10,000 Matching Annotations
  1. Jan 2025
    1. Reviewer #2 (Public review):

      Summary:

      The results presented demonstrate AAV2-CFI gene therapy delivers long-term and marginally higher FI protein in vitreous humor that results in a concomitant reduction in the FB activation product Ba. However, the lack of clinical efficacy in the phase I/II study, possibly due to lower in vitro potency when compared to currently approved pegcetacoplan, raise important considerations for the utility of this therapeutic approach. Despite the early termination of the PPY988 clinical development program, the study achieved significant milestones, including the implementation of subretinal gene therapy delivery in older adults, complement biomarker comparison between serial vitreous humor and aqueous humor samples and vitreous humor proteomic assessment via Olink.

      Strengths:

      Long-term augmentation of FI protein in vitreous humor over 96-weeks and reduction of FB breakdown product Ba in vitreous humor suggests modulation of the complement system. Developed a novel in vitro assay suggesting FI's ability to reduce C3 convertase activity is weaker than pegcetacoplan and FH and may suggest a higher dose of FI will be required for clinical efficacy. Warn of the poor correlation between vitreous humor and aqueous humor biomarkers and suggest aqueous humor may not be a reliable proxy for vitreous humor with regard to complement activation/inhibition studies.

      Weaknesses:

      The vitrectomy required for subretinal route of administration causes long-term loss of total protein and may influence interpretation of complement biomarker results even with normalization. The modified in vitro assay of complement activation suggests a several hundred-fold increase in FI protein is required to significantly affect C3a levels. Interestingly, the in vitro assay demonstrates 100% inhibition of C3a with pegcetacoplan and FH therapeutics, but only a 50% reduction with FI even at the highest concentrations tested. This observation suggests FI may not be rate-limiting for negative complement regulation under the in vitro conditions tested and potentially in the eye. It is unclear if pharmacokinetic and pharmacodynamic properties in aqueous humor and vitreous humor compartments are a reliable predictor of FI level/activity after subretinal delivery AAV2-CFI gene therapy.

    2. Reviewer #3 (Public review):

      Summary:

      The manuscript by Hallam et al describes the analysis of various biomarkers in patients undergoing complement factor I supplementation treatment (PPY988 gene therapy) as part of the FOCUS Phase I/II clinical trial. The authors used validated methods (multiplexed assays and OLINK proteomics) for measuring multiple soluble complement proteins in the aqueous humour (AH) and vitreous humour (VH) of 28 patients over a series of timepoints, up to and including 96 weeks. Based on biomarker comparisons, the levels of FI synthesised by PPY988 were believed to be insufficient to achieve the desired level of complement inhibition. Subsequent comparative experiments showed that PPY988-delievred FI was much less efficacious than Pegceptacoplan (FDA approved complement inhibitor under the name SYFORVE) when tested in an artificial VH matrix.

      Strengths:

      The manuscript is well written with data clearly presented and appropriate statistics used for the analysis itself. It's great to see data from real clinical samples that can help support future studies and therapeutic design. The identification that complement biomarker levels present in the AH do not represent the levels found in the VH is an important finding for the field, given the number of complement-targeting therapies in development and the desperate need for good biomarkers for target engagement. This study also provides a wealth of baseline complement protein measurements in both human AH and VH (and companion measurements in plasma) that will prove useful for future studies.

      Weaknesses:

      No real weaknesses in the manuscript itself. It is only a shame that it would appear that FI supplementation is not a viable way forward for treating GA secondary to AMD.

      Comments on revisions:

      I think the authors have done all that they can to present this study in the most robust manner possible.

    1. Reviewer #1 (Public review):

      Summary:

      Chlamydia spp. has a biphasic developmental cycle consisting of an extracellular, infectious form called an elementary body (EB) and an intracellular, replicative form known as a reticular body (RB). The structural stability of EBs is maintained by extensive cross linking of outer membrane proteins while the outer membrane proteins of RBs are in a reduced state. The overall redox state of EBs is more oxidized than RBs. The authors propose that redox state may be a controlling factor in the developmental cycle. To test this, alkyl hydroperoxide reductase subunit C (ahpC) was overexpressed or knocked down to examine effects on developmental gene expression. KD of ahpC induced increased expression of EB-specific genes and accelerated EB production. Conversely, overexpression of phpC delayed differentiation to EBs. The results suggest that chlamydial redox state may play a role in differentiation.

      Strengths:

      Uses modern genetic tools to explore the difficult area of temporal gene expression throughout the chlamydial developmental cycle.

      Weaknesses:

      The environmental signals triggering ahpC expression/activity are not determined.

      Comments on revisions:

      I am satisfied with the modifications made to the manuscript.

    2. Reviewer #2 (Public review):

      The factors that influence the differentiation of EBs and RBs during Chlamydial development are not clearly understood. A previous study had shown a redox oscillation during the Chlamydial developmental cycle. Based on this observation, the authors hypothesize that the bacterial redox state may play a role in regulating the differentiation in Chlamydia. To test their hypothesis, they make knock-down and overexpression strains of the major ROS regulator, ahpC. They show that the knock-down of ahpC leads to a significant increase in ROS levels leading to an increase in the production of elementary bodies and overexpression leads to a decrease in EB production likely caused by a decrease in oxidation. From their observations, they present an interesting model wherein an increase in oxidation favors the production of EBs.

      Comments on revisions:

      Major concerns have been satisfactorily addressed.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors evaluate the attenuation, immunogenicity, and protection efficacy of a live-attenuated SARS-CoV-2 vaccine candidate (BK2102) against SARS-CoV-2.

      Strengths:

      The authors demonstrate that intranasal inoculation of BK2102 is safe and able to induce humoral and cellular immune responses in hamsters, without apparent signs of damage in the lungs, that protects against homologous SARS-CoV-2 and Omicron BA.5 challenge. Safety of BK2102 was further confirmed in a new hACE2 transgenic mouse model generated by the authors.

      Weaknesses:

      The authors have addressed my previous comments on the first submission of the document.

    2. Reviewer #3 (Public review):

      Summary:

      Suzuki-Okutani and collogues reported a new live-attenuated SARS-CoV-2 vaccine (BK2102) containing multiple deletion/substitution mutations. They show that the vaccine candidate is highly attenuated and demonstrates great safety profile in multiple animal models (hamsters and Tg-Mice). Of importance, their data show that singe intranasal immunization with BK2102 leads to strong protection of hamsters against D614G and BA.5 challenge in both lungs and URT (nasal wash). Both humoral and cellular responses were induced, and neutralization activity remained for >360 after single inoculation.

      Strengths:

      The manuscript describes a comprehensive study that evaluates safety, immunogenicity, and efficacy of a new live-attenuated vaccine. Strengths of the study include: 1) strong protection against immune evasive variant BA.5 in both lungs and NW; 2) durability of immunity for >360 days; 3) confirmation of URT protection through a transmission experiment.<br /> While first-generation COVID-19 vaccines have achieved much success, new vaccines that provide mucosal and durable protection remain needed. Thus, the study is significant.

      Weaknesses:

      Lack of a more detailed discussion of this new vaccine approach in the context of reported live-attenuated SARS-CoV-2 vaccines in terms of its advantages and/or weakness<br /> Antibody endpoint titers could be presented.<br /> Lack of elaboration on immune mechanisms of protection at the upper respiratory tract (URT) against an immune evasive variant in the absence of detectable neutralizing antibodies

      Comments on revisions:

      In the revised submission, the authors have added new data and have modified the manuscript accordingly. They have reasonably addressed my comments raised in the previous round of review. The quality and clarity of the manuscript are improved.

    1. Reviewer #1 (Public Review):

      Summary:

      The present study's main aim is to investigate the mechanism of how VirR controls the magnitude of MEV release in Mtb. The authors used various techniques, including genetics, transcriptomics, proteomics, and ultrastructural and biochemical methods. Several observations were made to link VirR-mediated vesiculogenesis with PG metabolism, lipid metabolism, and cell wall permeability. Finally, the authors presented evidence of a direct physical interaction of VirR with the LCP proteins involved in linking PG with AG, providing clues that VirR might act as a scaffold for LCP proteins and remodel the cell wall of Mtb. Since the Mtb cell wall provides a formidable anatomical barrier for the entry of antibiotics, targeting VirR might weaken the permeability of the pathogen along with the stimulation of the immune system due to enhanced vesiculogenesis. Therefore, VirR could be an excellent drug target. Overall, the study is an essential area of TB biology.

      Strengths:

      The authors have done a commendable job of comprehensively examining the phenotypes associated with the VirR mutant using various techniques. Application of Cryo-EM technology confirmed increased thickness and altered arrangement of CM-L1 layer. The authors also confirmed that increased vesicle release in the mutant was not due to cell lysis, which contrasts with studies in other bacterial species.

      Another strength of the manuscript is that biochemical experiments show altered permeability and PG turnover in the mutant, which fits with later experiments where authors provide evidence of a direct physical interaction of VirR with LCP proteins.

      Transcriptomics and proteomics data were helpful in making connections with lipid metabolism, which the authors confirmed by analyzing the lipids and metabolites of the mutant.

      Lastly, using three approaches, the authors confirm that VirR interacts with LCP proteins in Mtb via the LytR_C terminal domain.

      Altogether, the work is comprehensive, experiments are designed well, and conclusions were made based on the data generated after verification using multiple complementary approaches.

      Weaknesses:

      The major weakness is that the mechanism of VirR-mediated EV release remains enigmatic. Most of the findings are observational and only associate enhanced vesiculogenesis observed in the VirR mutant with cell wall permeability and PG metabolism. Authors suggest that EV release occurs during cell division when PG is most fragile. However, this has yet to be tested in the manuscript-the AFM of the VirR mutant, which produces thicker PG with more pore density, displays enhanced vesiculogenesis. No evidence was presented to show that the PG of the mutant is fragile, and there are differences in cell division to explain increased vesiculogenesis. These observations, counterintuitive to the authors' hypothesis, need detailed experimental verification.

      Transcriptomic data only adds a little substantial. Transcriptomic data do not correlate with the proteomics data. It remains unclear how VirR deregulates transcription. TLCs of lipids are not quantitative. For example, the TLC image of PDIM is poor; quantitative estimation needs metabolic labeling of lipids with radioactive precursors. Further, change in PDIMs is likely to affect other lipids (SL-1, PAT/DAT) that share a common precursor (propionyl- CoA).

      The connection of cholesterol with cell wall permeability is tenuous. Cholesterol will serve as a carbon source and contribute to the biosynthesis of methyl-branched lipids such as PDIM, SL-1, and PAD/DAT. Carbon sources also affect other aspects of physiology (redox, respiration, ATP), which can directly affect permeability and import/export of drugs. Authors should investigate whether restoration of the normal level of permeability and EV release is not due to the maintenance of cell wall lipid balance upon cholesterol exposure of the VirR mutant.

      Finally, protein interaction data is based on experiments done once without statistical analysis. If the interaction between VirR and LCP protein is expected on the mycobacterial membrane, how SPLIT_GFP system expressed in the cytoplasm is physiologically relevant. No explanation was provided as to why VirR interacts with the truncated version of LCP proteins and not with the full-length proteins.

      Comments on revisions:

      The authors have addressed my comments. I have no further issues.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.

      Strengths:

      The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.

      Comments on the revision.

      Authors have addressed the concerns, specifically regarding the expression of downstream genes. It appears that they are not altered significantly.

      Data in Fig 6C shows significantly higher expresssion of VirR compared to control or knock down. In the absence of using a regulatable expression such as nitrile, this is expected from a constitutive promoter.

      I have no further questions for the author.

    1. Reviewer #1 (Public review):

      Summary:

      In this preprint, the authors systematically and rigorously investigate how specific classes of residue mutations alter the critical temperature as a proxy for the driving forces for phase separation. The work is well executed, the manuscript well-written, and the results reasonable and insightful.

      Strengths:

      The introductory material does an excellent job of being precise in language and ideas while summarizing the state of the art. The simulation design, execution, and analysis are exceptional and set the standard for large-scale simulation studies. The results, interpretations, and Discussion are largely nuanced, clear, and well-motivated, and the pedagogical nature with which sampling convergence is discussed is greatly appreciated. Finally, the underlying data are shared in a clear and accessible manner. Overall, the manuscript is a model

      Weaknesses:

      The simplicity of a one-bead-per-residue model parameterized to capture UCST-type phase behavior does perhaps impact some aspects of the generality of this work. That said, the authors carefully acknowledge these limitations, and overall, this is not seen as a major weakness of the conclusions drawn or the manuscript, given those conclusions are appropriately couched.

    2. Reviewer #2 (Public review):

      This is an interesting manuscript where a CA-only CG model (Mpipi) was used to examine the critical temperature (Tc) of phase separation of a set of 140 variants of prion-like low complexity domains (PLDs). The key result is that Tc of these PLDs seems to have a linear dependence on substitutions of various sticker and space residues. This is potentially useful for estimating the Tc shift when making novel mutations of a PLD.

      Comments on revisions: The authors have addressed concerns raised previously.

    3. Reviewer #3 (Public review):

      Summary:

      "Decoding Phase Separation of Prion-Like Domains through Data-Driven Scaling Laws" by Maristany et al. offers a significant contribution to the understanding of phase separation in prion-like domains (PLDs). The study investigates the phase separation behavior of PLDs, which are intrinsically disordered regions within proteins that have the propensity to undergo liquid-liquid phase separation (LLPS). This phenomenon is crucial in forming biomolecular condensates, which play essential roles in cellular organization and function. The authors employ a data-driven approach to establish predictive scaling laws that describe the phase behavior of these domains.

      Strengths:

      The study benefits from a robust dataset encompassing a wide range of PLDs, which enhances the generalizability of the findings. The authors' meticulous curation and analysis of this data add to the study's robustness. The scaling laws derived from the data provide predictive insights into the phase behavior of PLDs, which can be useful in the future for the design of synthetic biomolecular condensates.

    1. Joint Public Review:

      This manuscript by Tao et al. reports on an effort to better specify the underlying interactions driving the effects of biodiversity on productivity in biodiversity experiments. The authors are especially concerned with the potential for competitive interactions to drive positive biodiversity-ecosystem functioning relationships by driving down the biomass of subdominant species. The authors suggest a new partitioning schema that utilizes a suite of partial density treatments to capture so-called competitive ability.

      Readers are encouraged to consider the original reviews in full, which outline the strengths and weaknesses of the work:

      First version: https://elifesciences.org/reviewed-preprints/98073v1/reviews

      Second version: https://elifesciences.org/reviewed-preprints/98073v2/reviews

      There are no further reviews for this version because the authors declined to make further improvements to their manuscript.

    1. Reviewer #1 (Public review):

      Summary

      In this human neuroimaging and electrophysiology study, the authors aimed to characterise effects of a period of visual deprivation in the sensitive period on excitatory and inhibitory balance in the visual cortex. They attempted to do so by comparing neurochemistry conditions ('eyes open', 'eyes closed') and resting state, and visually evoked EEG activity between ten congenital cataract patients with recovered sight (CC), and ten age-matched control participants (SC) with normal sight.

      First, they used magnetic resonance spectroscopy to measure in vivo neurochemistry from two locations, the primary location of interest in the visual cortex, and a control location in the frontal cortex. Such voxels are used to provide a control for the spatial specificity of any effects, because the single-voxel MRS method provides a single sampling location. Using MR-visible proxies of excitatory and inhibitory neurotransmission, Glx and GABA+ respectively, the authors report no group effects in GABA+ or Glx, no difference in the functional conditions 'eyes closed' and 'eyes open'. They found an effect of group in the ratio of Glx/GABA+ and no similar effect in the control voxel location. They then perform multiple exploratory correlations between MRS measures and visual acuity, and report a weak positive correlation between the 'eyes open' condition and visual acuity in CC participants.

      The same participants then took part in an EEG experiment. The authors selected two electrodes placed in the visual cortex for analysis and report a group difference in an EEG index of neural activity, the aperiodic intercept, as well as the aperiodic slope, considered a proxy for cortical inhibition. Control electrodes in the frontal region did not present with the same pattern. They report an exploratory correlation between the aperiodic intercept and Glx in one out of three EEG conditions.

      The authors report the difference in E/I ratio, and interpret the lower E/I ratio as representing an adaptation to visual deprivation, which would have initially caused a higher E/I ratio. Although intriguing, the strength of evidence in support of this view is not strong. Amongst the limitations are the low sample size, a critical control cohort that could provide evidence for higher E/I ratio in CC patients without recovered sight for example, and lower data quality in the control voxel. Nevertheless, the study provides a rare and valuable insight into experience-dependent plasticity in the human brain.

      Strengths of study

      How sensitive period experience shapes the developing brain is an enduring and important question in neuroscience. This question has been particularly difficult to investigate in humans. The authors recruited a small number of sight-recovered participants with bilateral congenital cataracts to investigate the effect of sensitive period deprivation on the balance of excitation and inhibition in the visual brain using measures of brain chemistry and brain electrophysiology. The research is novel, and the paper was interesting and well written.

      Limitations

      Low sample size. Ten for CC and ten for SC, and further two SC participants were rejected due to lack of frontal control voxel data. The sample size limits the statistical power of the dataset and increases the likelihood of effect inflation.

      In the updated manuscript, the authors have provided justification for their sample size by pointing to prior studies and the inherent difficulties in recruiting individuals with bilateral congenital cataracts. Importantly, this highlights the value the study brings to the field while also acknowledging the need to replicate the effects in a larger cohort.

      Lack of specific control cohort. The control cohort has normal vision. The control cohort is not specific enough to distinguish between people with sight loss due to different causes and patients with congenital cataracts with co-morbidities. Further data from a more specific populations, such as patients whose cataracts have not been removed, with developmental cataracts, or congenitally blind participants, would greatly improve the interpretability of the main finding. The lack of a more specific control cohort is a major caveat that limits a conclusive interpretation of the results.

      In the updated version, the authors have indicated that future studies can pursue comparisons between congenital cataract participants and cohorts with later sight loss.

      MRS data quality differences. Data quality in the control voxel appears worse than in the visual cortex voxel. The frontal cortex MRS spectrum shows far broader linewidth than the visual cortex (Supplementary Figures). Compared to the visual voxel, the frontal cortex voxel has less defined Glx and GABA+ peaks; lower GABA+ and Glx concentrations, lower NAA SNR values; lower NAA concentrations. If the data quality is a lot worse in the FC, then small effects may not be detectable.

      In the updated version, the authors have added more information that informs the reader of the MRS quality differences between voxel locations. This increases the transparency of their reporting and enhances the assessment of the results.

      Because of the direction of the difference in E/I, the authors interpret their findings as representing signatures of sight improvement after surgery without further evidence, either within the study or from the literature. However, the literature suggests that plasticity and visual deprivation drives the E/I index up rather than down. Decreasing GABA+ is thought to facilitate experience dependent remodelling. What evidence is there that cortical inhibition increases in response to a visual cortex that is over-sensitised to due congenital cataracts? Without further experimental or literature support this interpretation remains very speculative.

      The updated manuscript contains key reference from non-human work to justify their interpretation.

      Heterogeneity in patient group. Congenital cataract (CC) patients experienced a variety of duration of visual impairment and were of different ages. They presented with co-morbidities (absorbed lens, strabismus, nystagmus). Strabismus has been associated with abnormalities in GABAergic inhibition in the visual cortex. The possible interactions with residual vision and confounds of co-morbidities are not experimentally controlled for in the correlations, and not discussed.

      The updated document has addressed this caveat.

      Multiple exploratory correlations were performed to relate MRS measures to visual acuity (shown in Supplementary Materials), and only specific ones shown in the main document. The authors describe the analysis as exploratory in the 'Methods' section. Furthermore, the correlation between visual acuity and E/I metric is weak, not corrected for multiple comparisons. The results should be presented as preliminary, as no strong conclusions can be made from them. They can provide a hypothesis to test in a future study.

      This has now been done throughout the document and increases the transparency of the reporting.

      P.16 Given the correlation of the aperiodic intercept with age ("Age negatively correlated with the aperiodic intercept across CC and SC individuals, that is, a flattening of the intercept was observed with age"), age needs to be controlled for in the correlation between neurochemistry and the aperiodic intercept. Glx has also been shown to negatively correlates with age.

      This caveat has been addressed in the revised manuscript.

      Multiple exploratory correlations were performed to relate MRS to EEG measures (shown in Supplementary Materials), and only specific ones shown in the main document. Given the multiple measures from the MRS, the correlations with the EEG measures were exploratory, as stated in the text, p.16, and in Fig.4. yet the introduction said that there was a prior hypothesis "We further hypothesized that neurotransmitter changes would relate to changes in the slope and intercept of the EEG aperiodic activity in the same subjects." It would be great if the text could be revised for consistency and the analysis described as exploratory.

      This has been done throughout the document and increases the transparency of the reporting.

      The analysis for the EEG needs to take more advantage of the available data. As far as I understand, only two electrodes were used, yet far more were available as seen in their previous study (Ossandon et al., 2023). The spatial specificity is not established. The authors could use the frontal cortex electrode (FP1, FP2) signals as a control for spatial specificity in the group effects, or even better, all available electrodes and correct for multiple comparisons. Furthermore, they could use the aperiodic intercept vs Glx in SC to evaluate the specificity of the correlation to CC.

      This caveat has been addressed. The authors have added frontal electrodes to their analysis, providing an essential regional control for the visual cortex location.

      Comments on the latest version:

      The authors have made reasonable adjustments to their manuscript that addressed most of my comments by adding further justification for their methodology, essential literature support, pointing out exploratory analyses, limitations and adding key control analyses. Their revised manuscript has overall improved, providing valuable information, though the evidence that supports their claims is still incomplete.

    2. Reviewer #2 (Public review):

      Summary:

      The study examined 10 congenitally blind patients who recovered vision through the surgical removal of bilateral dense cataracts, measuring neural activity and neuro chemical profiles from the visual cortex. The declared aim is to test whether restoring visual function after years of complete blindness impacts excitation/inhibition balance in the visual cortex.

      Strengths:

      The findings are undoubtedly useful for the community, as they contribute towards characterising the many ways in which this special population differs from normally sighted individuals. The combination of MRS and EEG measures is a promising strategy to estimate a fundamental physiological parameter - the balance between excitation and inhibition in the visual cortex, which animal studies show to be heavily dependent upon early visual experience. Thus, the reported results pave the way for further studies, which may use a similar approach to evaluate more patients and control groups.

      Weaknesses:

      The main methodological limitation is the lack of an appropriate comparison group or condition to delineate the effect of sight recovery (as opposed to the effect of congenital blindness). Few previous studies suggested that Excitation/Inhibition ratio in the visual cortex is increased in congenitally blind patients; the present study reports that E/I ratio decreases instead. The authors claim that this implies a change of E/I ratio following sight recovery. However, supporting this claim would require showing a shift of E/I after vs. before the sight-recovery surgery, or at least it would require comparing patients who did and did not undergo the sight-recovery surgery (as common in the field).

      There are also more technical limitations related to the correlation analyses, which are partly acknowledged in the manuscript. A bland correlation between GLX/GABA and the visual impairment is reported, but this is specific to the patients group (N=10) and would not hold across groups (the correlation is positive, predicting the lowest GLX/GABA ratio values for the sighted controls - opposite of what is found). There is also a strong correlation between GLX concentrations and the EEG power at the lowest temporal frequencies. Although this relation is intriguing, it only holds for a very specific combination of parameters (of the many tested): only with eyes open, only in the patients group.

      Conclusions:

      The main claim of the study is that sight recovery impacts the excitation/inhibition balance in the visual cortex, estimated with MRS or through indirect EEG indices. However, due to the weaknesses outlined above, the study cannot distinguish the effects of sight recovery from those of visual deprivation. Moreover, many aspects of the results are interesting but their validation and interpretation require additional experimental work.

    3. Reviewer #3 (Public review):

      This manuscript examines the impact of congenital visual deprivation on the excitatory/inhibitory (E/I) ratio in the visual cortex using Magnetic Resonance Spectroscopy (MRS) and electroencephalography (EEG) in individuals whose sight was restored. Ten individuals with reversed congenital cataracts were compared to age-matched, normally sighted controls, assessing the cortical E/I balance and its interrelationship and to visual acuity. The study reveals that the Glx/GABA ratio in the visual cortex and the intercept and aperiodic signal are significantly altered in those with a history of early visual deprivation, suggesting persistent neurophysiological changes despite visual restoration.

      First of all, I would like to disclose that I am not an expert in congenital visual deprivation, nor in MRS. My expertise is in EEG (particularly in the decomposition of periodic and aperiodic activity) and statistical methods. Although the authors addressed some of the concerns of the previous version, major concerns and flaws remain in terms of methodological and statistical approaches along with the (over)interpretation of the results. Specific concerns include:

      (1 3.1) Response to Variability in Visual Deprivation<br /> Rather than listing the advantages and disadvantages of visual deprivation, I recommend providing at least a descriptive analysis of how the duration of visual deprivation influenced the measures of interest. This would enhance the depth and relevance of the discussion.

      (2 3.2) Small Sample Size<br /> The issue of small sample size remains problematic. The justification that previous studies employed similar sample sizes does not adequately address the limitation in the current study. I strongly suggest that the correlation analyses should not feature prominently in the main manuscript or the abstract, especially if the discussion does not substantially rely on these correlations. Please also revisit the recommendations made in the section on statistical concerns.

      (3 3.3) Statistical Concerns<br /> While I appreciate the effort of conducting an independent statistical check, it merely validates whether the reported statistical parameters, degrees of freedom (df), and p-values are consistent. However, this does not address the appropriateness of the chosen statistical methods.

      Several points require clarification or improvement:<br /> (4) Correlation Methods: The manuscript does not specify whether the reported correlation analyses are based on Pearson or Spearman correlation.<br /> (5) Confidence Intervals: Include confidence intervals for correlations to represent the uncertainty associated with these estimates.<br /> (6) Permutation Statistics: Given the small sample size, I recommend using permutation statistics, as these are exact tests and more appropriate for small datasets.<br /> (7) Adjusted P-Values: Ensure that reported Bonferroni corrected p-values (e.g., p > 0.999) are clearly labeled as adjusted p-values where applicable.<br /> (8) Figure 2C<br /> Figure 2C still lacks crucial information that the correlation between Glx/GABA ratio and visual acuity was computed solely in the control group (as described in the rebuttal letter). Why was this analysis restricted to the control group? Please provide a rationale.<br /> (9 3.4) Interpretation of Aperiodic Signal<br /> Relying on previous studies to interpret the aperiodic slope as a proxy for excitation/inhibition (E/I) does not make the interpretation more robust.<br /> (10) Additionally, the authors state:<br /> "We cannot think of how any of the exploratory correlations between neurophysiological measures and MRS measures could be accounted for by a difference e.g. in skull thickness."<br /> (11) This could be addressed directly by including skull thickness as a covariate or visualizing it in scatterplots, for instance, by representing skull thickness as the size of the dots.<br /> (12 3.5) Problems with EEG Preprocessing and Analysis<br /> Downsampling: The decision to downsample the data to 60 Hz "to match the stimulation rate" is problematic. This choice conflates subsequent spectral analyses due to aliasing issues, as explained by the Nyquist theorem. While the authors cite prior studies (Schwenk et al., 2020; VanRullen & MacDonald, 2012) to justify this decision, these studies focused on alpha (8-12 Hz), where aliasing is less of a concern compared of analyzing aperiodic signal. Furthermore, in contrast, the current study analyzes the frequency range from 1-20 Hz, which is too narrow for interpreting the aperiodic signal as E/I. Typically, this analysis should include higher frequencies, spanning at least 1-30 Hz or even 1-45 Hz (not 20-40 Hz).<br /> (13) Baseline Removal: Subtracting the mean activity across an epoch as a baseline removal step is inappropriate for resting-state EEG data. This preprocessing step undermines the validity of the analysis. The EEG dataset has fundamental flaws, many of which were pointed out in the previous review round but remain unaddressed. In its current form, the manuscript falls short of standards for robust EEG analysis. If I were reviewing for another journal, I would recommend rejection based on these flaws.<br /> (14) The authors mention:<br /> "The EEG data sets reported here were part of data published earlier (Ossandón et al., 2023; Pant et al., 2023)." Thus, the statement "The group differences for the EEG assessments corresponded to those of a larger sample of CC individuals (n=38) " is a circular argument and should be avoided."<br /> The authors addressed this comment and adjusted the statement. However, I do not understand, why not the full sample published earlier (Ossandón et al., 2023) was used in the current study?

    1. Reviewer #1 (Public review):

      Contractile Injection Systems (CIS) are versatile machines that can form pores in membranes or deliver effectors. They can act extra or intracellularly. When intracellular they are positioned to face the exterior of the cell and hence should be anchored to the cell envelope. The authors previously reported the characterization of a CIS in Streptomyces coelicolor, including significant information on the architecture of the apparatus. However, how the tubular structure is attached to the envelope was not investigated. Here they provide a wealth of evidence to demonstrate that a specific gene within the CIS gene cluster, cisA, encodes a membrane protein that anchors the CIS to the envelope. More specifically, they show that:

      - CisA is not required for assembly of the structure but is important for proper contraction and CIS-mediated cell death<br /> - CisA is associated to the membrane (fluorescence microscopy, cell fractionation) through a transmembrane segment (lacZ-phoA topology fusions in E. coli)<br /> - Structural prediction of interaction between CisA and a CIS baseplate component<br /> - In addition they provide a high-resolution model structure of the >750-polypeptide Streptomyces CIS in its extended conformation, revealing new details of this fascinating machine, notably in the baseplate and cap complexes.

      All the experiments are well controlled including trans-complemented of all tested phenotypes.

      One important information we miss is the oligomeric state of CisA.

      While it would have been great to test the interaction between CisA and Cis11, to perform cryo-electron microscopy assays of detergent-extracted CIS structures to maintain the interaction with CisA, I believe that the toxicity of CisA upon overexpression or upon expression in E. coli render these studies difficult and will require a significant amount of time and optimization to be performed. It is worth mentioning that this study is of significant novelty in the CIS field because, except for Type VI secretion systems, very few membrane proteins or complexes responsible for CIS attachment have been identified and studied.

    2. Reviewer #2 (Public review):

      Summary:

      The overall question that is addressed in this study is how the S. coelicolor contractile injection system (CISSc) works and affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The CISSc system has been enigmatic in the sense that it is free-floating in the cytoplasm in an extended form and is seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to those of related CIS from other bacteria, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they analyse the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, using single-particle cryo-electron microscopy.

      Strengths:

      The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does.

      Weaknesses:

      The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies, are important parts of the paper and are highlighted in the title. However, the experimental data provided to answer these questions appear partially incomplete and not as conclusive as one would expect.

      The stress-induced loss of viability is only monitored with one method: an in vivo assay where cytoplasmic sfGFP signal is compared to FM5-95 membrane stain. Addition of a sublethal level of nisin lead to loss of sfGFP signal in individual hyphae in the WT, but not in the cisA mutant (similarly to what was previously reported for a CIS-negative mutant). Technically, this experiment and the example images that are shown give rise to some concern. Only individual hyphal fragments are shown that do not look like healthy and growing S. coelicolor hyphae. Under the stated growth conditions, S. coelicolor strains would normally have grown as dense hyphal pellets. It is therefore surprising that only these unbranched hyphal fragments are shown in Fig. 4ab. Further, S. coelicolor would likely be in a stationary phase when grown 48 h in the rich medium that is stated, giving rise to concern about the physiological state of the hyphae that were used for the viability assay. It would be valuable to know whether actively growing mycelium is affected in the same way by the nisin treatment, and also whether the cell death effect could be detected by other methods.

      The model presented in Fig. 5 suggests that stress leads to a CisA-dependent attachment of CIS assemblies to the cytoplasmic membrane, and then triggering of contraction, leading to cell death. This model makes testable predictions that have not been challenged experimentally. Given that sublethal doses of nisin seem to trigger cell death, there appear to be possibilities to monitor whether activation of the system (via CisA?) indeed leads to at least temporally increased interaction of CIS with the membrane. Further, would not the model predict that stress leads to an increased number of contracted CIS assemblies in the cytoplasm? No clear difference in length of the isolated assemblies if Fig. S7 is seen between untreated and nisin-exposed cells, and also no difference between assemblies from WT and cisA mutant hyphae.

      The interaction of CisA with the CIS assembly is critical for the model but is only supported by Alphafold modelling, predicting interaction between cytoplasmic parts of CisA and Cis11 protein in the baseplate wedge. An experimental demonstration of this interaction would have strengthened the conclusions.

      The cisA mutant showed a similarly accelerated sporulation as was previously reported for CIS-negative strains, which supports the conclusion that CisA is required for function of CISSc. But the results do not add any new insights into how CIS/CisA affects the progression of the developmental life cycle and whether this effect has anything to do with the regulated cell death that is caused by CIS. The same applies to the effect on secondary metabolite production, with no further mechanistic insights added, except reporting similar effects of CIS and CisA inactivations.

      Concluding remarks:<br /> The work will be of interest to anyone interested in contractile injection systems, T6SS, or similar machineries, as well for people working on the biology of streptomycetes. There is also a potential impact of the work in the understanding of how such molecular machineries could have been co-opted during evolution to become a mechanism for regulated cell death. However, this latter aspect remains still poorly understood. Even though this paper adds excellent new structural insights and identifies a putative membrane anchor, it remains elusive how the Streptomyces CIS may lead to cell death. It is also unclear what the advantage would be to trigger death of hyphal compartments in response to stress, as well as how such cell death may impact (or accelerate) the developmental progression. Finally, it is inescapable to wonder whether the Streptomyces CIS could have any role in protection against phage infection.

    3. Reviewer #3 (Public review):

      Summary:

      In this work, Casu et al. have reported the characterization of a previously uncharacterized membrane protein CisA encoded in a non-canonical contractile injection system of Streptomyces coelicolor, CISSc, which is a cytosolic CISs significantly distinct from both intracellular membrane-anchored T6SSs and extracellular CISs. The authors have presented the first high-resolution structure of extended CISSc structure. It revealed important structural insights in this conformational state. To further explore how CISSc interacted with cytoplasmic membrane, they further set out to investigate CisA that was previously hypothesized to be the membrane adaptor. However, the structure revealed that it was not associated with CISSc. Using fluorescence microscope and cell fractionation assay, the authors verified that CisA is indeed a membrane-associated protein. They further determined experimentally that CisA had a cytosolic N-terminal domain and a periplasmic C-terminus. The functional analysis of cisA mutant revealed that it is not required for CISSc assembly but is essential for the contraction, as a result, the deletion significantly affects CISSc-mediated cell death upon stress, timely differentiation, as well as secondary metabolite production. Although the work did not resolve the mechanistic detail how CisA interacts with CISSc structure, it provides solid data and a strong foundation for future investigation toward understanding the mechanism of CISSc contraction, and potentially, the relation between the membrane association of CISSc, the sheath contraction and the cell death.

      Strengths:

      The paper is well-structured, and the conclusion of the study is supported by solid data and careful data interpretation was presented. The authors provided strong evidence on (1) the high-resolution structure of extended CISSc determined by cryo-EM, and the subsequent comparison with known eCIS structures, which sheds light on both its similarity and different features from other subtypes of eCISs in detail; (2) the topological features of CisA using fluorescence microscopic analysis, cell fractionation and PhoA-LacZα reporter assays, (3) functions of CisA in CISSc-mediated cell death and secondary metabolite production, likely via the regulation of sheath contraction.

      Weaknesses:

      The data presented are not sufficient to provide mechanistic details of CisA-mediated CISSc contraction, as authors are not able to experimentally demonstrate the direct interaction between CisA with baseplate complex of CISSc (hypothesized to be via Cis11 by structural modeling), since they could not express cisA in E. coli due to its potential toxicity. Therefore, there is a lack of biochemical analysis of direct interaction between CisA and baseplate wedge. In addition, there is no direct evidence showing that CisA is responsible for tethering CISSc to the membrane upon stress, and the spatial and temporal relation between membrane association and contraction remains unclear. Further investigation will be needed to address these questions in future.

      Discussion:

      Overall, the work provides a valuable contribution to our understanding on the structure of a much less understood subtype of CISs, which is unique compared to both membrane-anchored T6SSs and host-membrane targeting eCISs. Importantly, the work serves as a good foundation to further investigate how the sheath contraction works here. The work contributes to expanding our understanding of the diverse CIS superfamilies.

    1. Reviewer #1 (Public review):

      Summary:

      Carter et al. present the eduWOSM imaging platform, a promising development in open-source microscopy for educational purposes. The paper outlines the construction and setup of this versatile microscope, demonstrating its capabilities through three key examples: single fluorophore tracking of tubulin heterodimers in gliding microtubules, 4D deconvolution imaging and tracking of chromosome movements in dividing human cells, and automated single-particle tracking in vitro and in live cells, with motion classified into sub-diffusive, diffusive, and super-diffusive behaviors.

      The paper is well-written and could be strengthened by providing more empirical data on its performance, addressing potential limitations, and offering detailed insights into its educational impact. The project holds great potential and more discussion on long-term support and broader applications would provide a more comprehensive view of its relevance in different contexts.

      Strengths:

      (1) The eduWOSM addresses a crucial need in education, providing research-quality imaging at a lower cost (<$10k). The fact that it is open-source adds significant value, enabling broad accessibility even in under resourced areas.<br /> (2) There is availability of extensive resources, including a dedicated website, YouTube channel, and comprehensive tutorial guides to help users replicate the microscope.<br /> (3) The compact, portable, and stable design makes it easy to build multiple systems for use in diverse environments, including crowded labs and classrooms. This is further enhanced by the fact multiple kind of imaging experiments can be run on the system, from live imaging to super-resolution imaging.<br /> (4) The paper highlights the user-friendly nature of the platform, with the imaging examples in the paper being acquired by undergrad students.

      Weaknesses:

      (1) The paper mentions the microscope is suitable not just for education but even for research purposes. This claim needs validation through quantitative comparison to existing research-grade microscopes in terms of resolution, signal-to-noise ratio, and other key metrics. Adding more rigorous comparisons would solidify its credibility for research use, which would immensely increase the potential of the microscope.<br /> (2) The open-source microscope field is crowded with various options catering to hobby, educational, and research purposes (e.g., openFLexure, Flamingo, Octopi, etc.). The paper would benefit from discussing whether any aspects set the eduWOSM platform apart or fulfill specific roles that other microscopes do not.<br /> (3) While the eduWOSM platform is designed to be user-friendly, the paper would benefit from discussing whether the microscope can be successfully built and operated by users without direct help from the authors. It's important to know if someone with basic technical knowledge, relying solely on the provided resources (website, YouTube tutorials, and documentation), can independently assemble, calibrate, and operate the eduWOSM.<br /> (4) Ensuring long-term support and maintenance of the platform is crucial. The paper would benefit from addressing how the eduWOSM developers plan to support updates, improvements, or troubleshooting.

    2. Reviewer #2 (Public review):

      The main strength of this work is the impressive performance of a microscope assembled for a fraction of the cost of a commercial, turnkey system. The authors have created a very clever design that removes everything that is not essential. They show compelling time-lapse data looking at single molecules, tracking particles visible in brightfield mode, and looking at cell division with multiple labels in a live cell preparation.

      The weaknesses of the paper include:<br /> (1) the lack of more comprehensive explanations of the microscope and what it takes to build and operate it.<br /> For example, the dimensions of the microscope, how samples are mounted, which lenses are compatible, and whether eduWOSMs have been built by groups other than the authors would be useful information.<br /> (2) the absence of more detailed descriptions of some of the experiments, such as frame rates and Z-stack information.<br /> (3) the lack of standardized measures of performance.<br /> For example, images of subresolution tetraspeck beads and measurements of PSF would provide estimates on resolution in XY, resolution in Z, axial chromatic aberrations and lateral chromatic aberrations. Repeating these measurements on different eduWOSMs will provide an idea of how reliably the performance can be achieved.<br /> If these issues were addressed, it would make it more likely that other groups could build and operate this system successfully.

      Overall, the authors have designed and built an impressive system at low cost. Providing a bit more information in the manuscript would make it much more likely that other laboratories could replicate this design in their own environments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that early life experience of juvenile bats shape their outdoor foraging behaviors. They achieve this by raising juvenile bats either in an impoverished or enriched environment. They subsequently test the behavior of bats indoors and outdoors. The authors show that behavioral measures outdoors were more reliable in delineating the effect of early life experiences as the bats raised in enriched environments were more bold, active and exhibit higher exploratory tendencies.

      Strengths:

      The major strength of the study is providing a quantitative study of animal "personality" and how it is likely shaped by innate and environmental conditions. The other major strength is the ability to do reliable long term recording of bats in the outdoors giving researchers the opportunity to study bats in their natural habitat. To this point, the study also shows that the behavioral variables measured indoors do not correlate to that measured outdoors, thus providing a key insight into the importance of testing animal behaviors in their natural habitat.

      Weaknesses:

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till the end of their lives.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a paper that attempts to tackle an important question, with potential impact far beyond the field of animal behavior research: what are the relative contributions of innate personality traits versus early life experience on individual behavior in the wild? The study, performed on Egyptian fruit bats that are caught in the wild and later housed in an outdoor colony, is solidly executed, and benefits greatly from a unique setup in which controlled laboratory experiments are combined with monitoring of individuals as they undertake undirected, free exploration of their natural environment.

      The primary finding of the paper is that there is a strong effect of early life experience on behavior in the wild, where individual bats that were exposed to an enriched environment as juveniles later travelled farther and over greater distances when permitted to explore and forage ad libitum, as compared with individual bats who were subjected to a more impoverished environment. Meanwhile, no prominent effect of innate "personality", as assessed by indices of indoor foraging behavior early on, before the bats were exposed to the controlled environmental treatment, was observed on three metrics of outdoor foraging behavior. The authors conclude that the early environment plays a larger role than innate personality on the behavior of adult bats.

      Strengths:

      (1) Elegant design of experiments and impressive combination of methods<br /> Bats used in the experiment were taken from wild colonies in different geographical areas, but housed during the juvenile stage in a controlled indoor environment. Bats are tested on the same behavioral paradigm at multiple points in their development. Finally, the bats are monitored with GPS as they freely explore the area beyond the outdoor colony.

      (2) Development of a behavioral test that yields consistent results across time<br /> The multiple-foraging box paradigm, in which behavioral traits such as overall activity, levels of risk-taking, and exploratoriness can be evaluated as creative, and suggestive of behavioral paradigms other animal behavior researchers might be able to use. It is especially useful, given that it can be used to evaluate the activity of animals seemingly at most stages of life, and not just in adulthood.

      Weaknesses:

      (1) Robustness and validity of personality measures<br /> Coming up with robust measures of "personality" in non-human animals is tricky. While this paper represents an important attempt at a solution, some of the results obtained from the indoor foraging paradigm raise questions as to the reliability of this task for assessing "personality".

      (2) Insufficient exploitation of data<br /> Between the behavioral measures and the very multidimensional GPS data, the authors are in possession of a rich data set. However, I don't feel that this data has been adequately exploited for underlying patterns and relationships. For example, many more metrics could be extracted from the GPS data, which may then reveal correlations with early measures of personality or further underscore the role of the early environment. In addition, the possibility that these personality measures might in combination affect outdoor foraging is not explored.

      (3) Interpretation of statistical results and definition of statistical models<br /> Some statistical interpretations may not be entirely accurate, particularly in the case of multiple regression with generalized linear models. In addition, some effects which may be present in the data are dismissed as not significant on the basis of null hypothesis testing.

      Below I have organized the main points of critique by theme, and ordered subordinate points by order of importance:

      (1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:<br /> (a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.

      (b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).

      Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.

      I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)

      (c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.

      In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.

      (2) Comparison of indoor behavioral measures and outdoor behavioral measures<br /> Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.

      (3) Use of statistics/points regarding the generalized linear models<br /> While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)

      The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript aims to elucidate the impact of a prophage within the genome of Shewanella fidelis on its interaction with the marine tunicate Ciona robusta. The authors made a deletion mutant of S. fidelis that lacks one of its two prophages. This mutant exhibited an enhanced biofilm phenotype, as assessed through crystal violet staining, and showed reduced motility. The authors examined the effect of prophage deletion on several genes that could modulate cyclic-diGMP levels. While no significant changes were observed under in vitro conditions, the gene for one protein potentially involved in cyclic-diGMP hydrolysis was overexpressed during microbe-host interactions. The mutant was retained more effectively within a one-hour timeframe, whereas the wild-type (WT) strain became more abundant after 24 hours. Fluorescence microscopy was used to visualize the localization patterns of the two strains, which appeared to differ. Additionally, a significant difference in the expression of one immune protein was noted after one hour, but this difference was not evident after 23 hours. An effect of VCBC-C addition on the expression of one prophage gene was also observed.

      Strengths:

      I appreciate how the authors integrate diverse expertise and methods to address questions regarding the impact of prophages on gut microbiome-host interactions. The chosen model system is appropriate, as it allows for high-throughput experimentation and the application of simple imaging techniques.

      Weaknesses:

      My primary concern is that the manuscript primarily describes observations without providing insight into the molecular mechanisms underlying the observed differences. It is particularly unclear how the presence of the prophage leads to the phenotypic changes related to bacterial physiology and host-microbe interactions. Which specific prophage genes are critical, or is the insertion at a specific site in the bacterial genome the key factor? While significant effects on bacterial physiology are reported under in vitro conditions, there is no clear attribution to particular enzymes or proteins. In contrast, when the system is expanded to include the tunicate, differences in the expression of a cyclic-diGMP hydrolase become apparent. Why do we not observe such differences under in vitro conditions, despite noting variations in biofilm formation and motility? Furthermore, given that the bacterial strain possesses two prophages, I am curious as to why the authors chose to target only one and not both.

      Regarding the microbe-host interaction, it is not clear why the increased retention ability of the prophage deletion strain did not lead to greater cell retention after 24 hours, especially since no differences in the immune response were observed at that time point.

      Concerning the methodological approach, I am puzzled as to why the authors opted for qPCR instead of transcriptomics or proteomics. The latter approaches could have provided a broader understanding of the prophage's impact on both the microbe and the host.

    2. Reviewer #2 (Public review):

      Summary:

      In the manuscript, "Prophage regulation of Shewanella fidelis 3313 motility and biofilm formation: implications for gut colonization dynamics in Ciona robusta", the authors are experimentally investigating the idea that integrated viruses (prophages) within a bacterial colonizer of the host Ciona robusta affect both the colonizer and the host. They found a prophage within the Ciona robusta colonizing bacterium Shewanella fidelis 3313, which affected both the bacteria and host. This prophage does so by regulating the phosphodiesterase gene pdeB in the bacterium when the bacterium has colonized the host. The prophage also regulates the activity of the host immune gene VCBP-C during early bacterial colonization. Prophage effects on both these genes affect the precise localization of the colonizing bacterium, motility of the bacterium, and bacterial biofilm formation on the host. Interestingly, VCBP-C expression also suppressed a prophage structural protein, creating a tripartite feedback loop in this symbiosis. This is exciting research that adds to the emerging body of evidence that prophages can have beneficial effects not only on their host bacteria but also on how that bacteria interacts in its environment. This study establishes the evolutionary conservation of this concept with intriguing implications of prophage effects on tripartite interactions.

      Strengths:

      This research effectively shows that a prophage within a bacterium colonizing a model ascidian affects both the bacterium and the host in vivo. These data establish the prophage effects on bacterial activity and expand these effects to the natural interactions within the host animal. The effects of the prophage through deletion on a suite of host genes are a strength, as shown by striking microscopy.

      Weaknesses:

      Unfortunately, there are abundant negative data that cast some limitations on the interpretation of the data. That is, examining specific gene expression has its limitations, which could be avoided by global transcriptomics of the bacteria and the host during colonization by the prophage-containing and prophage-deleted bacteria (1 hour and 24 hours). In this way, the tripartite interactions leading to mechanism could be better established.

      Impact:

      The authors are correct to speculate that this research can have a significant impact on many animal microbiome studies, since bacterial lysogens are prevalent in most microbiomes. Screening for prophages, determining whether they are active, and "curing" the host bacteria of active prophages are effective tools for understanding the effects these mobile elements have on microbiomes. There are many potential effects of these elements in vivo, both positive and negative, this research is a good example of why this research should be explored.

