal with higher immune responses than the rest in the group could dominate the signal and potentially skew the interpretation of this data. 

      (3) In Figure S2, it looks like an apparent increase in MW by changing the order of strains here, which may be due to differences in glycosylation. Further analysis would be needed to determine if there are discrepancies in glycosylation amongst the BOAS immunogens and how those differ from native HAs.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors showed that autophagy-related genes are involved in plant immunity by regulating the protein level of the salicylic acid receptor, NPR1.

      Strengths:

      The experiments are carefully designed and the data is convincing. The authors did a good job of understanding the relationship between ATG6 and NRP1.

      Weaknesses:<br /> - The authors can do a few additional experiments to test the role of ATG6 in plant immunity.<br /> I recommend the authors to test the interaction between ATGs and other NPR1 homologs (such as NPR2).

      -The concentration of SA used in the experiment (0.5-1 mM) seems pretty high. Does a lower concentration of SA induce ATG6 accumulation in the nucleus?

      -Does the silencing of ATG6 affect the cell death (or HR) triggered by AvrRPS4?

      -SA and NPR1 are also required for immunity and are activated by other NLRs (such as RPS2 and RPM1). Is ATG6 also involved in immunity activated by these NLRs?

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Zhang et al. explores the effect of autophagy regulator ATG6 on NPR1-mediated immunity. The authors propose that ATG6 directly interacts with NPR1 in the nucleus to increase its stability and promote NPR1-dependent immune gene expression and pathogen resistance. This novel role of ATG6 is proposed to be independent of its role in autophagy in the cytoplasm. The authors demonstrate through biochemical analysis that ATG6 interacts with NPR1 in yeast and very weakly in vitro. They further demonstrate using overexpression transgenic plants that in the presence of ATG6-mcherry the stability of NPR1-GFP and its nuclear pool is increased.

      However, the overall conclusions of the study are not well supported experimentally. The significance of the findings is low because of their mostly correlational nature, and lack of consistency with earlier reports on the same protein.

      Based on the integrity and quality of the data as well as the depth of analysis, it is not yet clear if ATG6 is a specific regulator of NPR1 or if it is affecting NPR1's stability indirectly, through inducing an elevation of SA levels in plants. As such, the current study demonstrates a correlation between overexpression of ATG6, SA accumulation, and NPR1 stability, however, whether and how these components work together is not yet demonstrated.

      Based on the provided biochemical data, it is not yet clear if the ATG6 functions specifically through NPR1 or through its paralogs NPR3 and NPR4, which are negative regulators of immunity. It is quite possible that interaction with NPR1 (or any NPR) is not the major regulatory step in the activity of ATG6 in plant immunity. The effect of ATG6 on NPR1 could well be indirect, through a change in the SA level and redox environment of the cell during the immune response. Both SA level and redox state of the cell were reported to induce accumulation of NPR1 in the nucleus and increase in stability.

      Another major issue is the poor quality of the subcellular analyses. In contradiction to previous studies, ATG6 in this study is not localized to autophagosome puncta, which suggests that the soluble localization pattern presented here does not reflect the true localization of ATG6. Even if the authors propose a novel, non-canonical nuclear localization for ATG6, they still should have detected the canonical autophagy-like localization of this protein.

    1. Reviewer #1 (Public Review):

      In this study, the authors reported that disruption of the X-linked ciliary protein OFD in the cranial neural crest-derived cells (CNCCs) leads to a migration defect in the CNCCs and that aberrant CNCCs abnormally differentiate into osteoblasts due to a lack of Hh signal. Furthermore, CNCC defects lead to the failure of mesoderm-derived cells to differentiate into myoblasts and instead result in abnormal differentiation of mesoderm-derived cells into adipocytes. The Ofd cko mouse model has a very striking phenotype and nicely mimics the phenotype of human patients, making it a very valuable model to understand human disease.

    2. Reviewer #2 (Public Review):

      In this study, the authors report that both mice and human patients carrying function-disrupting mutations in the OFD1 gene exhibited ectopic brown adipose tissue formation in the malformed tongue. The OFD1 gene is located on the X-chromosome and encodes a protein product required for the formation and function of the primary cilium, which is required for cells to properly receive and activate several signaling pathways, particularly the hedgehog signaling pathway. Loss of OFD1 function causes prenatal lethality of male fetuses and mosaic disruption of tissues in females due to random inactivation of the X-chromosome carrying either the mutant or wildtype allele. Using cell type-specific gene inactivation and genetic lineage labeling, the manuscript shows that the ectopic brown adipose tissue in the mutant tongue was not derived from cranial neural crest cells (CNCCs). Additional genetic and embryological studies led to the conclusion that loss of Ofd1 function in the CNCC cells in the embryonic hypoglossal cord, via which the tongue myoblast precursor cells migrate from anterior somites to the tongue primordia, caused disruption of cell-cell interactions between the CNCCs and migrating muscle precursor cells, resulting in altered differentiation of those myoblast precursor cells into brown adipocytes. The authors provided data that disruption of Smo in a subset of CNCCs also resulted in ectopic adipose tissue formation in the tongue, indicating that this phenotype in the Ofd1 mutant mice was likely caused by disruption of hedgehog signaling in CNCCs. However, no experimental evidence is provided to support a major conclusion of the manuscript regarding altered differentiation of the tongue myoblast precursor cells into brown adipocytes in the Ofd1 mutant mice. Since it is well established that hedgehog signaling in the CNCCs is required for them to direct tongue myoblast cell migration as well as for tongue muscle differentiation/organization after the myoblasts arrived in the tongue primordia, the finding of tongue muscle defects in the Ofd1 mutant mice is not surprising. However, if proven true that disruption of Ofd1 function in CNCCs caused tongue myoblast precursor cells to alter their fate and differentiate into brown adipocytes, it would be an interesting new finding. Further identification of the signals produced by the Ofd1 mutant CNCCs for directing the cell fate switch will be a highly significant new advance in understanding the cellular and molecular mechanisms regulating tongue morphogenesis.

    3. Reviewer #3 (Public Review):

      The authors observed phenotypes of ciliopathy model mice and they seem to coincide with those in human patients. They used mutants in which cilial function genes are deleted in cranial neural crest cells, and found the mutants exhibit abnormal cell differentiation in both neural crest- and mesoderm-lineage cells. The finding clearly shows the importance of tissue/cell interaction. The authors mainly observed the mouse in which Ofd1 gene that is coded on the X chromosome is deleted, therefore, Ofd1fl/WT;Wnt1Cre(HET) mice show that about one-fourth of neural crest cells can exhibit Ofd1 function whereas Ofd1fl;Wnt1Cre (HM) shows null Ofd1 function and show severer phenotypes than HET.

      For ectopic brown adipose tissue in the tongue is derived from mesoderm and the authors tried to show that the hypoglossal cord failed to obtain myogenic lineage after entering branchial arches in HET and HM due to lack of communication with neural crest cells. For ectopic bone formation, they found that it is due to the lack of Hedgehog signaling in neural crest cells, which was consistent with the reports in the Smofl/fl;Wnt1-Cre (Xu et al., 2019) and Ift88fl/fl;Wnt1Cre (Kitamura et al. 2020). The ectopic bone is connected to the original mandibular bone. The authors attribute the ectopic bone formation to the migration of mandibular bone neural crest cells into the tongue-forming area.

      For the poor tongue frenum formation, the authors found the importance of cell migration from the lateral sides of the branchial arch to the midline and its formation relies on non-canonical Wnt signaling. The authors observed similar phenotypes in the human patients as those in the mutants. The adipose tissue in the tongue area is normally found in the salivary gland region and intermuscular space, and it is intriguing to find the brown adipose tissue anterior to the cervical area in which the most anterior brown adipose tissue develops. qRT-PCR indicates that some of the marker genes are expressed in the laser micro-dissected sections of the ectopic brown adipose tissue. However, histology does not show the typical brown adipose tissue feature. In addition, brown adipose tissue is normally recognized in the sixth pharyngeal region as the cervical brown tissue from around E14.5 (Schulz and Tseng 2013), not E12 as the authors observe. Although the mutants develop under abnormal conditions, is it possible to say they are brown adipose tissue? The point has to be further investigated with more marker expression by immunohistochemical detection and other methods. Since the mutants seem to show impaired midline formation (which is consistent with the condition of human ciliopathy), is it possible to hypothesize that the adipose-like tissue is derived from the mesoderm of posterior branchial arch levels if the tissue is brown adipose tissue?

      Cranial neural crest cells start migrating around E8.0 and reach their destination by E9.5. The authors show the lack of neural crest cells in the midline, the fluorescence is absent from the midline in HM, however, they studied it in the E11 mandible (Fig. 4E), almost more than two days after neural crest migration completes. Since the mandibular arch seems to form at the beginning in the mutants, is there a failure in allocating the neural crest and mesoderm at the beginning of the mandibular arch formation?<br /> The authors tried to disturb the interaction between the hypoglossal cord and neural crest cells by making incisions in the dorsal area of the branchial arches. That area contains both neural crest and mesoderm but not the hypoglossal cord-derived mesoderm. The hypoglossal cord passed through the posterior edge of the caudal (6th) pharyngeal arch, along the lateral side of the pericardium towards the anterior, ventral to branchial arches, and then inside the 2nd and 1st branchial arches (Adachi et al., 2018). It expresses Pax3 before entering the branchial arches, then Myf5 in the branchial arches. It seems that the migration of the hypoglossal cord does not require interaction with neural crest cells but it has to be confirmed as well as neural crest migration into the branchial arches from the beginning. Although the hypoglossal cord migrates mostly in mesoderm-derived mesenchyme, we cannot exclude the possibility that hypoglossal cord migration is affected.

      The lack of Myf5 expression in Ofd1fl;Wnt1Cre (HM) was explained as a failure in the differentiation of the hypoglossal cord into myoblasts on entrance into the branchial arches. Most of the cervical brown adipose tissue is derived from either Myf5- or Pax3- expressing lineage (Sanchez-Gurmaches and Guertin, 2014). Although the authors suggest that brown adipose cells are fate-changed mesoderm in the branchial arches, how do they explain the association with Myf5- or Pax3- expression?

      In addition, the cervical brown tissue is supposed to be derived from the branchial arch mesoderm (Mo et al., 2017). Is the formation of the cervical brown tissue affected in the Ofd1fl/WT;Wnt1Cre(HET) or Ofd1fl;Wnt1Cre (HM) if dysfunction of neural crest cells results in the cell fate change of mesoderm?

      For the tongue frenum development, it is hard to understand to hypothesize that its formation is unlikely to associate with midline formation. Although Lgr5 and Tbx22 are not expressed in the midline, the defect in midline formation could cause unnecessary interaction between the right and left tissues.

      Tissue morphogenesis takes place in three dimensions, which were not considered in the data, especially in the labeling experiments. When the authors labelled the cells, which cells in which area were labelled? In the textbook, tongue formation is a result of the fusion of the midline processes derived from the branchial arches, therefore, it is important to identify which cells in which area are labelled.

      The weakest point is that the authors demonstrate many interesting phenotypes but fail to show the mechanism of altered cell differentiation and direct evidence of the tissue origin of ectopic brown tissue. Without the data, suggestion from the authors' argument is weak, which is reflected in the conclusion of the abstract.

    1. Reviewer #1 (Public Review):

      Recent work reported that the AP2-associated kinase 1 (AAK1) downregulates Wnt signaling by phosphorylating, thus activating, the µ-subunit of the AP2 complex (AP2M1), which recognizes an endocytic signal on the intracellular domain of the Wnt co-receptor LRP6 leading to its internalization (Agajanian, et al., 2018). It has also long been known that DPY-23/AP2M1 and the retromer complex, which controls trafficking between endosomes and the trans-golgi network and recycling from endosomes to the plasma membrane, regulate Wnt signaling in C. elegans, at least in part by modulating trafficking of the Wnt-secretion factor MIG-14/WLS (Pan, et al., 2008; Yan et al., 2008).

      Here the authors first set out to ask whether SEL-5/AAK1 plays a conserved role in Wnt signaling via phosphorylation of DPY-23/AP2M1 by assessing the function of SEL-5 in Wnt-regulated morphogenetic events; specifically, the well-characterized migration and polarization of several neurons and the less-understood process of excretory canal cell outgrowth.

      The authors found that the simultaneous removal of sel-5 and the retromer complex gene vps-29 resulted in synthetic neuronal and excretory canal outgrowth phenotypes, indicating that sel-5 and the retromer complex function in parallel in these processes. Genetic interactions between sel-5 and Wnt pathway components were also examined, and for QL neuroblast migration, loss of sel-5 exacerbated phenotypes caused by loss of the Wnt receptor LIN-17/FZD, but not those caused by loss of a different receptor, MIG-1/FZD. The authors assessed the site of sel-5 function in neuronal migration defects via tissue-specific rescue and identified the hypodermis, a known source of Wnt ligands, and muscles as sites where sel-5/AAK1 activity is required.

      The novelty in this work comes from the discovery of a function for sel-5/AAK1 and the retromer complex in excretory canal outgrowth, identified by phenotypes caused by simultaneous loss of sel-5 and retromer components. This synthetic phenotype is rescued by restoring sel-5 to either the excretory canal cell or the hypodermis, suggesting autonomous and non-autonomous functions for sel-5 in canal outgrowth. The authors also confirmed previous results showing that loss of LIN-17/FZD results in excretory canal overgrowth, and by carrying out an extensive survey of Wnt-pathway mutants they discovered that LIN-44/Wnt is likely the ligand that functions via LIN-17 as a "stop" signal in canal outgrowth. They also implicate a CWN-1/Wnt-CFZ-2/FZD pathway as required for canal outgrowth and find genetic interactions between sel-5/AAK1 and the lamellipodin ortholog mig-10, suggesting that these genes function in parallel to promote excretory canal outgrowth.

      The most intriguing claim in this work is the suggestion that neither DPY-23 phosphorylation nor SEL-5 kinase activity is required for their function in Wnt signaling. However, the tools used to support these conclusions are not well-characterized. First, a new dpy-23 phosphorylation site-mutant is not genetically characterized, thus it is difficult to interpret the negative results obtained with this allele. Second, although the mutations introduced into SEL-5 are expected to abolish kinase activity, this is not demonstrated biochemically, nor are the effects, if any, of mutations on protein stability/localization assessed. Finally, experiments testing the function of SEL-5 kinase mutants are reported using only one multi-copy extrachromosomal array per construct. Because these types of transgenes vastly overexpress proteins, it is likely that even proteins with reduced function will rescue, raising concerns regarding the conclusion that kinase activity is not necessary for SEL-5 function.

      In conclusion, it is not clear that the findings presented here will be of great general interest, as they mostly support previously-known functions for SEL-5/AAK1, DPY-23/AP2M1, and the retromer complex in Wnt-mediated signaling. Thus, this work will mainly be of interest to researchers studying Wnt-mediated cell outgrowth, and more specifically to those studying the C. elegans excretory canal. Moreover, the study lacks coherence: initially, there is a clear hypothesis testing a role for SEL-5/AAK1 in DPY-23/AP2M1 phosphorylation and how this impinges on Wnt signaling. This model appears to be refuted (although, as noted above the tools used to do this need to be better validated), but the authors do not explore alternative targets or functions for SEL-5/AAK1, nor do they directly assess how SEL-5 or the retromer complex impinge on Wnt signaling in excretory canal outgrowth. Thus, there is little mechanistic insight provided by this work.

