8,772 Matching Annotations
  1. Oct 2024
    1. Reviewer #2 (Public review):

      The axon initial segment (AIS) is the axonal domain where most neurons integrate inputs and generate action potentials. Though structural and electrophysiological studies have allowed to better understand the mechanisms of assembly and maintenance of this domain, as well as its functions, there is still a need for efficient tools to study its structural organization and plasticity in vivo.

      In this article, the authors describe the generation of a knock-in mouse reporter line allowing the conditional expression of a GFP-tagged version of AnkyrinG (Ank-G), which is a major protein of the axon initial segment and the nodes of Ranvier in neurons. This reporter line can in particular be used to study axon initial segment assembly and plasticity, by combining it with mouse lines or viruses expressing the Cre recombinase under the control of a neuronal promoter. Furthermore, the design of the line should allow to preserve the expression of the main Ank-G isoforms observed in neurons and could thus allow to study Ank-G related mechanisms in various neuronal subcompartments.

      Some mouse lines allowing the neuronal expression of AIS/node of Ranvier markers coupled to a fluorescent protein exist, however they correspond to transgenic lines leading to potential overexpression of the tagged protein. Depending on the promoter used, their expression can vary and be absent in some neuronal populations (in particular, the Thy-1 promoter can lead to variable expression depending on the transgene insertion locus). Furthermore, these lines do not allow conditional expression of the protein regarding neuronal subtypes nor controlled temporal expression. Finally, a thorough description of the in vivo expression of the tagged protein at the AIS, and its impact on the structural and electrophysiological properties of the AIS are missing for these lines.

      The present reporter line is thus definitely of interest, as the authors convincingly show that it can be used in various contexts (from in vitro to in vivo). It could in particular be used to study the assembly and plasticity of the domains where Ank-G is expressed. The strength of this work is that it thoroughly characterizes the reporter line expression and shows that it does not alter the structural nor the electrophysiological properties of the labeled neurons. The additional data presented by the authors in the revised version adequately complete the previously shown data and address the questions raised by the reviewers.

    1. Reviewer #2 (Public review):

      Since neurocysticercosis is associated with epilepsy, the authors wish to establish how cestode larvae affect neurons. The underlying hypothesis is that the larvae may directly excite neurons and thus favor seizure genesis.

      To test this hypothesis, the authors collected biological materials from larvae (from either homogenates or excretory/secretory products), and applied them to hippocampal neurons (rats and mice) and human cortical neurons.

      This constitutes a major strength of the paper, providing a direct reading of larvae's biological effects. Another strength is the combination of methods, including patch clamp, Ca, and glutamate imaging.

      Comments on revised version:

      The concerns have been addressed.

    1. Reviewer #2 (Public review):

      Summary

      Liu and MacGann et al. introduce the method DNA O-MAP that uses oligo-based ISH probes to recruit horseradish peroxidase for targeted proximity biotinylation at specific DNA loci. The method's specificity was tested by profiling the proteomic composition at repetitive DNA loci such as telomeres and pericentromeric alpha satellite repeats. In addition, the authors provide proof-of-principle for the capture and mapping of contact frequencies between individual DNA loop anchors.

      Strengths

      Identifying locus-specific proteomes still represents a major technical challenge and remains an outstanding issue (1). Theoretically, this method could benefit from the specificity of ISH probes and be applied to identify proteomes at non-repetitive DNA loci. This method also requires significantly fewer cells than other ISH- or dCas9-based locus-enrichment methods. Another potential advantage to be tested is the lack of cell line engineering that allows its application to primary cell lines or tissue.

      Weaknesses

      The authors indicate that DNA O-MAP is superior to other methods for identifying locus-specific proteomes. Still, no proof exists that this method could uncover proteomes at non-repetitive DNA loci. Also, there is very little validation of novel factors to confirm the superiority of the technique regarding specificity.<br /> The authors first tested their method's specificity at repetitive telomeric regions, and like other approaches, expected low-abundant telomere-specific proteins were absent (for example, all subunits of the telomerase holoenzyme complex). Detecting known proteins while identifying noncanonical and unexpected protein factors with high confidence could indicate that DNA O-MAP does not fully capture biologically crucial proteins due to insufficient enrichment of locus-specific factors. The newly identified proteins in Figure 1E might still be relevant, but independent validation is missing entirely. In my opinion, the current data cannot be interpreted as successfully describing local protein composition.

      Finally, the authors could have discussed the limitations of DNA O-MAP and made a fair comparison to other existing methods (2-5). Unlike targeted proximity biotinylation methods, DNA O-MAP requires paraformaldehyde crosslinking, which has several disadvantages. For instance, transient protein-protein interactions may not be efficiently retained on crosslinked chromatin. Similarly, some proteins may not be crosslinked by formaldehyde and thus will be lost during preparation (6).

      (1) Gauchier M, van Mierlo G, Vermeulen M, Dejardin J. Purification and enrichment of specific chromatin loci. Nat Methods. 2020;17(4):380-9.<br /> (2) Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009;136(1):175-86.<br /> (3) Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell. 2017;170(5):1028-43 e19.<br /> (4) Villasenor R, Pfaendler R, Ambrosi C, Butz S, Giuliani S, Bryan E, et al. ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol. 2020;38(6):728-36.<br /> (5) Santos-Barriopedro I, van Mierlo G, Vermeulen M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat Commun. 2021;12(1):5015.<br /> (6) Schmiedeberg L, Skene P, Deaton A, Bird A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One. 2009;4(2):e4636.

    1. Reviewer #2 (Public review):

      Summary

      The manuscript presents valuable findings, particularly in the crystal structure of the Sld3CBD-Cdc45 interaction and the identification of additional sequences involved in their binding. The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is novel, and the results provide insights into potential conformational changes that occur upon interaction. However, the work remains incomplete as several main claims are only partially supported by experimental data, particularly the proposed model for Sld3 interaction with GINS on the CMG. Additionally, the single-stranded DNA binding data from different species do not convincingly advance the manuscript's central arguments.

      Strengths

      (1) The Sld3CBD-Cdc45 structure is a novel contribution, revealing critical residues involved in the interaction.

      (2) The model structures generated from the crystal data are well presented and provide valuable insights into the interaction sequences between Sld3 and Cdc45.

      (3) The experiments testing the requirements for interaction sequences are thorough and conducted well, with clear figures supporting the conclusions.

      (4) The conformational changes observed in Sld3 and Cdc45 upon binding are interesting and enhance our understanding of the interaction.

      (5) The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is a new and valuable addition to the field.

      Weaknesses

      (1) The proposed model for Sld3 interacting with GINS on the CMG needs more experimental validation and conflicts with published findings. These discrepancies need more detailed discussion and exploration.

      (2) The section on the binding of Sld3 complexes to origin single-stranded DNA needs significant improvement. The comparisons between Sld3-CBD, Sld3CBD-Cdc45, and Sld7-Sld3CBD-Cdc45 involve complexes from different species, limiting the comparisons' value.

      (3) The authors' model proposing the release of Sld3 from CMG based on its binding to single-stranded DNA is unclear and needs more elaboration.

    1. Reviewer #2 (Public review):

      Summary:

      The authors use the TRAP2 mouse line to label dentate gyrus cells active during an enriched environment paradigm and cut brain slices from these animals one week later to determine whether granule cells (GC) and semilunar granule cells (SGC) labelled during the exposure share common features. They particularly focus on the role of SGCs and potential circuit mechanisms by which they could be selectively embedded in the labelled assembly. The authors claim that SGCs are disproportionately recruited into IEG-expressing assemblies due to intrinsic firing characteristics but cannot identify any contributing circuit connectivity motives in the slice preparation, although they claim that an increased correlation between spontaneous synaptic currents in the slice could signify common synaptic inputs as the source of assembly formation.

      Strengths:

      The authors chose a timely and relevant question, namely how memory-bearing neuronal assemblies, or 'engrams', are established and maintained in the dentate gyrus. After the initial discovery of such memory-specific ensembles of immediate-early gene expressing engrams in 2012 (Ramirez et al.) this issue has been explored by several high-profile studies that have considerably expanded our understanding of the underlying molecular and cellular mechanisms, but still leave a lot of unanswered questions.

      Weaknesses:

      Unfortunately, there are several major methodological issues that put into question most if not all central claims made by the authors:

      (1) The authors conclude that SGCs are disproportionately recruited into cfos assemblies during the enriched environment and Barnes maze task given that their classifier identifies about 30% of labelled cells as SGCs in both cases and that another study using a different method (Save et al., 2019) identified less than 5% of an unbiased sample of granule cells as SGCs. To make matters worse, the classifier deployed here was itself established on a biased sample of GCs patched in the molecular layer and granule cell layer, respectively, at even numbers (Gupta et al., 2020). The first thing the authors would need to show to make the claim that SGCs are disproportionately recruited into memory ensembles is that the fraction of GCs identified as SGCs with their own classifier is significantly lower than 30% using their own method on a random sample of GCs (e.g. through sparse viral labelling). As the authors correctly state in their discussion, morphological samples from patch-clamp studies are problematic for this purpose because of inherent technical issues (i.e. easier access to scattered GCs in the molecular layer).

      (2) The authors claim that recurrent excitation from SGCs onto GCs or other SGCs is irrelevant because they did not find any connections in 32 simultaneous recordings (plus 63 in the next experiment). Without a demonstration that other connections from SGCs (e.g. onto mossy cells or interneurons) are preserved in their preparation and if so at what rates, it is unclear whether this experiment is indicative of the underlying biology or the quality of the preparation. The argument that spontaneous EPSCs are observed is not very convincing as these could equally well arise from severed axons (in fact we would expect that the vast majority of inputs are not from local excitatory cells). The argument on line 418 that SGCs have compact axons isn't particularly convincing either given that the morphologies from which they were derived were also obtained in slice preparations and would be subject to the same likelihood of severing the axon. Finally, even in paired slice recordings from CA3 pyramidal cells the experimentally detected connectivity rates are only around 1% (Guzman et al., 2016). The authors would need to record from a lot more than 32 pairs (and show convincing positive controls regarding other connections) to make the claim that connectivity is too low to be relevant.

      (3) Another troubling sign is the fact that optogenetic GC stimulation rarely ever evokes feedback inhibition onto other cells which contrasts with both other in vitro (e.g. Braganza et al., 2020) and in vivo studies (Stefanelli et al., 2016) studies. Without a convincing demonstration that monosynaptic connections between SGCs/GCs and interneurons in both directions is preserved at least at the rates previously described in other slice studies (e.g. Geiger et al., 1997, Neuron, Hainmueller et al., 2014, PNAS, Savanthrapadian et al., 2014, J. Neurosci), the notion that this setting could be closer to naturalistic memory processing than the in vivo experiments in Stefanelli et al. (e.g. lines 443-444) strikes me as odd. In any case, the discussion should clearly state that compromised connectivity in the slice preparation is likely a significant confound when comparing these results.

      (4) Probably the most convincing finding in this study is the higher zero-time lag correlation of spontaneous EPSCs in labelled vs. unlabeled pairs. Unfortunately, the fact that the authors use spontaneous EPSCs to begin with, which likely represent a mixture of spontaneous release from severed axons, minis, and coordinated discharge from intact axon segments or entire neurons, makes it very hard to determine the meaning and relevance of this finding. At the bare minimum, the authors need to show if and how strongly differences in baseline spontaneous EPSC rates between different cells and slices are contributing to this phenomenon. I would encourage the authors to use low-intensity extracellular stimulation at multiple foci to determine whether labelled pairs really share higher numbers of input from common presynaptic axons or cells compared to unlabeled pairs as they claim. I would also suggest the authors use conventional Cross correlograms (CCG; see e.g. English et al., 2017, Neuron; Senzai and Buzsaki, 2017, Neuron) instead of their somewhat convoluted interval-selective correlation analysis to illustrate co-dependencies between the event time series. The references above also illustrate a more robust approach to determining whether peaks in the CCGs exceed chance levels.

      (5) Finally, one of the biggest caveats of the study is that the ensemble is labelled a full week before the slice experiment and thereby represents a latent state of a memory rather than encoding consolidation, or recall processes. The authors acknowledge that in the discussion but they should also be mindful of this when discussing other (especially in vivo) studies and comparing their results to these. For instance, Pignatelli et al 2018 show drastic changes in GC engram activity and features driven by behavioral memory recall, so the results of the current study may be very different if slices were cut immediately after memory acquisition (if that was possible with a different labelling strategy), or if animals were re-exposed to the enriched environment right before sacrificing the animal.

    1. Reviewer #2 (Public review):

      The manuscript by Mahadevaraju and colleagues addresses the very interesting question of how sex-specific gene expression is regulated downstream of the sex-determination decision during sexually dimorphic development. Most previous work has been done with adult "endpoint" analysis long after sex-specific gene expression and sex-specific development has been initiated, but this study appropriately focuses on earlier developmental stages. The authors use bulk RNA-seq of ovaries and testes where key sex determination factors have been altered, allowing for a comparison of XX "testes" and XY "ovaries" to their normal XX ovary and XY testis counterparts. This is interesting work that appears to be conducted in a rigorous manner, and will be beneficial for the community. However, I also feel that the authors miss some key opportunities in their analysis. In particular, they focus on the sexual state of the germline, which is a very interesting question, but they may actually be more poised to make interesting conclusions about the somatic cells of the gonad.

      One issue with the work is that there are no simple conclusions. This is not the fault of the authors or the work but of mother nature, which has made it particularly difficult to parse out the different contributions that regulate germline sex determination-those regulated by the germline's own sex chromosome constitution and those regulated by the sex of the surrounding soma. While this makes a paper more difficult to write and interpret, it is simply the truth, and the authors deal with this complexity very well. One aspect of this work that is more clear than others is that germ cells do not enter, or at least go very far, down the spermatogenesis pathway unless they are XY germ cells in a male soma. This conclusion could be made more clear in the manuscript. The experiment generating genotypes where a Y chromosome is present regardless of X chromosome number or tra state, and then examining kl-3 expression is particularly nice, and makes the point clearly. The authors could be stronger overall about this conclusion.

      I also feel that there is a missed opportunity here. The experimental design utilizes sex transformation of the soma, but the manuscript focuses almost entirely on the germline. On one hand, this is problematic since the samples are mixed cell types with very different contributions of the germline to the overall tissue. While they can identify genes that are expressed primarily in the germline in normal males and females and use these for their analysis, there's no way to really tell whether this is also the case in transformed gonads or the total germline contribution to the bulk RNA-seq. I certainly don't discount their germline analysis, but these issues should be made clear in the manuscript. Second, and more important, is the fact that there would seem to be a wealth of changes in somatic gene expression, more directly regulated by the somatic sex determination machinery, that seems ripe for analysis. In addition, nice experiments like the comparison of tra- XX males with dsxD/- XX males, which can beautifully identify genes that are regulated by tra independently of dsx, are only glossed over in the analysis, results, and discussion.

      I feel that a better analysis of somatic sexual development would be highly beneficial.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Sun et al. introduces a useful system utilizing the proteasomal accessory factor A (PafA) and HaloTag for investigating drug-protein interactions in both in vitro (cell culture) and in vivo (zebrafish) settings. The authors presented the development and optimization of the system, as well as examples of its application and the identification of potential novel drug targets. However, the manuscript requires considerable improvements, particularly in writing and justification of experimental design. There are several inaccuracies in data description and a lack of statistics in some figures, undermining the conclusions drawn in the manuscript. Additionally, the authors introduced variants of the ligands and their cognate substrates, yet their use in different experiments appears random and lacks justification. It is challenging for readers to remember and track the specific properties of each variant, further complicating the interpretation of the results.

      The conclusions of this paper are mostly backed by data, but certain aspects of data analysis and description require further clarification and expansion.

    1. Reviewer #2 (Public review):

      Summary:

      Immunostaining of chromatin-associated proteins and visualization of these factors through fluorescence microscopy is a powerful technique to study molecular processes such as DNA damage and repair, their timing, and their genetic dependencies. Nonetheless, it is well-established that this methodology (sometimes called "foci-ology") is subject to biases introduced during sample preparation, immunostaining, foci visualization, and scoring. This manuscript addresses several of the shortcomings associated with immunostaining by using image correlation spectroscopy (ICS) to quantify the recruitment of several DNA damage response-associated proteins following various types of DNA damage.

      The study compares automated foci counting and fluorescence intensity to image correlation spectroscopy degree of aggregation study the recruitment of DNA repair proteins to chromatin following DNA damage. After validating image correlation spectroscopy as a reliable method to visualize the recruitment of γH2AX to chromatin following DNA damage in two separate cell lines, the study demonstrates that this new method can also be used to quantify RPA1 and Rad51 recruitment to chromatin following DNA damage. The study further shows that RPA1 signal as measured by this method correlates with cell sensitivity to Olaparib, a widely-used PARP inhibitor.

      Strengths:

      Multiple proof-of-concept experiments demonstrate that using image correlation spectroscopy degree of aggregation is typically more sensitive than foci counting or foci intensity as a measure of recruitment of a protein of interest to a site of DNA damage. The sensitivity of the SKOV3 and OVCA429 cell lines to MMS and the PARP inhibitors Olaparib and Veliparib as measured by cell viability in response to increasing amounts of each compound is a valuable correlate to the image correlation spectroscopy degree of aggregation measurements.

      Weaknesses:

      The subjectivity of foci counting has been well-recognized in the DNA repair field, and thus foci counts are usually interpreted relative to a set of technical and biological controls and across a meaningful time period. As such:

      (1) A more detailed description of the numerous prior studies examining the immunostaining of proteins such as γH2AX, RAD51, and RPA is needed to give context to the findings presented herein.

      (2) The benefits of adopting image correlation spectroscopy should be discussed in comparison to other methods, such as super-resolution microscopy, which may also offer enhanced sensitivity over traditional microscopy.

      (3) Additional controls demonstrating the specificity of their antibodies to detection of the proteins of interest should be added, or the appropriate citations validating these antibodies included.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript provides a comprehensive overview of potential resistance mutations within MET Receptor Tyrosine Kinase and defines how specific mutations affect different inhibitors and modes of target engagement. The goal is to identify inhibitor combinations with the lowest overlap in their sensitivity to resistant mutations and determine if certain resistance mutations/mechanisms are more prevalent for specific modes of ATP-binding site engagement. To achieve this, the authors measured the ability of ~6000 single mutants of MET's kinase domain (in the context of a cytosolic TPR fusion) to drive IL-3-independent proliferation (used as a proxy for activity) of Ba/F3 cells (deep mutational profiling) in the presence of 11 different inhibitors. The authors then used co-crystal and docked structures of inhibitor-bound MET complexes to define the mechanistic basis of resistance and applied a protein language model to develop a predictive model of inhibitor sensitivity/resistance.

      Strengths:

      The major strengths of this manuscript are the comprehensive nature of the study and the rigorous methods used to measure the sensitivity of ~6000 MET mutants in a pooled format. The dataset generated will be a valuable resource for researchers interested in understanding kinase inhibitor sensitivity and, more broadly, small molecule ligand/protein interactions. The structural analyses are systematic and comprehensive, providing interesting insights into resistance mechanisms. Furthermore, the use of machine learning to define inhibitor-specific fitness landscapes is a valuable addition to the narrative. Although the ESM1b protein language model is only moderately successful in identifying the underlying mechanistic basis of resistance, the authors' attempt to integrate systematic sequence/function datasets with machine learning serves as a foundation for future efforts.

      Weaknesses:

      The main limitation of this study is that the authors' efforts to define general mechanisms between inhibitor classes were only moderately successful due to the challenge of uncoupling inhibitor-specific interaction effects from more general mechanisms related to the mode of ATP-binding site engagement. However, this is a minor limitation that only minimally detracts from the impressive overall scope of the study.

    1. Reviewer #2 (Public review):

      Summary:

      Dasari et al present an interesting study investigating the use of 'microbiota age' as an alternative to other measures of 'biological age'. The study provides several curious insights into biological aging. Although 'microbiota age' holds potential as a proxy of biological age, it comes with limitations considering the gut microbial community can be influenced by various non-age related factors, and various age-related stressors may not manifest in changes in the gut microbiota. The work would benefit from a more comprehensive discussion, that includes the limitations of the study and what these mean to the interpretation of the results.

      Strengths:

      The dataset this study is based on is impressive, and can reveal various insights into biological ageing and beyond. The analysis implemented is extensive and high-level.

      Weaknesses:

      The key weakness is the use of microbiota age instead of e.g., DNA-methylation-based epigenetic age as a proxy of biological ageing, for reasons stated in the summary. DNA methylation levels can be measured from faecal samples, and as such epigenetic clocks too can be non-invasive. I will provide authors a list of minor edits to improve the read, to provide more details on Methods, and to make sure study limitations are discussed comprehensively.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Bossen et al. looked at the immune status of the tracheal terminal cells (TTCs) in Drosophila larvae. The authors propose that these cells do show PGFP-LCx expression and, hence, lack immune function. Artificial overexpression of the PGRP-LCx in the TTCs causes these cells to undergo apoptosis.

      Strengths:

      Only a few groups have tried to look at the immune status of the trachea, though we know that AMPs are expressed there after infection. This exciting study attempts to understand the differences in the tracheal cells that do not produce AMPs upon infection.

      Weaknesses:

      The reason why the TTCs have some immune privilege still needs to be completely clear. Whether the phenotype is cell autonomous or contributes to the cellular immune system is not evaluated. As we know, crystal cells also maintain oxygen levels in larvae; whether in the absence of terminal trachea, the crystal cells have any role is not explored.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have completed MRI-based descriptions of the sulcal anatomy of 18 carnivoran species that vary greatly in behaviour and ecology. In this descriptive study, different sulcal patterns are identified in relation to phylogeny and, to some extent, behaviour. The authors argue that the reported differences across families reflect behaviour and electrophysiology, but these correlations are not supported by any analyses.

      Strengths:

      A major strength of this paper is using very similar imaging methods across all specimens. Often papers like this rely on highly variable methods so that consistency reduces some of the variability that can arise due to methodology.

      The descriptive anatomy was accurate and precise. I could readily follow exactly where on the cortical surface the authors referring. This is not always the case for descriptive anatomy papers, so I appreciated the efforts the authors took to make the results understandable for a broader audience.

      I also greatly appreciate the authors making the images open access through their website.

      Weaknesses:

      Although I enjoyed many aspects of this manuscript, it is lacking in any quantitative analyses that would provide more insights into what these variations in sulcal anatomy might mean. The authors do discuss inter-clade differences in relation to behaviour and older electrophysiology papers by Welker, Campos, Johnson, and others, but it would be more biologically relevant to try to calculate surface areas or volumes of cortical fields defined by some of these sulci. For example, something like the endocast surface area measurements used by Sakai and colleagues would allow the authors to test for differences among clades, in relation to brain/body size, or behaviour. Quantitative measurements would also aid significantly in supporting some of the potential correlations hinted at in the Discussion.