      Context:

      The research area of prophage effects on host bacteria in vitro has been studied for decades, while these interactions in combination with animal hosts in vivo have been recent. The significance of this research shows that there could be divergent effects based on whether the study is conducted in vitro or in vivo. The in vivo results were striking. This is particularly so with the microscopy images. The benefit of using Ciona is that it has a translucent body which allows for following microbial localization. This is in contrast to mammalian studies where following microbial localization would either be difficult or near impossible.

    3. Reviewer #3 (Public review):

      In this manuscript, Natarajan and colleagues report on the role of a prophage, termed SfPat, in the regulation of motility and biofilm formation by the marine bacterium Shewanella fidelis. The authors investigate the in vivo relevance of prophage carriage by studying the gut occupation patterns of Shewanella fidelis wild-type and an isogenic SfPat- mutant derivative in a model organism, juveniles of the marine tunicate Ciona robusta. The role of bacterial prophages in regulating bacterial lifestyle adaptation and niche occupation is a relatively underexplored field, and efforts in this direction are appreciated.

      While the research question is interesting, the work presented lacks clarity in its support for several major claims, and, at times, the authors do not adequately explain their data.

      Major concerns:

      (1) Prophage deletion renders the SfPat- mutant derivative substantially less motile and with a higher biofilm formation capacity than the WT (Fig. 2a-b). The authors claim the mutant is otherwise isogenic to the WT strain upon sequence comparison of draft genome sequences (I'll take the opportunity to comment here that GenBank accessions are preferable to BioSample accessions in Table 1). Even in the absence of secondary mutations, complementation is needed to validate functional associations (i.e., phenotype restoration). A strategy for this could be phage reintegration into the mutant strain (PMID: 19005496).

      (2) The authors claim that the downshift in motility (concomitant with an upshift in biofilm formation) is likely mediated by the activity of c-di-GMP turnover proteins. Specifically, the authors point to the c-di-GMP-specific phosphodiesterase PdeB as a key mediator, after finding lower transcript levels for its coding gene in vivo (lines 148-151, Fig. 2c), and suggesting higher activity of this protein in live animals (!)(line 229). I have several concerns here:<br /> (2.1) Findings shown in Fig. 2a-b are in vitro, yet no altered transcript levels for pdeB were recorded (Fig. 2c). Why do the authors base their inferences only on in vivo data?<br /> (2.2) Somewhat altered transcript levels alone are insufficient for making associations, let alone solid statements. Often, the activity of c-di-GMP turnover proteins is local and/or depends on the activation of specific sensory modules - in the case of PdeB, a PAS domain and a periplasmic sensor domain (PMID: 35501424). This has not been explored in the manuscript, i.e., specific activation vs. global alterations of cellular c-di-GMP pools (or involvement of other proteins, please see below). Additional experiments are needed to confirm the involvement of PdeB. Gaining such mechanistic insights would greatly enhance the impact of this study.<br /> (2.3) What is the rationale behind selecting only four genes to probe the influence of the prophage on Ciona gut colonization by determining their transcript levels in vitro and in vivo? If the authors attribute the distinct behavior of the mutant to altered c-di-GMP homeostasis, as may be plausible, why did the authors choose those four genes specifically and not, for example, the many other c-di-GMP turnover protein-coding genes or c-di-GMP effectors present in the S. fidelis genome? This methodological approach seems inadequate to me, and the conclusions on the potential implication of PdeB are premature.

      (3) The behavior of the WT strain and the prophage deletion mutant is insufficiently characterized. For instance, how do the authors know that the higher retention capacity reported for the WT strain with respect to the mutant (Fig. 3b) is not merely a consequence of, e.g., a higher growth rate? It would be worth investigating this further, ideally under conditions reflecting the host environment.

      (4) Related to the above, sometimes the authors refer to "retention" (e.g., line 162) and at other instances to "colonization" (e.g., line 161), or even adhesion (line 225). These are distinct processes. The authors have only tracked the presence of bacteria by fluorescence labeling; adhesion or colonization has not been assessed or demonstrated in vivo. Please revise.

      (5) The higher CFU numbers for the WT after 24 h (line 161) might also indicate a role of motility for successful niche occupation or dissemination in vivo. The authors could test this hypothesis by examining the behavior of, e.g., flagellar mutants in their in vivo model.

      (6) The endpoint of experiments with a mixed WT-mutant inoculum (assumedly 1:1? Please specify) was set to 1 h, I assume because of the differences observed in CFU counts after 24 h. In vivo findings shown in Fig. 3c-e are, prima facie, somewhat contradictory. The authors report preferential occupation of the esophagus by the WT (line 223), which seems proficient from evidence shown in Fig. S3. Yet, there is marginal presence of the WT in the esophagus in experiments with a mixed inoculum (Fig. 3d) or none at all (Fig. 3e). Likewise, the authors claim preferential "adhesion to stomach folds" by the mutant strain (line 225), but this is not evident from Fig. 3e. In fact, the occupation patterns by the WT and mutant strain in the stomach in panel 3e appear to differ from what is shown in panel 3d. The same holds true for the claimed "preferential localization of the WT in the pyloric cecum," with Fig. 3d showing a yellow signal that indicates the coexistence of WT and mutant.

      (7) In general, and especially for in vivo data, there is considerable variability that precludes drawing conclusions beyond mere trends. One could attribute such variability in vivo to the employed model organism (which is not germ-free), differences between individuals, and other factors. This should be discussed more openly in the main text and presented as a limitation of the study. Even with such intrinsic factors affecting in vivo measurements, certain in vitro experiments, which are expected, in principle, to yield more reproducible results, also show high variability (e.g., Fig. 5). What do the authors attribute this variability to?

      (8) Line 198-199: Why not look for potential prophage excision directly rather than relying on indirect, presumptive evidence based on qPCR?

    1. Reviewer #1 (Public review):

      Summary:

      The authors showed the presence of Mtb in human liver biopsy samples of TB patients and reported that chronic infection of Mtb causes immune-metabolic dysregulation. Authors showed that Mtb replicates in hepatocytes in a lipid rich environment created by up regulating transcription factor PPARγ. Authors also reported that Mtb protects itself from anti-TB drugs by inducing drug metabolising enzymes.

      Strengths:

      It has been shown that Mtb induces storage of triacylglycerol in macrophages by induction of WNT6/ACC2 which helps in its replication and intracellular survival, however, creation of favorable replicative niche in hepatocytes by Mtb is not reported. It is known that Mtb infects macrophages and induces formation of lipid-laden foamy macrophages which eventually causes tissue destruction in TB patients. In a recent article it has been reported that "A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages" that shows how Mtb manipulates host defense mechanisms for its survival. In this manuscript, authors reported the enhancement of lipid droplets in Mtb infected hepatocytes and convincingly showed that fatty acid synthesis and triacylglycerol formation is important for growth of Mtb in hepatocytes. The authors also showed the molecular mechanism for accumulation of lipid and showed that the transcription factor associated with lipid biogenesis, PPARγ and adipogenic genes were upregulated in Mtb infected cells.

      The comparison of gene expression data between macrophages and hepatocytes by authors is important which indicates that Mtb modulates different pathways in different cell type as in macrophages it is related to immune response whereas, in hepatocytes it is related to metabolic pathways.

      Authors also reported that Mtb residing in hepatocytes showed drug tolerance phenotype due to up regulation of enzymes involved in drug metabolism and showed that cytochrome P450 monooxygenase that metabolize rifampicin and NAT2 gene responsible for N-acetylation of isoniazid were up regulated in Mtb infected cells.

      Weaknesses:

      There are reports of hepatic tuberculosis in pulmonary TB patients especially in immune-compromised patients, therefore finding granuloma in human liver biopsy samples is not surprising.<br /> Mtb infected hepatic cells showed induced DME and NAT and this could lead to enhanced metabolism of drug by hepatic cells as a result Mtb in side HepG2 cells get exposed to reduced drug concentration and show higher tolerance to drug. The authors mentioned that " hepatocyte resident Mtb may display higher tolerance to rifampicin". In my opinion higher tolerance to drugs is possible only when DME of Mtb inside is up regulated or the target is modified. Although, in the end authors mentioned that drug tolerance phenotype can be better attributed to host intrinsic factors rather than Mtb efflux pumps. It may be better if the Drug tolerant phenotype section can be rewritten to clarify the facts.

    2. Reviewer #2 (Public review):

      The manuscript by Sarkar et al has demonstrated the infection of liver cells/hepatocytes with Mtb and the significance of liver cells in the replication of Mtb by reprogramming lipid metabolism during tuberculosis. Besides, the present study shows that similar to Mtb infection of macrophages (reviewed in Chen et al., 2024; Toobian et al., 2021), Mtb infects liver cells but with a greater multiplication owing to consumption of enhanced lipid resources mediated by PPARg that could be cleared by its inhibitors. The strength of the study lies in the clinical evaluation of the presence of Mtb in human autopsied liver samples from individuals with miliary tuberculosis and the presence of a clear granuloma-like structure. The interesting observation is of granuloma-like structure in liver which prompts further investigations in the field.

      The modulation of lipid synthesis during Mtb infection, such as PPARg upregulation, appears generic to different cell types including both liver cells and macrophage cells. It is also known that infection affect PPARγ expression and activity in hepatocytes. It is also known that this can lead to lipid droplet accumulation in the liver and the development of fatty liver disease (as shown for HCV). This study is in a similar line for M.tb infection. As the liver is the main site for lipid regulation, the availability of lipid resources is greater and higher is the replication rate. In short, the observations from the study confirm the earlier studies with these additional cell types. It is known that higher the lipid content, the greater are Lipid Droplet-positive Mtb and higher is the drug resistance (Mekonnen et al., 2021). The DMEs of liver cells add further to the phenotype.

    3. Reviewer #3 (Public review):

      This manuscript by Sarkar et al. examines the infection of the liver and hepatocytes during M. tuberculosis infection. They demonstrate that aerosol infection of mice and guinea pigs leads to appreciable infection of the liver as well as the lung. Transcriptomic analysis of HepG2 cells showed differential regulation of metabolic pathways including fatty acid metabolic processing. Hepatocyte infection is assisted by fatty acid synthesis in the liver and inhibiting this caused reduced Mtb growth. The nuclear receptor PPARg was upregulated by Mtb infection and inhibition or agonism of its activity caused a reduction or increase in Mtb growth, respectively, supporting data published elsewhere about the role of PPARg in lung macrophage Mtb infection. Finally, the authors show that Mtb infection of hepatocytes can cause upregulation of enzymes that metabolize antibiotics, resulting in increased tolerance of these drugs by Mtb in the liver.

      Overall, this is an interesting paper on an area of TB research where we lack understanding. However, some additions to the experiments and figures are needed to improve the rigor of the paper and further support the findings. Most importantly, although the authors show that Mtb can infect hepatocytes in vitro, they fail to describe how bacteria get from the lungs to the liver in an aerosolized infection. They also claim that "PPARg activation resulting in lipid droplets formation by Mtb might be a mechanism of prolonging survival within hepatocytes" but do not show a direct interaction between PPARg activation and lipid droplet formation and lipid metabolism, only that PPARg promotes Mtb growth. Thus, the correlations with PPARg appear to be there but causation, implied in the abstract and discussion, is not proven.

      The human photomicrographs are important and overall well done (lung and liver from the same individuals is excellent). However, in lines 120-121, the authors comment on the absence of studies on the precise involvement of different cells in the liver. In this study there is no attempt to immunophenotype the nature of the cells harboring Mtb in these samples (esp. hepatocytes). Proving that hepatocytes specifically harbor the bacteria in these human samples would add significant rigor to the conclusions made.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting theoretical study examining the viability of Virtual Circular Genome (VCG) model, a recently proposed scenario of prebiotic replication in which a relatively long sequence is stored as a collection of its shorter subsequences (and their compliments). It was previously pointed out that VCG model is prone to so-called sequence scrambling which limits the overall length of such a genome. In the present paper, additional limitations are identified. Specifically, it is shown that VCG is well replicated when the oligomers are elongated by sufficiently short chains from "feedstock" pool. However, ligation of oligomers from VCG itself results in a high error rate. I believe the research is of high quality and well written. However, the presentation could be improved and the key messages could be clarified.

      (1) It is not clear from the paper whether the observed error has the same nature as sequence scrambling<br /> (2) The authors introduce two important lengths LS1 and LS2 only in the conclusions and do not explain enough which each of them is important. It would make sense to discuss this early in the manuscript.<br /> (3) It is not entirely clear why specific length distribution for VCG oligomers has to be assumed rather than emerged from simulations.<br /> (4) Furthermore, the problem has another important length, L0 that is never introduced or discussed: a minimal hybridization length with a lifetime longer than the ligation time. From the parameters given, it appears that L0 is sufficiently long (~10 bases). In other words, it appears that the study is done is a somewhat suboptimal regime: most hybridization events do not lead to a ligation. Am I right in this assessment? If that is the case, the authors might want to explore another regime, L0<br /> Strengths:

      High-quality theoretical modeling of an important problem is implemented.

      Weaknesses:

      The conclusions are somewhat convoluted and could be presented better.

    2. Reviewer #2 (Public review):

      Summary:

      This important theoretical and computational study by Burger and Gerland attempts to set environmental, compositional, kinetic, and thermodynamic constraints on the proposed virtual circular genome (VCG) model for the early non-enzymatic replication of RNA. The authors create a solid kinetic model using published kinetic and thermodynamic parameters for non-enzymatic RNA ligation and (de)hybridization, which allows them to test a variety of hypotheses about the VCG. Prominently, the authors find that the length (longer is better) and concentration (intermediate is better) of the VCG oligos have an outsized impact on the fidelity and yield of VCG production with important implications for future VCG design. They also identify that activation of only RNA monomers, which can be achieved using environmental separation of the activation and replication, can relax the constraints on the concentration of long VCG component oligos by avoiding the error-prone oligo-oligo ligation. Finally, in a complex scenario with multiple VCG oligo lengths, the authors demonstrate a clear bias for the extension of shorter oligos compared to the longer ones. This effect has been observed experimentally (Ding et al., JACS 2023) but was unexplained rigorously until now. Overall, this manuscript will be of interest to scientists studying the origin of life and the behavior of complex nucleic acid systems.

      Strengths:

      - The kinetic model is carefully and realistically created, enabling the authors to probe the VCG thoroughly.<br /> - Fig. 6 outlines important constraints for scientists studying the origin of life. It supports the claim that the separation of activation and replication chemistry is required for efficient non-enzymatic replication. One could easily imagine a scenario where activation of molecules occurs, followed by their diffusion into another environment containing protocells that encapsulate a VCG. The selective diffusion of activated monomers across protocell membranes would then result in only activated monomers being available to the VCG, which is the constraint outlined in this work. The proposed exclusive replication by monomers also mirrors the modern biological systems, which nearly exclusively replicate by monomer extension.<br /> - Another strength of the work is that it explains why shorter oligos extend better compared to the long ones in complex VCG mixtures. This point is independent of the activation chemistry used (it simply depends on the kinetics and thermodynamics of RNA base-pairing) so it should be very generalizable.

      Weaknesses:

      - Most of the experimental work on the VCG has been performed with the bridged 2-aminoimidazolium dinucleotides, which are not featured in the kinetic model of this work. Oher studies by Szostak and colleagues have demonstrated that non-enzymatic RNA extension with bridged dinucleotides have superior kinetics (Walton et al. JACS 2016, Li et al. JACS 2017), fidelity (Duzdevich et al. NAR 2021), and regioselectivity (Giurgiu et al. JACS 2017) compared to activated monomers, establishing the bridged dinucleotides as important for non-enzymatic RNA replication. Therefore, the omission of these species in the kinetic model presented here can be perceived as problematic. The major claim that avoidance of oligo ligations is beneficial for VCGs may be irrelevant if bridged dinucleotides are used as the extending species, because oligo ligations (V + V in this work) are kinetically orders of magnitude slower than monomer extensions (F + V in this work) (Ding et al. NAR 2022). Formally adding the bridged dinucleotides to the kinetic model is likely outside of the scope of this work, but perhaps the authors could test if this should be done in the future by simply increasing the rate of monomer extension (F + V) to match the bridged dinucleotide rate without changing rate of V + V ligation?<br /> - The kinetic and thermodynamic parameters for oligo binding appear to be missing two potentially important components. First, base-paired RNA strands that contain gaps where an activated monomer or oligo can bind have been shown to display significantly different kinetics of ligation and binding/unbinding than complexes that do not contain such gaps (see Prywes et al. eLife 2016, Banerjee et al. Nature Nanotechnology 2023, and Todisco et al. JACS 2024). Would inclusion of such parameters alter the overall kinetic model? Second, it has been shown that long base-paired RNA can tolerate mismatches to an extent that can result in monomer ligation to such mismatched duplexes (see Todisco et al. NAR 2024). Would inclusion of the parameters published in Todisco et al. NAR 2024 alter the kinetic model significantly?

    1. Reviewer #1 (Public review):

      Summary:

      Persistence is a phenomenon by which genetically susceptible cells are able to survive exposure to high concentrations of antibiotics. This is especially a major problem when treating infections caused by slow growing mycobacteria such as M. tuberculosis and M. abscessus. Studies on the mechanisms adopted by the persisting bacteria to survive and evade antibiotic killing can potentially lead to faster and more effective treatment strategies.

      To address this, in this study, the authors have used a transposon mutagenesis based sequencing approach to identify the genetic determinants of antibiotic persistence in M. abscessus. To enrich for persisters they employed conditions, that have been reported previously to increase persister frequency - nutrient starvation, to facilitate genetic screening for this phenotype. M.abs transposon library was grown in nutrient rich or nutrient depleted conditions and exposed to TIG/LZD for 6 days, following which Tn-seq was carried out to identify genes involved in spontaneous (nutrient rich) or starvation-induced conditions. About 60% of the persistence hits were required in both the conditions. Pathway analysis revealed enrichment for genes involved in detoxification of nitrosative, oxidative, DNA damage and proteostasis stress. The authors then decided to validate the findings by constructing deletions of 5 different targets (pafA, katG, recR, blaR, Mab_1456c) and tested the persistence phenotype of these strains. Rather surprisingly only 2 of the 5 hits (katG and pafA) exhibited a persistence defect when compared to wild type upon exposure to TIG/LZD and this was complemented using an integrative construct. The authors then investigated the specificity of delta-katG susceptibility against different antibiotic classes and demonstrated increased killing by rifabutin. The katG phenotype was shown to be mediated through the production of oxidative stress which was reverted when the bacterial cells were cultured under hypoxic conditions. Interestingly, when testing the role of katG in other clinical strains of Mab, the phenotype was observed only in one of the clinical strains demonstrating that there might be alternative anti-oxidative stress defense mechanisms operating in some clinical strains.

      Strengths:

      While the role of ROS in antibiotic mediated killing of mycobacterial cells have been studied to some extent, this paper presents some new findings with regards to genetic analysis of M. abscessus susceptibility, especially against clinically used antibiotics, which makes it useful. Also, the attempts to validate their observations in clinical isolates is appreciated.

      Weaknesses:

      - Fig. 3 - 5 of the hits from the transposon screen were reconstructed as clean deletion strains and tested for persistence. However, only 1 (katG) gave a strong and 1 (Mab_1456c) exhibited a minor defect. Two of the clones did not show any persistence phenotype (blaR and recR) and one (pafA) showed a minor phenotype, however it was not clear if this difference was really relevant as the mutant exhibited differences at Day 0, prior to the addition of antibiotics. Considering these results from the validation, the conclusion would be that the Tn-seq approach to screen persistence defects is not reliable and is more likely to result in misses than hits.

      - Fig 3 - Why is there such a huge difference in the extent of killing of the control strain in media, when exposed to TIG/LZD, when compared to Fig. 1C and Fig. 4. In Fig. 1C, M. abs grown in media decreases by >1 log by Day 3 and >4 log by Day 6, whereas in Fig. 3, the bacterial load decreases by <1 log by Day 3 and <2 log by Day 6. This needs to be clarified, if the experimental conditions were different, because if comparing to Fig. 1C data then the katG mutant strain phenotype is not very different.

    2. Reviewer #2 (Public review):

      Summary:

      The work set out to better understand the phenomenon of antibiotic persistence in mycobacteria. Three new observations are made using the pathogenic Mycobacterium abscessus as an experimental system: phenotypic tolerance involves suppression of ROS, protein synthesis inhibitors can be lethal for this bacterium, and levofloxacin lethality is unaffected by deletion of catalase, suggesting that this quinolone does not kill via ROS.

      Strengths:

      The ROS experiments are supported in three ways: measurement of ROS by a fluorescent probe, deletion of catalase increases lethality of selected antibiotics, and a hypoxia model suppresses antibiotic lethality. A variety of antibiotics are examined, and transposon mutagenesis identifies several genes involved in phenotypic tolerance, including one that encodes catalase. The methods are adequate for making these statements.

      Weaknesses:

      The work can be improved in two major ways. First, word-choice decisions could better conform to the published literature. Alternatively, novel definitions could be included. In particular, the data support the concept of phenotypic tolerance, not persistence. Second, two of the novel observations could be explored more extensively to provide mechanistic explanations for the phenomena.

      Overall impact: Showing that ROS accumulation is suppressed during phenotypic tolerance, while expected, adds to the examples of the protective effects of low ROS levels. Moreover, the work, along with a few others, extends the idea of antibiotic involvement with ROS to mycobacteria. These are field-solidifying observations.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript demonstrates that starvation induces persister formation in M. abscesses. They also utilized Tn-Seq for the identification of genes involved in persistence. They identified the role of catalase-peroxidase KatG in preventing death from translation inhibitors Tigecycline and Linezolid. They further demonstrated that a combination of these translation inhibitors leads to the generation of ROS in PBS-starved cells.

      Strengths:

      The authors used high-throughput genomics-based methods for identification of genes playing a role in persistence.

      Weaknesses:

      The findings could not be validated in clinical strains.

    1. Reviewer #1 (Public review):

      Summary:

      The imaging pipeline presented in this paper is a useful tool for visualizing and dynamically tracking bacterial colony formation at the individual worm level, enabling the study of microbiome colonization's association with host physiology, including lifespan, infection severity, and genetic mutations in real-time. This technique allows for certain biological information to be obtained that was previously missed such as pmk-1 mutants exhibiting a higher rate of colonization by E. coli OP50 than wild-type animals. Overall, this platform could be of interest to many labs studying C. elegans interactions with their microbiome and with bacterial pathogens.

      Strengths:

      This platform allows for unbiased quantifications of microbe colonization of bacteria at scale. This is particularly important in a field studying dynamic responses or potentially more subtle or variable phenotypes.

      Platform could be adapted for multiple uses or potentially other species of nematodes for evolutionary comparisons.

      The platform allows researchers to correlate bacterial colonization with predicted lifespan.

      Weaknesses:

      Platform will require optimization for any given bacteria species which restricts its ease of use for researchers that won't regularly be studying the same bacteria.

      Requires the bacteria to be genetically tractable so cannot be easily adapted to microbes that do not have established ways of expressing GFP or other reporters.

      This platform requires the use of relatively older adult animals that are more prone to larger gut colonies of bacteria. Thus, studies using this platform are restricted to studying older populations.

      The relationship between bacterial colonization and host lifespan requires further investigation. The current SICKO platform and experimentation cannot fully address whether animals in poorer health are more susceptible to colonization, or whether colonization casually contributes to a decline in health. Furthermore, while such effects are statistically significant their effect size in some cases is modest.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Espejo et al describe a method, SICKO, that allows for long-term longitudinal examination of bacterial colonization in the gut of C. elegans. SICKO utilizes a well-plate format where single worms are housed in each well with a small NGM pad surrounded by an aversive palmitic acid barrier to prevent worms from fleeing the well. The main benefit of this method is that it captures longitudinal data across individual worms with the ability to capture tens to hundreds of worms at once. The output data of SICKO in the heatmap is also very clear and robustly shows bacterial colonization in the gut across a large sample size, which is far superior to the current gold standard of imaging 10-20 worms in a cross-sectional matter at various timepoints of aging. They then provide a few examples of how this method can be applied to understand how colonization correlates with animal health.

      Strengths:

      -The method presented in this manuscript is sure to be of great utility to the host-pathogen field of C. elegans. The method also allows for utilization of large sample sizes and a way to present highly transparent data, both of which are excellent for promoting rigor and reproducibility of science.<br /> -The manuscript also does a great job in describing the limitations of the system, which is always appreciated.<br /> -The methods section for the SICKO data analysis pipeline and the availability of the code on Github are strong pluses.

      Weaknesses:

      -There are minor weaknesses in the methods that could be addressed relatively easily by expanding the explanation of how to set up the individual worm chambers (see comment 1 below).

      I am making all my comments and suggestions to the reviewers public, as I believe these comments can be useful to the general readership as well. Comment 1 is important to make the methods more accessible and comment 2 is important to make the data presentation more accessible to a broader audience. However, comments 3-4 are things/suggestions that should be considered by the authors and future users of SICKO for interpretation of all the data presented in the manuscript.

      (1) The methods section needs to be described in more detail. Considering that this is a methods development paper, more detailed explanation is required to ensure that readers can actually adapt these experiments into their labs.<br /> (a) What is the volume of lmNGM in each well?<br /> (b) Recommended volume of bacteria to seed in each well?<br /> (c) A file for the model for the custom printed 3D adaptor should be provided.<br /> (d) There should be a bit more detail on how the chambers should be assembled with all the components. After reading this, I am not sure I would be able to put the chamber together myself.<br /> (e) What is the recommended method to move worms into individual wells? Manual picking? Pipetting in a liquid?<br /> (f) Considering that a user-defined threshold is required (challenging for non-experienced users), example images should be provided on what an acceptable vs. nonacceptable threshold would look like.

      (2) The output data in 1e is very nice - it is a very nice and transparent plot, which I like a lot. However, since the data is complex, a supplemental figure to explain the data better would be useful to make it accessible for a broader audience. For example, highlighting a few rows (i.e., individual worms) and showing the raw image data for each row would be useful. What I mean is that it would be useful to show what does the worm actually look like for a "large colony size" or "small colony size"? What is the actual image of the worm that represents the yellow (large), versus dark blue (small), versus teal (in the middle)? And also the transition from dark blue to yellow would also be nice to be shown. This can probably also just be incorporated into Fig. 1d by just showing what color each of those worm images from day 1 to day 8 would represent in the heat map (although I still think a dedicated supplemental figure where you highlight a few rows and show matching pictures for each row in image files would be better).

      (3) I am not sure that doing a single-time point cross-sectional data is a fair comparison since several studies do multi-timepoint cross-sectional studies (e.g., day 1, day 5, day 9). This is especially true for using only day 1 data - most people do gut colonization assays at later timepoints since the gut barrier has been shown to break down at older ages, not day 1. The data collected by SICKO is done every day across many individuals worms and is clearly superior to this type of cross-sectional data (even with multiple timepoints), and I think this message would be further strengthened by comparing it directly to cross-sectional data collected across more than 1 timepoint of aging.

      (4) The authors show that SICKO can detect differences in wild-type vs. pmk-1 loss of function and between OP50 and PA14. However, these are very dramatic conditions that conventional methods can easily detect. I would think that the major benefit of SICKO over conventional methods is that it can detect subtle differences that cross-sectional methods would fail to visualize. It might be useful to see how well SICKO performs for these more subtle effects (e.g., OP50 on NGM vs. bacteria-promoting media; OP50 vs. HT115; etc.).<br /> (a) Similar to the above comment, the authors discuss how pmk-1 has colonization-independent effects on host-pathogen interactions. Maybe using a more direct approach to affect colonization (e.g., perturbing gut actin function like act-5) would be better.

  2. Dec 2024
    1. Reviewer #3 (Public Review):

      In multiple cancers, the key roles of B cells are emerging in the tumor microenvironment (TME). The authors of this study appropriately introduce that B cells are relatively under-characterised in the TME and argue correctly that it is not known how the B cell receptor (BCR) repertoires across tumor, lymph node and peripheral blood relate. The authors therefore supply a potentially useful study evaluating the tumor, lymph node and peripheral blood BCR repertoires and site-to-site as well as intra-site relationships. The authors employ sophisticated analysis techniques, although the description of the methods is incomplete.

      Major strengths:

      (1) The authors provide a unique analysis of BCR repertoires across tumor, dLN, and peripheral blood. The work provides useful insights into inter- and intra-site BCR repertoire heterogeneity. While patient-to-patient variation is expected, the findings with regard to intra-tumor and intra-dLN heterogeneity with the use of fragments from the same tissue are of importance, contribute to the understanding of the TME, and will inform future study design.

      (2) A particular strength of the study is the detailed CDR3 physicochemical properties analysis which leads the authors to observations that suggest a less-specific BCR repertoire of TIL-B compared to circulating B cells.

      Comments on revisions:

      Your efforts in addressing concerns related to methodological details, narrative clarity, and data representation are commendable. The expanded descriptions of Fig. 1A and the experimental design, as well as the restructuring of the discussion, have greatly enhanced the manuscript's clarity and coherence.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, a screening platform is presented for rapid and cost-effective screening of candidate genes involved in Fragile Bone Disorders. The authors validate the approach of using crispants, generating FO mosaic mutants, to evaluate the function of specific target genes in this particular condition. The design of the guide RNAs is convincingly described, while the effectiveness of the method is evaluated to 60% to 92% of the respective target genes being presumably inactivated. Thus, injected F0 larvae can be directly used to investigate the consequences of this inactivation.

      Skeletal formation is then evaluated at 7dpf and 14dpf, first using a transgenic reporter line revealing fluorescent osteoblasts, second using alizarin-red staining of mineralized structures. In general, it appears that the osteoblast-positive areas are more often affected in the crispants compared to the mineralized areas, an observation that appears to correlate with the observed reduced expression of bglap, a marker for mature osteoblasts, and the increased expression of col1a1a in more immature osteoblasts.

      Finally, the injected fish (except two lines that revealed a high mortality) are also analyzed at 90dpf, using alizarin red staining and micro-CT analysis, revealing an increased incidence of skeletal deformities in the vertebral arches, fractures, as well as vertebral fusions and compressions for all crispants except those for daam2. Finally, the Tissue Mineral Density (TMD) as determined by micro-CT is proposed as an important marker for investigating genes involved in osteoporosis.<br /> Taken together, this manuscript is well presented, the data are clear and well analyzed, and the methods well described. It makes a compelling case for using the crispant technology to screen the function of candidate genes in a specific condition, as shown here for bone disorders.

      Strengths:

      Strengths are the clever combination of existing technologies from different fields to build a screening platform. All the required methods are comprehensively described.

      Weaknesses:

      One may have wished to bring one or two of the crispants to the stage of bona fide mutants, to confirm the results of the screening, however, this is done for some of the tested genes as laid out in the discussion.

      Comments on latest version:

      All my issues were resolved.

    2. Reviewer #2 (Public review):

      Summary:

      More and more genes and genetic loci are being linked to bone fragility disorders like osteoporosis and osteogenesis imperfecta through GWAS and clinical sequencing. In this study, the authors seek to develop a pipeline for validating these new candidate genes using crispant screening in zebrafish. Candidates were selected based on GWAS bone density evidence (4 genes) or linkage to OI cases plus some aspect of bone biology (6 genes). NGS was performed on embryos injected with different gRNAs/Cas9 to confirm high mutagenic efficacy, and off-target cutting was verified to be low. Bone growth, mineralization, density, and gene expression levels were carefully measured and compared across crispants using a battery of assays at three different stages.

      Strengths:

      (1) The pipeline would be straightforward to replicate in other labs, and the study could thus make a real contribution towards resolving the major bottleneck of candidate gene validation.

      (2) The study is clearly written and extensively quantified.

      (3) The discussion attempts to place the phenotypes of different crispant lines into the context of what is already known about each gene's function.

      (4) There is added value in seeing the results for the different crispant lines side by side for each assay.

      (5) Caveats to the interpretability of crispant data and limitations of their gene-focused analyses and RT-PCR assays are discussed.

      Weaknesses:

      (1) The study uses only well-established methods and is strategy-driven rather question/hypothesis-driven. This is in line with the researchers' primary goal of developing a workflow for rapid in vivo functional screening of candidate genes. However, this means that less attention is paid to what the results obtained for a given gene may mean regarding potential disease mechanisms, and how contradictions with prior reports of mouse or fish null mutant phenotypes might be explained.

      (2) Normalization to body size was not performed. Measurements of surface area covered by osteoblasts or mineralized bone (Fig. 1) are typically normalized to body size - especially in larvae and juvenile fish - to rule out secondary changes due to delayed or accelerated overall growth. This was not done here; the authors argue that "variations in growth were considered as part of the phenotypic outcome." This is reasonable, but because standard length was reported only for fish at 90 dpf (not significantly different in any line), the reader is not given the opportunity to consider whether earlier differences in, e.g. surface area covered by osteoblasts at 14 dpf, could be accounted for by delayed or accelerated overall growth. Images in Figure S5 were not taken at the same magnification, further confounding this effort.

      Comments on latest version:

      The authors have largely addressed my comments by making changes to the text.

      However, in response to one of my original comments ("It would be helpful to note the grouping of candidates into OI vs. BMD GWAS throughout the figures"), they added a sentence to this effect to the legends. However, because two of the lines were larval-lethal, the legends to Figs. S6-8 are now incorrect in referring to ten genes when only eight mutants are shown.

    3. Reviewer #3 (Public review):

      The manuscript describes the use of CRISPR gene editing coupled with phenotyping mosaic zebrafish larvae to characterize functions of genes implicated in heritable fragile bone disorders (FBDs). Authors targeted six high-confident candidate genes implicated in severe recessive forms of FBDs and four Osteoporosis GWAS-implicated genes and observe varied developmental phenotypes across all crispants, in addition to adult skeletal phenotypes. While the study lacks insight on underlying mechanisms that contribute to disease phenotypes, a major strength of the paper is the streamlined method that produced significant phenotypes for all candidate genes tested. It also represents a significant increase in number of candidate genes tested using their crispant approach beyond the single mutant that was previously published.

      One weakness was the variability of developmental phenotypes, addressed by authors in the Discussion. This might be a product of maternal transcripts not targeted by CRISPR or genetic compensation, which authors have not fully explored. Overall, the paper was well-written and easy to read.

      Comments on latest version:

      The authors have addressed many concerns in this revision. Figure 1 and Table 2 are much improved.

      While details of orthologous gene expression profiles of target genes is a welcome addition, other features of target genes remain unaddressed. For example, do genes with maternally deposited transcript exhibit dampened phenotypes? Or does genetic compensation impact certain genes more than others? Since authors state that the study represents a methods paper, it will be important for users to understand the caveats of gene selection to effectively implement and interpret results of the approach.

    1. Reviewer #1 (Public review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium might increase defense related proteolytic activity in the plant host cells.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      Comments on latest version:

      The presentation of the figures and the language has greatly improved and the specific mistakes pointed out in the last review have been corrected. I especially appreciate the new images used to illustrate the observed mutant phenotypes, which are much clearer and easier to understand. The pictures used to illustrate the mutant phenotypes seem to be of more comparable root regions than before. Overall, the requested changes have been implemented, with some exceptions described below.

      • Figure 1: New representative images are shown for BAX1 and CERK1. These pictures are more consistent with the phenotype seen in other treatments, but since the data has not changed, I presume the data from leaf discs (where the leaf discs for these treatments looked very different) previously shown is still included. The criteria for what was considered cell death is in my opinion still not described in the legend. The cell death/total ratio has been added for all leaf discs, as requested.<br /> • Figure 2: the discussion of the figure now emphasizes direct protein interaction. There is still no size marker in 2D or a description of size in the figure legend, making it difficult to compare the result to Figure 3. If I understand the rebuttal comments correctly, there are other bands on the blot, including non-specific bands. This does not negate the need to include the full blot as a supplemental figure to show cleaved NFR5 as well as other bands. I do not see any other clarifications on this subject in the manuscript.<br /> • Figure 5: From the pictures, it is now easier to understand what is meant by "infection foci". Although there is no description in the methods of how these were distinguished from infection threads, I believe the images are clear enough.<br /> • Figure 6: The changes in the discussion are appreciated, but panel E still misrepresents the evidence in the paper, as from the drawing it still seems that the cleaved NFR5 is somehow directly responsible for suppressing infection when this was not shown

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

      Strengths:

      The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

      Weaknesses:

      (1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

      (2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

      (3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

      (4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

      Comments on revised version:

      This version has effectively addressed most of my concerns. However, one key issue remains unresolved regarding the mechanism of NopT in regulating nodule symbiosis. Specifically, the explanation of how NopT catabolizes NFR5 to regulate symbiosis is still not convincing within the current framework of plant-microbe interaction, where plants are understood to genetically control rhizobial colonization.

      While alternative regulatory mechanisms in plant-microbe interactions are plausible, the notion that the NRG234-secreted effector NopT could reduce its own infection by either suppressing plant immunity or degrading the symbiosis receptor remains unsubstantiated. I believe further revisions are needed in the discussion section to more clearly address and clarify these findings and any lingering uncertainties.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduced their previous paper with the concise statement that "the relationships between lineage-specific attributes and genotypic differences of tumors are not understood" (Chen et al., JEM 2019, PMID: 30737256). For example, it is not clear why combined loss of RB1 and TP53 is required for tumorigenesis in SCLC or other aggressive neuroendocrine (NE) cancers, or why the oncogenic mutations in KRAS or EGFR that drive NSCLC tumorigenesis are found so infrequently in SCLC. This is the main question addressed by the previous and current papers.

      One approach to this question is to identify a discrete set of genetic/biochemical manipulations that are sufficient to transform non-malignant human cells into SCLC-like tumors. One group reported transformation of primary human bronchial epithelial cells into NE tumors through a complex lentiviral cocktail involving inactivation of pRB and p53 and activation of AKT, cMYC and BCL2 (PARCB) (Park et al., Science 2018, PMID: 30287662). The cocktail previously reported by Chen and colleagues to transform human pluripotent stem-cell (hPSC)-derived lung progenitors (LPs) into NE xenografts was more concise: DAPT to inactivate NOTCH signaling combined with shRNAs against RB1 and TP53. However, the resulting RP xenografts lacked important characteristics of SCLC. Unlike SCLC, these tumors proliferated slowly and did not metastasize, and although small subpopulations expressed MYC or MYCL, none expressed NEUROD1.

      MYC is frequently amplified or expressed at high levels in SCLC, and here, the authors have tested whether inducible expression of MYC could increase the resemblance of their hPSC-derived NE tumors to SCLC. These RPM cells (or RPM T58A with stabilized cMYC) engrafted more consistently and grew more rapidly than RP cells, and unlike RP cells, formed liver metastases when injected into the renal capsule. Gene expression analyses reveled that RPM tumor subpopulations expressed NEUROD1, ASCL1 and/or YAP1.

      The hPSC-derived RPM model is a major advance over the previous RP model. This may become a powerful tool for understanding SCLC tumorigenesis and progression and for discovering gene dependencies and molecular targets for novel therapies. However, the specific role of cMYC in this model needs to be clarified.

      Recommended Revision:

      cMYC can drive proliferation, tumorigenesis or apoptosis in a variety of lineages depending on concurrent mutations. For example, in the Park et al., study, normal human prostate cells could be reprogrammed to form adenocarcinoma-like tumors by activation of cMYC and AKT alone, without manipulation of TP53 or RB1. In their previous manuscript, the authors carefully showed the role of each molecular manipulation in NE tumorigenesis. DAPT was required for NE differentiation of LPs to PNECs, shRB1 was required for expansion of the PNECs, and shTP53 was required for xenograft formation. cMYC expression could influence each of these steps, and importantly, could render some steps dispensable. For example, shRB1 was previously necessary to expand the DAPT-induced PNECs, as neither shTP53 nor activation of KRAS or EGFR had no effect on this population, but perhaps cMYC overexpression could expand PNECs even in the presence of pRB, or even induce LPs to become PNECs without DAPT. Similarly, both shRB1 and shTP53 were necessary for xenograft formation, but maybe not if cMYC is overexpressed. If a molecular hallmark of SCLC, such as loss of RB1 or TP53, has become dispensable with the addition of cMYC, this information is critically important in interpreting this as a model of SCLC tumorigenesis.

      To interpret the role of cMYC expression in hPSC-derived RPM tumors, we need to know what this manipulation does without manipulation of pRB, p53 or NOTCH, alone or in combination. There are 7 relevant combinations that should be presented in this manuscript: (1) cMYC alone in LPs, (2) cMYC + DAPT, (3) cMYC + shRB1, (4) cMYC + DAPT + shRB1, (5) cMYC + shTP53, (6) cMYC + DAPT + shTP53, and (7) cMYC + shRB1 + shTP53. Wild-type cMYC is sufficient; further exploration with the T58A mutant would not be necessary.

      Please present the effects of these combinations on LP differentiation to PNECs, expansion of PNECs as well as other lung cells, xenograft formation and histology, and xenograft growth rate and capacity for metastasis. If this could be clarified experimentally, and the results discussed in the context of other similar approaches such as the Park et al., paper, this study would be a major addition to the field.

    2. Reviewer #3 (Public review):

      This revision and the accompanying rebuttal indicates the authors want to publish their studies without providing several of the reviewer requested additional experiments (such as determining the impact of other Myc family members on metastatic behavior and expression characteristics compared to overexpression of c-Myc), and determining whether the tumors were responsive or not to standard clinically used therapies. Their argument is the author team has moved on to other endeavors, it is important to communicate their findings to the research field, and they have indicated these issues in the Discussion. All of these things are reasonable. However, there two things that would help. The first is to have the authors clearly state in the Discussion section "Limitations of the current study" and then list these out. In the current format the indication that the authors recognize the "limitations" is not clearly stated. An example - of such a limitation is how well their model now provides a human SCLC like tumor that metastasizes. We know that in patients SCLC is widely metastatic, but in SCLC patient derived xenografts with subcutaneous injection that is not seen, so if their model now generated widely metastatic behavior like that seen in patients, this report and the associated resources would be a significant advance to the field. However, their data shows that using their model the subcutaneous tumors don't metastasize, and even with renal capsule models metastases are not common and do not go to important sites (e.g. brain). Second, a major reason for publishing this paper is that their model system would be available as a resource for the field to study. However, I could not find in the paper or the Methods section any statement as to the availability of this presumable important resource. If the resources will not be easily available in a format that others can readily study (e.g. with instructions on how to handle the cells which would seem to be more complicated than other patient derived SCLC models) then of course the value of this paper to the field as a whole is dramatically reduced. I would assume the authors want their model to be used by other investigators and thus a clear statement of model availability and how to routinely handle their model is important to include in their manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Here the authors convincingly identify and characterize the SERBP1 interactome and further define its role in the nucleus, where it is associated with complexes involved in splicing, cell division, chromosome structure, and ribosome biogenesis. Many of the SERBP1-associated proteins are RNA-binding proteins and SERBP1 exerts its impact, at least in part, through these players. SERBP1 is mostly disordered but along with its associated proteins displays a preference for G4 binding and can can bind to PAR and be PARylated. They present data that strongly suggest that complexes in which SERBP1 participates are assembled through G4 or PAR binding. The authors suggest that because SERBP1 lacks traditional functional domains yet is clearly involved in distinct regulatory complexes, SERBP1 likely acts in the early steps of assembly through the recognition of interacting sites present in RNA, DNA, and proteins.

      Strengths:

      The data is very convincing and demonstrated through multiple approaches.

      Weaknesses:

      None. The authors have adequately addressed earlier reviewer concerns.

    2. Reviewer #2 (Public review):

      Summary:

      In this study the authors have used pull-down experiments in a cell line overexpressing tagged SERPINE1 mRNA binding protein 1 (SERBP1) followed by mass spectrometry-based proteomics, to establish its interactome. Extensive analyses are performed to connect the data to published resources. The authors attempt to connect SERBP1 to stress granules and Alzheimer's disease associated tau pathology. Based on the interactome, the authors propose a cross-talk between SERBP1 and PARP1 functions.

      Strengths:

      The main strength of this study lies in the extensive proteomics data analysis, and its effort to connect the data to published studies.

      Weaknesses:

      Support for the proposed model: While the authors propose a feedback regulatory model for SERBP1 and PARP1 function, strong evidence for PARylation modulating SERBP1 functions is lacking. PARP inhibition decreasing the amount of PARylated proteins associated with SERBP1 and likely all other PARylated proteins is expected.<br /> Evidence from autopsy brain tissue: This study shows unexplained round, punctate staining for SERBP1 in immunohistochemistry (IHC) staining. This may be due to poor preservation of cellular structures in frozen autopsy brain tissue. SERBP1 and pTau co-staining lacks an age matched non-AD control. Most quantifications of human IHC staining and co-localization do not indicate the number of cases and what data points are shown.<br /> The link to stress granules (SGs): G3BP1 staining indicates cytoplasmic mislocalization and perhaps aggregation pathology, but not necessarily SGs. It is not clear whether physiological transient stress granules are preserved in autopsy brain tissue. The co-localization of abundant cytoplasmic G3BP1 and SERBP1 under normal conditions does not indicate association with SGs. Stress granule proteins assemble phase-separated granules in the cytoplasm under cellular stress, whereas here it is shown that normally cytoplasmic SERBP1 has a nucleocytoplasmic distribution in the presence of H2O2, with no evidence for SG formation.

    1. Reviewer #1 (Public review):

      Summary:

      In cells undergoing Flavivirus infection, cellular translation is impaired but the viruses themselves escape this inhibition and are efficiently translated. In this study, the authors use very elegant and direct approaches to identify the regions in the 5' and 3' UTRs that are important for this phenomenon and then use them to retrieve two cellular proteins that associate with them and mediate translational shutoff evasion (DDX3 and PABP1). A number of experimental approaches are used with a series of well-controlled experiments that fully support the authors' conclusions.

      Strengths:

      The work identifies the regions in the 5' and 3' UTRs of the viral genome that mediate the escape of JEV from cellular transcriptional shutoff, they evaluate the infectivity of the mutant viruses bearing or not these structures and even explore their pathogenicity in mice. They then identify the cellular proteins that bind to these regions (DDX3 and PABP1) and determine their role in translation blockade escape, in addition to examining and assessing the conservation of the stem-loop identified in JEV in other Flaviviridae.

      In almost all of their systematic analyses, translational effects are put in parallel with the replication kinetics of the different mutant viruses. The experimental thread followed in this study is rigorous and direct, and all experiments are truly well-controlled, fully supporting the authors' conclusions

    2. Reviewer #2 (Public review):

      Summary:

      The authors use a combination of techniques including viral genetics, in vitro reporters, and purified proteins and RNA to interrogate how the Japanese encephalitis virus maintains translation of its RNA to produce viral proteins after the host cell has shut down general translation as a means to block viral replication. They report a role for the RNA helicase DDX3 in promoting virus translation in a cap-independent manner through binding a dumbbell RNA structure in the 3' untranslated region previously reported to drive Japanese encephalitis virus cap-independent translation and a stem-loop at the viral RNA 5' end.

      Strengths:

      The authors clearly show that the Japanese encephalitis virus does not possess an IRES activity to initiate translation using a range of mono- and bi-cistronic mRNAs. Surprisingly, using a replicon system, the translation of a capped or uncapped viral RNA is reported to have the same translation efficiency when transfected into cells. The authors have applied a broad range of techniques to support their hypotheses.

      Weaknesses:

      (1) The authors' original experiments in Figure 1 where the virus is recovered following transfection of in vitro transcribed viral RNA with alternative 5' ends such as capped or uncapped ignore that after a single replication cycle of that transfected RNA, the subsequent viral RNA will be capped by the viral capping proteins making the RNA in all conditions the same.

      (2) The authors report that deletion of the dumbbell and the large 3' stem-loop RNA reduce replication of a Japanese encephalitis virus replicon. These structures have been reported for other flaviviruses to be important respectively for the accumulation of short flaviviral RNAs that can regulate replication and stability of the viral RNA that lacks a polyA tail. The authors don't show any assessment of RNA stability or degradation state.