    2. Reviewer #2 (Public Review):

      Summary<br /> This study by Knop, et al. defines two different developmental roles for the conserved SEL-5/AAK1 protein kinase in Caenorhabditis elegans. In other organisms, AAK1 was known to promote the recycling of the Wntless sorting receptor and endocytosis of Wnt receptors. This study establishes that SEL-5 acts in two roles in C. elegans: in Wnt-producing cells, a role that promotes migration of a neuroblast termed QL.d, and in Wnt-receiving cells, a role that promotes outgrowth of the excretory cell (EXC). Before this study, SEL-5/AAK1 was thought to regulate endocytosis through phosphorylation of AP2M1 and other endocytic adaptor proteins. This study shows convincing data that the SEL-5 makes a partial contribution to AP2M1 phosphorylation, and more surprisingly, that its roles in Wnt-producing and Wnt-receiving cells of C. elegans do not require SEL-5 catalytic activity. Human AAK1 was previously suggested to be a target of drug design efforts due to its roles in neuropathic pain, viral infection, and Alzheimer's disease. The discovery that some roles for SEL-5/AAK1 are independent of catalytic activity will be of broad interest to cell biologists and biochemists.

      Strengths<br /> (1) The data establishing the requirement for SEL-5 in QL.d migration and EXC outgrowth (Fig. 1 and Fig. 4) is rigorous and convincing. My assessment of the rigor is based on the following: First, the authors show that two independently derived sel-5 deletion mutations result in defects in QL.d and EXC. Second, the authors show that providing wild-type, GFP-tagged SEL-5 results in significant rescue of both phenotypes. Importantly, they use tissue-specific transgenes to show that the requirement for SEL-5 in QL.d migration is non-cell-autonomous, and the requirement for SEL-5 in EXC outgrowth is cell-autonomous (Fig. 2). For rescue experiments, they show that each tissue-specific transgene is indeed expressed strongly in the tissue of interest. This establishes the roles for SEL-5 in two different roles, in Wnt-producing and Wnt-receiving cells.

      (2) The authors present three lines of convincing biochemical and genetic evidence that SEL-5 kinase catalytic activity is not important for its roles in Wnt-producing and Wnt-receiving cells.

      Taking a biochemical approach, they use quantitative Westerns to assess the degree of AP2M1 phosphorylation in sel-5 mutants (Fig. 3). Their results show that AP2M1 phosphorylation is diminished, but not absent in mutants. Their results are convincing because they make use of GFP-tagged AP2M1 to probe for total and phospho-AP2M1. I note that they included uncropped Western blots in supplemental data. Furthermore, they make use of a GFP-tagged AP2M1 mutant (T160A) to confirm which residue is phosphorylated. Their results suggest that some mechanism other than AP2M1 phosphorylation may account for the sel-5 mutant phenotypes.

      Taking a genetic approach, they make use of a unique allele, dpy-23(mew25), that alters the known AP2M1 phosphorylation site. They show that animals carrying this allele do not display the QL.d and EXC phenotypes (Fig. 3 and Fig. 5). Finally, in a more direct test of whether SEL-5 requires catalytic activity, they make use of GFP-tagged SEL-5 forms mutated at either the active site or the ATP-binding site of the SEL-5 kinase domain. They show that either SEL-5 mutant form successfully rescues the QL.d and EXC defects seen in sel-5 mutants (Fig. 3), suggesting that SEL-5 catalytic activity is unnecessary.

      (3) The authors have produced an elegant GFP knock-in allele of the sel-5 gene, allowing analysis of expression and localization in living animals (Fig. 2).

      (4) The authors make use of genetic interactions with Wnt signaling mutants to show that SEL-5 acts in a role that promotes Wnt signaling for the QL.d cell (Fig. 1) and counteracts Wnt signaling for the EXC (Fig. 5).

      Weaknesses<br /> (1) Some changes to statistical analyses are needed in this study.

      Fig. 1B, 1D, 2A, 3E, and 3F report the QL.d phenotype as a percentage of animals scored that were defective in migration. The methods make it clear this data is categorical rather than quantitative. Therefore, a t-test or any test designed for quantitative data is not appropriate. I suggest that the authors should investigate using a chi-squared or Fisher's exact test.

      For the reasons mentioned above, the calculation of standard deviation (as shown in error bars) is also not appropriate for Fig. 1B, 1D, 2A, 3E, and 3F. Of course, it is excellent that the authors scored multiple trials. For experiments with mutants, I suggest the authors might combine these trials or show separate results of each trial. For experiments using RNAi (Fig. 1B), each trial should be plotted separately because RNAi effectiveness can vary. If there is not enough space to show multiple trials, then I would ask that a representative trial be shown in the main figure and additional trials in a supplement.

      In Fig. 1, 2, 3, and 5, it is not specified whether/how p-values were adjusted for multiple tests.

      (2) I felt the author's interpretation of the sel-5 mutant phenotypes in EXC, and the genetic interactions with Wnt signaling mutants, might be improved. The authors show convincing data that the sel-5 mutants display a shortened EXC outgrowth phenotype. Conversely, mutants with reduced Wnt signaling, such as the lin-17 or lin-44 mutants, displayed lengthened EXC outgrowth. The authors show that in double mutants, loss of sel-5 partially suppressed the EXC overgrowth defects of lin-17 or lin-44 mutants (Fig. 5). In my opinion, this data is consistent with a model where SEL-5 acts to inhibit Wnt signaling in EXC. An inhibitory role in a Wnt-receiving cell would be consistent with the known activity for human AAK1 in promoting negative feedback and endocytosis of LPR6. Interestingly, the authors mention in their discussion that a mutant of plr-1, which acts in the internalization of Frizzled receptors, has a shortened EXC phenotype similar to that of sel-5 mutants. These observations all seem consistent with an inhibitory role, yet the authors do not state this as their conclusion. A clarification of their interpretation is needed.

      Impact/significance<br /> (1) Among researchers using C. elegans, this study provides a foundation for further investigation of the role of endocytosis, SEL-5, and the retromer, in Wnt trafficking. It is particularly useful that the authors define two different phenotypes that arise from Wnt-producing and Wnt-receiving cells.

      (2) Among a broader community of cell biologists and biochemists, this study will be of interest in its finding that SEL-5/AAK1 kinase catalytic activity is unnecessary for the regulation of Wnt signaling.

    1. Reviewer #1 (Public Review):

      Salt-inhibited germination and growth in Arabidopsis and other plant species. Here the authors demonstrated that part of that inhibitory effect is caused by the arginine-derived urea hydrolysis, a novel mechanism. They also postulated that urea transport is involved in germination inhibition, but they do not link urea transport from cotyledons to pH changes in roots. At last, they generalized the mechanisms to other glycophytic crops and halophytic plants, but the salt concentration used is the same for the four groups, which are supposed to have very different salt tolerance ranges, questioning the validity of this generalization.<br /> Overall, the authors have provided well-organized genetic and pharmacological evidence to support most of their conclusions.

    2. Reviewer #2 (Public Review):

      Urea is widely utilized in agriculture. In this study, the authors the mechanism underlying the adverse impact of urea on seed germination and seedling growth under salt stress conditions. The results show that salt stress induces a pronounced hydrolysis of urea, resulting in an elevation of cytoplasmic pH and subsequent inhibition of seed germination. These findings challenge the previous notion that ammonium accumulation is the primary cause of salt-induced inhibition of germination, thereby offering novel insights into this process.

      The authors have provided well-organized genetic or biochemical evidence to support most of their conclusions.

    3. Reviewer #3 (Public Review):

      This work submitted by Bu et al. investigated mechanisms of how salt stress-induced arginine catabolism, which is catalyzed by arginase and urease, inhibits seed germination and seedling growth in Arabidopsis using a combination of genetic, biochemical, and live-cell imaging approaches. Their results showed that the two steps for the turnover of arginine into ammonia and the transport of urea from the cotyledon to the root are required for the salt-induced inhibition of seed germination (SISG). Further analysis showed that the cellular accumulation of the end product ammonia is not associated with SISG, but it is the cytoplasmic alkaline stress that primarily causes SISG. Interestingly, they found that the mechanism underlying SISG is conserved in other plant species. In general, this work will be valuable for plant biologists to deeply dissect the complex mechanism that controls salt stress-induced inhibition of plant growth and development in the future.

      The conclusions derived from this work are well supported by the data, but some aspects of data analysis need to be clarified and extended.

      (1) Inhibition of arginine hydrolysis by enzyme inhibitors (NOHA for arginase and PPD for urease) significantly improved seed germination and seedling growth (Figure 2). It seems that the suppressive effect of NOHA against the salt-induced inhibition of seedling growth is dose-dependent (Figure 2b). Whether NOHA effect on SISG is also dose-dependent and application of a certain level of NOHA can fully rescue the phenotype of SISG remains to be answered. The answers may help to explain the genetic data shown in Figure 3c, where either single (argah1 and argah2) or double (argah1/argah2) mutants partially rescued the phenotype of SISG. However, arginase activity, particularly in argah1 and argah2, is not closely correlated to the phenotype shown in Figure 3c and 3d.

      (2) The data shown in Figure 4b and 4e were not fully consistent. The percentage of seed germination rate was about 70% when treated with the highest concentration (7.5 μM) of PPD, but was less than 40% for the aturease mutant.

      (3) Cellular pH values detected at the seed germination stage were not convincing. In the text, they did not describe the results showing that the cytoplasmic pH values in hypocotyl and cotyledon cells were alkaline and not affected by NaCl treatment, and PPD treatment only restored the alkaline cytoplasmic pH to that of the control (Figure 7b). This raises two questions: is it true that cytoplasmic pH values are different between root and cotyledon/hypocotyl cells under normal growth conditions? and does PPD treatment alter the cytoplasmic pH only in roots?

    1. Reviewer #1 (Public Review):

      HMCV encodes various immunoevasins to inhibit being presented by MHC class I molecules to the cytotoxic cells of the immune system. Here, the authors studied the role and specificity of US10, a relatively uncharacterized immunoevasin from HCMV. They found that US10 differentially affects antigen presentation by different MHC class I allotypes. HLA-A and certain HLA-B and C alleles (so-called "tapasin-independent") were unaffected, while other HLA-B and C alleles (so-called "tapasin-dependent") as well as HLA-G were negatively affected. US10 can bind to different MHC class I allotypes, which inhibits their incorporation into peptide loading complex and slowers maturation. By comparing US10 to the other well-studied immunoevasins from HCMV, US2, US3, and US11, the authors demonstrated only partial overlap between them suggesting the cumulative action of immunoevasins in inhibiting MHC class I antigen presentation of HMCV epitopes. This work contributes to our understanding of the complex immune evasion mechanism by HCMV.

      The strengths include using a broad use of available techniques, including overexpression of US10 and US10 siRNA in the infection context that allowed comparison of its net and cumulative effects. Bioinformatic analysis of US10 and US11 to describe how transcription and expression of these two gene products contribute to the control of immunoevasion by HCMV. The conclusions are mostly supported by the experiments.

    2. Reviewer #2 (Public Review):

      The manuscript entitled " Multimodal HLA-I genotypes regulation by human cytomegalovirus US10 and resulting surface patterning" by Gerke et al describes the biochemical analysis of US10-mediated down regulation of HLA-I molecules. The authors systemically examine the surface expression of different HLA-I alleles in cells expressing US10 and interactions of US10 with HLA-I and antigen presentation machinery. Further, studies examined genotypic and allotypic differences during expression of US10/US11 transcripts suggest a different allelic class I downregulation. In general, the authors have included data supporting the major claims. Yet, the conclusions and findings of the study only marginally advance the overall understanding of HCMV viral evasion and the mechanism of US10 function.

      Strengths:<br /> The studies are well characterized and the studies utilize diverse HLA-I and HCMV viral molecules. The biochemistry is excellent and is of high quality. Importantly, the study describes HLA-I allelic specific HCMV down regulation at the cell surface and molecular levels.

      Weaknesses:<br /> (1) The authors use over expressive language such as "strong binding" that does not have a quantitative value and it is relative to the specific assay with only small differences among the factors.<br /> (2) The US10 binding to the HLA-I did not correlate with class I surface levels suggesting that binding to the APC machinery (Figure 1); hence, why does the binding of US10 to the APC define its mechanism of action.<br /> (3) The innovative and significant aspects of the study are limited. The study does not delineate the US10 mechanism of action or show data in which US10-mediated MHC class I down regulation impacts adaptive or innate immune function.

    3. Reviewer #3 (Public Review):

      Correlation of the HLA-B effects with previously demonstrated allelic differences in dependence on the peptide loading complex (PLC) component chaperone/editor tapasin and demonstration that US10 does not bind the PLC reflect on possible mechanisms of US10 function. Thus, this paper adds new information that may be integrated into evolving models of the steps of MHC-I dependent antigen presentation and how viruses counter immune recognition for their own benefit. Clearer focus on the proposed models for the function of US10 and its mechanism--i.e. what experiments address the mechanism and what additional finding might clarify the mechanism would be helpful.

    1. Reviewer #2 (Public Review):

      Summary:

      The interplay between environmental factors and cognitive performance has been a focal point of neuroscientific research, with illuminance emerging as a significant variable of interest. The hypothalamus, a brain region integral to regulating circadian rhythms, sleep, and alertness, has been posited to mediate the effects of light exposure on cognitive functions. Previous studies have illuminated the role of the hypothalamus in orchestrating bodily responses to light, implicating specific neural pathways such as the orexin and histamine systems, which are crucial for maintaining wakefulness and processing environmental cues. Despite advancements in our understanding, the specific mechanisms through which varying levels of light exposure influence hypothalamic activity and, in turn, cognitive performance, remain inadequately explored. This gap in knowledge underscores the need for high-resolution investigations that can dissect the nuanced impacts of illuminance on different hypothalamic regions. Utilizing state-of-the-art 7 Tesla functional magnetic resonance imaging (fMRI), the present study aims to elucidate the differential effects of light on the hypothalamic dynamics and establish a link between regional hypothalamic activity and cognitive outcomes in healthy young adults. By shedding light on these complex interactions, this research endeavors to contribute to the foundational knowledge necessary for developing innovative therapeutic strategies aimed at enhancing cognitive function through environmental modulation.

      Strengths:

      (1) Considerable Sample Size and Detailed Analysis:<br /> The study leverages a robust sample size and conducts a thorough analysis of hypothalamic dynamics, which enhances the reliability and depth of the findings.

      (2) Use of High-Resolution Imaging:<br /> Utilizing 7 Tesla fMRI to analyze brain activity during cognitive tasks offers high-resolution insights into the differential effects of illuminance on hypothalamic activity, showcasing the methodological rigor of the study.

      (3) Novel Insights into Illuminance Effects:<br /> The manuscript reveals new understandings of how different regions of the hypothalamus respond to varying illuminance levels, contributing valuable knowledge to the field.

      (4) Exploration of Potential Therapeutic Applications:<br /> Discussing the potential therapeutic applications of light modulation based on the findings suggests practical implications and future research directions.

      Weaknesses:

      (1) Foundation for Claims about Orexin and Histamine Systems:<br /> The manuscript needs to provide a clearer theoretical or empirical foundation for claims regarding the impact of light on the orexin and histamine systems in the abstract.

      (2) Inclusion of Cortical Correlates:<br /> While focused on the hypothalamus, the manuscript may benefit from discussing the role of cortical activation in cognitive performance, suggesting an opportunity to expand the scope of the manuscript.

      (3) Details of Light Exposure Control:<br /> More detailed information about how light exposure was controlled and standardized is needed to ensure the replicability and validity of the experimental conditions.

      (4) Rationale Behind Different Exposure Protocols:<br /> To clarify methodological choices, the manuscript should include more in-depth reasoning behind using different protocols of light exposure for executive and emotional tasks.