      Although quantitative measurements would be helpful, there are also some significant concerns in relation to the specimens themselves. First, almost all of these are captive individuals. We know that environmental differences can alter neocortical development and humans and nonhuman animals and domestication affects neocortical volume and morphology. Whether captive breeding affects neocortical anatomy might not be known, but it can affect other brain regions and overall brain size and could affect sulcal patterns. Second, despite using similar imaging methods across specimens, fixation varied markedly across specimens. Fixation is unlikely to affect the ability to recognize deep sulci, but variations in shrinkage could nevertheless affect overall brain size and morphology, including the ability to recognize shallow sulci. Third, the sample size = 1 for every species examined. In humans and nonhuman animals, sulcal patterns can vary significantly among individuals. In domestic dogs, it can even vary greatly across breeds. It therefore remains unclear to what extent the pattern observed in one individual can be generalized for a species let alone an entire genus or family. The lack of accounting for inter-individual variability makes it difficult to make any firm conclusions regarding the functional relevance of sulcal patterns.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript from Prado-Mantilla and co-workers addresses mechanisms of embryonic epidermis development, focusing on the intermediate layer cells, a transient population of suprabasal cells that contributes to the expansion of the epidermis through proliferation. Using bulk-RNA they show that these cells are transcriptionally distinct from the suprabasal spinous cells and identify specific marker genes for these populations. They then use transgenesis to demonstrate that one of these selected spinous layer-specific markers, the transcription factor MafB is capable of suppressing proliferation in the intermediate layers, providing a potential explanation for the shift of suprabasal cells into a non-proliferative state during development. Further, lineage tracing experiments show that the intermediate cells become granular cells without a spinous layer intermediate. Finally, the authors show that the intermediate layer cells express higher levels of contractility-related genes than spinous layers and overexpression of cytoskeletal regulators accelerates the differentiation of spinous layer cells into granular cells.

      Overall the manuscript presents a number of interesting observations on the developmental stage-specific identities of suprabasal cells and their differentiation trajectories and points to a potential role of contractility in promoting differentiation of suprabasal cells into granular cells. The precise mechanisms by which MafB suppresses proliferation, how the intermediate cells bypass the spinous layer stage to differentiate into granular cells, and how contractility feeds into these mechanisms remain open. Interestingly, while the mechanosensitive transcription factor YAP appears deferentially active in the two states, it is shown to be downstream rather than upstream of the observed differences in mechanics.

      Strengths:

      The authors use a nice combination of RNA sequencing, imaging, lineage tracing, and transgenesis to address the suprabasal to granular layer transition. The imaging is convincing and the biological effects appear robust. The manuscript is clearly written and logical to follow.

      Weaknesses:

      While the data overall supports the authors' claims, there are a few minor weaknesses that pertain to the aspect of the role of contractility, The choice of spastin overexpression to modulate contractility is not ideal as spastin has multiple roles in regulating microtubule dynamics and membrane transport which could also be potential mechanisms explaining some of the phenotypes. Use of Arghap11 overexpression mitigates this effect to some extent but overall it would have been more convincing to manipulate myosin activity directly. It would also be important to show that these manipulations increase the levels of F-actin and myosin II as shown for the intermediate layer. It would also be logical to address if further increasing contractility in the intermediate layer would enhance the differentiation of these cells.

      The gene expression analyses are relatively superficial and rely heavily on GO term analyses which are of course informative but do not give the reader a good sense of what kind of genes and transcriptional programs are regulated. It would be useful to show volcano plots or heatmaps of actual gene expression changes as well as to perform additional analyses of for example gene set enrichment and/or transcription factor enrichment analyses to better describe the transcriptional programs

      Claims of changes in cell division/proliferation changes are made exclusively by quantifying EdU incorporation. It would be useful to more directly look at mitosis. At minimum Y-axis labels should be changed from "% Dividing cells" to % EdU+ cells to more accurately represent findings

      Despite these minor weaknesses the manuscript is overall of high quality, sheds new light on the fundamental mechanisms of epidermal stratification during embryogenesis, and will likely be of interest to the skin research community.

    1. Reviewer #2 (Public review):

      The authors make the interesting observation that the developmental refinement of apical M/T cell dendrites into individual glomeruli proceeds normally even when the majority of neighboring M/T cells are ablated. At later stages, the remaining neurons develop additional dendrites that invade multiple glomeruli ectopically and, similarly, OSN inputs to glomeruli lose projection specificity as well. The authors conclude that the normal density of M/T neurons is not required for developmental refinement, but rather for maintaining specific connectivity in adults.

      Comments on revised submission:

      The authors have adjusted the interpretation of their findings and as a consequence, the conclusions are now better supported by the data. However, the evidence for the absence of a role of firing in regulating ectopic dendrites is still insufficient.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.

      Strengths and Weaknesses:

      One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, the authors provided qPCR analysis of nAchRs in ISCs and Paneth cells from isolated whole small intestine, indicating that α7-nAChR uniquely responds to nicotine treatment among various nAChRs. And the authors further strengthen the clinical relevance of the study by exploring human scRNA-seq dataset, in which α7-nAChR is indeed also expressed in human ISCs and Paneth cells.

      As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. The authors have included such discussion.

      In Figure 4, the authors investigate ISC organoid formation with a pan-PKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no or reversal effect on ISCs in this context. The authors have now included an additional PKC inhibitor Sotrastaurin to confirm the role of PKC in nicotine-induced ISC expansion.

      Overall, the manuscript has provided sufficient experimental evidence to address my concerns and also significantly enhanced its quality.

    1. Reviewer #2 (Public review):

      This manuscript by Petty and Bruno delves into the still poorly understood role of higher-order thalamic nuclei in the encoding of sensory information by examining the activity in the Pom and LP cells in mice performing an associative learning task. They developed an elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality (visual or tactile) and ignore a second stimulus of the other modality. They recorded simultaneously from POm and LP, using 64-channels electrode arrays, to reveal the context-dependency of the firing activity of cells in higher-order thalamic nuclei. They concluded that behavioral training reshapes activity in these secondary thalamic nuclei. The authors brought new analyses and figures which greatly improve their manuscript and support their conclusion. The manuscript benefits now from a better communication about both the methodology and the results. I have no more major concerns, but I feel that the readability of the manuscript could be improved with the following revisions.

      Strengths

      The authors developed an original and elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality, either visual or tactile and ignore a second stimulus of the other modality. As a tactile stimulus, they applied gentle air puffs on the distal part of the vibrissae, ensuring that the stimulus was innocuous and therefore none aversive which is crucial in their study.

      It is commonly viewed that first-order thalamus performs filtering and re-encoding of the sensory flow; in contrast the computations taking place in high-order nuclei are poorly understood. They may contribute to cognitive functions. By integrating top-down control, high-order nuclei may participate in generating update models of the environment based on sensory activity; how this can take place is a key question that Petty and Bruno addressed in the present study.

      Weaknesses

      (1) It's difficult when reading the text to understand which results were quantified and which were not, in part because mean data as well as (s.e.m. or S.D.) do not appear either in the main text nor in the legends of the figures. Only vague and unquantified data are given in the main text. I understand that the authors may want to make the main text less heavy, but having these data fully written somewhere (i.e., main text, summary table, figure legends) rather than having to estimate through looking at a graph (especially when the data are constraint in the first 20% of the graph (Figure 4c)), would greatly improve the text's clarity and precision.

      For instance, Line #173, "At the population level, POm cells in both conditioning groups had a peak of activity 40ms after air puff onset (Figure 4a)." Is this 40 ms a result of quantified data, then a s.e.m. would be informative, or a reading measurement on the Figure 4a graphs? As it stands, it is too vague a value.

      (2) The authors give clearer definition of what they analyzed, which greatly improved the readability of the manuscript. The clarity of the manuscript could still be improved by solving remaining ambiguities about sensory- versus non-sensory-responses to the applied stimuli throughout the manuscript, in order to better convey the authors' conclusion that behavioral training reshapes activity in these secondary thalamic nuclei which then may participate in generating update models of the context in which the animal is performing the task.

      Line #24 in the abstract "In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli". The abstract would better reflect the manuscript conclusions indicating that POm was robustly activated during tactile stimuli.

      (3) The new analysis of the "early" responses in Pom cells pointed out, Line #173, that "At the population level, POm cells in both conditioning groups had a peak of activity 40ms after air puff onset (Figure 4a)." Previous works cited by the authors, Diamond et al. (1992), described tactile responses in Pom cells at 15-20ms latency which were suppressed by the barrel cortex inactivation.

      The 40ms-latency responses described in this manuscript therefore do not fit with "purely sensory" and barely with S1-feedbacks, as proposed on line #168 "Such responses could be "purely sensory" (i.e. driven by ascending brainstem inputs)" or line #334 "It is likely that the observed activity in lateral dorsal POm is driven by true whisker responses in SpVi and S1."

      In the same way, Line #315 "we observed POm cells that responded to the onset of the air puff in both conditioning groups". This conclusion should be dampened, to better fit the results, by "we observed POm cells that responded 40 ms after the onset of the air puff in both conditioning groups."

    1. Reviewer #2 (Public review):

      Summary:

      This is a very interesting paper that leveraged several publicly available datasets: invasive cortical recording in epilepsy patients, functional and structural connectomic data, and PET data related to dopaminergic and gaba-ergic synapses. These were combined to create a unified hypothesis of beta band oscillatory activity in the human brain. They show that beta frequency activity is ubiquitous, and does not just occur in sensorimotor areas. Cortical regions where beta oscillations predominated had high connectivity to regions that are high in dopamine re-update.

      Strengths:

      The authors leverage and integrate three publicly available human brain datasets in a creative way. These public datasets are powerful tools for human neuroscience, and it is innovative to combine these three types of data into a common brain space to generate novel findings and hypotheses. Findings are nicely controlled by separately examining cortical regions where alpha predominates (which have a different connectivity pattern). GABA uptake from PET studies is used as a control for the specificity of the relationship between beta activity and dopamine uptake. There is much interest in synchronized oscillatory activity as a mechanism of brain function and dysfunction, but the field is short on unifying hypotheses of why particular rhythms predominate in particular regions. This paper contributes nicely to that gap. It is ambitious in generating hypotheses, particularly that modulation of beta activity may be used as a "proxy" for modulating phasic dopamine release.

      Weaknesses:

      As the authors point out, the use of normative data is excellent for exploring hypotheses but does not address or explore individual variations which could lead to other insights. It is also biased to resting state activity; maps of task related activity (if they were available) might show different findings.

      Challenges:

      In the Discussion, the authors do a fairly deep dive into the implications of their findings, particularly with respect to the hypothesis that beta band activity "preserves the status quo", and with respect to the use of beta band activity in controlling brain-machine interfaces. Mechanistically and theoretically oriented readers might gain rewarding new insights by a careful read of the discussion, but full appreciation of their deep dive may require real time interaction with the authors.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to understand whether polarised moonlight could be used as a directional cue for nocturnal animals homing at night, particularly at times of night when polarised light is not available from the sun. To do this, the authors used nocturnal ants, and previously established methods, to show that the walking paths of ants can be altered predictably when the angle of polarised moonlight illuminating them from above is turned by a known angle (here +/- 45 degrees).

      Strengths:

      The behavioural data are very clear and unambiguous. The results clearly show that when the angle of downwelling polarised moonlight is turned, ants turn in the same direction. The data also clearly show that this result is maintained even for different phases (and intensities) of the moon, although during the waning cycle of the moon the ants' turn is considerably less than may be expected.

      Impact:

      The authors have discovered that nocturnal bull ants, while homing back to their nest holes at night, are able to use the dim polarised light pattern formed around the moon for path integration. Even though similar methods have previously shown the ability of dung beetles to orient along straight trajectories for short distances using polarised moonlight, this the first evidence of an animal that uses polarised moonlight in homing. This is quite significant, and their findings are well supported by their data.

      Comments on revised version:

      The authors have made a good effort to accommodate my suggestions for improvement (and from what I can tell, those of the other reviewers). I have no further comments.

    1. Reviewer #2 (Public review):

      Summary:

      This work describes a statistical framework that combines functional linear mixed modeling with joint 95% confidence intervals, which improves statistical power and provides less conservative and more robust statistical inferences than in previous studies. Pointwise linear regression analysis has been used extensively to analyze time series signals from a wide range of neuroscience recording techniques, with recent studies applying them to photometry data. The novelty of this study lies in 1) the introduction of joint 95% confidence intervals for statistical testing of functional mixed models with nested random-effects, and 2) providing an open-source R package implementing this framework. This study also highlights how summary statistics as opposed to trial-by-trial analysis can obscure or even change the direction of statistical results by reanalyzing two other studies.

      Strengths:

      The open-source package in R using a similar syntax as lme4 package for the implementation of this framework, the high fitting speed and the low memory footprint, even in complex models, enhance the accessibility and usage by other researchers.

      The reanalysis of two studies using summary statistics on photometry data (Jeong et al., 2022; Coddington et al., 2023) highlights how trial-by-trial analysis at each time-point on the trial can reveal information obscured by averaging across trials. Furthermore, this work also exemplifies how session and subject variability can lead to different conclusions when not considered.

      This study also showcases the statistical robustness of FLMM by comparing this method to fitting pointwise linear mixed models and performing t-test and Benjamini-Hochberg correction as performed by Lee et al. (2019).

    1. Reviewer #2 (Public review):

      Summary:

      The study proposes that many cancer driver mutations are not yet identified but could be identified if they harbor recurrent SNVs. The paper leverages the analysis from Paper #1 that used quantitative analysis to demonstrate that SNVs or CDNs seen 3 or more times are more likely due to selection (ie a driver mutation) than by chance or random mutation.

      Strengths:

      Empirically, mutation frequency is an excellent marker of a driver gene because canonical driver mutations typically have recurrent SNVs. Using the TCGA database, the paper illustrates that CDNs can identify canonical driver mutations (Fig 3) and that most CDN are likely to disrupt protein function (Fig 2). In addition, CDNs can be shared between cancer types (Fig 4).

      Weaknesses:

      Driver alteration validation is difficult, with disagreements on what defines a driver mutation, and how many driver mutations are present in a cancer. The value proposed by the authors is that the identification of all driver genes can facilitate the design of patient specific targeting therapies, but most targeted therapies are already directed towards known driver genes. There is an incomplete discussion of oncogenes (where activating mutations tend to target a single amino acid or repeat) and tumor suppressor genes (where inactivating mutations may be more spread across the gene). Other alterations (epigenetic, indels, translocations, CNVs) would be missed by this type of analysis.

      The method could be more valuable when applied to the noncoding genome, where driver mutations in promoters or enhancers are relatively rare, or as yet to be discovered. Increasingly more cancers have had whole genome sequencing. Compared to WES, criteria for driver mutations in noncoding regions are less clear, and this method could potentially provide new noncoding driver CDNs. Observing the same mutation in more than one cancer specimen is empirically unusual, and the authors provide a solid quantitative analysis that indicates many recurrent mutations are likely to be cancer-driver mutations.

    1. Reviewer #2 (Public review):

      Summary:

      The authors propose that cancer driver mutations can be identified by Cancer Driving Nucleotides (CDNs). CDNs are defined as SNVs that occur frequently in genes. There are many ways to define cancer driver mutations, and strengths and weaknesses are the reliance of statistics to define them.

      Strengths:

      There are many well-known approaches and studies that have already identified many canonical driver mutations. A potential strength is that mutation frequencies may be able to identify, as yet, unrecognized driver mutations. They use of a previously developed method to estimate mutation hotspots across the genome (Dig, Sherman et al 2022). This publication has already used cancer sequence data to infer driver mutations based on higher than expected mutation frequencies. The advance here is to further illustrate that recurrent mutations (estimated at 3 or more mutations (CDNs) at the same base) are more likely to be the result of selection for a driver mutation (Fig 3). Further analysis indicates that mutation sequence context (Fig 4) or mutation mechanisms (Fig 5) are unlikely to be major causes for recurrent point mutations. Finally, they calculate (Fig 6) that most driver mutations identifiable by the CDN approach could be identified with about 100,000 to one million tumor coding genomes.

      Weaknesses:

      The manuscript does provide specific examples where recurrent mutations identify known driver mutations, but does not identify "new" candidate driver mutations. Driver mutation validation is difficult and at least clinically, frequency (ie observed in multiple other cancer samples) is indeed commonly used to judge if a SNV has driver potential. The method would miss alternative ways to trigger driver alterations (translocations, indels, epigenetic, CNVs). Nevertheless, the value of the manuscript is its quantitative analysis of why mutation frequencies can identify cancer driver mutations.

    1. Reviewer #2 (Public review):

      Summary:

      The authors improve the work of Jallais et al. (2022) by including a novel module capable of automatically learning feature selection from different acquisition protocols inside a supervised learning framework. Combining the module above with an estimation framework for estimating the posterior distribution of model parameters, they obtain rich probabilistic information (uncertainty and degeneracy) on the parameters in a reasonable computation time.

      The main contributions of the work are:

      (1) The whole framework allows the user to avoid manually defining summary statistics, which may be slow and tedious and affect the quality of the results.

      (2) The authors tested the proposal by tackling three different biophysical models for brain tissue and using data with characteristics commonly used by the diffusion-MR-microstructure research community.

      (3) The authors validated their method well with the state-of-the-art.

      (4) The methodology allows the quantification of the inherent model's degeneration and how it increases with strong noise.

      The authors showed the utility of their proposal by computing complex parameter descriptors automatically in an achievable time for three different and relevant biophysical models.

      Importantly, this proposal promotes tackling, analyzing, and considering the degenerated nature of the most used models in brain microstructure estimation.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Tubert et al presents the role of the D5 receptor in modulating the striatal cholinergic interneuron (CIN) pause response through D5R-cAMP-Kv1 inhibitory signaling. Their model elucidates the on / off switch of CIN pause, likely due to the different DA affinity between D2R and D5R. This machinery may be crucial in modulating synaptic plasticity in cortical-striatal circuits during motor learning and execution. Furthermore, the study bridges their previous finding of CIN hyperexcitability (Paz et al., Movement Disorder 2022) with the loss of pause response in LID mice.

      Strengths:

      The study had solid findings, and the writing was logically structured and easy to follow. The experiments are well-designed, and they properly combined electrophysiology recording, optogenetics, and pharmacological treatment to dissect/rule out most, if not all, possible mechanisms in their model.

      Weaknesses:

      The manuscript is overall satisfying with only some minor concerns that need to be addressed. Manipulation of intracellular cAMP (e.g. using pharmacological analogs or inhibitors) can add additional evidence to strengthen the conclusion.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors analyze the organization of phases across different spatial scales. The authors analyze intracranial, stereo-electroencephalogram (sEEG) recordings from human clinical patients. The authors estimate the phase at each sEEG electrode at discrete temporal frequencies. They then use higher-order SVD (HOSVD) to estimate the spatial frequency spectrum of the organization of phase in a data-driven manner. Based on this analysis, the authors conclude that most of the variance explained is due to spatially extended organizations of phase, suggesting that the best description of brain activity in space and time is in fact a globally organized process. The authors' analysis is also able to rule out several important potential confounds for the analysis of spatiotemporal dynamics in EEG.

      Strengths:

      There are many strengths in the manuscript, including the authors' use of SVD to address the limitation of irregular sampling and their analyses ruling out potential confounds for these signals in the EEG.

      Weaknesses:

      Some important weaknesses are not properly acknowledged, and some conclusions are over-interpreted given the evidence presented.

      The central weakness is that the analyses estimate phase from all signal time points using wavelets with a narrow frequency band (see Methods - "Numerical methods"). This step makes the assumption that phase at a particular frequency band is meaningful at all times; however, this is not necessarily the case. Take, for example, the analysis in Figure 3, which focuses on a temporal frequency of 9.2 Hz. If we compare the corresponding wavelet to the raw sEEG signal across multiple points in time, this will look like an amplitude-modulated 9.2 Hz sinusoid to which the raw sEEG signal will not correspond at all. While the authors may argue that analyzing the spatial organization of phase across many temporal frequencies will provide insight into the system, there is no guarantee that the spatial organization of phase at many individual temporal frequencies converges to the correct description of the full sEEG signal. This is a critical point for the analysis because while this analysis of the spatial organization of phase could provide some interesting results, this analysis also requires a very strong assumption about oscillations, specifically that the phase at a particular frequency (e.g. 9.2 Hz in Figure 3, or 8.0 Hz in Figure 5) is meaningful at all points in time. If this is not true, then the foundation of the analysis may not be precisely clear. This has an impact on the results presented here, specifically where the authors assert that "phase measured at a single contact in the grey matter is more strongly a function of global phase organization than local". Finally, the phase examples given in Supplementary Figure 5 are not strongly convincing to support this point.

      Another weakness is in the discussion on spatial scale. In the analyses, the authors separate contributions at (approximately) > 15 cm as macroscopic and < 15 cm as mesoscopic. The problem with the "macroscopic" here is that 15 cm is essentially on the scale of the whole brain, without accounting for the fact that organization in sub-systems may occur. For example, if a specific set of cortical regions, spanning over a 10 cm range, were to exhibit a consistent organization of phase at a particular temporal frequency (required by the analysis technique, as noted above), it is not clear why that would not be considered a "macroscopic" organization of phase, since it comprises multiple areas of the brain acting in coordination. Further, while this point could be considered as mostly semantic in nature, there is also an important technical consideration here: would spatial phase organizations occurring in varying subsets of electrodes and with somewhat variable temporal frequency reliably be detected? If this is not the case, then could it be possible that the lowest spatial frequencies are detected more often simply because it would be difficult to detect variable organizations in subsets of electrodes?

      Another weakness is disregarding the potential spike waveform artifact in the sEEG signal in the context of these analyses. Specifically, Zanos et al. (J Neurophysiol, 2011) showed that spike waveform artifacts can contaminate electrode recordings down to approximately 60 Hz. This point is important to consider in the context of the manuscript's results on spatial organization at temporal frequencies up to 100 Hz. Because the spike waveform artifact might affect signal phase at frequencies above 60 Hz, caution may be important in interpreting this point as evidence that there is significant phase organization across the cortex at these temporal frequencies.

      A last point is that, even though the present results provide some insight into the organization of phase across the human brain, the analyses do not directly link this to spiking activity. The predictive power that these spatial organizations of phase could provide for spiking activity - even if the analyses were not affected by the distortion due to the narrow-frequency assumption - remains unknown. This is important because relating back to spiking activity is the key factor in assessing whether these specific analyses of phase can provide insight into neural circuit dynamics. This type of analysis may be possible to do with the sEEG recordings, as well, by analyzing high-gamma power (Ray and Maunsell, PLoS Biology, 2011), which can provide an index of multi-unit spiking activity around the electrodes.