      (3) The authors propose a model for DDX3 to drive 5'-3' end interaction of the Japanese encephalitis virus viral genome but no direct evidence for this is presented.

      (4) The authors' final model in Figure 10 proposes a switch from a cap-dependent translation system in early infection to cap-independent DDX3-driven translation system late in infection. The replicon data that measures translation directly however shows identical traces for capped and uncapped RNAs in all untreated conditions so that which mechanism is used at different stages of the infection is not clear.

    3. Reviewer #3 (Public review):

      Summary:

      This work is a valuable study that aims to decipher the molecular mechanisms underlying the translation process in Japanese encephalitis virus (JEV), a relevant member of the genus Flavivirus. The authors provide evidence that cap-independent translation, which has already been demonstrated for other flaviviruses, could also account in JEV. This process depends on the genomic 3' UTR, as previously demonstrated in other flaviviruses. Further, the authors find that cellular proteins such as DDX3 or PABP1 could contribute to JEV translation in a cap-independent way. Both DDX3 and PABP1 had previously been described to have a role in cellular protein synthesis and also in the translation step of other flaviviruses distinct from JEV; therefore, this work would expand the cap-independent translation in flaviviruses as a general mechanism to bypass the translation repression exerted by the host cell during viral infection. Further, the findings can be relevant for the development of specific drugs that could interfere with flaviviral translation in the future. Nevertheless, the conclusions are not fully supported by the provided results.

      Strengths:

      The results provide a good starting point to investigate the molecular mechanism underlying the translation in flaviviruses, which even today is an area of knowledge with many limitations.

      Weaknesses:

      The main limit of the work is related to the fact that the role of the 3' UTR structural elements and DDX3 is not only circumscribed to translation, but also to replication and encapsidation. In fact, some of the provided results suggest this idea. Particularly, it is intriguing why the virus titer can be completely abrogated while the viral protein levels are only partially affected by the knockdown of DDX3. This points to the fact that many of the drawn conclusions could be overestimated or, at least, all the observed effect cannot be attributed only to the DDX3 effect on translation. Finally, it is noteworthy that the use of uncapped transcripts could be misleading, since this is not the natural molecular context of the viral genome.

    1. Reviewer #1 (Public review):

      Summary:

      The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors.

      Strengths:

      The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT.

      Weaknesses:

      (1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all.<br /> (2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?<br /> (3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed?<br /> (4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions?

    2. Reviewer #2 (Public review):

      This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.

      Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.

      Here are my comments on how to improve this manuscript.

      (1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.<br /> (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.

    1. Reviewer #1 (Public review):

      Summary

      Chabukswar et al analysed endogenous retrovirus (ERV) Env variation in a set of primate genomes using consensus Env sequences from ERVs known to be present in hominoids using a Blast homology search with the aim of characterising env gene changes over time. The retrieved sequences were analysed phylogenetically, and showed that some of the integrations are LTR-env recombinants.

      Strengths

      The strength of the manuscript is that such an analysis has not been performed yet for the subset of ERV Env genes selected and most of the publicly available primate genomes.

      Weaknesses

      Unfortunately, the weaknesses of the manuscript outnumber its strengths. Especially the methods section does not contain sufficient information to appreciate or interpret the results. The results section contains methodological information that should be moved, while the presentation of the data is often substandard. For instance, the long lists of genomes in which a certain Env was found could better be shown in tables. Furthermore, there is no overview of the primate genomes, or accession numbers, used. It is unclear whether the analyses, such as the phylogenetic trees, are based on nucleotide or amino acid sequences since this is not stated. tBLASTn was used in the homology searches, so one would suppose aa are retrieved. In the Discussion, both env (nt?) and Env (aa?) are used.

      For the non-hominoids, genome assembly of publicly available sequences is not always optimal, and this may require Blasting a second genome from a species. Which should for instance be done for the HML2 sequences found in the Saimiri boliviensis genome, but not in the related Callithrix jacchus genome. Finally, the authors propose to analyse recombination in Env sequences but only retrieve env-LTR recombinant Envs, which should likely not have passed the quality check.

      Since the Methods section does not contain sufficient information to understand or reproduce the results, while the Results are described in a messy way, it is unclear whether or not the aims have been achieved. I believe not, as characterisation of env gene changes over time is only shown for a few abberrant integrations containing part of the LTR in the env ORF.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Chabukswar et al. describes a comprehensive attempt to identify and describe the diversity of retroviral envelope (env) gene sequences present in primate genomes in the form of ancient endogenous retrovirus (ERV) sequences.

      Strengths:

      The focus on env can be justified because of the role the Env proteins likely played in determining viral tropism and host range of the viruses that gave rise to the ERV insertions, and to a lesser extent, because of the potential for env ORFs to be coopted for cellular functions (in the rare cases where the ORF is still intact and capable of encoding a functional Env protein). In particular, these analyses can reveal the potential roles of recombination in giving rise to novel combinations of env sequences. The authors began by compiling env sequences from the human genome (from human endogenous retrovirus loci, or "HERVs") to build consensus Env protein sequences, and then they use these as queries to screen other primate genomes for group-specific envs by tBLASTn. The "groups" referred to here are previously described, as unofficial classifications of endogenous retrovirus sequences into three very broad categories - Class I, Class II and Class III. These are not yet formally recognized in retroviral taxonomy, but they each comprise representatives of multiple genera, and so would fall somewhere between the Family and Genus levels. The retrieved sequences are subject to various analyses, most notably they are screened for evidence of recombination. The recombinant forms appear to include cases that were probably viral dead-ends (i.e. inactivating the env gene) even if they were propagated in the germline.<br /> The availability of the consensus sequences (supplement) is also potentially useful to others working in this area.

      Weaknesses:

      The weaknesses are largely in presentation. Discussions of ERVs are always complicated by the lack of a formal and consistent nomenclature and the confusion between ERVs as loci and ERVs as indirect information about the viruses that produced them. For this reason, additional attention needs to be paid to precise wording in the text and/or the use of illustrative figures.

    3. Reviewer #3 (Public review):

      Summary:

      Retroviruses have been endogenized into the genome of all vertebrate animals. The envelope protein of the virus is not well conserved and acquires many mutations hence can be used to monitor viral evolution. Since they are incorporated into the host genome, they also reflect the evolution of the hosts. In this manuscript the authors have focused their analyses on the env genes of endogenous retroviruses in primates. Important observations made include the extensive recombination events between these retroviruses that were previously unknown and the discovery of HML species in genomes prior to the splitting of old and new world monkeys.

      Strengths:

      They explored a number of databases and made phylogenetic trees to look at the distribution of retroviral species in primates. The authors provide a strong rationale for their study design, they provide a clear description of the techniques and the bioinformatics tools used.

      Weaknesses:

      The manuscript is based on bioinformatics analyses only. The reference genomes do not reflect the polymorphisms in humans or other primate species. The analyses thus likely under estimates the amount of diversity in the retroviruses. Further experimental verification will be needed to confirm the observations.<br /> Not sure which databases were used, but if not already analyzed, ERVmap.com and repeatmesker are ones that have many ERVs that are not present in the reference genomes. Also, long range sequencing of the human genome has recently become available which may also be worth studying for this purpose.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors sequenced emm89 serotype genomes of clinical isolates from patients in Japan, where the number of invasive Group A Streptococcus (GAS), especially those of the emm89 serotype, has drastically increased over the past 10-15 years. The sequences from this cohort were compared against a large collection of publicly available global isolates, yielding a total of almost 1000 genomes in the analysis. Because the researchers focused on the emm89 serotype, they could construct a common core genome, with subsequent ability to analyze genomic differences in accessory genes and intergenic regions that contributed to the invasive phenotype using multiple types of GWAS analysis (SNP, k-mer). Their analysis demonstrates some mutations responsible for invasiveness are specific to the Japanese strains, and that multiple independent virulence factors can contribute to invasiveness. None of the invasive phenotypes were correlated with new gene acquisition. Together, the data support that synergy between bacterial survival and upregulation of virulence factors contributes to the development of severe infection.

      Strengths:

      • The authors verify their analysis by confirming that covS is one of the more frequently mutated genes in invasive strains of GAS, as has been shown in other publications.

      • A mutation in one of the SNPs attributed to invasiveness (SNP fhuB) was introduced into an invasive strain. The authors demonstrate that this mutant strain survives less well in human blood. Therefore, the authors have experimental data to support their claims that their analysis uncovered a new mutation/SNP that contributed to invasiveness.

      Weaknesses:

      • It would be helpful for the authors to highlight why their technique (large scale analysis of one emm type) can yield more information than a typical GWAS analysis of invasive vs. non-invasive strains. Are SNPs easier to identify using a large-scale core genome? Is it more likely evolutionarily to find mutations in non-coding regions as opposed to the core genome and accessory genes, and this is what this technique allows? Did the analysis yield unexpected genes or new genes that had not been previously identified in other GWAS analyses? These points may need to be made more apparent in the results and deserve some thought in the discussion section.

      • The Alpha-fold data does not demonstrate why the mutations the authors identified could contribute to the invasive phenotype. It would be helpful to show an overlay of the predicted structures containing the different SNPs to demonstrate the potential structural differences that can occur due to the SNP. This would make the data more convincing that the SNP has a potential impact on the function of the protein. Similarly, the authors discuss modification of the hydrophobicity of the side chain in the ferrichrome transporter (lines 317-318) due to a SNP, but this is not immediately obvious in the figure (Fig. 5).

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors aim to identify genetic determinants associated with the invasion profile of Streptococcus pyogenes strains of the emm89 type, which has been increasingly linked to invasive infections. The study leverages both in-house sequenced genomes and publicly available genomic data. Several GWAS approaches are applied to these datasets, leading to the identification of potential genetic targets. For these targets, the authors conduct additional analyses, including three-dimensional structural modeling of the encoded proteins, as well as the development of mutant strains. The functional impact of these mutations is further explored through transcriptomic comparisons between the mutants and wild-type strains

      Strengths:

      The strengths of this manuscript include the large amount of data analyzed and the various methodologies applied. The identification of CovS, a gene known to influence the invasion profile, as a significant variation further validates the methodology employed in this study. Then, the gene fhuD is an intriguing target, identified through both bioinformatics and wet lab approaches.

      Weaknesses:

      I do not identify any additional weaknesses in the manuscript, beyond those already acknowledged by the authors themselves.

    1. Reviewer #1 (Public review):

      Overall, the manuscript reveals the role of actin polymerization to drive the fusion of myoblasts during adult muscle regeneration. This pathway regulates fusion in many contexts, but whether it was conserved in adult muscle regeneration remained unknown. Robust genetic tools and histological analyses were used to support the claims convincingly.

      There are a few interpretations that could be adjusted.

      The beginning of the results about macrophages traversing ghost fibers after regeneration was a surprise given the context in the abstract and introduction. These results also lead to new questions about this biology that would need to be answered to substantiate the claims in this section. Also, it is unclear the precise new information learned here because it seems obvious that macrophages would need to extravasate the basement membrane to enter ghost fibers and macrophages are known to have this ability. Moreover, the model in Figure 4D has macrophages and BM but there is not even mention of this in the legend. The authors may wish to consider removing this topic from the manuscript.

      Which Pax7CreER line was used? In the methods, the Jax number provided is the Gaka line but in the results, Lepper et al 2009 are cited, which is not the citation for the Gaka line.

      Did the authors assess regeneration in the floxed mice that do not contain Cre as a control? Or is it known these alleles do not perturb the function of the targeted gene?

      The authors comment: 'Interestingly, expression of the fusogenic proteins, MymK and MymX, was up-regulated in the TA muscle of these mice (Fig. S4F), suggesting that fusogen overexpression is not able to rescue the SCM fusion defect resulted from defective branched actin polymerization.' It is unclear if fusogens are truly overexpressed because the analysis is performed at dpi 4 when the expression of fusogens may be decreased in control mice because they have already fused. Also, only two animals were analyzed and it is unclear if MymX is definitively increased. The authors should consider adjusting the interpretation to SCM fusion defect resulting from defective branched actin polymerization is unlikely to be caused by a lack of fusogen expression.

    2. Reviewer #2 (Public review):

      To fuse, differentiated muscle cells must rearrange their cytoskeletaon and assemble actin-enriched cytoskeletal structures. These actin foci are proposed to generate mechanical forces necessary to drive close membrane apposition and fusion pore formation.

      While the study of these actin-rich structures has been conducted mainly in drosophila, the present manuscript presents clear evidence this mechanism is necessary for the fusion of adult muscle stem cells in vivo, in mice.

      However, the authors need to tone down their interpretation of their findings and remember that genetic proof for cytoskeletal actin remodeling to allow muscle fusion in mice has already been provided by different labs (Vasyutina E, et al. 2009 PMID: 19443691; Gruenbaum-Cohen Y, et al., 2012 PMID: 22736793; Hamoud et al., 2014 PMID: 24567399). In the same line of thought, the authors write they "demonstrated a critical function of branched actin-propelled invasive protrusions in skeletal muscle regeneration". I believe this is not a premiere, since Randrianarison-Huetz V, et al., previously reported the existence of finger-like actin-based protrusions at fusion sites in mice myoblasts (PMID: 2926942) and Eigler T, et al., live-recorded said "fusogenic synapse" in mice myoblasts (PMID: 34932950).

      Hence, while the data presented here clearly demonstrate that ARP2/3 and SCAR/WAVE complexes are required for differentiating satellite cell fusion into multinucleated myotubes, this is an incremental story, and the authors should put their results in the context of previous literature.

    3. Reviewer #3 (Public review):

      The manuscript by Lu et al. explores the role of the Arp2/3 complex and the actin nucleators N-WASP and WAVE in myoblast fusion during muscle regeneration. The results are clear and compelling, effectively supporting the main claims of the study. However, the manuscript could benefit from a more detailed molecular and cellular analysis of the fusion synapse. Additionally, while the description of macrophage extravasation from ghost fibers is intriguing, it seems somewhat disconnected from the primary focus of the work.

      Despite this, the data are robust, and the major conclusions are well supported. Understanding muscle fusion mechanism is still a widely unexplored topic in the field and the authors make important progress in this domain.

      I have a few suggestions that might strengthen the manuscript as outlined below.

      (1) Could the authors provide more detail on how they defined cells with "invasive protrusions" in Figure 4C? Membrane blebs are commonly observed in contacting cells, so it would be important to clarify the criteria used for counting this specific event.

      (2) Along the same line, please clarify what each individual dot represents in Figure 4C. The authors mention quantifying approximately 83 SCMs from 20 fibers. I assume each dot corresponds to data from individual fibers, but if that's the case, does this imply that only around four SCMs were quantified per fiber? A more detailed explanation would be helpful.

      (3) Localizing ArpC2 at the invasive protrusions would be a strong addition to this study. Furthermore, have the authors examined the localization of Myomaker and Myomixer in ArpC2 mutant cells? This could provide insights into potential disruptions in the fusion machinery.

      (4) As a minor curiosity, can ArpC2 WT and mutant cells fuse with each other?

      (5) The authors report a strong reduction in CSA at 14 dpi and 28 dpi, attributing this defect primarily to failed myoblast fusion. Although this claim is supported by observations at early time points, I wonder whether the Arp2/3 complex might also play roles in myofibers after fusion. For instance, Arp2/3 could be required for the growth or maintenance of healthy myofibers, which could also contribute to the reduced CSA observed, since regenerated myofibers inherit the ArpC2 knockout from the stem cells. Could the authors address or exclude this possibility? This is rather a broader criticism of how things are being interpreted in general beyond this paper.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use FIB SEM methods to generate 3D volumes of almost all cells comprising a miniature wasp eye and describe the anatomy of each cell type in detail. The function of each cell type is determined through comparisons with descriptions using other methods from larger insect species.

      Strengths:

      The data show that, despite the small size, many elements of the eye are consistent with those found in larger insects. In addition, the powerful FIB-SEM technique revealed a hitherto unknown case of ectopic photoreceptors.

      Weaknesses:

      As this paper only uses anatomical analyses, no functional interpretations of cell function are tested.

      The aim of this paper was to describe the ultrastructural organization of compound eyes in the extremely small wasp Megaphragma viggianii. The authors successfully achieved this aim and provided an incredibly detailed description of all cell types with respect to their location, volume, and dimensions. As this is the first of its kind, the results cannot easily be compared with previous work. The findings are likely to be an important reference for future work that uses similar techniques to reconstruct the eyes of other insect species. The FIB-SEM method used is being used increasingly often in structural studies of insect sensory organs and brains and this work demonstrates the utility of this method.

    2. Reviewer #2 (Public review):

      Summary:

      Makarova et al. provide the first complete cellular-level reconstruction of an insect eye. They use the extremely miniaturized parasitoid wasp, Megaphragma viggiani, and apply improved and optimized volumetric EM methods they can describe, the size, volume, and position of every single cell in the insect compound eye.

      This data has previously only been inferred from TEM cross-sections taken in different parts of the eye, but in this study and in the associated 3d datasets video and stacks, one can observe the exact position and orientation in 3D space.

      The authors have made a very rigorous effort to describe and assess the variation in each cell type and have also compared two different classes of the dorsal rim and non-dorsal rim ommatidia and the associated visual apparatus for each, confirming previous known findings about the distribution and internal structure that assists in polarization detection in these insects.

      Strengths:

      The paper is well written and strives to compare the data with previous literature wherever possible and goes beyond cell morphology, calculating the optical properties of the different ommatidia and estimating light sensitivity and spatial resolution limits using rhabdom diameter, focal length and showing how this varies across the eye.

      Finally, the authors provide very informative and illustrative videos showing how the cones, lenses, photoreceptors, pigment cells, and even the mitochondria are arranged in 3D space, comparing the structure of the dorsal rim and non-dorsal rim ommatidia. They also describe three 'ectopic' photoreceptors in more anatomical detail providing images and videos of them.

    3. Reviewer #3 (Public review):

      Summary:

      The article presents a meticulous and quantitative anatomical reconstruction of the compound eye of a tiny wasp at the level of subcellular structures, and cellular and optical organization of the ommatidia and reveals the ectopic photoreceptors, which are decoupled from the eye's dioptrical apparatus.

      Strengths:

      The graphic material is of very high quality, beautifully organized, and presented in a logical order. The anatomical analysis is fully supported by quantitative numerical data at all scales, from organelles to cells and ommatidia, which should be a valuable source for future studies in cellular biology and visual physiology. The 3D renders are highly informative and a real eye candy.

      Weaknesses:

      The claim that the large dorsal part of the eye is the dorsal rim area (DRA), supported by anatomical data on rhabdomere geometry and connectomics in authors' earlier work, would eventually greatly benefit from additional evidence, obtained by immunocytochemical staining, that could also reveal a putative substrate for colour vision. The cell nuclei that are located in the optical path in the DRA crystalline cone have only a putative optical function, which may be either similar to pore canals in hymenopteran DRA cornea (scattering) or to photoreceptor nuclei in camera-type eyes (focussing), both explanations being mutually exclusive.

    1. Reviewer #1 (Public review):

      Summary:

      Mallimadugula et al. combined Molecular Dynamics (MD) simulations, thiol-labeling experiments, and RNA-binding assays to study and compare the RNA-binding behavior of the Interferon Inhibitory Domain (IID) from Viral Protein 35 (VP35) of Zaire ebolavirus, Reston ebolavirus, and Marburg marburgvirus. Although the structures and sequences of these viruses are similar, the authors suggest that differences in RNA binding stem from variations in their intrinsic dynamics, particularly the opening of a cryptic pocket. More precisely, the dynamics of this pocket may influence whether the IID binds to RNA blunt ends or the RNA backbone.

      Overall, the authors present important findings to reveal how the intrinsic dynamics of proteins can influence their binding to molecules and, hence, their functions. They have used extensive biased simulations to characterize the opening of a pocket which was not clearly seen in experimental results - at least when the proteins were in their unbound forms. Biochemical assays further validated theoretical results and linked them to RNA binding modes. Thus, with the combination of biochemical assays and state-of-the-art Molecular Dynamics simulations, these results are clearly compelling.

      Strengths:

      The use of extensive Adaptive Sampling combined with biochemical assays clearly points to the opening of the Interferon Inhibitory Domain (IID) as a factor for RNA binding. This type of approach is especially useful to assess how protein dynamics can affect its function.

      Weaknesses :

      Although a connection between the cryptic pocket dynamics and RNA binding mode is proposed, the precise molecular mechanism linking pocket opening to RNA binding still remains unclear.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to determine whether a cryptic pocket in the VP35 protein of Zaire ebolavirus has a functional role in RNA binding and, by extension, in immune evasion. They sought to address whether this pocket could be an effective therapeutic target resistant to evolutionary evasion by studying its role in dsRNA binding among different filovirus VP35 homologs. Through simulations and experiments, they demonstrated that cryptic pocket dynamics modulate the RNA binding modes, directly influencing how VP35 variants block RIG-I and MDA5-mediated immune responses.

      The authors successfully achieved their aim, showing that the cryptic pocket is not a random structural feature but rather an allosteric regulator of dsRNA binding. Their results not only explain functional differences in VP35 homologs despite their structural similarity but also suggest that targeting this cryptic pocket may offer a viable strategy for drug development with reduced risk of resistance.

      This work represents a significant advance in the field of viral immunoevasion and therapeutic targeting of traditionally "undruggable" protein features. By demonstrating the functional relevance of cryptic pockets, the study challenges long-standing assumptions and provides a compelling basis for exploring new drug discovery strategies targeting these previously overlooked regions.

      Strengths:

      The combination of molecular simulations and experimental approaches is a major strength, enabling the authors to connect structural dynamics with functional outcomes. The use of homologous VP35 proteins from different filoviruses strengthens the study's generality, and the incorporation of point mutations adds mechanistic depth. Furthermore, the ability to reconcile functional differences that could not be explained by crystal structures alone highlights the utility of dynamic studies in uncovering hidden allosteric features.

      Weaknesses:

      While the methodology is robust, certain limitations should be acknowledged. For example, the study would benefit from a more detailed quantitative analysis of how specific mutations impact RNA binding and cryptic pocket dynamics, as this could provide greater mechanistic insight. This study would also benefit from providing a clear rationale for the selection of the amber03 force field and considering the inclusion of volume-based approaches for pocket analysis. Such revisions will strengthen the robustness and impact of the study.

    3. Reviewer #3 (Public review):

      Summary:

      The authors suggest a mechanism that explains the preference of viral protein 35 (VP35) homologs to bind the backbone of double-stranded RNA versus blunt ends. These preferences have a biological impact in terms of the ability of different viruses to escape the immune response of the host.<br /> The proposed mechanism involves the existence of a cryptic pocket, where VP35 binds the blunt ends of dsRNA when the cryptic pocket is closed and preferentially binds the RNA double-stranded backbone when the pocket is open.<br /> The authors performed MD simulation results, thiol labelling experiments, fluorescence polarization assays, as well as point mutations to support their hypothesis.

      Strengths:

      This is a genuinely interesting scientific question, which is approached through multiple complementary experiments as well as extensive MD simulations. Moreover, structural biology studies focused on RNA-protein interactions are particularly rare, highlighting the importance of further research in this area.

      Weaknesses:

      - Sequence similarity between Ebola-Zaire (94% similarity) explains their similar behaviour in simulations and experimental assays. Marburg instead is a more distant homolog (~80% similarity relative to Ebola/Zaire). This difference is sequence and structure can explain the propensities, without the need to involve the existence of a cryptic pocket.<br /> - No real evidence for the presence of a cryptic pocket is presented, but rather a distance probability distribution between two residues obtained from extensive MD simulations. It would be interesting to characterise the modelled RNA-protein interface in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Pakula et al. explore the impact of reactive oxygen species (ROS) on neonatal cerebellar regeneration, providing evidence that ROS activates regeneration through Nestin-expressing progenitors (NEPs). Using scRNA-seq analysis of FACS-isolated NEPs, the authors characterize injury-induced changes, including an enrichment in ROS metabolic processes within the cerebellar microenvironment. Biochemical analyses confirm a rapid increase in ROS levels following irradiation, and forced catalase expression, which reduces ROS levels, and impairs external granule layer (EGL) replenishment post-injury.

      Strengths:

      Overall, the study robustly supports its main conclusion and provides valuable insights into ROS as a regenerative signal in the neonatal cerebellum.

      Weaknesses:

      Below are specific comments and concerns:

      (1) The diversity of cell types recovered from scRNA-seq libraries of sorted Nes-CFP cells is unexpected, especially the inclusion of minor types such as microglia, meninges, and ependymal cells. The authors should validate whether Nes and CFP mRNAs are enriched in the sorted cells; if not, they should discuss the potential pitfalls in sampling bias or artifacts that may have affected the dataset, impacting interpretation.<br /> (2) The authors should de-emphasize that ROS signaling and related gene upregulation exclusively in gliogenic NEPs. Genes such as Cdkn1a, Phlda3, Ass1, and Bax are identified as differentially expressed in neurogenic NEPs and granule cell progenitors (GCPs), with Ass1 absent in GCPs. According to Table S4, gene ontology (GO) terms related to ROS metabolic processes are also enriched in gliogenic NEPs, neurogenic NEPs, and GCPs.<br /> (3) The authors need to justify the selection of only the anterior lobe for EGL replenishment and microglia quantification.<br /> (4) Figure 1K: The figure presents linkages between genes and GO terms as a network but does not depict a gene network. The terminology should be corrected accordingly.<br /> (5) Figure 1H and S2: The x-axis appears to display raw p-values rather than log10(p.value) as indicated. The x-axis should ideally show -log10(p.adjust), beginning at zero. The current format may misleadingly suggest that the ROS GO term has the lowest p-values.<br /> (6) Genes such as Ppara, Egln3, Foxo3, Jun, and Nos1ap were identified by bulk ATAC-seq based on proximity to peaks, not by scRNA-seq. Without additional expression data, caution is needed when presenting these genes as direct evidence of ROS involvement in NEPs.<br /> (7) The authors should annotate cell identities for the different clusters in Table S2.<br /> (8) Reiterative clustering analysis reveals distinct subpopulations among gliogenic and neurogenic NEPs. Could the authors clarify the identities of these subclusters? Can we distinguish the gliogenic NEPs in the Bergmann glia layer from those in the white matter?<br /> (9) In the Methods section, the authors mention filtering out genes with fewer than 10 counts. They should specify if these genes were used as background for enrichment analysis. Background gene selection is critical, as it influences the functional enrichment of gene sets in the list.<br /> (10) Figure S1C: The authors could consider using bar plots to better illustrate cell composition differences across conditions and replicates.<br /> (11) Figures 4-6: It remains unclear how the white matter microglia contribute to the recruitment of BgL-NEPs to the EGL, as the mCAT-mediated microglia loss data are all confined to the white matter.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have previously shown that the mouse neonatal cerebellum can regenerate damage to granule cell progenitors in the external granular layer, through reprogramming of gliogenic nestin-expressing progenitors (NEPs). The mechanisms of this reprogramming remain largely unknown. Here the authors used scRNAseq and ATACseq of purified neonatal NEPs from P1-P5 and showed that ROS signatures were transiently upregulated in gliogenic NEPs ve neurogenic NEPs 24 hours post injury (P2). To assess the role of ROS, mice transgenic for global catalase activity were assessed to reduce ROS. Inhibition of ROS significantly decreased gliogenic NEP reprogramming and diminished cerebellar growth post-injury. Further, inhibition of microglia across this same time period prevented one of the first steps of repair - the migration of NEPs into the external granule layer. This work is the first demonstration that the tissue microenvironment of the damaged neonatal cerebellum is a major regulator of neonatal cerebellar regeneration. Increased ROS is seen in other CNS damage models including adults, thus there may be some shared mechanisms across age and regions, although interestingly neonatal cerebellar astrocytes do not upregulate GFAP as seen in adult CNS damage models. Another intriguing finding is that global inhibition of ROS did not alter normal cerebellar development.

      Strengths:

      This paper presents a beautiful example of using single cell data to generate biologically relevant, testable hypotheses of mechanisms driving important biological processes. The scRNAseq and ATACseq analyses are rigorously conducted and conclusive. Data is very clearly presented and easily interpreted supporting the hypothesis next tested by reduce ROS in irradiated brains.

      Analysis of whole tissue and FAC sorted NEPS in transgenic mice where human catalase was globally expressed in mitochondria were rigorously controlled and conclusively show that ROS upregulation was indeed decreased post injury and very clearly the regenerative response was inhibited. The authors are to be commended on the very careful analyses which are very well presented and again, easy to follow with all appropriate data shown to support their conclusions.

      Weaknesses:

      The authors also present data to show that microglia are required for an early step of mobilizing gliogenic NEPs into the damaged EGL. While the data that PLX5622 administration from P0-P5 or even P0-P8 clearly shows that there is an immediate reduction of NEPs mobilized to the damaged EGL, there is no subsequent reduction of cerebellar growth such that by P30, the treated and untreated irradiated cerebella are equivalent in size. There is speculation in the discussion about why this might be the case, but there is no explanation for why further, longer treatment was not attempted nor was there any additional analyses of other regenerative steps in the treated animals. The data still implicate microglia in the neonatal regenerative response, but how remains uncertain.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates genes that escape X-Chromosome Inactivation (XCI) across human tissues, using females that exhibit skewed or non-random XCI. The authors identified 2 female individuals with skewed XCI in the GTex database, in addition to the 1 female skewed sample in this database that has been described in a previous publication (Ref.16). The authors also determined the genes that escape XCI for 380 X-linked genes across 30 different tissues.

      Strengths:

      The novelty of this manuscript is that the authors have identified the XCI expression status for a total of 380 genes across 30 different human tissues, and also discovered the XCI status (escape, variable escape, or silenced) for 198 X-linked genes, whose status was previously not determined. This report is a good resource for the field of XCI, and would benefit from additional analyses and clarification of their comparisons of XCI status.

      Weaknesses:

      Specific comments:

      (1) The authors state that they have reclassified the allelic expression status of 32 genes (shown in Table S5, Supplementary Figure 3). The concern is the source of the tissue or cell line which was originally used to make the classification of XCI status, and whether the comparisons are equivalent. For example, if cell lines (and not tissues) were used to define the XCI status for EGFL6, TSPAN6, and CXorf38, then how can the authors be sure that the escape status in whole tissues would be the same? Also along these lines, the authors should consider whether escape status in previous studies using immortalized/cancer cell lines (such as the meta analyses done in Balaton publication) would be different compared to healthy tissues (seems like it should be). Therefore making comparisons between healthy whole tissues and cancer cell lines doesn't make sense.

      (2) The authors note that skewed XCI is prevalent in the human population, and cite some publications (references 8, 10-12). If RNAseq data is available from these female individuals with skewed XCI (such as ref 12), the authors should consider using their allelic expression pipeline to identify XCI status of more X-linked genes.

      (3) It has been well established that the human inactive X has more XCI escape genes compared to the mouse inactive X. In light of the author's observations across human tissues, how does the XCI status compare with the same tissues in mice?

    2. Reviewer #2 (Public review):

      Summary:

      Gylemo et al. present a manuscript focused on identifying the X-inactivation or X-inactivation escape status for 380 genes across 30 normal human tissues. X-inactivation status of X-linked genes across tissues is important for understanding sex-specific differences in X-linked gene expression and therefore traits, and the likely effect of X-linked pathogenic variants in females. These new data are significant as they double the number of genes that have been classified in the human, and double the number of tissues studied previously.

      Strengths:

      The strengths of this work are that they analyse 3 individuals from the GTex dataset (2 newly identified, 1 previously identified and published) that have highly/ completely skewed X inactivation, which allows the study of escape from X inactivation in bulk RNA-sequencing. The number of individuals and breadth of tissues analysed add significantly to both the number of genes that have been classified and the weight of evidence for their claims. The additional 198 genes that have been classified and the reclassification of genes that previously had only limited support for their status is useful for the field.

      In analysing the data they find that tissue-specific escape from X inactivation appears relatively rare. Rather, if genes escape, even variably, it tends to occur across tissues. Similarly, if a gene is inactivated, it is stable across tissues.

      Weaknesses:

      In my view there are only minor weaknesses in this work, that tend to come about due to the requirement to study individuals with highly skewed X inactivation. I wonder whether the cause of the highly skewed X inactivation may somehow influence the likelihood of observing tissue-specific escape from X inactivation. In this light, it would be interesting to further understand the genetic cause for the highly skewed X inactivation in each of these three cases in the whole exome sequencing data. Future additional studies may validate these findings using single-cell approaches in unrelated individuals across tissues, where there is normal X inactivation.

    3. Reviewer #3 (Public review):

      Summary:

      Nestor and colleagues identify genes escaping X chromosome inactivation (XCI) in rare individuals with non-mosaic XCI (nmXCI) whose tissue-specific RNA-seq datasets were obtained from the GTEX database. Because XCI is non-mosaic, read counts representing a second allele are tested for statistically significant escape, in this case > 2.5% of active X expression. Whereas a prior GTEX analysis found only one nmXCI female, this study finds two additional donors in GTEX, therefore expanding the number of assessed X-linked genes to 380. Although this is fewer than half of X-linked genes, the study demonstrates that although rare, nmXCI females are represented in RNA-seq databases such as GTEX. Therefore this analytical approach is worthwhile pursuing in other (larger) databases as well, to provide deeper insight into escape from XCI which is relevant to X-linked diseases and sex differences.

      Strengths:

      The analysis is well-documented, straightforward, and valuable. The supplementary tables are useful, and the claims in the main text well-supported.

      Weaknesses:

      There are very few, except that this escape catalogue is limited to 3 donors, based on a single (representative) tissue screen in 285 female donors, mostly using muscle samples. However, if only pituitary samples had been screened, nmXCI-1 would have been missed. Additional donors in the 285 representative samples cross a lower threshold of AE = 0.4. It would be worthwhile to query all tissues of the 285 donors to discover more nmXCI cases, as currently fewer than half of X-linked genes received a call using this very worthwhile approach.

    1. Reviewer #1 (Public review):

      Summary<br /> In this beautiful paper the authors examined the role and function of NR2F2 in testis development and more specifically on fetal Leydig cells development. It is well known by now that FLC are developed from an interstitial steroidogenic progenitors at around E12.5 and are crucial for testosterone and INSL3 production during embryonic development, which in turn shapes the internal and external genitalia of the male. Indeed, lack of testosterone or INSL3 are known to cause DSD as well as undescended testis, also termed as cryptorchidism.<br /> The authors first characterized the expression pattern of the NR2R2 protein during testis development and then used two cKO systems of NR2F2, namely the Wt1-creERT2 and the Nr5a1-cre to explore the phenotype of loss of NR2F2. They found in both cases that mice are presenting with undescended testis and major reduction in FLC numbers. They show that NR2F2 has no effect on the amount and expression of the progenitor cells but in its absence, there are less FLC and they are immature.<br /> The effect of NR2F2 is cell autonomous and does not seem to affect other signalling pathways implemented in Leydig cell development as the DHH, PDGFRA and the NOTCH pathway.

      Overall, this paper is excellent, very well written, fluent and clear. The data is well presented, and all the controls and statistics are in place. I think this paper will be of great interest to the field and paves the way for several interesting follow up studies as stated in the discussion

    2. Reviewer #2 (Public review):

      The major conclusion of the manuscript is expressed in the title: "NR2F2 is required in the embryonic testis for Fetal Leydig Cell development" and also at the end of the introduction and all along the result part. All the authors' assertions are supported by very clear and statistically validated results from ISH, IHC, precise cell counting and gene expression levels by qPCR. The authors used two different conditional Nr2f2 gene ablation systems that demonstrate the same effects at the FLC level. They also showed that the haplo-insufficiency of Wt1 in the first system (knock-in Wt1-cre-ERT2) aggravated the situation in FLC differentiation by disturbing the differentiation of Sertoli cells and their secretion of pro-FLC factors, which had a confounding effect and encouraged them to use the second system. This demonstrates the great rigor with which the authors interpreted the results. In conclusion, all authors' claims and conclusions are justified by their high-quality results.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

      Strengths:

      Host blood meal source, temperature, and photoperiod were all examined together.

      Weaknesses:

      The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      Comments on the revision:

      Overall, the manuscript is much improved. However, the introduction and parts of the discussion that talk about addressing the question of seasonal shift in host use pattern of Cx. quin are still way too strong and must be toned down. There is no strong evidence to show this host shift in Argentinian mosquito populations. Therefore, it is just misleading. I suggest removing all this and sticking to discussing only the effects of blood meal source and seasonality on the reproductive outcomes of Cx. quin.

    2. Reviewer #2 (Public review):

      Summary:

      Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness on birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used generalized linear mixed models to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity, fertility, and hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite from that hypothesized. The authors have done a very good job of addressing many of the reviewer's concerns, especially by adding two additional replicates. Several minor concerns remain, especially regarding unclear statements in the discussion.

      Strengths:

      (1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.<br /> (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.

      Weaknesses:

      (1) The methods would be improved by some additional details. For example, clarifying the number of generations for which mosquitoes were maintained in colony (which was changed from 20 to several) and whether replicates were conducted at different time points.<br /> (2) The statistical analysis requires some additional explanation. For example, you suggest that the power analysis was conducted a priori, but this was not mentioned in your first two drafts, so I wonder if it was actually conducted after the first replicate. It would be helpful to include further detail, such as how the parameters were estimated. Also, it would be helpful to clarify why replicate was included as a random effect for fecundity and fertility but as a fixed effect for hatchability. This might explain why there were no significant differences for hatchability given that you were estimating for more parameters.<br /> (3) A number of statements in the discussion are not clear. For example, what do you mean by a mixed perspective in the first paragraph? Also, why is the expectation mentioned in the second paragraph different from the hypothesis you described in your introduction?<br /> (4) According to eLife policy, data must be made freely available (not just upon request).

    1. Reviewer #1 (Public review):

      The aim of this paper is to describe a novel method for genetic labelling of animals or cell populations, using a system of DNA/RNA barcodes.

      Strengths:

      • The author's attempt at providing a straightforward method for multiplexing Drosophila samples prior to scRNA-seq is commendable. The perspective of being able to load multiple samples on a 10X Chromium without antibody labelling is appealing.<br /> • The authors are generally honest about potential issues in their method, and areas that would benefit from future improvement.<br /> • The article reads well. Graphs and figures are clear and easy to understand.

      Weaknesses:

      • The usefulness of TaG-EM for phototaxis, egg laying or fecundity experiments is questionable. The behaviours presented here are all easily quantifiable, either manually or using automated image-based quantification, even when they include a relatively large number of groups and replicates. Despite their claims (e.g., L311-313), the authors do not present any real evidence about the cost- or time-effectiveness of their method in comparison to existing quantification methods.<br /> • Behavioural assays presented in this article have clear outcomes, with large effect sizes, and therefore do not really challenge the efficiency of TaG-EM. By showing a T-maze in Fig 1B, the authors suggest that their method could be used to quantify more complex behaviours. Not exploring this possibility in this manuscript seems like a missed opportunity.<br /> • Experiments in Figs S3 and S6 suggest that some tags have a detrimental effect on certain behaviours or on GFP expression. Whereas the authors rightly acknowledge these issues, they do not investigate their causes. Unfortunately, this question the overall suitability of TaG-EM, as other barcodes may also affect certain aspects of the animal's physiology or behaviour. Revising barcode design will be crucial to make sure that sequences with potential regulatory function are excluded.<br /> • For their single-cell experiments, the authors have used the 10X Genomics method, which relies on sequencing just a short segment of each transcript (usually 50-250bp - unknown for this study as read length information was not provided) to enable its identification, with the matching paired-end read providing cell barcode and UMI information (Macosko et al., 2015). With average fragment length after tagmentation usually ranging from 300-700bp, a large number of GFP reads will likely not include the 14bp TaG-EM barcode. When a given cell barcode is not associated with any TaG-EM barcode, then demultiplexing is impossible. This is a major problem, which is particularly visible in Figs 5 and S13. In 5F, BC4 is only detected in a couple of dozen cells, even though the Jon99Ciii marker of enterocytes is present in a much larger population (Fig 5C). Therefore, in this particular case, TaG-EM fails to detect most of the GFP-expressing cells. Similarly, in S13, most cells should express one of the four barcodes, however many of them (maybe up to half - this should be quantified) do not. Therefore, the claim (L277-278) that "the pan-midgut driver were broadly distributed across the cell clusters" is misleading. Moreover, the hypothesis that "low expressing driver lines may result in particularly sparse labelling" (L331-333) is at least partially wrong, as Fig S13 shows that the same Gal4 driver can lead to very different levels of barcode coverage.<br /> • Comparisons between TaG-EM and other, simpler methods for labelling individual cell populations are missing. For example, how would TaG-EM compare with expression of different fluorescent reporters, or a strategy based on the brainbow/flybow principle?<br /> • FACS data is missing throughout the paper. The authors should include data from their comparative flow cytometry experiment of TaG-EM cells with or without additional hexameric GFP, as well as FSC/SSC and fluorescence scatter plots for the FACS steps that they performed prior to scRNA-seq, at least in supplementary figures.<br /> • The authors should show the whole data described in L229, including the cluster that they chose to delete. At least, they should provide more information about how many cells were removed. In any case, the fact that their data still contains a large number of debris and dead cells despite sorting out PI negative cells with FACS and filtering low abundance barcodes with Cellranger is concerning.

      Overall, although a method for genetic tagging cell populations prior to multiplexing in single-cell experiments would be extremely useful, the method presented here is inadequate. However, despite all the weaknesses listed above, the idea of barcodes expressed specifically in cells of interest deserves more consideration. If the authors manage to improve their design to resolve the major issues and demonstrate the benefits of their method more clearly, then TaG-EM could become an interesting option for certain applications.

      Comments on revisions:

      The authors have addressed many important points, providing reassurances about the initial weaknesses of their work. Although the TaG-EM is unlikely to have a significant influence on the field due to its limited benefits, the results are now sound and provide the reader with an unbiased view of the possibilities and limitations of the method.

    2. Reviewer #2 (Public review):

      The authors developed the TaG-EM system to address challenges in multiplexing Drosophila samples for behavioral and transcriptomic studies. This system integrates DNA barcodes upstream of the polyadenylation site in a UAS-GFP construct, enabling pooled behavioral measurements and cell type tracking in scRNA-seq experiments. The revised manuscript expands on the utility of TaG-EM by demonstrating its application to complex assays, such as larval gut motility, and provides a refined analysis of its limitations and cost-effectiveness.

      Strengths

      (1) Novelty and Scope: The study demonstrates the potential for TaG-EM to streamline multiplexing in both behavioral and transcriptomic contexts. The additional application to labor-intensive larval gut motility assays highlights its scalability and practical utility.

      (2) Data Quality and Clarity: Figures and supplemental data are mostly clear and significantly enhanced in the revised manuscript. The addition of Supplemental Figures 18-21 addresses initial concerns about scRNA-seq data and driver characterization.

      (3) Cost-Effectiveness Analysis: New analyses of labor and cost savings (e.g., Supplemental Figure 8) provide a practical perspective.

      (4) Improvements in Barcode Detection and Analysis: Enhanced enrichment protocols (Supplemental Figures 18-19) demonstrate progress in addressing limitations of barcode detection and increase the detection rate of labeled cells.

      Weaknesses

      (1) Barcode Detection Efficiency: While improvements are noted, the low barcode detection rate (~37% in optimized conditions) limits the method's scalability in some applications, such as single-cell sequencing experiments with complex cell populations.

      (2) Sparse Labeling: Sparse labeling of cell populations, particularly in scRNA-seq assays, remains a concern. Variability in driver strength and regional expression introduces inconsistencies in labeling density.

      (3) Behavioral Applications: The utility of TaG-EM in quantifying more complex behaviors remains underexplored, limiting the generalizability of the method beyond simpler assays like phototaxis and oviposition.

      (4) Driver Line Characterization: While improvements in driver line characterization were made, variability in expression patterns and sparse labeling emphasize the need for further refinement of constructs and systematic backcrossing to standardize the genetic background.

    1. Reviewer #1 (Public review):

      Summary:

      BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The Authors use SMA-3 and SMA-9 ChIP-Seq data and RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up- or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. In case of such opposing effects, the SMA-9 appears to act epistatically to SMA-3. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the Authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation.

      Strengths:

      Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans.

      Weaknesses:

      (1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure.

      (2) The Authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs likely act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which still has to be experimentally substantiated. In the revised version of the manuscript, the authors acknowledge this.

      (3) The second part of the results (the collagen story) is loosely connected the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9.

      Comments on revisions:

      In comparison to the first version of the manuscript, the authors have significantly improved the "readability" of the paper, made the Discussion much better, and toned down some of the less supported arguments.

    1. Reviewer #1 (Public review):

      Summary:

      The study aims to create a comprehensive repository about the changes in protein abundance and their modification during oocyte maturation in Xenopus laevis.

      Strengths:

      The results contribute meaningfully to the field.

      Weaknesses:

      The manuscript could have benefitted from more comprehensive analyses and clearer writing. Nonetheless, the key findings are robust and offer a valuable resource for the scientific community.

    2. Reviewer #2 (Public review):

      Summary:

      The authors analyzed Xenopus oocytes at different stages of meiosis using quantitative phosphoproteomics. Their advanced methods and analyses revealed changes in protein abundances and phosphorylation states to an unprecedented depth and quantitative detail. In the manuscript they provide an excellent interpretation of these findings putting them in the context of past literature in Xenopus as well as in other model systems.

      Strengths:

      High quality data, careful and detailed analysis, outstanding interpretation in the context of the large body of the literature.

      Weaknesses:

      Merely a resource, none of the findings are tested in functional experiments.

      I am very impressed by the quality of the data and the careful and detailed interpretation of the findings. In this form the manuscript will be an excellent resource to the cell division community in general, and it presents a very large number of hypotheses that can be tested in future experiments.

      Xenopus has been and still is a popular and powerful model system that led to critical discoveries around countless cellular processes, including the spindle, nuclear envelope, translational regulation, just to name a few. This also includes a huge body of literature on the cell cycle describing its phosphoregulation. It is indeed somewhat frustrating to see that these earlier studies using phospho-mutants and phospho-antibodies were just scratching the surface. The phosphoproteomics analysis presented here reveals much more extensive and much more dynamic changes in phosphorylation states. Thereby, in my opinion, this manuscript opens a completely new chapter in this line of research, setting the stage for more systematic future studies.

    3. Reviewer #3 (Public review):

      Summary:

      The authors performed time-resolved proteomics and phospho-proteomics in Xenopus oocytes from prophase I through the MII arrest of the unfertilized egg. The data contains protein abundance and phosphorylation sites of a large number set of proteins at different stages of oocyte maturation. The large sets of the data are of high quality. In addition, the authors discussed several key pathways critical for the maturation. The data is very useful for the researchers not only researchers in Xenopus oocytes but also those in oocyte biology in other organisms.

      Strengths:

      The data of proteomics and phospho-proteomics in Xenopus oocyte maturation is very useful for future studies to understand molecular networks in oocyte maturation.

      Weaknesses:

      Although the authors offered molecular pathways of the phosphorylation in the translation, protein degradation, cell cycle regulation, and chromosome segregation. The author did not check the validity of the molecular pathways based ontheir proteomic data by the experimentation.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.

      Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.

      Strengths:

      - Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.<br /> - A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.

      Weaknesses:

      - Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.

      - While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.

      - So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.

      - Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)

    2. Reviewer #2 (Public review):

      The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.

      The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:

      Major points:

      It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.

      In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.

      Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.

      What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.

      The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.

      The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.

      The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?

    3. Reviewer #1 (Public review):

      Summary:

      In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.

      Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.

      Strengths:

      - Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.<br /> - A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.

      Weaknesses:

      - Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.

      - While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.

      - So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.

      - Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)

    4. Reviewer #2 (Public review):

      The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.

      The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:

      Major points:

      It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.

      In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.

      Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.

      What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.

      The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.

      The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.

      The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?