    2. Reviewer #1 (Public Review):

      Summary:

      Campbell et al investigated the effects of light on the human brain, in particular the subcortical part of the hypothalamus during auditory cognitive tasks. The mechanisms and neuronal circuits underlying light effects in non-image forming responses are so far mostly studied in rodents but are not easily translated in humans. Therefore, this is a fundamental study aiming to establish the impact light illuminance has on the subcortical structures using the high-resolution 7T fMRI. The authors found that parts of the hypothalamus are differently responding to illuminance. In particular, they found that the activity of the posterior hypothalamus increases while the activity of the anterior and ventral parts of the hypothalamus decreases under high illuminance. The authors also report that the performance of the 2-back executive task was significantly better in higher illuminance conditions. However, it seems that the activity of the posterior hypothalamus subpart is negatively related to the performance of the executive task, implying that it is unlikely that this part of the hypothalamus is directly involved in the positive impact of light on performance observed. Interestingly, the activity of the posterior hypothalamus was, however, associated with an increased behavioural response to emotional stimuli. This suggests that the role of this posterior part of the hypothalamus is not as simple regarding light effects on cognitive and emotional responses. This study is a fundamental step towards our better understanding of the mechanisms underlying light effects on cognition and consequently optimising lighting standards.

      Strengths:

      While it is still impossible to distinguish individual hypothalamic nuclei, even with the high-resolution fMRI, the authors split the hypothalamus into five areas encompassing five groups of hypothalamic nuclei. This allowed them to reveal that different parts of the hypothalamus respond differently to an increase in illuminance. They found that higher illuminance increased the activity of the posterior part of the hypothalamus encompassing the MB and parts of the LH and TMN, while decreasing the activity of the anterior parts encompassing the SCN and another part of TMN. These findings are somewhat in line with studies in animals. It was shown that parts of the hypothalamus such as SCN, LH, and PVN receive direct retinal input in particular from ipRGCs. Also, acute chemogenetic activation of ipRGCs was shown to induce activation of LH and also increased arousal in mice.

      Weaknesses:

      While the light characteristics are well documented and EDI calculated for all of the photoreceptors, it is not very clear why these irradiances and spectra were chosen. It would be helpful if the authors explained the logic behind the four chosen light conditions tested. Also, the lights chosen have cone-opic EDI values in a high correlation with the melanopic EDI, therefore we can't distinguish if the effects seen here are driven by melanopsin and/or other photoreceptors. In order to provide a more mechanistic insight into the light-driven effects on cognition ideally one would use a silent substitution approach to distinguish between different photoreceptors. This may be something to consider when designing the follow-up studies.

    3. Reviewer #3 (Public Review):

      Summary:

      Campbell and colleagues use a combination of high-resolution fMRI, cognitive tasks, and different intensities of light illumination to test the hypothesis that the intensity of illumination differentially impacts hypothalamic substructures that, in turn, promote alterations in arousal that affect cognitive and affective performance. The authors find evidence in support of a posterior-to-anterior gradient of increased blood flow in the hypothalamus during task performance that they later relate to performance on two different tasks. The results provide an enticing link between light levels, hypothalamic activity, and cognitive/affective function, however, clarification of some methodological choices will help to improve confidence in the findings.

      Strengths:

      * The authors' focus on the hypothalamus and its relationship to light intensity is an important and understudied question in neuroscience.

      Weaknesses:

      * I found it challenging to relate the authors' hypotheses, which I found to be quite compelling, to the apparatus used to test the hypotheses - namely, the use of orange light vs. different light intensities; and the specific choice of the executive and emotional tasks, which differed in key features (e.g., block-related vs. event-related designs) that were orthogonal to the psychological constructs being challenged in each task.

      * Given the small size of the hypothalamus and the irregular size of the hypothalamic parcels, I wondered whether a more data-driven examination of the hypothalamic time series would have provided a more parsimonious test of their hypothesis.

    1. Reviewer #3 (Public Review):

      Summary:

      In this study, Han and co-authors showed that implantation of Pik3ca deficient KPC cells (aKO) induced clonal expansion of CD8 T cells in the tumor microenvironment. Using aKO cells, they conducted an in vivo genome-wide gene-deletion screen, which showed that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (p-aKO) leads to immune evasion and tumor progression. Eventually, mice injected with p-aKO but not aKO succumbed to their tumors. Similar to the parental aKO cell line, p-aKO tumors were still infiltrated with clonally expanded CD8+ and CD4+ T cells, as shown by the IHC. Further analyses showed that T cells infiltrating p-aKO tumors expressed high levels of exhaustion markers (PD-1, CTLA-4, TIM3, and TIGIT). Furthermore, PD-1 signaling blockade using PD-1 mAb or genetic depletion of PD-1 reactivated the infiltrated T cells, controlling tumor progression and improving the overall mice survival. Thus, the authors concluded in the abstract that "Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers." Although the data clearly showed that the loss of Pccb facilitated the immune evasion of pancreatic cancer cells, there is no clear evidence provided that Pccb deletion can actually modulate the activity of CD8 T cells. One may argue that the deletion of Pccb reduces the immunogenicity of the p-aKO cancer cells, making them less susceptible to killing by normally functional CD8+ T cells.

      Strengths:

      In vivo, Crisper-Cas-9 screen using tumor cell lines.

      Identify a gene that could reduce the immunogenicity of cancer cells.

      Weaknesses:

      The IHC technique that was used to stain and characterize the exhaustion status of the tumor-infiltrating T cells.

    2. Reviewer #1 (Public Review):

      Summary:

      Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that does not respond to immunotherapy. This work represents an extension of the authors' prior observation that PI3Ka deletion in an orthotopic KPC pancreatic tumor model confers susceptibility to immune-mediated elimination. The authors' major claims in the present manuscript are as follows:

      (1) PI3Ka (Pik3ca) knockout in KPC pancreatic tumor cells induces clonal T cell expansion.

      (2) Genome-wide LOF screen in aKPC cells to identify tumor-intrinsic determinants of PI3Ka-KO-enhanced T cell response identified Pccb.

      (3) When Pccb is knocked out in the context of Pi3ka knockout KPC, anti-tumor T cell response is reduced as measured by<br /> a. Increased tumor progression<br /> b. Decreased survival<br /> c. T cells are still clonally expanded but less functional

      (4) ICB is able to "reactivate" clonally expanded T cells.

      (5) Conclusion: Pccb modulates the activity of T cells in PDAC.

      Overall, the experiments were appropriately executed and technically sound, albeit underpowered for single-cell analyses. Upon careful consideration of the data, the biggest weakness of the paper is the authors' interpretations of results, particularly for claims 1 and 4 (see below for details). Much of the data is correlative and does not delve into causation, leaving this reviewer wishing for experiments that would clearly demonstrate that Pccb in tumor cells directly impacts T cell anti-tumor activity.

      Strengths:

      (1) Tumor intrinsic determinants of intratumoral T cell infiltration in PDAC are less commonly evaluated as combination therapies for ICB. This is a point of conceptual innovation and importance.

      (2) A sensitized CRISPR screen to identify mutations that rescue KPC/PI3Ka-KO tumors from immune-mediated killing is an elegant method to better understand the molecular mechanisms contributing to KPC immunosurveillance. Further, one screen candidate (Pccb) was experimentally validated.

      (3) Single-cell clonotype analyses hold promise for identifying tumor-reactive T cells (though authors never demonstrated that specific clones were tumor antigen specific).

      Weaknesses:

      (1) "Clonal expansion of cytotoxic T cells infiltrating the pancreatic αKO tumors"<br /> a. Only two tumor-bearing hosts were evaluated by single-cell TCR sequencing, thus limiting conclusions that may be drawn regarding repertoire diversity and expansion.<br /> b. High abundance clones in the TME do not necessarily have tumor specificity, nor are they necessarily clonally expanded. They may be clones which are tissue-resident or highly chemokine-responsive and accumulate in larger numbers independent of clonal expansion. Please consider softening language to clonal enrichment or refer to clone size as clonal abundance throughout the paper.<br /> c. The whole story would be greatly strengthened by cytotoxicity assays of abundant TCR clones to show tumor antigen specificity.

      (2) "A genome-wide CRISPR gene-deletion screen to identify molecules contributing to Pik3ca-mediated pancreatic tumor immune evasion"<br /> a. CRISPR mutagenesis yielded outgrowth of only 2/8 tumors. A more complete screen with an increased total number of tumors would yield much stronger gene candidates with better statistical power. It is unsurprising that candidates were observed in only one of the two tumors. Nevertheless, the authors moved forward successfully with Pccb.

      (3) T cells infiltrate p-αKO tumors with increased expression of immune checkpoints<br /> a. In Figure 4D, cell counts are not normalized to totalCD8+ T cell counts making it difficult to directly compare aKO to p-aKO tumors. Based on quantifications from Figure 4D, I suspect normalization will strengthen the conclusion that CD8+ infiltrate is more exhausted in p-aKO tumors.<br /> b. Flow cytometric analysis to further characterize the myeloid compartment is incomplete (single replicate) and does not strengthen the argument that p-aKO TME is more immunosuppressive.<br /> c. It could, however, strengthen the argument that TIL has less anti-tumor potential if effector molecule expression in CD8+ infiltrating cells were quantified.

      (4) Inhibition of PD1/PD-L1 checkpoint leads to elimination of most p-αKO tumors<br /> a. It is reasonable to conclude that p-aKO tumors are responsive to immune checkpoint blockade. However, there is no data presented to support the statement that checkpoint blockade reactivates an existing anti-tumor CD8+ T cell response and does not instead induce a de novo response.<br /> b. The discussion of these data implies that anti-PD-1 would not improve aKO tumor control, but these data are not included. As such, it is difficult to compare the therapeutic response in aKO versus p-aKO. Further, these data are at best an indirect comparison of the T cell responsiveness against tumor, as the only direct comparison is infiltrating cell count in Figure 4 and there are no public TCR clones with confirmed anti-tumor specificity to follow in the aKO versus p-aKO response.

    3. Reviewer #2 (Public Review):

      Summary:

      Pancreatic ductal adenocarcinoma is generally considered a "cold" tumor type with little T cell infiltration. This group demonstrated previously that deletion of the PIK3CA isoform of PI3K in the orthotopic pancreatic ductal adenocarcinoma KPC mouse tumor model led to the elimination of tumors by T cells. Here they performed a genome-wide gene-deletion screen in this tumor using CRISPR to determine what was required for this T cell-mediated infiltration and tumor rejection. Deletion of Pccb in the tumors, which encodes propionyl-CoA carboxylase subunit B, allowed for the outgrowth of the PIK3CA-deleted KPC tumors. This was confirmed with the specific deletion of Pccb in the tumor cells. Demonstrating a likely role in tumor progression in human patients as well, high expression of PCCB in pancreatic ductal adenocarcinoma correlated with lower patient survival. T cells still infiltrated these tumors, but had much higher expression of exhaustion markers. Blockade of PD-1 signaling allowed for the rejection of these tumors. While these are intriguing data demonstrating that loss of PCCB by pancreatic ductal adenocarcinoma is a mechanism to escape T cell immunity, the mechanism by which this occurs is not determined. In addition, there are a few issues that suggest the conclusions of the manuscript should be tempered.

      Strengths:

      In vivo analysis of tumor CRISPR deletion screen.

      The study describes a possible novel mechanism by which a tumor maintains a "cold" microenvironment.

      Weaknesses:

      (1) A major issue is that it seems these data are based on the use of a single tumor cell clone with PIK3CA deleted. Therefore, there could be other changes in this clone in addition to the deletion of PIK3CA that could contribute to the phenotype.

      (2) The conclusion that the change in the PCCB-deficient tumor cell line is unrelated to mitochondrial metabolic changes may be incorrect based on the data provided. While it is true that in the experiments performed, there was no statistically significant change in the oxygen consumption rate or metabolite levels, this could be due to experimental error. There is a trend in the OCR being higher in the PCCB-deficient cells, although due to a high standard deviation, the change is not statistically significant. There is also a trend for there being more aKG in this cell line, but because there were only 3 samples per cell line, there is no statistically significant difference.

      (3) More data are required to make the authors' conclusion that there are myeloid changes in the PCCB-deficient tumor cells. There is only flow data from shown from one tumor of each type.

      (4) The previous published study demonstrated increased MHC and CD80 expression in the PIK3CA-deficient tumors and these differences were suggested to be the reason the tumors were rejected. However, no data concerning the levels of these proteins were provided in the current manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors delineate the crucial role of the SIRT2-ACSS2 axis in ACSS2 degradation. They demonstrate that SIRT2 acts as an ACSS2 deacetylase specifically under nutrient stress conditions, notably during amino acid deficiency. The SIRT2-mediated deacetylation of ACSS2 at K271 consequently triggers its proteasomal degradation. Additionally, they illustrate that acetylation of ACSS2 at K271 enhances ACSS2 protein levels, thereby promoting De Novo lipogenesis.

      Strengths:

      The findings presented in this manuscript are clearly interesting.

      Weaknesses:

      Further support is required for the model put forward by the authors.

    2. Reviewer #2 (Public Review):

      Summary:

      Karim et al investigated the regulation of ACSS2 by SIRT2. The authors identified a previously undescribed acetylation that they then show is important for the regulation and stability of ACSS2 in cells. The authors show that ACSS2 ubiquitination and degradation by the proteasome is regulated by SIRT2-mediated deacetylation of ACSS2 and that stabilizing ACSS2 by blocking SIRT2 can alter lipid accumulation in adipocytes.

      Strengths:

      Identification of a novel acetylation site on ACSS2 that regulates its protein stability and that has consequences on its activity in adipocytes. Multiple standard approaches were used to manipulate the expression and function of SIRT2 and ACSS2 (i.e., overexpression, knockdown, inhibitors).

      Weaknesses:

      The authors do not show direct deacetylation of ACSS2 by SIRT2 in an in vitro biochemical assay.

      It would have been nice to have included a bona-fide SIRT2 target as a control throughout the study.

      Throughout the manuscript, normalizing the data to 1 and then comparing the fold-change using a t-test is not the best statistical approach in that situation since every normalized value for control is 1 with zero standard deviation. The authors should consider an alternative statistical approach.

      Though not necessary, using 13C-acetate or D3-acetate tracing would be better for understanding the impact of acetylation on the activity of ACSS2 and its impact on lipogenesis.

      Did the authors also consider investigating SIRT1 in their assays? SIRT1 activates ACSS2 while SIRT2 leads to degradation of ACSS2. They should at least discuss these seemingly opposing roles of SIRT1 and SIRT2 in the regulation of ACSS2 and acetate metabolism in more depth, particularly as it concerns situations (i.e., diseases, pathologies) where either SIRT1, SIRT2, or both sirtuins, are active. This would enhance the significance of the findings to the broader research community.

      In Figure 3, the authors should consider immunoblotting for endogenous ACSS2 throughout the differentiation and lipogenesis study since the total ACSS2 levels is the crucial aspect to affecting acetate-dependent promotion of lipogenesis in adipocytes, and to confirm TM-dependent stabilization of ACSS2 in that assay.

      Do the authors have any data proving the K271 mutants of ACSS2 are still functional? Or that K271 ACSS2 protein is folded correctly?

    3. Reviewer #3 (Public Review):

      Summary:

      The manuscript shows SIRT2 can regulate acetylation of ACSS2 at residue 271, acetylation of 271 protects ACSS2 from proteasomal degradation in a SIRT2-dependent manner. Lastly, authors show that ACSS2 acetylation at K271 promotes lipid accumulation.

      Strengths:

      The author provides solid data showing ACSS2 acetylation can be regulated by targeting SIRT2 and that SIRT2 regulates ACSS2 ubiquitination. They identify K271 as a site of acetylation and show this is a site when mutated alters SIRT2-mediated ubiquitination.

      Weaknesses:

      However, data for this manuscript seems preliminary as nearly all data is performed in one cell line, some of the conclusions are not well supported by data and the overall role of ACSS2 K271 acetylation is not well characterized.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Bell et al. provide an exhaustive and clear description of the diversity of a new class of predicted type IV restriction systems that the authors denote as CoCoNuTs, for their characteristic presence of coiled-coil segments and nuclease tandems. Along with a comprehensive analysis that includes phylogenetics, protein structure prediction, extensive protein domain annotations, and in-depth investigation of encoding genomic contexts, they also provide detailed hypothesis about the biological activity and molecular functions of the members of this class of predicted systems. This work is highly relevant, it underscores the wide diversity of defence systems that are used by prokaryotes and demonstrates that there are still many systems to be discovered. The work is sound and backed up by a clear and reasonable bioinformatics approach.