    1. Reviewer #2 (Public review):

      Summary:

      Min et al. attempt to demonstrate that magnetic resonance imaging (MRI) can detect changes in neuronal membrane potentials. They approach this goal by studying how MRI contrast and cellular potentials together respond to treatment of cultured cells with ionic solutions. The authors specifically study two MRI-based measurements: (A) the transverse (T2) relaxation rate, which reflects microscopic magnetic fields caused by solutes and biological structures; and (B) the fraction or "pool size ratio" (PSR) of water molecules estimated to be bound to macromolecules, using an MRI technique called magnetization transfer (MT) imaging. They see that depolarizing K+ and Ba2+ concentrations lead to T2 increases and PSR decreases that vary approximately linearly with voltage in a neuroblastoma cell line and that change similarly in a second cell type. They also show that depolarizing potassium concentrations evoke reversible T2 increases in rat brains and that these changes are reversed when potassium is renormalized. Min et al. argue that this implies that membrane potential changes cause the MRI effects, providing a potential basis for detecting cellular voltages by noninvasive imaging. If this were true, it would help validate a recent paper published by some of the authors (Toi et al., Science 378:160-8, 2022), in which they claimed to be able to detect millisecond-scale neuronal responses by MRI.

      Strengths:

      The discovery of a mechanism for relating cellular membrane potential to MRI contrast could yield an important means for studying functions of the nervous system. Achieving this has been a longstanding goal in the MRI community, but previous strategies have proven too weak or insufficiently reproducible for neuroscientific or clinical applications. The current paper suggests remarkably that one of the simplest and most widely used MRI contrast mechanisms-T2 weighted imaging-may indicate membrane potentials if measured in the absence of the hemodynamic signals that most functional MRI (fMRI) experiments rely on. The authors make their case using a diverse set of quantitative tests that include controls for ion and cell type-specificity of their in vitro results and reversibility of MRI changes observed in vivo.

      Weaknesses:

      The major weakness of the paper is that it uses correlational data to conclude that there is a causational relationship between membrane potential and MRI contrast. Alternative explanations that could explain the authors' findings are not adequately considered. Most notably, depolarizing ionic solutions can also induce changes in cellular volume and tissue structure that in turn alter MRI contrast properties similarly to the results shown here. For example, a study by Stroman et al. (Magn Reson Med 59:700-6, 2008) reported reversible potassium-dependent T2 increases in neural tissue that correlate closely with light scattering-based indications of cell swelling. Phi Van et al. (Sci Adv 10:eadl2034, 2024) showed that potassium addition to one of the cell lines used here likewise leads to cell size increases and T2 increases. Such effects could in principle account for Min et al.'s results, and indeed it is difficult to see how they would not contribute, but they occur on a time scale far too slow to yield useful indications of membrane potential. The authors' observation that PSR correlates negatively with T2 in their experiments is also consistent with this explanation, given the inverse relationship usually observed (and mechanistically expected) between these two parameters. If the authors could show a tight correspondence between millisecond-scale membrane potential changes and MRI contrast, their argument for a causal connection or a useful correlational relationship between membrane potential and image contrast would be much stronger. As it is, however, the article does not succeed in demonstrating that membrane potential changes can be detected by MRI.

    1. Reviewer #2 (Public review):

      Summary:

      The authors sought to evaluate whether observations made in separate individual laboratories are reproducible when they use standardized procedures and quality control measures. This is a key question for the field. If ten systems neuroscience labs try very hard to do the exact same experiment and analyses, do they get the same core results? If the answer is no, this is very bad news for everyone else! Fortunately, they were able to reproduce most of their experimental findings across all labs. Despite attempting to target the same brain areas in each recording, variability in electrode targeting was a source of some differences between datasets.

      Major Comments:

      The paper had two principal goals:<br /> (1) to assess reproducibility between labs on a carefully coordinated experiment<br /> (2) distill the knowledge learned into a set of standards that can be applied across the field.<br /> The manuscript made progress towards both of these goals but leaves room for improvement.

      (1) The first goal of the study was to perform exactly the same experiment and analyses across 10 different labs and see if you got the same results. The rationale for doing this was to test how reproducible large-scale rodent systems neuroscience experiments really are. In this, the study did a great job showing that when a consortium of labs went to great lengths to do everything the same, even decoding algorithms could not discern laboratory identity was not clearly from looking at the raw data. However, the amount of coordination between the labs was so great that these findings are hard to generalize to the situation where similar (or conflicting!) results are generated by two labs working independently.

      Importantly, the study found that electrode placement (and thus likely also errors inherent to the electrode placement reconstruction pipeline) was a key source of variability between datasets. To remedy this, they implemented a very sophisticated electrode reconstruction pipeline (involving two-photon tomography and multiple blinded data validators) in just one lab-and all brains were sliced and reconstructed in this one location. This is a fantastic approach for ensuring similar results within the IBL collaboration, but makes it unclear how much variance would have been observed if each lab had attempted to reconstruct their probe trajectories themselves using a mix of histology techniques from conventional brain slicing, to light sheet microscopy, to MRI imaging.

      This approach also raises a few questions. The use of standard procedures, pipelines, etc. is a great goal, but most labs are trying to do something unique with their setup. Bigger picture, shouldn't highly "significant" biological findings akin to the discovery of place cells or grid cells, be so clear and robust that they can be identified with different recording modalities and analysis pipelines?

      Related to this, how many labs outside of the IBL collaboration have implemented the IBL pipeline for their own purposes? In what aspects do these other labs find it challenging to reproduce the approaches presented in the paper? If labs were supposed to perform this same experiment, but without coordinating directly, how much more variance between labs would have been seen? Obviously investigating these topics is beyond the scope of this paper. The current manuscript is well-written and clear as is, and I think it is a valuable contribution to the field. However, some additional discussion of these issues would be helpful.

      (2) The second goal of the study was to present a set of data curation standards (RIGOR) that could be applied widely across the field. This is a great idea, but its implementation needs to be improved if adoption outside of the IBL is to be expected. Here are three issues:

      (a) The GitHub repo for this project (https://github.com/int-brain-lab/paper-reproducible-ephys/) is nicely documented if the reader's goal is to reproduce the figures in the manuscript. Consequently, the code for producing the RIGOR statistics seems mostly designed for re-computing statistics on the existing IBL-formatted datasets. There doesn't appear to be any clear documentation about how to run it on arbitrary outputs from a spike sorter (i.e. the inputs to Phy).

      (b) Other sets of spike sorting metrics that are more easily computed for labs that are not using the IBL pipeline already exist (e.g. "quality_metrics" from the Allen Institute ecephys pipeline [https://github.com/AllenInstitute/ecephys_spike_sorting/blob/main/ecephys_spike_sorting/modules/quality_metrics/README.md] and the similar module in the Spike Interface package [https://spikeinterface.readthedocs.io/en/latest/modules/qualitymetrics.html]). The manuscript does not compare these approaches to those proposed here, but some of the same statistics already exist (amplitude cutoff, median spike amplitude, refractory period violation).

      (c) Some of the RIGOR criteria are qualitative and must be visually assessed manually. Conceptually, these features make sense to include as metrics to examine, but would ideally be applied in a standardized way across the field. The manuscript doesn't appear to contain a detailed protocol for how to assess these features. A procedure for how to apply these criteria for curating non-IBL data (or for implementing an automated classifier) would be helpful.

      Other Comments:

      (1) How did the authors select the metrics they would use to evaluate reproducibility? Was this selection made before doing the study?

      (2) Was reproducibility within-lab dependent on experimenter identity?

      (3) They note that UCLA and UW datasets tended to miss deeper brain region targets (lines 185-188) - they do not speculate why these labs show systematic differences. Were they not following standardized procedures?

      (4) The authors suggest that geometrical variance (difference between planned and final identified probe position acquired from reconstructed histology) in probe placement at the brain surface is driven by inaccuracies in defining the stereotaxic coordinate system, including discrepancies between skull landmarks and the underlying brain structures. In this case, the use of skull landmarks (e.g. bregma) to determine locations of brain structures might be unreliable and provide an error of ~360 microns. While it is known that there is indeed variance in the position between skull landmarks and brain areas in different animals, the quantification of this error is a useful value for the field.

      (5) Why are the thalamic recording results particularly hard to reproduce? Does the anatomy of the thalamus simply make it more sensitive to small errors in probe positioning relative to the other recorded areas?

    1. Reviewer #2 (Public review):

      Summary:

      This study aims to investigate how social observation influences risky decision-making. Using a gambling task, the study explored how participants adjusted their risk-taking behavior when they believed their decisions were being observed by either a risk-averse or risk-seeking partner. The authors hypothesized that individuals would simulate the choices of their observers based on learned preferences and integrate these simulated choices into their own decision-making. In addition to behavioral experiments, the study employed computational modeling to formalize decision processes and fMRI to identify the neural underpinnings of risky decision-making under social observation.

      Strengths:

      The study provides a fresh perspective on social influence in decision-making, moving beyond the simple notion that social observation leads to uniformly riskier behavior. Instead, it shows that individuals adjust their choices depending on their beliefs about the observer's risk preferences, offering a more nuanced understanding of how social contexts shape decision-making. The authors provide evidence using comprehensive approaches, including behavioral data based on a well-designed task, computational modeling, and neuroimaging. The three models are well selected to compare at which level (e.g., computing utility, risk preference shift, and choice probability) the social influence alters one's risky decision-making. This approach allows for a more precise understanding of the cognitive processes underlying decision-making under social observation.

      Weaknesses:

      While the neuroimaging results are generally consistent with the behavioral and computational findings, the strength of the neural evidence could be improved. The authors' claims about the involvement of the TPJ and mPFC in integrating social information are plausible, but further analysis, such as model comparisons at the neuroimaging level, is needed to decisively rule out alternative interpretations that other computational models suggest.

    1. Reviewer #2 (Public review):

      Summary:

      In this article Wen et. al., describe the development of a 'proof-of-concept' bi-functional vector based out of HSV-deltaICP-34.5's ability to purge latent HIV-1 and SIV genomes from cells. They show that co-infection of latent J-lat T-cell lines with a HSV-deltaICP-34.5 vector can reactivate HIV-1 from a latent state. Over- or stable expression of ICP 34.5 ORF in these cells can arrest latent HIV-1 genomes from transcription, even in the presence of latency reversal agents. ICP34.5 can co-IP with- and de-phosphorylate IKKa/b to block its interaction with NF-k/B transcription factor. Additionally, ICP34.5 can interact with HSF1 which was identified by mass-spec. Thus, the authors propose that the latency reversal effect of HSV-deltaICP-34.5 in co-infected JLat cells is due to modulatory effects on the IKKa/b-NF-kB and PP1-HSF-1 pathway.

      Next the authors cleverly construct a bifunctional HSV based vector with deleted ICP34.5 and 47 ORFs to purge latency and avoid immunological refluxes, and additionally expand the application of this construct as a vaccine by introducing SIV genes. They use this 'vaccine' in mouse models and show the expected SIV-immune responses. Experiments in rhesus macaques (RM), further elicit potential for their approach to reactivate SIV genomes and at the same time block their replication by antibodies. What was interesting in the SIV experiments is that the dual-functional vector vaccine containing sPD1- and SIV Gag/Env ORFs effectively delayed SIV rebound in RMs and in some cases almost neutralized viral DNA copy detection in serum. Very promising indeed, however there are some questions I wish the authors explored to answer, detailed below.

      Overall, this is an elegant and timely work demonstrating the feasibility of reducing virus rebound in animals, and potentially expand to clinical studies. The work was well written, and sections were clearly discussed.

      Strengths:

      The work is well designed, rationale explained and written very clearly for lay readers.<br /> Claims are adequately supported by evidence and well designed experiments including controls.

      Weaknesses:

      (1) It looks like ICP0 is also involved in latency reversal effects. More follow-up work will be required to test if this is in fact true.

      (2) It is difficult to estimate the depletion of the latent viral reservoir. The authors have tried to address this issue. A more convincing argument to this reviewer will be data to demonstrate that after the bi-functional vaccine, the animals show overall reduction in the number of circulating latent cells. The feasibility to obtain such a result is not clearly demonstrated.

      (3) The authors state that the reduced virus rebound detected following bi-functional vaccine delivery is due to latent genomes becoming activated and steady-state neutralization of these viruses by antibody response. This needs to be demonstrated. Perhaps cell-culture experiments from specimen taken from animals might help address this issue. In lab cultures one could create environments without antibody responses, under these conditions one would expect higher level of viral loads being released in response to the vaccine in question.

    1. Reviewer #2 (Public review):

      Summary

      In this study, the authors evaluate the impact of selective pressure from chemotherapeutic drugs on the development of drug resistance in Mycobacteria, specifically through the acquisition of genetic mutations or phenotypic tolerance. Their findings indicate that treatment with sublethal concentrations of first-line antibiotics does not lead to enhanced mutation rates.

      Strengths

      The use of the mutation accumulation assay demonstrating low spontaneous mutation rates combined with the display of an increased MIC supports drug resistance as a consequence of phenotypic tolerance. Additionally, the use of the ciprofloxacin tolerance assay in combination with whole genome sequencing demonstrating a lack of mutations provides further support of this. The results now support the authors claims.

      Weaknesses

      Besides an increase in DNA stress response other underlying tolerance mechanisms were not established - increased efflux pump, thickening of the cell wall, decrease in metabolic processes, rerouting of metabolic processes etc.

    1. Reviewer #2 (Public review):

      Summary:

      DAVID syndrome is a rare autosomal dominant disorder characterized by variable immune dysfunction and variable ACTH deficiency. Nine different families have been reported, and all have heterozygous mutations in NFKB2. The mechanism of NFKB2 action in the immune systems has been well-studied, but nothing is known about its role in pituitary gland.

      The DAVID mutations cluster in the C-terminus of the NFKB2 and interfere with cleavage and nuclear translocation. The mutations are likely dominant negative, by affecting dimer function. ACTH deficiency can be life-threatening in neonates and adults, thus, understanding the mechanism of NFKB2 action in pituitary development and/or function is important.

      The authors use CRISPR/Cas gene editing of human iPSC derived pituitary-hypothalamic organoids to assess the function of NFKB2 and TBX19 in pituitary development. Mutations in TBX19 are the most common, known cause of pituitary ACTH deficiency, and the mechanism of action has been studied in mice, which phenocopy the human condition. Thus, the TBX19 organoids can serve as a positive control. The Nfkb2 mouse model has a p.Y868* mutation that impairs cleavage of NFKB2 p100, and the immune phenotype mimics the patients with DAVID mutations, but no pituitary phenotype was evident. Thus, a human organoid model might be the only approach suitable to discover the etiology of the pituitary phenotype.

      Overall, the authors have selected an important problem, and the results suggest that the pituitary insufficiency in DAVID syndrome is caused by a developmental defect rather than an autoimmune hypophysitis condition. The use of gene editing in human iPSC derived hypothalamic-pituitary organoids is significant, as there is only one example of this previously, namely studies on OTX2. Only a few laboratories have demonstrated the ability to differentiate iPSC or ES cells to these organoids, and the authors have improved the efficiency of differentiation, which is also significant.

      The strength of the evidence is excellent. The authors have thoroughly analyzed the genetically engineered organoids compared to isogenic controls. They have validated their findings with analysis of RNA and proteins. They have studied the time course of differentiation in the organoids and have a robust experimental design involving many replicates. Analysis of additional clones could strengthen the evidence.

      Strengths:

      The authors make mutations in TBX19 and NFKB2 that exist in affected patients. The TBX19 p.K146R mutation is recessive and causes isolated ACTH deficiency. Mutations in this gene account for 2/3 of isolated ACTH deficiency cases. The NFKB2 p.D865G mutation is heterozygous in a patient with recurrent infections and isolated ACTH deficiency. NFKB2 mutations are a rare cause of ACTH deficiency, and they can be associated with loss of other pituitary hormones in some cases. However, all reported cases are heterozygous.<br /> The developmental studies of organoid differentiation are rigorous in that 200 organoids were generated for each hiPSC line, and 3-10 organoids were analyzed for each time point and genotype. Differentiation analysis relied on both RNA transcript measurements and immunohistochemistry of cleared organoids using light sheet microscopy. Multiple time points were examined, including seven times for gene expression at the RNA level and two times in the later stages of differentiation for IHC.<br /> TBX19 deficient organoids exhibit reduced levels of PITX1, LHX3, and POMC (ACTH precursor) expression at the RNA and IHC level, and there are fewer corticotropes in the organoids, as ascertained by POMC IHC.<br /> The NFKB2 deficient organoids have normal expression of the early pituitary transcription factor HESX1, but reduced expression of PITX2, LHX3 and POMC. Because there is no immune component in the organoid, this shows that NFKB2 mutations can affect corticotrope differentiation to produce POMC. RNA sequencing analysis of the organoids reveals potential downstream targets of NFKB2 action, including a potential effect on epithelial to mesenchymal like transition and selected pituitary and hypothalamic transcription factors and signaling pathways.

      It is important to note that all NFKB2 patients are heterozygous for what appear to be dominant negative mutations that affect protein cleavage and nuclear localization of processed protein as homo or heterodimers. The organoids are homozygous for this mutation.

      Weakness:

      There could be variation between individual iPSC lines that is unrelated to the genetically engineered change. The work would be strengthened by analysis of independently engineered clones or by correcting the engineered clone to wild type and demonstrating that the phenotypic effects are reversed. The authors do check for off target effects of the guide RNA at predicted sites using WGS.

    1. Reviewer #2 (Public review):

      Summary:

      The primary goal of this study was to identify the transport pathway that is responsible for the release of dietary citrate from enterocytes into blood across the basolateral membrane.

      Strengths:

      The transport pathway responsible for the entry of dietary citrate into enterocytes was already known, but the transporter responsible for the second step remained unidentified. The studies presented in this manuscript identify SLC35G1 as the most likely transporter that mediates the release of absorbed citrate from intestinal cells into the serosal side. This fills an important gap in our current knowledge on the transcellular absorption of dietary citrate. The exclusive localization of the transporter in the basolateral membrane of human intestinal cells and the human intestinal cell line Caco-2 and the inhibition of the transporter function by chloride support this conclusion.

      Weaknesses:

      (i) The substrate specificity experiments have been done with relatively low concentrations of potential competing substrates, considering the relatively low affinity of the transporter for citrate. Given that NaDC1 brings in not only citrate as a divalent anion and also other divalent anions such as succinate, it is possible that SLC35G1 is responsible for the release of not only citrate but also other dicarboxylates. However the substrate specificity studies show that the dicarboxylates tested did not compete with citrate, meaning that SLC35G1 is selective for the citrate (2-), but this conclusion might be flawed because of the low concentration of the competing substrates used in the experiment. Furthermore, the apical NaDC1 is not selective for citrate; in fact, it transports citrate with a much lower affinity than it transports dicarboxylates such as succinate. If what the authors suggest that SLC35G1 is selective for citrate is correct, there must be another transporter for the efflux of dicarboxylates. The authors should have performed a dose-response experiment for the dicarboxylates tested as potential substrates before making the conclusion that SLC35G1 is selective for citrate.

      (ii) The authors have used MDCK cells for assessment of the transcellular transfer of citrate via SLC35G1, but it is not clear whether this cell line expresses NaDC1 in the apical membrane as the enterocytes do. Even though the authors expressed SLC35G1 ectopically in MDCK cells and showed that the transporter localizes to the basolateral membrane, the question as to how citrate actually enters the apical membrane for SLC35G1 in the other membrane to work remains unanswered.

      (iii) The role of chloride in the efflux of citrate remains not evaluated in detail. Similarly, the potential role of membrane potential in the transport function of SLC35G1 remains unknown. Since the SLC35G1-mediated uptake appears to be similar in the presence and absence of potassium, the authors argue that membrane potential has no role in the transport process. Since it is proposed that the divalent citrate is the substrate for the transporter, it is difficult to reconcile with the conclusion that the membrane potential has no impact on the transport process, especially given the fact that no other exchangeable anion has been shown or suggested. Even if chloride is the potential exchangeable anion, it still begs the question as to the stoichiometry of citrate:chloride if membrane potential plays no role. Obviously, additional work is needed to figure out the actual transport mechanism for SLC35G1.

    1. Reviewer #2 (Public Review):

      Summary:

      Galanti et al investigate genetic variation in plant pest resistance using non-target reads from whole-genome sequencing of 207 field lines spontaneously colonized by aphids and mildew. They calculate significant differences in pest DNA load between populations and lines, with heritability and correlation with climate and glucosinolate content. By genome-wide association analyses they identify known defence genes and novel regions potentially associated with pest load variation. Additionally, they suggest that differential methylation at transposons and some genes are involved in responses to pathogen pressure. The authors present in this study the potential of leveraging non-target sequencing reads to estimate plant biotic interactions, in general for GWAS, and provide insights into the defence mechanisms of Thlaspi arvense.

      Strengths:

      The authors ask an interesting and important question. Overall, I found the manuscript very well-written, with a very concrete and clear question, a well-structured experimental design, and clear differences from previous work. Their important results could potentially have implications and utility for many systems in phenotype-genotype prediction. In particular, I think the use of unmapped reads for GWAS is intriguing.

      Comments on revised version:

      The revisions to the manuscript have significantly enhanced its clarity and scientific rigor. Methodological clarifications, especially regarding the normalization of read counts, now provide a stronger foundation for the presented results. Statistical enhancements, including more robust methods for controlling population structure and refined GWAS approaches, have solidified the reliability of the findings, effectively linking genetic variants and epigenetic modifications to pest loads. The discussion section has been improved to offer a more cautious interpretation of the correlations between transposable element (TE) methylation and pathogen load, emphasizing the associative nature of these findings. Additionally, increased transparency in data handling, particularly the treatment of ambiguous reads, has significantly reduced potential biases. These improvements have made the manuscript better suited to the readership, providing clearer insights into the genomic and epigenetic underpinnings of plant pest resistance.

    1. Reviewer #3 (Public review):

      Summary:

      After the previous identification that the Streptococcus agalactiae MprF enzyme can synthesize also lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), besides the already known lysyl-phosphatidylglycerol (Lys-PG), the authors aim for the current manuscript was to investigate the molecular determinants of MprF lipid substrate specificity, for which MprF from a variety of bacterial species were used. This then led to the coincidental discovery of a novel lipid species.

      The manuscript is well constructed and easy to follow, especially taking into account the multidisciplinary aspect of it (computational machine learning combined with lipid biology). The Restricted Boltzmann machines (RBM) approach enables the successful, although not perfect, classification and categorization of MprF activity. The computational approach is validated by lab experiments in which LC-MS analysis reveals the specific activity of the lipid synthesizing enzymes. In a few cases lipid synthesis activity is completely absent. Due to the lack of protein expression data, it is unclear if this is caused by enzyme inactivity or the overall absence of enzyme.

      Overall, the authors largely achieved their goals, as the applied RBM approach led to specific sequence determinants in MprF enzymes that could categorize the specificity of these enzymes. The experimental data could largely confirm this categorization, although a stronger connection between synthesized lipids and enzyme activity would have further strengthened the observations.