    1. Reviewer #1 (Public review):

      Summary:

      Olfaction is fundamental to the survival and reproduction of animals, as they rely on olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) to detect volatile chemical cues in their environment. Most mature OSNs adhere to the 'one neuron one receptor' rule, wherein each neuron selects a single receptor for expression from a large repertoire of olfactory receptor genes. The precise regulation of olfactory receptor expression is critical for accurate odorant recognition. Since the seminal discovery of olfactory receptors by Linda Buck and Richard Axel in 1991, substantial efforts have been made to elucidate the mechanisms underlying OSN differentiation and receptor expression. However, these processes remain incompletely understood. The development of in vitro olfactory epithelium organoids offers a promising platform to address these fundamental questions. The in vivo OE is composed of a complex array of cell types, which has posed a significant challenge for recapitulating its structure and function in vitro. Previous attempts to generate olfactory organoids from adult human or mouse OE cells yielded tissue containing OSNs, but these constructs were structurally distinct from the in vivo OE and lacked the characteristic pseudostratified epithelium.

      In this study, Kazuya et al. successfully established olfactory epithelium organoids from E13.5 mouse embryonic OE stem cells, which developed into a pseudostratified structure closely resembling the native OE. They further examined the influence of different cultural conditions on OE differentiation, confirming the pivotal role of niche factors in promoting OSN development. Through immunofluorescence staining and single-cell RNA sequencing, they demonstrated that the organoids encompass a diverse range of cell types analogous to those present in the in vivo OE. Notably, calcium imaging revealed that the organoids were functionally responsive to odorants, and single-cell transcriptomic analysis showed that the majority of mature OSNs conformed to the 'one neuron one receptor' rule. Using these organoids, the authors performed a preliminary investigation into the developmental trajectories of OSNs, developed a tool to predict subpopulations of mature OSNs, and identified novel markers associated with OSN maturation. Collectively, the data provide compelling evidence for the reliability and utility of this olfactory organoid model. Further in-depth analyses may enable readers to better assess and utilize this tool to advance the study of olfactory biology.

      Strengths:

      The authors developed and established olfactory epithelium organoids, with immunofluorescence imaging confirming the presence of a pseudostratified structure similar to that of the in vivo olfactory epithelium, representing a significant advancement. Single-cell sequencing and calcium imaging further demonstrated the utility of these organoids, as they contain multiple cell types analogous to the in vivo olfactory epithelium. Importantly, they are physiologically functional, capable of responding to odor stimuli.

      Weakness:

      Although the authors have made significant progress in the technique, there are some gaps in understanding its underlying principles. First, it remains unclear what specific characteristics of E13.5 embryonic olfactory stem cells enable them to generate organoids in vitro that more closely resemble the in vivo olfactory epithelium, compared to adult mouse olfactory stem cells. Second, it is not clearly defined which specific cell type(s) from the embryonic olfactory epithelium give rise to these organoids, and the efficiency of organoid formation from the isolated cells also warrants further clarification.

    2. Reviewer #2 (Public review):

      Summary:

      Suzuki and colleagues aim to develop an in vitro organoid system to recapitulate the developmental process of the olfactory epithelium. The authors have succeeded in using a combination of niche factors to induce organoid development, which gives rise to multiple cell types including those with characteristics of mature olfactory sensory neurons. By comparing different cultural media in inducing lineage specification in the organoids, the authors show that the niche factors play an important role in the neuronal lineage whereas serum promotes the development of the respiratory epithelium. The authors further utilized single-cell RNASeq and trajectory analysis to demonstrate that the organoids recapitulate the developmental process of the olfactory epithelium and that some of the factory sensory neurons express only one receptor type per cell. Using these analyses, the authors proposed that a specific set of guidance modules are associated with individual receptor types to enable the formation of the factory map.

      Strengths:

      The strength of the paper is that the authors have demonstrated that olfactory epithelium organoids can develop from dissociated cells from embryonic or tissue. This provides a valuable tool for studying the development of processes of the factory epithelium in vitro. Defining various factors in the media that influence the development trajectories of various cell types also provides valuable information to guide further development of the method. Single-cell RNA-Seq experiments provide information about the developmental processes of the olfactory system.

      Weaknesses:

      The manuscript is also marked by a number of weaknesses. The premise of the studies is not well argued. The authors set out to use organoid culture to study the developmental process in order to unravel the mechanisms of single receptor choice, and its role in setting up the factory map. However, the paper has mostly focused on characterizing the organization rather than providing insights into the problem. The statement that the organoids can develop from single cells is misleading, because it's mostly likely that organoids develop after the dissociated cells form aggregates before developing into organoids. It is not known whether coarsely separated tissue chunks can develop into organoids with the same characteristics. Re-aggregation of the cells to form organoids is in and of itself is interesting. Unfortunately, the heterogeneity of the cells and how they contribute to the development of overnight is not explored. There is also a missed opportunity to compare single-cell RNASeq data from this study with existing ones. The in vitro system is likely to be different from embryonic development. It is critical to compare and determine how much the organoid is recapitulating the development of the OSNs in vivo. There are a number of comprehensive datasets from the OE in addition to that presented in the Fletcher paper. Finally, the quality of the functional assay (calcium imaging) of factory sensory neurons is poor. Experiments are of high quality are needed to verify the results.

      Major points:

      (1) Adding FBS in organoid culture medium has been shown to negatively affect the organoid formation and growth. Previous OE organoids culture method did not use FBS. Also, day 10 is an odd choice to compare the two conditions after showing day 20 of NF+ culture shows a better differentiation state. It is not known whether and how the differentiation may be different on day 20. Moreover, comparing Figure 2R to 2S, FBS treatment alone appears to have not only more Foxj1+ cells but also more Tuj1+ cells than NFs/FBS. This is inconsistent with the model. The authors should provide statistics for Tuj1+ cells as well.

      (2) As opposed to the statement in the manuscript, Plxnb2 had been shown to be expressed by the OSNs (Mclntyre et al. 2010; JNR), specifically in immature OSNs. It would be important to mention that Plxnb2 is expressed in OMP+ OSNs in the OE organoid system and its potential reasons to better guide the readers of the system mimicking the in vivo OSNs. Similarly, OSN expression of Cdh2 has been shown by Akins and colleagues. As Plxnb2 showed an expression pattern (immunofluorescence) with an anterior-posterior axis while Cdh2 expression level was not, it would be informative to show the odorant receptor types regarding the expression pattern of Plxnb2 (versus that of Cdh2) using single cell RNAseq data4.

      (3) There is no real layering of the organoids, although some cells show biases toward one side or the other in some regions of the organoid. The authors should not make a sweeping claim that the organoids establish layered structures.

      (4) Figure 2P, it is clear whether OMP is present in the cell bodies. The signal is not very convincing. Even the DAPI signal does not seem to be on a comparable scale compared to Figures 2N and 2O.

      (5) Annotation of the cell types in different single-cell RNA-Seq analysis. The iOSN is only marked in Figure 3A. In the marker expression panel, it appears that those marked as mOSN have high GAP43, which are an iOSN marker. These discrepancies are not detailed nor discussed.

      (6) The authors should merge the single-cell datasets from day 10 organoids cultured in NF-medium and FBS-medium to compare their differences.

      (7) The quality of the calcium imaging experiment is poor. Labeling and experimental details are not provided. The concentration of IVA, the manner of its delivery, and delivery duration are not provided. How many ROIs have been imaged, and what percentage of them responded to IVA? Do they respond to more than one odor? Do they respond to repeated delivery? There is no control for solution osmolarity. Cell body response was not recorded. Given that only a small number of cells express a receptor, it seems extraordinary that these axons respond to IVA receptors. The authors should also determine whether IVA receptor genes are found in their dataset.

    3. Reviewer #3 (Public review):

      Summary:

      The present work by Suzuki et al seeks to develop a new embryonic olfactory epithelium organoid culture model, to study OR gene expression and mechanisms involved in epithelium-to-bulb targeting. They characterize an organoid culture derived from E13 mouse olfactory tissue, using RT-qPCR, immunostaining, limited calcium imaging, and single-cell RNA-seq. Main findings show that the cultures produce major olfactory cell types; many olfactory neurons express a single OR; scSeq analysis identifies transcriptional programs associated with specific OR class expressions that may help define mechanisms involved in projection to specific bulb sites (glomeruli).

      Strengths:

      The organoid model is generally well-characterized and may be a useful approach for studying this question and other problems, such as basal cell lineage choice or damage and repair mechanisms. Overall, the paper is well-written, and the figures are of high quality.

      The cultures, produced from E13 mice, appear to produce HBCs, GBCs, neurons, and non-neural cells, providing an important tool. I think a really interesting question is: when do HBCs first appear in these cultures? Developmentally, in rodents, HBCs do not arise until near the end of gestation, and the OE cell populations are instead made from a more GBC-like cell (keratin negative, p63 negative) that proliferates as an apical or basal progenitor. The cell type and architectural descriptions used here repeatedly are really descriptions of the adult OE, yet the cultures are made from E13 mouse olfactory epithelium. Perhaps an important question could be addressed by this model - how this specific adult reserve epithelial stem cell (the HBC) is generated remains unclear. HBCs are a reserve multipotential cell that reconstitutes the entire olfactory epithelium in adults following severe injury, yet is not present during embryonic development until after the epithelium has been largely generated.

      Weaknesses:

      The paper should discuss the transcriptional programs identified here that correlate with OR class expression in the context of findings from Tsukahara et al, Cell 2021. Tsukahara identified from in vivo olfactory neuron scSeq fixed gene expression programs defining olfactory neuron position in AP or DV axes correlating highly with OR expression.

      While the current findings do define the expression of putative targeting, guidance or adhesion molecules in specific OR-expressing neurons in culture, the current results do not provide any experimental evidence that glomerulus targeting is actually mediated by these factors. Further discussion of this limitation may be helpful, along with a discussion of additional approaches to explore these questions.

      Calcium imaging: it is not clear why isovaleric acid was chosen as a stimulus for Ca imaging. Is it's known receptor expressed widely in these cultures? Why not use a cocktail of odorants, to activate a broader range of ORs, as has been widely used in in vitro calcium imaging studies of olfactory neurons? Can you show positive control activation (i.e. high potassium)?

      How many unique ORs are identified as expressed in the cultures? Figure 5 indicates only 78 genes. Since mice express about 1200 ORs, is this a limitation? How many replicates (individual cells) are found to express each of the ORs? Again, Figure 5 suggests only 202 cells are OR+? Is this enough to define the gene expression programs reliably associated with a given OR or OR class? More detail on this analysis would be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      van der Linden et al. report on the development of a new green-fluorescent sensor for calcium, following a novel rational design strategy based on the modification of the cyan-emissive sensor mTq2-CaFLITS. Through a mutational strategy similar to the one used to convert EGFP into EYFP, coupled with optimization of strategic amino acids located in proximity of the chromophore, they identify a novel sensor, G-CaFLITS. Through a careful characterization of the photophysical properties in vitro and the expression level in cell cultures, the authors demonstrate that G-CaFLITS combines a large lifetime response with a good brightness in both the bound and unbound states. This relative independence of the brightness on calcium binding, compared with existing sensors that often feature at least one very dim form, is an interesting feature of this new type of sensors, which allows for a more robust usage in fluorescence lifetime imaging. Furthermore, the authors evaluate the performance of G-CaFLITS in different subcellular compartments and under two-photon excitation in Drosophila. While the data appears robust and the characterization thorough, the interpretation of the results in some cases appears less solid, and alternative explanations cannot be excluded.

      Strengths:

      - The approach is innovative and extends the excellent photophysical properties of the mTq2-based to more red-shifted variants. While the spectral shift might appear relatively minor, as the authors correctly point out, it has interesting practical implications, such as the possibility to perform FLIM imaging of calcium using widely available laser wavelengths, or to reduce background autofluorescence, which can be a significant problem in FLIM.<br /> - The screening was simple and rationally guided, demonstrating that, at least for this class of sensors, a careful choice of screening positions is an excellent strategy to obtain variants with large FLIM responses without the need of high-throughput screening.<br /> - The description of the methodologies is very complete and accurate, greatly facilitating the reproduction of the results by others, or the adoption of similar methods. This is particularly true for the description of the experimental conditions for optimal screening of sensor variants in lysed bacterial cultures.<br /> - The photophysical characterization is very thorough and complete, and the vast amount of data reported in the supporting information is a valuable reference for other researchers willing to attempt a similar sensor development strategy. Particularly well done is the characterization of the brightness in cells, and the comparison on multiple parameters with existing sensors.<br /> - Overall, G-CaFLITS displays excellent properties for a FLIM sensor: very large lifetime change, bright emission in both forms and independence from pH in the physiological range.

      Weaknesses:

      - The paper demonstrates the application of G-CaFLITS in various cellular sub-compartments without providing direct evidence that the sensor's response is not affected by the targeting. Showing at least that the lifetime values in the saturated state are similar in all compartments would improve the robustness of the claims.<br /> - In some cases, the interpretation of the results is not fully convincing, leaving alternative hypotheses as a possibility. This is particularly the case for the claim of the origin of the strongly reduced brightness of G-CaFLITS in Drosophila. The explanation of the intensity changes of G-CaFLITS also shows some inconsistency with the basic photophysical characterization.<br /> - While the claims generally appear robust, in some cases they are conveyed with a lack of precision. Several sentences in the introduction and discussion could be improved in this regard. Furthermore, the use of the signal-to-noise ratio as a means of comparison between sensors appears to be imprecise, since it is dependent on experimental conditions.

    2. Reviewer #2 (Public review):

      Summary:

      Van der Linden et al. describe the addition of the T203Y mutation to their previously described fluorescence lifetime calcium sensor Tq-Ca-FLITS to shift the fluorescence to green emission. This mutation was previously described to similarly red-shift the emission of green and cyan FPs. Tq-Ca-FLITS_T203Y behaves as a green calcium sensor with opposite polarity compared with the original (lifetime goes down upon calcium binding instead of up). They then screen a library of variants at two linker positions and identify a variant with slightly improved lifetime contrast (Tq-Ca-FLITS_T203Y_V27A_N271D, named G-Ca-FLITS). The authors then characterize the performance of G-Ca-FLITS relative to Tq-Ca-FLITS in purified protein samples, in cultured cells, and in the brains of fruit flies.

      Strengths:

      This work is interesting as it extends their prior work generating a calcium indicator scaffold for fluorescent protein-based lifetime sensors with large contrast at a single wavelength, which is already being adopted by the community for production of other FLIM biosensors. This work effectively extends that from cyan to green fluorescence. While the cyan and green sensors are not spectrally distinct enough (~20-30nm shift) to easily multiplex together, it at least shifts the spectra to wavelengths that are more commonly available on commercial microscopes.

      The observations of organellar calcium concentrations were interesting and could potentially lead to new biological insight if followed up.

      Weaknesses:

      The new G-Ca-FLITS sensor doesn't appear to be significantly improved in performance over the original Tq-Ca-FLITS, no specific benefits are demonstrated.

      Although it was admirable to attempt in vivo demonstration in Drosophila with these sensors, depolarizing the whole brain with high potassium is not a terribly interesting or physiological stimulus and doesn't really highlight any advantages of their sensors; G-Ca-FLITS appears to be quite dim in the flies.

    3. Reviewer #3 (Public review):

      Summary:

      The authours present a variant of a previously described fluorescence lifetime sensor for calcium. Much of the manuscript describes the process of developing appropriate assays for screening sensor variants, and thorough characterization of those variants (inherent fluorescence characteristics, response to calcium and pH, comparisons to other calcium sensors). The final two figures show how the sensor performs in cultured cells and in vivo drosophila brains.

      Strengths:

      The work is presented clearly and the conclusion (this is a new calcium sensor that could be useful in some circumstances) is supported by the data.

      Weaknesses:

      There are probably few circumstances where this sensor would facilitate experiments (calcium measurements) that other sensors would prove insufficient.

    1. Joint Public Review:

      Summary of the work:

      This manuscript defines the differential stress response signaling induced by nuclear and cytoplasmic protein misfolding. To accomplish this, the authors used superfolder GFP fused to a destabilized FKBP protein-bearing targeting signal for cytosolic or nuclear localization. When cells were grown in the presence of the ligand Shield-1, this protein was stable, allowing fluorescence of the GFP protein. Upon removal of Shield-1, the FKBP protein is unfolded targeting the entire fusion protein to proteasomal degradation. Using this approach, they performed RNAseq to probe similarities and differences in transcriptional responses to the accumulation of unfolded proteins in the cytosol or nucleus. As expected, many of the pathways upregulated in both datasets involved protein homeostasis pathways such as the proteasome and cytosolic chaperones. The increase in proteasome subunits correlated with the stabilization of Nrf1 under these conditions, suggesting that protein misfolding might induce proteasome subunits through an Nrf1-dependent mechanism, but this was not explicitly tested. In contrast, the authors report that the p53-dependent transcriptional response was selectively induced by protein misfolding stress in the nucleus, but not the cytosol. Deletion of p53 blocked this increase, indicating that this response is attributable to p53 stabilization. The increased p53 transcriptional activity corresponded with the stabilization of p53 and its target p21 in cells subjected to nuclear but not cytosolic protein misfolding stress. Using a reporter of nuclear proteasome activity, they show that nuclear proteasome activity is reduced in cells following protein misfolding stress in the nucleus, indicating that the stabilization of p53 (and other transcription factors such as NRF1) might be attributed to reduced proteasomal degradation. Additionally, the authors showed that nuclear misfolding stress also induces cell cycle arrest. However, this effect was not dependent on p53 deletion, indicating that this is mediated by other unknown mechanisms.

      Major strengths and weaknesses of the methods and results:

      The findings reported here define specific transcriptional outputs induced by targeted protein misfolding stress in the nucleus and cytosol, revealing new insights into the organelle-specific stress signaling. The approach is interesting and effective at revealing cellular responses induced by compartment-specific protein misfolding stress.

      One major weakness of the study is the lack of mechanistic follow-up for the transcriptional study. For example, what is the mechanistic basis for p53 stabilization by nuclear-destabilized domain (Nuc DD)? Is this entirely caused by diminished nuclear degradation activity as shown in Figure 6 or are there additional factors to be considered? If limited proteasome degradation capacity is the main reason for p53 upregulation, wouldn't the authors also see stabilization of other short-lived transcription factors? The fact that Nrf1 and Nrf2 are also stabilized by Nuc DD is consistent with the authors' hypothesis. On the other hand, if Nuc DD also affects other short-lived transcription factors such as c-fos or c-myc via proteasome inhibition, why did the gene expression analysis only pick up the p53 pathway as the one differentially regulated by Nuc DD? Would this imply that only p53 is specifically targeted by the nuclear proteasome, whereas other short-lived transcription factors are degraded either by the cytosolic proteasome or by both nuclear and cytosolic proteasome like Nrf1? Is there any evidence in the literature that supports this speculation? Additionally, how does Nuc DD affect the UPS system in the nucleus? Does it clog the proteasome directly or affect other assisting factors like chaperones or ubiquitinating enzymes? Lastly, it isn't clear what the functional implications of p53 stabilization would be for cells subjected to nuclear protein misfolding stress, particularly as the small effect on cell cycle arrest is not dependent on p53. In the end, the lack of mechanistic and/or functional follow-up reduces the overall importance of this manuscript. While the reviewers do not expect the authors to answer all these questions by experiments, additional work/clarifications/discussions along these lines would significantly improve the paper (see the recommendations).

      Another major weakness is the lack of statistical analysis (SA) to better support their conclusions. In fact, no SA was provided for many figures even though the authors tried to make many comparisons.

      The failure of the DD reporter to mount a significant heat shock response was puzzling. The presence of non-native proteins is the primary trigger for the heat shock response, but the authors acknowledge that inducible chaperones such as Hspa1a/b and Hsp90aa1 were not significantly changed in their system (page 8). Could this suggest a problem with the approach? What exactly is the nature of the stress mounted by Nuc DD?

      The cell cycle data presented in Figure 5 is less robust, particularly as the p53 data in panels C and D was collected only once.

      The Western blot data shown in Figure 6 does not have quantification to show how representative the blot is and how robust the changes in protein levels are over time. Western blots are known to be variable with different replicates and therefore the authors need to mention the number of biological repeats represented by the blot.

    1. Reviewer #1 (Public review):

      This manuscript discusses from a theory point of view he mechanisms underlying the formation of specialized or mixed factories. To investigate this, a chromatin polymer model was developed to mimic the chromatin binding-unbinding dynamics of various complexes of transcription factors (TFs).

      The model revealed that both specialized (i.e., demixed) and mixed clusters can emerge spontaneously, with the type of cluster formed primarily determined by cluster size. Non-specific interactions between chromatin and proteins were identified as the main factor promoting mixing, with these interactions becoming increasingly significant as clusters grow larger.

      These findings, observed in both simple polymer models and more realistic representations of human chromosomes, reconcile previously conflicting experimental results. Additionally, the introduction of different types of TFs was shown to strongly influence the emergence of transcriptional networks, offering a framework to study transcriptional changes resulting from gene editing or naturally occurring mutations.

      Overall I think this is an interesting paper discussing a valuable model of how chromosome 3D organisation is linked to transcription. I would only advise the authors to polish and shorten their text to better highlight their key findings and make it more accessible to the reader.

    2. Reviewer #2 (Public review):

      Summary:

      With this report, I suggest what are in my opinion crucial additions to the otherwise very interesting and credible research manuscript "Cluster size determines morphology of transcription factories in human cells".

      Strengths:

      The manuscript in itself is technically sound, the chosen simulation methods are completely appropriate the figures are well-prepared, the text is mostly well-written spare a few typos. The conclusions are valid and would represent a valuable conceptual contribution to the field of clustering, 3D genome organization and gene regulation related to transcription factories, which continues to be an area of most active investigation.

      Weaknesses:

      However, I find that the connection to concrete biological data is weak. This holds especially given that the data that are needed to critically assess the applicability of the derived cross-over with factory size is, in fact, available for analysis, and the suggested experiments in the Discussion section are actually done and their results can be exploited. In my judgement, unless these additional analysis are added to a level that crucial predictions on TF demixing and transcriptional bursting upon TU clustering can be tested, the paper is more fitted for a theoretical biophysics venue than for a biology journal.

      Major points

      (1) My first point concerns terminology. The Merriam-Webster dictionary describes morphology as the study of structure and form. In my understanding, none of the analyses carried out in this study actually address the form or spatial structuring of transcription factories. I see no aspects of shape, only size. Unless the authors want to assess actual shapes of clusters, I would recommend to instead talk about only their size/extent. The title is, by the same argument, in my opinion misleading as to the content of this study.

      (2) Another major conceptual point is the choice of how a single TF:pol particle in the model relates to actual macromolecules that undergo clustering in the cell. What about the fact that even single TF factories still contain numerous canonical transcription factors, many of which are also known to undergo phase separation? Mediator, CDK9, Pol II just to name a few. This alone already represents phase separation under the involvement of different species, which must undergo mixing. This is conceptually blurred with the concept of gene-specific transcription factors that are recruited into clusters/condensates due to sequence-specific or chromatin-epigenetic-specific affinities. Also, the fact that even in a canonical gene with a "small" transcription factory there are numerous clustering factors takes even the smallest factories into a regime of several tens of clustering macromolecules. It is unclear to me how this reality of clustering and factory formation in the biological cell relates to the cross-over that occurs at approximately n=10 particles in the simulations presented in this paper.

      (3) The paper falls critically short in referencing and exploiting for analysis existing literature and published data both on 3D genome organization as well as the process of cluster formation in relation to genomic elements. In terms of relevant literature, most of the relevant body of work from the following areas has not been included:

      (i) mechanisms of how the clustering of Pol II, canonical TFs, and specific TFs is aided by sequence elements and specific chromatin states

      (ii) mechanisms of TF selectivity for specific condensates and target genomic elements

      (iii) most crucially, existing highly relevant datasets that connect 3D multi-point contacts with transcription factor identity and transcriptional activity, which would allow the authors to directly test their hypotheses by analysis of existing data

      Here, especially the data under point iii are essential. The SPRITE method (cited but not further exploited by the authors), even in its initial form of publication, would have offered a data set to critically test the mixing vs. demixing hypothesis put forward by the authors. Specifically, the SPRITE method offers ordered data on k-mers of associated genomic elements. These can be mapped against the main TFs that associate with these genomic elements, thereby giving an account of the mixed / demixed state of these k-mer associations. Even a simple analysis sorting these associations by the number of associated genomic elements might reveal a demixing transition with increasing association size k. However, a newer version of the SPRITE method already exists, which combines the k-mer association of genomic elements with the whole transcriptome assessment of RNAs associated with a particular DNA k-mer association. This can even directly test the hypotheses the authors put forward regarding cluster size, transcriptional activation, correlation between different transcription units' activation etc.

      To continue, the Genome Architecture Mapping (GAM) method from Ana Pombo's group has also yielded data sets that connect the long-range contacts between gene-regulatory elements to the TF motifs involved in these motifs, and even provides ready-made analyses that assess how mixed or demixed the TF composition at different interaction hubs is. I do not see why this work and data set is not even acknowledged? I also strongly suggest to analyze, or if they are already sufficiently analyzed, discuss these data in the light of 3D interaction hub size (number of interacting elements) and TF motif composition of the involved genomic elements.

      Further, a preprint from the Alistair Boettiger and Kevin Wang labs from May 2024 also provides direct, single-cell imaging data of all super-enhancers, combined with transcription detection, assessing even directly the role of number of super-enhancers in spatial proximity as a determinant of transcriptional state. This data set and findings should be discussed, not in vague terms but in detailed terms of what parts of the authors' predictions match or do not match these data.

      For these data sets, an analysis in terms of the authors' key predictions must be carried out (unless the underlying papers already provide such final analysis results). In answering this comment, what matters to me is not that the authors follow my suggestions to the letter. Rather, I would want to see that the wealth of available biological data and knowledge that connects to their predictions is used to their full potential in terms of rejecting, confirming, refining, or putting into real biological context the model predictions made in this study.

      References for point (iii):

      RNA promotes the formation of spatial compartments in the nucleus<br /> https://www.cell.com/cell/fulltext/S0092-8674(21)01230-7?dgcid=raven_jbs_etoc_email

      Complex multi-enhancer contacts captured by genome architecture mapping<br /> https://www.nature.com/articles/nature21411

      Cell-type specialization is encoded by specific chromatin topologies<br /> https://www.nature.com/articles/s41586-021-04081-2

      Super-enhancer interactomes from single cells link clustering and transcription<br /> https://www.biorxiv.org/content/10.1101/2024.05.08.593251v1.full

      For point (i) and point (ii), the authors should go through the relevant literature on Pol II and TF clustering, how this connects to genomic features that support the cluster formation, and also the recent literature on TF specificity. On the last point, TF specificity, especially the groups of Ben Sabari and Mustafa Mir have presented astonishing results, that seem highly relevant to the Discussion of this manuscript.

      (4) Another conceptual point that is a critical omission is the clarification that there are, in fact, known large vs. small transcription factories, or transcriptional clusters, which are specific to stem cells and "stressed cells". This distinction was initially established by Ibrahim Cisse's lab (Science 2018) in mouse Embryonic Stem Cells, and also is seen in two other cases in differentiated cells in response to serum stimulus and in early embryonic development:

      Mediator and RNA polymerase II clusters associate in transcription-dependent condensates<br /> https://www.science.org/doi/10.1126/science.aar4199

      Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering<br /> https://www.science.org/doi/10.1126/sciadv.aay6515

      RNA polymerase II clusters form in line with surface condensation on regulatory chromatin<br /> https://www.embopress.org/doi/full/10.15252/msb.202110272

      If "morphology" should indeed be discussed, the last paper is a good starting point, especially in combination with this additional paper:

      Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin<br /> https://www.science.org/doi/10.1126/science.ade5308

      (5) The statement "scripts are available upon request" is insufficient by current FAIR standards and seems to be non-compliant with eLife requirements. At a minimum, all, and I mean all, scripts that are needed to produce the simulation outcomes and figures in the paper, must be deposited as a publicly accessible Supplement with the article. Better would be if they would be structured and sufficiently documented and then deposited in external repositories that are appropriate for the sharing of such program code and models.

    3. Reviewer #3 (Public review):

      Summary:<br /> In this work, the authors present a chromatin polymer model with some specific pattern of transcription units (TUs) and diffusing TFs; they simulate the model and study TFclustering, mixing, gene expression activity, and their correlations. First, the authors designed a toy polymer with colored beads of a random type, placed periodically (every 30 beads, or 90kb). These colored beads are considered a transcription unit (TU). Same-colored TUs attract with each other mediated by similarly colored diffusing beads considered as TFs. This led to clustering (condensation of beads) and correlated (or anti-correlation) "gene expression" patterns. Beyond the toy model, when authors introduce TUs in a specific pattern, it leads to emergence of specialized and mixed cluster of different TFs. Human chromatin models with realistic distribution of TUs also lead to the mixing of TFs when cluster size is large.

      Strengths:<br /> This is a valuable polymer model for chromatin with a specific pattern of TUs and diffusing TF-like beads. Simulation of the model tests many interesting ideas. The simulation study is convincing and the results provide solid evidence showing the emergence of mixed and demixed TF clusters within the assumptions of the model.

      Weaknesses:<br /> Weakness of the work: The model has many assumptions. Some of the assumptions are a bit too simplistic. Concerns about the work are detailed below:

      The authors assume that when the diffusing beads (TFs) are near a TU, the gene expression starts. However, mammalian gene expression requires activation by enhancer-promoter looping and other related events. It is not a simple diffusion-limited event. Since many of the conclusions are derived from expression activity, will the results be affected by the lack of looping details?

      Authors neglect protein-protein interactions. Without protein-protein interactions, condensate formation in natural systems is unlikely to happen.

      What is described in this paper is a generic phenomenon; many kinds of multivalent chromatin-binding proteins can form condensates/clusters as described here. For example, if we replace different color TUs with different histone modifications and different TFs with Hp1, PRC1/2, etc, the results would remain the same, wouldn't they? What is specific about transcription factor or transcription here in this model?<br /> What is the logic of considering 3kb chromatin as having a size of 30 nm? See Kadam et al. (Nature Communications 2023). Also, DNA paint experimental measurement of 5kb chromatin is greater than 100 nm (see work by Boettiger et al.).

    1. Reviewer #1 (Public review):

      Summary:

      This study has preliminarily revealed the role of ACVR2A in trophoblast cell function, including its effects on migration, invasion, proliferation, and clonal formation, as well as its downstream signaling pathways.

      Strengths:

      The use of multiple experimental techniques, such as CRISPR/Cas9-mediated gene knockout, RNA-seq, and functional assays (e.g., Transwell, colony formation, and scratch assays), is commendable and demonstrates the authors' effort to elucidate the molecular mechanisms underlying ACVR2A's regulation of trophoblast function. The RNA-seq analysis and subsequent GSEA findings offer valuable insights into the pathways affected by ACVR2A knockout, particularly the Wnt and TCF7/c-JUN signaling pathways.

      Weaknesses:

      The molecular mechanisms underlying this study require further exploration through additional experiments. While the current findings provide valuable insights into the role of ACVR2A in trophoblast cell function and its involvement in the regulation of migration, invasion, and proliferation, further validation in both in vitro and in vivo models is needed. Additionally, more experiments are required to establish the functional relevance of the TCF7/c-JUN pathway and its clinical significance, particularly in relation to pre-eclampsia. Additional techniques, such as animal models and more advanced clinical sample analyses, would help strengthen the conclusions and provide a more comprehensive understanding of the molecular pathways involved.

    2. Reviewer #2 (Public review):

      Summary:

      ACVR2A is one of a handful of genes for which significant correlations between associated SNPs and the incidences of preeclampsia have been found in multiple populations. It is one of the TGFB family receptors, and multiple ligands of ACVR2A, as well as its coreceptors and related inhibitors, have been implicated in placental development, trophoblast invasion, and embryo implantation. This useful study builds on this knowledge by showing that ACVR2A knockout in trophoblast-related cell lines reduces trophoblast invasion, which could tie together many of these observations. Support for this finding is incomplete, as reduced proliferation may be influencing the invasion results. The implication of cross-talk between the WNT and ACRV2A/SMAD2 pathways is an important contribution to the understanding of the regulation of trophoblast function.

      Strengths:

      (1) ACVR2A is one of very few genes implicated in preeclampsia in multiple human populations, yet its role in pathogenesis is not very well studied and this study begins to address that hole in our knowledge.

      (2) ACVR2A is also indirectly implicated in trophoblast invasion and trophoblast development via its connections to many ligands, inhibitors, and coreceptors, suggesting its potential importance.

      (3) The authors have used multiple cell lines to verify their most important observations.

      Weaknesses:

      (1) There are a number of claims made in the introduction without attribution. For example, there are no citations for the claims that family history is a significant risk factor for PE, that inadequate trophoblast invasion of spiral arteries is a key factor, and that immune responses, and renin-angiotensin activity are involved.

      (2) The introduction states "As a receptor for activin A, ACVR2A..." It's important to acknowledge that ACVR2A is also the receptor for other TGFB family members, with varying affinities and coreceptors. Several TGFB family members are known to regulate trophoblast differentiation and invasion. For example, BMP2 likely stimulates trophoblast invasion at least in part via ACVR2A (PMID 29846546).

      (3) An alternative hypothesis for the potential role of ACVR2A in preeclampsia is its functions in the endometrium. In the mouse ACVR2A knockout in the uterus (and other progesterone receptor-expressing cells) leads to embryo implantation failure.

      (4) In the description of the patient population for placental sample collections, preeclampsia is defined only by hypertension, and this is described as being in accordance with ACOG guidelines. ACOG requires a finding of hypertension in combination with either proteinuria or one of the following: thrombocytopenia, elevated creatinine, elevated liver enzymes, pulmonary, edema, and new onset unresponsive headache.

      (5) I believe that Figures 1a and 1b are data from a previously published RNAseq dataset, though it is not entirely clear in the text. The methods section does not include a description of the analysis of these data undertaken here. It would be helpful to include at least a brief description of the study these data are taken from - how many samples, how were the PE/control groups defined, gestational age range, where is it from, etc. For the heatmap presented in B, what is the significance of the other genes/ why are they being shown? If the purpose of these two panels is to show differential expression specifically of ACVR2A in this dataset, that could be shown more directly.

      (6) More information is needed in the methods section to understand how the immunohistochemistry was quantified. "Quantitation was performed" is all that is provided. Was staining quantified across the whole image or only in anchoring villous areas? How were HRP & hematoxylin signals distinguished in ImageJ? How was the overall level of HRP/DAB development kept constant between the NC and PE groups?

      (7) In Figure 1E it is not immediately obvious to many readers where the EVT are. It is probably worth circling or putting an arrow to the little region of ACVR2A+ EVT that is shown in the higher magnification image in Figure 1E. These are actually easier to see in the pictures provided in the supplement Figure 1. Of note, the STB is also staining positive. This is worth pointing out in the results text.

      (8) It is not possible to judge whether the IF images in 1F actually depict anchoring villi. The DAPI is really faint, and it's high magnification, so there isn't a lot of context. Would it be possible to include a lower magnification image that shows where these cells are located within a placental section? It is also somewhat surprising that this receptor is expressed in the cytoplasm rather than at the cell surface. How do the authors explain this?

      (9) The results text makes it sound like the data in Figure 2A are from NCBI & Protein atlas, but the legend says it is qPCR from this lab. The methods do not detail how these various cell lines were grown; only HTR-SVNeo cell culture is described. Similarly, JAR cells are used for several experiments and their culture is not described.

      (10) Under RT-qPCR methods, the phrase "cDNA reverse transcription cell RNA was isolated..." does not make any sense.

      (11) The paragraph beginning "Consequently, a potential association..." is quite confusing. It mentions analyzing ACVR2A expression in placentas, but then doesn't point to any results of this kind and repeats describing the results in Figure 2a, from various cell lines.

      (12) The authors should acknowledge that the effect of the ACVR2A knockout on proliferation makes it difficult to draw any conclusions from the trophoblast invasion assays. That is, there might be fewer migrating or invading cells in the knockout lines because there are fewer cells, not because the cells that are there are less invasive. Since this is a central conclusion of the study, it is a major drawback.

      (13) The legend and the methods section do not agree on how many fields were selected for counting in the transwell invasion assays in Figure 3C. The methods section and the graph do not match the number of replicate experiments in Figure 3D (the number of replicate experiments isn't described for 3C).

      (14) Discussion says "Transcriptome sequencing analysis revealed low ACVR2A expression in placental samples from PE patients, consistent with GWAS results across diverse populations." The authors should explain this briefly. Why would SNPs in ACVR2A necessarily affect levels of the transcript?

      (15) "The expression levels of ACVR2A mRNA were comparable to those of tumor cells such as A549. This discovery suggested a potential pivotal role of ACVR2A in the biological functions of trophoblast cells, especially in the nurturing layer." Alternatively, ACVR2A expression resembles that of tumors because the cell lines used here are tumor cells (JAR) or immortalized cells (HTR8). These lines are widely used to study trophoblast properties, but the discussion should at least acknowledge the possibility that the behavior of these cells does not always resemble normal trophoblasts.

      (16) The authors should discuss some of what is known about the relationship between the TCF7/c-JUN pathway and the major signaling pathway activated by ACVR2A, Smad 2/3/4. The Wnt and TGFB family cross-talk is quite complex and it has been studied in other systems.

    1. Reviewer #1 (Public review):

      Summary:

      Meissner-Bernard et al present a biologically constrained model of telencephalic area of adult zebrafish, a homologous area to the piriform cortex, and argue for the role of precisely balanced memory networks in olfactory processing.

      This is interesting as it can add to recent evidence on the presence of functional subnetworks in multiple sensory cortices. It is also important in deviating from traditional accounts of memory systems as attractor networks. Evidence for attractor networks has been found in some systems, like in the head direction circuits in the flies. However, the presence of attractor dynamics in other modalities, like sensory systems, and their role in computation has been more contentious. This work contributes to this active line of research in experimental and computational neuroscience by suggesting that, rather than being represented in attractor networks and persistent activity, olfactory memories might be coded by balanced excitation-inhibitory subnetworks.

      Strengths:

      The main strength of the work is in: (1) direct link to biological parameters and measurements, (2) good controls and quantification of the results, and (3) comparison across multiple models.

      (1) The authors have done a good job of gathering the current experimental information to inform a biological-constrained spiking model of the telencephalic area of adult zebrafish. The results are compared to previous experimental measurements to choose the right regimes of operation.<br /> (2) Multiple quantification metrics and controls are used to support the main conclusions, and to ensure that the key parameters are controlled for - e.g. when comparing across multiple models.<br /> (3) Four specific models (random, scaled I / attractor, and two variant of specific E-I networks - tuned I and tuned E+I) are compared with different metrics, helping to pinpoint which features emerge in which model.

      In the revised manuscript, the authors have also:<br /> (a) made a good effort to provide a mechanistic explanation of their results (especially on the mechanism underlying medium amplification in specific E/I network models);<br /> (b) performed a systematic analysis of the parameter space by changing different parameters of E and I neurons (specifically showing that different time constants of E and I neurons do not change the results and therefore the main effects result from connectivity);<br /> (c) added further analysis and discussion on the potential functional and computational significance of balanced specific E-I subnetworks.

      These additions substantially strengthen the study, presenting compelling evidence for how networks with specific E-I structure can underpin olfactory processing and memory representations. The findings have potential implications that extend beyond the olfactory system and may be applicable to other neural systems and species.

    2. Reviewer #2 (Public review):

      Summary:

      The authors conducted a comparative analysis of four networks, varying in the presence of excitatory assemblies and the architecture of inhibitory cell assembly connectivity. They found that co-tuned E-I assemblies provide network stability and a continuous representation of input patterns (on locally constrained manifolds), contrasting with networks with global inhibition that result in attractor networks.

      Strengths:

      The findings presented in this paper are very interesting and cutting-edge. The manuscript effectively conveys the message and presents a creative way to represent high-dimensional inputs and network responses. Particularly, the result regarding the projection of input patterns onto local manifolds and continuous representation of input/memory is very Intriguing and novel. Both computational and experimental neuroscientists would find value in reading the paper.

      Weaknesses:

      Intuitively, classification (decodability) in discrete attractor networks is much better than in networks with continuous representations. This could also be shown in Figure 5B, along with the performance of the random and tuned E-I networks. The latter networks have the advantage of providing network stability compared to the Scaled I network, but at the cost of reduced network salience and, therefore, reduced input decodability. Thus, tuned E-I networks cannot always perform better than any other network.

    3. Reviewer #3 (Public review):

      Summary:

      This work investigates computational consequences of assemblies containing both excitatory and inhibitory neurons (E/I assembly) in a model with parameters constrained by experimental data from the telencephalic area Dp of zebrafish. The authors show how this precise E/I balance shapes the geometry of neuronal dynamics in comparison to unstructured networks and networks with more global inhibitory balance. Specifically, E/I assemblies lead to the activity being locally restricted onto manifolds - a dynamical structure in-between high-dimensional representations in unstructured networks and discrete attractors in networks with global inhibitory balance. Furthermore, E/I assemblies lead to smoother representations of mixtures of stimuli while those stimuli can still be reliably classified, and allows for more robust learning of additional stimuli.

      Strengths:

      Since experimental studies do suggest that E/I balance is very precise and E/I assemblies exist, it is important to study the consequences of those connectivity structures on network dynamics. The authors convincingly show that E/I assemblies lead to different geometries of stimulus representation compared to unstructured networks and networks with global inhibition. This finding might open the door for future studies for exploring the functional advantage of these locally defined manifolds, and how other network properties allow to shape those manifolds.

      The authors also make sure that their spiking model is well-constrained by experimental data from the zebrafish pDp. Both, spontaneous and odor stimulus triggered spiking activity is within the range of experimental measurements. But the model is also general enough to be potentially applied to findings in other animal models and brain regions.

      Weaknesses:

      All my previous points have been addressed.

    1. Reviewer #1 (Public review):

      Summary:

      It is evident that studying leukocyte extravasation in vitro is a challenge. One needs to include physiological flow, culture cells and isolate primary immune cells. Timing is of utmost importance and a reproducible setup is essential. Extra challenges are met when extravasation kinetics in different vascular beds is required, e.g., across the blood-brain barrier. In this study, the authors describe a reliable and reproducible method to analyze leukocyte TEM under physiological flow conditions, including this analysis. That the software can also detect reverse TEM is a plus.

      Strengths:

      It is quite a challenge to get this assay reproducible and stable, in particular as there is flow included. Also for the analysis, there is currently no clear software analysis program, and many labs have their own methods. This paper gives the opportunity to unify the data and results obtained with this assay under label-free conditions. This should eventually lead to more solid and reproducible results.

      Also, the comparison between manual and software analysis is appreciated.

    2. Reviewer #2 (Public review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      The algorithm is almost as accurate as manual tracking and importantly saves time for researchers. The authors have discussed how their tool compares to other tracking methods.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. However, the authors have addressed this point in their manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shibata describes a method to assess rapidly fluctuating CpG sites (fCpGs) from single-cell methylation sequencing (sc-MeSeq) data. Assuming that fCpGs are largely consistent over time with changes induced by inheritable events during replication, the author infers lineage relationships in available brain-derived sc-MeSeq. Supplementing current lineage tracing through genomic and mitochondrial mosaic variants is an interesting concept that could supplement current work or allow additional lineage analysis in existing data.

      However, the author failed to convincingly show the power of fCpG analysis to determine lineages in the human brain. While the correlation with cellular division and distinction of cell types appears plausible and strong, the application to detect specific lineages is less convincing. Aspects of this might be due to a lack of clarity in presentation and erroneous use of developmental concepts. However, without addressing these problems it is challenging for a reader to come to the same conclusions as the author.

      On the flip side, this novel application of fCpGs will allow the re-use of existing sc-MeSeq to infer additional features that were previously unavailable, once the biological relevance has been further elucidated.

      Strengths:

      • Novel re-analysis application of methylation data to infer the status of fCpGs and the use as a lineage marker<br /> • Application of this method to an innovative existing data set to benchmark this framework against existing developmental knowledge

      Weaknesses:

      • Inconsistent or erroneous use of neurodevelopmental concepts which hinders appropriate interpretation of the results.<br /> • Somewhat confusing presentation at times which makes it hard to judge the value of this novel approach.

    2. Reviewer #3 (Public review):

      Summary:

      Cell lineage tracing necessitates continuous visible tracking or permanent molecular markers that daughter cells inherit from their progenitors. To successfully trace cell lineages, it is essential to generate and detect sufficient new markers during each cell division. Thus, molecular cell lineages have been predominantly studied with stably inherited genetic markers in animal models and somatic DNA mutations in the human brain. DNA methylation is unstable across cell divisions and differentiation, and is hardly called barcodes. The use of "Human Brain Barcodes" in the title and across the whole paper lacks convincing evidence - it is questionable that CpG methylation is always stably inherited by daughter cells.

      Strengths:

      Analysis of DNA methylation.

      Weaknesses:

      The unstable nature of CpG methylation would introduce significant problems in inferring the true cell lineage. To establish DNA methylation as a means for lineage tracing, it is necessary to test whether the DNA methylation patterns can faithfully track cell lineages with in vitro differentiated & visibly tracked cell lineages.

      The unreliable CpG methylation status also raises the question of what the "Barcodes" refer to in the title and across this study. Barcodes should be stable in principle and not dynamic across cell generations, as defined in the Reference #1. The CRISPR/Cas9 mutable barcodes or the somatic mutations may be considered barcodes, but the reviewer is not convinced that the "dynamic" CpG methylation fits the "barcodes" terminology. This problem is even more concerning in the last section of the results, where CpG status fluctuates in post-mitotic cells.

      The manuscript frequently states assumptions in a tone of conclusions and interprets results without rejecting alternative hypotheses. For example, the title "Human Brain Barcodes" should be backed with solid supporting evidence. For another example, the author assumed that the early-formed brain stem would resemble progenitors better and have a higher average methylation level than the forebrain - however, this difference in DNA methylation status could well reflect cell-type-specific gene expression instead of cell lineage progression.

      Other points:

      (1) The conclusion that excitatory neurons undergo tangential migration is unclear - how far away did the author mean for the tangential direction? Lateral dispersion is known, but it is hard to believe that the excitatory neurons travel across different brain regions. More importantly, how would the author interpret shared or divergent methylation for the same cell type across different brain regions?

      (2) The sparsity and resolution of the single-cell DNA methylation data. The methylation status is detected in only a small fraction (~500/31,000 = 1.6%) of fCpGs per cell, with only 48 common sites identified between cell pairs. Given that the human genome contains over 28 million CpG sites, it is important to evaluate whether these fCpGs are truly representative.

      (3) While focusing on the X-chromosome may simplify the identification of polymorphic fCpGs, the confidence in determining its methylation status (0 or 1) is questionable when a CpG site is covered by only one read.

    1. Reviewer #1 (Public review):

      Summary:

      The authors intended to investigate the earliest mechanisms enabling self-prioritization, especially in the attention. Combining a temporal order judgement task with computational modelling based on the Theory of Visual Attention (TVA), the authors suggested that the shapes associated with the self can fundamentally alter the attentional selection of sensory information into awareness. This self-prioritization in attentional selection occurs automatically at early perceptual stages. Furthermore, the processing benefits obtained from attentional selection via self-relatedness and physical salience were separated from each other.

      Strengths:

      The manuscript is written in a way that is easy to follow. The methods of the paper are very clear and appropriate.

      Comments on revisions:

      The authors clearly showed the relationship between attention and self-prioritization.

    2. Reviewer #2 (Public review):

      Summary:

      The main aim of this research was to explore whether and how self-associations (as opposed to other-associations) bias early attentional selection, and whether this can explain well-known self-prioritization phenomena, such as the self-advantage in perceptual matching tasks. The authors adopted the Visual Attention Theory (VAT) by estimating VAT parameters using a hierarchical Bayesian model from the field of attention and applied it to investigate the mechanisms underlying self-prioritization. They also discussed the constraints on the self-prioritization effect in attentional selection. The key conclusions reported were: (1) self-association enhances both attentional weights and processing capacity, (2) self-prioritization in attentional selection occurs automatically but diminishes when active social decoding is required, and (3) social and perceptual salience capture attention through distinct mechanisms.