      Strengths:

      The analysis provided by the authors is extensive and covers the three most important aspects that can be covered computationally when analysing a new family/superfamily: phylogenetics, genomic context analysis, and protein-structure-based domain content annotation. With this, one can directly have an idea about the superfamily of the predicted system and infer about their biological role. The bioinformatics approach is sound and makes use of the most current advances in the fields of protein evolution and structural bioinformatics.

      Weaknesses:

      It is not clear how coiled-coil segments were assigned if only based on AF2-predicted models or also backed by sequence analysis, as no description is provided in the methods. The structure prediction quality assessment is based solely on the average pLDDT of the obtained models (with a threshold of 80 or better). However, this is not enough, particularly when multimeric models were used. The PAE matrix should be used to evaluate relative orientations, particularly in the case where there is a prediction that parts from 2 proteins are interacting. In the case of multimers, interface quality scores, as the ipTM or pDockQ, should also be considered and, at minimum, reported.

      These weaknesses were addressed during revision, and the results provided by the authors support their conclusions. The data resulting from this work will be useful for the general life sciences community, particularly the prokaryotic defense and microbiology communities. It also underscores the high range of functionally unknowns in sequenced genomes that are now much easier to find and interpret due to the success of deep-learning based methods and automated robust bioinformatics pipelines.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, using in-depth computational analysis, Bell et al. explore the diverse repertoire of type IV McrBC modification dependent restriction systems. The prototypical two-component McrBC system has been structurally and functionally characterised and is known to act as a defence by restricting phage and foreign DNA containing methylated cytosines. Here, the authors find previously unanticipated complexity and versatility of these systems and focus on detailed analysis and classification of a distinct branch, the so-called CoCoNut, named after its composition of coiled-coil structures and tandem nucleases. These CoCoNut systems are predicted to target RNA as well as DNA and to utilise defence mechanisms with some similarity to type III CRISPR-Cas systems.

      Strengths:

      This work is enriched with a plethora of ideas and a myriad of compelling hypotheses that now will await experimental verification. The study comes from the group that was amongst the first to describe, characterise, and classify CRISPR-Cas systems. By analogy, the findings described here can similarly promote ingenious experimental and conceptual research that could further drive technological advances. It could also instigate vigorous scientific debates that will ultimately benefit the community.

      Weaknesses:

      The multi-component systems described here function in the context of large oligomeric complexes similarly to the prototypical McrBC system. While the AlphaFold2 (AF2) multimer predictions are provided in this work, these are not compared with the known McrBC structures. These comparisons could have been helpful not only for providing insights into these multimeric protein systems but also for giving more sound explanations of the differences observed amongst different McrBC types.

    1. Reviewer #1 (Public Review):

      Summary:

      Major findings or outcomes include a genome for the wasp, characterization of the venom constituents and teratocyte and ovipositor expression profiles, as well as information about Trichopria ecology and parasitism strategies. It was found that Trichopria cannot discriminate among hosts by age, but can identify previously parasitized hosts. The authors also investigated whether superparasitism by Trichopria wasps improved parasitism outcomes (it did), presumably by increasing venom and teratocyte concentrations/densities. Elegant use of Drosophila ectopic expression tools allowed for functional characterization of venom components (Timps), and showed that these proteins are responsible for parasitoid-induced delays in host development. After finding that teratocytes produce a large number of proteases, experiments showed that these contribute to digestion of host tissues for parasite consumption.<br /> The discussion ties these elements together by suggesting that genes used for aiding in parasitism via different parts of the parasitism arsenal arise from gene duplication and shifts in tissue of expression (to venom glands or teratocytes).

      Strengths:

      The strength of this manuscript is that it describes the parasitism strategies used by Trichopria wasps at a molecular and behavioral level with broad strokes. It represents a large amount of work that in previous decades might have been published in several different papers. Including all of these data in a manuscript together makes for a comprehensive and interesting study.

      Weaknesses:

      The weakness is that the breadth of the study results in fairly shallow mechanistic or functional results for any given facet of Trichopria's biology. Although none of the findings are especially novel given results from other parasitoid species in previous publications, integrating results together provides significant information about Trichopria biology.

    2. Reviewer #2 (Public Review):

      Summary:

      Key findings of this research include the sequencing of the wasp's genome, identification of venom constituents and teratocytes, and examination of Trichopria drosophilae (Td)'s ecology and parasitic strategies. It was observed that Td doesn't distinguish between hosts based on age but can recognize previously parasitized hosts. The study also explored whether multiple parasitisms by Td improved outcomes, which indeed it did, possibly by increasing venom and teratocyte levels. Utilizing Drosophila ectopic expression tools, the authors functionally characterized venom components, specifically tissue inhibitors of metalloproteinases (Timps), which were found to cause delays in host development. Additionally, experiments revealed that teratocytes produce numerous proteases, aiding in the digestion of host tissues for parasite consumption. The discussion suggests that genes involved in different aspects of parasitism may arise from gene duplication and shifts in tissue expression to venom glands or teratocytes.

      Strengths:

      This manuscript provides an in-depth and detailed depiction of the parasitic strategies employed by Td wasps, spanning both molecular and behavioral aspects. It consolidates a significant amount of research that, in the past, might have been distributed across multiple papers. By presenting all this data in a single manuscript, it delivers a comprehensive and engaging study that could help future developments in the field of biological control against a major insect pest.

      Weaknesses:

      While none of the findings are particularly groundbreaking, as similar results have been reported for other parasitoid species in prior research, the integration of these results into one comprehensive overview offers valuable biological insights into an interesting new potential biocontrol species.

    1. Reviewer #1 (Public Review):

      Summary:

      This study has as its goal to determine how the structure and function of the circuit that stabilizes gaze in the larval zebrafish depends on the presence of the output cells, the motor neurons. A major model of neural circuit development posits that the wiring of neurons is instructed by their postsynaptic cells, transmitting signals retrogradely on which cells to contact and, by extension, where to project their axons. Goldblatt et al. remove the motor neurons from the circuit by generating null mutants for the phox2a gene. The study then shows that, in this mutant that lacks the isl1-labelled extraocular motor neurons, the central projection neurons have 1) largely normal responses to vestibular input; 2) normal gross morphology; 3) minimally changed transcriptional profiles. From this, the authors conclude that the wiring of the circuit is not instructed by the output neurons, refuting the major model.

      Strengths:

      I found the manuscript to be exceptionally well-written and presented, with clear and concise writing and effective figures that highlight key concepts. The topic of neural circuit wiring is central to neuroscience, and the paper's findings will interest researchers across the field, and especially those focused on motor systems.

      The experiments conducted are clever and of a very high standard, and I liked the systematic progression of methods to assess the different potential effects of removing phox2a on circuit structure and function. Analyses (including statistics) are comprehensive and appropriate and show the authors are meticulous and balanced in most of the conclusions that they draw. Overall, the findings are interesting, and with a few tweaks, should leave little doubt about the paper's main conclusions.

      Weaknesses:

      The main point is the incomplete characterisation of the effects of removing phox2a on the extra-ocular motor neurons. Are these cells no longer there, or are they there but no longer labelled by isl1:GFP? If they are indeed removed, might they have developed early on, and subsequently lost? These questions matter as the central focus of the manuscript is whether the presence of these cells influences the connectivity and function of their presynaptic projection neurons. Therefore, for the main conclusions to be fully supported by the data, the authors would need to test whether 1) the motor neurons that otherwise would have been labelled by the isl1:GFP line are physically no longer there; 2) that this removal (if, indeed, it is that) is developmental. If these experiments are not feasible, then the text should be adjusted to take this into account. A further point to address is the context of the manipulation. If the phox2a removal does indeed take out the extra-ocular motor neurons, what percentage of postsynaptic neurons to the projection neurons are still present? In other words, how does the postsynaptic nMLF output relate to the motor neurons? If, for instance, the nMLF (which, as the authors state, are likely still innervated by the projection neurons) are the main output of the projections neurons, then this would affect the interpretation of the results.

    2. Reviewer #2 (Public Review):

      Summary:

      This study was designed to test the hypothesis that motor neurons play a causal role in circuit assembly of the vestibulo-ocular reflex circuit, which is based on the retrograde model proposed by Hans Straka. This circuit consists of peripheral sensory neurons, central projection neurons, and motor neurons. The authors hypothesize that loss of extraocular motor neurons, through CRISPR/Cas9 mutagenesis of the phox2a gene, will disrupt sensory selectivity in presynaptic projection neurons if the retrograde model is correct.

      Account of the major strengths and weaknesses of the methods and results:

      The work presented is impressive in both breadth and depth, including the experimental paradigms. Overall, the main results were that the loss of function paradigm to eliminate extraocular motor neurons did not 1) alter the normal functional connections between peripheral sensory neurons and central projection neurons, 2) affect the position of central projection neurons in the sensorimotor circuit, or 3) significantly alter the transcriptional profiles of central projection neurons. Together, these results strongly indicate that retrograde signals from motor neurons are not required for the development of the sensorimotor architecture of the vestibulo-ocular circuit.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The results of this study showed that extraocular motor neurons were not required for central projection neuron specification in the vestibulo-ocular circuit, which countered the prevailing retrograde hypothesis proposed for circuit assembly. A concern is that the results presented may be limited to this specific circuit and may not be generalizable to other circuit assemblies, even to other sensorimotor circuits.

      Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      As mentioned above, this study sheds valuable new insights into the developmental organization of the vestibulo-ocular circuit. However, different circuits likely utilize various mechanisms, extrinsic or intrinsic (or both), to establish proper functional connectivity. So, the results shown here, although begin to explain the developmental organization of the vestibulo-ocular circuit, are not likely to be generalizable to other circuits; though this remains to be seen. At a minimum, this study provides a starting point for the examination of patterning of connections in this and other sensorimotor circuits.

    3. Reviewer #3 (Public Review):

      In this manuscript by Goldblatt et al. the authors study the development of a well-known sensorimotor system, the vestibulo-ocular reflex circuit, using Danio rerio as a model. The authors address whether motor neurons within this circuit are required to determine the identity, upstream connectivity and function of their presynaptic partners, central projection neurons. They approach this by generating a CRISPR-mediated knockout line for the transcription factor phox2a, which specifies the fate of extraocular muscle motor neurons. After showing that phox2a knockout ablates these motor neurons, the authors show that functionally, morphologically, and transcriptionally, projection neurons develop relatively normally.

      Overall, the authors present a convincing argument for the dispensability of motor neurons in the wiring of this circuit, although their claims about the generalizability of their findings to other sensorimotor circuits should be tempered. The study is comprehensive and employs multiple methods to examine the function, connectivity and identity of projection neurons.

      Specific comments:

      (1) In the introduction the authors set up the controversy on whether or not motor neurons play an instructive role in determining "pre-motor fate". This statement is somewhat generic and a bit misleading as it is generally accepted that many aspects of interneuron identity are motor neuron-independent. The authors might want to expand on these studies and better define what they mean by "fate", as it is not clear whether the studies they are citing in support of this hypothesis actually make that claim.

      (2) Although it appears unchanged from their images, the authors do not explicitly quantitate the number of total projection neurons in phox2a knockouts.

      (3) For figures 2C and 3C, please report the proportion of neurons in each animal, either showing individual data points here or in a separate supplementary figure; and please perform and report the results of an appropriate statistical test.

      (4) In the topographical mapping of calcium responses (figures 2D, E and 3D), the authors say they see no differences but this is hard to appreciate based on the 3D plotting of the data. Quantitating the strength of the responses across the 3-axes shown individually and including statistical analyses would help make this point, especially since the plots look somewhat qualitatively different.

      (5) The transcriptional analysis is very interesting, however, it is not clear why it was performed at 72 hpf, while functional experiments were performed at 5 days. Is it possible that early aspects of projection neuron identity are preserved, while motor neuron-dependent changes occur later? The authors should better justify and discuss their choice of timepoint. The inclusion of heterozygotes as controls is problematic, given that the authors show there are notable differences between phox2a+/+ and phox2a+/- animals; pooling these two genotypes could potentially flatten differences between controls and phox2a-/-.

      (6) Projection neurons appear to be topographically organized and this organization is maintained in the absence of motor neurons. Are there specific genes that delineate ventral and dorsal projection neurons? If so, the authors should look at those as candidate genes as they might be selectively involved in connectivity. Showing that generic synaptic markers (Figure 4E) are maintained in the entire population is not convincing evidence that these neurons would choose the correct synaptic partners.

    1. Reviewer #1 (Public Review):

      Though the Norrin protein is structurally unrelated to the Wnt ligands, it can activate the Wnt/β-catenin pathway by binding to the canonical Wnt receptors Fzd4 and Lrp5/6, as well as the tetraspanin Tspan12 co-receptor. Understanding the biochemical mechanisms by which Norrin engages Tspan12 to initiate signaling is important, as this pathway plays an important role in regulating retinal angiogenesis and maintaining the blood-retina-barrier. Numerous mutations in this signaling pathway have also been found in human patients with ocular diseases. The overarching goal of the study is to define the biochemical mechanisms by which Tspan12 mediates Norrin signaling. Using purified Tspan12 reconstituted in lipid nanodiscs, the authors conducted detailed binding experiments to document the direct, high-affinity interactions between purified Tspan12 and Norrin. To further model this binding event, they used AlphaFold to dock Norrin and Tspan12 and identified four putative binding sites. They went on to validate these sites through mutagenesis experiments. Using the information obtained from the AlphaFold modeling and through additional binding competition experiments, it was further demonstrated that Tspan12 and Fzd4 can bind Norrin simultaneously, but Tspan12 binding to Norrin is competitive with other known co-receptors, such as HSPGs and Lrp5/6. Collectively, the authors proposed that the main function of Tspan12 is to capture low concentrations of Norrin at the early stage of signaling, and then "hand over" Norrin to Fzd4 and Lrp5/6 for further signal propagation. Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data.

      Strengths:

      • Biochemical reconstitution of Tspan12 and Fzd4 in lipid nanodiscs is an elegant approach for testing the direct binding interaction between Norrin and its co-receptors. The proteins used for the study seem to be of high purity and quality.

      • The various binding experiments presented throughout the study were carried out rigorously. In particular, BLI allows accurate measurement of equilibrium binding constants as well as on and off rates.

      • It is nice to see that the authors followed up on their AlphaFold modeling with an extensive series of mutagenesis studies to experimentally validate the potential binding sites. This adds credence to the AlphaFold models.

      • Table S1 is a further testament to the rigor of the study.

      • Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data.

      Suggestions for improvement:

      • It would be helpful to show Coomassie-stained gels of the key mutant Norrin and Tspan12 proteins presented in Figures 2E and 2F.

      • Many Norrin and Tspan12 mutations have been identified in human patients with FEVR. It would be interesting to comment on whether any of the mutations might affect the Norrin-Tspan12 binding sites described in this study.

      • Some of the negative conclusions (e.g. the lack of involvement of Tspan12 in the formation of the Norrin-Lrp5/6-Fzd4-Dvl signaling complex) can be difficult to interpret. There are many possible reasons as to why certain biological effects are not recapitulated in a reconstitution experiment. For instance, the recombinant proteins used in the experiment may not be presented in the correct configurations, and certain biochemical modifications, such as phosphorylation, may also be missing.