      The work now focuses only on MprF enzymes, but could in theory be expanded to other categories of lipid synthesizing enzymes. In other words, the RBM approach could have an impact on the lipid synthesis field, if it would be a tool that is easy applicable. Moreover, the lipids synthesized by MprF (Lys-PG, but also other cationic lipids) play an important role in the bacterial resistance against certain antibiotics.

    1. Reviewer #2 (Public review):

      Summary:

      We have known for some time that neural progenitors in the cerebral cortex switch their output from cortical neurons to glia at late embryonic stages, however little is known about how this switch is regulated at the molecular level. Bose et al present a convincing set of findings, demonstrating that the transcription factor Foxg1 plays a key role in this process, mediated through FGF signalling. Foxg1 cell-autonomously inhibits gliogenesis in progenitor cells (thereby promoting neuronal identity), and lower Foxg1 expression in postnatal neurons leads to increased expression of FGF ligand, promoting glial development from nearby progenitors.

      Strengths:

      The study is very well designed, having a systematic, thorough, and logical approach. The data is convincing. The authors make full use of a range of existing transgenic strains, published 'omics data, and elegant genetic approaches such as MADM. This combination of approaches is particularly rigorous, lending significant weight to the study. The manuscript is well-written, clear, and easy to follow.

      Weaknesses:

      It wasn't clear to me why the authors chose postnatal day 14 to examine the effects of Foxg1 deletion at E15 - this is a long time window, giving time for indirect consequences of Foxg1 deletion to influence development and thereby potentially complicating the interpretation of findings. For example, the authors show that there is no increased proliferation of astrocytes or death of neurons lacking Foxg1 shortly after cre-mediated deletion, but it remains formally possible (if perhaps unlikely) that these processes could be affected later during the time window. The rationale underlying the choice of this time point should be explained.

      I don't agree with the statement in the very last sentence of the results section that "neurogenesis is not possible in the absence of [Foxg1]" as there are multiple reports in the literature demonstrating the presence of neurons in Foxg1-/- mice (eg: Xuan et al., 1995; Hanashima et al., 2002, Martynoga et al., 2005, Muzio and Mallamaci 2005). Perhaps the statement refers specifically to late-born cortical neurons. This point also arises in the discussion section.

      Impact

      This manuscript identifies a previously unknown role for Foxg1 in forebrain development and a mechanism underlying the neurogenic-to-gliogenic switch that occurs at late embryonic stages of cortex development. These findings will stimulate further research to uncover more details of how this important switch is controlled and may provide useful insight into some of the symptoms experienced by children with FOXG1 Syndrome.

    1. Reviewer #2 (Public review):

      Summary:

      Cell cycle duration and cell fate choice are critical to understanding the cellular plasticity of neoblasts in planarians. In this study, Tamar et al. integrated experimental and computational approaches to simulate a model for neoblast behaviors during colony expansion.

      Strengths:

      The finding that "arresting differentiation into specific lineages disrupts neoblast proliferative capacities without inducing compensatory expression of other lineages" is particularly intriguing. This concept could inspire further studies on pluripotent stem cells and their application for regenerative biology.

      Weaknesses:

      However, the absence of a cell-cell feedback mechanism during colony growth and the likelihood of the difference needs to be clarified. Is there any difference in interpreting the results if this mechanism is considered? More explanation and discussion should be included to distinguish the stages controlled by the one-step model from those discussed in this study. Although hnf-4 and foxF have been silenced together to validate the model, a deeper understanding of the tgs-1+ cell type and the non-significant reduction of tgs-1+ neoblasts in zfp-1 RNAi colonies is necessary, considering a high neural lineage frequency.

    1. Reviewer #2 (Public review):

      This paper examines how structural plasticity in neural circuits, particularly in dopaminergic systems, is regulated by Drosophila neurotrophin-2 (DNT-2) and its receptors, Toll-6 and Kek-6. The authors show that these molecules are critical for modulating circuit structure and dopaminergic neuron survival, synaptogenesis, and connectivity. They show that loss of DNT-2 or Toll-6 function leads to loss of dopaminergic neurons, dendritic arborization, and synaptic impairment, whereas overexpression of DNT-2 increases dendritic complexity and synaptogenesis. In addition, DNT-2 and Toll-6 modulate dopamine-dependent behaviors, including locomotion and long-term memory, suggesting a link between DNT-2 signaling, structural plasticity, and behavior.

      A major strength of this study is the impressive cellular resolution achieved. By focusing on specific dopaminergic neurons, such as the PAM and PPL1 clusters, and using a range of molecular markers, the authors were able to clearly visualize intricate details of synapse formation, dendritic complexity, and axonal targeting within defined circuits. Given the critical role of dopaminergic pathways in learning and memory, this approach provides a good opportunity to explore the role of DNT-2, Toll-6, and Kek-6 in experience-dependent structural plasticity. However, despite the promise in the abstract and introduction of the paper, the study falls short of establishing a direct causal link between neurotrophin signaling and experience-induced plasticity.

      Simply put, this study does not provide strong evidence that experience-induced structural plasticity requires DNT-2 signaling. To support this idea, it would be necessary to observe experience-induced structural changes and demonstrate that downregulation of DNT-2 signaling prevents these changes. The closest attempt to address this in this study was the artificial activation of DNT-2 neurons using TrpA1, which resulted in overgrowth of axonal arbors and an increase in synaptic sites in both DNT-2 and PAM neurons. However, this activation method is quite artificial, and the authors did not test whether the observed structural changes were dependent on DNT-2 signaling. Although they also showed that overexpression of DNT-2FL in DNT-2 neurons promotes synaptogenesis, this phenotype was not fully consistent with the TrpA1 activation results (Figures 5C and D).

      In conclusion, this study demonstrates that DNT-2 and its receptors play a role in regulating the structure of dopaminergic circuits in the adult fly brain. However, it does not provide convincing evidence for a causal link between DNT-2 signaling and experience-dependent structural plasticity within these circuits.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript, "Mitochondrial calcium modulates odor-mediated behavioural plasticity in C. elegans", Lee et al. aim to link a mitochondrial calcium transporter to higher-order neuronal functions that mediate memory and aversive learning behaviours. The authors characterise the role of the mitochondrial calcium uniporter, and a specific subunit of this complex, MCU-1, within a single chemosensory neuron (AWCOFF) during aversive odor learning in the nematode. By genetically manipulating mcu-1 as well as using pharmacological activators and blockers of MCU activity, the study presents compelling evidence that the activity of this individual mitochondrial ion transporter in AWCOFF is sufficient to drive animal behaviour through aversive memory formation. The authors show that perturbations to mcu-1 and MCU activity prevent aversive learning to several chemical odors associated with food absence. The authors propose a model, experimentally validated at several steps, whereby an increase in MCU activity during odor conditioning stimulates mitochondrial calcium influx and an increase in mitochondrial reactive oxygen species (mtROS) production, triggering the release of the neuropeptide NLP-1 from AWC, all of which are required to mediate future avoidance behaviour of the chemical odor.

      Strengths:

      Overall, the authors provided robust evidence that mitochondrial function, mediated through MCU activity, contributes to behavioural plasticity. They also demonstrated that ectopic MCU activation or mtROS during odor exposure could accelerate learning. This is quite profound, as it highlights the importance of mitochondrial function in complex neuronal processes beyond their general roles in the development and maintenance of neurons through energy homeostasis and biosynthesis, amongst their other cell-non-specific roles.

      Weaknesses:

      While the manuscript is generally robust, there are some concerns that should be addressed to improve the strength of the proposed model:

      (1) Throughout the manuscript, it is implied that MCU activation caused by odor conditioning changes mitochondrial calcium levels. However, there is no direct experimental evidence of this. For example, the authors write on p.10 "This shows that H2O2 production occurs downstream of MCU activation and calcium influx into the mitochondria", and on p. 11, the statement that prolonged exposure to odors causes calcium influx. Because this is a key element of the proposed model, experimental evidence would be required to support it.

      (2) Some controls missing, e.g. a heat-shock-only control in WT and mcu-1 (non-transgenic) background in Figure 1h is required to ensure the heat-shock stress does not interfere with odor learning.

      (3) Lee et al propose that mcu-1 is required at the adult stage to accomplish odor learning because inducing mcu-1 expression at larval stages did not rescue the phenotype of mcu-1 mutants during adulthood. However, the requirement of MCU for odor learning was narrowed down to a 15' window at the end of odor conditioning (Figure 5c). Is it possible that MCU-1 protein levels decline after larval induction so that MCU-1 is no longer present during adulthood when odor conditioning is performed?

      (4) There is a limited learning effect observable after 30 minutes, and a very pronounced effect in all animals after 90 minutes. The authors very carefully dissect the learning mechanism at 60 minutes of exposure and distinguish processes that are relevant at 60 minutes from those important at 30 minutes. Some explanation or speculation as to why the processes crucial at the 60-minute mark are redundant at 90 minutes of exposure would be important.

      (5) Given the presumably ubiquitous function of mcu-1/MCU in mitochondrial calcium homeostasis, it is remarkable that its perturbation impacts only a very specific neuronal process in AWC at a very specific time. The authors should elaborate on this surprising aspect of their discovery in the discussion.

      (6) Associated with the above comment, it remains possible that mcu-1 is required in coelomocytes for their ability to absorb NLP-1::Venus (Figure 3B), and the AWC-specific role of mcu-1 for this phenotype should be determined.

    1. Reviewer #2 (Public review):

      In this study, the authors aim to investigate habituation, the phenomenon of increasing reduction in activity following repeated stimuli, in the context of its information-theoretic advantage. To this end, they consider a highly simplified three-species reaction network where habituation is encoded by a slow memory variable that suppresses the receptor and therefore the readout activity. Using analytical and numerical methods, they show that in their model the information gain, the difference between the mutual information between the signal and readout after and before habituation, is maximal for intermediate habituation strength. Furthermore, they demonstrate that the Pareto front corresponds to an optimization strategy that maximizes the mutual information between signal and readout in the steady state, minimizes some form of dissipation, and also exhibits similar intermediate habituation strength. Finally, they briefly compare predictions of their model to whole-brain recordings of zebrafish larvae under visual stimulation.

      The author's simplified model might serve as a solid starting point for understanding habituation in different biological contexts as the model is simple enough to allow for some analytic understanding but at the same time exhibits all basic properties of habituation in sensory systems. Furthermore, the author's finding of maximal information gain for intermediate habituation strength via an optimization principle is, in general, interesting. However, the following points remain unclear or are weakly explained:

      (1) Is it unclear what the meaning of the finding of maximal information gain for intermediate habituation strength is for biological systems? Why is information gain as defined in the paper a relevant quantity for an organism/cell? For instance, why is a system with low mutual information after the first stimulus and intermediate mutual information after habituation better than one with consistently intermediate mutual information? Or, in other words, couldn't the system try to maximize the mutual information acquired over the whole time series, e.g., the time series mutual information between the stimulus and readout?

      (2) The model is very similar to (or a simplification of previous models) for adaptation in living systems, e.g., for adaptation in chemotaxis via activity-dependent methylation and demethylation. This should be made clearer.

      (3) It remains unclear why this optimization principle is the most relevant one. While it makes sense to maximize the mutual information between stimulus and readout, there are various choices for what kind of dissipation is minimized. Why was \delta Q_R chosen and not, for instance, \dot{\Sigma}_int or the sum of both? How would the results change in that case? And how different are the results if the mutual information is not calculated for the strong stimulation input statistics but for the background one?

      (4) The comparison to the experimental data is not too strong of an argument in favor of the model. Is the agreement between the model and the experimental data surprising? What other behavior in the PCA space could one have expected in the data? Shouldn't the 1st PC mostly reflect the "features", by construction, and other variability should be due to progressively reduced activity levels?

    1. Reviewer #2 (Public review):

      Summary:

      By measuring intracellular changes in membrane voltage from a single neuron of the medulla the authors describe a method for determining the balance of excitatory and inhibitory synaptic drive onto a single neuron within this important brain region.

      Strengths:

      This approach could be valuable in describing the microcircuits that generate rhythms within this respiratory control centre. This method could more generally be used to enable microcircuits to be studied without the need for time-consuming anatomical tracing or other more involved electrophysiological techniques.

      Weaknesses:

      This approach involves assuming the reversal potential that is associated with the different permeant ions that underlie the excitation and inhibition as well as the application of Ohms law to estimate the contribution of excitation and inhibitory conductance. My first concern is that this approach relies on a linear I-V relationship between the measured voltage and the estimated reversal potential. However, open rectification is a feature of any I-V relationship generated by asymmetric distributions of ions (see the GHK current equation) and will therefore be a particular issue for the inhibition resulting from asymmetrical Cl- ion gradients across GABA-A receptors. The mixed cation conductance that underlies most synaptic excitation will also generate a non-linear I-V relationship due to the inward rectification associated with the polyamine block of AMPA receptors. Could the authors please speculate what impact these non-linearities could have on results obtained using their approach?

      This approach has similarities to earlier studies undertaken in the visual cortex that estimated the excitatory and inhibitory synaptic conductance changes that contributed to membrane voltage changes during receptive field stimulation. However, these approaches also involved the recording of transmembrane current changes during visual stimulation that were undertaken in voltage-clamp at various command voltages to estimate the underlying conductance changes. Molkov et al have attempted to essentially deconvolve the underlying conductance changes without this information and I am concerned that this simply may not be possible. The current balance equation (1) cited in this study is based on the parallel conductance model developed by Hodgkin & Huxley. However, one key element of the HH equations is the inclusion of an estimate of the capacitive current generated due to the change in voltage across the membrane capacitance. I would always consider this to be the most important motivation for the development of the voltage-clamp technique in the 1930's. Indeed, without subtraction of the membrane capacitance, it is not possible to isolate the transmembrane current in the way that previous studies have done. In the current study, I feel it is important that the voltage change due to capacitive currents is taken into consideration in some way before the contribution of the underlying conductance changes are inferred.

      Studies using acute slicing preparations to examine circuit effects have often been limited to the study of small microcircuits - especially feedforward and feedback interneuron circuits. It is widely accepted that any information gained from this approach will always be compromised by the absence of patterned afferent input from outside the brain region being studied. In this study, descending control from the Pons and the neocortex will not be contributing much to the synaptic drive and ascending information from respiratory muscles will also be absent completely. This may not have been such a major concern if this study was limited to demonstrating the feasibility of a methodological approach. However, this limitation does need to be considered when using an approach of this type to speculate on the prevalence of specific circuit motifs within the medulla (Figure 4). Therefore, I would argue that some discussion of this limitation should be included in this manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by an ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized.

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper are potentially important for us to understand how the immune cells respond differently to different severity levels of injury.

    1. Reviewer #2 (Public review):

      In the manuscript by Kim et al titled, "Characterizing the Spatial Distribution of Dendritic RNA at Single Molecule Resolution," the authors perform multiplex single-molecule FISH in cultured neurons, along with analysis and modeling, to show the spatial features, including differing mRNA densities between soma and dendrites, dendritic length-related distributions and clustering, of multiple mRNAs in dendrites. Although the clustering analyses and modeling are intriguing and offer previously underappreciated spatial association within and across mRNA molecules, the data is difficult to interpret and the conclusions lack novelty in their current form. There is a need for a stronger rationale as to why the methodology employed in the manuscript is better suited to characterize the clustering of mRNA in dendrites compared to previously published works and how such clustering or declustering can affect dendritic/neuronal function.

      (1) Validation of mRNA labeling, detection, and quantification is necessary. Single-molecule fluorescence in situ hybridization (smFISH) is the gold standard to detect RNA inside cells. The method utilizes multiple fluorescent probes (~48) designed to hybridize along a single RNA, resulting in a population of diffraction-limited fluorescent puncta with varying intensities. A histogram of cytoplasmic smFISH puncta intensities should reveal a normally distributed population with a single major peak, where the upper and lower tails indicate the maximum probe binding and the lower detection limit, respectively. Once single molecule detection (and limits) have been established, smFISH should be performed for each gene individually to obtain ground truth of detection under identical experimentally-defined conditions using the same fluorophore. Total RNA counts from different probe combinations (Figure S1A) or total mRNA density (Figure 2A) is not sufficient to inform individual gene labeling efficiency or detection. It is difficult to interpret whether observed variabilities across different probe combinations are of significance. For example, the mRNA densities of Adap2 and Dtx3L in soma seem to vary even after normalization with the pixel area (Figure 2A).

      Absolute counts and normalized counts for each gene detected should be included in the results or in supplementary data/table to provide the reader with a reference point for evaluation.

      As a control, it is recommended to perform smFISH against beta-actin or aCaMKII, which are the two most abundant mRNA in dendrites, and serve as internal validation that the technique, detection, and quantification are consistent with previously published works.

      (2) The rationale for single dendrite selection is unclear. To suggest that dendrite length, as a feature of dendritic morphology, may affect mRNA localization in dendrites, the authors manually selected segments of dendrites that have no branching or overlap, 'biased for shorter dendrites,' resulting in a subset of dendritic segments that changes mRNA distribution in raw distances (Figure S3A) into the normalized distance (Figure 4A). As a result, the distribution appears to convert from a monotonic- or exponential-decay to a more even distribution of mRNA (plateau). The rationale for this normalization is unclear, as manual curation of dendritic segments can incorporate experimenter bias. Moreover, the inclusion of short dendritic segments can stretch out their mRNA distributions following distance normalization which can give the appearance of an even distribution of mRNAs when aggregated.

      Next, the authors use pairwise Jensen-Shannon distance cluster analysis to identify 4 different patterns of clustering among mRNAs. Although the patterns are quite intriguing, the distributions of mRNA clusters were i) difficult to interpret and ii) compared to Fonkeu et al (2019) protein distribution is not a sufficient explanation for the observed clustering. For example, the clustering patterns (C1-4) are quite striking and even if the authors' analyses were an improvement in identifying mRNA clustering in dendrites, the authors need to provide better justification or modeling on what role such clustering can play on dendritic function or cellular physiology. This is important and necessary as the authors are suggesting that their analysis is different from mRNA distributions previously observed or modeled by Buxbaum et al (2014) and Fonkeu et al (2019), respectively.<br /> Of note, the identity-independent and dendritic length-dependent aspect of spatial distributions of mRNAs is striking (Figure S3E-F, Figure 4), and this length-related feature is one of the major take-home points in the first part of the manuscript. However, it is evident that some mRNAs (e.g. Adap2 and Dtx3L) or probe combinations (e.g. Colec12-Adap2-Nsmf) disproportionally make up the mRNA distribution clusters (Figure 4D and Figure S3F). It seems plausible that the copy numbers of mRNAs can differentially affect clusters' distribution patterns. Appropriate statistical tests among the cluster groups, therefore, will help to strengthen the interpretation of the results provided in the supplementary figures (Figures S3E and S3F).

      (3) It is not clear how Figure 5 GradCAM analysis helps the point that the authors put forth in previous sections or forthcoming sections. Unless this section and figure are more effectively linked to the general theme of the paper - the morphological features as a determinant of mRNA distribution or clustering of mRNA molecules, it may be included in the supplementary figure section.

      (4) Clustering of mRNA remains an exception rather than the rule. From their high-resolution triple smFISH data, the authors make some interesting findings regarding colocalization in dendrites. Among the six genes tested, the authors found higher incidents of colocalization between pair-wise genes (up to 23%) than previously reported (5-10%). Also, they report higher levels of colocalization within the same gene (17-23%) than previously reported (5-10%). First, to better evaluate this increased colocalization efficiency overall, the histograms of smFISH puncta intensity are necessary (as stated in 1) to determine whether a second peak is present in the population. Second, even though 23% is higher than previously reported, it remains that 77% do not colocalize and does not suggest that colocalization is the rule but remains the exception. Given the results in Table 1, it is likely that the increased colocalization could be a gene-specific effect and not transcriptome-wide as the majority of values between genes are below 10%, consistent with previous findings. Third, labeling of a control gene (i.e. b-actin or aCaMKII) would provide higher confidence that the detection and colocalization comparisons are consistent with previous findings.

      It is recommended to refrain from concluding that mRNA is 'co-transported' from smFISH results. Typically co-transport is best identified through observations in live cells where two fluorescent particles of different colors are moving together. Although stationary particles positioned in close proximity to one another could potentially be co-transported, there has been very little evidence to support this.

      The use of Ripley's K-function is an interesting way to look at clustering neighborhoods within a single or pairwise sets of genes. Previous studies from the Singer group have looked at mRNA clustering and have observed that mRNA in living cells tends to cluster within a 6-micron range for b-actin and for both b-actin and Arc after local stimulation. What was intriguing in the results in Figure 7 was that there was an exclusion zone 2-4 microns away from the area of colocalization that may suggest that mRNA are able to avoid over-clustering and maintain an even distribution throughout the dendrite--perhaps with a goal of not devoting too many resources (mRNA) to a single dendritic area. Modeling how mRNAs avoid over-clustering to a specific 2-micron segment of dendrites could provide an explanation on how dendrites can respond to multiple or simultaneous synaptic activity at different sites along the same dendrite.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present an intriguing study utilizing datasets from spinal cord injury (SCI) research to identify potential microglial genes involved in SCI-induced neuronal damage. They identify that inhibiting TREM2 and enhancing the TGF-b signal pathway can inhibit reactive microglia-mediated neuroinflammation. Microglia transplantation using iPSC-derived microglia could also be beneficial for SCI recovery.

      Strengths:

      This research aims to identify potential genes and signaling pathways involved in microglia-mediated inflammation in spinal cord injury (SCI) models. Meanwhile, analyzing transplanted microglia gene expression provides an extra layer of potential in SCI therapy. The approach represents a good data mining strategy for identifying potential targets to combat neurological diseases.

      Weaknesses:

      Microglial gene expression patterns may vary significantly between these models. Without proper normalization or justification, combining these datasets to draw conclusions is problematic. Moreover, other factors also need to be considered, like the gender of the microglia source. Are there any gender differences? How were the iPSC-derived microglia generated? Different protocols may affect microglia gene expression.

      While the concept is interesting, the data presented in this study appears preliminary. Without further experiments to support their findings, the conclusions are not convincing.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Barzo and colleagues aim to establish an appraisal for the development of basal electrophysiology of human layer 2/3 pyramidal cells across life and compare their morphological features at the same ages.

      Strengths:

      The authors have generated recordings from an impressive array of patient samples, allowing them to directly compare the same electrophysiological features as a function of age and other biological features. These data are extremely robust and well organised.

      Weaknesses:

      The use of spine density and shape characteristics is performed from an extremely limited sample (2 individuals). How reflective these data are of the population is not possible to interpret. Furthermore, these data assume that spines fall into discrete types - which is an increasingly controversial assumption.

      Many data are shown according to somewhat arbitrary age ranges. It would have been more informative to plot by absolute age, and then perform more rigourous statistics to test age-dependent effects.