      Strengths:

      Transferring the Theory of Visual Attention parameters estimated by a hierarchical Bayesian model to investigate self-prioritization in attentional selection was a smart approach. This method provides a valuable tool for accessing the very early stages of self-processing, i.e., the attention selection. The authors conclude that self-associations can bias visual attention by enhancing both attentional weights and processing capacity, and that this process occurs automatically. These findings offer new insights into the self-prioritization from the perspective of early stage of attentional selection.

      Weaknesses:

      The results are still not convincing enough to definitively support their conclusions. The generalization of the findings needs further examination. Whether this attentional selection mechanism of self-prioritization can be generalized to other stimuli, such as self-name, self-face, or other domains of self-association advantages, remains to be tested. More empirical data are needed.

    1. Reviewer #1 (Public review):

      Summary:

      Aicardi-Goutières Syndrome (AGS) is a genetic disorder that primarily affects the brain and immune system through excessive interferon production. The authors sought to investigate the role of microglia in AGS by first developing bone-marrow-derived progenitors in vitro that carry the estrogen-regulated (ER) Hoxb8 cassette, allowing them to expand indefinitely in the presence of estrogen and differentiate into macrophages when estrogen is removed. When injected into the brains of Csf1r-/- mice, which lack microglia, these cells engraft and resemble wild-type (WT) microglia in transcriptional and morphological characteristics, although they lack Sall1 expression. The authors then generated CRISPR-Cas9 Adar1 knockout (KO) ER-Hoxb8 macrophages, which exhibited increased production of inflammatory cytokines and upregulation of interferon-related genes. This phenotype could be rescued using a Jak-Stat inhibitor or by concurrently mutating Ifih1 (Mda5). However, these Adar1-KO macrophages fail to successfully engraft in the brain of both Csf1r-/- and Cx3cr1-creERT2:Csf1rfl/fl mice. To overcome this, the authors used a mouse model with a patient-specific Adar1 mutation (Adar1 D1113H) to derive ER-Hoxb8 bone marrow progenitors and macrophages. They discovered that Adar1 D1113H ER-Hoxb8 macrophages successfully engraft the brain, although at lower levels than WT-derived ER-Hoxb8 macrophages, leading to increased production of Isg15 by neighboring cells. These findings shed new light on the role of microglia in AGS pathology.

      Strengths:

      The authors convincingly demonstrate that ER-Hoxb8 differentiated macrophages are transcriptionally and morphologically similar to bone marrow-derived macrophages. They also show evidence that when engrafted in vivo, ER-Hoxb8 microglia are transcriptomically similar to WT microglia. Furthermore, ER-Hoxb8 macrophages engraft the Csf1r-/- brain with high efficiency and rapidly (2 weeks), showing a homogenous distribution. The authors also effectively use CRISPR-Cas9 to knock out TLR4 in these cells with little to no effect on their engraftment in vivo, confirming their potential as a model for genetic manipulation and in vivo microglia replacement.

      Weaknesses:

      The robust data showing the quality of this model at the transcriptomic level can be strengthened with confirmation at protein and functional levels. The authors were unable to investigate the effects of Adar1-KO using ER-Hoxb8 cells and instead had to rely on a mouse model with a patient-specific Adar1 mutation (Adar1 D1113H). Additionally, ER-Hoxb8-derived microglia do not express Sall1, a key marker of microglia, which limits their fidelity as a full microglial replacement, as has been rightfully pointed out in the discussion.

      Overall, this paper demonstrates an innovative approach to manipulating microglia using ER-Hoxb8 cells as surrogates. The authors present convincing evidence of the model's efficacy and potential for broader application in microglial research, given its ease of production and rapid brain engraftment potential in microglia-deficient mice. While Adar1-KO macrophages do not engraft well, the success of TLR4-KO line highlights the model's potential for investigating other genes. Using mouse-derived cells for transplantation reduces complications that can come with the use of human cell lines, highlighting the utility of this system for research in mouse models.

    2. Reviewer #2 (Public review):

      Summary:

      Microglia have been implicated in brain development, homeostasis, and diseases. "Microglia replacement" has gained traction in recent years, using primary microglia, bone marrow or blood-derived myeloid cells, or human iPSC-induced microglia. Here, the authors extended their previous work in the area and provided evidence to support: (1) Estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages from bone marrow can serve as stable, genetically manipulated cell lines. These cells are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells (MLCs). Taking advantage of this model system, the authors created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to the Aicardi-Goutières Syndrome (AGS) disease mechanism.

      Strengths:

      The studies are carefully designed and well-conducted. The imaging data and gene expression analysis are carried out at a high level of technical competence and the studies provide strong evidence that ER-Hoxb8 immortalized macrophages from bone marrow are a reasonable source for "microglia replacement" exercise. The findings are clearly presented, and the main message will be of general interest to the neuroscience and microglia communities.

    1. Joint Public Review:

      Summary:

      Microfossils from the Paleoarchean Eon represent the oldest evidence of life, but their nature has been strongly debated among scientists. To resolve this, the authors reconstructed the lifecycles of Archaean organisms by transforming a Gram-positive bacterium into a primitive lipid vesicle-like state and simulating early Earth conditions. They successfully replicated all morphologies and life cycles of Archaean microfossils and studied cell degradation processes over several years, finding that encrustation with minerals like salt preserved these cells as fossilized organic carbon. Their findings suggest that microfossils from 3.8 to 2.5 billion years ago were likely liposome-like protocells with energy conservation pathways but without regulated morphology.

      Strengths:

      The authors have crafted a compelling narrative about the morphological similarities between microfossils from various sites and proliferating wall-deficient bacterial cells, providing detailed comparisons that have never been demonstrated in this detail before. The extensive number of supporting figures is impressive, highlighting numerous similarities. While conclusively proving that these microfossils are proliferating protocells morphologically akin to those studied here is challenging, we applaud this effort as the first detailed comparison between microfossils and morphologically primitive cells.

      Summary of reviewer comments on this revision:

      Each of the original reviewers evaluated the revised manuscript and were complimentary about how the authors addressed their original concerns. One reviewer added: "It is a thought-provoking manuscript that will be well received." We encourage readers of this version of the paper to consider the original reviewer comments and the authors' responses: https://elifesciences.org/reviewed-preprints/98637/reviews

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, the authors provide compelling evidence that stimulus-frequency otoacoustic emission (SFOAE) phase-gradient delays predict the sharpness (quality factors) of auditory-nerve-fiber (ANF) frequency tuning curves in budgerigars. In contrast with mammals, neither SFOAE- nor ANF-based measures of cochlear tuning match the frequency dependence of behavioral tuning in this species of parakeet. Although the reason for the discrepant behavioral results (taken from previous studies) remains unexplained, the present data provide significant and important support for the utility of otoacoustic estimates of cochlear tuning, a methodology previously explored only in mammals.

      Strengths:

      * The OAE and ANF data appear solid and believable. (The behavioral data are taken from previous studies.)

      * No other study in birds (and only a single previous study in mammals) has combined behavioral, auditory-nerve, and otoacoustic estimates of cochlear tuning in a single species.

      * SFOAE-based estimates of cochlear tuning now avoid possible circularity and were are obtained by assuming that the tuning ratio estimated in chicken applies also to the budgerigar.

      Weaknesses:

      * In mammals, accurate prediction of neural Q_ERB from otoacoustic N_SFOAE involves the application of species-invariance of the tuning ratio combined with an attempt to compensate for possible species differences in the location of the so-called apical-basal transition (for a review, see Shera & Charaziak, Cochlear frequency tuning and otoacoustic emissions. Cold Spring Harb Perspect Med 2019; 9:pii a033498. doi: 10.1101/cshperspect.a033498; in particular, the text near Eq. 2 and the value of CFa|b).

      Despite this history, the manuscript makes no mention of the apical-basal transition, its possible role in birds, or why it was ignored in the present analysis. As but one result, the comparative discussion of the tuning ratio (paragraph beginning on lines 383) is incomplete and potentially misleading. Although the paragraph highlights differences in the tuning ratio across groups, perhaps these differences simply reflect differences in the value of CFa|b. For example, if the cochlea of the budgerigar is assumed to be entirely "apical" in character (so that CFa|b is around 7-8 kHz), then the budgerigar tuning ratios appear to align remarkably well with those previously obtained in mammals (see Shera et al 2010, Fig 9).

      * For the most part, the authors take previous behavioral results in budgerigar at face value, attributing the discrepant behavioral results to hypothesized "central specializations for the processing of masked signals". But before going down this easy road, the manuscript would be stronger if the authors discussed potential issues that might affect the reliability of the previous behavioral literature. For example, the ANF data show that thresholds rise rapidly above about 5 kHz. Might the apparent broadening of the behavioral filters arise as<br /> a consequence of off-frequency listening due to the need to increase signal levels at these frequencies? Or perhaps there are other issues. Inquiring readers would appreciate an informed discussion.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript describes two new sets of data involving budgerigar hearing: 1) auditory-nerve tuning curves (ANTCs), which are considered the 'gold standard' measure of cochlear tuning, and 2) stimulus-frequency otoacoustic emissions (SFOAEs), which are a more indirect measure (requiring some assumptions and transformations to infer cochlear tuning) but which are non-invasive, making them easier to obtain and suitable for use in all species, including humans. By using a tuning ratio (relating ANTC bandwidths and SFOAE delay) derived from another bird species (chicken), the authors show that the tuning estimates from the two methods are in reasonable agreement with each other over the range of hearing tested (280 Hz to 5.65 kHz for the ANTCs), and both show a slow monotonic increase in cochlear tuning quality over that range, as expected. These new results are then compared with (much) older existing behavioral estimates of frequency selectivity in the same species.

      Strengths:

      This topic is of interest, because there are some indications from the older behavioral literature that budgerigars have a region of best tuning, which the current authors refer to as an 'acoustic fovea', at around 4 kHz, but that beyond 5 kHz the tuning degrades. Earlier work has speculated that the source could be cochlear or higher (e.g., Okanoya and Dooling, 1987). The current study appears to rule out a cochlear source to this phenomenon.

      Weaknesses:

      The conclusions are rendered questionable by two major problems.

      The first problem is that the study does not provide new behavioral data, but instead relies on decades-old estimates that used techniques dating back to the 1970s, which have been found to be flawed in various ways. The behavioral techniques that have been developed more recently in the human psychophysical literature have avoided these well-documented confounds, such as nonlinear suppression effects (e.g., Houtgast, https://doi.org/10.1121/1.1913048; Shannon, https://doi.org/10.1121/1.381007; Moore, https://doi.org/10.1121/1.381752), perceptual confusion between pure-tone maskers and targets (e.g., Neff, https://doi.org/10.1121/1.393678), beats and distortion products produced by interactions between simultaneous maskers and targets (e.g., Patterson, https://doi.org/10.1121/1.380914), unjustified assumptions and empirical difficulties associated with critical band and critical ratio measures (Patterson, https://doi.org/10.1121/1.380914), and 'off-frequency listening' phenomena (O'Loughlin and Moore, https://doi.org/10.1121/1.385691). More recent studies, tailored to mimic to the extent possible the techniques used in ANTCs, have provided reasonably accurate estimates of cochlear tuning, as measured with ANTCs and SFOAEs (Shera et al., 2003, 2010; Sumner et al., 2010). No such measures yet exist in budgerigars, and this study does not provide any. So the study fails to provide valid behavioral data to support the claims made.

      The second, and more critical, problem can be observed by considering the frequencies at which the old behavioral data indicate a worsening of tuning. From the summary shown in the present Fig. 2, the conclusion that behavioral frequency selectivity worsens again at higher frequencies is based on four data points, all with probe frequencies between 5 and 6 kHz. Comparing this frequency range with the absolute thresholds shown in Fig. 3 (as well as from older budgerigar data) shows it to be on the steep upper edge of the hearing range. Thus, we are dealing not so much with a fovea as the point where hearing starts to end. The point that anomalous tuning measures are found at the edge of hearing in the budgerigar has been made before: Saunders et al. (1978) state in the last sentence of their paper that "the size of the CB rapidly increases above 4.0 kHz and this may be related to the fact that the behavioral audibility curve, above 4.0 kHz, loses sensitivity at the rate of 55 dB per octave."

      Hearing abilities are hard to measure accurately on the upper frequency edge of the hearing range, in humans as well as in other species. The few attempts to measure human frequency selectivity at that upper edge have resulted in quite messy data and unclear conclusions (e.g., Buus et al., 1986, https://doi.org/10.1007/978-1-4613-2247-4_37). Indeed, the only study to my knowledge to have systematically tested human frequency selectivity in the extended high frequency range (> 12 kHz) seems to suggest a substantial broadening, relative to the earlier estimates at lower frequencies, by as much as a factor of 2 in some individuals (Yasin and Plack, 2005; https://doi.org/10.1121/1.2035594) - in other words by a similar amount as suggested by the budgerigar data. The possible divergence of different measures at the extreme end of hearing could be due to any number of factors that are hard to control and calibrate, given the steep rate of threshold change, leading to uncontrolled off-frequency listening potential, the higher sound levels needed to exceed threshold, as well as contributions from middle-ear filtering. As a side note, in the original ANTC data presented in this study, there are actually very few tuning curves at or above 5 kHz, which are the ones critical to the argument being forwarded here. To my eye, all the estimates above 5 kHz in Fig. 3 fall below the trend line, potentially also in line with poorer selectivity going along with poorer sensitivity as hearing disappears beyond 6 kHz.

      The basic question posed in the current study title and abstract seems a little convoluted (why would you expect a behavioral measure to reflect cochlear mechanics more accurately than a cochlear-based emissions measure?). A more intuitive (and likely more interesting) way of framing the question would be "What is the neural/mechanical source of a behaviorally observed acoustic fovea?" Unfortunately, this question does not lend itself to being answered in the budgerigar, as that 'fovea' turns out to be just the turning point at the end of the hearing range. There is probably a reason why no other study has referred to this as an acoustic fovea in the budgerigar.

      Overall, a safe interpretation of the data is that hearing starts to change (and becomes harder to measure) at the very upper frequency edge, and not just in budgerigars. Thus, it is difficult to draw any clear conclusions from the current work, other than that the relations between ANTC and SFOAEs estimates of tuning are consistent in budgerigar, as they are in most (all?) other species that have been tested so far.

    1. Reviewer #1 (Public review):

      Tu, Wen, et al. investigated the activity of mPFC putative glutamatergic neurons during a probabilistic threat discrimination and avoidance learning task using miniaturized GRIN lens implantation and single-photon calcium imaging in freely moving mice. In conjunction with this cellular recording, they employed channelrhodopsin-mediated optogenetic excitation of terminals from basal forebrain cholinergic projection neurons coupled to the delivery of an air puff on either of two maze paths with differential threat probability. The authors found that the optogenetic manipulation altered mPFC encoding of outcomes and disrupted animals' behavioral adaptation. Over the course of multiple learning sessions, optogenetically stimulated mice lagged behind control animals in resolving the differential threat probabilities on the two paths and making adaptive choices. In particular, the animals with optogenetic stimulation of cholinergic terminals were significantly more likely to switch to the path with higher threat probability after having just gotten a rare air puff on the generally "safer" path. Combined with data from a deterministic version of the task showing that optogenetically stimulated mice could behaviorally discriminate between the paths appropriately under such circumstances, these results suggest an impairment in the experimental animals' ability to make use of threat history over multiple trials. This comparison of probabilistic and deterministic versions of the same task is a highlight of this paper, representing a thoughtfulness about what information can be gleaned from such variations in the design of behavioral experiments that is all too often lacking. These data are timely in contributing to an ongoing discussion in the field about the role of phasic cholinergic signaling to the cortex, about which relatively little is known.

      While the ensemble recording of mPFC neurons during the task appears to be reliable and well-designed and the behavioral effects of the optogenetic stimulation are convincing, some major weaknesses of the paper limit its usefulness to others in the field:

      (1) Optogenetic excitation of presynaptic terminals can lead to antidromic action potentials that alter the firing properties of the target cell (see the excellent review on challenges of and strategies for presynaptic optogenetic experiments Rost et al., Nat Neurosci 2022). To their credit, the authors explicitly acknowledge this fact, but they believe that the only alternative possibility is that their intervention could lead to increased acetylcholine release at collateral projections in other prefrontal subregions. In fact, we do not know that the mechanism mediating the behavioral changes observed involves acetylcholine at all, as many ChAT+ basal forebrain neurons co-transmit using GABA (Saunders et al., Nature, 2015; Saunders et al., eLife, 2015; Granger et al., Neuropharmacology, 2016). A very useful internal control, which is recommended by Rost et al. for such presynaptic excitation experiments, would be to locally infuse nicotinic or muscarinic cholinergic antagonists into the mPFC in an attempt to reverse the optogenetically induced deficit; this would resolve whether the effect is indeed mediated by cholinergic neurotransmission and if it is specific to the mPFC.

      (2) In a similar vein, the fact that LED illumination in the no-opsin control group appears to increase activity in prefrontal neurons (Figure 2C) and, moreover, has a functional effect in disrupting location-selective cellular activity to a similar extent as in the ChrimsonR group (Figure S3) is inadequately explained and cause for concern. Although the authors argue that the degree or "robustness" of puff-evoked activity was significantly greater in the ChrimsonR group as compared to fluorophore-only controls, their statistical test for demonstrating this is the Kolmogorov-Smirnov test (Figure 2D), thus showing that the two samples likely are drawn from different distributions but little else.

      (3) Throughout the paper, the authors rely heavily on the Kolmogorov-Smirnov and binomial tests (Figures 2D, 3, 4D, S3, S4) to compare distributions in this manner, but it is unclear to me why these would be the most appropriate statistical tests for what they seek to demonstrate. Given the holistic nature of these tests in comparing the shape and spread of distributions, I am concerned that they might be inflating the significance of the differences between groups. Even if the authors were seeking a nonparametric statistical test, which most likely would be quite appropriate, there are nonparametric versions of ANOVA that they could use (e.g. Kruskal-Wallis, Friedman). Indeed, in much of this data set a repeated measures statistical analysis would seem to be called for, whereas the Kolmogorov-Smirnov test assumes that the two samples must be independent of each other. The most notable example of this premise being violated is in Figure 3, where data from the same cell populations in the same animals are being compared between experimental days and across various trial types.

    2. Reviewer #2 (Public review):

      Summary:

      The authors tested:

      (1) Whether mice learn that they are more/less likely to receive an aversive air puff outcome at different corners of a square-shaped open field apparatus, under 75%/25% probabilistic contingencies;

      (2) Whether stimulating basal forebrain cholinergic neurons and terminals in the prefrontal cortex affects learning in this context; and

      (3) Whether stimulating cholinergic neurons affects prefrontal cortical single neuron calcium signaling about outcome expectations during learning and contingency changes. They found that mice that received cholinergic stimulation approached high and low aversive outcome probability sites at similar velocities, while control mice approached high probability sites slower, suggesting that cholinergic stimulation impaired learning. Cholinergic stimulation reduced cortical neuron calcium activity during trials on the high-probability corner when the outcome was not delivered. The authors provide additional characterization of cellular responses during delivery/omission trials in high/low probability corners, using running speed as a proxy for low versus high expectations. The study will likely be of interest to those who are interested in prediction and error signaling in the cortex; however, the task and analyses do not permit very easy or clear dissociation of prediction versus prediction error signaling and place field versus place field-expectation multiplexing. The study has several strengths but some weaknesses, which are discussed below.

      Strengths:

      It is clear the authors were very careful and did a great job with their image processing and segmentation procedures. The details in the methods are appreciated, as are the supplemental descriptive statistics on cell counts.

      There are careful experimental controls - for example, the authors showed that the effects of cholinergic stimulation with air puff present are greater than without it, thus ruling out effects of stimulation on cellular physiology that were independent of learning or the task.

      The addition of a channelrhodopsin stimulation group is helpful to show that the effects are robust and not wavelength/opsin-specific.

      The prefrontal cortex cholinergic terminal stimulation experiment is a great addition. It shows that the behavioral effects of cell body stimulation, which was used in the imaging experiments, are similar to cortical terminal stimulation, where the imaging was performed.

      Weaknesses:

      The analyses were a bit difficult to follow and therefore it is difficult to determine whether the cells are signaling predictions versus prediction errors - a very important distinction.

      The task does not fully dissociate place field coding, since learning about the different probabilities necessarily took place at different areas in the apparatus. Some additional analyses could help address this.

    3. Reviewer #3 (Public review):

      Summary:

      Using a combination of optogenetic tools and single-photon calcium imaging, the authors collected a set of high-quality data and conducted thorough analyses to demonstrate the importance of cholinergic input to the prelimbic cortex in probabilistic spatial learning, particularly pertaining to threat.

      Strengths:

      Given the importance of the findings, this paper will appeal to a broad audience in the systems, behavioural, and cognitive neuroscience community.

      Weaknesses:

      I have only a few concerns that I consider need to be addressed.

      (1) Can the authors describe the basic effect of cholinergic stimulation on PL neurons' activity, during pretraining, probabilistic, and random stages? From the plot, it seems that some neurons had an increase and others had a decrease in activity. What are the percentages for significant changes in activities, given the intensity of stimulation? Were these changes correlated with the neurons' selectivity for the location? If they happen to have the data, a dose-response plot would be very helpful too.

      (2) Figure 2B: The current sorting does not show the effects of puff and LED well. Perhaps it's best to sort based on the 'puff with no stim' condition in the middle, by the total activity in 2s following the puff, and then by the timing in the rise/drop of activity (from early to late). This way perhaps the optogenetic stimulation would appear more striking. Figure 3Aa and Ba have the same issue: by the current sorting, the effects are not very visible at all. Perhaps they want to consider not showing the cells that did not show the effect of puff and/or LED.

      Also, I would recommend that the authors use ABCD to refer to figure panels, instead of Aa, Ab, etc. This is very hard to follow.

      (3) The authors mentioned the laminar distribution of ACh receptors in discussion. Can they show the presence/absence of topographic distribution of neurons responding to puff and/or LED?

      (4) Figure 2C seems to show only neurons with increased activity to an air puff. It's also important to know how neurons with an inhibitory response to air-puff behaved, especially given that in tdTomato animals, the proportion of these neurons was the same as excitatory responders.

      (5) Page 5, lines 107 and 110: Following 2-way ANOVA, the authors used a 'follow-up 1-way rmANOVA' and 'follow-up t-test' instead of post hoc tests (e.g. Tukey's). This doesn't seem right. Please use post hoc tests instead to avoid the problem of multiple comparisons.

      (6) Figure 1H: in the running speed analysis, were all trials included, both LED+ and LED-? This doesn't affect the previous panels in Figure 1 but it could affect 1H. Did stimulation affect how the running speed recovers?

      On a related note, does a surprising puff/omission affect the running speed on the subsequent trial?

      (7) On Page 7, line 143, it says "In the absence of LED stimulation, the magnitude of their puff-evoked activity was reduced in ChrimsonR-expressing mice...", but then on line 147 it says "This group difference was not detected without the LED stimulation". I don't follow what is meant by the latter statement, it seems to be conflicting with line 143. The red curves in the left vs right panels do not seem different. The effect of air puff seems to differ, but is this due to a higher gray curve ('no puff' condition) in the ChrimsonR group?

      (8) Did the neural activity correlate with running speed? Since the main finding was the absence of difference in running speed modulation by probability in ChrimsonR mice, one would expect to see PL cells showing parallel differences.

    1. Reviewer #1 (Public review):

      This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.

      In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated. However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated. The results presented in this manuscript support this interpretation. Strong stimulation, such as axotomy of all synaptic branches, caused robust DLK activation, as indicated by puc-lacZ expression. In contrast, weak stimulation, such as axotomy of some synaptic branches, resulted in weaker DLK activation, which did not induce the puc-lacZ reporter. This suggests that the strength of DLK activation depends on the severity of the injury rather than the presence of intact synapses. Given that this is a central conclusion of the study, it may be worthwhile to confirm this further. Alternatively, the authors may consider refining their conclusion to better align with the evidence presented.

      As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.

    2. Reviewer #2 (Public review):

      Summary:

      The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.

      Strengths:

      (1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.

      (2) Suggests a new mode of Wnd regulation, independent of Hiw.

      Weaknesses:

      (1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study

      (2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNK-cJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.

      Overall, this is a thorough and well-performed investigation of the mechanism of spared-branch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.

      Strengths:

      The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably originates from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).

      Weaknesses:

      The weakest data presented by this manuscript is the study of the actual amounts of Wallenda protein in the axon. The authors argue that increased Wnd protein is being anterogradely delivered from the soma, but no support for this is given. Whether this change is due to transcription/translation, protein stability, transport, or other means is not investigated in this work. However, because this point is not central to the arguments in the paper, it is only a minor critique.

      As far as the scope of impact: because the conclusions of the paper are focused on a single (albeit well-validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling in all contexts (for example, sensory axons or interneurons). Is the nerve-muscle connection the rule or the exception in terms of regeneration program activation?

      Because changes in puc-lacZ intensity are the major readout, it would be helpful to better explain the significance of the amount of puc-lacZ in the nucleus with respect to the activation of regeneration. Is it known that scaling up the amount of puc-lacZ transcription scales functional responses (regeneration or others)? The alternative would be that only a small amount of puc-lacZ is sufficient to efficiently induce relevant pathways (threshold response).

    1. Reviewer #1 (Public review):

      This study identifies two behavioral processes that underlie learned pathogen avoidance behavior in C. elegans: exiting and re-entry of pathogenic bacterial lawns. Long-term behavioral tracking indicates that animals increase the prevalence of both behaviors over long-term exposure to the pathogen Pseudomonas aeruginosa. Using an optogenetic silencing screen, the authors identify groups of neurons, whose activity regulates lawn occupancy. Surprisingly, they find that optogenetic inhibition of neurons during only the first two hours of pathogen exposure can establish subsequent long-term changes in pathogen aversion. By leveraging a compressed sensing approach, the authors define a set of neurons involved in either lawn exit or lawn re-entry behavior using a constrained set of transgenic lines that drive Arch-3 expression in overlapping groups of neurons. They then measure the calcium activity of the candidate neurons involved in lawn re-entry in freely moving animals using GCaMP, and observe a reduction in their neural activity after exposure to pathogen. Optogenetic inhibition of AIY and SIA neurons during acute pathogen exposure in naïve animals delays lawn entry whereas activating these neurons in animals previously exposed to pathogen enhances lawn entry, albeit transiently.

      This work is missing experiments and analyses that are necessary to substantiate their claims. Although the authors convincingly show that neuronal inhibition experiments during pathogen exposure reveal separable groups of neurons controlling pathogenic lawn exiting and re-entry, their methods to validate these results at single neuron cell-type resolution lack rigor.

      In Figure 4, the authors claim that the reduction in calcium activity in cells of interest following pathogen exposure encodes pathogen experience. However, they make no effort to correlate the observed decreased activity with concomitant shifts in increased immobility (decreased forward locomotion) or the increased age of the worms since pathogen exposure began (24 hours have elapsed), either of which could easily explain these results. A better comparison would be between age-matched naive animals and animals exposed to pathogen. More to the point, we are interested in the involvement of these neurons' activity patterns with the behavioral motifs associated with lawn exits and re-entries, so examining these activity patterns in the absence of any pathogen before or after long-term pathogen exposure yields little insight into their relevant signaling roles. To substantiate the authors' claims, a better experiment would measure these neurons' calcium activity during lawn exits and re-entries in naive and post-exposed age-matched worms.

      In Figure 5, the authors attempt to show that manipulating AIY and SIA/SIB neuronal activity controls pathogenic lawn re-entry behavior. Although they show that inhibiting these neurons in naive animals increases latency to enter pathogenic lawns, they never test the effect of neuronal inhibition in post-exposed animals. Instead they activate these neurons using channelrhodopsin, whereby they observe an increase in lawn entry and exit behavior, indicative of high forward locomotion speed. Although suggestive, neither of these experiments prove these neurons' involvement in pathogenic lawn re-entry behavior following pathogen exposure. To rigorously test the hypothesis that AIY and SIA/SIB neurons are required to sustain higher latency to lawn re-entry following pathogen exposure, the authors should perform neuronal inhibition experiments in post-pathogen-exposed animals as well and compare the results. The interpretation of this figure is further complicated by the fact that Npr-4::ChR2 animals express ChR2 in AIY in addition to SIA/SIB neurons: experiments that calculated lawn re-entry rates in Npr-4::ChR2 activation in post-exposed animals may include the known effect of stimulating AIY alone (Fig. 5J) since no discernible attempt at structured illumination to limit excitation to SIA/SIB neurons was made in these animals (Fig. 5 K, L).

      This work raises the interesting possibility that different sets of neurons control lawn exit and lawn re-entry behaviors following pathogen exposure. However, the authors never directly test this claim. To rigorously show this, the authors would need to show that lawn-exit promoting neurons (CEPs, HSNs, RIAs, RIDs, SIAs) are dispensable for lawn re-entry behavior and that lawn re-entry promoting neurons (AVK, SIA, AIY, MI) are dispensable for lawn exit behavior in pathogen-exposed animals. The authors identify AVK neurons as important for modulating lawn re-entry behavior by brief inhibition at the start of pathogen exposure but fail to find that these neurons are required for increased latency to re-entry in naïve animals (Fig. 5D). Recent work from Marquina-Solis et al (2024) shows that chronic silencing of these neurons delays pathogen lawn leaving, due to impaired release of flp-1 neuropeptide. Authors may wish to connect their work more closely with the existing literature by investigating the behavioral process by which AVK contributes to lawn evacuation.

    2. Reviewer #2 (Public review):

      In this manuscript, Hallacy et al. used a compressed sensing-based optogenetic screening method to investigate the crucial neurons that regulate pathogenic avoidance behavior in C. elegans. They further substantiate their findings using complementary optogenetic activation and imaging techniques to confirm the roles of the key neurons identified through extensive screening efforts. Notably, they identified AIY and SIA as pivotal neurons in the dynamic process of pathogenic avoidance. Their significant discovery is the delayed or stalled reentry process, which drives avoidance behavior; to my knowledge, this dynamic has not been previously documented. Additionally, the successful integration of quantitative optogenetic tools and compressed sensing algorithms is noteworthy, demonstrating the potential for obtaining highly quantitative data from the C. elegans nervous system. This approach is quite rare in this field, yet it represents a promising direction for studying this simple nervous system.

      However, the paper's main weakness lies in its lack of a detailed mechanism explaining how the delayed reentry process directly influences the actual locomotor output that results in avoidance. The term 'delayed reentry' is used as a dynamic metric for quantifying the screening, yet the causal link between this metric and the mechanistic output remains unclear. Despite this, the study is well-structured, with comprehensive control experiments, and is very well constructed.

      Comments on revisions:

      The authors have addressed all my concerns and suggestions. They particularly further clarified the AIY's role in navigation by providing a new figure. They also provided supplementary videos representing the re-entry process.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript by Lopez-Blanch and colleagues, 21 microexons are selected for a deep analysis of their impacts on behavior, development, and gene expression. The authors begin with a systematic analysis of microexon inclusion and conservation in zebrafish and use these data to select 21 microexons for further study. The behavioral, transcriptomic, and morphological data presented are for the most part convincing. Furthermore, the discussion of the potential explanations for the subtle impacts of individual microexon deletions versus loss-of-function in srrm3 and/or srrm4 is quite comprehensive and thoughtful. One major weakness: data presentation, methods, and jargon at times affect readability / might lead to overstated conclusions. However, overall this manuscript is well-written, easy to follow, and the results are of broad interest.

      Strengths:

      (1) The study uses a wide variety of techniques to assess the impacts of microexon deletion, ranging from assays of protein function to regulation of behavior and development.

      (2) The authors provide comprehensive analyses of the molecular impact of their microexon deletions, including examining how host-gene and paralog expression is affected.

      Weaknesses / Major Points:

      (1) According to the methods, it seems that srrm3 social behavior is tested by pairing a 3mpf srrm3 mutant with a 30dpf srrm3 het. Is this correct? The methods seem to indicate that this decision was made to account for a slower growth rate of homozygous srrm3 mutant fish. However, the difference in age is potentially a major confound that could impact the way that srrm3 mutants interact with hets and the way that srrm3 mutants interact with one another (lower spread for the ratio of neighbour in front value, higher distance to neighbour value). This reviewer suggests testing het-het behavior at 3 months to provide age-matched comparisons for del-del, testing age-matched rather than size-matched het-del behavior, and also suggests mentioning this in the main text / within the figure itself so that readers are aware of the potential confound.

      (2) Referring to srrm3+/+; srrm4-/- controls for double mutant behavior as "WT for simplicity" is somewhat misleading. Why do the authors not refer to these as srrm4 single mutants?

      (3) It's not completely clear how "neurally regulated" microexons are defined / how they are different from "neural microexons"? Are these terms interchangeable?

      (4) Overexpression experiments driving srrm3 / srrm4 in HEK293 cells are not described in the methods.

      (4) Suggest including more information on how neurite length was calculated. In representative images, it appears difficult to determine which neurites arise from which soma, as they cross extensively. How was this addressed in the quantification?

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript explores in zebrafish the impact of genetic manipulation of individual microexons and two regulators of microexon inclusion (Srrm3 and Srrm4). The authors compare molecular, anatomical, and behavioral phenotypes in larvae and juvenile fish. The authors test the hypothesis that phenotypes resulting from Srrm3 and 4 mutations might in part be attributable to individual microexon deletions in target genes.

      The authors uncover substantial alterations in in vitro neurite growth, locomotion, and social behavior in Srrm mutants but not any of the individual microexon deletion mutants. The individual mutations are accompanied by broader transcript level changes which may resemble compensatory changes. Ultimately, the authors conclude that the severe Srrm3/4 phenotypes result from additive and/or synergistic effects due to the de-regulation of multiple microexons.

      Strengths:

      The work is carefully planned, well-described, and beautifully displayed in clear, intuitive figures. The overall scope is extensive with a large number of individual mutant strains examined. The analysis bridges from molecular to anatomical and behavioral read-outs. Analysis appears rigorous and most conclusions are well-supported by the data.

      Overall, addressing the function of microexons in an in vivo system is an important and timely question.

      Weaknesses:

      The main weakness of the work is the interpretation of the social behavior phenotypes in the Srrm mutants. It is difficult to conclude that the mutations indeed impact social behavior rather than sensory processing and/or vision which precipitates apparent social alterations as a secondary consequence. Interpreting the phenotypes as "autism-like" is not supported by the data presented.

    3. Reviewer #3 (Public review):

      Summary:

      Microexons are highly conserved alternative splice variants, the individual functions of which have thus far remained mostly elusive. The inclusion of microexons in mature mRNAs increases during development, specifically in neural tissues, and is regulated by SRRM proteins. Investigation of individual microexon function is a vital avenue of research since microexon inclusion is disrupted in diseases like autism. This study provides one of the first rigorous screens (using zebrafish larvae) of the functions of individual microexons in neurodevelopment and behavioural control. The authors precisely excise 21 microexons from the genome of zebrafish using CRISPR-Cas9 and assay the downstream impacts on neurite outgrowth, larvae motility, and sociality. A small number of mild phenotypes were observed, which contrasts with the more dramatic phenotypes observed when microexon master regulators SRRM3/4 are disrupted. Importantly, this study attempts to address the reasons why mild/few phenotypes are observed and identify transcriptomic changes in microexon mutants that suggest potential compensatory gene regulatory mechanisms.

      Strengths:

      (1) The manuscript is well written with excellent presentation of the data in the figures.

      (2) The experimental design is rigorous and explained in sufficient detail.

      (3) The identification of a potential microexon compensatory mechanism by transcriptional alterations represents a valued attempt to begin to explain complex genetic interactions.

      (4) Overall this is a study with a robust experimental design that addresses a gap in knowledge of the role of microexons in neurodevelopment.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place-cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving force behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      Despite the impressive dataset, there are several methodological and interpretational concerns that limit the impact of the findings. Firstly, the virtual environment appears to be poorly enriched, relying mainly on wall patterns for visual cues, which raises questions about the generalizability of the results to more enriched environments. Prior studies have shown that environmental enrichment can significantly influence spatial coding, and it would be important to determine how a more immersive VR environment might alter the observed PFF dynamics. Secondly, the study relies on deconvolution methods in some cases to infer spiking activity from calcium signals without in vivo ground truth validation. This introduces potential inaccuracies, as deconvolution is an estimate rather than a direct measure of spiking, and any conclusions drawn from these inferred signals should be interpreted with caution. Thirdly, the figures would benefit from clearer statistical annotations and visual enhancements. For example, several plots lack indicators of statistical significance, making it difficult for readers to assess the robustness of the findings. Furthermore, the use of bar plots without displaying underlying data distributions obscures variability, which could be better visualized with violin plots or individual data points. The manuscript would also benefit from a more explicit breakdown of the proportion of place fields categorized as BTSP-like versus non-BTSP-like, along with clearer references to figures throughout the results section. Lastly, the authors' interpretation of their data, particularly regarding the sufficiency of large calcium transients for PFF induction, needs to be more cautious. Without direct confirmation that these transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      A new method to use calcium imaging to separate BTSP and non-BTSP place field formation. This work offers new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      There are some issues about data and statistics that need to be addressed before these research findings can be considered as rigorous conclusions.

      While the authors mentioned 3 features of PF generated by BTSP during calcium imaging in the Introduction, the classification method used features 1 and 2. The confirmation by feature 3 in its current form is important but not strong enough.

      Some key data is missing such as the excluded PFs, the BTSP/non-BTSP of each animal, etc

      Impact:

      This work is likely to provide a new method to classify BTSP and non-BTSP place field formation using calsium image to the field.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study the spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well-written, well-powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves the weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out-of-field firing, etc for those that arise due to BTSP vs non-BTSP.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preferences (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, it directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2, which examined the vicarious inequality aversion in conditions where feedback was never provided, is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION<br /> (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulting directly from their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. The intro and set are heavily around vicarious learning, and later the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020

      EXPERIMENTAL DESIGN<br /> (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder what this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participant, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the learning phase can largely impact the preference learning of the participants.

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING<br /> (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, the blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, the participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the change between the baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model. This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      (7) I quite liked Study 2 which tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote, "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assume the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference update (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study 2 will be very helpful for the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments demonstrate that individuals can learn to reject such offers through vicarious learning - by observing and acting in line with a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles a critical topic relevant to social norms, morality, and justice. The findings, which show that individuals can adopt just and fair norms even at a personal cost, are promising. The study is well-situated in the literature, with clever experimental design and a computational approach that may offer insights into latent cognitive processes. Findings have potential implications for policymakers.

      Weaknesses:

      Note: in the text below, the "teacher" will refer to the agent from which a participant presumably receives feedback during the learning phase.

      (1) Focus on Disadvantageous Inequity (DI): A significant portion of the paper focuses on responses to Disadvantageous Inequitable (DI) offers, which is confusing given the study's primary aim is to examine learning in response to Advantageous Inequitable (AI) offers. The inclusion of DI offers is not well-justified and distracts from the main focus. Furthermore, the experimental design seems, in principle, inadequate to test for the learning effects of DI offers. Because both teaching regimes considered were identical for DI offers the paradigm lacks a control condition to test for learning effects related to these offers. I can't see how an increase in rejection of DI offers (e.g., between baseline and generalization) can be interpreted as speaking to learning. There are various other potential reasons for an increase in rejection of DI offers even if individuals learn nothing from learning (e.g. if envy builds up during the experiment as one encounters more instances of disadvantageous fairness).

      (2) Statistical Analysis: The analysis of the learning effects of AI offers is not fully convincing. The authors analyse changes in rejection rates within each learning condition rather than directly comparing the two. Finding a significant effect in one condition but not the other does not demonstrate that the learning regime is driving the effect. A direct comparison between conditions is necessary for establishing that there is a causal role for the learning regime.

      (3) Correlation Between Learning and Contagion Effects:<br /> The authors argue that correlations between learning effects (changes in rejection rates during the learning phase) and contagion effects (changes between the generalization and baseline phases) support the idea that individuals who are better aligning their preferences with the teacher also give more consideration to the teacher's preferences later during generalization phase. This interpretation is not convincing. Such correlations could emerge even in the absence of learning, driven by temporal trends like increasing guilt or envy (or even by slow temporal fluctuations in these processes) on behalf of self or others. The reason is that the baseline phase is temporally closer to the beginning of the learning phase whereas the generalization phase is temporally closer to the end of the learning phase. Additionally, the interpretation of these effects seems flawed, as changes in rejection rates do not necessarily indicate closer alignment with the teacher's preferences. For example, if the teacher rejects an offer 75% of the time then a positive 5% learning effect may imply better matching the teacher if it reflects an increase in rejection rate from 65% to 70%, but it implies divergence from the teacher if it reflects an increase from 85% to 90%. For similar reasons, it is not clear that the contagion effects reflect how much a teacher's preferences are taken into account during generalization.

      (4) Modeling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided, and fits for the losing models are not shown, leaving readers in the dark about where these models fail. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related (for example, the feedback that the teacher would have rejected an offer provides feedback that rejection is "correct" but also that acceptance is "an error", and the later is not incorporated into the modelling). It is unclear if and to what extent this limits current RL formulations. There are also potentially important missing details about the models. Can the authors justify/explain the reasoning behind including these variants they consider? What are the initial Q-values? If these are not free parameters what are their values?

      (5) Conceptual Leap in Modeling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models learning occurs independently for each offer (hence to cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner learns a functional form that allows to predict the teacher's feedback based on said offer features (e.g., linear or quadratic form). Because feedback for an offer modulates the parameters of this function (feature weights) generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even show superiority over the preference learning model, casting doubt on the authors' conclusions. Of note: even the behaviourists knew that as Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean little Alfred had a sophisticated model of animals he used to infer how they behave.

      (6) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g. Figure 3A, AI+DI blue group). This is puzzling.

      Thinking about this I realized the model makes quite strong unintuitive predictions that are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then overleaning the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact the teacher rejects 75% of the offers. In other words, as learning continues learners will diverge from the teacher. On the other hand, if a participant begins learning to tend to accept this offer (guilt < 1.5) then during learning they can increase their rejection rate but never above 50%. Thus one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

    1. Reviewer #1 (Public review):

      Summary:

      Optical blur is characterized by contrast losses and phase shifts that alter the local relationship between the component spatial frequencies in the image. The eye experiences optical blur on several occasions - for instance, physiologically, when the focus state of the eye does not match the optical vergence demand and, in cases of pathologies like keratoconus where the cornea gets progressively distorted leading to degraded retinal image quality. Recalibration of the visual system to suprathreshold contrast losses arising from the optical blur and the mechanisms that may underlie such a recalibration have been well-researched. This study by Barbot et al presents convincing evidence that the visual system could also recalibrate itself to the phase distortions experienced with optical blur. This was demonstrated, in principle, on a small number of participants with normal vision but with induced blur (?? experienced psychophysical observers) and in a few keratoconic patients using their state-of-the-art adaptive optics apparatus. In the former cohort, known magnitudes of radially asymmetric blur from a vertical coma were induced while participants judged the position of a compound grating target that shifted in predictable ways with the induction of blur. Immediate exposure to images blurred with such higher-order aberrations resulted in position shifts that were consistent with optical theory, but prolonged exposure to such blur resulted in the position shift returning to veridical perception (albeit, not completely). When the blur was removed after the adaptation phase, after effects of the position offset were noticed. In the keratoconic cohort, such position offsets were observed even when the eye was completely corrected for optical degradation. These results are discussed in the context of the perception of real-world targets, the underlying neurophysiology, and what it means to space perception in disease conditions like keratoconus.

      Strengths:

      A clear hypothesis, a parameterized experimental space, rigor of optical correction and psychophysical judgements, and clarity in the explanation of results are the major strengths of the paper. Additional strengths include the control experiments to address confounders and the additional analyses shown in the supplementary section to rule out analytical inconsistencies in explaining the results.

      Weaknesses:

      The small sample size (especially in the keratoconic cohort) may be a limitation of the study. While the experiments conducted in this study are meant to demonstrate a basic visual phenomenon, that only 6 keratoconic patients were included in the study precludes the results from being extrapolated to the heterogeneity of disease presentation. It must, however, be noted that these are difficult experiments to conduct, and getting multiple participants to agree to such an experiment is not an easy task.

      Second, the analysis shown in Figure 6C relating the magnitude of habitual higher-order RMS to the absolute PSE shift is not convincing. The PSE's were both positive and negative in the KC patients. The direction of the phase shift experienced by the patient (i.e., positive or negative shift in the PSE) should also be determined by the pattern of HOA's in their eyes. Simply comparing the absolute magnitudes does not make sense. Would it be possible to convolve the compound grating with the PSF obtained from each patient and predict which direction should the PSE shift? This prediction can then be compared with the observed shift in the PSE's.

      A third weakness of the study may be the assumption that the phase recalibration in keratoconic cohort may be eye-specific. That is, if the participant has dissimilar severities of keratoconus, the probed eye's aberration profile may determine the phase profile that the eye is calibrated to. I am not sure to what extent this assumption is valid. Further, under natural viewing, the pupil size will change with light intensity and accommodative state and this will, in turn, determine the optical quality of the eye. Given this, it is not clear what will the visual system recalibrate itself to, when the phase shifts in the retinal image may keep changing from the underlying blur profile in the retina. Also, if the disease is progressive in nature (in their cohort, the authors indicate that the disease did not progress), the calibration state should also constantly change. What is the time scale of such a calibration and could there be multiple states of such adaptation remains to be explored. This, of course, is not a weakness of the present study, but an open question for the future.

      Finally, one additional experiment could have been performed (this is good to have information and certainly not a necessity). What is the wavefront profile of a few keratoconic patients that participated in the study, used as the adaptation profile in the 2nd experiment (as opposed to a fixed level of coma)? Would a 60-min paradigm result in adapted states that will result in phase shifts matching what is experienced by keratoconic eyes (see Marella et al., Vis Res, 2024 for a similar induced experiment for studying the impact of phase shifts on visual and stereoacuities)?

    2. Reviewer #2 (Public review):

      Summary:

      The authors examine the ability of the human visual system to adapt to optically induced phase shifts. The study shows clear adaptation to the relative phase created by exposure to vertical coma. The study assesses the impact of adaptation to the coma on the perceived relative phase of f and 3f compound gratings. It is observed that during the first couple of minutes of a 1-hour exposure to induced vertical coma, the apparent relative locations of the f and 3f shifted in the opposite direction to that induced by the coma, a classic adaptation effect. This result highlights a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.

      Strengths:

      Sophisticated and rigorous optical and psychophysical methods, and a clear research question. The manuscript is well-written and the data quality is very high. The authors are to be congratulated on this challenging and complex optics and psychophysics study.

      Weaknesses:

      Some more details on the phase and amplitude consequences of the induced coma would add value to the reader.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses information from the UK Biobank and aims to investigate the role of BMI on various health outcomes, with a focus on differences by sex. They confirm the relevance of many of the well-known associations between BMI and health outcomes for males and females and suggest that associations for some endpoints may differ by sex. Overall their conclusions appear supported by the data. The significance of the observed sex variations will require confirmation and further assessment.

      Strengths:

      This is one of the first systematic evaluations of sex differences between BMI and health outcomes.

      The hypothesis that BMI may be associated with health differentially based on sex is relevant and even expected. As muscle is heavier than adipose tissue, and as men typically have more muscle than women, as a body composition measure BMI is sometimes prone to classifying even normal weight/muscular men as obese, while this measure is more lenient when used in women.

      Confirmation of the many well-known associations is as expected and attests to the validity of their approach.

      Demonstration of the possible sex differences is interesting, with this work raising the need for further study.

      Weaknesses:

      Many of the statistical decisions appeared to target power at the expense of quality/accuracy. For example, they chose to use self-reported information rather than doctor diagnoses for disease outcomes for which both types of data were available.

      Despite known problems and bias arising from the use of one sample approach, they chose to use instruments from the UK Biobank instead of those available from the independent GIANT GWAS, despite the difference in sample size being only marginally greater for UKB for the context. With the way the data is presented, it is difficult to assess the extent to which results are compatible across approaches.