    2. Reviewer #2 (Public Review):

      This is an interesting study of high quality with important and novel findings. Bruguera et al. report a biochemical and structural analysis of the Tspan12 co-receptor for norrin. Major findings are that Norrin directly binds Tspan12 with high affinity (this is consistent with a report on BioRxiv: Antibody Display of cell surface receptor Tetraspanin12 and SARS-CoV-2 spike protein) and a predicted structure of Tspan12 alone or in complex with Norrin. The Norrin/Tspan12 binding interface is largely verified by mutational analysis. An interaction of the Tspan12 large extracellular loop (LEL) with Fzd4 cannot be detected and interactions of full-length Tspan12 and Fzd4 cannot be tested using nano-disc based BLI, however, Fzd4/Tspan12 heterodimers can be purified and inserted into nanodiscs when aided by split GFP tags. An analysis of a potential composite binding site of a Fzd4/Tspan12 complex is somewhat inconclusive, as no major increase in affinity is detected for the complex compared to the individual components. A caveat to this data is that affinity measurements were performed for complexes with approximately 1 molecule Tspan12 and FZD4 per nanodisc, while the composite binding site could potentially be formed only in higher order complexes, e.g., 2:2 Fzd4/Tspan12 complexes. Interestingly, the authors find that the Norrin/Tspan12 binding site and the Norrin/Lrp6 binding site partially overlap and that the Lrp6 ectodomain competes with Tspan12 for Norrin binding. This result leads the authors to propose a model according to which Tspan12 captures Norrin and then has to "hand it off" to allow for Fzd4/Lrp6 formation. By increasing the local concentration of Norrin, Tspan12 would enhance the formation of the Fzd4/Lrp5 or Fzd4/Lrp6 complex.

      The experiments based on membrane proteins inserted into nano-discs and the structure prediction using AlphaFold yield important new insights into a protein complex that has critical roles in normal CNS vascular biology, retinal vascular disease, and is a target for therapeutic intervention. However, it remains unclear how Norrin would be "handed off" from Tspan12 or Tspan12/Fzd4 complexes to Fzd4/Lrp6 complexes, as the relatively high affinity of Norrin to Fzd4/Tspan12 dimers likely does not favor the "handing off" to Fzd4/Lrp6 complexes.

      Areas that would benefit from further experiments, or a discussion, include:

      - The authors test a potential composite binding site of Fzd4/Tspan12 heterodimers for norrin using nanodiscs that contain on average about 1 molecule Fzd4 and 1 molecule Tspan12. The Fzd4/Tspan12 heterodimer is co-inserted into the nanodiscs supported by split-GFP tags on Fzd4 and Tspan12. The authors find no major increase in affinity, although they find changes to the Hill slope, reflecting better binding of norrin at low norrin concentrations. In 293F cells overexpressing Fzd4 and Tspan12 (which may result in a different stoichiometry) they find more pronounced effects of norrin binding to Fzd4/Tspan12. This raises the possibility that the formation of a composite binding requires Fzd4/Tspan12 complexes of higher order, for example, 2:2 Fzd4/Tspan12 complexes, where the composite binding site may involve residues of each Fzd4 and Tspan12 molecule in the complex. This could be tested in nanodiscs in which Fzd4 and Tspan12 are inserted at higher concentrations or using Fzd4 and Tspan12 that contain additional tags for oligomerization.

      - While Tspan12 LEL does not bind to Fzd4, the successful reconstitution of GFP from Tspan12 and Fzd4 tagged with split GFP components provides evidence for Fzd4/Tspan12 complex formation. As a negative control, e.g., Fzd5, or Tspan11 with split GFP tags (Fzd5/Tspan12 or Fzd4/Tspan11) would clarify if FZD4/Tspan12 heterodimers are an artefact of the split GFP system.

      - Fzd4/Tspan12 heterodimers stabilized by split GFP may be locked into an unfavorable orientation that does not allow for the formation of a composite binding site of FZD4 and Tspan12, this is another caveat for the interpretation that Fzd4/Tspan12 do not form a composite binding site. This is not discussed.

      - Mutations that affect the affinity of norrin/fzd4 are not used to further test if Fzd4 and Tspan12 form a composite binding site. Norrin R41E or Fzd4 M105V were previously reported to reduce norrin/frizzled4 interactions and signaling, and both interaction and signaling were restored by Tspan12 (Lai et al. 2017). Whether a Fzd4/Tspan12 heterodimer has increased affinity for Norrin R41E was not tested. Similarly, affinity of FZD4 M105V vs a Fzd4 M105V/Tspan12 heterodimer were not tested.

      - An important conclusion of the study is that Tspan12 or Lrp6 binding to Norrin is mutually exclusive. This could be corroborated by an experiment in which LRP5/6 is inserted into nanodiscs for BLI binding tests with Norrin, or Tspan12 LEL, or a combination of both. Soluble LRP6 may remove norrin from equilibrium binding/unbinding to Tspan12, therefore presenting LRP6 in a non-soluble form may yield different results.

      - The authors use LRP6 instead of LRP5 for their experiments. Tspan12 is less effective in increasing the Norrin/Fzd4/Lrp6 signaling amplitude compared to Norrin/Fzd4/Lrp5 signaling, and human genetic evidence (FEVR) implicates LRP5, not LRP6, in Norrin/Frizzled4 signaling. The authors find that Norrin binding to LRP6 and Tspan12 is mutually exclusive, however this may not be the case for Lrp5.

      - The biochemical data are largely not correlated with functional data. The authors suggest that the Norrin R115L FEVR mutation could be due to reduced norrin binding to tspan12, but do not test if Tspan12-mediated enhancement of the norrin signaling amplitude is reduced by the R115L mutation. Similarly, the impressive restoration of binding by charge reversal mutations in site 3 is not corroborated in signaling assays.

    3. Reviewer #3 (Public Review):

      Brugeuera et al present an impressive series of biochemical experiments that address the question of how Tspan12 acts to promote signaling by Norrin, a highly divergent TGF-beta family member that serves as a ligand for Fzd4 and Lrp5/6 to promote canonical Wnt signaling during CNS (and especially retinal) vascular development. The present study is distinguished from those of the past 15 years by its quantitative precision and its high-quality analyses of concentration dependencies, its use of well-characterized nano-disc-incorporated membrane proteins and various soluble binding partners, and its use of structure prediction (by AlphaFold) to guide experiments. The authors start by measuring the binding affinity of Norrin to Tspan12 in nanodiscs (~10 nM), and they then model this interaction with AlphaFold and test the predicted interface with various charge and size swap mutations. The test suggests that the prediction is approximately correct, but in one region (site 1) the experimental data do not support the model. [As noted by the authors, a failure of swap mutations to support a docking model is open to various interpretations. As AlphFold docking predictions come increasingly into common use, the compendium of mutational tests and their interpretations will become an important object of study.] Next, the authors show that Tspan12 and Fzd4 can simultaneously bind Norrin, with modest negative cooperativity, and that together they enhance Norrin capture by cells expressing both Tspan12 and Fzd4 compared to Fzd4 alone, an effect that is most pronounced at low Norrin concentration. Similarly, at low Norrin concentration (~1 nM), signaling is substantially enhanced by Tspan12. By contrast, the authors show that LRP6 competes with Tspan12 for Norrin binding, implying a hand-off of Norrin from a Tspan12+Fzd4+Norrin complex to a LRP5/6+Fzd4+Norrin complex. Thanks to the authors' careful dose-response analyses, they observed that Norrin-induced signaling and Tspan12 enhancement of signaling both have bell-shaped dose-response curves, with strong inhibition at higher levels of Norrin or Tspan12. The implication is that the signaling system has been built for optimal detection of low concentrations of Norrin (most likely the situation in vivo), and that excess Tspan12 can titrate Norrin at the expense of LRP5/6 binding (i.e., reduction in the formation of the LRP5/6+Fzd4+Norrin signaling complex). In the view of this reviewer, the present work represents a foundational advance in understanding Norrin signaling and the role of Tspan12. It will also serve as an important point of comparison for thinking about signaling complexes in other ligand-receptor systems.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Bendzunas, Byrne et al. explore two highly topical areas of protein kinase regulation in this manuscript. Firstly, the idea that Cys modification could regulate kinase activity. The senior authors have published some standout papers exploring this idea of late, and the current work adds to the picture of how active site Cys might have been favoured in evolution to serve critical regulatory functions. Second, BRSK1/2 are understudied kinases listed as part of the "dark kinome" so any knowledge of their underlying regulation is of critical importance to advancing the field.

      Strengths:<br /> In this study, the author pinpoints highly-conserved, but BRSK-specific, Cys residues as key players in kinase regulation. There is a delicate balance between equating what happens in vitro with recombinant proteins relative to what the functional consequence of Cys mutation might be in cells or organisms, but the authors are very clear with the caveats relating to these connections in their descriptions and discussion. Accordingly, by extension, they present a very sound biochemical case for how Cys modification might influence kinase activity in cellular environs.

      Comments on revised version:

      The authors have satisfactorily addressed my concerns.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study by Bendzunas et al, the authors show that the formation of intra-molecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys at an unusual CPE motif at the end of the activation segment function as repressive regulatory mechanisms in BSK1 and 2. They observed that mutation of the CPE-Cys only, contrary to the double mutation of the pair, increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family. Understanding the molecular mechanisms underlying kinase regulation by redox-active Cys residues is fundamental as it appears to be widespread in signaling proteins and provides new opportunities to develop specific covalent compounds for the targeted modulation of protein kinases.

      The authors demonstrate that intramolecular cysteine disulfide bonding between conserved cysteines can function as a repressing mechanism as indicated by the effect of DTT and the consequent increase in activity by BSK-1 and -2 (WT). The cause-effect relationship of why mutation of the CPE-Cys only increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells is not clear to me. The explanation given by the authors based on molecular modeling and molecular dynamics simulations is that oxidation of the CPE-Cys (that will favor disulfide bonding) destabilizes a conserved salt bridge network critical for allosteric activation. However, no functional evidence of the impact of the salt-bridge network is provided. If you mutated the two main Cys-pairs (aE-CHRD and A-loop T+2-CPE) you lose the effect of DTT, as the disulfide pairs cannot be formed, hence no repression mechanisms take place, however when looking at individual residues I do not understand why mutating the CPE only results in the opposite effect unless it is independent of its connection with the T+2residue on the A-loop.

      Strengths:

      This is an important and interesting study providing new knowledge in the protein kinase field with important therapeutic implications for the rationale design and development of next-generation inhibitors.

      Comments on revised version:

      I have one remark related to question number 5 (my question was not clear enough). I meant if the authors did look at the functional relevance of the residues implicated in the identified salt-bridge network/tethers. What happens to the proteins functionally when you mutate those residues? (represented on Fig. 8).

      Otherwise, the authors have satisfactorily addressed my concerns.

    1. Reviewer #3 (Public Review):

      Distant metastasis is the major cause of death in patients with breast cancer. In this manuscript, Liu et al. show that RGS10 deficiency elicits distant metastasis via epithelial-mesenchymal transition in breast cancer. As a prognostic indicator of breast cancer, RGS10 regulates the progress of breast cancer and affects tumor phenotypes such as epithelial-mesenchymal transformation, invasion, and migration. The conclusions of this paper are mostly well supported by data, but some analyses need to be clarified.

      (1) Because diverse biomarkers have been identified for EMT, it is recommended to declare the advantages of using RGS10 as an EMT marker.

      (2) The authors utilized databases to study the upstream regulatory mechanisms of RSG10. It is recommended to clarify why the authors focused on miRNAs rather than other epigenetic modifications.

      (3) The role of miR-539-5p in breast cancer has been described in previous studies. Hence, it is recommended to provide detailed elaboration on how miR-539-5p regulates the expression of RSG10.

      (4) To enhance the clarity and interpretability of the Western blot results, it would be advisable to mark the specific kilodalton (kDa) values of the proteins.

    2. Reviewer #1 (Public Review):

      Strengths

      The paper has shown the expression of RGS10 is related to the molecular subtype, distant metastasis, and survival status of breast cancer. The study utilizes bioinformatic analyses, human tissue samples, and in vitro and in vivo experiments which strengthen the data. RGS10 was validated to inhibit EMT through a novel mechanism dependent on LCN2 and miR-539-5p, thereby reducing cancer cell proliferation, colony formation, invasion, and migration. The study elaborated the function of RGS10 in influencing the prognosis and biological behavior which could be considered as a potential drug target in breast cancer.

      Weakness<br /> The mechanism by which the miR-539-5p/RGS10/LCN2 axis may be related to the prognosis of cancer patients still needs to be elucidated. In addition, the sample size used is relatively limited. Especially, if further exploration of the related pathways and mechanisms of LCN2 can be carried out by using organoid models, as well as the potential of RGS10 as a biomarker for further clinical translation to verify its therapeutic target effect, which will make the data more convincing.

    3. Reviewer #2 (Public Review):

      Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.

      The conclusions of this study are mostly well supported by data. However, there is a weakness in the study that needs to be clarified.

      In Figure 2A, although some references supported that SKBR3 and MCF-7 possess poorly aggressive and less invasive abilities, examining only RGS10 expression in those cells, it could not be concluded that 'RGS10 acts as a tumor suppressor in breast cancer'. It would be better to introduce a horizontal comparison of the invasive ability of these 3 types of cells using an invasion assay.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors perform a multidisciplinary approach to describe the conformational plasticity of P-Rex1 in various states (autoinhibited, IP4 bound and PIP3 bound). Hydrogen-deuterium exchange (HDX) is used to reveal how IP4 and PIP3 binding affect intramolecular interactions. While IP4 is found to stabilize autoinhibitory interactions, PIP3 does the opposite, leading to deprotection of autoinhibitory sites. Cryo-EM of IP4 bound P-Rex1 reveals a structure in the autoinhibited conformation, very similar to the unliganded structure reported previously (Chang et al. 2022). Mutations at observed autoinhibitory interfaces result in a more open structure (as shown by SAXS), reduced thermal stability and increased GEF activity in biochemical and cellular assays. Together their work portrays a dynamic enzyme that undergoes long-range conformational changes upon activation on PIP3 membranes. The results are technically sound and the conclusions are justified. The main drawback is the limited novelty due to the recently published structure of unliganded P-Rex1, which is virtually identical to the IP4 bound structure presented here. Novel aspects suggest a regulatory role for IP4, but the exact significance and mechanism of this regulation has not been explored.

      Strengths:

      The authors use a multitude of techniques to describe the dynamic nature and conformational changes of P-Rex1 upon binding to IP4 and PIP3 membranes. The different approaches together fit well with the overall conclusion that IP4 binding negatively regulates P-Rex1, while binding to PIP3 membranes leads to conformational opening and catalytic activation. The experiments are performed very thoroughly and are technically sound. The results are clear and support the conclusions.

      Weaknesses:

      (1) The novelty of the study is compromised due to the recently published structure of unliganded P-Rex1 (Chang et al. 2022). The unliganded and IP4 bound structure of P-Rex1 appear virtually identical, however, no clear comparison is presented in the manuscript. In the same paper a very similar model of P-Rex1 activation upon binding to PIP3 membranes and Gbeta-gamma is presented.

      (2) The authors demonstrate that IP4 binding to P-Rex1 results in catalytic inhibition and increased protection of autoinhibitory interfaces, as judged by HDX. The relevance of this in a cellular setting is not clear and is not experimentally demonstrated. Further, mechanistically, it is not clear whether the biochemical inhibition by IP4 of PIP3 activated P-Rex1 is due to competition of IP4 with activating PIP3 binding to the PH domain of P-Rex1, or due to stabilizing the autoinhibited conformation, or both.

      (3) Fig.1B-C: To give a standard deviation from 2 data points has no statistical significance. In this case it would be better to define as range/difference of the 2 data points.

    2. Reviewer #2 (Public Review):

      Summary:

      In this new paper, the authors used biochemical, structural, and biophysical methods to elucidate the mechanisms by which IP4, the PIP3 headgroup, can induce an autoinhibit form of P-Rex1 and propose a model of how PIP3 can trigger long-range conformational changes of P-Rex1 to relieve this autoinhibition. The main findings of this study are that a new P-Rex1 autoinhibition is driven by an IP4-induced binding of the PH domain to the DH domain active site and that this autoinhibit form stabilized by two key interactions between DEP1 and DH and between PH and IP4P 4-helix bundle (4HB) subdomain. Moreover, they found that the binding of phospholipid PIP3 to the PH domain can disrupt these interactions to relieve P-Rex1 autoinhibition.