      Overall, the authors achieve their aims by assessing the physiological and morphological properties of human L2/3 pyramidal neurons across life. Their findings have extremely important ramifications for our understanding of human life and implications for how different neuronal properties may influence neurological conditions.

    1. Reviewer #2 (Public review):

      Summary:

      This is a clear and systematic study of trial history influences on the performance of monkeys in a target selection paradigm. The primary contribution of the paper is to add a twist in which the target information is revealed after, rather than before, the cue to make a foveating eye movement. This twist results in a kind of countermanding of an earlier "uninformed" saccade plan by a new one occurring right after the visual information is provided. As with countermanding tasks in general, time now plays a key factor in the success of this task, and it is time that allows the authors to quantitatively assess the parametric influences of things like previous target location, previous target identity, and previous correctness rate on choice performance. The results are logical and consistent with the prior literature, but the authors also highlight novelties in the interpretation of prior-trial effects that they argue are enabled by the use of their paradigm.

      Strengths:

      Careful analysis of a multitude of variables influencing behavior

      Weaknesses:

      Results appear largely confirmatory.

    1. Reviewer #2 (Public review):

      Summary:

      The work presented in the manuscript by Tran et al deals with bacterial evolution in the presence of bacteriophage. Here, the authors have taken three methicillin-resistant S. aureus strains that are also resistant to beta-lactams. Eventually, upon being exposed to phage, these strains develop beta-lactam sensitivity. Besides this, the strains also show other changes in their phenotype such as reduced binding to fibrinogen and hemolysis.

      Strengths:

      The experiments carried out are convincing to suggest such in vitro development of sensitivity to the antibiotics. Authors were also able to "evolve" phage in a similar fashion thus showing enhanced virulence against the bacterium. In the end, authors carry out DNA sequencing of both evolved bacteria and phage and show mutations occurring in various genes. Overall, the experiments that have been carried out are convincing.

      Weaknesses:

      Although more experiments are not needed, additional experiments could add more information. For example, the phage gene showing the HTH motif could be reintroduced in the bacterial genome and such a strain can then be assayed with wildtype phage infection to see enhanced virulence as suggested. At least one such experiment proves the discoveries regarding the identification of mutations and their outcome. Secondly, I also feel that authors looked for beta-lactam sensitivity and they found it. I am sure that if they look for rifampicin resistance in these strains, they will find that too. In this case, I cannot say that the evolution was directed to beta-lactam sensitivity; this is perhaps just one trait that was observed. This is the only weakness I find in the work. Nevertheless, I find the experiments convincing enough; more experiments only add value to the work.

    1. Reviewer #2 (Public review):

      The authors tested a dietary intervention focused on improving meal regularity. Participants first utilized a smartphone application to track participants' meal frequencies, participants were then asked to restrict their meal intake to times when they most often eat to enhance meal regularity for six weeks, resulting in significant weight loss despite supposedly no changes in caloric intake.

      While the concept is appealing, and the use of a smartphone app in participants' typical everyday environment to regularize food intake is interesting, significant weaknesses severely limit the value of the study due to a lack of rigor, such as the reliance on self-reported food intake which has been discredited in the field. The study's major conclusions are insufficiently supported, particularly that weight loss occurred even though food intake supposedly is not altered. This intervention may merely represent another restrictive diet among countless others that all seem to work for a few weeks to months resulting in a few pounds of weight loss

      (1) Unreliable method of caloric intake

      The trial's reliance on self-reported caloric intake is problematic, as participants tend to underreport intake. For example, as cited in the revised manuscript, the NEJM paper (DOI: 10.1056/NEJM199212313272701) reported that some participants underreported caloric intake by approximately 50%, rendering such data unreliable and hence misleading. More rigorous methods for assessing food intake should have been utilized. Further, the control group was not asked to restrict their diet in any way, and hence, to do that in the treatment group may be sufficient to reduce caloric intake and weight loss. Merely acknowledging the unreliability of self-reported caloric intake is insufficient, as it still leaves the reader with the impression that there is no change in food intake when, in reality, we actually have no idea if food intake was altered. A more robust approach to assessing food intake is imperative. Even if a decrease in caloric intake is observed through rigorous measurement, as I am convinced that a more rigorous study would unveil testing this paradigm, this intervention may merely represent another restrictive diet among countless others that show that one may lose weight by going on a diet. Seemingly, any restrictive diet works for a few months.

      (2) Lack of objective data regarding circadian rhythm

      The assessment of circadian rhythm using the MCTQ, a self-reported measure of chronotype, is unreliable, and it is unclear why more objective methods like actigraphy was not used.

      In the revised version, the authors emphasize these limitations in the manuscript. The study's major conclusions are insufficiently supported, in particular, that weight loss occurred even though food intake supposedly is not altered and that circadian rhythm was improved.

    1. Reviewer #2 (Public review):

      Chambers et al. (2024) present a systematic and unbiased approach to explore the evolutionary potential of the kinase domain of the human antiviral protein kinase R (PKR) to evade inhibition by a poxviral antagonist while maintaining one of its essential functions.

      The authors generated a library of 426 single-nucleotide polymorphism (SNP)-accessible non-synonymous variants of PKR kinase domain and used a yeast-based heterologous virus-host system to assess PKR variants' ability to escape antagonism by the vaccinia virus pseudo-substrate inhibitor K3. The study identified determinant sites in the PKR kinase domain that harbor K3-resistant variants, as well as sites where variation leads to PKR loss of function. The authors found that multiple K3-resistant variants are readily available throughout the domain interface and are enriched at sites under positive selection. They further found some evidence of PKR resilience to viral antagonist diversification. These findings highlight the remarkable adaptability of PKR in response to viral antagonism by mimicry.

      Significance of the findings: The findings are important with implications to various fields, including evolutionary biology, virus-host interfaces, genetic conflicts, antiviral immunity.

      Strength of the evidence: Convincing methodology using state-of-the-art mutational scanning approach in an elegant and simple setup to address important challenges in virus-host molecular conflicts and protein adaptations.

      Strengths

      Systematic and Unbiased Approach: The study's comprehensive approach to generating and characterizing a large library of PKR variants provides valuable insights into the evolutionary landscape of PKR kinase domain. By focusing on SNP-accessible variants, the authors ensure the relevance of their findings to naturally occurring mutations.<br /> Identification of Key Sites: The identification of specific sites in the PKR kinase domain that confer resistance or susceptibility to a poxvirus pseudosubstrate inhibition is a significant contribution.<br /> Evolutionary Implications: The authors performed meticulous comparative analyses throughout the study between the functional variants from their mutagenesis screen ("prospective") and the evolutionarily-relevant past adaptations ("retrospective").<br /> Experimental Design: The use of a yeast-based assay to simultaneously assess PKR capacity to induce cell growth arrest and susceptibility/resistance to various VACV K3 alleles is an efficient approach. The combination of this assay with high-throughput sequencing allows for the rapid characterization of a large number of PKR variants.

      Areas of improvement

      Validation of the screen: In the revised version, the authors now provide the results of two independent experiments in a complete yeast growth assay on a handful of candidates to control the screen's results. This strengthens the direct findings from the screen. It would strengthen the study to complement this validation by another method to assess PKR functions; for example, in human PKR-KO cells, because results between yeast and human cells can differ. These limitations are now acknowledged in the revised version.<br /> Evolutionary Data: Beyond residues under positive selection, the screen allows the authors to also perform a comparative analysis with PKR residues under purifying selection. Because they are assessing one of the most conserved ancestral functions of PKR (i.e. cell translation arrest), it may also be of interest to discuss these highly conserved sites. The authors now discuss the implications for the conserved residues.<br /> Mechanistic insights and viral diversity: While the study identifies key sites and residues involved in vaccinia K3 resistance, it could benefit from further investigation into the underlying molecular mechanisms and the diversity of viral antagonists. The authors have now acknowledged these limitations in the Discussion and updated the manuscript to be more specific. These exciting research avenues will be the objectives of a next study.

      Overall Assessment

      The systematic approach, identification of key sites, and evolutionary implications are all notable strengths. While there is room for a stronger validation of the functions and further investigation into the mechanistic details and broader viral diversity, the findings are robust and already provide important advancements. The manuscript is well-written and clear, and the revised figures are informative and improved.

    1. Reviewer #2 (Public review):

      This work investigates the use of extracellular vesicles (EVs) in blood as a noninvasive 'liquid biopsy' to aid in differentiation of patients with pancreatic cancer (PDAC) from those with benign pancreatic disease and healthy controls, an important clinical question where biopsies are frequently non-diagnostic. The use of extracellular vesicles as biomarkers of disease has been gaining interest in recent history, with a variety of published methods and techniques, looking at a variety of different compositions ('the molecular cargo') of EVs particularly in cancer diagnosis (Shah R, et al, N Engl J Med 2018; 379:958-966).

      This study adds to the growing body of evidence in using EVs for earlier detection of pancreatic cancer, identifying both new and known proteins of interest. Limitations in studying EVs in general include dealing with low concentrations in circulation and identifying the most relevant molecular cargo. This study provides validation of assaying EVs using the novel EVtrap method (Extracellular Vesicles Total Recovery And Purification), which the authors show to be more efficient than current standard techniques and potentially more scalable for larger clinical studies.

      The strength of this study is in its numbers - the authors worked with a cohort of 124 cases, 93 of them which were PDAC samples, which considered large for an EV study (Jia, E et al. BMC Cancer 22, 573 (2022)). The benign disease group (n=20, between chronic pancreatitis and IPMNs) and healthy control groups (n=11) were relatively small, but the authors were not only able to identify candidate biomarkers for diagnosis that clearly stood out in the PDAC cohort, but also validate it in an independent cohort of 36 new subjects. Proteins they've identified as associated with pancreatic cancer over benign disease included PDCD6IP, SERPINA12 and RUVBL2. They were even able to identify a set of EV proteins associated with metastasis and poorer prognosis , which include the proteins PSMB4, RUVBL2 and ANKAR and CRP, RALB and CD55. Their 7-EV protein signature yielded an 89% prediction accuracy for the diagnosis of PDAC against a background of benign pancreatic diseases that is compelling and comparable to other studies in the literature (Jia, E. et al. BMC Cancer 22, 573 (2022)).

      The limitations of this study are its containment within a single institution - further studies are warranted to apply the authors' 7-EV protein PRAC panel to multiple other cases at other institutions in a larger cohort.

    1. Reviewer #2 (Public review):

      In this work, the authors uncovered the effects of DNA dilution on E. coli, including a decrease in growth rate and a significant change in proteome composition. The authors demonstrated that the decline in growth rate is due to the reduction of active ribosomes and active RNA polymerases because of the limited DNA copy numbers. They further showed that the change in the DNA-to-volume ratio leads to concentration changes in almost 60% of proteins, and these changes mainly stem from the change in the mRNA levels.

      Comments on revised version:

      The authors have satisfyingly answered all of our questions.

    1. Reviewer #2 (Public review):

      The authors have conducted a valuable comparative analysis of perturbation responses in three nonlinear kinetic models of E. coli central carbon metabolism found in the literature. They aimed to uncover commonalities and emergent properties in the perturbation responses of bacterial metabolism. They discovered that perturbations in the initial concentrations of specific metabolites, such as adenylate cofactors and pyruvate, significantly affect the maximal deviation of the responses from steady-state values. Furthermore, they explored whether the network connectivity (sparse versus dense connections) influences these perturbation responses. The manuscript is reasonably well written.

      Comments on revised version:

      The authors have addressed my concerns to a large extent. However, a few minor issues remain, as listed below:

      (1) The authors identified key metabolites affecting responses to perturbations in two ways: (i) by fixing a metabolite's value and (ii) by performing a sensitivity analysis. It would be helpful for the modeling community to understand better the differences and similarities in the obtained results. Do both methods identify substrate-level regulators? Is freezing a metabolite's dynamics dramatically changing the metabolic response (and if yes, which ones are so different in the two cases)? Does the scope of the network affect these differences and similarities?

      (2) Regarding the issues the authors encountered when performing the sensitivity analysis, they can be approached in two ways. First, the authors can check the methods for computing conserved moieties nicely explained by Sauro's group (doi:10.1093/bioinformatics/bti800) and compute them for large-scale networks (but beware of metabolites that belong to several conserved pools). Otherwise, the conserved pools of metabolites can be considered as variables in the sensitivity analysis-grouping multiple parameters is a common approach in sensitivity analysis.

    1. Reviewer #2 (Public review):

      Summary:

      The authors described cell type mapping was conducted for both WT and fracture types. Through this, unique cell populations specific to fracture conditions were identified. To determine these, the most undifferentiated cells were initially targeted using stemness-related markers and CytoTrace scoring. This led to the identification of SSPC differentiating into fibroblasts. It was observed that the fibroblast cell type significantly increased under fracture conditions, followed by subsequent increases in chondrocytes and osteoblasts.

      Strengths:

      This study presented the injury-induced fibrogenic cell (IIFC) as a characteristic cell type appearing in the bone regeneration process and proposed that the IIFC is a progenitor undergoing osteochondrogenic differentiation.

      Comments on revised version:

      The authors have thoroughly addressed the reviewer's comments and have conducted additional experiments.

    1. Reviewer #3 (Public review):

      Summary:

      Landau et al. have submitted a manuscript describing for the first time that mammalian adenylyl cyclases can serve as membrane receptors. They have also identified the respective endogenouse ligands which act via AC membrane linkers to modify and control Gs-stimulated AC activity either towards enhancement or inhibition of ACs which is family and ligand-specific. Overall, they have used classical assays such as adenylyl cyclase and cAMP accumulation assays combined with molecular cloning and mutagenesis to provide exceptionally strong biochemical evidence for the mechanism of the involved pathway regulation.

      Strengths:

      The authors have gone the whole long classical way from having a hypothesis that ACs could be receptors to a series of MS studies aimed at ligand indentification, to functional studies of how these candidate substances affect the activity of various AC families in intact cells. They have used a large array of techniques with a paper having clear conceptual story and several strong lines of evidence.

      Comments on revised version:

      In general, the authors have addressed my comments satisfactorily apart from the suggestion to use a lower ISO concentration in their assay or at least to discuss this issue, cite relevant literature etc. Pending this small amendment I would to fine to proceed.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript explores the role of Nrn1 in T cell tolerance. A previous study has demonstrated that Nrn1 is up-regulated in the Tfr fraction of Foxp3+ T regulatory cells. These authors now confirm expression of Nrn1 in iTregs as well as report here that Nrn1 is also greatly over-expressed in anergic CD4 T cells, and this is the stepping off point for this investigation.

      Most remarkably, experiments show that anergy induction is defective when T cells cannot express Nrn1. Furthermore, differentiation to a Foxp3+ iTreg phenotype is inhibited in the absence of Nrn1, and the iTregs that do develop appear functionally defective. On the other hand, the differentiation and expansion of Teff cells appears to be enhanced following deletion of Nrn1. With such defects in anergy induction as well as dysregulated Treg and Teff cell survival and function, auto reactive effector T cell activation becomes unrestrained and Nrn1-/- mice are more susceptible to severe EAE development.

      Strengths:

      The characterizations of T cell Nrn1 expression both in vitro and in vivo are comprehensive and convincing. The author's use of both Nrn1-/- T cells as well as anti-Nrn1 neutralizing Ab to achieve similar results is a strength. The in vivo functional studies of anergy development, Treg suppression, and EAE development are also well performed and strengthen the notion that Nrn1 is an important regulator of CD4 responsiveness.

      Weaknesses:

      The major weakness of this study stems from a lack of a clear molecular mechanism involving Nrn1. Previous studies of Nrn1 have suggested its role as a soluble molecule involved in intracellular communication, perhaps influencing cellular ion channel function and/or triggering downstream NFAT and mTOR activation. However, a unique receptor for Nrn1 has not been discovered and it remains unclear whether it acts in a cell-intrinsic or cell-extrinsic fashion for any particular cell type.

      Data shown here provide evidence for alterations in the electrical and metabolic state of iTreg and Teff cells when the Nrn1 gene is deleted. Nrn1-/- Tregs and Teff cells each express a unique pattern of genes associated with Neurotransmitter receptor, Metal ion transmembrane transport, Amino acid transport, and mTORC1 signaling activities, different than that seen in wild-type mice. It remains unclear how Nrn1 reinforces the membrane potential and facilitates aerobic glycolysis during and after iTreg differentiation, and yet suppresses the membrane potential and restrains aerobic glycolysis during Teff cell differentiation. Importantly, naive cells lacking Nrn1 expression show normal electrical and metabolic behaviors.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors combine the study of clinical samples of antibiotic resistant bacteria with experimental evolution and evolutionary genomics to address important questions about the propensity for reversion in two different schema: de novo resistance arising within a patient, and transmitted resistance. The authors' use of a combination of methods help to answer the question outlined in their hypothesis, that de novo resistance mechanisms appear to revert to sensitive phenotypes more readily in a drug-free environment.

      Strengths:

      This study is exceptionally well-written and organized. The authors state their hypothesis clearly, and follow it up with an impressive effort that is truly translational-they make direct use of clinical samples of bacteria, and combine that with approaches in experimental evolution and evolutionary genomics. The conclusions follow naturally from the results, and there are no irresponsible leaps made.

      Weaknesses:

      I will divide my criticism into two areas, conceptual (most of my critique), with a very small methodological question.

      (1) In the end, the authors offer findings that appear to be correct, and (again) are reported very clearly. However, this study is very surface-level in its theoretical underpinnings and construction, which is puzzling, because the field of antibiotic resistance and adaptation more broadly, is full of relevant studies and explanatory tools. Below I'll identify several areas where this manifests.

      For one, the authors do not engage with a large recent literature on reversion, reversal, and compensation. It provides much more conceptual grounding for what the authors observe, much of it compatible with the findings from this study:

      To offer two quick examples:<br /> - Avrani S, Katz S, Hershberg R. Adaptations accumulated under prolonged resource exhaustion are highly transient. MSphere. 2020 Aug 26;5(4):10-128.<br /> - Pennings, P.S., Ogbunugafor, C.B. and Hershberg, R., 2022. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs. G3, 12(9), p.jkac190.

      Examinations of the studies on adaptation and reversion offer a richer mechanistic take on what was observed. But this literature alone is less of a problem than the general offering of different takes for the results. One can turn to a different literature - from ecology - to find a different explanation that is compatible with the findings.

      De novo evolution involves the strong selection and rapid fixation of populations that are evolving largely to a relatively simple ecological milieu: their only primary function is to promote replication and survival of populations experiencing the negative fitness effects of drug pressure. Alternatively, transmitted resistant populations must deal with a multitude of selective pressures, working dynamically across time and space. In such a scenario, one would expect populations to locate places on the fitness landscape that are commensurate with survival in both drug-poor and drug-rich environments, as this is the ecological reality of the transmitted resistant bacteria. I could envision selection for "generalism" in this setting, corresponding to populations that have fixed mutations that promote resistance, but also those that ensure replication in drug-free environments. This regime might even reflect selection for "generalism" or "increased niche breadth." That is, transmitted resistance may have adopted a "jack of all trades, master of none" phenotype. The de novo resistance strains, alternatively, are selected for "generalism."

      See the following for examples (there are many):

      - Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of evolutionary biology. 2002 Mar 1;15(2):173-90.<br /> - Bell TH, Bell T. Many roads to bacterial generalism. FEMS microbiology ecology. 2021 Jan;97(1):fiaa240.

      Note that this classically ecological explanation is only one of several other literatures that offer models for the findings in this study.

      To the authors' credit, their study was about the very real-world problem of antibiotic resistance, using a system that is far less tractable than the model systems research that has generated a lot of data and theory. And sure: the study is valuable because it communicates an interesting finding using a combination of methods (impressively). But in some ways, the study almost reads as a descriptive exercise: it offers a good question (does de novo or transmitted resistance revert more readily), and tells you what they found (de novo does). However the explanatory mechanisms do not advance our understanding much. Reporting the presence of unstable and disruptive mutations in the de novo populations is hardly an explanation. That is, alternatively, data in support of a proper explanation. There is nothing magical about de novo evolution that should be selected for disruptive mutations.

      The reasons for the different sorts of mutation could have to do with the population genetic particulars of the de novo regime: large populations, strong selective pressure, relatively static fitness landscape. In such a setting, selection marches a population greedily up a peak. Alternatively, a transmitted population arises from a lineage that has observed a multitude of ecologies, across different fitness landscapes and has fixed mutations that confer survival across all of them.

      There's a literature that speaks to this:<br /> - Miller CM, Draghi JA. Range expansion can promote the evolution of plastic generalism in coarse-grained landscapes. Evolution Letters. 2024 Apr 1;8(2):322-30.<br /> - Bono LM, Draghi JA, Turner PE. Evolvability costs of niche expansion. Trends in genetics. 2020 Jan 1;36(1):14-23.

      The findings are simple enough (a testament to the strong study design and execution) that supporting population genetic simulations, or analytical descriptions (maybe not relevant) could offer insight as to what really happened here.

      (2) I recognize the challenge of working with clinical samples. It is very difficult to understand everything about them. But even having considered that, I might be missing something.

      My main question here involves the origin of the putatively transmitted strains. The authors state that " Isolates were also obtained from six patients with a putatively transmitted resistant bacteria (hereafter PT), where a daptomycin-resistant, E. faecium bacteremia was identified on their first culture."

      This seems like an awfully dubious way to identify transmitted resistance. I suppose I understand the logic (de novo evolution requires the observer to have seen the evolution happen in real-time). But this definition leaves the study wide open for an "apples to oranges" comparison that might render the other aspects questionable.

      The de novo strains are being compared to transmitted strains that may have been part of lineages that had passed between many, many patients. If this were true, then we should expect the genomic architecture of the transmitted strains to be far different. The transmitted strains might have undergone more selection in different regimes and genetic drift. Drift might have fixed mutations in transmission bottlenecks, altering the genetic architecture. In such a scenario, one might expect these populations to have a more difficult time unwinding their resistance phenotype.

      In the end, I applaud the authors on a well-done and well-written study.

    1. Reviewer #2 (Public review):

      Summary:

      Juvenile hormone (JH) is a pleiotropic terpenoid hormone in insects that mainly regulates their development and reproduction. In particular, its developmental functions are described as the "status quo" action, as its presence in the hemolymph (the insect blood) prevents metamorphosis-initiating effects of ecdysone, another important hormone in insect development, and maintains the juvenile status of insects.

      While such canonical functions of JH are known to be mediated by its intracellular receptor complex composed of Met and Tai, there have been multiple reports suggesting the presence of cell membrane receptor(s) for JH, which mediate non-genomic effects of this terpenoid hormone. In particular, the presence of receptor tyrosine kinase(s) that phosphorylate Met/Tai in response to JH and thus indirectly affect the canonical JH signaling pathway has been strongly suggested. Given the importance of JH in insect physiology and the fact that the JH signaling pathway is a major target of insect growth regulators, elucidating the identify and functions of putative JH membrane receptors is of great significance from both basic and applied perspectives.