      The approach to multiple testing correction appears very lenient, although the lack of accuracy in the reporting makes it difficult to know what was done exactly. The way it reads, FDR correction was done separately for men, and then for women (assuming that the duplication in tests following stratification does not affect the number of tests). In the second stage, they compared differences by sex using Z-test, apparently without accounting for multiple testing.

      Presentation lacks accuracy in a few places, hence assessment of the accuracy of the statements made by the authors is difficult.

      Conclusion "These findings highlight the importance of retaining a healthy BMI" is rather uninformative, especially as they claim that for some attributes the effects of BMI may be opposite depending on sex/gender.

    2. Reviewer #2 (Public review):

      Summary:

      In this present Mendelian randomization-phenome-wide association study, the authors found BMI to be positively associated with many health-related conditions, such as heart disease, heart failure, and hypertensive heart disease. They also found sex differences in some traits such as cancer, psychological disorders, and ApoB.

      Strengths:

      The use of the UK-biobank study with detailed phenotype and genotype information.

      Weaknesses:

      Previous studies have performed this analysis using the same cohort, with in-depth analysis. See this paper: Searching for the causal effects of body mass index in over 300,000 participants in UK Biobank, using Mendelian randomization. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007951

      I believe that the authors' claim, "To our knowledge, no sex-specific PheWAS has investigated the effects of BMI on health outcomes," is not well supported. They have not cited a relevant paper that conducted both overall and sex-stratified PheWAS using UK Biobank data with a detailed analysis. Given the prior study linked above, I am uncertain about the additional contributions of the present research.

    1. Reviewer #1 (Public review):

      Summary:

      This study highlights the strengths of using predictive computational models to inform C. elegans screening studies of compounds' effects on aging and lifespan. The authors primarily focus on all-trans retinoic acid (atRA), one of the 5 compounds (out of 16 tested) that extended C. elegans lifespan in their experiments. They show that atRA has positive effects on C. elegans lifespan and age-related health, while it has more modest and inconsistent effects (i.e., some detrimental impacts) for C. briggsae and C. tropicalis. In genetic experiments designed to evaluate contributing mediators of lifespan extension with atRA exposure, it was found that 150 µM of atRA did not significantly extend lifespan in akt-1 or akt-2 loss-of-function mutants, nor in animals with loss of function of aak-2, or skn-1 (in which atRA had toxic effects); these genes appear to be required for atRA-mediated lifespan extension. hsf-1 and daf-16 loss-of-function mutants both had a modest but statistically significant lifespan extension with 150 µM of atRA, suggesting that these transcription factors may contribute towards mediating atRA lifespan extension, but that they are not individually required for some lifespan extension. RNAseq assessment of transcriptional changes in day 4 atRA-treated adult wild-type worms revealed some interesting observations. Consistent with the study's genetic mutant lifespan observations, many of the atRA-regulated genes with the greatest fold-change differences are known regulated targets of daf-2 and/or skn-1 signaling pathways in C. elegans. hsf-1 loss-of-function mutants show a shifted atRA transcriptional response, revealing a dependence on hsf-1 for ~60% of the atRA-downregulated genes. On the other hand, RNAseq analysis in aak-2 loss-of-function mutants revealed that aak-2 is only required for less than a quarter of the atRA transcriptional response. All together, this study is proof of the concept that computational models can help optimize C. elegans screening approaches that test compounds' effects on lifespan, and provide comprehensive transcriptomic and genetic insights into the lifespan-extending effects of all-trans retinoic acid (atRA).

      Strengths:

      (1) A clearly described and well-justified account describes the approach used to prioritize and select compounds for screening, based on using the top candidates from a published list of computationally ranked compounds (Fuentealba et al., 2019) that were cross-referenced with other bioinformatics publications to predict anti-aging compounds, after de-selecting compounds previously evaluated in C. elegans as per the DrugAge database. 16 compounds were tested at 4-5 different concentrations to evaluate effects on C. elegans lifespan.

      (2) Robust experimental design was undertaken evaluating the lifespan effects of atRA, as it was tested on three strains each of C. elegans, C. briggsae, and C. tropicalis, with trial replication performed at three distinct laboratories. These observations extended beyond lifespan to include evaluations of health metrics related to swimming performance.

      (3) In-depth analyses of the RNAseq data of whole-worm transcriptional responses to atRA revealed interesting insights into regulator pathways and novel groups of genes that may be involved in mediating lifespan-extension effects (e.g., atRA-induced upregulation of sphingolipid metabolism genes, atRA-upregulation of genes in a poorly-characterized family of C. elegans paralogs predicted to have kinase-like activity, and disproportionate downregulation of collagen genes with atRA).

      Weaknesses:

      (1) The authors' computational-based compound screening approach led to a ~30% prediction success rate for compounds that could extend the median lifespan of C. elegans. However, follow-up experiments on the top compounds highlighted the fact that some of these observed "successes" could be driven by indirect, confounding effects of these compounds on the bacterial food source, rather than direct beneficial effects on C. elegans physiology and lifespan. For instance, this appeared to be the case for the "top" hit of propranolol; other compounds were not tested with metabolically inert or killed bacteria. In addition, there are no comparative metrics provided to compare this study's ~30% success rate to screening approaches that do not use computational predictions.

      (2) Transcriptomic analyses of atRA effects were extensive in this study, but evaluations and discussions of non-transcriptional effects of key proposed regulators (such as AMPK) were limited. For instance, non-transcriptional effects of aak-2/AMPK might account for its requirement for mediating lifespan extension effects, since aak-2 was not required for a major proportion of atRA transcriptional responses.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Banse et al. experimentally validate the power of computational approaches that predict anti-aging molecules using the multi-species approach of the Caenorhabditis Intervention Testing Program (CITP). Filtering candidate molecules based on transcriptional profiles, ML models, literature searches, and the DrugAge database, they selected 16 compounds for testing. Of those, eight did not affect C.elegan's lifespan, three shortened it, and five extended C.elegan's lifespan, resulting in a hit rate of over 30%. Of those five, they then focused on all-trans-retinoic acid (atRA), a compound that has previously resulted in contradictory effects. The lifespan-extending effect of atRA was consistent in all C. elegans strains tested, was absent in C. briggsae, and a small effect was observed in some C. tropicalis strains. Similar results were obtained for measures of healthspan. The authors then investigated the mechanism of action of atRA and showed that it was only partially dependent on daf-16 but required akt-1, akt-2, skn-1, hsf-1, and, to some degree, pmk-1. The authors further investigate the downstream effects of atRA exposure by conducting RNAseq experiments in both wild-type and mutant animals to show that some, but surprisingly few, of the gene expression changes that are observed in wild-type animals are lost in the hsf-1 and aak-2 mutants.

      Strengths:

      Overall, this study is well conceived and executed as it investigates the effect of atRA across different concentrations, strains, and species, including life and health span. Revealing the variability between sites, assays, and the method used is a powerful aspect of this study. It will do a lot to dispel the nonsensical illusion that we can determine a percent increase in lifespan to the precision of two floating point numbers.

      An interesting and potentially important implication arises from this study. The computational selection of compounds was agnostic regarding strain or species differences and was predominantly based on observations made in mammalian systems. The hit rate calculated is based on the results of C. elegans and not on the molecules' effectiveness in Briggsae or Tropicalis. If it were, the hit rate would be much lower. How is that? It would suggest that ML models and transcriptional data obtained from mammals have a higher predictive value for C. elegans than for the other two species. This selectivity for C.elegans over C.tropicalis and C.Briggsae seems both puzzling and unexpected. The predictions for longevity were based on the transcriptional data in cell lines. Would it be feasible to compare the mammalian data to the transcriptional data in Figure 5 and see how well they match? While this is clear beyond the focus of this study, an implied prediction is that running RNAseqs for all these strains exposed to atRA would reveal that the transcriptional changes observed in the strains where it extends lifespan the most should match the mammalian data best. Otherwise, how could the mammalian datasets be used to predict the effects of C.elegans over C.Briggsae or C.Tropicalis have more predictive for one species than the other? There are a lot of IFs in this prediction, but such an experiment would reconsider and validate the basis on which the original predictions were made.

      Weaknesses:

      Many of the most upregulated genes, such as cyps and pgps are xenobiotic response genes upregulated in many transcriptional datasets from C.elegans drug studies. Their expression might be necessary to deal with atRA breakdown metabolites to prevent toxicity rather than confer longevity. Because atRA is very light sensitive and has toxicity of breakdown, metabolites may explain some of the differences observed with the lifespan of machine effects compared to standard assay practices.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Banse et al., demonstrate that combining computer prediction with genetic analysis in distinct Caenorhabditis species can streamline the discovery of aging interventions by taking advantage of the diverse pool of compounds that are currently available. They demonstrate that through careful prioritization of candidate compounds, they are able to accomplish a 30% positive hit rate for interventions that produce significant lifespan extensions. Within the positive hits, they focus on all-trans retinoic acid (atRA) and discover that it modulates lifespan through conserved longevity pathways such as AKT-1 and AKT-2 (and other conserved Akt-targets such as Nrf2/SKN-1 and HSF1/HSF-1) as well as through AAK-2, a conserved catalytic subunit of AMPK. To better understand the genetic mechanisms behind lifespan extension upon atRA treatment, the authors perform RNAseq experiments using a variety of genetic backgrounds for cross-comparison and validation. Using this current state-of-the-art approach for studying gene expression, the authors determine that atRA treatment produces gene expression changes across a broad set of stress-response and longevity-related pathways. Overall, this study is important since it highlights the potential of combining traditional genetic analysis in the genetically tractable organism C. elegans with computational methods that will become even more powerful with the swift advancements being made in artificial intelligence. The study possesses both theoretical and practical implications not only in the field of aging but also in related fields such as health and disease. Most of the claims in this study are supported by solid evidence, but the conclusions can be refined with a small set of additional experiments or re-analysis of data.

      Strengths:

      (1) The criteria for prioritizing compounds for screening are well-defined and easy to replicate (Figure 1), even for scientists with limited experience in computational biology. The approach is also adaptable to other systems or model organisms.

      (2) I commend the researchers for doing follow-up experiments with the compound propranolol to verify its effect on lifespan (Figure 2 Supplement 2), given the observation that it affected the growth of OP50. To prevent false hits in the future, the reviewer recommends the use of inactivated OP50 for future experiments to remove this confounding variable.

      (3) The sources of variation (Figure 3, Figure Supplement 2) are taken into account and demonstrate the need for advancing our understanding of the lifespan phenotype due to inter-individual variation.

      (4) The addition of the C. elegans swim test in addition to the lifespan assays provides further evidence of atRA-induced improvement in longevity.

      (5) The RNAseq approach was performed in a variety of genetic backgrounds, which allowed the authors to determine the relationship between AAK-2 and HSF-1 regulation of the retinoic acid pathway in C. elegans, specifically, that the former functions downstream of the latter.

      Weaknesses:

      (1) The filtering of compounds for testing using the DrugAge database requires that the database is consistently updated. In this particular case, even though atRA does not appear in the database, the authors themselves cite literature that has already demonstrated atRA-induced lifespan extension, which should have precluded this compound from the analysis in the first place.

      (2) The threshold for determining positive hits is arbitrary, and in this case, a 30% positive hit rate was observed when the threshold is set to a lifespan extension of around 5% based on Figure 1B (the authors fail to explicitly state the cut-off for what is considered a positive hit).

      (3) The authors demonstrate that atRA extends lifespan in a species-specific manner (Figure 3). Specifically, this extension only occurs in the species C. elegans yet, the title implies that atRA-induced lifespan extension occurs in different Caenorhabditis species when it is clearly not the case. While the authors state that failure to observe phenotypes in C. briggsae and C. tropicalis is a common feature of CITP tests, they do not speculate as to why this phenomenon occurs.

      (4) There are discrepancies between the lifespan curves by hand (Figure 3 Figure Supplement 1) and using the automated lifespan machine (Figure 3 Supplement 3). Specifically, in the automated lifespan assays, there are drastic changes in the slope of the survival curve which do not occur in the manual assays. This may be due to improper filtering of non-worm objects, improper annotation of death times, or improper distribution of plates in each scanner.

      (5) The authors miss an opportunity to determine whether the lifespan extension phenotype attributed to the retinoic acid pathway is mostly transcriptional in nature or whether some of it is post-transcriptional. The authors even state "that while aak-2 is absolutely required for the longevity effects of atRA, aak-2 is required only for a small proportion (~1/4) of the transcriptional response", suggesting that some of the effects are post-transcriptional. Further information could have been obtained had the authors also performed RNAseq analysis on the tol-1 mutant which exhibited an enhanced response to atRA compared to wild-type animals, and comparing the magnitude of gene expression changes between the tol-1 mutant and all other genetic backgrounds for which RNAseq was performed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate that female Spodoptera littoralis moths prefer to oviposit on well-watered tomato plants and avoid drought-stressed plants. The study then recorded the sounds produced by drought-stressed plants and found that they produce 30 ultrasonic clicks per minute. Thereafter, the authors tested the response of female S. littoralis moths to clicks with a frequency of 60 clicks per minute in an arena with and without plants and in an arena setting with two healthy plants of which one was associated with 60 clicks per minute. These experiments revealed that in the absence of a plant, the moths preferred to lay eggs on the side of the area in which the clicks could be heard, while in the presence of a plant the S. littoralis females preferred to oviposit on the plant where the clicks were not audible. In addition, the authors also tested the response of S. littoralis females in which the tympanic membrane had been pierced making the moths unable to detect the click sounds. As hypothesised, these females placed their eggs equally on both sites of the area. Finally, the authors explored whether the female oviposition choice might be influenced by the courtship calls of S. littoralis males which emit clicks in a range similar to a drought-stressed tomato plant. However, no effect was found of the clicks from ten males on the oviposition behaviour of the female moths, indicating that the females can distinguish between the two types of clicks. Besides these different experiments, the authors also investigated the distribution of egg clusters within a longer arena without a plant, but with a sugar-water feeder. Here it was found that the egg clusters were mostly aggregated around the feeder and the speaker producing 60 clicks per minute. Lastly, video tracking was used to observe the behaviour of the area without a plant, which demonstrated that the moths gradually spent more time at the arena side with the click sounds.

      Strengths:

      This manuscript is very interesting to read and the possibility that female moths might use sound as an additional sensory modality during host-searching is exciting and very relevant to the field of insect-plant interactions.

      Weaknesses:

      The study addresses a very interesting question by asking whether female moths incorporate plant acoustic signals into their oviposition choice, unfortunately, I find it very difficult to judge how big the influence of the sound on the female choice really is as the manuscript does not provide any graphs showing the real numbers of eggs laid on the different plants, but instead only provides graphs with the Bayesian model fittings for each of the experiments. In addition, the numbers given in the text seem to be relatively similar with large variations e.g. Figure 1B3: 1.8 {plus minus} 1.6 vs. 1.1 {plus minus} 1.0. Furthermore, the authors do not provide access to any of the raw data or scripts of this study, which also makes it difficult to assess the potential impact of this study. Hence, I would very much like to encourage the authors to provide figures showing the measured values as boxplots including the individual data points, especially in Figure 1, and to provide access to all the raw data underlying the figures.

      Regarding the analysis of the results, I am also not entirely convinced that each night can be taken as an independent egg-laying event, as the amount of eggs and the place were the eggs are laid by a female moth surely depends on the previous oviposition events. While I must admit that I am not a statistician, I would suggest, from a biological point of view, that each group of moths should be treated as a replicate and not each night. I would therefore also suggest to rather analyse the sum of eggs laid over the different consecutive nights than taking the eggs laid in each night as an independent data point.

      Furthermore, it did not become entirely clear to me why a click frequency of 60 clicks per minute was used for most experiments, while the plants only produce clicks at a range of 30 clicks per minute. Independent of the ecological relevance of these sound signals, it would be nice if the authors could provide a reason for using this frequency range. Besides this, I was also wondering about the argument that groups of plants might still produce clicks in the range of 60 clicks per minute and that the authors' tests might therefore still be reasonable. I would agree with this, but only in the case that a group of plants with these sounds would be tested. Offering the choice between two single plants while providing the sound from a group of plants is in my view not the most ecologically reasonable choice. It would be great if the authors could modify the argument in the discussion section accordingly and further explore the relevance of different frequencies and dB-levels.

      Finally, I was wondering how transferable the findings are towards insects and Lepidopterans in general. Not all insects possess a tympanic organ and might therefore not be able to detect the plant clicks that were recorded. Moreover, I would imagine that generalist herbivorous like Spodoptera might be more inclined to use these clicks than specialists, which very much rely on certain chemical cues to find their host plants. It would be great if the authors would point more to the fact that your study only investigated a single moth species and that the results might therefore only hold true for S. littoralis and closely related species, but not necessary for other moth species such as Sphingidae or even butterflies.

    2. Reviewer #2 (Public review):

      This paper presents an interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process.

      Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants. 

      The results are intriguing, and I think the experiments are very well designed. However, if female moths use the sounds emitted by dehydrated plants as cues to decide where to oviposit, the hypothesis would predict that they would avoid such sounds. The discussion mentions the possibility of a multi-modal moth decision-making process to explain these contradictory results, and I also believe this is a strong possibility. However, since this remains speculative, careful consideration is needed regarding how to interpret the findings based solely on the direct results presented in the results section.

      Additionally, the final results describing differences in olfactory responses to drying and hydrated plants are included, but the corresponding figures are placed in the supplementary materials. Given this, I would suggest reconsidering how to best present the hypotheses and clarify the overarching message of the results. This might involve reordering the results or re-evaluating which data should appear in the main text versus the supplementary materials.

      There were also areas where more detailed explanations of the experimental methods would be beneficial.

    1. Reviewer #1 (Public review):

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.

      The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.

      The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.

      This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

    2. Reviewer #2 (Public review):

      This manuscript proposes that primary hepatocytes can replicate their DNA without the six-subunit ORC. This follows previous studies that examined mice that did not express ORC1 in the liver. In this study, the authors suppressed expression of ORC2 or ORC1 plus ORC2 in the liver.

      Comments:

      (1) I find the conclusion of the authors somewhat hard to accept. Biochemically, ORC without the ORC1 or ORC2 subunits cannot load the MCM helicase on DNA. The question arises whether the deletion in the ORC1 and ORC2 genes by Cre is not very tight, allowing some cells to replicate their DNA and allow the liver to develop, or whether the replication of DNA proceeds via non-canonical mechanisms, such as break-induced replication. The increase in the number of polyploid cells in the mice expressing Cre supports the first mechanism, because it is consistent with few cells retaining the capacity to replicate their DNA, at least for some time during development.

      (2) Fig 1H shows that 5 days post infection, there is no visible expression of ORC2 in MEFs with the ORC2 flox allele. However, at 15 days post infection, some ORC2 is visible. The authors suggest that a small number of cells that retained expression of ORC2 were selected over the cells not expressing ORC2. Could a similar scenario also happen in vivo?

      (3) Figs 2E-G shows decreased body weight, decreased liver weight and decreased liver to body weight in mice with recombination of the ORC2 flox allele. This means that DNA replication is compromised in the ALB-ORC2f/f mice.

      (4) Figs 2I-K do not report the number of hepatocytes, but the percent of hepatocytes with different nuclear sizes. I suspect that the number of hepatocytes is lower in the ALB-ORC2f/f mice than in the ORC2f/f mice. Can the authors report the actual numbers?

      (5) Figs 3B-G do not report the number of nuclei, but percentages, which are plotted separately for the ORC2-f/f and ALB-ORC2-f/f mice. Can the authors report the actual numbers?

      (6) Fig 5 shows the response of ORC2f/f and ALB-ORC2f/f mice after partial hepatectomy. The percent of EdU+ nuclei in the ORC2-f/f (aka ALB-CRE-/-) mice in Fig 5H seems low. Based on other publications in the field it should be about 20-30%. Why is it so low here? The very low nuclear density in the ALB-ORC2-f/f mice (Fig 5F) and the large nuclei (Fig 5I) could indicate that cells fire too few origins, proceed through S phase very slowly and fail to divide.

      (7) Fig 6F shows that ALB-ORC1f/f-ORC2f/f mice have very severe phenotypes in terms of body weight and liver weight (about on third of wild-type!!). Fig 6H and 6I, the actual numbers should be presented, not percentages. The fact that there are EYFP negative cells, implies that CRE was not expressed in all hepatocytes.

      (8) Comparing the EdU+ cells in Fig 7G versus 5G shows very different number of EdU+ cells in the control animals. This means that one of these images is not representative. The higher fraction of EdU+ cells in the double-knockout could mean that the hepatocytes in the double-knockout take longer to complete DNA replication than the control hepatocytes. The control hepatocytes may have already completed DNA replication, which can explain why the fraction of EdU+ cells is so low in the controls. The authors may need to study mice at earlier time points after partial hepatectomy, i.e. sacrifice the mice at 30-32 hours, instead of 40-52 hours.

      (9) Regarding the calculation of the number of cell divisions during development: the authors assume that all the hepatocytes in the adult liver are derived from hepatoblasts that express Alb. Is it possible to exclude the possibility that pre-hepatoblast cells that do not express Alb give rise to hepatocytes? For example the cells that give rise to hepatoblasts may proliferate more times than normal giving rise to a higher number of hepatoblasts than in wild-type mice.

      (10) My interpretation of the data is that not all hepatocytes have the ORC1 and ORC2 genes deleted (eg EYFP-negative cells) and that these cells allow some proliferation in the livers of these mice.

    3. Reviewer #3 (Public review):

      Summary:

      The authors address the role of ORC in DNA replication and that this protein complex is not essential for DNA replication in hepatocytes. They provide evidence that ORC subunit levels are substantially reduced in cells that have been induced to delete multiple exons of the corresponding ORC gene(s) in hepatocytes. They evaluate replication both in purified isolated hepatocytes and in mice after hepatectomy. In both cases, there is clear evidence that DNA replication does not decrease at a level that corresponds with the decrease in detectable ORC subunit and that endoreduplication is the primary type of replication observed. It remains possible that small amounts of residual ORC are responsible for the replication observed, although the authors provide arguments against this possibility. The mechanisms responsible for DNA replication in the absence of ORC are not examined.

      Strengths:

      The authors clearly show that there are dramatic reductions in the amount of the targeted ORC subunits in the cells that have been targeted for deletion. They also provide clear evidence that there is replication in a subset of these cells and that it is likely due to endoreduplication. Although there is no replication in MEFs derived from cells with the deletion, there is clearly DNA replication occurring in hepatocytes (both isolated in culture and in the context of the liver). Interestingly, the cells undergoing replication exhibit enlarged cell sizes and elevated ploidy indicating endoreduplication of the genome. These findings raise the interesting possibility that endoreduplication does not require ORC while normal replication does.

      Weaknesses:

      There are two significant weaknesses in this manuscript. The first is that although there is clearly robust reduction of the targeted ORC subunit, the authors cannot confirm that it is deleted in all cells. For example, the analysis in Fig. 4B would suggest that a substantial number of cells have not lost the targeted region of ORC2. Although the western blots show stronger effects, this type of analysis is notorious for non-linear response curves and no standards are provided. The second weakness is that there is no evaluation of the molecular nature of the replication observed. Are there changes in the amount of location of Mcm2-7 loading that is usually mediated by ORC? Does an associated change in Mcm2-7 loading lead to the endoreduplication observed? After numerous papers from this lab and others claiming that ORC is not required for eukaryotic DNA replication in a subset of cells, we still have no information about an alternative pathway that could explain this observation.

      The authors frequently use the presence of a Cre-dependent eYFP expression as evidence that the ORC1 or ORC2 genes have been deleted. Although likely the best visual marker for this, it is not demonstrated that the presence of eYFP ensures that ORC2 has been targeted by Cre. For example, based on the data in Fig. 4B, there seems to be a substantial percentage of ORC2 genes that have not been targeted while the authors report that 100% of the cells express eYFP.

    1. Reviewer #1 (Public review):

      Summary:

      The authors in this manuscript performed scRNA-seq on a cohort of 15 early-stage cervical cancer patients with a mixture of adeno- and squamous cell carcinoma, HPV status, and several samples that were upstaged at the time of surgery. From their analyses they identified differential cell populations in both immune and tumour subsets related to stage, HPV status, and whether a sample was adenocarcinoma or squamous cell. Putative microenvironmental signaling was explored as a potential explanation for their differential cell populations. Through these analyses the authors also identified SLC26A3 as a potential biomarker for later stage/lymph node metastasis which was verified by IHC and IF. The dataset is likely useful for the community. The accuracy and clarity have been improved from the previous version, and additional immunofluorescence supporting the existence of their proposed cluster is now present. That said, there remain some issues with the strength of some claims (particularly in the abstract and results sections) and some of the cell type definitions.

      Strengths

      The dataset could be useful for the community<br /> SLC26A3 could potentially be a useful marker to predict lymph node metastasis with further study

      Weaknesses

      Casual language is used in the abstract around immunosuppressive microenvironment and signal cross-talk between Epi_10_CYSTM1 cluster and Tregs. The data show localization that supports a possible interaction and probable cytokines, but functional experiments would be needed to establish causality.

      In the description of the single cell data processing there is no mention of batch effect correction. Given that many patients were analyzed, and no mention was made of pooling or deconvolution, it must be assumed these were run separately which invariably leads to batch effects. Given the good overlays across patients some batch correction must have been performed. How was batch effect correction performed?

      While statistics were added to the clinical correlates, it would appear that single variables are being assessed one at a time by chi-squared analysis. This ignores the higher order structure of the data and the correlations between some variables resulting in potentially spurious findings. This is compounded as some categories had below 5 observations violating the assumptions of a chi-squared test.

      The description of all analytical steps remains quite truncated. While the inclusion of annotated code is useful, a full description of which tools were used, with which settings, and why each were chosen, is a minimum needed to properly interpret the results. This is as important in a mainly analytical paper as the experimental parameters.

      Validation of the clustering results remains a problem. The only details provided are that FindClusters was used. This depends on a manual choice of multiple parameters including the k-nearest neighbours included, whether Louvain or Leiden clustering is used, the resolution parameter, and others (how many variable genes/PCs etc...). Why were these parameters selected, how do you know that you're not over or under-clustering.

      The cluster Epi_10_CYSTM1 remains somewhat problematic. None of the additional data supports its existence outside of the single patient who has cells from that population. Additionally, it falls well outside of any of the other Epithelial cells to the point that drawing it as part of a differentiation order doesn't even make sense. Indeed, most of the upregulated pathways in this cluster appear to be related to class II antigen presentation which would fit better with a dendritic cell/macrophage than an epithelial cell. While the IF at the end does support the existence of the cluster, numbers are still very limited, and this doesn't have data on the antigen presenting function. At the least a strong disclaimer should be included in the text that this population is essentially exclusive to one sample in the scRNA data.

      The linkage between the cluster types and IHC for prediction of lymph node metastasis is tenuous. Most of the strongly cluster associated markers were not predictive despite their clusters being theoretically enriched. This inability to recognize the clusters in additional samples using alternative methods does not give confidence that these clusters are robust. SLC26A3 being associated with upstaging may very well be a useful marker, however, given the lack of association of the other markers, it may be premature to say this is due to the same Epi_10_CYSTM1 cluster.

      There are multiple issues in the classification of T cells and neutrophils. In the analysis of T cell subset, all CD4+ T cells are currently scored as Tregs, what happened to the T-helper cells? Additionally, Activated T and Cytotoxic T both seem to contain CD8+ cells, but all their populations have equivalent expression of the activation marker CD69. Moreover, the "Cytotoxic" ones also express TIGIT, HAVCR2 and LAG3 which are generally exhaustion markers. For neutrophils, several obviously different clusters have been grouped together (Neu_1 containing two diametrically opposite cell clouds being an obvious example).

      Again in the CellChat section of the results causal language is being repeatedly used. These are just possible interactions, not validated ones. While the co-localization in the provided IF images certainly supports the co-localization, this still is only correlative and doesn't prove causality.

      Minor Issues<br /> The sentence "However, due to the low morbidity of ADC, in-depth investigations are insufficient" could be misinterpreted. Morbidity generally refers to the severity or health burden rather than the frequency of cases, though it's true in some studies prevalence is used for the overall impact of the disease on a population and referred to as morbidity. In this instance though, "incidence" or "prevalence" would be clearer word choices.

      The previous rebuttal states that clusters/cell type calls were refined to eliminate issues such as epithelial cells creeping into the T cell cluster, however, the cell %s have not been altered according to the change tracking. Shouldn't all the %s have been altered even if only slightly?

    2. Reviewer #2 (Public review):

      Summary:

      Peng et al. present a study using scRNA-seq to examine phenotypic properties of cervical cancer, contrasting features of both adenocarcinomas (ADC) and squamous cell carcinoma (SCC), and HPV-positive and negative tumours. They propose several key findings: unique malignant phenotypes in ADC with elevated stemness and aggressive features, interactions of these populations with immune cells to promote an immunosuppressive TME, and SLC26A3 as a biomarker for metastatic (>=Stage III ) tumours.

      Strengths:

      This study provides a valuable resource of scRNA-seq data from a well-curated collection of patient samples. The analysis provides a high-level view of the cellular composition of cervical cancers. The authors introduce some mechanistic explanations of immunosuppression and the involvement of regulatory T cells that is intriguing.

      Weaknesses:

      I believe many of the proposed conclusions are over-interpretations or unwarranted generalizations of the single-cell analysis. I believe there may also be some artifacts in the data that may not reflect true biology--eg. The presentation of KRT+ neutrophils, which may reflect doublets with cancer cells. In some cases there is mention of quality control steps to remove contaminant cell clusters, but there is no method or supplemental figure to describe and/or justify these steps.

      The key limitation is related to the "ADC-specific" Epi_10_CYSTM1 cluster, which is a central focus of the paper. This population only contains cells from one of the 11 ADC samples and represents only a small fraction of the malignant cells from that sample. Yet, this population is used to derive SLC26A3 as a potential biomarker. SLC26A3 transcripts are only detected in this small population of cells (none of the other ADC samples), which makes me question the specificity of the IHC staining on the validation cohort. The manuscript does not address why this marker is so rare in the scRNA-seq data, but abundant in the IHC.

      While I understand it may be out of the scope of this individual study, many of the conclusions are inferred from the data analysis with little follow-up in experimental models or orthogonal assays.

    1. Joint Public Review:

      Reviewers thought that the authors addressed some, but not all the concerns raised in the previous round of a review.

      Strengths: The authors employed a battery of next-generation sequencing and crosslinking techniques (e.g., Quick-irCLIP, APA-Seq, and Ribo-Seq) to describe a previously unappreciated binding of eIF3 to the 3'UTRs of the mRNAs. It is also shown that eIF3:3'UTR binding occurs in the vicinity of poly(A) tail of mRNAs that are actively translated in neuronal progenitor cells derived from human pluripotent stem cells. Collectively, these findings provide evidence for the role of eIF3 in regulating translation from the 3'UTR end of the mRNA.

      Weaknesses: In addition to these clear strengths of the article, some weaknesses were observed pertinent to the lack of mechanistic data. It was therefore thought that the experiments aiming to dissect the mechanisms of eIF3 binding to 3'UTRs and their impact on translation warrant future studies. Finally, establishing the impact of the proposed eIF3:3'UTR binding mechanism of translational regulation on cellular fate is required to further support the biological importance of the observed phenomena. It was found that this should also be addressed in the follow up studies.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors performed two-sample MR combined with sensitivity analyses and colocalization to test the effect of PUFA on cerebral aneurysms. They found that genetically predicted omega-3 and DHA decreased the risk for intracranial aneurysm (IA) and subarachnoid haemorrhage (SAH) but not for unruptured IA (uIA).

      Strengths:

      PUFA on the risk of cerebral aneurysms is of clinical importance; the authors performed multiple sensitivity analyses to ensure MR fulfils its assumptions.

    2. Reviewer #2 (Public Review):

      Summary:

      In the manuscript, Yu et al reported a two-sample Mendelian randomization study to evaluate the causation between polyunsaturated fatty acids (PUFA) and cerebral aneurysm, based on summary statistics from published genome-wide association studies. The authors identified that omega-3 fatty acids and Docosahexaenoic acid decreased the risk for intracranial aneurysm (IA) and aneurysmal subarachnoid haemorrhage (aSAH). COLOC analysis suggested that the acids and IA, aSAH likely share causal variants in gene fatty acid desaturase 2.

      Strengths:

      The methodology is sound, with appropriate sensitivity analysis.

      Weaknesses:

      The results did not provide significant novel findings.

    1. Reviewer #1 (Public review):

      The findings of Ziolkowska and colleagues show that a specific projection from the nucleus reuniens of the thalamus (RE) to dorsal CA1 of the hippocampus plays an important role in fear extinction learning in male and female mice. In and of itself, this is not a new finding. Yet, the potential novelty and excitement comes from the authors' identification of structural alterations from RE projecting neurons to the specific stratum lacunosum moleculare subregion of CA1 after learning. The authors use a range of anatomical and functional approaches to demonstrate structural synaptic changes in dorsal CA1 that parallel the necessary role of RE inputs in modulating extinction learning. The significance of these findings was previously hampered by several technical shortcomings in the experimental design and interpretation. The authors adequately addressed some of the design concerns raised in the previous round, along with the interpretive critique that they couldn't localize the timing of effects to consolidation as originally claimed. Nevertheless, the authors provided an inadequate response to the concern regarding their misapplication of Ns and missing controls in one experiment.

      In the previous review, a major methodological weakness in the experimental design involved the widespread misapplication of Ns used for the statistical analyses. Much of the anatomical analyses of structural synaptic changes in the RE-CA1 pathway used N = number of axons (Figs. 1, 2), N = number of dendrites (Figs. 3, 4), and N = number of sections (Fig. 7). In each instance it was recommended that N = animal number should be used. Reasons for this are as follows: this is standard practice in neuroanatomical research; using N = branch/ dendrite/ bouton/ spine number artificially inflates the statistical power and this incorrectly assumes independence of observations; using N = number of sections, etc., doesn't account for imbalances in the number of observations that vary from animal to animal that may skew group results.

      In the authors' response, they generally concurred, but then they followed up with the defense that the number of items was too few in some cases, or absent in others, to permit using N = animal number. While they changed some of their data to N = animal numbers, other aspects of their data remained as-is. The description of the statistics in the figure legend is also dense and difficult to follow in places. Ns should be checked in the legend and figure to make sure they're correct, as at least one error was noted (e.g., see Fig. 2C). Overall, the authors' response falls short of the standard of rigor that helps to reinforce scientific findings from reliability and reproducibility concerns when generating more data to increase Ns (i.e., the number of animals) would have been the better choice.

      Another persistent concern from the previous review is that, in the electron microscopic analyses of dendritic spines (Fig. 5), the authors only compared fear acquisition versus extinction training. One critique was that the lack of inclusion of a naïve control group made it difficult to understand how these structural synaptic changes are occurring relative to baseline. It was also noted that the authors appropriately included naïve controls in other experiments in the paper. In the revised submission the authors simply added in naïve control data to their previous histogram. It is not considered good practice to collect, process, or analyze data one group at a time, as this would be prone to cohort effects or experimental bias. These data should be discarded and the experiment should be run correctly with randomized cases in each group, or instead these data should be eliminated from the report since there is a key control group missing. Again, the nature of the authors' response perpetuates the aforementioned concern that data collection and analysis in this report may fall short of an acceptable standard of rigor.

    2. Reviewer #2 (Public review):

      Summary:

      Ziółkowska et al. characterize the synaptic mechanisms at the basis of the RE-dCA1 contribution to the consolidation of fear memory extinction. In particular, they describe a layer specific modulation of RE-dCA1 excitatory synapses modulation associated to contextual fear extinction which is impaired by transient chemogenetic inhibition of this pathway. These results indicate that RE activity-mediated modulation of synaptic morphology contributes to contextual fear extinction

      Strengths:

      The manuscript is well conceived, the statistical analysis is solid and methodology appropriate. The strength of this work is that it nicely builds up on existing literature and provides new molecular insight on a thalamo-hippocampal circuit previously known for its role in fear extinction. In addition, the quantification of pre- and post-synapses is particularly thorough.

      Weaknesses:

      The results illustrated in this manuscript show nice incremental evidence about the neural mechanisms contributing to the RE-CA1 modulation of fear extinction. The novelty of this manuscript is therefore not exceptional, but still highly relevant for the field.

    1. Reviewer #1 (Public review):

      Summary:

      The authors are trying to develop a microscopy system that generates data output exceeding the previous systems based on huge objectives.

      Strengths:

      They have accomplished building such a system, with a field of view of 1.5x1.0 cm2 and a resolution of up to 1.2 um. They have also demonstrated their system performance on samples such as organoids, brain sections, and embryos.

      Weaknesses:

      To be used as a volumetric imaging technique, the authors only showcase the implementation of multi-focal confocal sectioning. On the other hand, most of the real biological samples were acquired under the wide-field illumination, and processed with so-called computational sectioning. Despite the claim that it improves the contrast, sometimes I felt that the images were oversharpened and the quantitative nature of these fluorescence images may be perturbed.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript introduced a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide 3D tissues and embryos. In term of technique, this paper is just a minor improvement of the authors' previous work, which is a fluorescence imaging system working at visible wavelength region (https://www.nature.com/articles/s41598-021-95930-7).

      Strengths:

      In this study, the authors enhanced the system's resolution and sensitivity by increasing the numerical aperture (NA) of the lens. Furthermore, they achieved volumetric imaging by integrating optical sectioning and computational sectioning. This study encompasses a broad range of biological applications, including imaging and analysis on organoids, mouse brains, and quail embryos, respectively. Overall, this method is useful and versatile.

      Weaknesses:

      What is the unique application that only can be done by this high-throughput system remains vague. Meanwhile, there are also several outstanding issues in this paper, such as the lack of technical advances, unclear method details and non-standardized figures.

      Comments on revisions:

      The revised manuscript has significantly improved in response to the initial review comments, particularly with the detailed additions regarding the objective lens and confocal imaging modes, which enhance the clarity and comprehensibility of the paper. While the structure and arguments are much clearer overall, there are still key issues that need to be addressed, specifically regarding algorithm validation, computational sectioning presentation, and volume imaging rate.

      Algorithm Validation:<br /> The validation of the algorithm's accuracy is not sufficiently robust. Reviewer 1's comment is entirely reasonable, and the authors should validate the algorithm's accuracy using well-established methods as ground truth. In the revised version, the authors attempt to demonstrate the fidelity of the algorithm by employing deep learning methods for high-accuracy cell recognition. However, this validation relies solely on comparisons between deep learning results and manual annotation results. The problem lies in the fact that both manual annotations and deep learning outcomes are derived from algorithm-processed data, which fails to prove the authenticity or validity of the data itself. To strengthen the validation, the authors should incorporate independent, gold-standard methods for comparison.

      Computational Sectioning:<br /> In the revised manuscript, the authors effectively demonstrate the ability of optical sectioning to improve axial resolution using fluorescent beads, as shown in Fig. S3, which is a strong point. However, the manuscript lacks a direct comparison for computational sectioning and does not provide a clear evaluation of axial resolution before and after applying computational sectioning. While some related information is included in Figs. 5.C and D, the details are insufficient, and intensity profiles are absent. I recommend that the authors include more direct visual demonstrations of computational sectioning, along with comparisons of axial resolution before and after applying computational sectioning. This would better showcase the method's effectiveness.

      Volume Imaging Rate:<br /> The manuscript currently omits critical details about the method's volume imaging rate. In the description of the quail embryo imaging experiment, key parameters such as exposure time and imaging speed are missing. Additionally, the manuscript does not discuss the maximum imaging rate supported by the system in confocal mode. The volume imaging rate is an essential factor for biological researchers to evaluate the applicability of the technique. Therefore, this information should be included, ideally in the abstract and introduction. Furthermore, the authors could describe how the volume imaging rate performs under different conditions and discuss its potential applications across various biological research contexts. Including such details would significantly enhance the paper's utility and appeal to the broader research community.

      These adjustments will further strengthen the manuscript and address the reviewers' concerns effectively.

    1. Reviewer #1 (Public review):

      Summary:

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

      Strengths:

      The three experiments are well designed and the various conditions are well controlled. The rationale of the study is clear, and the manuscript is pleasant to read. The analysis choices are easy to follow, and mostly appropriate.

      Weaknesses:

      There is a concern of double-dipping in one of the tests (Experiment 2, Figure 3: interaction of Upright/Inverted X Congruent/Incongruent). I raised this concern on the original submission, and it has not been resolved properly. The follow-up statistical test (after channel selection using the interaction contrast permutation test) still is geared towards that same contrast, even though the latter is now being tested differently. (Perhaps not explicitly testing the interaction, but in essence still testing the same.) A very simple solution would be to remove the post-hoc statistical tests and simply acknowledge that you're comparing simple means, while the statistical assessment was already taken care of using the permutation test. (In other words: the data appear compelling because of the cluster test, but NOT because of the subsequent t-tests.)

    2. Reviewer #2 (Public review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      Weaknesses:

      In the revised version of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. Still, it is my view that the findings of the study are basic neural correlate results that do not provide insights into neural mechanisms or the causal relevance of neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion, and it is possible that such neural correlates relate to behaviorally relevant neural mechanisms, but based on the current task and associated analyses this has not been shown.

    1. Reviewer #2 (Public review):

      Summary:

      Griesius et al. investigate the dendritic integration properties of two types of inhibitory interneurons in the hippocampus: those that express NDNF+ and those that express somatostatin. They found that both neurons showed supralinear synaptic integration in the dendrites, blocked by NMDA receptor blockers but not by blockers of Na+ channels. These experiments are critically overdue and very important because knowing how inhibitory neurons are engaged by excitatory synaptic input has important implications for all theories involving these inhibitory neurons.

      Comments on revisions:

      The authors have addressed the reviewers' comments, but haven't resolved most of the key issues.

      Specifically, performing only a single uncaging experiment at a single dendritic location per cell prevents a detailed biophysical analysis of NDNF and OLM cell integration properties. A more extended exploration would have potentially addressed several of the reviewers' questions. It is particularly worrying that the authors cite cell health, dendritic blebbing, and changes in input resistance as the reason for terminating experiments after a single uncaging event. This suggests that the uncaging laser may be damaging the dendrite, potentially affecting the membrane potential directly, and overall cell health, beyond simply uncaging glutamate.

      While the authors' qualitative conclusions about supra-linear integration and NMDA receptor dependency seem plausible, the limited data and potential methodological issues weaken any quantitative interpretations and comparisons between the two cell types.

      Similarly, the absence of dendritic Na-spikes remains unexplained, despite reports of strong dendritic Na-currents in these cells.

    2. Reviewer #3 (Public review):

      Summary:

      The authors study temporal summation of caged EPSPs in dendrite-targeting hippocampal CA1 interneurons. The data indicate non-linear summation, which is larger in dendrites of NDNF-expressing neurogliaform cells versus OLM cells. However, the underlying mechanisms are largely unclear.

      Strengths:

      Synaptic integration in dendrites of cortical GABAergic interneurons is important and still poorly investigated. Focal 2-photon uncaging of glutamate is a nice and detailed method to study temporal summation of small potentials in dendritic segments. 2P calcium imaging is a powerful method to potentially disentangle dendritic signal processing in interneuron dendrites.

      Weaknesses:

      Due to several experimental limitations of the study including a relatively low number of recorded dendrites, lack of voltage-clamp recordings, lack of NMDA-dependent calcium signals in OLM cells and lack of wash-out during pharmacological experiments (AP5-application), the mechanistic insights are limited.

      (1) NMDA-receptor signalling in NDNF-IN. The authors nicely show that temporal summation in dendrites of NDNF-INs is to a certain extent non-linear. Pharmacology with AP5 hints towards contribution of NMDA receptors. However, the authors report that the non-linearity in not significantly dependent on EPSP amplitude (Fig. S2), which should be the case if NMDA-receptors are involved. Unfortunately, there are no voltage-clamp data showing NMDA and AMPA currents, potentially providing a mechanistic explanation for the non-linear summation.

      (2) Recovery of drug effect. Pharmacological application of AP5 is the only argument for the involvement of NMDA receptors. However, as long-lasting experiments were apparently difficult to obtain, there is no washout-data presented - only drug effect versus baseline. For all the other drugs (TTX, Nimodipine, CPA) recordings were even shorter, lacking a baseline recording. Thus, it remains open to what extent the AP5-effect might be affected by rundown of receptors or channels during whole-cell recordings or beginning phototoxicity.

      (3) Nonlinear EPSP summation in OLM-IN. The authors do similar experiments in dendrite-targeting OLM-INs and show that the non-linear summation is smaller than in NDNF cells. The reason for this remains unclear. The diameter of proximal dendrites in OLM cells is larger than the diameter in NDNF cells. However, there is probably also an important role of synapse density and glutamate receptor density, which was shown to be very low in proximal dendrites of OLM cells and strongly increase with distance (Guirado et al. 2014, Cerebral Cortex 24:3014-24, Gramuntell et al. 2021, Front Aging Neurosci 13:782737). Therefore, it would have been helpful to see experiments quantifying synapse density (counting spines, PSD95-puncta, ...) and show how this density compares with non-linearity in the analyzed NDNF and OLM dendrites.

      (4) NMDA in OLM-IN. Similar to the NDNF cells, the authors argue for an involvement of NMDA receptors in OLM cells, based on bath-application of AP5 (Fig. 8). Again, there seems to be no significant dependence on EPSP amplitude (Fig. S3). Even more remarkable, the authors claim that there is no dendritic calcium increase after activation of NMDA receptors without showing data. Therefore, it remains unclear whether the calcium signals are just below detection threshold, or whether the non-linearity depends on other calcium-impermeable channels and receptors. To understand this phenomenon different calcium sensors, different Ca2+/Mg2+ concentrations or voltage-clamp data would have helped.

    1. Reviewer #1 (Public review):

      In recent years, our understanding of the nuclear steps of the HIV-1 life cycle has made significant advances. It has emerged that HIV-1 completes reverse transcription in the nucleus and that the host factor CPSF6 forms condensates around the viral capsid. The precise function of these CPSF6 condensates is under investigation, but it is clear that the HIV-1 capsid protein is required for their formation. This study by Tomasini et al. investigates the genesis of the CPSF6 condensates induced by HIV-1 capsid, what other co-factors may be required, and their relationship with nuclear speckels (NS). The authors show that disruption of the condensates by the drug PF74, added post-nuclear entry, blocks HIV-1 infection, which supports their functional role. They generated CPSF6 KO THP-1 cell lines, in which they expressed exogenous CPSF6 constructs to map by microscopy and pull down assays of the regions critical for the formation of condensates. This approach revealed that the LCR region of CPSF6 is required for capsid binding but not for condensates whereas the FG region is essential for both. Using SON and SRRM2 as markers of NS, the authors show that CPSF6 condensates precede their merging with NS but that depletion of SRRM2, or SRRM2 lacking the IDR domain, delays the genesis of condensates, which are also smaller.

      The study is interesting and well conducted and defines some characteristics of the CPSF6-HIV-1 condensates. Their results on the NS are valuable. The data presented are convincing.

      I have two main concerns. Firstly, the functional outcome of the various protein mutants and KOs is not evaluated. Although Figure 1 shows that disruption of the CPSF6 puncta by PF74 impairs HIV-1 infection, it is not clear if HIV-1 infection is at all affected by expression of the mutant CPSF6 forms (and SRRM2 mutants) or KO/KD of the various host factors. The cell lines are available, so it should be possible to measure HIV-1 infection and reverse transcription. Secondly, the authors have not assessed if the effects observed on the NS impact HIV-1 gene expression, which would be interesting to know given that NS are sites of highly active gene transcription. With the reagents at hand, it should be possible to investigate this too.

    2. Reviewer #2 (Public review):

      Summary:

      HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the already-known FG region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2).

      Strengths:

      The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation.

      Weaknesses:

      Some of the results presented in this manuscript, in particular the kinetics of fusion between CPSF6-aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983).

      The observations of the different effects of CPSF6 mutants, as well as SRRM2/SUN2 silencing experiments are not complemented by infection data which would have linked morphological changes in nuclear aggregates to function during viral infection. More importantly, these functional data could have helped stratify otherwise similar morphological appearances in CPSF6 aggregates.