      Strengths:

      The study provides good evidence that binding of IP4 to the P-Rex1 PH domain can make the two long-range interactions between the catalytic DH domain and the first DEP domain, and between the PH domain and the C-terminal IP4P 4HB subdomain that generate a novel P-Rex1 autoinhibition mechanism. This valuable finding adds an extra layer of P-Rex1 regulation (perhaps in the cytoplasm) to the synergistic activation by phospholipid PIP3 and the heterotrimeric Gβγ subunits at the plasma membrane. Overall, this manuscript's goal sounds interesting, the experimental data were carried out carefully and reliably.

      Weakness:

      The set of experiments with the disulfide bond S235C/M244C caused a bit of confusion for interpretation, it should be moved into the supplement, and the text and Figure 4 were altered accordingly.

    3. Reviewer #3 (Public Review):

      Summary:

      In this report, Ravala et al demonstrate that IP4, the soluble head-group of phosphatiylinositol 3,4,5 - trisphosphate (PIP3), is an inhibitor of pREX-1, a guanine nucleotide exchange factor (GEF) for Rac1 and related small G proteins that regulate cell cell migration. This finding is perhaps unexpected since pREX-1 activity is PIP3-dependent. By way of Cryo-EM (revealing the structure of the p-REX-1/IP4 complex at 4.2Å resolution), hydrogen-deuterium mass spectrometry and small angle X-ray scattering, they deduce a mechanism for IP4 activation, and conduct mutagenic and cell-based signaling assays that support it. The major finding is that IP4 stabilizes two interdomain interfaces that block access of the DH domain, which conveys GEF activity towards small G protein substrates. One of these is the interface between the PH domain that binds to IP4 and a 4-helix bundle extension of the IP4 Phosphatase domain and the DEP1 domain. The two interfaces are connected by a long helix that extends from PH to DEP1. Although the structure of fully activated pREX-1 has not been determined, the authors propose a "jackknife" mechanism, similar to that described earlier by Chang et al (2022) (referenced in the author's manuscript) in which binding of IP3 relieves a kink in a helix that links the PH/DH modules and allows the DH-PH-DEP triad to assume an extended conformation in which the DH domain is accessible. While the structure of the activated pREX-1 has not been determined, cysteine mutagenesis that enforces the proposed kink is consistent with this hypothesis. SAXS and HDX-MS experiments suggest that IP4 acts by stiffening the inhibitory interfaces, rather than by reorganizing them. Indeed, the cryo-EM structure of ligand-free pREX-1 shows that interdomain contacts are largely retained in the absence of IP4.

      Strengths:

      The manuscript thus describes a novel regulatory role for IP4 and is thus of considerable significance to our understanding of regulatory mechanisms that control cell migration, particularly in immune cell populations. Specifically, they show how the inositol polyphosphate IP4 controls the activity of pREX-1, a guanine nucleotide exchange factor that controls the activity of small G proteins Rac and CDC42 . In their clearly-written discussion, the authors explain how PIP3, the cell membrane and the Gbeta-gamma subunits of heterotrimeric membranes together localize pREX-1 at the membrane and induce activation. The quality of experimental data is high and both in vitro and cell-based assays of site-directed mutants designed to test the author's hypotheses are confirmatory. The results strongly support the conclusions. The combination of cryo-EM data, that describe the static (if heterogeneous) structures with experiments (small angle x-ray scattering and hydrogen-deuterium exchange-mass spectrometry) that report on dynamics are well employed by the authors

      Manuscript revision:

      The reviewers noted a number of weaknesses, including error analysis of the HDX data, interpretation of the mutagenesis data, the small fraction of the total number of particles used to generate the EM reconstruction, the novelty of the findings in light of the previous report by Cheng et al, 2022, various details regarding presentation of structural results and questions regarding the interpretation of the inhibition data (Figure 1D). The authors have responded adequately to these critiques. It appears that pREX-1 is a highly dynamic molecule, and considerable heterogeneity among particles might be expected.

      While, indeed, the conformation of pREX presented in this report is not novel, the finding that this inactive conformational state is stabilized by IP4 is significant and important. The evidence for this is both structural and biochemical, as indicated by micromolar competition of IP4 with PI3-enriched vesicles resulting in the inhibition of pREX-1 GEF activity.

    1. Reviewer #3 (Public Review):

      Summary:

      Studying evolutionary trajectories provides important insight in genetic architecture of adaptation and provide potential contribution to evaluating the predictability (or unpredictability) in biological processes involving adaptation. While many papers in the field address adaptation to environmental challenges, the number of studies on how genomic contexts, such as large-scale variation, can impact evolutionary outcomes adaptation is relatively low. This research experimentally evolved a genome-reduced strain for ~1000 generations with 9 replicates and dissected their evolutionary changes. Using the fitness assay of OD measurement, the authors claimed there is a general trend of increasing growth rate and decreasing carrying capacity, despite a positive correlation among all replicates. The authors also performed genomic and transcriptomic research at the end of experimental evolution, claiming the dissimilarity in the evolution at the molecular level.

      Strengths:

      The experimental evolution approach with a high number of replicates provides a good way to reveal the generality/diversity of the evolutionary routes.

      The assay of fitness, genome, and transcriptome all together allows a more thorough understanding of the evolutionary scenarios and genetic mechanisms.

      Comments on revised version:

      5 in the last round of comments: When the authors mentioned no overlapping in single mutation level, I thought the authors would directly use this statement to support their next sentence about no bias of these mutations. As the author's responded, I was suspecting no overlapping for 65 mutation across the entire genome is likely to be not statistically significant. In the revised version, the authors emphasized and specified their simulation and argument in the following sentences, so I do not have questions on this point anymore.

      14 in the last round of comments: As what authors responded, "short-term responses" meant transcriptional or physiological changes within a few hours after environmental or genetic fluctuation. "long-term responses" involve new compensatory mutations and selection. The point was that, the authors found that "the transcriptome reorganization for fitness increase triggered by evolution differed from that for fitness decrease caused by genome reduction." That is short vs long-term responses to genetic perturbation. Some other experimental evolution did short vs long-term responses to environmental perturbation and usually also found that the short-term responses are reverted in the long-term responses (e.g., https://academic.oup.com/mbe/article/33/1/25/2579742). I hope this explanation makes more sense. And I think the authors can make their own decisions on whether they would like to add this discussion or not.

    2. Reviewer #1 (Public Review):

      In this study, the authors explored how the reduced growth fitness, resulting from genome reduction, can be compensated through evolution. They conducted an evolution experiment with a strain of Escherichia coli that carried a reduced genome, over approximately 1,000 generations. The authors carried out sequencing, and found no clear genetic signatures of evolution across replicate populations. They carry out transcriptomics and a series of analyses that lead them to conclude that there are divergent mechanisms at play in individual evolutionary lineages. The authors used gene network reconstruction to identify three gene modules functionally differentiated, correlating with changes in growth fitness, genome mutation, and gene expression, respectively, due to evolutionary changes in the reduced genome.

      I think that this study addresses an interesting question. Many microbial evolution experiments evolve by loss of function mutations, but presumably a cell that has already lost so much of its genome needs to find other mechanisms to adapt. Experiments like this have the potential to study "constructive" rather than "destructive" evolution.

      Comments on revised version:

      I think the authors have carefully gone through the manuscript and addressed all of my concerns.

    3. Reviewer #2 (Public Review):

      This manuscript describes an adaptive laboratory evolution (ALE) study with a previously constructed genome-reduced E. coli. The growth performance of the end-point lineages evolved in M63 medium was comparable to the full-length wild-type level at lower cell densities.

      Subsequent mutation profiling and RNA-Seq analysis revealed many changes on the genome and transcriptomes of the evolved lineages. The authors did a great deal on analyzing the patterns of evolutionary changes between independent lineages, such as the chromosomal periodicity of transcriptomes, pathway enrichment analysis, weight gene co-expression analysis, and so on. They observed a striking diversity in the molecular characteristics amongst the evolved lineages, which, as they suggest, reflect divergent evolutionary strategies adopted by the genome-reduced organism.

      As for the overall quality of the manuscript, I am rather torn. The manuscript leans towards elaborating observed findings, rather than explaining their biological significance. For this reason, readers are left with more questions than answers. For example, fitness assay on reconstituted (single and combinatorial) mutants was not performed, nor any supporting evidence on the proposed contributions of each mutants provided. This leaves the nature of mutations - be them beneficial, neutral or deleterious, the presence of epistatic interactions, and the magnitude of fitness contribution, largely elusive. Also, it is difficult to tell whether the RNA-Seq analysis in this study managed to draw biologically meaningful conclusions, or instill insight into the nature of genome-reduced bacteria. The analysis primarily highlighted the differences in transcriptome profiles among each lineage based on metrics such as 'DEG counts' and the 'GO enrichment'. However, I could not see any specific implications regarding the biology of the evolved minimal genome drawn. In their concluding remark, 'Multiple evolutionary paths for the reduced genome to improve growth fitness were likely all roads leading to Rome,' the authors observed the first half of the sentence, but the distinctive characteristics of 'all roads' or 'evolutionary paths', which I think should have been the key aspect in this investigation, remains elusive.

      Comments on revised version:

      I appreciate the author's responses. They responded to most of the comments, but I still think that there is room for improvement. Please refer to the following comments. Quoted below are the author's responses.

      "We agree that our study leaned towards elaborating observed findings rather than explaining the detailed biological mechanisms."<br /> - Comment: I doubt if there are scientific merits in merely elaborating observed findings. The conclusion of this study suggests that evolutionary paths in reduced genomes are highly diverse. But if you think about the nature of adaptive evolution, which relies upon the spontaneous mutation event followed by selection, certain degree of divergence is always expected. The problem with current experimental setting is that there are no ways to quantitively assess whether the degree of evolutionary divergence increases as the function of genome reduction, as the authors claimed. In addition, this notion is in direct contradiction to the prediction that genome reduction constraints evolution by reducing the number of solution space. It is more logical to think and predict that genome reduction would, in turn, lead to the loss of evolutionary divergence. We are also interested to know whether solution space to the optimization problem altered in response to the genome reduction. In this regard, a control ALE experiment on non-reduced wild-type seems to be a mandatory experimental control. I highly suggest that authors present a control experiment, as it was done for "JCVI syn3.0B vs non-minimal M. mycoides" (doi: 10.1038/s41586 023 06288 x) and "E. coli eMS57 vs MG1655" (doi: 10.1038/s41467 019 08888 6).<br /> "We focused on the genome wide biological features rather than the specific biological functions."<br /> - Comment: The 'biological features' delivered in current manuscript does not give insight as to which genomic changes translated into strain fitness improvement. Rather than explaining the genotype-phenotype relationships and/or the mechanistic basis of fitness improvement, authors merely elaborated on the observed phenotypes. I question the scientific merits of such 'findings'.<br /> "Although the reduced growth rate caused by genome reduction could be recovered by experimental evolution, it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome and how the genome wide changes occurred to match the growth fitness increase."<br /> - Comment: This response is very confusing to understand. "it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome" - what aspects remain unclear?? What assumption led the authors to believe that reduced genome's fitness cannot be evolutionarily improved?<br /> - Comment: "and how the genome wide changes occurred to match the growth fitness increase" - this is exactly the aspect that authors should deliver, instead of just elaborating the observed findings. Why don't authors select one or two fastest-growing (or the fittest) lineages and specifically analyze underlying adaptive changes (i.e. genotype-phenotype relationships)?

    1. Reviewer #1 (Public Review):

      Summary:

      Tuberculous meningitis (TBM) is one of the most severe form of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C and CD4) were identified as strong predictors of death from TBM.

      Strengths:

      This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample and analyse and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights in the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

      Weaknesses:

      The authors have addressed all the weaknesses in the revised version.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes, and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

      Strengths:

      Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.<br /> The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.<br /> The addition of a new validation cohort to evaluate the generalisability of their prognostic model in the revised manuscript is welcome.

      Weaknesses:

      The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis cannot be used to make causal inferences. In addition the functional annotations are limited to 'high-level' terms that fail to define the biology very precisely. As a result, the conclusions about the immunopathogenesis of TBM are not adequately substantiated.<br /> The lack of AUROC confidence intervals and direct comparison to the reference prognostic model in the validation cohort undermines confidence in their conclusion that their new prognostic model combing gene expression data and clinical variables performs better than the reference model.

    1. Reviewer #2 (Public Review):

      Summary:

      This study from Bamgbose et al. identifies a new and important interaction between H4K20me and Parp1 that regulates inducible genes during development and heat stress. The authors present convincing experiments that form a mostly complete manuscript that significantly contributes to our understanding of how Parp1 associates with target genes to regulate their expression.

      Strengths:

      The authors present 3 compelling experiments to support the interaction between Parp1 and H4K20me, including:

      (1) PR-Set7 mutants remove all K4K20me and phenocopy Parp mutant developmental arrest and defective heat shock protein induction.

      (2) PR-Set7 mutants have dramatically reduced Parp1 association with chromatin and reduced poly-ADP ribosylation.

      (3) Parp1 directly binds H4K20me in vitro.

    1. Reviewer #1 (Public Review):

      Summary:

      The endocannabinoid system (ECS) components are dysregulated within the lesion microenvironment and systemic circulation of endometriosis patients. Using endometriosis mouse models and genetic loss of function approaches, Lingegowda et al. report that canonical ECS receptors, CNR1 and CNR2, are required for disease initiation, progression, and T-cell dysfunction.

      Strengths:

      The approach uses genetic approaches to establish in vivo causal relationships between dysregulated ECS and endometriosis pathogenesis. The experimental design incorporates bulk RNAseq approaches, as well as imaging mass spectrometry to characterize the mouse lesions. The identification of immune-related and T-cell-specific changes in the lesion microenvironment of CNR1 and CNR2 knockout (KO) mice represents a significant advance

      Weaknesses:

      Although the mouse phenotypic analyses involve a detailed molecular characterization of the lesion microenvironment using genomic approaches, detailed measurements of lesion size/burden and histopathology would provide a better understanding of how CNR1 or CNR2 loss contributes to endometriosis initiation and progression. The cell or tissue-specific effects of the CNR1 and CNR2 are not incorporated into the experimental design of the studies. Although this aspect of the approach is recognized as a major limitation, global CNR1 and CNR2 KO may affect normal female reproductive tract function, ovarian steroid hormone levels, decidualization response, or lead to preexisting alterations in host or donor tissues, which could affect lesion establishment and development in the surgically induced, syngeneic mouse model of endometriosis.

    2. Reviewer #2 (Public Review):

      Summary:

      The endocannabinoid system (ECS) regulates many critical functions, including reproductive function. Recent evidence indicates that dysregulated ECS contributes to endometriosis pathophysiology and the microenvironment. Therefore, the authors further examined the dysregulated ECS and its mechanisms in endometriosis lesion establishment and progression using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. The authors presented differential gene expressions and altered pathways, especially those related to the adaptive immune response in CNR1 and CNR2 ko lesions. Interstingly, the T-cell population was dramatically reduced in the peritoneal cavity lacking CNR2, and the loss of proliferative activity of CD4+ T helper cells. Imaging mass cytometry analysis provided spatial profiling of cell populations and potential relationships among immune cells and other cell types. This study provided fundamental knowledge of the endocannabinoid system in endometriosis pathophysiology.

      Strengths:

      Dysregulated ECS and its mechanisms in endometriosis pathogenesis were assessed using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. Not only endometriotic lesions, but also peritoneal exudate (and splenic) cells were analyzed to understand the specific local disease environment under the dysregulated ECS.