      In the present study, the authors identified candidate receptors for such cell membrane JH receptors, CAD96CA and FGFR1, in the cotton bollworm Helicoverpa armigera.

      Strengths:

      Their in vitro analyses are conducted thoroughly using multiple methods, which overall supports their claim that these receptors can bind to JH and mediate their non-genomic effects.

      Weaknesses:

      Results of their in vivo experiments, particularly those of their loss-of-function analyses using CRISPR mutants are still preliminary, and the results rather indicate that these membrane receptors do not have any physiologically significant roles in vivo. More specifically, previous studies in lepidopteran species have clearly and repeatedly shown that precocious metamorphosis is the hallmark phenotype for all JH signaling-deficient larvae. In contrast, the present study showed that Cad96ca and Fgfr1 G0 mutants only showed slight acceleration in their pupation timing, which is not a typical phenotype one would expect from JH signaling deficiency. This is inconsistent with their working model provided in Figure 6, which indicates that these cell membrane JH receptors promote the canonical JH signaling by phosphorylating Met/Tai.

      If the authors argue that this slight acceleration of pupation is indeed a major JH signaling-deficient phenotype in Helicoverpa, they need to provide more data to support their claim by analyzing CRISPR mutants of other genes involved in JH signaling, such as Jhamt and Met. An alternative explanation is that there is functional redundancy between CAD96CA and FGFR1 in mediating phosphorylation of Met/Tai. This possibility can be tested by analyzing double knockouts of these two receptors.

      Currently, the validity of their calcium imaging analysis in Figure 5 is also questionable. When performing calcium imaging in cultured cells, it is critically important to treat all the cells at the end of each experiment with a hormone or other chemical reagents that universally induce calcium increase in each particular cell line. Without such positive control, the validity of calcium imaging data remains unknown, and readers cannot properly evaluate their results.

    1. Reviewer #2 (Public review):

      Id proteins are thought to function by binding and antagonizing basic helix-loop-helix (bHLH) transcription factors but new findings demonstrate roles for emc including in tissues where no proneural (Drosophila bHLH) genes are known to function. The authors propose a new mechanism for developmental regulation that entails restraining new/novel non-apoptotic functions of apoptotic caspases.

      Specifically, the data suggest that loss of emc leads to reduced expression of diap1 and increased apoptotic caspase activity, which does not induce apoptosis but elevates Delta expression to increase N activity and cause developmental defects. Indeed, many of the phenotypes of emc mutant clones can be rescued by a chromosomal deficiency that reduces caspase activation or by mutations in the initiator caspase Dronc. A related manuscript that shows that loss of emc results in increased da, linked previously to diap1 expression, provides supporting data. There is increasing appreciation that apoptotic caspases have non-apoptotic roles. This study adds to the emerging field and should be of interest to the readers.

      The revised manuscript addresses my concerns from the first round of review.

    1. Reviewer #2 (Public review):

      Summary:

      This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      The manuscript is well-written, and the methods are clearly described and appropriate. Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes. The results are interesting and novel.

      Weaknesses:

      Analyses were conducted for task-based data rather than resting-state data. The authors report behavioral differences between groups and include behavioral performance as a nuisance regressor in their analysis. This is a good approach to account for behavioral task differences, given the data. Nevertheless, additional work using resting-state functional connectivity could remove the potential confound fully.

      The authors have addressed my concerns well.

    1. Reviewer #2 (Public review):

      Summary:

      In the present manuscript So et al describe an optimized method for nuclei isolation and single nucleus RNA sequencing (snRNA-Seq), which they use to characterize cell populations in lean and obese murine adipose tissues.

      Strengths:

      The detailed description of the protocol for single-nuclei isolation incorporating VRC may be useful to researchers studying adipose tissues, which contain high levels of RNAses.

      While the majority of the findings largely confirm previous published adipose data sets, the authors present a detailed description of a mature adipocyte sub-cluster that appears to represent stressed or dying adipocytes present in obesity, and which is better characterized using the described protocol.

      Weaknesses:

      The use of VRC to enhance snRNA-seq has been previously published in other tissues, somewhat diminishing the novelty of this protocol.

      The snRNA-seq data sets presented in this manuscript, when compared with numerous previously published single-cell analysis of adipose tissue, represent an incremental contribution. The nuclei-isolation protocol may represent an improvement in transcriptional analysis for mature adipocytes, however other stromal populations may be better sequenced using single intact-cell cytoplasmic RNA-Seq.

    1. Reviewer #2 (Public review):

      Sadanandan et al describe their studies in mice of HDAC and Polycomb function in the context of vascular endothelial cell (EC) gene expression relevant to the blood-brain barrier, (BBB). This topic is of interest because the BBB gene expression program represents an interesting and important vascular diversification mechanism. From an applied point of view, modifying this program could have therapeutic benefits in situations where BBB function is compromised.

      The study involves comparing the transcriptomes of cultured CNS ECs at E13 and adult stages and then perturbing EC gene expression pharmacologically in cell culture (with HDAC and Polycomb inhibitors) and genetically in vivo by EC-specific conditional KO of HDAC2 and Polycomb component EZH2.

      This reviewer has several critiques of the study.

      First, based on published data, the effect of culturing CNS ECs is likely to have profound effects on their differentiation, especially as related to their CNS-specific phenotypes. Related to this, the authors do not state how long the cells were cultured.

      Second, the use of qPCR assays for quantifying ChIP and transcript levels is inferior to ChIPseq and RNAseq. Whole genome methods, such as ChIPseq, permit a level of quality assessment that is not possible with qPCR methods. The authors should use whole genome NextGen sequencing approaches, show the alignment of reads to the genome from replicate experiments, and quantitatively analyze the technical quality of the data.

      Third, the observation that pharmacologic inhibitor experiments and conditional KO experiments targeting HDAC2 and the Polycomb complex perturb EC gene expression or BBB integrity, respectively, is not particularly surprising as these proteins have broad roles in epigenetic regulation is a wide variety of cell types.

    1. Reviewer #2 (Public review):

      Summary:<br /> In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.<br /> (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a mechanistic understanding of how Fmi regulates cell competition. While induction of apoptosis and JNK activation are commonly observed outcomes in various cell competition conditions, it is crucial to determine the specific mechanisms through which they are induced in fmi-depleted clones. Furthermore, it is recommended that the authors utilize the power of fly genetics to conduct a series of genetic epistasis analyses.

    1. Reviewer #3 (Public review):

      Summary:

      Grogan et al examine a role for muscarinic receptor activation in action vigor in a saccadic system. This work is motivated by a strong literature linking dopamine to vigor, and some animal studies suggesting that ACH might modulate these effects, and is important because patient populations with symptoms related to reduced vigor are prescribed muscarinic antagonists. The authors use a motivated saccade task with distractors to measure the speed and vigor of actions in humans under placebo or muscarinic antagonism. They show that muscarinic antagonism blunts the motivational effects of reward on both saccade velocity and RT, and also modulates the distractibility of participants, in particular by increasing the repulsion of saccades away from distractors. They show that preparatory EEG signals reflect both motivation and drug condition, and make a case that these EEG signals mediate the effects of the drug on behavior.

      Strengths:

      This manuscript addresses an interesting and timely question and does so using an impressive within subject pharmacological design and a task well designed to measure constructs of interest. The authors show clear causal evidence that ACH affects different metrics of saccade generation related to effort expenditure and their modulation by incentive manipulations. The authors link these behavioral effects to motor preparatory signatures, indexed with EEG, that relate to behavioral measures of interest and in at least one case statistically mediate the behavioral effects of ACH antagonism.

      Weaknesses:

      A primary weakness of this paper is the sample size - since only 20 participants completed the study. The authors address the sample size in several places and I completely understand the reason for the reduced sample size (study halt due to covid). Nonetheless, it is worth stating explicitly that this sample size is relatively small for the effect sizes typically observed in such studies highlighting the need for future confirmatory studies.

    1. Reviewer #2 (Public review):

      In the present study, Boffi et al. investigate the manner in which the dorsal cortex of the of the inferior colliculus (DCIC), an auditory midbrain area, encodes sound location azimuth in awake, passively listening mice. By employing volumetric calcium imaging (scanned temporal focusing or s-TeFo), complemented with high-density electrode electrophysiological recordings (neuropixels probes), they show that sound-evoked responses are exquisitely noisy, with only a small portion of neurons (units) exhibiting spatial sensitivity. Nevertheless, a naïve Bayesian classifier was able to predict the presented azimuth based on the responses from small populations of these spatially sensitive units. A portion of the spatial information was provided by correlated trial-to-trial response variability between individual units (noise correlations). The study presents a novel characterization of spatial auditory coding in a non-canonical structure, representing a noteworthy contribution specifically to the auditory field and generally to systems neuroscience, due to its implementation of state-of-the-art techniques in an experimentally challenging brain region. However, nuances in the calcium imaging dataset and the naïve Bayesian classifier warrant caution when interpreting some of the results.

      Strengths:

      The primary strength of the study lies in its methodological achievements, which allowed the authors to collect a comprehensive and novel dataset. While the DCIC is a dorsal structure, it extends up to a millimetre in depth, making it optically challenging to access in its entirety. It is also more highly myelinated and vascularised compared to e.g., the cerebral cortex, compounding the problem. The authors successfully overcame these challenges and present an impressive volumetric calcium imaging dataset. Furthermore, they corroborated this dataset with electrophysiological recordings, which produced overlapping results. This methodological combination ameliorates the natural concerns that arise from inferring neuronal activity from calcium signals alone, which are in essence an indirect measurement thereof.

      Another strength of the study is its interdisciplinary relevance. For the auditory field, it represents a significant contribution to the question of how auditory space is represented in the mammalian brain. "Space" per se is not mapped onto the basilar membrane of the cochlea and must be computed entirely within the brain. For azimuth, this requires the comparison between miniscule differences between the timing and intensity of sounds arriving at each ear. It is now generally thought that azimuth is initially encoded in two, opposing hemispheric channels, but the extent to which this initial arrangement is maintained throughout the auditory system remains an open question. The authors observe only a slight contralateral bias in their data, suggesting that sound source azimuth in the DCIC is encoded in a more nuanced manner compared to earlier processing stages of the auditory hindbrain. This is interesting because it is also known to be an auditory structure to receive more descending inputs from the cortex.

      Systems neuroscience continues to strive for the perfection of imaging novel, less accessible brain regions. Volumetric calcium imaging is a promising emerging technique, allowing the simultaneous measurement of large populations of neurons in three dimensions. But this necessitates corroboration with other methods, such as electrophysiological recordings, which the authors achieve. The dataset moreover highlights the distinctive characteristics of neuronal auditory representations in the brain. Its signals can be exceptionally sparse and noisy, which provide an additional layer of complexity in the processing and analysis of such datasets. This will undoubtedly be useful for future studies of other less accessible structures with sparse responsiveness.

      Weaknesses:

      Although the primary finding that small populations of neurons carry enough spatial information for a naïve Bayesian classifier to reasonably decode the presented stimulus is not called into question, certain idiosyncrasies, in particular the calcium imaging dataset and model, complicate specific interpretations of the model output, and the readership is urged to interpret these aspects of the study's conclusions with caution.

      I remain in favour of volumetric calcium imaging as a suitable technique for the study, but the presently constrained spatial resolution is insufficient to unequivocally identify regions of interest as cell bodies (and are instead referred to as "units" akin to those of electrophysiological recordings). It remains possible that the imaging set is inadvertently influenced by non-somatic structures (including neuropil), which could report neuronal activity differently than cell bodies. Due to the lack of a comprehensive ground-truth comparison in this regard (which to my knowledge is impossible to achieve with current technology), it is difficult to imagine how many informative such units might have been missed because their signals were influenced by spurious, non-somatic signals, which could have subsequently misled the models. The authors reference the original Nature Methods article (Prevedel et al., 2016) throughout the manuscript, presumably in order to avoid having to repeat previously published experimental metrics. But the DCIC is neither the cortex nor hippocampus (for which the method was originally developed) and may not have the same light scattering properties (not to mention neuronal noise levels). Although the corroborative electrophysiology data largely eleviates these concerns for this particular study, the readership should be cognisant of such caveats, in particular those who are interested in implementing the technique for their own research.

      A related technical limitation of the calcium imaging dataset is the relatively low number of trials (14) given the inherently high level of noise (both neuronal and imaging). Volumetric calcium imaging, while offering a uniquely expansive field of view, requires relatively high average excitation laser power (in this case nearly 200 mW), a level of exposure the authors may have wanted to minimise by maintaining a low number of repetitions, but I yield to them to explain. Calcium imaging is also inherently slow, requiring relatively long inter-stimulus intervals (in this case 5 s). This unfortunately renders any model designed to predict a stimulus (in this case sound azimuth) from particularly noisy population neuronal data like these as highly prone to overfitting, to which the authors correctly admit after a model trained on the entire raw dataset failed to perform significantly above chance level. This prompted them to feed the model only with data from neurons with the highest spatial sensitivity. This ultimately produced reasonable performance (and was implemented throughout the rest of the study), but it remains possible that if the model was fed with more repetitions of imaging data, its performance would have been more stable across the number of units used to train it. (All models trained with imaging data eventually failed to converge.) However, I also see these limitations as an opportunity to improve the technology further, which I reiterate will be generally important for volume imaging of other sparse or noisy calcium signals in the brain.

      Indeed, in separate comments to these remarks, the authors confirmed that the low number of trials was technically limited, to which I emphasise is to no fault of their own. However, they also do not report this as a typical imaging constraint, such as photobleaching, but rather because the animals exhibited signs of stress and discomfort at longer imaging periods. From an animal welfare perspective, I would encourage the authors to state this in the methods for transparency. It would demonstrate their adherence to animal welfare policies, which I find to be an incredibly strong argument for limiting the number of trials in their study.

      Transitioning to the naïve Bayesian classifier itself, I first openly ask the authors to justify their choice of this specific model. There are countless types of classifiers for these data, each with their own pros and cons. Did they actually try other models (such as support vector machines), which ultimately failed? If so, these negative results (even if mentioned en passant) would be extremely valuable to the community, in my view. I ask this specifically because different methods assume correspondingly different statistical properties of the input data, and to my knowledge naïve Bayesian classifiers assume that predictors (neuronal responses) are assumed to be independent within a class (azimuth). As the authors show that noise correlations are informative in predicting azimuth, I wonder why they chose a model that doesn't take advantage of these statistical regularities. It could be because of technical considerations (they mention computing efficiency), but I am left generally uncertain about the specific logic that was used to guide the authors through their analytical journey.

      In a revised version of the manuscript, the authors indeed justify their choice of the naïve Bayesian classifier as a conservative approach (not taking into account noise correlations), which could only improve with other models (that do). They even tested various other commonly used models, such as support vector machines and k-nearest neighbours, to name a few, but do not report these efforts in the main manuscript. Interestingly, these models, which I supposed would perform better in fact did not overall - a finding that I have no way of interpreting but nevertheless find interesting. I would thus encourage the authors to include these results in a figure supplement and mention it en passant while justifying their selection of model (but please include detailed model parameters in the methods section).

      That aside, there remain other peculiarities in model performance that warrant further investigation. For example, what spurious features (or lack of informative features) in these additional units prevented the models of imaging data from converging? In an orthogonal question, did the most spatially sensitive units share any detectable tuning features? A different model trained with electrophysiology data in contrast did not collapse in the range of top-ranked units plotted. Did this model collapse at some point after adding enough units, and how well did that correlate with the model for the imaging data? How well did the form (and diversity) of the spatial tuning functions as recorded with electrophysiology resemble their calcium imaging counterparts? These fundamental questions could be addressed with more basic, but transparent analyses of the data (e.g., the diversity of spatial tuning functions of their recorded units across the population). Even if the model extracts features that are not obvious to the human eye in traditional visualisations, I would still find this interesting.

      Although these questions were not specifically addressed in the revised version of the manuscript, I also admit that I did not indent do assert that these should necessarily fall within the scope of the present study. I rather posed them as hypothetical directions one could pursue in future studies. Finally, further concerns I had with statements regarding the physiological meaning of the findings have been ameliorated by nicely modified statements, thus bringing transparency to the readership, which I appreciate.

      In summary, the present study represents a significant body of work that contributes substantially to the field of spatial auditory coding and systems neuroscience. However, limitations of the imaging dataset and model as applied in the study muddles concrete conclusions about how the DCIC precisely encodes sound source azimuth and even more so to sound localisation in a behaving animal. Nevertheless, it presents a novel and unique dataset, which, regardless of secondary interpretation, corroborates the general notion that auditory space is encoded in an extraordinarily complex manner in the mammalian brain.

    1. Reviewer #2 (Public review):

      In this article, Kong and authors sought to determine the encoding properties of central amygdala (CeA) neurons in response to oppositely valenced stimuli and cues predicting those stimuli. The amygdala and its subregional components have historically been understood to be regions that encode associative information, including valence stimuli. The authors performed calcium imaging of GABA-ergic CeA neurons in freely-moving mice conditioned in Pavlovian appetitive and fear paradigms, and showed that CeA neurons are responsive to both appetitive and aversive unconditioned and conditioned stimuli. They used a variant of a previously published 'circular shifting' technique (Harris, 2021), which allowed them to delineate between excited/non-responsive/inhibited neurons. While there is considerable overlap of CeA neurons responding to both unconditioned stimuli (in this case, food and shock, deemed "salience-encoding" neurons), there are considerably fewer CeA neurons that respond to both conditioned stimuli that predict the food and shock. The authors finally demonstrated that there are no differences in the order of Pavlovian paradigms (fear - shock vs. shock - fear), which is an interesting result, and convincingly presented given their counterbalanced experimental design.

      In total, I find the presented study useful in understanding the dynamics of CeA neurons during a Pavlovian learning paradigm. There are many strengths of this study, including the important question and clear presentation, the circular shifting analysis was convincing to me, and the manuscript was well written. We hope the authors will find our comments constructive if they choose to revise their manuscript.

      While the experiments and data are of value, I do not agree with the authors interpretation of their data, and take issue with the way they used the terms "salience" and "valence" (and would encourage them to check out Namburi et al., NPP, 2016) regarding the operational definitions of salience and valence which differ from my reading of the literature. To be fair, a recent study from another group that reports experiments/findings which are very similar to the ones in the present study (Yang et al., 2023, describing valence coding in the CeA using a similar approach) also uses the terms valence and salience in a rather liberal way that I would also have issues with (see below). Either new experiments or revised claims would be needed here, and more balanced discussion on this topic would be nice to see, and I felt that there were some aspects of novelty in this study that could be better highlighted (see below).

      One noteworthy point of alarm is that it seems as if two data panels including heatmaps are duplicated (perhaps that panel G of Figure 5-figure supplement 2 is a cut and paste error? It is duplicated from panel E and does not match the associated histogram).

      Major concerns:

      (1) The authors wish to make claims about salience and valence. This is my biggest gripe, so I will start here.<br /> (1a) Valence scales for positive and negative stimuli and as stated in Namburi et al., NPP, 2016 where we operationalize "valence" as having different responses for positive and negative values and no response for stimuli that are not motivational significant (neutral cues that do not predict an outcome). The threshold for claiming salience, which we define as scaling with the absolute value of the stimulus, and not responding to a neutral stimulus (Namburi et al., NPP, 2016; Tye, Neuron, 2018; Li et al., Nature, 2022) would require the lack of response to a neutral cue.<br /> (1b) The other major issue is that the authors choose to make claims about the neural responses to the USs rather than the CSs. However, being shocked and receiving sucrose also would have very different sensorimotor representations, and any differences in responses could be attributed to those confounds rather than valence or salience. They could make claims regarding salience or valence with respect to the differences in the CSs but they should restrict analysis to the period prior to the US delivery.<br /> (1c) The third obstacle to using the terms "salience" or "valence" is the lack of scaling, which is perhaps a bigger ask. At minimum either the scaling or the neutral cue would be needed to make claims about valence or salience encoding. Perhaps the authors disagree - that is fine. But they should at least acknowledge that there is literature that would say otherwise.<br /> (1d) In order to make claims about valence, the authors must take into account the sensory confound of the modality of the US (also mentioned in Namburi et al., 2016). The claim that these CeA neurons are indeed valence-encoding (based on their responses to the unconditioned stimuli) is confounded by the fact that the appetitive US (food) is a gustatory stimulus while the aversive US (shock) is a tactile stimulus.

      (2) Much of the central findings in this manuscript have been previously described in the literature. Yang et al., 2023 for instance shows that the CeA encodes salience (as demonstrated by the scaled responses to the increased value of unconditioned stimuli, Figure 1 j-m), and that learning amplifies responsiveness to unconditioned stimuli (Figure 2). It is nice to see a reproduction of the finding that learning amplifies CeA responses, though one study is in SST::Cre and this one in VGAT::cre - perhaps highlighting this difference could maximize the collective utility for the scientific community?

      (3) There is at least one instance of copy-paste error in the figures that raised alarm. In the supplementary information (Figure 5- figure supplement 2 E;G), the heat maps for food-responsive neurons and shock-responsive neurons are identical. While this almost certainly is a clerical error, the authors would benefit from carefully reviewing each figure to ensure that no data is incorrectly duplicated.

      (4) The authors describe experiments to compare shock and reward learning; however, there are temporal differences in what they compare in Figure 5. The authors compare the 10th day of reward learning with the 1st day of fear conditioning, which effectively represent different points of learning and retrieval. At the end of reward conditioning, animals are utilizing a learned association to the cue, which demonstrates retrieval. On the day of fear conditioning, animals are still learning the cue at the beginning of the session, but they are not necessarily retrieving an association to a learned cue. The authors would benefit from recording at a later timepoint (to be consistent with reward learning- 10 days after fear conditioning), to more accurately compare these two timepoints. Or perhaps, it might be easier to just make the comparison between Day 1 of reward learning and Day 1 of fear learning, since they must already have these data.

      (5) The authors make a claim of valence encoding in their title and throughout the paper, which is not possible to make given their experimental design. However, they would greatly benefit from actually using a decoder to demonstrate their encoding claim (decoding performance for shock-food versus shuffled labels) and simply make claims about decoding food-predictive cues and shock-predictive cues. Interestingly, it seems like relatively few CeA neurons actually show differential responses to the food and shock CSs, and that is interesting in itself.

    1. Reviewer #2 (Public review):

      Garbelli et. al. set out to elucidate the function of two glutamate transporters, EAAT5b and EAAT7, in the functional and behavioral responses to different wavelengths of light. The question is an interesting one, because these transporters are well positioned to affect responses to light, and their distribution in the retina suggests that they could play differential roles in visual behaviors. However, the low resolution of both the functional and behavioral data presented here means that the conclusions are necessarily a bit vague.