      Overall, the results could be presented in a more concise and ordered manner to help focus the attention of the reader on the most important issues. Most of the figures extend to 3-4 different pages and some information could be clearly either aggregated or moved to supplementary data.

    3. Reviewer #3 (Public review):

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (https://doi.org/10.1093/nar/gkae769).

    1. Reviewer #1 (Public review):

      Summary:

      The study examines how pyruvate, a key product of glycolysis that influences TCA metabolism and gluconeogenesis, impacts cellular metabolism and cell size. It primarily utilizes the Drosophila liver-like fat body, which is composed of large post-mitotic cells that are metabolically very active. The study focuses on the key observations that over-expression of the pyruvate importer MPC complex (which imports pyruvate from the cytoplasm into mitochondria) can reduce cell size in a cell-autonomous manner. They find this is by metabolic rewiring that shunts pyruvate away from TCA metabolism and into gluconeogenesis. Surprisingly, mTORC and Myc pathways are also hyper-active in this background, despite the decreased cell size, suggesting a non-canonical cell size regulation signaling pathway. They also show a similar cell size reduction in HepG2 organoids. Metabolic analysis reveals that enhanced gluconeogenesis suppresses protein synthesis. Their working model is that elevated pyruvate mitochondrial import drives oxaloacetate production and fuels gluconeogenesis during late larval development, thus reducing amino acid production and thus reducing protein synthesis.

      Strengths:

      The study is significant because stem cells and many cancers exhibit metabolic rewiring of pyruvate metabolism. It provides new insights into how the fate of pyruvate can be tuned to influence Drosophila biomass accrual, and how pyruvate pools can influence the balance between carbohydrate and protein biosynthesis. Strengths include its rigorous dissection of metabolic rewiring and use of Drosophila and mammalian cell systems to dissect carbohydrate:protein crosstalk.

      Weaknesses:

      However, questions on how these two pathways crosstalk, and how this interfaces with canonical Myc and mTORC machinery remain. There are also questions related to how this protein:carbohydrate crosstalk interfaces with lipid biosynthesis. Addressing these will increase the overall impact of the study.

    2. Reviewer #2 (Public review):

      In this manuscript, the authors leverage multiple cellular models including the drosophila fat body and cultured hepatocytes to investigate the metabolic programs governing cell size. By profiling gene programs in the larval fat body during the third instar stage - in which cells cease proliferation and initiate a period of cell growth - the authors uncover a coordinated downregulation of genes involved in mitochondrial pyruvate import and metabolism. Enforced expression of the mitochondrial pyruvate carrier restrains cell size, despite active signaling of mTORC1 and other pathways viewed as traditional determinants of cell size. Mechanistically, the authors find that mitochondrial pyruvate import restrains cell size by fueling gluconeogenesis through the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Pyruvate conversion to oxaloacetate and use as a gluconeogenic substrate restrains cell growth by siphoning oxaloacetate away from aspartate and other amino acid biosynthesis, revealing a tradeoff between gluconeogenesis and provision of amino acids required to sustain protein biosynthesis. Overall, this manuscript is extremely rigorous, with each point interrogated through a variety of genetic and pharmacologic assays. The major conceptual advance is uncovering the regulation of cell size as a consequence of compartmentalized metabolism, which is dominant even over traditional signaling inputs. The work has implications for understanding cell size control in cell types that engage in gluconeogenesis but more broadly raise the possibility that metabolic tradeoffs determine cell size control in a variety of contexts.

    3. Reviewer #3 (Public review):

      Summary:

      In this article, Toshniwal et al. investigate the role of pyruvate metabolism in controlling cell growth. They find that elevated expression of the mitochondrial pyruvate carrier (MPC) leads to decreased cell size in the Drosophila fat body, a transformed human hepatocyte cell line (HepG2), and primary rat hepatocytes. Using genetic approaches and metabolic assays, the authors find that elevated pyruvate import into cells with forced expression of MPC increases the cellular NADH/NAD+ ratio, which drives the production of oxaloacetate via pyruvate carboxylase. Genetic, pharmacological, and metabolic approaches suggest that oxaloacetate is used to support gluconeogenesis rather than amino acid synthesis in cells over-expressing MPC. The reduction in cellular amino acids impairs protein synthesis, leading to impaired cell growth.

      Strengths:

      This study shows that the metabolic program of a cell, and especially its NADH/NAD+ ratio, can play a dominant role in regulating cell growth.

      The combination of complementary approaches, ranging from Drosophila genetics to metabolic flux measurements in mammalian cells, strengthens the findings of the paper and shows a conservation of MPC effects across evolution.

      Weaknesses:

      In general, the strengths of this paper outweigh its weaknesses. However, some areas of inconsistency and rigor deserve further attention.

      The authors comment that MPC overrides hormonal controls on gluconeogenesis and cell size (Discussion, paragraph 3). Such a claim cannot be made for mammalian experiments that are conducted with immortalized cell lines or primary hepatocytes.

      Nuclear size looks to be decreased in fat body cells with elevated MPC levels, consistent with reduced endoreplication, a process that drives growth in these cells. However, acute, ex vivo EdU labeling and measures of tissue DNA content are equivalent in wild-type and MPC+ fat body cells. This is surprising - how do the authors interpret these apparently contradictory phenotypes?

      In Figure 4d, oxygen consumption rates are measured in control cells and those over-expressing MPC. Values are normalized to protein levels, but protein is reduced in MPC+ cells. Is oxygen consumption changed by MPC expression on a per-cell basis?

      Trehalose is the main circulating sugar in Drosophila and should be measured in addition to hemolymph glucose. Additionally, the units in Figure 4h should be related to hemolymph volume - it is not clear that they are.

      Measurements of NADH/NAD ratios in conditions where these are manipulated genetically and pharmacologically (Figure 5) would strengthen the findings of the paper. Along the same lines, expression of manipulated genes - whether by RT-qPCR or Western blotting - would be helpful to assess the degree of knockdown/knockout in a cell population (for example, Got2 manipulations in Figures 6 and S8).

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Toledo and colleagues describes the generation and characterization of Y220C mice (Y217C in the mouse allele). The authors make notable findings: Y217C mice that have been backcrossed to C57Bl/6 for five generations show decreased female pup births due to exencephaly, a known defect in p53 -/- mice, and they show a correlation with decreased Xist expression, as well increased female neonatal death. They also noted similar tumor formation in Y217C/+ and p53 +/- mice, suggesting that Y217C may not function as a dominant negative. Notably, the authors find that homozygous Y217C mice die faster than p53 -/- mice and that the lymphomas in the Y217C mice were more aggressive and invasive. The authors then perform RNA seq on thymi of Y217C homozygotes compared to p53 -/-, and they suggest that these differentially expressed genes may explain the increased tumorigenesis in Y217C mice.

      Strengths:

      Overall, the study is well controlled and quite well done and will be of interest to a broad audience, particularly given the high frequency of the Y220C mutation in cancer (1% of all cancers, 4% of ovarian cancer).

      Weaknesses:

      No weaknesses were noted by this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      Jaber et al. describe the generation and characterization of a knock-in mouse strain expressing the p53 Y217C hot-spot mutation. While the homozygous mutant cells and mice reflect the typical loss-of-p53 functions, as expected, the Y217C mutation also appears to display gain-of-function (GOF) properties, exemplified by elevated metastasis in the homozygous context (as noted with several hot-spot mutations). Interestingly, this mutation does not appear to exhibit any dominant-negative effects associated with most hot-spot p53 mutations, as determined by the absence of differences in overall survival and tumor predisposition of the heterozygous mice, as well as target gene activation upon nutlin treatment.

      In addition, the authors noted a severe reduction in the female 217/217 homozygous progeny, significantly more than that observed with the p53 null mice, due to exencephaly, leading them to conclude that the Y217C mutation also has additional, non-cancer-related GOFs. Though this property has been well described and attributed to p53 functional impairment, the authors conclude that the Y217C has additional properties in accelerating the phenotype.

      Transcriptomic analyses of thymi found additional gene signature differences between the p53 null and the Y217C strains, indicative of novel target gene activation, associated with inflammation.

      Strengths:

      Overall, the characterisation of the mice highlights the expected typical outcomes associated with most hot-spot p53 mutations published earlier. The quality of the work presented is well done and good, and the conclusions and reasonably well justified.

      Weaknesses:

      The manuscript would benefit from the provision of additional data to strengthen the claims made, as follows:

      (1) Oncogenic GOF - the main data shown for GOF are the survival curve and enhanced metastasis. Often, GOF is exemplified at the cellular level as enhanced migration and invasion, which are standard assays to support the GOF. As such, the authors should perform these assays using either tumor cells derived from the mice or transformed fibroblasts from these mice. This will provide important and confirmatory evidence for GOF for Y217C.

      (2) Novel target gene activation - while a set of novel targets appears to be increased in the Y217C cells compared to the p53 null cells, it is unclear how they are induced. The authors should examine if mutant p53 can bind to their promoters through CHIP assays, and, if these targets are specific to Y217C and not the other hot-spot mutations. This will strengthen the validity of the Y217C's ability to promote GOF.

      (3) Dominant negative effect - the authors' claim of lack of DN effect needs to be strengthened further, as most p53 hot-spot mutations do exhibit DN effect. At the minimum, the authors should perform additional treatment with nutlin and gamma irradiation (or cytotoxic/damaging agents) and examine a set of canonical p53 target genes by qRT-PCR to strengthen their claim.

    1. Reviewer #1 (Public review):

      Summary:

      In this report, the authors made use of a murine cell life derived from a MYC-driven liver cancer to investigate the gene expression changes that accompany the switch from normoxic to hypoxia conditions during 2D growth and the switch from 2D monolayer to 3D organoid growth under normoxic conditions. They find a significant (ca. 40-50%) overlap among the genes that are dysregulated in response to hypoxia in 2D cultures and in response to spheroid formation. Unsurprisingly, hypoxia-related genes were among the most prominently deregulated under both sets of conditions. Many other pathways pertaining to metabolism, splicing, mitochondrial electron transport chain structure and function, DNA damage recognition/repair, and lipid biosynthesis were also identified.

      Major comments:

      (1) Lines 239-240: The authors state that genes involved in DNA repair were identified as being necessary to maintain survival of both 2D and 3D cultures (Figure S6A). Hypoxia is a strong inducer of ROS. Thus, the ROS-specific DNA damage/recognition/repair pathways might be particularly important. The authors should look more carefully at the various subgroups of the many genes that are involved in DNA repair. They should also obtain at least a qualitative assessment of ROS and ROS-mediated DNA damage by staining for total and mitochondrial-specific ROS using dyes such as CM-H2-DCFDA and MitoSox. Actual direct oxidative damage could be assessed by immunostaining for 8-oxo-dG and related to the sub-types of DNA damage-repair genes that are induced. The centrality of DNA damage genes also raises the question as to whether the previously noted prominence of the TP53 pathway (see point 5 below) might represent a response to ROS-induced DNA damage.

      (2) Because most of the pathway differences that distinguish the various cell states from one another are described only in terms of their transcriptome variations, it is not always possible to understand what the functional consequences of these changes actually are. For example, the authors report that hypoxia alters the expression of genes involved in PDH regulation but this is quite vague and not backed up with any functional or empirical analyses. PDH activity is complex and regulated primarily via phosphorylation/dephosphorylation (usually mediated by PDK1 and PDP2, respectively), which in turn are regulated by prevailing levels of ATP and ADP. Functionally, one might expect that hypoxia would lead to the down-regulation of PDH activity (i.e. increased PDH-pSer392) as respiration changes from oxidative to non-oxidative. This would not be appreciated simply by looking at PDH transcript levels. This notion could be tested by looking at total and phospho-PDH by western blotting and/or by measuring actual PDH activity as it converts pyruvate to AcCoA.

      (3) Line 439: Related to the above point: the authors state: "It is likely that blockade of acetyl-CoA production by PDH knockout may force cells to use alternative energy sources under hypoxic and 3D conditions, averting the Warburg effect and promoting cell survival under limited oxygen and nutrient availability in 3D spheroids." This could easily be tested by determining whether exogenous fatty acids are more readily oxidized by hypoxic 2D cultures or spheroids than occurs in normoxic 2D cultures.

      (4) Line 472: "Hypoxia induces high expression of Acaca and Fasn in NEJF10 cells indicating that hypoxia promotes saturated fatty acid synthesis...The beneficial effect of Fasn and Acaca KO to NEJF10 under hypoxia is probably due to reduction of saturated fatty acid synthesis, and this hypothesis needs to be tested in the future.". As with the preceding comment, this supposition could readily be supported directly by, for example, performing westerns blots for these enzymes and by showing that incubation of hypoxic 2D cells or spheroids converted more AcCoA into lipid.

      (5) In Supplementary Figure 2B&C, the central hub of the 2D normoxic cultures is Myc (as it should well be) whereas, in the normoxic 3D, the central hub is TP53 and Myc is not even present. The authors should comment on this. One would assume that Myc levels should still be quite high given that Myc is driven by an exogenous promoter. Does the centrality of TP53 indicate that the cells within the spheroids are growth-arrested, being subjected to DNA damage and/or undergoing apoptosis?

      (6) In the Materials and Methods section (lines 711-720), the description of how spheroid formation was achieved is unclear. Why were the cells first plated into non-adherent 96 well plates and then into non-adherent T75 flasks? Did the authors actually utilize and expand the cells from 144 T75 flasks and did the cells continue to proliferate after forming spheroids? Many cancer cell types will initially form monolayers when plated onto non-adherent surfaces such as plastic Petri dishes and will form spheroid-like structures only after several days. Other cells will only aggregate on the "non-adherent" surface and form spheroid-like structures but will not actually detach from the plate's surface. Have the authors actually documented the formation of true, non-adherent spheroids at 2 days and did they retain uniform size and shape throughout the collection period? The single photo in Supplementary Figure 1 does not explain when this was taken. The authors include a schematic in Figure 2A of the various conditions that were studied. A similar cartoon should be included to better explain precisely how the spheroids were generated and clarify the rationale for 96 well plating. Overall, a clearer and more concise description of how spheroids were actually generated and their appearance at different stages of formation needs to be provided.

      (7) The authors maintained 2D cultures in either normoxic or hypoxic (1% O2) states during the course of their experiments. On the other hand, 3D cultures were maintained under normoxic conditions, with the assumption that the interiors of the spheroids resemble the hypoxic interiors of tumors. However, the actual documentation of intra-spheroid hypoxia is never presented. It would be a good idea for the authors to compare the degree of hypoxia achieved by 2D (1% O2) and 3D cultures by staining with a hypoxia-detecting dye such as Image-iT Green. Comparing the fluorescence intensities in 2D cultures at various O2 concentrations might even allow for the construction of a "standard curve" that could serve to approximate the actual internal O2 concentration of spheroids. This would allow the authors to correlate the relative levels of hypoxia between 2D and 3D cultures.

      (8) Related to the previous 2 points, the authors performed RNAseq on spheroids only 48 hours after initiating 3D growth. I am concerned that this might not have been a sufficiently long enough time for the cells to respond fully to their hypoxic state, especially given my concerns in Point 6. Might the results have been even more robust had the authors waited longer to perform RNA seq? Why was this short time used?

      (9) What happens to the gene expression pattern if spheroids are re-plated into standard tissue culture plates after having been maintained as spheroids? Do they resume 2D growth and does the gene expression pattern change back?

      (10) Overall, the paper is quite descriptive in that it lists many gene sets that are altered in response to hypoxia and the formation of spheroids without really delving into the actual functional implications and/or prioritizing the sets. Some of these genes are shown by CRISPR screening to be essential for maintaining viability although in very few cases are these findings ever translated into functional studies (for example, see points 1-4 above). The list of genes and gene pathways could benefit from a better explanation and prioritization of which gene sets the authors believe to be most important for survival in response to hypoxia and for spheroid formation.

      (11) The authors used a single MYC-driven tumor cell line for their studies. However, in their original paper (Fang, et al. Nat Commun 2023, 14: 4003.) numerous independent cell lines were described. It would help to know whether RNAseq studies performed on several other similar cell lines gave similar results in terms of up & down-regulated transcripts (i.e. representative of the other cell lines are NEJF10 cells).

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Fang et al., provides a tour-de-force study uncovering cancer cell's varied dependencies on several gene programs for their survival under different biological contexts. The authors addressed genomic differences in 2D vs 3D cultures and how hypoxia affects gene expression. They used a Myc-driven murine liver cancer model grown in 2D monolayer culture in normoxia and hypoxia as well as cells grown as 3D spheroids and performed CRISPR-based genome-wide KO screen to identify genes that play important roles in cell fitness. Some context-specific gene effects were further validated by in-vitro and in-vivo gene KO experiments.

      Strengths:

      The key findings in this manuscript are:

      (1) Close to 50% of differentially expressed genes were common between 2D Hypoxia and 3D spheroids conditions but they had differences in chromatin accessibility.<br /> (2) VHL-HIF1a pathway had differential cell fitness outcomes under 2D normoxia vs 2D hypoxia and 3D spheroids.<br /> (3) Individual components of the mitochondrial respiratory chain complex had contrasting effects on cell fitness under hypoxia.<br /> (4) Knockout of organogenesis or developmental pathway genes led to better cell growth specifically in the context of 3D spheroids and knockout of epigenetic modifiers had varied effects between 2D and 3D conditions.<br /> (5) Another key program that leads to cells fitness outcomes in normoxia vs hypoxia is the lipid and fatty acid metabolism.<br /> (6) Prmt5 is a key essential gene under all growth conditions, but in the context of 3D spheroids even partial loss of Prmt5 has a synthetic lethal effect with Mtap deletion and Mtap is epigenetically silenced specifically in the 3D spheroids.

      Issues to address:

      (1) The authors should clarify the link between the findings of the enrichment of TGFb-SMAD signaling REACTOME pathway to the findings that knocking out TGFb-SMAD pathway leads to better cell fitness outcomes for cells in the 3D growth conditions.

      (2) Supplementary Figure 4C has been cited in the text but doesn't exist in the supplementary figures section.

      (3) A small figure explaining this ABC-Myc driven liver cancer model in Supplementary Figure 1 would be helpful to provide context.

      (4) The method for spheroids formation is not found in the method section.

      (5) In Supplementary Figure 1b, the comparisons should be stated the opposite way - 3D vs 2D normoxia and 2D-Hypoxia vs 2D-Normoxia.

      (6) There are typos in the legend for Supplementary Figure 10.

      (7) Consider putting Supplementary Figure 1b into the main Figure 1.

      (8) Please explain only one timepoint (endpoint) for 3D spheroids was performed for the CRISPR KO screen experiment, while several timepoints were done for 2D conditions? Was this for technical convenience?

      (9) In line 372, it is indicated that Bcor KO (Fig 5e) had growth advantage - this was observed in only one of the gRNA -- same with Kmt2d KO in the same figure where there was an opposite effect. Please justify the use of only one gRNA.

      (10) Why was CRISPR based KO strategy not used for the PRMT5 gene but rather than the use of shRNA.? Note that one of the shRNA for PRMT5 had almost no KO (PRMT5-shRNA2 Figure 7B) but still showed phenotype (Figure 7D) - please explain.

      (11) In Figure 7D, which samples (which shRNA group) were being compared to do the t-test?

      (12) In line 240, it is stated that oxphos gene set is essential for NEJF10 cell survival in both normoxia and hypoxia conditions. But shouldn't oxphos be non-essential in hypoxia as cells move away from oxphos and become glycolytic?

      (13) In line 485 it is mentioned that Pmvk and Mvd genes which are involved in cholesterol synthesis when knocked out had a positive effect on cell growth in 3D conditions and since cholesterol synthesis is essential for cell growth how does this not matter much in the context of 3D - please explain.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Fang et al. systematically investigate the effects of culture conditions on gene expression, genome architecture, and gene dependency. To do this, they cultivate the murine HCC line NEJF10 under standard culture conditions (2D), then under similar conditions but under hypoxia (1% oxygen, 2D hypoxia) and under normoxia as spheroids (3D). NEJF10 was isolated from a marine HCC model that relies exclusively on MYC as a driver oncogene. In principle, (1) RNA-seq, (2) ATAC-seq and (3) genetic screens were then performed in this isogenic system and the results were systematically compared in the three cultivation methods. In particular, genome-wide screens with the CRISPR library Brie were performed very carefully. For example, in the 2D conditions, many different time points were harvested to control the selection process kinetically. The authors note differential dependencies for metabolic processes (not surprisingly, hypoxia signaling is affected) such as the regulation and activity of mitochondria, but also organogenesis signaling and epigenetic regulation.

      Strengths:

      The topic is interesting and relevant and the experimental set-up is carefully chosen and meaningful. The paper is well written. While the study does not reveal any major surprises, the results represent an important resource for the scientific community.

      Weaknesses:

      However, this presupposes that the statistical analysis and processing are carried out very carefully, and this is where my main suggestions for revision begin. Firstly, I cannot find any information on the number of replicates in RNA- and ATAC-seq. This should be clearly stated in the results section and figure legends and cut-offs, statistical procedures, p-values, etc. should be mentioned as well. In principle, all NGS experiments (here ATAC- and RNA-seq) should be performed in replicates (at least duplicates, better triplicates) or the results should be validated by RT-PCR in independent biological triplicates. Secondly, the quantification of the analyses shown in the figures and especially in the legends is not sufficiently careful. Units are often not mentioned. Example Figure 4a: The legend says: 'gRNA reads' but how can the read count be -1? I would guess these are FC, log2FC, or Z-values. All figure legends need careful revision.

      Furthermore, I would find a comparison of the sgRNA abundances at the earliest harvesting time with the distribution in the library interesting, to see whether and to what extent selection has already taken place before the three culture conditions were established (minor point).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors identified that NOLC1 was upregulated in gastric cancer samples, which promoted cancer progression and cisplatin resistance. They further found that NOLC1 could bind to p53 and decrease its nuclear transcriptional activity, then inhibit p53-mediated ferroptosis. There are several major concerns regarding the conclusions.

      Strengths:

      This study identified that NOLC1 could bind to p53 and decrease its nuclear transcriptional activity, then inhibit p53-mediated ferroptosis in gastric cancer.

      Weaknesses:

      The major conclusions were not sufficiently supported by the results. The experiments were not conducted in a comprehensive manner.

    2. Reviewer #2 (Public review):

      Summary:

      Shengsheng Zhao et al. investigated the role of nucleolar and coiled-body phosphoprotein 1 (NOLC1) in relegating gastric cancer (GC) development and cisplatin-induced drug resistance in GC. They found a significant correlation between high NOLC1 expression and the poor prognosis of GC. Meanwhile, upregulation of NOLC1 was associated with cis-resistant GC. Experimentally, the authors demonstrate that knocking down NOLC1 increased GC sensitivity to Cis possibly by regulating ferroptosis. Mechanistically, they found NOLC1 suppressed ferroptosis by blocking the translocation of P53 from the cytoplasm to the nucleus and promoting its degradation. In addition, The authors also evaluated the effect of combinational treatment of anti-PD-1 and cisplatin in NOLC1 -knockdown tumor cells, revealing a potential role of NOLC1 in the targeted therapy for GC.

      Strengths:

      Chemoresistance is considered a major reason causing failure of tumor treatment and death of cancer patients. This paper explored the role of NOLC1 in the regulation of Cis-mediated resistance, which involves a regulated cell death named ferroptosis. These findings provide more evidence highlighting the study of regulated cell death to overcome drug resistance in cancer treatment, which could give us more potential strategies or targets for combating cancer.

      Weaknesses:

      More evidence supporting the regulation of ferroptosis induced by Cisplatin by NOLC1 should be added. Particularly, the role of ferroptosis in the cisplatin-resistance should be verified and whether NOLC1 regulates ferroptosis induced by additional FINs should be explored. Besides, the experiments to verify the regulation of ferroptosis sensitivity by NOLC1 are sort of superficial. The role of MDM2/p53 in ferroptosis or cisplatin resistance mediated by NOLC1 should be further studied by genetic manipulation of p53, which is the key evidence to confirm its contribution to NOLC1 regulation of GC and relative cell death.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have put forth a compelling argument that NOLC1 is indispensable for gastric cancer resistance in both in vivo and in vitro models. They have further elucidated that NOLC1 silencing augments cisplatin-induced ferroptosis in gastric cancer cells. The mechanistic underpinning of their findings suggests that NOLC1 modulates the p53 nuclear/plasma ratio by engaging with the p53 DNA Binding Domain, which in turn impedes p53-mediated transcriptional regulation of ferroptosis. Additionally, the authors have shown that NOLC1 knockdown triggers the release of ferroptosis-induced damage-associated molecular patterns (DAMPs), which activate the tumor microenvironment (TME) and enhance the efficacy of the anti-PD-1 and cisplatin combination therapy.

      Strengths:

      The manuscript presents a robust dataset that substantiates the authors' conclusion. They have identified NOLC1 as a potential oncogene that confers resistance to immuno-chemotherapy in gastric cancer through the mediation of ferroptosis and subsequent TME reprogramming. This discovery positions NOLC1 as a promising therapeutic target for gastric cancer treatment. The authors have delineated a novel mechanistic pathway whereby NOLC1 suppresses p53 transcriptional functions by reducing its nuclear/plasma ratio, underscoring the significance of p53 nuclear levels in tumor suppression over total protein levels.

      Weaknesses:

      While the overall findings are commendable, there are specific areas that could benefit from further refinement. The authors have posited that NOLC1 suppresses p53-mediated ferroptosis; however, the mRNA levels of ferroptosis genes regulated by p53 have not been quantified, which is a critical gap in the current study. In Figure 4A, transmission electron microscopy (TEM) results are reported solely for the MGC-803 cell line. It would be beneficial to include TEM data for the MKN-45 cell line to strengthen the findings. The authors have proposed a link between NOLC1-mediated reduction in the p53 nuclear/plasma ratio and gastric cancer resistance, yet the correlation between this ratio and patient prognosis remains unexplored, which is a significant limitation in the context of clinical relevance.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Tiang et al. explore the role of ubiquitination of non-structural protein 16 (nsp16) in the SARS-CoV-2 life cycle. nsp16, in conjunction with nsp10, performs the final step of viral mRNA capping through its 2'-O-methylase activity. This modification allows the virus to evade host immune responses and protects its mRNA from degradation. The authors demonstrate that nsp16 undergoes ubiquitination and subsequent degradation by the host E3 ubiquitin ligases UBR5 and MARCHF7 via the ubiquitin-proteasome system (UPS). Specifically, UBR5 and MARCHF7 mediate nsp16 degradation through K48- and K27-linked ubiquitination, respectively. Notably, degradation of nsp16 by either UBR5 or MARCHF7 operates independently, with both mechanisms effectively inhibiting SARS-CoV-2 replication in vitro and in vivo. Furthermore, UBR5 and MARCHF7 exhibit broad-spectrum antiviral activity by targeting nsp16 variants from various SARS-CoV-2 strains. This research advances our understanding of how nsp16 ubiquitination impacts viral replication and highlights potential targets for developing broadly effective antiviral therapies.

      Strengths:

      The proposed study is of significant interest to the virology community because it aims to elucidate the biological role of ubiquitination in coronavirus proteins and its impact on the viral life cycle. Understanding these mechanisms will address broadly applicable questions about coronavirus biology and enhance our overall knowledge of ubiquitination's diverse functions in cell biology. Employing in vivo studies is a strength.

      Weaknesses:

      While the conclusions are generally well-supported by the data, additional work is needed to confirm that NSP16 is ubiquitinated in a biologically relevant context and to better define the roles of the reported E3 ligases. Clarifications regarding aspects of data acquisition, data analysis, and text editing could notably strengthen the manuscript and its conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides a novel understanding of CoV-host interaction, leading potential therapeutics for SARS-CoV2 infection. Tian et al. identified and demonstrated that the two E3 ligases UBR5 and MARCHF7 both interact with and catalyze the ubiquitination of NSP16 protein of SARS-CoV2, thereby leading to its degradation by the ubiquitin-proteasome system (UPS) and inhibiting SARS-CoV-2 replication. It is interesting to see that the two E3 ligases perform their functions on the same target independently.

      Strengths:

      Overall, the topic and initial discoveries appear interesting. The experimental designs of this study were rigorous and logical, most of the work has been carefully done, and the conclusions drawn from this study are relatively convincing and reliable.

      Weaknesses:

      The quality of the presentation could be improved with better organization, a more conservative interpretation of the data, and further clarity in the writing.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript "SARS-CoV-2 nsp16 is regulated by host E3 ubiquitin ligases, UBR5 and MARCHF7" is an interesting work by Tian et al. describing the degradation/ stability of NSP16 of SARS CoV2 via K48 and K27-linked Ubiquitination and proteasomal degradation. The authors have demonstrated that UBR5 and MARCHF7, an E3 ubiquitin ligase bring about the ubiquitination of NSP16. The concept, and experimental approach to prove the hypothesis looks ok. The in vivo data looks ok with the controls. Overall, the manuscript is good. However, several major and minor changes/points need to be addressed.

      Strengths:

      The study identified important E3 ligases (MARCHF7 and UBR5) that can ubiquitinate NSP16, an important viral factor.

      Weaknesses:

      Most of the in vitro experiments (IP, overexpression) lack appropriate controls. The summary figure in actual terms does not show/correlate to the experimental findings.

    1. Reviewer #1 (Public review):

      Summary:

      The study "Monitoring of Cell-free Human Papillomavirus DNA in Metastatic or Recurrent Cervical Cancer: Clinical Significance and Treatment Implications" by Zhuomin Yin and colleagues focuses on the relationship between cell-free HPV (cfHPV) DNA and metastatic or recurrent cervical cancer patients. It expands the application of cfHPV DNA in tracking disease progression and evaluating treatment response in cervical cancer patients. The study is overall well-designed, including appropriate analyses.

      Strengths:

      The findings provide valuable reference points for monitoring drug efficacy and guiding treatment strategies in patients with recurrent and metastatic cervical cancer. The concordance between HPV cfDNA fluctuations and changes in disease status suggests that cfDNA could play a crucial role in precision oncology, allowing for more timely interventions. As with similar studies, the authors used Droplet Digital PCR to measure cfDNA copy numbers, a technique that offers ultrasensitive nucleic acid detection and absolute quantification, lending credibility to the conclusions.

      Weaknesses:

      Despite including 28 clinical cases, only 7 involved recurrent cervical cancer, which may not be sufficient to support some of the authors' conclusions fully. Future studies on larger cohorts could solidify HPV cfDNA's role as a standard in the personalized treatment of recurrent cervical cancer patients.

    2. Reviewer #2 (Public review):

      Summary:

      The authors conducted a study to evaluate the potential of circulating HPV cell-free DNA (cfDNA) as a biomarker for monitoring recurrent or metastatic HPV+ cervical cancer. They analyzed serum samples from 28 patients, measuring HPV cfDNA levels via digital droplet PCR and comparing these to squamous cell carcinoma antigen (SCC-Ag) levels in 26 SCC patients, while also testing the association between HPV cfDNA levels and clinical outcomes. The main hypothesis that the authors set out to test was whether circulating HPV cfDNA levels correlated with metastatic patterns and/or treatment response in HPV+ CC.

      The main claims put forward by the paper are that:

      (1) HPV cfDNA was detected in all 28 CC patients enrolled in the study and levels of HPV cfDNA varied over a median 2-month monitoring period.<br /> (2) 'Median baseline' HPV cfDNA varied according to 'metastatic pattern' in individual patients.<br /> (3) Positivity rate for HPV cfDNA was more consistent than SCC-Ag.<br /> (4) In 20 SCC patients monitored longitudinally, concordance with changes in disease status was 90% for HPV cfDNA.

      This study highlights HPV cfDNA as a promising biomarker with advantages over SCC-Ag, underscoring its potential for real-time disease surveillance and individualized treatment guidance in HPV-associated cervical cancer.

      Strengths:

      This study presents valuable insights into HPV+ cervical cancer with potential translational significance for management and guiding therapeutic strategies. The focus on a non-invasive approach is particularly relevant for women's cancers, and the study exemplifies the promising role of HPV cfDNA as a biomarker that could aid personalized treatment strategies.

      Weaknesses:

      While the authors acknowledge the study's small cohort and variability in sequential sampling protocols as a limitation, several revisions should be made to ensure that (1) the findings are presented in a way that aligns more closely with the data without overstatement and (2) that the statistical support for these findings is made more clear. Specific suggestions are outlined below.

      (1) The authors should provide source data for Figures 2, 3, and 4 as supplementary material.

      (2) Description of results in Figure 2: Figure 2 would benefit from clearer annotations regarding HPV virus subtypes. For example, does the color-coding in Figure 2B imply that all samples in the LR subgroup are of type HPV16? If that is the case, is it possible that detection variations are due to differences in subtype detection efficiency rather than cfDNA levels? The authors should clarify these aspects. Annotation of Figure 2B suggests that the p-value comes from comparing the LR and LN+H+DSM groups. This should be clarified in the legend. If this p-value comes from comparing HPV cfDNA copies for the (LR, LNM, HM) and (LN+HM, LN+HM+DSM) groups, did the authors carry out post-hoc pairwise comparisons? It would be helpful to include acronyms for these groups in the legend also.

      (3) Interpretation of results in Figure 2 and elsewhere: Significant differences detected in Figure 2B could imply potential associations between HPV cfDNA levels (or subtypes) and recurrence/metastasis patterns. Figure 2C shows that there is a difference in cfDNA levels between the groups compared, suggesting an association but this would not necessarily be a direct "correlation". Overall, interpretation of statistical findings would benefit from more precise language throughout the text and overstatement should be avoided.

      (4) The authors state that six patients showed cfDNA elevation with clinically progressive disease, yet only three are represented in Figure 3B1 under "Patients whose disease progressed during treatment." What is the expected baseline variability in cfDNA for patients? If we look at data from patients with early-stage cancer would we see similar fluctuations? And does the degree of variability vary for different HPV subtypes? Without understanding the normal fluctuations in cfDNA levels, interpreting these changes as progression indicators may be premature.

      (5) It would be helpful if where p-values are given, the test used to derive these values was also stated within parentheses e.g. (P < 0.05, permutation test with Benjamini-Hochberg procedure).

    1. Reviewer #1 (Public review):

      This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

      I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

      I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

      It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

      As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

      Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

    2. Reviewer #1 (Public review):

      This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

      I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

      I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

      It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

      As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

      Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

    1. Reviewer #1 (Public review):

      Summary:

      Dalal and Haddad investigated how neurons in the olfactory bulb are synchronized in oscillatory rhythms at gamma frequency. Temporal coordination of action potentials fired by projection neurons can facilitate information transmission to downstream areas. In a previous paper (Dalal and Haddad 2022, https://doi.org/10.1016/j.celrep.2022.110693), the authors showed that gamma frequency synchronization of mitral/tufted cells (MTCs) in the olfactory bulb enhances the response in the piriform cortex. The present study builds on these findings and takes a closer look at how gamma synchronization is restricted to a specific subset of MTCs in the olfactory bulb. They combined odor and optogenetic stimulations in anesthetized mice with extracellular recordings.

      The main findings are that lateral synchronization of MTCs at gamma frequency is mediated by granule cells (GCs), independent of the spatial distance, and strongest for MTCs with firing rates close to 40 Hz. The authors conclude that this reveals a simple mechanism by which spatially distributed neurons can form a synchronized ensemble. In contrast to lateral synchronization, they found no evidence for the involvement of GCs in lateral inhibition of nearby MTCs.

      Strengths:

      Investigating the mechanisms of rhythmic synchronization in vivo is difficult because of experimental limitations for the readout and manipulation of neuronal populations at fast timescales. Using spatially patterned light stimulation of opsin-expressing neurons in combination with extracellular recordings is an elegant approach. The paper provides evidence for an activity-dependent synchronization of MTCs in gamma frequency that is mediated by GCs.

      Weaknesses:

      The study provides several results showing the firing of MTCs in gamma frequency range, however, direct evidence for the synchronization of MTCs in gamma frequency is missing.

    2. Reviewer #2 (Public review):

      Summary

      This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.

      The authors use a clever combination of single cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods, to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of other, lateral glomerular MTC ensembles. This assay is rounded off by a gain of function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization of a single MTC's spiking to the gamma rhythm. They had used the same optogenetic manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation.

      Strengths

      This study is of high interest for olfactory processing since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance synchronization of single neurons to gamma in one receptor channel and thus by inference most likely in both. Such synchronization across co-active receptor channels in turn would enable upstream neurons in olfactory cortices to read out odour identity.

      The authors find that these interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities. In my view, analogies between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.

      Such enhanced local synchronization to gamma in one channel was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve reduction of firing rates, drops off with distance and most likely is caused by a different circuit mediated by PV+ neurons (PVN). The evidence for the latter is more circumstantial since no manipulations of PVNs were performed.

      Weaknesses/Room for improvement

      This study is an impressive proof of concept that however does not yet allow for broad generalization. Thus the framing of results should be slightly more careful IMHO. While the claims in the initial version of this preprint have been toned down quite substantially, the authors do not provide direct hard evidence for synchronization across channels. Admittedly, this would be hard to achieve since it would require paired recordings from MTCs in different locations in vivo. Therefore, the term „lateral synchronization" as it is used in the abstract is still problematic, as well as the title which should rather say „can enable" instead of „enables". That being said, this study definitely provides important evidence regarding the concept of "lateral synchronization".

      The other comments and recommendations have been well taken care of in the new version.

    1. Reviewer #1 (Public review):

      The authors aimed to investigate how the probability of a reversal in a decision-making task is represented in cortical neurons. They analyzed neural activity in the prefrontal cortex of monkeys and units in recurrent neural networks (RNNs) trained on a similar task. Their goal was to understand how the dynamical systems that implement computation perform a probabilistic reversal learning task in RNNs and nonhuman primates.

      Major strengths and weaknesses:

      Strengths:

      (1) Integrative Approach: The study exemplifies a modern approach by combining empirical data from monkey experiments with computational modeling using RNNs. This integration allows for a more comprehensive understanding of the dynamical systems that implement computation in both biological and artificial neural networks.

      (2) The focus on using perturbations to identify causal relationships in dynamical systems is a good goal. This approach aims to go beyond correlational observations.

      Weaknesses:

      (1) The description of the RNN training procedure and task structure lacks detail, making it difficult to fully evaluate the methodology.

      (2) The conclusion that the representation is better described by separable dynamic trajectories rather than fixed points on a line attractor may be premature.

      (3) The use of targeted dimensionality reduction (TDR) to identify the axis determining reversal probability may not necessarily isolate the dimension along which the RNN computes reversal probability.

      Appraisal of aims and conclusions:

      The authors claim that substantial dynamics associated with intervening behaviors provide evidence against a line attractor. The conclusion that this representation is better described by separable dynamic trajectories rather than fixed points on a line attractor may be premature. The authors found that the state was translated systematically in response to whether outcomes were rewarded, and this translation accumulated across trials. This is consistent with a line attractor, where reward input bumps the state along a line. The observed dynamics could still be consistent with a curved line attractor, with faster timescale dynamics superimposed on this structure.

      Likely impact and utility:

      This work contributes to our understanding of how probabilistic information is represented in neural circuits and how it influences decision-making. The methods used, particularly the combination of empirical data and RNN modeling, provide a valuable approach for investigating neural computations. However, the impact may be limited by some of the methodological concerns raised.

      The data and methods could be useful to the community, especially if the authors provide more detailed descriptions of their RNN training procedures and task structure. However, reverse engineering of the network dynamics was minimal. Most analyses didn't take advantage of the full access to the RNN's update equations.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors trained RNN to perform a reversal task also performed by animals while PFC activity is recorded. The authors devised a new method to train RNN on this type of reversal task, which in principle ensures that the behavior of the RNN matches the behavior of the animal. They then performed some analysis of neural activity, both RNN and PFC recording, focusing on the neural representation of the reversal probability and its evolution across trials. Given the analysis presented, it has been difficult for me to assess at which point RNN can reasonably be compared to PFC recordings.

      Strengths:

      Focusing on a reversal task, the authors address a challenge in RNN training, as they do not use a standard supervised learning procedure where the desired output is available for each trial. They propose a new way of doing that.

      They attempt to confront RNN and neural recordings in behaving animals.

      Weaknesses:

      The design of the task for the RNN does not seem well suited to support the claim of the paper: no action is required to be performed by neurons in the RNN, instead, the choice of the animal is determined by applying a non-linearity to the RNN's readout (equation 7), no intervening behavior is thus performed by neurons on which the analysis is performed throughout the paper. 
Instead, it would have been nice to mimic more closely the task structure of the experiments on monkeys, with a fixation period where the read-out is asked to be at a zero value, and then asked to reach a target value (not just taking its sign), depending on the expected choice after a cue presentation period.

      The comparison between RNN and neural data focuses on very specific features of neural activity. It would have been nice to see how individual units in the RNN behave over the course of the trial, do all units show oscillatory behavior like the readout shown in Figure 1B?

      It would be nice to justify why it has been chosen to take a network of inhibitory neurons and to know whether the analysis can also be performed with excitatory neurons.
 All the analysis relies on the dimensionality reduction. It would have been nice to have some other analysis confirming the claim of the absence of a line attractor in the neural data. Or at least to better characterize this dimensionality reduction procedure, e.g. how much of the variance is explained by this analysis for instance?

      It is thus difficult to grasp, besides the fact that reversal behavior is similar, to what extent the RNN is comparable to PFC functioning and to what extent we learn anything about the latter.

      Other computational works (e.g. [1,2]) have developed procedures to train RNN on reversal-like tasks, it would have been nice to compare the procedure presented here with these other works.

      [1] H Francis Song & Xiao-Jing Wang. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife doi:10.7554/elife.21492.001.

      [2] Molano-Mazón, M. et al. Recurrent networks endowed with structural priors explain suboptimal animal behavior. Current Biology 33, 622-638.e7 (2023).

    3. Reviewer #3 (Public review):

      Summary:

      Kim et al. present a study of the neural dynamics underlying reversal learning in monkey PFC and neural networks. The concept of studying neural dynamics throughout the task (including intervening behaviour) is interesting, and the data provides some insights into the neural dynamics driving reversal learning. The modelling seems to support the analyses, but both the modelling and analyses also leave several open questions.

      Strengths:

      The paper addresses an interesting topic of the neural dynamics underlying reversal learning in PFC, using a combination of biological and simulated data. Reversal learning has been studied extensively in neuroscience, but this paper takes a step further by analysing neural dynamics throughout the trials instead of focusing on just the evidence integration epoch.

      The authors show some close parallels between the experimental data and RNN simulations, both in terms of behaviour and neural dynamics. The analyses of how rewarded and unrewarded trials differentially affect dynamics throughout the trials in RNNs and PFC were particularly interesting. This work has the potential to provide new insights into the neural underpinnings of reversal learning.

      Weaknesses:

      Conceptual:

      A substantial focus of the paper is on the within-trial dynamics associated with "intervening behaviour", but it is not clear whether that is well-modelled by the RNN. In particular, since there is little description of the experimental task, and the RNN does not have to do any explicit computation during the non-feedback parts of the trial, it is unclear whether the RNN 'non-feedback' dynamics can be expected to reasonably model the experimental data.

      Data analyses:

      While the basic analyses seem mostly sound, it seems like a potential confound that they are all aligned to the inferred reversal trial rather than the true experimental reversal trial. For example, the analyses showing that 'x_rev' decays strongly after the reversal trial, irrespective of the reward outcome, seem like they are true essentially by design. The choice to align to the inferred reversal trial also makes this trial seem 'special' (e.g. in Figure 2, Figure 5A), but it is unclear whether this is a real feature of the data or an artifact of effectively conditioning on a change in behaviour. It would be useful to investigate whether any of these analyses differ when aligned to the true reversal trial. It is also unsurprising that x_rev increases before the reversal and decreases after the reversal (it is hard to imagine a system where this is not the case), yet all of Figure 5 and much of Figure 4 is devoted to this point.

      Most of the analyses focus on the dynamics specifically in the x_rev subspace, but a major point of the paper is to say that biological (and artificial) networks may also have to do other things at different times in the trial. If that is the case, it would be interesting to also ask what happens in other subspaces of neural activity, that are not specifically related to evidence integration or choice - are there other subspaces that explain substantial variance? Do they relate to any meaningful features of the experiment?

      On a related note, descriptions of the task itself, the behaviour of the animal(s?), and the neural recordings are largely absent, making it difficult to know what we should expect from neural dynamics throughout a trial. In fact, we are not even told how many monkeys were used for the paper or which part of PFC the recordings are from.

      Modelling:

      There are a number of surprising and non-standard modelling choices made in this paper. For example, the choice to only use inhibitory neurons is non-conventional and not consistent with prior work. The authors cite van Vreeswijk & Sompolinsky's balanced network paper, but this and most other balanced networks use a combination of excitatory and inhibitory neurons.

      It also seems like the inputs are provided without any learnable input weights (and the form of the inputs is not described in any detail). This makes it hard to interpret the input-driven dynamics during the different phases of a trial, despite these dynamics being a central topic of the paper.

      It is surprising that the RNN is "trained to flip its preferred choice a few trials after the inferred scheduled reversal trial", with the reversal trial inferred by an ideal Bayesian observer. A more natural approach would be to directly train the RNN to solve the task (by predicting the optimal choice) and then investigate the emergent behaviour & dynamics. If the authors prefer their imitation learning approach (which should at least be motivated), it is also surprising that the network is trained to predict the reversal trial inferred using Bayesian smoothing instead of Bayesian filtering.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      A few questions remain:

      (1) What is the behavioral consequence for loss of srrm4 and/or loss-of-function mutations in other genes encoding microexon splicing machinery in zebrafish?

      (2) What is the consequence of loss-of-function in microexon splicing genes on splicing of the genes studied (especially those for which phenotypes were observed).

      (3) For the microexons whose loss is associated with substantial behavioral, morphological, or activity changes, are the same changes observed in loss-of-function mutants for these genes?

      (4) Do "microexon mutations" presented here result in the precise loss of those microexons from the mRNA sequence? E.g. are there other impacts on mRNA sequence or abundance?

      (5) Microexons with a "canonical layout" (containing TGC / UC repeats) were selected based on the likelihood that they are regulated by srrm4. Are there other parallel pathways important for regulating the inclusion of microexons? Is it possible to speculate on whether they might be more important in zebrafish or in the case of early brain development?

      Strengths:

      (1) The authors provide a qualitative analysis of splicing plasticity for microexons during early zebrafish development.

      (2) The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

      Weaknesses:

      (1) It is difficult to interpret the largely negative findings reported in this paper without knowing how the loss of srrm4 affects brain activity, morphology, and behavior in zebrafish.

      (2) The authors do not present experiments directly testing the effects of their mutations on RNA splicing/abundance.

      (3) A comparison between loss-of-function phenotypes and loss-of-microexon splicing phenotypes could help interpret the findings from positive hits.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript from Calhoun et al. uses a well-established screening protocol to investigate the functions of microexons in zebrafish neurodevelopment. Microexons have gained prominence recently due to their enriched expression in neural tissues and misregulation in autism spectrum disease. However, screening of microexon functionality has thus far been limited in scope. The authors address this lack of knowledge by establishing zebrafish microexon CRISPR deletion lines for 45 microexons chosen in genes likely to play a role in CNS development. Using their high throughput protocol to test larval behaviour, brain activity, and brain structure, a modest group of 9 deletion lines was revealed to have neurodevelopmental functions, including 2 previously known to be functionally important.

      Strengths:

      (1) This work advances the state of knowledge in the microexon field and represents a starting point for future detailed investigations of the function of 7 microexons.

      (2) The phenotypic analysis using high-throughput approaches is sound and provides invaluable data.

      Weaknesses:

      (1) There is not enough information on the exact nature of the deletion for each microexon.

      (2) Only one deletion is phenotypically analysed, leaving space for the phenotype observed to be due to sequence modifications independent of the microexon itself.

    3. Reviewer #3 (Public review):

      Summary:

      This paper sought to understand how microexons influence early brain function. By selectively deleting a large number of conserved microexons and then phenotyping the mutants with behavior and brain activity assays, the authors find that most microexons have minimal effects on the global brain activity and broad behaviors of the larval fish-- although a few do have phenotypes.