      Providing the results of transcriptional profiles and pathways, immune cell profiles, and spatial profiles of cell populations support altered immune cell population and their disrupted functions in endometriosis pathogenesis via dysregulation of ECS.

      In line 386: Role of CNR2 in T cells. The finding that nearly absent CD3+ T cells in the peritoneal cavity of CNR2 ko mice is intriguing.

      The interpretation of the results is well-described in the Discussion.

      Weaknesses:

      The study was terminated and characterized 7 days after EM induction surgery without the details for selecting the time point to perform the experiments.

      The authors also mentioned that altered eutopic endometrium contributes to the establishment and progression of endometriosis. This reviewer agrees with lines 324-325. If so, DEGs are likely identified between eutopic endometrium (with/without endometriosis lesion induction) and ectopic lesions. It would be nice to see the data (even though using publicly available data sets).

      Figure 7 CDEF. The results of the statistical analyses and analyzed sample numbers should be added. Lines 444-450 cannot be reviewed without them.

      This reviewer agrees with lines 498-500. In contrast, retrograded menstrual debris is not decidualized. The section could be modified to avoid misunderstanding.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to explore how much two known minibinder protein domains against the Spike protein of SARS-CoV-2 can function as a binding domain of 2 sets of synthetic receptors (SNIPR and CAR); the authors also want to know how some modifications of the linkers of these new receptors affect their activation profile.

      Major strengths and weaknesses of the methods and results:

      - Strengths include: analysis of synthetic receptor function for 2 classes of synthetic receptors, with robust and appropriate assays for both kinds of receptors. The modifications of the linkers are also interesting and the types of modifications that are often used in the field.

      - Weaknesses include: none of the data analysis provides statistical interpretation of the results (that I could find). One dataset is confusing: Figures 5A and C, are said to be the same assay with the same constructs, but the results are 30% in A, and 70% in C.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      Given the open-ended nature of the goal (implicit in it being an exploration), it is hard to say if the authors have reached their aims; they have done an exploration for sure; is it big enough an exploration? This reviewer is not sure.

      The results are extremely clearly presented, both in the figures and in the text, both for the methods and the results. The claims put forward (with limited exceptions see below) are very solidly supported by the presented data.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      The work may stimulate others to consider minibinders as potential binding domains for synthetic receptors. The modifications that are presented although not novel, do provide a starting point for larger-scale analysis.

      It is not clear how much this is generalizable to other binders (the authors don't make such claims though). The claims are very focused on the tested modifications, and the 2 receptors and minibinder used, a scope that I would define as narrow; the take-home message if one wants to try it with other minibinders or other receptors seems to be: test a few things, and your results may surprise you.

      Any additional context you think would help readers interpret or understand the significance of the work:

      We are at the infancy stage of synthetic receptors optimization and next-generation derivation; there is a dearth of systematic studies, as most focus is on developing a few ones that work. This work is an interesting attempt to catalyze more research with these new minibinders. Will it be picked up based on this? Not sure.

    2. Reviewer #2 (Public Review):

      Summary:

      Weinberg et al. show that spike LCB minibinders can be used as the extracellular domain for SynNotch, SNIPR, and CAR. They evaluated their designs against cells expressing the target proteins and live virus.

      Strengths:

      This is a good fundamental demonstration of alternative use of the minibinder. The results are unsurprising but robust and solid in most cases.

      Weaknesses:

      The manuscript would benefit from better descriptions of the study's novelty. Given that LCB previously worked in SynNotch, what unexpected finding was uncovered by this study? It is well known that the extracellular domain of CAR is amendable to different types of binding domains (e.g., scFv, nanobody, DARPin, natural ligands). So, it is not surprising that a minibinder also works with CAR. We don't know if the minibinders are more or less likely to be compatible with CAR or SNIPR.

      The demonstrations are all done using just 1 minibinder. It is hard to conclude that minibinders, as a unique class of protein binders, are generalizable in different contexts. All it can conclude is that this specific Spike minibinder can be used in synNotch, SNIPR, and CAR. The LCB3 minibinder seems to be much weaker.

      The sensing of live viruses is interesting, but the output is very weak. It is difficult to imagine a utility for such a weak response.

    1. Reviewer #1 (Public Review):

      ⍺-synuclein (syn) is a critical protein involved in many aspects of human health and disease. Previous studies have demonstrated that post-translational modifications (PTMs) play an important role in regulating the structural dynamics of syn. However, how post-translational modifications regulate syn function remains unclear. In this manuscript, Wang et al. reported an exciting discovery that N-acetylation of syn enhances the clustering of synaptic vesicles (SVs) through its interaction with lysophosphatidylcholine (LPC). Using an array of biochemical reconstitution, single vesicle imaging, and structural approaches, the authors uncovered that N-acetylation caused distinct oligomerization of syn in the presence of LPC, which is directly related to the level of SV clustering. This work provides novel insights into the regulation of synaptic transmission by syn and might also shed light on new ways to control neurological disorders caused by syn mutations.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors provide evidence that posttranslational modification of synuclein by N-acetylation increases clustering of synaptic vesicles in vitro. When using liposomes the authors found that while clustering is enhanced by the presence of either lysophosphatidylcholine (LPC) or phosphatidylcholine in the membrane, N-acetylation enhanced clustering only in the presence of LPC. Enhancement of binding was also observed when LPC micelles were used, which was corroborated by increased intra/intermolecular cross-linking of N-acetylated synuclein in the presence of LPC.

      Strengths:

      It is known for many years that synuclein binds to synaptic vesicles but the physiological role of this interaction is still debated. The strength of this manuscript is clearly in the structural characterization of the interaction of synuclein and lipids (involving NMR-spectroscopy) showing that the N-terminal 100 residues of synuclein are involved in LPC-interaction, and the demonstration that N-acetylation enhances the interaction between synuclein and LPC.

      Weaknesses:

      Lysophosphatides form detergent-like micelles that destabilize membranes, with their steady-state concentrations in native membranes being low, questioning the significance of the findings. Oddly, no difference in binding between the N-acetylated and unmodified form was observed when the acidic phospholipid phosphatidylserine was included. It remains unclear to which extent binding to LPC is physiologically relevant, particularly in the light of recent reports from other laboratories showing that synuclein may interact with liquid-liquid phases of synapsin I that were reported to cause vesicle clustering.

    1. Reviewer #1 (Public Review):

      Summary:

      The mammalian Shieldin complex consisting of REV7 (aka MAD2L2, MAD2B) and SHLD1-3 affects pathway usage in DSB repair favoring non-homologous endjoining (NHEJ) at the expense of homologous recombination (HR) by blocking resection and/or priming fill-in DNA synthesis to maintain or generate near blunt ends suitable for NHEJ. While the budding yeast Saccharomyces cerevisiae does not have homologs to SHLD1-3, it does have Rev7, which was identified to function in conjunction with Rev3 in the translesion DNA polymerase zeta. Testing the hypothesis that Rev7 also affects DSB resection in budding yeast, the work identified a direct interaction between Rev7 and the Rad50-Mre11-Xrs2 complex by two-hybrid and direct protein interaction experiments. Deletion analysis identified that the 42 amino acid C-terminal region was necessary and sufficient for the 2-hybrid interaction. Direct biochemical analysis of the 42 aa peptide was not possible. Rev7 deficient cells were found to be sensitive to HU only in synergy with G2 tetraplex forming DNA. Importantly, the 42 aa peptide alone suppressed this phenotype. Biochemical analysis with full-length Rev7 and a C-terminal truncation lacking the 42 aa region shows G4-specific DNA binding that is abolished in the C-terminal truncation and with a substrate containing mutations to prevent G4 formation. Rev7 lacks nuclease activity but inhibits the dsDNA exonuclease activity of Mre11. The C-terminal truncation protein lacking the 42 aa region also showed some inhibition suggesting the involvement of additional binding sites besides the 42 aa region. Also, the Mre11 ssDNA endonuclease activity is inhibited by Rev7 but not the degradation of linear ssDNA. Rev7 does not affect ATP binding by Rad50 but inhibits in a concentration-dependent manner the Rad50 ATPase activity. The C-terminal truncation protein lacking the 42 aa region also showed some inhibition but significantly less than the full-length protein.

      Using an established plasmid-based NHEJ assay, the authors provide strong evidence that Rev7 affects NEHJ, showing a four-fold reduction in this assay. The mutations in the other Pol zeta subunits, Rev3 and Rev1, show a significantly smaller effect (~25% reduction). A strain expressing only the Rev7 C-terminal 42 aa peptide showed no NHEJ defect, while the truncation protein lacking this region exhibited a smaller defect than the deletion of REV7. The conclusion that Rev7 supports NHEJ mainly through the 42 aa region was validated using a chromosomal NHEJ assay. The effect on HR was assessed using a plasmid:chromosome system containing G4 forming DNA. The rev7 deletion strain showed an increase in HR in this system in the presence and absence of HU. Cells expressing the 42 aa peptide were indistinguishable from the wild type as were cells expressing the Rev7 truncation lacking the 42 aa region. The authors conclude that Rev7 suppresses HR, but the context appears to be system-specific and the conclusion that Rev7 abolished HR repair of DSBs is unwarranted and overly broad.

      Strength:

      This is a well-written manuscript with many well-executed experiments that suggest that Rev7 inhibits MRX-mediated resection to favor NEHJ during DSB repair. This finding is novel and provides insight into the potential mechanism of how the human Shieldin complex might antagonize resection.

      Weaknesses:

      The nuclease experiments were conducted using manganese as a divalent cation, and it is unclear whether there is an effect with the more physiological magnesium cation. Additional controls for the ATPase and nuclease experiments to eliminate non-specific effects would be helpful. Evidence for an effect on resection in cells is lacking. The major conclusion about the role of Rev7 in regulating the choice between HR and NHEJ is not justified, as only a highly specialized assay is used that does not warrant the broad conclusion drawn. Specifically, the results that the Rev7 C-terminal truncation lacking the 42 aa region still suppresses HR is unexpected and unexplained. The effect of Rev7 on G4 metabolism is underdeveloped and distracts from the main results that Rev7 modulated MRX activity. The authors should consider removing this part and develop a more complete story on this later.

    2. Reviewer #2 (Public Review):

      In this study, Badugu et al investigate the Rev7 roles in regulating the Mre11-Rad50-Xrs2 complex and in the metabolism of G4 structures. The authors also try to make a conclusion that REV7 can regulate the DSB repair choice between homologous recombination and non-homologous end joining.

      The major observations of this study are:

      (1) Rev7 interacts with the individual components of the MRX complex in a two-hybrid assay and in a protein-protein interaction assay (microscale thermophoresisi) in vitro.<br /> (2) Modeling using AlphaFold-Multimier also indicated that Rev7 can interact with Mre11 and Rad50.<br /> (3) Using a two-hybrid assay, a 42 C terminal domain in Rev7 responsible for the interaction with MRX was identified.<br /> (4) Rev7 inhibits Mre11 nuclease and Rad50 ATPase activities in vitro.<br /> (5) Rev 7 promotes NHEJ in plasmid cutting/relegation assay.<br /> (6) Rev7 inhibits recombination between chromosomal ura3-1 allele and plasmid ura3 allele containing G4 structure.<br /> (7) Using an assay developed in V. Zakian's lab, it was found that rev7 mutants grow poorly when both G4 is present in the genome and yeast are treated with HU.<br /> (8) In vitro, purified Rev7 binds to G4-containing substrates.

      In general, a lot of experiments have been conducted, but the major conclusion about the role of Rev7 in regulating the choice between HR and NHEJ is not justified.

      (1) Two stories that do not overlap (regulation of MRX by Rev7 and Rev7's role in G4 metabolism) are brought under one umbrella in this work. There is no connection unless the authors demonstrate that Rev7 inhibits the cleavage of G4 structures by the MRX complex.

      (2) The authors cannot conclude based on the recombination assay between G4-containing 2-micron plasmid and chromosomal ura3-1 that Rev7" completely abolishes DSB-induced HR". First of all, there is no evidence that DSBs are formed at G4. Why is there no induction of recombination when cells are treated with HU? Second, as the authors showed, Rev7 binds to G4, therefore it is not clear if the observed effects are the result of Rev7 interaction with G4 or its impact on HR. The established HO-based assays where the speed of resection can be monitored (e.g., Mimitou and Symington, 2010) have to be used to justify the conclusion that Rev7 inhibits MRX nuclease activity in vivo.

    3. Reviewer #3 (Public Review):

      Summary:

      REV7 facilitates the recruitment of Shieldin complex and thereby inhibits end resection and controls DSB repair choice in metazoan cells. Puzzlingly, Shieldin is absent in many organisms and it is unknown if and how Rev7 regulates DSB repair in these cells. The authors surmised that yeast Rev7 physically interacts with Mre11/Rad50/Xrs2 (MRX), the short-range resection nuclease complex, and tested this premise using yeast two-hybrid (Y2H) and microscale thermophoresis (MST). The results convincingly showed that the individual subunits of MRX interact robustly with Rev7. AlphaFold Multimer modelling followed by Y2H confirmed that the carboxy-terminal 42 amino acid is essential for interaction with MR and G4 DNA binding by REV7. The mutant rev7 lacking the binding interface (Rev7-C1) to MR shows moderate inhibition to the nuclease and the ATPase activity of Mre11/Rad50 in biochemical assays. Deletion of REV7 also causes a mild reduction in NHEJ using both plasmid and chromosome-based assays and increases mitotic recombination between chromosomal ura3-01 and the plasmid ura3 allele interrupted by G4. The authors concluded that Rev7 facilitates NHEJ and antagonizes HR even in budding yeast, but it achieves this by blocking Mre11 nuclease and Rad50 ATPase.

      Weaknesses:

      There are many strengths to the studies and the broad types of well-established assays were used to deduce the conclusion. Nevertheless, I have several concerns about the validity of experimental settings due to the lack of several key controls essential to interpret the experimental results. The manuscript also needs a few additional functional assays to reach the accurate conclusions as proposed.

      (1) AlphaFold model predicts that Mre11-Rev7 and Rad50-Rev7 binding interfaces overlap and Rev7 might bind only to Mre11 or Rad50 at a time. Interestingly, however, Rev7 appears dimerized (Figure 1). Since the MR complex also forms with 2M and 2R in the complex, it should still be possible if REV7 can interact with +-*both M and R in the MR complex. The author should perform MST using MR complex instead of individual MR components. The authors should also analyze if Rev7-C1 is indeed deficient in interaction with MR individually and with complex using MST assay.

      (2) The nuclease and the ATPase assays require additional controls. Does Rev7 inhibit the other nuclease or ATPase non-specifically? Are these outcomes due to the non-specific or promiscuous activity of Rev7? In Figure 6, the effect of REV7 on the ATP binding of Rad50 could be hard to assess because the maximum Rad50 level (1 uM) was used in the experiments. The author should use the suboptimal level of Rad50 to check if REV7 still does not influence ATP binding by Rad50.

      (3) The moderate deficiency in NHEJ using plasmid-based assay in REV7 deleted cells can be attributed to aberrant cell cycle or mating type in rev7 deleted cells. The authors should demonstrate that rev7 deleted cells retain largely normal cell cycle patterns and the mating type phenotypes. The author should also analyze the breakpoints in plasmid-based NHEJ assays in all mutants, especially from rev7 and rev7-C1 cells.

      (4) It is puzzling why the authors did not analyze end resection defects in rev7 deleted cells after a DSB. The author should employ the widely used resection assay after a HO break in rev3, rev7, and mre11 rev7 cells as described previously.