      In Figure 1, the authors show that the double KO has a decreased ERG response to UV/blue and red wavelengths. However, the individual mutations only affect the response to red light, suggesting that they might affect behaviors such as OMR which typically rely on this part of the visual spectrum. However, there was no significant change in the response to UV/blue light of any intensity, making it unclear whether the mutations could individually play roles in the detection of UV prey. Based on the later behavioral data, it seems likely that at least the EAAT7 KO should affect retinal responses to UV light, but it may be that the ERG does not have the spatial or temporal resolution to detect the difference, or that the presence of blue light overwhelmed any effect of the individual knockouts on the response to UV light.

      In Figures 5 and 6, the authors compare the two knockouts to wild-type fish in terms of their sensitivity to UV prey in a hunting assay. The EAAT5b KO showed no significant impairment in UV sensitivity, while the EAAT7 KO fish actually had an increased hunting response to UV prey. However, there is no comparison of the KO and WT responses to different UV intensities, only in bulk, so we cannot conclude that the EAAT7 KO is allowing the fish to detect weaker prey-like stimuli.

      In Figure 7, the EAAT5b KO seems to cause a decrease in OMR behavior to red grating stimuli, but only one stimulus is tested, so it is unclear whether this is due to a change in visual sensitivity or resolution.

      The conclusions made in the manuscript are appropriately conservative; the abstract states that these transporters somehow influence prey detection and motion sensing, and this is probably true. However, it is unclear to what extent and how they might be acting on these processes, so the conclusions are a bit unsatisfying.

      In terms of impact on the field, this work highlights the potential importance of these two transporters to visual processing, but further studies will be required to say how important they are and what they are doing. The methods presented here are not novel, as UV prey and red OMR stimuli and behaviors have previously been described.

    1. Reviewer #2 (Public review):

      Summary:

      This is an elegant study investigating possible mechanisms underlying the hysteresis effect in the perception of perceptually ambiguous Shepard tones. The authors make a fairly convincing case that the adaptation of pitch direction sensitive cells in auditory cortex is likely responsible for this phenomenon.

      Strengths:

      The manuscript is overall well written. My only slight criticism is that, in places, particularly for non-expert readers, it might be helpful to work a little bit more methods detail into the results section, so readers don't have to work quite so hard jumping from results to methods and back.

      The methods seem sound and the conclusions warranted and carefully stated. Overall I would rate the quality of this study as very high, and I do not have any major issues to raise.

      Weaknesses:

      I think this study is about as good as it can be with the current state of the art. Generally speaking, one has to bear in mind that this is an observational, rather than an interventional study, and therefore only able to identify plausible candidate mechanisms rather than making definitive identifications. However, the study nevertheless represents a significant advance over the current state of knowledge, and about as good as it can be with the techniques that are currently widely available.

    1. Reviewer #2 (Public review):

      Summary:

      The revised manuscript presents interesting findings on the role of gut microbiota in gout, focusing on the interplay between age-related changes, inflammation, and microbiota-derived metabolites, particularly butyrate. The study provides valuable insights into the therapeutic potential of microbiota interventions and metabolites for managing hyperuricemia and gout. While the authors have addressed many of the previous concerns, a few areas still require clarification and improvements to strengthen the manuscript's clarity and overall impact.

      (1) While the authors mention that outliers in the data do not affect the conclusions, there remains a concern about the reliability of some figures (e.g., Figure 2D-G). It is recommended to provide a more detailed explanation of the statistical analysis used to handle outliers. Additionally, the clarity of the Western blot images, particularly IL-1β in Figure 3C, should be improved to ensure clear and supportive evidence for the conclusions.<br /> (2) The manuscript raises a key question about why butyrate supplementation and FMT have different effects on uric acid metabolism and excretion. While the authors have addressed this by highlighting the involvement of multiple bacterial genera, it is still recommended to expand on the differences between these interventions in the discussion, providing more mechanistic insights based on available literature.<br /> (3) It is noted that IL-6 and TNF-α results in foot tissue were requested and have been added to supplementary material. However, the main text should clearly reference these additions, and the supplementary figures should be thoroughly reviewed for consistency with the main findings. The use of abbreviations (e.g., ns for no significant difference) and labeling should also be carefully checked across all figures.<br /> (4) The manuscript presents butyrate as a key molecule in gout therapy, yet there are lingering concerns about its central role, especially given that other short-chain fatty acids (e.g., acetic and propionic acids) also follow similar trends. The authors should consider further acknowledging these other SCFAs and discussing their potential contribution to gout management. Additionally, the rationale for focusing primarily on butyrate in subsequent research should be made clearer.<br /> (5) The full-length uncropped Western blot images should be provided as requested, to ensure transparency and reproducibility of the data.<br /> (6) Despite the authors' revisions, several references still lack page numbers. Please ensure that all references are properly formatted, including complete page ranges.<br /> The manuscript has improved with the revisions made, particularly regarding clarifications on experimental design and the inclusion of supplementary data. However, some concerns about data quality, mechanistic insights, and clarity in the figures remain. Addressing these points will enhance the overall impact of the work and its potential contribution to the understanding of the gut microbiome in gout and hyperuricemia. A final revision, with careful attention to both major and minor points, is highly recommended before resubmission.

    1. Reviewer #2 (Public review):

      Summary:

      This article describes a novel mechanism of host defense in the gut of Drosophila larvae. Pathogenic bacteria trigger the activation of a valve that blocks them in the anterior midgut where they are subjected to the action of antimicrobial peptides. In contrast, beneficial symbiotic bacteria do not activate the contraction of this sphincter and can access the posterior midgut, a compartment more favorable to bacterial growth.

      Strengths:

      The authors decipher the underlying mechanism of sphincter contraction, revealing that ROS production by Duox activates the release of DH31 by enteroendocrine cells that stimulate visceral muscle contractions. Use of mutations affecting the Imd pathway or lacking antimicrobial peptides reveals their contribution to pathogen elimination in the anterior midgut.

      Weaknesses:

      The mechanism allowing the discrimination between commensal and pathogenic bacteria remains unclear.

    1. Reviewer #2 (Public review):

      Summary:

      The authors propose that DKK2 is necessary for the metastasis of colon cancer organoids. They then claim that DKK2 mediates this effect by permitting the generation of lysozyme-positive Paneth-like cells within the tumor microenvironmental niche. They argue that these lysozyme-positive cells have Paneth-like properties in both mouse and human contexts. They then implicate HNF4A as the causal factor responsive to DKK2 to generate lysozyme-positive cells through Sox9.

      Strengths:

      The use of a genetically defined organoid line is state-of-the-art. The data in Figure 1 and the dependence of DKK2 for splenic injection and liver engraftment, as well as the long-term effect on animal survival, are interesting and convincing. The rescue using DKK2 administration for some of their phenotype in vitro is good. The inclusion and analysis of human data sets help explore the role of DKK2 in human cancer and help ground the overall work in a clinical context.

      Remaining Weaknesses after revision:

      (1) The authors have effectively explained the regulation of HNF4A at both mRNA and protein levels. To further strengthen their findings, I recommend using CRISPR technology to generate DKK2 and HNF4A double knockout organoids. This approach would allow the authors to investigate whether the AKP liver metastasis is restored in the double knockout condition. Such an experiment would provide more direct evidence that HNF4A protein stabilization is the crucial mechanism for liver metastasis suppression following DKK2 knockout.

    1. Reviewer #2 (Public review):

      Miyazaki et al. established three distinct BMD mouse models by deleting different exon regions of the dystrophin gene, observed in human BMD. The authors demonstrated that these models exhibit pathophysiological changes, including variations in body weight, muscle force, muscle degeneration, and levels of fibrosis, alongside underlying molecular alterations such as changes in dystrophin and nNOS levels. Notably, these molecular and pathological changes progress at different rates depending on the specific exon deletions in the dystrophin gene. Additionally, the authors conducted extensive fiber typing, revealing a site-specific decline in type IIa fibers in BMD mice, which they suggest may be due to muscle degeneration and reduced capillary formation around these fibers.

      Strengths:

      The manuscript introduces three novel BMD mouse models with different dystrophin exon deletions, each demonstrating varying rates of disease progression similar to the human BMD phenotype. The authors also conducted extensive fiber typing across different muscles and regions within the muscles, effectively highlighting a site-specific decline in type IIa muscle fibers in BMD mice.

      Weaknesses:

      The authors have inadequate experiments to support their hypothesis that the decay of type IIa muscle fibers is likely due to muscle degeneration and reduced capillary formation. Further investigation into capillary density and histopathological changes across different muscle fibers is needed, which could clarify the mechanisms behind these observations.

    1. Reviewer #2 (Public review):

      Summary:

      The research identifies two main SiNET subtypes (epithelial-like and neuronal-like) and reveals heterogeneity in non-neuroendocrine cells within the tumor microenvironment. The study validates findings using external datasets and explores unexpected proliferation patterns. While it contributes to understanding SiNET oncogenic processes, the limited sample size and depth of analysis present challenges to the robustness of the conclusions.

      Strengths:

      The studies effectively identified two subtypes of SiNET based on epithelial and neuronal markers. Key findings include the low proliferation rates of neuroendocrine (NE) cells and the role of the tumor microenvironment (TME), such as the impact of Macrophage Migration Inhibitory Factor (MIF).

      Weaknesses:

      However, the analysis faces challenges such as a small sample size, lack of clear biological interpretation in some analyses, and concerns about batch effects and statistical significance.

    1. Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

    1. Reviewer #2 (Public review):

      Summary:

      NRDE-3 is a nuclear WAGO-clade Argonaute that, in somatic cells, binds small RNAs amplified in response to the ERGO-class 26G RNAs that target repetitive sequences. This manuscript reports that, in the germline and early embryos, NRDE-3 interacts with a different set of small RNAs that target mRNAs. This class of small RNAs was previously shown to bind to a different WAGO-clade Argonaute called CSR-1, which is cytoplasmic, unlike nuclear NRDE-3. The switch in NRDE-3 specificity parallels recent findings in Ascaris where the Ascaris NRDE homolog was shown to switch from sRNAs that target repetitive sequences to CSR-class sRNAs that target mRNAs.

      The manuscript also correlates the change in NRDE-3 specificity with the appearance in embryos of cytoplasmic condensates that accumulate SIMR-1, a scaffolding protein that the authors previously implicated in sRNA loading for a different nuclear Argonaute HRDE-1. By analogy, and through a set of corelative evidence, the authors argue that SIMR foci arise in embryogenesis to facilitate the change in NRDE-3 small RNA repertoire. The paper presents lots of data that beautifully documents the appearance and composition of the embryonic SIMR-1 foci, including evidence that a mutated NRDE-3 that cannot bind sRNAs accumulates in SIMR-1 foci in a SIMR-1-dependent fashion.

      Weaknesses:

      The genetic evidence, however, does not support a requirement for SIMR-1 foci: the authors detected no defect in NRDE-3 sRNA loading in simr-1 mutants. Although the authors acknowledge this negative result in the discussion, they still argue for a model (Figure 7) that is not supported by genetic data. My main suggestion is that the authors give equal consideration to other models - see below for specifics.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigated the modulation of alpha oscillations, specifically peak alpha frequency (PAF) and alpha power, during prolonged pain. The findings suggest that the alpha rhythm consists of multiple, independent oscillators, and suggest that the modulation of a "fast" oscillator may represent a promising therapeutic target for ongoing pain management.

      Strengths:

      EEG data were collected from a relatively large sample of participants, and the experiment was conducted using two prolonged pain models - phasic heat pain and capsaicin heat pain - at two separate testing visits approximately 8 weeks apart. The study produced reliable results across different pain models and at different testing intervals.

      Weaknesses:

      There are discrepancies between the results and their interpretation, indicating a need for more appropriate data analyses. Additionally, the experimental design does not adequately control for the potential time effects, which cannot be ruled out as a confounding factor.

    1. Reviewer #2 (Public review):

      Summary:

      The authors used large MRI data sets of the Human Connectome Project (HCP) and also conducted additional pRF analyses to describe the structural architecture of the human visual cortex in reference to its functional features. By conducting a PCA, they identify 2 components that explain around 50% of the variance, the driven by a positive co-variance between cortical thickness and T1/T2 ratio, the second by their negative co-variance. The first PC spans most early visual cortex and hence shows a relation to pRF size when taking both early and late visual areas into account. The second is more variable in location and does not relate to pRF size or visual hierarchy. The relationship between these two gradients to cell body density using the BigBrain is explored.

      Strengths:

      The authors make an attempt to describe the overall architectural features of the cortex and link it to features of functional representations, and the underlying histology, using different sets of datasets and methods, including histology. They highlight that investigating the structural architecture of the cortex provides important information on their intrinsic organization and common features.

      Weaknesses:

      The neurobiological model does not take into consideration present knowledge about the microstructural organization of the visual system. This limits the way the results are interpreted correctly. Critical information on the layer-specific myeloarchitecture and cytoarchitecture (and their relation to cortical thickness), as explored for example by Sereno et al. 2013 Cereb Cortex, is missing. There is no information given with respect to how different visual areas differ in their microstructural profile. It is also not mentioned that cortical parcellation is indeed characterized by sharp boundaries between areas, rather than structural gradients, so it remains unclear why focusing on a gradient is of interest. The authors cite the parcellation atlas by Glasser et al. 2016, but do not discuss the rationale of this publication, which was not the definition of gradients, but the definition of sharp boundaries for cortex parcellation. Indeed (as explained below), the results of the authors seem to a large extent to be driven by cortex parcellation, but instead of acknowledging this fact, the authors write (line 179) that "we hypothesize that these local deviations from the canonical thickness and density of cortex underlie the finer-scale division of visual cortex into categorically distinct regions. That is, does the realization of the cortex into distinct regions involve these regions becoming more distinct from a prototypical cortical sheet (i.e., gradient 1)?" - While the first sentence is reasonable, the second sentence is pure speculation ignoring present knowledge on cortical parcellation of this area according to which there is no "prototypical cortical sheet", but each area has its distinct microstructural profile.

      Instead of building on present, detailed knowledge of brain anatomy and in-vivo cortex parcellation of the visual system and its known relation to visual maps, the authors focus on two metrics of cortex architecture (mean T1/T1 over depth and cortical thickness), and conduct a PCA to explore their shared variance. It needs to be clarified if the PCA was conducted correctly. There is no mention of standardizing the variables, which could bias the results. In addition, in a PCA, all possible features are categorized as vector components, and those are scanned through the samples, hence, one such analysis per vertex. But the authors write "in which participants are features and cortical vertices are samples" and "the thickness and tissue density maps were concatenated". This needs clarification. The architecture of the PCA should be visualized better.

      Because the PCA only contains two features, PC1 is driven by the positive relationship between cortical thickness and mean T1/T2, whereas PC2 is driven by their negative relationship. Because in the early visual cortex, cortical thickness and mean T1/T2 correlate positively, it naturally follows that PC1 relates to pRF size (but mediated by the actual cortex parcellation). However, it is unclear why this insight is interesting. I also do not share the view that "these findings demonstrate that gradient 1 acts as a global gradient enveloping the entire visual cortex (...) while gradient 2 acts as a local gradient specific to individual visual streams". I think this relationship between cortical thickness and T1/T2 ratio does not have much to do with local and global gradients. But if so, stronger arguments as to why this should be the case should be presented.

      What the authors make of this result (particularly the discussion starting line 366) is not clear to me. I cannot follow the line of argumentation, which in my view is too far away from the data.

    1. Reviewer #2 (Public review):

      Summary:

      The authors sought to investigate the role of nociceptor neurons in the pathogenesis of pollution-mediated neutrophilic asthma.

      Strengths:

      The authors utilize TRPV1 ablated mice to confirm effects of intranasally administered QX-314 utilized to block sodium currents.

      The authors demonstrate that via artemin, which is upregulated in alveolar macrophages in response to pollution, sensitizes JNC neurons thereby increasing their responsiveness to pollution. Ablation or inactivity of nociceptor neurons prevented the pollution induced increase in inflammation.

      Weaknesses:

      While neutrophilic, the model used doesn't appear to truly recapitulate a Th2/Th17 phenotype. No IL-17A is visible/evident in the BALF fluid within the model. (Figure 3F).

      Unclear of the relevance of the RNAseq dataset, none of the identified DEGs were evaluated in the context of mechanism.

      The authors overall achieved the aim of demonstrating that nociceptor neurons are important to the pathogenesis of pollution-exacerbated asthma. Their results support their conclusions overall, although there are ways the study findings can be strengthened. This work further evaluates how nociceptor neurons contribute to asthma pathogenesis important for consideration while proposing treatment strategies for undertreated asthma endotypes.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors performed the functional analysis of odorant receptors (ORs) of the termite Prorhinotermes simplex to identify the receptor of trail-following pheromone. The authors performed single-sensillum recording (SSR) using the transgenic Drosophila flies expressing a candidate of the pheromone receptor and revealed that PsimOR14 strongly responds to neocembrene, the major component of the pheromone. Also, the authors found that one sensillum type (S I) detects neocembrene and also performed SSR for S I in wild termite workers. Furthermore, the authors revealed the gene, transcript, and protein structures of PsimOR14, predicted the 3D model and ligand docking of PsimOR14, and demonstrated that PsimOR14 is higher expressed in workers than soldiers using RNA-seq for heads of workers and soldiers of P. simplex and that EAG response to neocembrene is higher in workers than soldiers. I consider that this study will contribute to further understanding of the molecular and evolutionary mechanisms of the chemoreception system in termites.

      Strength:

      The manuscript is well written. As far as I know, this study is the first study that identified a pheromone receptor in termites. The authors not only present a methodology for analyzing the function of termite pheromone receptors but also provide important insights in terms of the evolution of ligand selectivity of termite pheromone receptors.

      Weakness:

      As you can see in the "Recommendations to the Authors" section below, there are several things in this paper that are not fully explained about experimental methods. Except for this point, this paper appears to me to have no major weaknesses.

    1. Reviewer #2 (Public review):

      In this manuscript, the authors present an approach to correct GRIN lens aberrations, which primarily cause a decrease in signal-to-noise ratio (SNR), particularly in the lateral regions of the field-of-view (FOV), thereby limiting the usable FOV. The authors propose to mitigate these aberrations by designing and fabricating aspherical corrective lenses using ray trace simulations and two-photon lithography, respectively; the corrective lenses are then mounted on the back aperture of the GRIN lens.

      This approach was previously demonstrated by the same lab for GRIN lenses shorter than 4.1 mm (Antonini et al., eLife, 2020). In the current work, the authors extend their method to a new class of GRIN lenses with lengths exceeding 6 mm, enabling access to deeper brain regions as most ventral regions of the mouse brain. Specifically, they designed and characterized corrective lenses for GRIN lenses measuring 6.4 mm and 8.8 mm in length. Finally, they applied these corrected long micro-endoscopes to perform high-precision calcium signal recordings in the olfactory cortex.

      Compared with alternative approaches using adaptive optics, the main strength of this method is that it does not require hardware or software modifications, nor does it limit the system's temporal resolution. The manuscript is well-written, the data are clearly presented, and the experiments convincingly demonstrate the advantages of the corrective lenses.

      The implementation of these long corrected micro-endoscopes, demonstrated here for deep imaging in the mouse olfactory bulb, will also enable deep imaging in larger mammals such as rats or marmosets.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript builds on the authors' 2020 study by combining tissue expansion with light sheet microscopy to quantify the organism-wide spatial distribution of various cell types in the planarian.

      Strengths:

      (1) The quantification of cell types as a function of animal size and regeneration stages could be a useful resource for the planarian research community.

      (2) The high-quality images can help clarify some anatomical structures within the planarian tissues.

      Weaknesses:

      (1) The proprietary nature of the microscope, protected by a patent, limits the technical details provided, making the method hard to reproduce in other labs.

      (2) The resolution of the analyses is mostly limited to the cellular level, which does not fully leverage the advantages of expansion microscopy. Previous applications of expansion microscopy have revealed finer nanostructures in the planarian nervous system (see Fan et al. Methods in Cell Biology 2021; Wang et al. eLife 2021). It is unclear whether the current protocol can achieve a comparable resolution.

      (3) The data largely corroborate past observations, while the novel claims are insufficiently substantiated.

      A few major issues with the claims:

      (4) Line 303-304: While 6G10 is a widely used antibody to label muscle fibers in the planarian, it doesn't uniformly mark all muscle types (Scimone at al. Nature 2017). For a more complete view of muscle fibers, it is important to use a combination of antibodies targeting different fiber types or a generic marker such as phalloidin. This raises fundamental concerns about all the conclusions drawn from Figures 4 and 6 about differences between various muscle types. Additionally, the authors should cite the original paper that developed the 6G10 antibody (Ross et al. BMC Developmental Biology 2015).

      (5) Lines 371-379: The claim that DV muscles regenerate into longitudinal fibers lacks evidence. Furthermore, previous studies have shown that TFs specifying different muscle types (DV, circular, longitudinal, and intestinal) both during regeneration and homeostasis are completely different (Scimone et al., Nature 2017 and Scimone et al., Current Biology 2018). Single-cell RNAseq data further establishes the existence of divergent muscle progenitors giving rise to different muscle fibers. These observations directly contradict the authors' claim, which is only based on images of fixed samples at a coarse time resolution.

      (6) Line 423: The manuscript lacks evidence to claim glia guide muscle fiber branching.

      (7) Lines 432/478: The conclusion about neuronal and muscle guidance on glial projections is similarly speculative, lacking functional evidence. It is possible that the morphological defects of estrella+ cells after bcat1 RNAi are caused by Wnt signaling directly acting on estrella+ cells independent of muscles or neurons.

      (8) Finally, several technical issues make the results difficult to interpret. For example, in line 125, cell boundaries appear to be determined using nucleus images; in line 136, the current resolution seems insufficient to reliably trace neural connections, at least based on the images presented.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have developed a machine learning tool AIVE to predict the infectivity of SARS-CoV-2 variants and also a scoring metric to measure infectivity. A large number of virus sequences were used with a very detailed analysis that incorporates hydrophobic, hydrophilic, acid, and alkaline characteristics. The protein structures were also considered to measure infectivity and search for core mutations. The study especially focused on the S protein of SARS-CoV-2. The contents of this study would be of interest to many researchers related to this area and the web service would be helpful to easily analyze such data without in-depth bioinformatics expertise.

      Strengths:

      - Analysis of large-scale data.

      - Experimental validation on a partial set of searched mutations.

      - A user-friendly web-based analysis platform that is made public.

      Weaknesses:

      - Complexity of the research.

    1. Reviewer #2 (Public review):

      Sasaki et al. use a combination of live-cell biosensors and patch-clamp electrophysiology to investigate the effect of membrane potential on the ERK MAPK signaling pathway, and probe associated effects on proliferation. This is an effect that has long been proposed, but convincing demonstration has remained elusive, because it is difficult to perturb membrane potential without disturbing other aspects of cell physiology in complex ways. The time-resolved measurements here are a nice contribution to this question, and the perforated patch clamp experiments with an ERK biosensor are fantastic - they come closer to addressing the above difficulty of perturbing voltage than any prior work. It would have been difficult to obtain these observations with any other combination of tools.