      Strengths:

      The work takes full advantage of the scale that is afforded in zebrafish, generating a large mutant collection that is missing microexons and systematically phenotyping them with high throughput behaviour and brain activity assays. The work lays an important foundation for future studies that seek to uncover the likely subtle roles that single microexons will play in shaping development and behavior.

      Weaknesses:

      The work does not make it clear enough what deleting the microexon means, i.e. is it a clean removal of the microexon only, or are large pieces of the intron being removed as well-- and if so how much? Similarly, for the microexon deletions that do yield phenotypes, it will be important to demonstrate that the full-length transcript levels are unaffected by the deletion. For example, deleting the microexon might have unexpected effects on splicing or expression levels of the rest of the transcript that are the actual cause of some of these phenotypes.

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.<br /> Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      (2) It's not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension.

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well described (Fig.1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      A more detailed analysis of glial cell types within the hypothalamus in response to drug should be provided.

      (4) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      Comments on revisions:

      Some of the concerns were addressed in this revised version, and the authors responded and addressed study design limitations in both sexes/ages.

      However, there are still some concerns that were not sufficiently addressed:

      While the term "senescent" was changed to "stressed," some histological/ cellular validation of this phenotype is still needed.

      Some discussion on the sex-specific effects of 17α-estradiol in the hypothalamus is still required. Previous studies in mice demonstrated that 17α-estradiol reduced hypothalamic microgliosis and astrogliosis in male but not female UM-HET3 mice.

      Additionally, the provided analysis on astrocytes and microglia is superficial.

    2. Reviewer #2 (Public review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels to those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons on mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      • The single nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.<br /> • There is a variety of functions used that allowed the differential analysis of a very complex type of data. This led to a better comparison between the different groups in many levels.<br /> • There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression.

      Weaknesses:

      • One main control group is missing from the study, the young males treated with 17α-Estradiol.<br /> • Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.<br /> • Although the authors claim to have several findings, the data fail to support these claims.<br /> • The study is about improving ageing but no physiological data from the study demonstrated such claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.<br /> • Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression is related to metabolic, synaptic or other function.

      Comments on revisions:

      The authors revised part of the manuscript to address some of the reviewers' comments This improved the language and the text flow to a certain extent. They also added an additional analysis including glial cells. However, they failed to address the main weaknesses brought up by the reviewers and did not add any experimental demonstration of their claims on lifespan expansion induced by 17α-estradiol in rats. In addition, they insisted i keeping parts in the discussion that are not directly linked to any of the papers' findings.

    1. Reviewer #1 (Public review):

      The manuscript examines the role of Naa10 in cKO animals, in immortalized neurons, and in primary neurons. Given that Naa10 mutations in humans produce defects in nervous system function, the authors used various strategies to try to find a relevant neuronal phenotype and its potential molecular mechanism.

      This work contains valuable findings that suggest that the depletion of Naa10 from CA1 neurons in mice exacerbates anxiety-like behaviors. Using neuronal-derived cell lines authors establish a link between N-acetylase activity, Btbd3 binding to CapZb, and F-actin, ultimately impinging on neurite extension. The evidence demonstrating this is in most cases incomplete, since some key controls are missing and clearly described or simply because claims are not supported by the data. The manuscript also contains biochemical, co-immunoprecipitation, and proteomic data that will certainly be of value to our knowledge of the effects of protein N--acetylation in neuronal development and function.

    2. Reviewer #2 (Public review):

      In this study, the authors sought to elucidate the neural mechanisms underlying the role of Naa10 in neurodevelopmental disruptions with a focus on its role in the hippocampus. The authors use an impressive array of techniques to identify a chain of events that occurs in the signaling pathway starting from Naa10 acetylating Btbd3 to regulation of F-actin dynamics that are fundamental to neurite outgrowth. They provide convincing evidence that Naa10 acetylates Btbd3, that Btbd3 facilitates CapZb binding to F-actin in a Naa10 acetylation-dependent manner, and that this CapZb binding to F-actin is key to neurite outgrowth. Besides establishing this signaling pathway, the authors contribute novel lists of Naa10 and Btbd3 interacting partners, which will be useful for future investigations into other mechanisms of action of Naa10 or Btbd3 through alternative cell signaling pathways. The evidence presented for an anxiety-like behavioral phenotype as a result of Naa10 dysfunction is mixed and tenuous, and assays for the primary behaviors known to be altered by Naa10 mutations in humans were not tested. As such, behavioral findings and their translational implications should be interpreted with caution. Finally, while not central to the main cell signaling pathway delineated, the characterization of brain region-specific and cell maturity of Naa10 expression patterns was presented in few to single animals and not quantified, and as such should also be interpreted with caution. On a broader level, these findings have implications for neurodevelopment and potentially, although not tested here, synaptic plasticity in adulthood, which means this novel pathway may be fundamental for brain health.

      Summarized list of minor concerns

      (1) The early claims of the manuscript are supported by very small sample sizes (often 1-3) and/or lack of quantification, particularly in Figures S1 and 1.

      (2) Evidence is insufficient for CA1-specific knockdown of Naa10.

      (3) The relationship between the behaviors measured, which centered around mood, and Ogden syndrome, was not clear, and likely other behavioral measures would be more translationally relevant for this study. Furthermore, the evidence for an anxiety-like phenotype was mixed.

      (4) Btbd3 is characterized by the authors as an OCD risk gene, but its status as such is not well supported by the most recent, better-powered genome-wide association studies than the one that originally implicated Btbd3. However, there is evidence that Btbd3 expression, including selectively in the hippocampus, is implicated in OCD-relevant behaviors in mice.

      (5) The reporting of the statistics lacks sufficient detail for the reader to deduce how experimental replicates were defined.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Bisht et al address the hypothesis that protein folding chaperones may be implicated in aggregopathies and in particular Tau aggregation, as a means to identify novel therapeutic routes for these largely neurodegenerative conditions.

      The authors conducted a genetic screen in the Drosophila eye, which facilitates the identification of mutations that either enhance or suppress a visible disturbance in the nearly crystalline organization of the compound eye. They screened by RNA interference all 64 known Drosophila chaperones and revealed that mutations in 20 of them exaggerate the Tau-dependent phenotype, while 15 ameliorated it. The enhancer of the degeneration group included 2 subunits of the typically heterohexameric prefoldin complex and other co-translational chaperones.

      The authors characterized in depth one of the prefoldin subunits, Pfdn5, and convincingly demonstrated that this protein functions in the regulation of microtubule organization, likely due to its regulation of proper folding of tubulin monomers. They demonstrate convincingly using both immunohistochemistry in larval motor neurons and microtubule binding assays that Pfdn5 is a bona fide microtubule-associated protein contributing to the stability of the axonal microtubule cytoskeleton, which is significantly disrupted in the mutants.

      Similar phenotypes were observed in larvae expressing Frontotemporal dementia with Parkinsonism on chromosome 17-associated mutations of the human Tau gene V377M and R406W. On the strength of the phenotypic evidence and the enhancement of the TauV377M-induced eye degeneration, they demonstrate that loss of Pfdn5 exaggerates the synaptic deficits upon expression of the Tau mutants. Conversely, the overexpression of Pfdn5 or Pfdn6 ameliorates the synaptic phenotypes in the larvae, the vacuolization phenotypes in the adult, and even memory defects upon TauV377M expression.

      Strengths:

      The phenotypic analyses of the mutant and its interactions with TauV377M at the cell biological, histological, and behavioral levels are precise, extensive, and convincing and achieve the aims of characterization of a novel function of Pfdn5.

      Regarding this memory defect upon V377M tau expression. Kosmidis et al (2010) pmid: 20071510, demonstrated that pan-neuronal expression of TauV377M disrupts the organization of the mushroom bodies, the seat of long-term memory in odor/shock and odor/reward conditioning. If the novel memory assay the authors use depends on the adult brain structures, then the memory deficit can be explained in this manner.

      If the mushroom bodies are defective upon TauV377M expression does overexpression of Pfdn5 or 6 reverse this deficit? This would argue strongly in favor of the microtubule stabilization explanation.

      The discovery that Pfdn5 (and 6 most likely) affect tauV377M toxicity is indeed a novel and important discovery for the Tauopathies field. It is important to determine whether this interaction affects only the FTDP-17-linked mutations, or also WT Tau isoforms, which are linked to the rest of the Tauopathies. Also, insights on the mode(s) that Pfdn5/6 affect Tau toxicity, such as some of the suggestions above are aiming at, will likely be helpful towards therapeutic interventions.

      Weaknesses:

      What is unclear however is how Pfdn5 loss or even overexpression affects the pathological Tau phenotypes.

      Does Pfdn5 (or 6) interact directly with TauV377M? Colocalization within tissues is a start, but immunoprecipitations would provide additional independent evidence that this is so.

      Does Pfdn5 loss exacerbate TauV377M phenotypes because it destabilizes microtubules, which are already at least partially destabilized by Tau expression?<br /> Rescue of the phenotypes by overexpression of Pfdn5 agrees with this notion.

      However, Cowan et al (2010) pmid: 20617325 demonstrated that wild-type Tau accumulation in larval motor neurons indeed destabilizes microtubules in a Tau phosphorylation-dependent manner.

      So, is TauV377M hyperphosphorylated in the larvae?? What happens to TauV377M phosphorylation when Pfdn5 is missing and presumably more Tau is soluble and subject to hyperphosphorylation as predicted by the above?

      Expression of WT human Tau (which is associated with most common Tauopathies other than FTDP-17) as Cowan et al suggest has significant effects on microtubule stability, but such Tau-expressing larvae are largely viable. Will one mutant copy of the Pfdn5 knockout enhance the phenotype of these larvae?? Will it result in lethality? Such data will serve to generalize the effects of Pfdn5 beyond the two FDTP-17 mutations utilized.

      Does the loss of Pfdn5 affect TauV377M (and WTTau) levels?? Could the loss of Pfdn5 simply result in increased Tau levels? And conversely, does overexpression of Pfdn5 or 6 reduce Tau levels?? This would explain the enhancement and suppression of TauV377M (and possibly WT Tau) phenotypes. It is an easily addressed, trivial explanation at the observational level, which if true begs for a distinct mechanistic approach.

      Finally, the authors argue that TauV377M forms aggregates in the larval brain based on large puncta observed especially upon loss of Pfdn5. This may be so, but protocols are available to validate this molecularly the presence of insoluble Tau aggregates (for example, pmid: 36868851) or soluble Tau oligomers as these apparently differentially affect Tau toxicity. Does Pfdn5 loss exaggerate the toxic oligomers and overexpression promotes the more benign large aggregates??

    2. Reviewer #2 (Public review):

      Bisht et al detail a novel interaction between the chaperone, Prefoldin 5, microtubules, and tau-mediated neurodegeneration, with potential relevance for Alzheimer's disease and other tauopathies. Using Drosophila, the study shows that Pfdn5 is a microtubule-associated protein, which regulates tubulin monomer levels and can stabilize microtubule filaments in the axons of peripheral nerves. The work further suggests that Pfdn5/6 may antagonize Tau aggregation and neurotoxicity. While the overall findings may be of interest to those investigating the axonal and synaptic cytoskeleton, the detailed mechanisms for the observed phenotypes remain unresolved and the translational relevance for tauopathy pathogenesis is yet to be established. Further, a number of key controls and important experiments are missing that are needed to fully interpret the findings.

      The strength of this study is the data showing that Pfdn5 localizes to axonal microtubules and the loss-of-function phenotypic analysis revealing disrupted synaptic bouton morphology. The major weakness relates to the experiments and claims of interactions with Tau-mediated neurodegeneration. In particular, it is unclear whether knockdown of Pfdn5 may cause eye phenotypes independent of Tau. Further, the GMR>tau phenotype appears to have been incorrectly utilized to examine age-dependent, neurodegeneration.

      This manuscript argues that its findings may be relevant to thinking about mechanisms and therapies applicable to tauopathies; however, this is premature given that many questions remain about the interactions from Drosophila, the detailed mechanisms remain unresolved, and absent evidence that tau and Pfdn may similarly interact in the mammalian neuronal context. Therefore, this work would be strongly enhanced by experiments in human or murine neuronal culture or supportive evidence from analyses of human data.

    1. Reviewer #1 (Public review):

      Summary:

      This study utilized publicly available Hi-C data to ensemble a comprehensive set of breast cancer cell lines (luminal, Her2+, TNBC) with varying metastatic features to answer whether breast cancer cells would acquire organ-specific features at the 3D genome level to metastasize to that specific organ. The authors focused on lung metastasis and included several controls as the comparison including normal mammary lines, normal lung epithelial lines, and lung cancer cell lines. Due to the lower resolution at 250KB binning size, the authors only addressed the compartments (A for active compartment and B for inactive compartment) not the other 3D organization of the genome. They started by performing clustering and PCA analysis for the compartment identity and discovered that this panel of cell lines could be well separated based on Her2 and epithelial-mesenchymal features according to the compartment identity. While correlating with the transcriptomic changes, the authors noticed the existence of concordance and divergence between the compartment changes and transcriptomic changes. The authors then switched gears to tackle the core question of metastatic organotropism to the lung. They discovered a set of "lung permissive compartment changes" and concluded that "lung metastatic breast cancer cell lines acquire lung-like genome architecture" and "organotropic 3D genome changes match target organ more than an unrelated organ". To prove the latter point, the authors enlisted an additional non-breast cancer cell line (prostate cancer) in the setting of brain metastasis. This is a piece of pure dry computational work without wet bench experiments.

      Strengths:

      The authors embarked on an ambitious journey to seek the answer regarding 3D genome changes predisposing to metastatic organotropism. The authors succeeded in the assembly of a comprehensive panel of breast cancer cell lines and the aggregation of the 3D genome structure data to conduct a hypothesis-driven computation analysis. The authors also achieved in including proper controls representing normal non-cancerous epithelium and the end organ of interest. The authors did well in the citation of relevant references in 3D genome organization and EMT.

      Weaknesses:

      (1) The authors should clearly indicate how they determine the patterns of spread of the breast cancer cell lines being utilized in this manuscript. How did the authors arrive at the conclusion that certain cell lines would be determined as "localized spread" and "metastatic tropism to the lung"? This definition is crucial, and I will explain why.

      Todd Golub's team from the Broad Institute of MIT and Harvard published "A metastasis map of human cancer cell lines" to exhaustively create a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis. (By the way, this work was not cited in the reference in this manuscript.) The MetMap Explorer (https://depmap.org/metmap/vis-app/index.html) is a public resource that could be openly accessed to visualize the metastatic potential of each cell line as determined by the in vivo barcoding approach as described in the MetMap paper in the format of petal plots. 5 organs were tested in the MetMap paper, including brain, lung, liver, kidney, and bone. The authors would discover that some of the organ-specific metastasis patterns defined in the MetMap Explorer would be different from the authors' classification. For example, the authors defined MCF7 as a line as lung metastatic, and rightly so the MetMap charted a signal towards lung with low penetrance and low metastatic potential. The authors defined ZR751 as a line with localized spread, however, the MetMap charted a signal towards the kidney with low penetrance and low metastatic potential, the signal strength similar to the lung metastasis in MCF7. A similar argument could be made for T47D. The TNBC line MDA-MB-231 is indeed highly metastatic, however, in MetMap data, its metastasis is not only specific to the lung but towards all 5 organs with high penetrance and metastatic potential. The 2 lung cancer cell lines mentioned in this study, A549 and H460, the authors defined them as localized spread to the lung. However, the MetMap data clearly indicated that A549 and H460 are highly metastatic to all 5 organs with high penetrance and high metastatic potential.

      Since results will vary among different experimental models testing metastatic organotropism, (intra-cardiac injection was the metastasis model being adopted in the MetMap), the authors should state more clearly which experimental model system served as the basis for their definition of organ-specific metastasis. In my opinion, this is the most crucial first step for this entire study to be sound and solid.

      (2) Figure 1b: The authors found that "MDA-MB-231 cells were grouped with the lung carcinoma cells. This implies that the genome organization of this cell line is closer to that of lung cells than to other breast epithelial cell lines.". In fact, another TNBC line BT549 was also clustered under the same clade. So this clade consisted of normal-like and highly metastatic lines. Therefore, the authors should be mindful of the fact that the compartment features might not directly link to metastasis (or even metastatic organotropism).

      (3) Figure 3: In the text, the authors stated, "To further investigate this result, we examined the transcription status of genes that changed compartment across the EMT spectrum and, conversely, the compartment status of genes that changed transcription (Fig. 3b, c, and d)". However, it was not apparent in the figure that the cell lines were arranged according to an EMT spectrum. Also, the clustering heatmaps did not provide sufficient information regarding the genes with concordant/divergent compartments vs transcription changes. It would be more informative if the authors could spend more effort in annotating these genes/pathways.

      (4) Figure 4: The title of the subheading of this section was 'Lung metastatic breast cancer cell lines acquire lung-like genome architecture". Echoing my comments in point 1, I am a bit hesitant to term it as "lung metastatic" but rather "metastatic' in general since cell lines such as MDA-MD-231 do metastasize to other organs as well. However, I do get the point that the definition of "lung metastasis" is derived from the common metastasis features among the cell lines here (MCF7, T47D, SKBR3, MDA-MB-231).

      There might be another argument about whether the "lung" carcinoma cell lines can be considered "localized" since they are also capable of metastasizing to other organs. In a way, what the authors probably were trying to leverage here is the "tissue" identity of that organ. Having said this, in addition to showing the "lung permissive changes", the authors should show the "breast identity conservation" as well. Because this section started to deal with the concept of "tissue/lineage identify", the authors should also clarify whether these breast cancer cell lines capable of making lung metastasis are also preserving their original tissue identity from the compartment features (which would most likely be the case).

      (5) Rest of the sections: The authors started to claim that the organ-specific metastasis permissive compartmental features mimic the destinated end organ. The authors utilized additional non-breast cancer cell lines (prostate cancer cell lines LNCaP as localized and DU145 as brain metastatic) in brain metastasis to strengthen this claim. (DU145 in MetMap again is highly metastatic to lung, brain, and kidney). However, this makes one wonder that for cell lines that are capable of metastasizing to multiple organ sites (eg. MDA-MB-231, DU145, A459, H460), does it mean that they all acquire the permissive features for all these organs? This scenario is clinically relevant in Stage 4 patients who often present with not only one metastatic lesion in one single organ but multiple metastatic lesions in more than one organ (eg. concomitant liver and lung metastasis). Do the authors think that there might be different clones having different tropism-permissive 3D genome features or there might be evolutionary trajectory in this?

      In my opinion, to further prove this point, the authors might need to consider doing in vivo experiments to collect paired primary and organ-specific metastatic samples to look at the 3D genome changes.

      (6) Technically, the study utilized public Hi-C data without generating new Hi-C data. The resolution of the Hi-C data for compartments was set at 250KB as the binning size indicating that the Hi-C data was at lower resolution so it might not be ideal to address other 3D genome architecture changes such as TADs or long-range loops. It is therefore unknown whether there might be permissive TAD/loop changes associated with organotropism and this is the limitation of this study.

      (7) In the final sentence of the discussion the authors stated "Overall, our results suggest that genome spatial compartment changes can help encode a cell state that favors metastasis (EMT)". The "metastasis (EMT)" was in fact not clearly linked inside the manuscript. The authors did not provide a strong link between metastasis and EMT in their result description. It is also unclear whether the EMT-associated compartment identity would also correlate with the organotropic compartment identity.

    2. Reviewer #2 (Public review):

      Summary:

      This work addresses an important question of chromosome architecture changes associated with organotopic metastatic traits, showing important trends in genome reorganization. The most important observation is that 3D genome changes consistent with adaptations for new microenvironments, including lung metastatic breast cells exhibiting signatures of the genome architecture typical to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state.

      Strengths:

      This work presents interesting original results, which will be important for future studies and biomedical implications of epigenetic regulation in norm and pathology.

      Weaknesses:

      The authors used publicly available data for 15 cell types. They should show how many different sources the data were obtained from and demonstrate that obtained results are consistent if the data from different sources were used.

    1. Reviewer #1 (Public review):

      Summary:

      Dorn et al. investigate the role of specific serotonergic cell types in fed appetite and starved hunger. They show that neurons labeled by the Sert3-GAL4 line modulate sucrose appetite and that neurons labeled by R50H05-GAL4 and Tph-GAL4 modulate yeast hunger, by expressing a non-functioning serotonin transporter. Similarly, activating these neurons leads to the same effects - a decrease in sucrose appetite and an increase in yeast hunger, respectively. Manipulation of the serotonin transporter in Sert3 neurons impairs appetitive sugar-odor conditioning, however aversive shock-odor conditioning is intact. The authors further tested the role of insulin signaling in this paradigm and the Sert3 neurons. Expressing either constitutively active or non-function insulin receptor impaired sucrose appetite. The expression of the different modulated insulin receptors affects the anatomy of the cells and the distribution of serotonin transporters. It seems that overexpression of the serotonin transporter can rescue the sugar appetite phenotype caused by the constitutively active insulin receptor. Additional experiments reveal that CG9911 and CG10029 RNAi - genes potentially involved in the insulin-serotonin pathway - knockdown does not affect sugar appetite, however Sec24AB RNAi - required for proper serotonin transporter localization - knockdown also leads to sugar appetite reduction. Finally, the authors show that IR60b taste receptor neurons potentially get modulated by Sert 3 and thereby influence sucrose appetite.

      Strengths:

      The authors provide a more detailed description of the multiple roles that serotonin neurons can take on. Manipulating specific subsets of serotonergic cells, they can distinguish cells that are involved in sucrose feeding in fed animals, whereas other cells are involved in regulating yeast hunger in starved animals. Thus, further cell-type specific dissections and manipulations are required to understand the full functional repertoire of different serotonergic neurons in the brain. The authors further describe that insulin seems to modulate serotonergic neurons and starts to elucidate the underlying complex neuromodulatory mechanisms.

      Weaknesses:

      Even though the authors provide evidence for behavioral phenotypes due to manipulations of serotonin and insulin cells, the evidence for the required molecular mechanism and connectivity is not convincing and requires further investigation. The authors expand their findings to play a role in sugar conditioning, however, according to the authors flies were starved for these experiments - thus these results rather contradict the innate phenotype.

    2. Reviewer #2 (Public review):

      Summary:

      This study by Dorn et al. from Dr. Henrike Scholz's group investigates the function of serotonin signaling in state-dependent feeding control for protein and sugar intake. Using a dominant-negative serotonin transporter to block serotonin reuptake and optogenetics to activate serotoninergic neurons, the authors identified that serotonin released from a small group of Sert3-expressing neurons specifically reduces sucrose consumption of the fed files but not in the starved flies. Conversely, blocking serotonin reuptake in broad serotonergic neurons increases yeast consumption only in starved flies but does not affect fed flies. These results suggest prolonged serotonin signals may suppress sucrose appetite in fed flies while promoting protein intake in starved flies.

      Although the phenotypes presented are intriguing and fundamental to animal fitness, the data in its current form is insufficient to support the proposed mechanisms underlying the state-dependent diet control by serotonin signals. Specifically, the authors should carefully analyze the requirement of serotonin by showing the efficiency of the serotonin reuptake blockade caused by the dominant-negative serotonin and validating the requirement of serotonin in the optogenetic activation of Sert3-expressing neurons. Additionally, the conclusions based on the overexpressed Sert3::gfp transgene should be retrieved as the overexpression affects sucrose consumption. Therefore, I recommend some alternative interpretations and approaches below for authors to verify the current form of conclusions.

      Strengths:

      The authors identified the state-dependent diet control for sucrose and yeast intake regulated by a restricted population of serotonin neurons expressing Sert3.

      Weaknesses:

      The data only partially supports most conclusions. Specifically, findings based on the use of the transgene Sert3::GFP lack sufficient rigor, as the authors overlooked potential overexpression effects.

      Major issues

      (1) The authors try to distinguish the motivation to feed on sucrose or protein in fed or starved conditions using "sucrose appetite" and "protein hunger", respectively. However, appetite and hunger should be synonymous in the current context. When specifying protein hunger, readers will expect the craving for protein in the protein-deprived situation. In the current study, starved flies were prepared by starvation on wet tissues so the flies are supposed to be hungry for sugar and protein. To avoid confusion, "sucrose appetite in fed flies" and "protein appetite in starved flies" are better descriptions.

      (2) In Figure 1A-1I (lines 141-142), it remains unclear whether additional serotonergic neurons are required or if the serotonergic neurons labeled exclusively by R50H05-Gal4 and Tph-Gal4 are necessary to regulate yeast consumption in starved flies. The overlapping expressions of these two drivers with the Sert3-Gal4 make it hard to distinguish these two possibilities.

      (3) The data in Figure 1L-1M suggests that the serotonin-dependent regulation in yeast consumption of starved flies is suppressed by sucrose supplementation. However, the neurons required for yeast consumption remain undefined due to the overlapping expression. This result implies that the neurons labeled by R50H05-Gal4 and Tph-Gal4 influence both sucrose and yeast consumption but not specific to yeast.

      (4) The regulatory relationship between insulin receptors and serotonin signaling in sucrose appetite remains unclear. How do the authors interpret the result that both the constitutively active and dominant-negative forms of the insulin receptor (InR) reduce sucrose appetite in Figure 4? One possibility is that insulin receptors are involved in two parallel pathways to regulate sucrose consumption that converge to the same phenotype. However, the insulin receptor (InR) pathways can still be independent of the serotonin signaling pathway despite showing a comparable reduction of sucrose consumption in fed flies. This issue should be discussed further following lines 229-231.

      (5) The quantification of Figure 5 should be revised. First, as the transgene Sert3::GFP affects sucrose consumption, quantifying the transgene signals may not explain its endogenous function. Second, the quantification lacks a Gal4 expression control using an untagged fluorescent marker, preferably a different color so that the authors can quantify it in the same individual as the comparison. Lastly, it is hard to be convinced that the distance between two layers represents the broad expression of Sert3::GFP in response to insulin receptor alterations. Quantifying the area size of each layer with fixed imaging conditions such as the intervals of brain sections and the laser intensity may be a better alternative approach.

      (6) The conclusions drawn based on the Sert3::GFP transgene failed to explain the endogenous function of the serotonin transporter Sert3 in regulating sucrose consumption. Expressing the constitutive-active form of the insulin receptor in Sert3-expressing neurons reduces the total sucrose consumption of fed flies in Figure 4A, which appears inconsistent with the fly line with an additional Sert3::GFP expression shown in Figures 6F, where the suppression of sucrose consumption is not shown for the normalized sucrose intake. This inconsistency suggests that Sert3::GFP transgene itself affects sucrose consumption.

      (7) In lines 324-326, the authors should investigate whether IR60b neurons are indeed the downstream of serotoninergic neurons SE1 to regulate sucrose consumption in fed flies. First, synaptic connections could be confirmed by additional approaches. Following this, the authors could demonstrate that the knockdown of serotonin receptors in IR60b neurons eliminates the suppression in sucrose consumption induced by the activation of Sert3-expressing neurons or by the expression of the dominant-negative serotonin transporter in fed flies.

    1. Reviewer #1 (Public review):

      This study investigates spatial and temporal aspects of feedback information in the brain during categorization tasks. The authors found that feedback to V1 contained low-level features and was present in the deep layers of V1 originating presumably from occipito-temporal brain regions. High-level category feedback was found in the deep and the superficial layers and was directed to V1 from occipitotemporal and parietal cortices. This study raises a timely question in the fields of object categorization and predictive coding about the granularity of feedback and its separability by cortical depth and time course.

      Here are a couple of concerns and questions:

      The authors argue that low-level features in a feedback format could be decoded only from deep layers of V1 (and not superficial layers) during a perceptual categorization task. However, previous studies (Bergman et al., 2024; Iamshchinina et al., 2021) demonstrated that low-level features in the form of feedback can be decoded from both superficial and deep layers. While this result could be due to perceptual task or highly predictable orientation feature (orientation was kept the same throughout the experimental block), an alternative explanation is a weaker representation of orientation in the feedback (even before splitting by layers there is only a trend towards significance; also granger causality for orientation information in MEG part is lower than that for category in peripheral categorization task), because it is orthogonal to the task demand. It would be helpful if the authors added a statistical comparison of the strength of category and orientation representations in each layer and across the layers.

      The authors argue that category feedback is not driven by low-level confounding features embedded in the stimuli. They demonstrate the ability to decode orientations, particularly well represented by V1, in the absence of category discrimination. However, the orientation is not a category-discriminating feature in this task. It could be that the category-discriminating features cannot be as well decoded from V1 activity patterns as orientations. Also, there are a number of these category discriminating features and it is unclear if it is a variation in their representational strength or merely the absence of the task-driven enhancement that preempts category decoding in V1 during the foveal task. In other words, I am not sure whether, if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of the primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.

      Strengths:

      (1) Rigorous and appropriate use of "laminar fMRI" techniques.

      (2) The introduction does an excellent job of contextualizing the work.

      (3) Control experiments and analyses are designed and implemented well

      Weaknesses:

      (1) While not necessarily a weakness, I do not fully agree with the description of the 2 kinds of feedback information as "low-order" and "high-order". I understand the motivation to do this - orientation is typically considered a low-level visual feature. But when it's the orientation of an entire object, not a single edge, orientation can only be defined after the elements of the object are grouped. Also, the discrimination between spikies and smoothies requires detecting the orientations of particular edges that form the identifying features. To my mind, it would make more sense to refer to discrimination of object orientation as "coarse" feature discrimination, and orientation of object identity as "fine" feature discrimination. Thus, the sentence on line 83, for example, would read "Interestingly, feedback with fine and coarse feature information exhibits different laminar profiles.".

      (2) Figure 2 and text on lines 185, and 186: it is difficult to interpret/understand the findings in foveal ROIs for the foveal control task without knowing how big the ROI was. Foveal regions of V1 are grossly expanded by cortical magnification, such that the central half-degree can occupy several centimeters across the cortical surface. Without information on the spatial extent of the foveal ROI compared to the object size, we can't know whether the ROI included voxels whose population receptive fields were expected to include the edges of the objects.

      (3) Line 143 and ROI section of the methods: in order for the reader to understand how robust the responses and analyses are, voxel counts should be provided for the ROIs that were defined, as well as for the number (fraction) of voxels excluded due to either high beta weights or low signal intensity (lines 505-511).

      (4) I wasn't able to find mention of how multiple-comparisons corrections were performed for either the MEG or fMRI data (except for one Holm-Bonferonni correction in Figure S1), so it's unclear whether the reported p-values are corrected.

    1. Reviewer #1 (Public review):

      Summary:

      There is prior literature showing a robust relationship between sulcal interruptions in the posterior occipital temporal sulcus (pOTS) and reading ability. The goals of this study were to extend these findings to children examined longitudinally as they become better readers, and to examine the underlying white matter properties in individuals with and without pOTS sulcal interruptions. To do this, the authors collected longitudinal structural, diffusion, and behavioral data in 51 children (TP1 age 5.5, TP3 age 8.2 years).

      First, the authors found that the gyral gap was consistent across time within the subject. This is expected, as they state in the introduction that sulcal patterns are typically established in utero. Next, they found that children with an interrupted pOTS have higher reading scores (across a variety of measures) at timepoint (TP) 3 than children with continuous pOTS, and this was specific to the pOTS, as no associations emerged for the anterior OTS or MFS; this is again expected from prior literature. They then found that the binary presence of this gap, but not anterior OTS or MFS predicted T3 reading performance. Further, they found that a subsample of the lowest readers at TP1 did not have differences in reading score by gyral gap, but that this difference emerged at TP3. Additionally, the gyral gap at TP1 is similar to variance TOWRE 3 reading skills as some behavioral measures at TP1. Examining underlying white matter in a smaller subset of children, the authors found higher MD in children with an interrupted pOTS vs. those with a continuous pOTS, which was contrary to their hypothesis, and higher local connectivity for interrupted, aligning with their hypothesis, but this difference was no longer present when accounting for TP3 reading scores. The authors conclude that structural properties, in this case, the gyral gap, may guide neural plasticity for reading.

      Strengths:

      This paper has an interesting set of longitudinal data to examine the perhaps changing relationship between sulcal interruptions in the pOTS with reading scores. I commend the authors on data collection and attention to detail in the anatomical analyses.

      Weaknesses:

      However, my enthusiasm was somewhat dampened after finding numerous prior publications on this very topic and I'm unclear as to how much more this paper adds to the current literature. Would we expect the existence of sulcal interruptions to be aligned with reading skills in older kids but not younger kids? Is the point to see if the interruptions exist prior to reading (but these children are not really prereaders)? What is the alternative- why would these interruptions not exist? After all, this anatomy is determined prenatally. Children who have pOTS interruptions at T1 should also have these interruptions at T3 (and indeed that is what the authors find). So how can this be the mechanism that drives plasticity? The authors also talk about the neuronal recycling hypothesis but their data cannot speak to this because they do not have fMRI data nor does their sample include only prereaders with no reading experience. The conclusions are overall overstated and not supported by the results. I think this paper could add interesting knowledge for the specific subfield of reading and the brain. However, the current state of the results, especially with the inclusion of so many trending results and the comparison of so many different processing pipelines and models, in addition to a conclusion that is not motivated by the work makes it difficult to appreciate the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript examined the impact of sulcal morphology on reading development. A very specific feature on the ventral surface of the brain was identified, namely the presence of an interruption in the posterior portion of the left occipitotemporal sulcus (pOTS). Compared to children with a continuous pOTS, children with an interruption at age 5 years had better reading ability at age 8. This was a large effect measured in 43 children. Surprisingly, this morphological feature was a better predictor of reading ability than measures of pre-literacy cognitive skills, such as phonological awareness. The effect was tested and reproduced across several different measures of reading ability. The authors hypothesised that the mechanism underlying this benefit related to greater local connectivity, which confers a computational advantage. This was demonstrated using analysis of diffusion-weighted imaging data in 29 of the children obtained at age 8.

      Strengths:

      The novelty of the manuscript is threefold: (i) the measure was made in children who were pre-literate (previous work was in older children and adults); (ii) longitudinal brain imaging and behavioural data were analysed; and (iii) diffusion data were analysed to test a hypothesis about the underlying mechanism.

      The manuscript is exceptionally well written. The methods are detailed and easily reproduced. The approach is thoughtful and meticulous. All possible alternatives appear to have been considered. Where possible, further analyses have been done to address these alternatives. For example, the testing of the specificity of the sulcal interruption to left pOTS was an important addition. None predicted reading skills.

      Weaknesses:

      The correlation of the interruption with all kinds of literacy measures and in particular reading comprehension and then PIQ suggest this interruption might confer a more general cognitive advantage rather than specifically a reading one.

      It would be interesting to know if the anatomical difference predicts any other cognitive ability or if there might be any cognitive cost (a negative correlation) of this sulcal interruption.<br /> The location of the interruption in the sulcus is quite variable and in some cases, there is more than one interruption. The sample size is probably not big enough to compare these different patterns or to evaluate the influence of the location of the sulcal interruption.

      The sample is quite high-functioning and the generalisability of the findings outside of this specific population is inevitably limited.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed experimental evolution of MreB mutants that have a slow growing round phenotype and studied the subsequent evolutionary trajectory using analysis tool from molecular biology. It was remarkable and interesting that they found that the original phenotype was not restored (most common in these studies) but that the round phenotype was maintained.

      Strengths:

      The finding that the round phenotype was maintained during evolution rather than that the original phenotype, rod shape cells, was recovered is interesting. The paper extensively investigates what happens during adaptation with various different techniques. Also the extensive discussion of the findings at the end of the paper is well thought through and insightful.

      Weaknesses:

      I find there are three general weaknesses<br /> (1) Although the paper states in the abstract that it emphasizes "new knowledge to be gained" it remains unclear what this concretely is. At page 4 they state 3 three research questions, these could be more extensively discussed in the abstract. Also these questions read more like genetics questions while the paper is a lot about cell biological findings.<br /> (2) It is not clear to me from the text what we already know about restoration of MreB loss from suppressors studies (in the literature). Are there supressor screens in the literature and which part of the findings is consistent with suppressor screens and which parts are new knowledge?<br /> (3) The clarity of the figures, captions and data quantification need to be improved.

    2. Reviewer #3 (Public review):

      This paper addresses a long-standing problem in microbiology: the evolution of bacterial cell shape. Bacterial cells can take a range of forms, among the most common being rods and spheres. The consensus view is that rods are the ancestral form and spheres the derived form. The molecular machinery governing these different shapes is fairly well understood but the evolutionary drivers responsible for the transition between rods and spheres is not. Enter Yulo et al.'s work. The authors start by noting that deletion of a highly conserved gene called MreB in the Gram-negative bacterium Pseudomonas fluorescens reduces fitness but does not kill the cell (as happens in other species like E. coli and B. subtilis) and causes cells to become spherical rather than their normal rod shape. They then ask whether evolution for 1000 generations restores the rod shape of these cells when propagated in a rich, benign medium.

      The answer is no. The evolved lineages recovered fitness by the end of the experiment, growing just as well as the unevolved rod-shaped ancestor, but remained spherical. The authors provide an impressively detailed investigation of the genetic and molecular changes that evolved. Their leading results are:

      (1) the loss of fitness associated with MreB deletion causes high variation in cell volume among sibling cells after cell division;<br /> (2) fitness recovery is largely driven by a single, loss-of-function point mutation that evolves within the first ~250 generations that reduces the variability in cell volume among siblings;<br /> (3) the main route to restoring fitness and reducing variability involves loss of function mutations causing a reduction of TPase and peptidoglycan cross-linking, leading to a disorganized cell wall architecture characteristic of spherical cells.

      The inferences made in this paper are on the whole well supported by the data. The authors provide a uniquely comprehensive account of how a key genetic change leads to gains in fitness and the spectrum of phenotypes that are impacted and provide insight into the molecular mechanisms underlying models of cell shape.

      Suggested improvements and clarifications include:<br /> (1) A schematic of the molecular interactions governing cell wall formation could be useful in the introduction to help orient readers less familiar with the current state of knowledge and key molecular players;<br /> (2) It remains unclear whether corrections for multiple comparisons are needed when more than one construct or strain is compared to the common ancestor, as in Supp Fig 19A (relative PG density of different constructs versus the SBW25 ancestor). The author's response did not clarify matters: was data for the WT obtained independently alongside each each strain/construct (justifying a paired t-test) or was a single set of data for the WT obtained and used to compare against all other strains/constructs (which would demand a correction for multiple comparisons)?<br /> (3) The authors refrain from making strong claims about the nature of selection on cell shape, perhaps because their main interest is the molecular mechanisms responsible. They identify sources of stabilizing selection favouring an intermediate cell size (lack of DNA in small cells and disorganized DNA in large cells). Their interpretation of stabilizing selection in the review is correct and entirely consistent with the mechanistic causes identified here. I think this is valuable and interesting, although I recognize it is not the focus of the paper.

      Comments on revisions:

      Please further clarify the experimental design and replication for the contrast between mutants and WT to address the issue of multiple comparisons.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Avila et al. tested the hypothesis that chronic pain states are associated with changes in excitability of the medial prefrontal cortex (mPFC). The authors used the slope of the aperiodic component of the EEG power spectrum (= the aperiodic exponent) as a novel, non-invasive proxy for the cortical excitation-inhibition ratio. They performed source localization to estimate the EEG signals generated specifically by the mPFC. By pooling resting-state EEG recordings from three existing datasets, the authors were able to compare the aperiodic exponent in the mPFC and across the whole brain (at all modeled cortical sources) between 149 chronic pain patients and 115 healthy controls. Additionally, they assessed the relationship between the aperiodic exponent and pain intensity reported by the patients. To account for heterogeneity in pain etiology, the analysis was also performed separately for two patient subgroups with different chronic pain conditions (chronic back pain and chronic widespread pain). The study found robust evidence against differences in the aperiodic exponent in the mPFC between people with chronic pain and healthy participants, and no correlation was observed between the aperiodic exponent and pain intensity. These findings were consistent across different patient subgroups and were corroborated by the whole-brain analysis.

      Strengths:

      The study is based on sound scientific reasoning and rigorously employs suitable methods to test the hypothesis. It follows a pre-registered protocol, which greatly increases the transparency and, consequently, the credibility of the reported results. In addition to the planned steps, the authors used a multiverse analysis to ensure the robustness of the results across different methodological choices. I find this particularly interesting, as the EEG aperiodic exponent has only recently been linked to network excitability, and the most appropriate methods for its extraction and analysis are still being determined. The methods are clearly and comprehensively described, making this paper very useful for researchers planning similar studies. The results are convincing, supported by informative figures, and the lack of the expected difference in mPFC excitability between the tested groups is thoroughly and constructively discussed.

      Weaknesses:

      Firstly, to augment the sample size, the authors pooled data recorded by different researchers using different experimental protocols. This inevitably increases sample variability and may limit the availability of certain measures, as was the case here with the reports of pain intensity in the patient group. Secondly, the analysis heavily relies on the estimation of cortical sources, an approach that may yield imprecise results, especially when default conduction models, source models, and electrode coordinates are used (as was the case here).

      Comments on revisions:

      The authors satisfactorily revised the manuscript and responded to previous questions and suggestions. I have no further comments.

    2. Reviewer #2 (Public review):

      Summary:

      This study evaluated the aperiodic component in the medial prefrontal cortex (mPFC) using resting-state EEG recordings from 149 individuals with chronic pain and 115 healthy participants. The findings showed no significant differences in the aperiodic component of the mPFC between the two groups, nor was there any correlation between the aperiodic component and pain intensity. These results were consistent across various chronic pain subtypes and were corroborated by whole-brain analyses. The study's robustness was further reinforced by preregistration and multiverse analyses, which accounted for a wide range of methodological choices.

      Strengths:

      This study was rigorously conducted, yielding clear and conclusive results. Furthermore, it adhered to stringent open and reproducible science practices, including preregistration, blinded data analysis, and Bayesian hypothesis testing. All data and code have been made openly available, underscoring the study's commitment to transparency and reproducibility.

      Weaknesses:

      The aperiodic exponent of the EEG power spectrum is often regarded as an indicator of the excitatory/inhibitory (E/I) balance. However, this measure may not be the most accurate or optimal for quantifying E/I balance, a limitation that the authors might consider addressing in the future.

      Comments on revisions:

      All my comments have been well addressed.

    1. Reviewer #1 (Public review):

      This study tests whether Little Swifts exhibit optimal foraging, which the data seem to indicate is the case. This is unsurprising as most animals would be expected to optimize the energy income : expenditure ratio, however it hasn't been explicitly quantified before the way it was in this manuscript.

      The major strength of this work is the sheer volume of tracking data and the accuracy of those data. The ATLAS tracking system really enhanced this study and allowed for pinpoint monitoring of the tracked birds. These data could be used to ask and answer many questions beyond just the one tested here.

      The major weakness of this work lies in the sampling of insect prey abundance at a single point on the landscape, 6.5 km from the colony. This sampling then requires the authors to work under the assumption that prey abundance is simultaneously even across the study region. It may be fair to say that prey populations might be correlated over space but are not equal. It is uncertain whether other aspects of the prey data are problematic. For example, the radar only samples insects at 50m or higher from the ground - how often do Little Swifts forage under 50m high?

      The finding that Little Swifts forage optimally is indeed supported by the data, notwithstanding some of the shortcomings in the prey abundance data. The authors achieved their aims and the results support their conclusions.

      At its centre, this work adds to our understanding of Little Swift foraging and extends to a greater understanding of aerial insectivores in general. While unsurprising that Little Swifts act as optimal foragers, it is good to have quantified this and show that the population declines observed in so many aerial insectivores are not necessarily a function of inflexible foraging habits. Further, the methods used in this research have great potential for other work. For example, the ATLAS system poses some real advantages and an exciting challenge to existing systems, like MOTUS. The radar that was used to quantify prey abundance also presents exciting possibilities if multiple units could be deployed to get a more spatially-explicit view.

      To improve the context of this work, it is worth noting that this research goes into much further depth than any previous studies on a similar topic in several flycatcher and swallow species. A further justification is posited that this research is needed due to dramatic insect population declines, however, the magnitude and extent of such declines are fiercely debated in the literature.

    2. Reviewer #2 (Public review):

      Summary:

      Bloch et al. studied the relationships between aerial foragers (lesser swifts) tracked using an automated radio telemetry system (Atlas) and their prey (flying insects) monitored using a small vertical-looking radar (BirdScan MR1). The aim of the study was to check whether swifts optimise their foraging according to the abundance of their prey. The results provide evidence that small swifts can increase their foraging rate when aerial insect abundance is high, but found no correlation between insect abundance and flight energy expenditure.

      Key points:

      This study fills gaps in fundamental knowledge of prey-predator dynamics in the air. It describes the coincidence between the abundance of flying insects and the characteristics derived from monitoring individual swifts.

      Weaknesses:

      The paper uses assumptions largely derived from optimal foraging theory, but mixes up the form of natural selection: parental energy, parental survival (predation risk), nestling foraging and reproductive success. The results are partly inconsistent, and confounding factors (e.g., the brooding phase versus the nestling phase) remained ignored. In conclusion, the analyses performed are insufficient to rigorously assess whether lesser swifts are optimising their foraging beyond making shorter foraging trips.<br /> The filters applied to the monitoring data are necessary but may strongly influence the characteristics derived based on maximum or mean values. Sensitivity tests or the use of characteristics that are less dependent on extreme values could provide more robust results.

    1. Reviewer #1 (Public review):

      Summary:

      In the first half of this study, Pham et al. investigate the regulation of TEAD via ubiquitination and PARylation, identifying an E3 ubiquitin ligase, RNF146, as a negative regulator of TEAD activity through an siRNA screen of ubiquitin-related genes in MCF7 cells. The study also finds that depletion of PARP1 reduced TEAD4 ubiquitination levels, suggesting a certain relationship between TEAD4 PARylation and ubiquitination which was also explored through an interesting D70A mutation. Pham et al. subsequently tested this regulation in D. melanogaster by introducing Hpo loss-of-function mutations and rescuing the overgrowth phenotype through RNF146 overexpression.

      In the second half of this study, Pham et al. designed and assayed several potential TEAD degraders with a heterobifunctional design, which they term TEAD-CIDE. Compounds D and E were found to effectively degrade pan-TEAD, an effect which could be disrupted by treatment with TEAD lipid pocket binders, proteasome inhibitors, or E1 inhibitors, demonstrating that the TEAD-CIDEs operate in a proteasome-dependent manner. These TEAD-CIDEs could reduce cell proliferation in OVCAR-8, a YAP deficient cell line, but not SK-N-FI, a Hippo pathway independent cell line. Finally, this study also utilizes ATAC-seq on Compound D to identify reductions in chromatin accessibility at the regions enriched for TEAD DNA binding motifs.

      Strengths:

      The study provides compelling evidence that the E3 ubiquitin ligase RNF146 is a novel negative regulator of TEAD activity. The authors convincingly delineate the mechanism through multiple techniques and approaches. The authors also describe the development of heterobifunctional pan-degraders of TEAD, that could serve as valuable reagents to more deeply study TEAD biology.

      Weaknesses:

      The scope of this study is extremely broad. The first half of the paper highlights the mechanisms underlying TEAD degradation; however, the connection to the second half of the paper on small molecule degraders of TEAD is jarring, and it seems as though two separate stories were combined into this single massive study. In my opinion, the study would be stronger if it chose to focus on only one of these topics and instead went deeper.

      Additionally, the figure clarity needs to be substantially improved, as readability and interpretation was difficult in many panels. Lastly, there are numerous typos and poor grammar throughout the text that need to be addressed.

      Comments on revisions:

      The authors have addressed most of our critiques. The manuscript has improved significantly, particularly in the clarity of the figures and the flow of the text. The findings of this study contribute valuable insights into TEAD biology in cancer and provide useful resources for further research into TEAD.

      However, as noted by other reviewers, the manuscript still feels somewhat disjointed, despite the attempt to connect the two parts on RNF146-mediated TEAD degradation and the development of TEAD degraders. Certain data inconsistencies and technical limitations may have made some aspects of the data hard to interpret accurately and could benefit from further clarification.