      (5) Is it possible that Rev7 also contributes to NHEJ as the part of TLS polymerase complex? Although NHEJ largely depends on Pol4, the authors should not rule out that the observed NHEJ defect in rev7 cells is due at least partially to its TLS defect. In fact, both rev3 or rev1 cells are partially defective in NHEJ (Figure 7). Rev7-C1 is less deficient in NHEJ than REV7 deletion. These results predict that rev7-C1 rev3 should be as defective as the rev7 deletion. Additionally, the authors should examine if Rev7-C1 might be deficient in TLS. In this regard, does rev7-C1 reduce TLS and TLS-dependent mutagenesis? Is it dominant? The authors should also check if Rev3 or Rev1 are stable in Rev7 deleted or rev7-C1 cells by immunoblot assays.

      (6) Due to the G4 DNA and G4 binding activity of REV7, it is not clear which class of events the authors are measuring in plasmid-chromosome recombination assay in Figure 9. Do they measure G4 instability or the integrity of recombination or both in rev7 deleted cells? Instead, the effect of rev7 deletion or rev7-C1 on recombination should be measured directly by more standard mitotic recombination assays like mating type switch or his3 repeat recombination.

    1. Reviewer #1 (Public Review):

      Summary:

      Extracellular ATP represents a danger-associated molecular pattern associated to tissue damage and can act also in an autocrine fashion in macrophages to promote proinflammatory responses, as observed in a previous paper by the authors in abdominal sepsis. The present study addresses an important aspect possibly conditioning the outcome of sepsis that is the release of ATP by bacteria. The authors show that sepsis-associated bacteria do in fact release ATP in a growth dependent and strain-specific manner. However, whether this bacterial derived ATP play a role in the pathogenesis of abdominal sepsis has not been determined. To address this question, a number of mutant strains of E. coli has been used first to correlate bacterial ATP release with growth and then, with outer membrane integrity and bacterial death. By using E. coli transformants expressing the ATP-degrading enzyme apyrase in the periplasmic space, the paper nicely shows that abdominal sepsis by these transformants results in significantly improved survival. This effect was associated with a reduction of peritoneal macrophages and CX3CR1+ monocytes, and an increase in neutrophils. To extrapolate the function of bacterial ATP from the systemic response to microorganisms, the authors exploited bacterial OMVs either loaded or not with ATP to investigate the systemic effects devoid of living microorganisms. This approach showed that ATP-loaded OMVs induced degranulation of neutrophils after lysosomal uptake, suggesting that this mechanism could contribute to sepsis severity.

      Strengths:

      A strong part of the study is the analysis of E. coli mutants to address different aspects of bacterial release of ATP that could be relevant during systemic dissemination of bacteria in the host.

      Weaknesses:

      As pointed out in the limitations of the study whether ATP-loaded OMVs provide a mechanistic proof of the pathogenetic role of bacteria-derived ATP independently of live microorganisms in sepsis is interesting but not definitively convincing. It could be useful to see whether degranulation of neutrophils is differentially induced by apyrase-expressing vs control E. coli transformants. Also, the increase of neutrophils in bacterial ATP-depleted abdominal sepsis, which has better outcomes than "ATP-proficient" sepsis, seems difficult to correlate to the hypothesized tissue damage induced by ATP delivered via non-infectious OMVs. Are the neutrophils counts affected by ATP delivered via OMVs? A comparison of cytokine profiles in the abdominal fluids of E. coli and OMV treated animals could be helpful in defining the different responses induced by OMV-delivered vs bacterial-released ATP. The analyses performed on OMV treated versus E. coli infected mice are not closely related and difficult to combine when trying to draw a hypothesis for bacterial ATP in sepsis. Also it was not clear why lung neutrophils were used for the RNAseq data generation and analysis.

    2. Reviewer #2 (Public Review):

      Summary:

      In their manuscript "Released Bacterial ATP Shapes Local and Systemic Inflammation during Abdominal Sepsis", Daniel Spari et al. explored the dual role of ATP in exacerbating sepsis, revealing that ATP from both host and bacteria significantly impacts immune responses and disease progression.

      Strengths:<br /> The study meticulously examines the complex relationship between ATP release and bacterial growth, membrane integrity, and how bacterial ATP potentially dampens inflammatory responses, thereby impairing survival in sepsis models. Additionally, this compelling paper implies a concept that bacterial OMVs act as vehicles for the systemic distribution of ATP, influencing neutrophil activity and exacerbating sepsis severity.

      Weaknesses:

      (1) The researchers extracted and cultivated abdominal fluid on LB agar plates, then randomly picked 25 colonies for analysis. However, they did not conduct 16S rRNA gene amplicon sequencing on the fluid itself. It is worth noting that the bacterial species present may vary depending on the individual patients. It would be beneficial if the authors could specify whether they've verified the existence of unculturable species capable of secreting high levels of Extracellular ATP.

      (2) Do mice lacking commensal bacteria show a lack of extracellular ATP following cecal ligation puncture?

      (3) The authors isolated various bacteria from abdominal fluid, encompassing both Gram-negative and Gram-positive types. Nevertheless, their emphasis appeared to be primarily on the Gram-negative E. coli. It would be beneficial to ascertain whether the mechanisms of Extracellular ATP release differ between Gram-positive and Gram-negative bacteria. This is particularly relevant given that the Gram-positive bacterium E. faecalis, also isolated from the abdominal fluid, is recognized for its propensity to release substantial amounts of Extracellular ATP.

      (4) The authors observed changes in the levels of LPM, SPM, and neutrophils in vivo. However, it remains uncertain whether the proliferation or migration of these cells is modulated or inhibited by ATP receptors like P2Y receptors. This aspect requires further investigation to establish a convincing connection.

      (5) Additionally, is it possible that the observed in vivo changes could be triggered by bacterial components other than Extracellular ATP? In this research field, a comprehensive collection of inhibitors is available, so it is desirable to utilize them to demonstrate clearer results.

      (6) Have the authors considered the role of host-derived Extracellular ATP in the context of inflammation?

      (7) The authors mention that Extracellular ATP is rapidly hydrolyzed by ectonucleotases in vivo. Are the changes of immune cells within the peritoneal cavity caused by Extracellular ATP released from bacterial death or by OMVs?

      (8) In the manuscript, the sample size (n) for the data consistently remains at 2. I would suggest expanding the sample size to enhance the robustness and rigor of the results.

    1. Joint Public Review

      This work investigates the evolutionary conservation and functional significance of FoxO transcription factors in the response of airway epithelia to diverse stressors, ranging from hypoxia to temperature fluctuations and oxidative stress. Utilizing a comprehensive approach encompassing Drosophila, murine models, and human samples, the study investigates FoxO's role across species. The authors demonstrate that hypoxia triggers a dFOXO-dependent immune response in Drosophila airways, with subsequent nuclear localization of dFOXO in response to various stressors. Transcriptomic analysis reveals differential regulation of crucial gene categories in respiratory tissues, highlighting FoxO's involvement in metabolic pathways, DNA replication, and stress resistance mechanisms.

      The study underscores FoxO's importance in maintaining homeostasis by revealing reduced stress resistance in dFOXO Drosophila mutants, shedding light on its protective role against stressors. In mammalian airway cells, FoxO exhibits nuclear translocation in response to hypoxia, accompanied by upregulation of cytokines with antimicrobial activities. Intriguingly, mouse models of asthma show FoxO downregulation, which is also observed in sputum samples from human asthma patients, implicating FoxO dysregulation in respiratory pathologies.

      Overall, the manuscript suggests that FoxO signaling plays a critical role in preserving airway epithelial cell homeostasis under stress conditions, with implications for understanding and potentially treating respiratory diseases like asthma. By providing compelling evidence of FoxO's involvement across species and its correlation with disease states, the study underscores the importance of further exploration into FoxO-mediated mechanisms in respiratory health.

      Strengths

      (1) This study shows that FoxO transcription factors are critical for regulating immune and inflammatory responses across species, and for orchestrating responses to various stressors encountered by airway epithelial cells, including hypoxia, temperature changes, and oxidative stress. Understanding the intricate regulation of FoxO transcription factors provides insights into modulating immune and inflammatory pathways, offering potential avenues for therapeutic interventions against respiratory diseases and other illnesses.

      (2) The work employs diverse model systems, including Drosophila, murine models, and human samples, thereby establishing a conserved role for FoxOs in airway epithelium and aiding translational relevance to human health.

      (3) The manuscript establishes a strong correlation between FoxO expression levels and respiratory diseases such as asthma. Through analyses of both murine models of asthma and asthmatic human samples, the study demonstrates a consistent reduction in FoxO expression, indicating its potential involvement in the pathogenesis of respiratory disorders. This correlation underscores the clinical relevance of FoxO dysregulation and opens avenues for developing treatments for respiratory conditions like asthma, COPD, and pulmonary fibrosis, addressing significant unmet clinical needs.

      (4) The study unveils intriguing mechanistic details regarding FoxO regulation and function. Particularly noteworthy is the observation of distinct regulatory mechanisms governing dFOXO translocation in response to different stressors. The independence of hypoxia-induced dFOXO translocation from JNK signaling adds complexity to our understanding of FoxO-mediated stress responses. Such mechanistic insights deepen our understanding of FoxO biology and pave the way for future investigations into the intricacies of FoxO signaling pathways in airway epithelial cells.

      Weaknesses

      (1) The manuscript does not distinguish between FoxO expression levels and FoxO activation status. While FoxO nuclear localization is observed in Drosophila and murine models, it remains unclear whether this reflects active FoxO signaling or merely FoxO expression, limiting the mechanistic understanding of FoxO regulation.

      (2) The manuscript utilizes various stressors across different experiments without providing a clear rationale for their selection. This lack of coherence in stressor choice complicates the interpretation of results and diminishes the ability to draw meaningful comparisons across experiments.

      (3) The manuscript frequently refers to "FoxO signaling" without providing specific signaling readouts. This ambiguity undermines the clarity of the conclusions drawn from the data and hinders the establishment of clear cause-and-effect relationships between FoxO activation and cellular responses to stress.

      (4) Many conclusions drawn in the manuscript rely heavily on the quantification of immunostaining images for FoxO nuclear localization. While this is an important observation, it does not provide a sufficient mechanistic understanding of FoxO expression or activation regulation.

      (5) The primary weakness in the Drosophila experiments is the analysis of dFoxO in homozygous dFoxO mutant animals, which precludes determining the specific role of dFoxO in airway cells. Despite available tools for tissue-specific gene manipulation, such as tissue-specific RNAi and CRISPR techniques, these approaches were not employed, limiting the precision of the findings.

      (6) In mammalian experiments, the results are primarily correlative, lacking causal evidence. While changes in FoxO expression are observed under pathological conditions, the absence of experiments on FoxO-deficient cells or tissues precludes establishing a causal relationship between FoxO dysregulation and respiratory pathologies.

      (7) Although the evidence suggests a critical role for FoxO in airway tissues, the precise nature of this role remains unclear. With gene expression changes analyzed only in Drosophila, the extent of conservation in downstream FoxO-mediated pathways between mammals and Drosophila remains uncertain. Additionally, the functional consequences of FoxO deficiency in airway cells were not determined, hindering comparisons between species and limiting insights into FoxO's functional roles in different contexts.

    1. Reviewer #1 (Public Review):

      In this manuscript, entitled " Merging Multi-OMICs with Proteome Integral Solubility Alteration Unveils Antibiotic Mode of Action", Dr. Maity and colleagues aim to elucidate the mechanisms of action of antibiotics through combined approaches of omics and the PISA tool to discover new targets of five drugs developed against Helicobacter pylori.

      Strengths:

      Using transcriptomics, proteomic analysis, protein stability (PISA), and integrative analysis, Dr. Maity and colleagues have identified pathways targeted by five compounds initially discovered as inhibitors against H. pylori flavodoxin. This study underscores the necessity of a global approach to comprehensively understanding the mechanisms of drug action. The experiments conducted in this paper are well-designed and the obtained results support the authors' conclusions.

      Weaknesses:

      This manuscript describes several interesting findings. A few points listed below require further clarification:

      (1) Compounds IVk exhibits markedly different behavior compared to the other compounds. The authors are encouraged to discuss these findings in the context of existing literature or chemical principles.

      (2) The incubation time for treating H. pylori with the drugs was set at 4 hours for transcriptomic and proteomic analyses, compared to 20 min for PISA analysis. The authors need to explain the reason for these differences in treatment duration.

      (3) The PISA method facilitates the identification of proteins stabilized by drug treatment. DnaJ and Trigger factor (tig), well-known molecular chaperones, prevent protein aggregation under stress. Their enrichment in the soluble fraction is expected and does not necessarily indicate direct stabilization by the drugs. The possibility that their stabilization results from binding to other proteins destabilized by the drugs should be considered. To prevent any misunderstanding, the authors should clarify that their methodology does not solely identify direct targets. Instead, the combination of their findings sheds light on various pathways affected by the treatment.

      (4) At the end of the manuscript, the authors conclude that four compounds "strongly interact with CagA". However, detailed molecule/protein interaction studies are necessary to definitively support this claim. The authors should exercise caution in their statement. As the authors mentioned, additional research (not mandated in the scope of this current paper) is necessary to determine the drug's binding affinity to the proposed targets.

      (5) The authors should clarify the PISA-Express approach over standard PISA. A detailed explanation of the differences between both methods in the main text is important.

    2. Reviewer #2 (Public Review):

      Summary:

      This work has an important and ambitious goal: understanding the effects of drugs, in this case antimicrobial molecules, from a holistic perspective. This means that the effect of drugs on a group of genes and whole metabolic pathways is unveiled, rather than its immediate effect on a protein target only. To achieve this goal the authors successfully implement the PISA-Express method (Protein Integral Solubility Alteration), using combined transcriptomics, proteomics, and drug-induced changes in protein stability to retrieve a large number of genes and proteins affected by the used compounds. The compounds used in the study (compound IVa, IVb, IVj, and IVk) were all derived from the precursors compound IV, they are effective against Helicobacter pylori, and their mode of action on clusters of genes and proteins has been compared to the one of the known pylori drug metronidazole (MNZ). Due to this comparison, and confirmed by the diversity of responses induced by these very similar compounds, it can be understood that the approach used is reliable and very informative. Notably, although all compound IV derivatives were designed to target pylori Flavodoxin (Fld), only one showed a statistically significant shift of Fld solubility (compound IVj, FIG S11). For most other compounds, instead, the involvement of other possible targets affecting diverse metabolic pathways was also observed, notably concerning a series of genes with other important functions: CagA (virulence factor), FtsY/FtsA (cell division), AtpD (ATP-synthase complex), the essential GTPase ObgE, Tig (protein export), as well as other proteins involved in ribosomal synthesis, chemotaxis/motility and DNA replication/repairs. Finally, for all tested molecules, in vivo functional data have been collected that parallel the omics predictions, comforting them and showing that compound IV derivatives differently affect cellular generation of reactive oxygen species (ROS), oxygen consumption rates (OCR), DNA damage, and ATP synthesis.

      Strengths:

      The approach used is very potent in retrieving the effects of chemically active molecules (in this case antimicrobial ones) on whole cells, evidencing protein and gene networks that are involved in cell sensitivity to the studied molecules. The choice of these compounds against H. pylori is perfect, showcasing how different the real biological response is, compared to the hypothetical one. In fact, although all molecules were retrieved based on their activity on Fld, the authors unambiguously show that large unexpected gene clusters may, and in fact are, affected by these compounds, and each of them in different manners.

      Impact:

      The present work is the first report relying on PISA-Express performed on living bacterial cells. Because of its findings, this work will certainly have a high impact on the way we design research to develop effective drugs, allowing us to understand the fine effects of a drug on gene clusters, drive molecule design towards specific metabolic pathways, and eventually better plan the combination of multiple active molecules for drug formulation. Beyond this, however, we expect this article to impact other related and unrelated fields of research as well. The same holistic approaches might also allow gaining deep, and sometimes unexpected, insight into the cellular targets involved in drug side effects, drug resistance, toxicity, and cellular adaptation, in fields beyond the medicinal one, such as cellular biology and environmental studies on pollutants.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.