      However, there are still some concerns as detailed in specific comments below:

      Specific comments:<br /> (1) All the observations of ERK activation, by both high extracellular K+ and voltage clamp, could be explained by cell volume increase (more discussion in subsequent comments). There is a substantial literature on ERK activation by hypotonic cell swelling (e.g. https://doi.org/10.1042/bj3090013, https://doi.org/10.1002/j.1460-2075.1996.tb00938.x, among others). Here are some possible observations that could demonstrate that ERK activation by volume change is distinct from the effects reported here:<br /> (i) Does hypotonic shock activate ERK in U2OS cells?<br /> (ii) Can hypotonic shock activate ERK even after PS depletion, whereas extracellular K+ cannot?<br /> (iii) Does high extracellular K+ change cell volume in U2OS cells, measured via an accurate method such as fluorescence exclusion microscopy?<br /> (iv) It would be helpful to check the osmolality of all the extracellular solutions, even though they were nominally targeted to be iso-osmotic.

      (2) Some more details about the experimental design and the results are needed from Figure 1:<br /> (i) For how long are the cells serum-starved? From the Methods section, it seems like the G1 release in different K+ concentration is done without serum, is this correct? Is the prior thymidine treatment also performed in the absence of serum?<br /> (ii) There is a question of whether depolarization constitutes a physiologically relevant mechanism to regulate proliferation, and how depolarization interacts with other extracellular signals that might be present in an in vivo context. Does depolarization only promote proliferation after extended serum starvation (in what is presumably a stressed cell state)? What fraction of total cells are observed to be mitotic (without normalization), and how does this compare to the proliferation of these cells growing in serum-supplemented media? Can K+ concentration tune proliferation rate even in serum-supplemented media?

      (3) In Figure 2, there are some possible concerns with the perfusion experiment:<br /> (i) Is the buffer static in the period before perfusion with high K+, or is it perfused? This is not clear from the Methods. If it is static, how does the ERK activity change when perfused with 5 mM K+? In other words, how much of the response is due to flow/media exchange versus change in K+ concentration?<br /> (ii) Why do there appear to be population-average decreases in ERK activity in the period before perfusion with high K+ (especially in contrast to Fig. 3)? The imaging period does not seem frequent enough for photobleaching to be significant.

      (4) Figure 3 contains important results on couplings between membrane potential and MAPK signaling. However, there are a few concerns:<br /> (i) Does cell volume change upon voltage clamping? Previous authors have shown that depolarizing voltage clamp can cause cells to swell, at least in the whole-cell configuration: https://www.cell.com/biophysj/fulltext/S0006-3495(18)30441-7 . Could it be possible that the clamping protocol induces changes in ERK signaling due to changes in cell volume, and not by an independent mechanism?<br /> (ii) Does the -80 mV clamp begin at time 0 minutes? If so, one might expect a transient decrease in sensor FRET ratio, depending on the original resting potential of the cells. Typical estimates for resting potential in HEK293 cells range from -40 mV to -15 mV, which would reach the range that induces an ERK response by depolarizing clamp in Fig. 3B. What are the resting potentials of the cells before they are clamped to -80 mV, and why do we not see this downward transient?

      (5) The activation of ERK by perforated voltage clamp and by high extracellular K+ are each convincing, but it is unclear whether they need to act purely through the same mechanism - while additional extracellular K+ does depolarize the cell, it could also be affecting function of voltage-independent transporters and cell volume regulatory mechanisms on the timescales studied. To more strongly show this, the following should be done with the HEK cells where there is already voltage clamp data:<br /> (i) Measure resting potential using the perforated patch in zero-current configuration in the high K+ medium. Ideally this should be done in the time window after high K+ addition where ERK activation is observed (10-20 minutes) to minimize the possibility of drift due to changes in transporter and channel activity due to post-translational regulation.<br /> (ii) Measure YFP/CFP ratio of the HEK cells in the high K+ medium (in contrast to the U2OS cells from Fig. 2 where there is no patch data).<br /> (iii) The assertion that high K+ is equivalent to changes in Vmem for ERK signaling would be supported if the YFP/CFP change from K+ addition is comparable to that induced by voltage clamp to the same potential. This would be particularly convincing if the experiment could be done with each of the 15 mM, 30 mM, and 145 mM conditions.

      (6) Line 170: "ERK activity was reduced with a fast time course (within 1 minute) after repolarization to -80 mV." I don't see this in the data: in Fig. 3C, it looks like ERK remains elevated for > 10 min after the electrical stimulus has returned to -80 mV

    1. Reviewer #2 (Public Review):

      The manuscript by Chiara Capitani and Annarosa Arcangeli reports the identification of a complex comprising NHE1,hERG1, β1 integrin, and NaV1.5 on the plasma membrane of breast cancer cells. The authors further investigated the mutual regulatory interactions among these proteins using Western blotting and co-immunoprecipitation assays. They also examined the downstream signaling pathways associated with this complex and assessed its impact on the malignant behavior of breast cancer cells.

      Strengths

      The manuscript used different breast cancer cell lines and combined Western blot, immunostaining, and electrophysiology to provide evidence for the proposed complex. The inhibitors are also used to test the requirement of channel activity to function in the development of breast cancer cells with in-vitro studies.

      Weaknesses

      The data shown in this manuscript include the western blots that are cropped and imaged separately to draw conclusions about protein levels and changes in immunoprecipitation. These cannot be done on separate, cropped blots but must be imaged together to make these comparisons.

      Antibodies used for hERG, NaV1.5 and β1 integrin must be validated to work for IP using KO or KD cell lines for the respective proteins to demonstrate specificity. The same goes for all the immunofluorescence imaging shown in the manuscript as these are all key pieces of data to support the conclusions.

    1. Reviewer #2 (Public Review):

      Apolipoprotein M (ApoM) is a plasma carrier for the vascular protective lipid mediator sphingosine 1-phospate (S1P). The plasma levels of S1P and its chaperones ApoM and albumin rapidly decline in patients with severe sepsis, but the mechanisms for such reductions and their consequences for cardiovascular health remain elusive. In this study, Ripoll and colleagues demonstrate that the sodium-glucose co-transporter inhibitor dapagliflizin (Dapa) can preserve serum ApoM levels as well as cardiac function after LPS treatment of mice with diet-induced obesity. They further provide data to suggest that Dapa preserves serum ApoM by increasing megalin-mediated reabsorption of ApoM in renal proximal tubules and that ApoM improves vascular integrity in LPS treated mice. These observations put forward a potential therapeutic approach to sustain vascular protective S1P signaling that could be relevant to other conditions of systemic inflammation where plasma levels of S1P decrease. However, although the authors are careful with their statements, the study falls short of directly implicating megalin in ApoM reabsorption and of ApoM/S1P depletion in LPS-induced cardiac dysfunction and the protective effects of Dapa.

      The observations reported in this study are exciting and potentially of broad interest. The paper is well written and concise, and the statements made are mostly supported by the data presented. However, the mechanism proposed and implied is mostly based on circumstantial evidence, and the paper could be substantially improved by directly addressing the role of megalin in ApoM reabsorption and serum ApoM and S1P levels and the importance of ApoM for the preservation for cardiac function during endotoxemia. Some observations that are not necessarily in line with the model proposed should also be discussed.

      The authors show that Dapa preserves serum ApoM and cardiac function in LPS-treated obese mice. However, the evidence they provide to suggest that ApoM may be implicated in the protective effect of Dapa on cardiac function is indirect. Direct evidence could be sought by addressing the effect of Dapa on cardiac function in LPS treated ApoM deficient and littermate control mice (with DIO if necessary).

      The authors also suggest that higher ApoM levels in mice treated with Dapa and LPS reflect increased megalin-mediated ApoM reabsorption and that this preserves S1PR signaling. This could be addressed more directly by assessing the clearance of labelled ApoM, by addressing the impact of megalin inhibition or deficiency on ApoM clearance in this context, and by measuring S1P as well as ApoM in serum samples.

      Methods: More details should be provided in the manuscript for how ApoM deficient and transgenic mice were generated, on sex and strain background, and on whether or not littermate controls were used. For intravital microscopy, more precision is needed on how vessel borders were outland and if this was done with or without regard for FITC-dextran. Please also specify the type of vessel chosen and considerations made with regard to blood flow and patency of the vessels analyzed. For statistical analyses, data from each mouse should be pooled before performing statistical comparisons. The criteria used for choice of test should be outlined as different statistical tests are used for similar datasets. For all data, please be consistent in the use of post-tests and in the presentation of comparisons. In other words, if the authors choose to only display test results for groups that are significantly different, this should be done in all cases. And if comparisons are made between all groups, this should be done in all cases for similar sets of data.

    1. Reviewer #2 (Public Review):

      Leib & Franklin assessed how the adaptation of intersegmental dynamics of the arm generalizes to changes in different factors: areas of extrinsic space, limb configurations, and 'object-based' coordinates. Participants reached in many different directions around 360{degree sign}, adapting to velocity-dependent curl fields that varied depending on the reach angle. This learning was measured via the pattern of forces expressed in upon the channel wall of "error clamps" that were randomly sampled from each of these different directions. The authors employed a clever method to predict how this pattern of forces should change if the set of targets was moved around the workspace. Some sets of locations resulted in a large change in joint angles or object-based coordinates, but Cartesian coordinates were always the same. Across three separate experiments, the observed shifts in the generalized force pattern never corresponded to a change that was made relative to any one reference frame. Instead, the authors found that the observed pattern of forces could be explained by a weighted combination of the change in Cartesian, joint, and object-based coordinates across test and training contexts.

      In general, I believe the authors make a good argument for this specific mixed weighting of different contexts. I have a few questions that I hope are easily addressed.

      Movements show different biases relative to the reach direction. Although very similar across people, this function of biases shifts when the arm is moved around the workspace (Ghilardi, Gordon, and Ghez, 1995). The origin of these biases is thought to arise from several factors that would change across the different test and training workspaces employed here (Vindras & Viviani, 2005). My concern is that the baseline biases in these different contexts are different and that rather the observed change in the force pattern across contexts isn't a function of generalization, but a change in underlying biases. Baseline force channel measurements were taken in the different workspace locations and conditions, so these could be used to show whether such biases are meaningfully affecting the results.

      Experiment 3, Test 1 has data that seems the worst fit with the overall story. I thought this might be an issue, but this is also the test set for a potentially awkwardly long arm. My understanding of the object-based coordinate system is that it's primarily a function of the wrist angle, or perceived angle, so I am a little confused why the length of this stick is also different across the conditions instead of just a different angle. Could the length be why this data looks a little odd?

      The manuscript is written and organized in a way that focuses heavily on the noise element of the model. Other than it being reasonable to add noise to a model, it's not clear to me that the noise is adding anything specific. It seems like the model makes predictions based on how many specific components have been rotated in the different test conditions. I fear I'm just being dense, but it would be helpful to clarify whether the noise itself (and inverse variance estimation) are critical to why the model weights each reference frame how it does or whether this is just a method for scaling the weight by how much the joints or whatever have changed. It seems clear that this noise model is better than weighting by energy and smoothness.

      Are there any force profiles for individual directions that are predicted to change shape substantially across some of these assorted changes in training and test locations (rather than merely being scaled)? If so, this might provide another test of the hypotheses.

      I don't believe the decay factor that was used to scale the test functions was specified in the text, although I may have just missed this. It would be a good idea to state what this factor is where relevant in the text.

    1. Reviewer #2 (Public Review):

      A strength of the work lies in the number of children Padilha et al. were able to assess (5,004 children aged 6-59 months) and in the extensive screening that the Authors performed for each participant. This type of large-scale study is uncommon in low-to-middle-income countries such as Brazil.<br /> The Authors employ several approaches to narrow down the number of potentially causally associated metabolites.<br /> Could the Authors justify on what basis the minimum dietary diversity score was dichotomized? Were sensitivity analyses undertaken to assess the effect of this dichotomization on associations reported by the article? Consumption of each food group may have a differential effect that is obscured by this dichotomization.<br /> Could the Authors specify the statistical power associated with each analysis?<br /> Could the Authors describe in detail which metric they used to measure how predictive PLSR models are, and how they determined what the "optimal" number of components were?<br /> The Authors use directed acyclic graphs (DAG) to identify confounding variables of the association between metabolites and DQ. Could the dataset generated by the Authors have been used instead? Not all confounding variables identified in the literature may be relevant to the dataset generated by the Authors.<br /> Were the systematic reviews or meta-analyses used in the DAG performed by the Authors, or were they based on previous studies? If so, more information about the methodology employed and the studies included should be provided by the Authors.<br /> Approximately 72% of children included in the analyses lived in households with a monthly income superior to the Brazilian minimum wage. The cohort is also biased towards households with a higher level of education. Both of these measures correlate with developmental quotient. Could the Authors discuss how this may have affected their results and how generalizable they are?<br /> Further to this, could the Authors describe how inequalities in access to care in the Brazilian population may have affected their results? Could they have included a measure of this possible discrepancy in their analyses?<br /> The Authors state that the results of their study may be used to track children at risk for developmental delays. Could they discuss the potential for influencing policies and guidelines to address delayed development due to malnutrition and/or limited access to certain essential foods?

    1. Reviewer #2 (Public Review):

      M. El Amri et al., investigated the functions of Marcks and Marcks like 1 during spinal cord (SC) development and regeneration in Xenopus laevis. The authors rigorously performed loss of function with morpholino knock-down and CRISPR knock-out combining rescue experiments in developing spinal cord in embryo and regeneration in tadpole stage.

      For the assays in the developing spinal cord, a unilateral approach (knock-down/out only one side of the embryo) allowed the authors to assess the gene functions by direct comparing one-side (e.g. mutated SC) to the other (e.g. wild type SC on the other side). For the assays in regenerating SC, the authors microinject CRISPR reagents into 1-cell stage embryo. When the embryo (F0 crispants) grew up to tadpole (stage 50), the SC was transected. They then assessed neurite outgrowth and progenitor cell proliferation. The validation of the phenotypes was mostly based on the quantification of immunostaining images (neurite outgrowth: acetylated tubulin, neural progenitor: sox2, sox3, proliferation: EdU, PH3), that are simple but robust enough to support their conclusions. In both SC development and regeneration, the authors found that Marcks and Marcksl1 were necessary for neurite outgrowth and neural progenitor cell proliferation.<br /> The authors performed rescue experiments on morpholino knock-down and CRISPR knock-out conditions by Marcks and Marcksl1 mRNA injection for SC development and pharmacological treatments for SC development and regeneration. The unilateral mRNA injection rescued the loss-of-function phenotype in the developing SC. To explore the signalling role of these molecules, they rescued the loss-of-function animals by pharmacological reagents They used S1P: PLD activator, FIPI: PLD inhibitor, NMI: PIP2 synthesis activator and ISA-2011B: PIP2 synthesis inhibitor. The authors found the activator treatment rescued neurite outgrowth and progenitor cell proliferation in loss of function conditions. From these results, the authors proposed PIP2 and PLD are the mediators of Marcks and Marcksl1 for neurite outgrowth and progenitor cell proliferation during SC development and regeneration. The results of the rescue experiments are particularly important to assess gene functions in loss of function assays, therefore, the conclusions are solid. In addition, they performed gain-of-function assays by unilateral Marcks or Marcksl1 mRNA injection showing that the injected side of the SC had more neurite outgrowth and proliferative progenitors. The conclusions are consistent with the loss-of-function phenotypes and the rescue results. Importantly, the authors showed the linkage of the phenotype and functional recovery by behavioral testing, that clearly showed the crispants with SC injury swam less distance than wild types with SC injury at 10-day post surgery.<br /> Prior to the functional assays, the authors analyzed the expression pattern of the genes by in situ hybridization and immunostaining in developing embryo and regenerating SC. They confirmed that the amount of protein expression was significantly reduced in the loss of function samples by immunostaining with the specific antibodies that they made for Marcks and Marcksl1. Although the expression patterns are mostly known in previous works during embryo genesis, the data provided appropriate information to readers about the expression and showed efficiency of the knock-out as well.

      MARCKS family genes have been known to be expressed in the nervous system. However, few studies focus on the function in nerves. This research introduced these genes as new players during SC development and regeneration. These findings could attract broader interests from the people in nervous disease model and medical field. Although it is a typical requirement for loss of function assays in Xenopus laevis, I believe that the efficient knock-out for four genes by CRISPR/Cas9 was derived from their dedication of designing, testing and validation of the gRNAs and is exemplary.

      Weaknesses,<br /> 1) Why did the authors choose Marcks and Marcksl1?<br /> The authors mentioned that these genes were identified with a recent proteomic analysis of comparing SC regenerative tadpole and non-regenerative froglet (Line (L) 54-57). However, although it seems the proteomic analysis was their own dataset, the authors did not mention any details to select promising genes for the functional assays (this article). In the proteomic analysis, there must be other candidate genes that might be more likely factors related to SC development and regeneration based on previous studies, but it was unclear what the criteria to select Marcks and Marcksl1 was.

      2) Gene knock-out experiments with F0 crispants,<br /> The authors described that they designed and tested 18 sgRNAs to find the most efficient and consistent gRNA (L191-195). However, it cannot guarantee the same phenotypes practically, due to, for example, different injection timing, different strains of Xenopus laevis, etc. Although the authors mentioned the concerns of mosaicism by themselves (L180-181, L289-292) and immunostaining results nicely showed uniformly reduced Marcks and Marcksl1 expression in the crispants, they did not refer to this issue explicitly.

      3) Limitations of pharmacological compound rescue<br /> In the methods part, the authors describe that they performed titration experiments for the drugs (L702-704), that is a minimal requirement for this type of assay. However, it is known that a well characterized drug is applied, if it is used in different concentrations, the drug could target different molecules (Gujral TS et al., 2014 PNAS). Therefore, it is difficult to eliminate possibilities of side effects and off targets by testing only a few compounds.

    1. Résumé de la vidéo [00:00:04][^1^][1] - [00:20:21][^2^][2]:

      Cette vidéo explore les transformations urbaines en France pendant les Trente Glorieuses, une période de croissance économique et de modernisation rapide entre 1945 et 1975. Elle met en lumière les changements sociaux, économiques et culturels qui ont profondément réorganisé l'espace urbain.

      Moments forts: + [00:00:04][^3^][3] Introduction aux Trente Glorieuses * Terme popularisé par Jean Fourastié * Modernisation rapide de la France * Comparaison de deux villages avant et après cette période + [00:04:35][^4^][4] Transformation de Rennes * Expansion urbaine avec de nouveaux quartiers * Remplacement des zones agricoles par des ensembles résidentiels * Développement de l'infrastructure urbaine + [00:11:02][^5^][5] Dynamiques sociales et territoriales * Gentrification des centres-villes * Création rapide des grands ensembles * Périurbanisation et diffusion des maisons individuelles + [00:16:46][^6^][6] Rôle central de l'État * Pilotage des transformations urbaines * Absence de compétences locales * Croissance économique soutenue par l'État + [00:19:52][^7^][7] Impact sur la société * Taux de chômage extrêmement bas * Transformation complète de la société et de l'économie * Importance des Trente Glorieuses pour comprendre les enjeux actuels

    1. Reviewer #2 (Public review):

      Summary:

      PKA is a major signaling protein which has been long studied and is vital for synaptic plasticity. Here, the authors examine the mechanism of PKA activity and specifically focus on addressing the question of PKA dissociation as a major mode of its activation in dendritic spines. This would potentially allow to determine the precise mechanisms of PKA activation and address how it maintains spatial and temporal signaling specificity.

      Strengths:

      The results convincingly show that PKA activity is governed by the subcellular localization in dendrites and spines and is mediated via subunit dissociation. The authors make use of organotypic hippocampal slice cultures, where they use pharmacology, glutamate uncaging, and electrophysiological recordings.

      Overall, the experiments and data presented are well executed. The experiments all show that at least in the case of synaptic activity, distribution of PKA-C to dendritic spines is necessary and sufficient for PKA mediated functional and structural plasticity.<br /> The authors were able to persuasively support their claim that PKA subunit dissociation is necessary for its function and localization in dendritic spines. This conclusion is important to better understand the mechanisms of PKA activity and its role in synaptic plasticity.

      Weaknesses:

      While the experiments are indeed convincing and well executed, the data presented is similar to previously published work from the Zhong lab (Tillo et al., 2017, Zhong et al 2009). This reduces the novelty of the findings in terms of re-distribution of PKA subunits, which was already established, at least to some degree.

    1. Reviewer #2 (Public review):

      This is an interesting computational study addressing how salt affects the assembly of biomolecular condensates. The simulation data are valuable as they provide a degree of atomistic details regarding how small salt ions modulate interactions among intrinsically disordered proteins with charged residues, namely via Debye-like screening that weakens the effective electrostatic interactions among the polymers, or through bridging interactions that allow interactions between like charges from different polymer chains to become effectively attractive (as illustrated, e.g., by the radial distribution functions in Supplementary Information). However, this manuscript has several shortcomings: (i) Connotations of the manuscript notwithstanding, many of the authors' concepts about salt effects on biomolecular condensates have been put forth by theoretical models, at least back in 2020 and even earlier. Those earlier works afford extensive information such as considerations of salt concentrations inside and outside the condensate (tie-lines). But the authors do not appear to be aware of this body of prior works and therefore missed the opportunity to build on these previous advances and put the present work with its complementary advantages in structural details in the proper context. (ii) There are significant experimental findings regarding salt effects on condensate formation [which have been modeled more recently] that predate the A1-LCD system (ref.19) addressed by the present manuscript. This information should be included, e.g., in Table 1, for sound scholarship and completeness. (iii) The strengths and limitations of the authors' approach vis-à-vis other theoretical approaches should be discussed with some degree of thoroughness (e.g., how the smallness of the authors' simulation system may affect the nature of the "phase transition" and the information that can be gathered regarding salt concentration inside vs. outside the "condensate" etc.).

      Comments on revised version:

      The authors have adequately addressed my previous concerns and suggestions. The manuscript is now significantly improved. The new results and analyses provided by the authors represent a substantial advance in our understanding of the role of electrostatics in the assembly of biomolecular condensates.

    1. Reviewer #2 (Public review):

      The regulation of protein function heavily relies on the dynamic changes in the shape and structure of proteins and their complexes. These changes are widespread and crucial. However, examining such alterations presents significant challenges, particularly when dealing with large protein complexes in conditions that mimic the natural cellular environment. Therefore, much emphasis has been put on developing novel methods to study protein structure, interactions, and dynamics. Crosslinking mass spectrometry (CSMS) has established itself as such a prominent tool in recent years. However, doing this in a quantitative manner to compare structural changes between conditions has proven to be challenging due to several technical difficulties during sample preparation. Luo and Ranish introduce a novel set of isobaric labeling reagents, called Qlinkers, to allow for a more straightforward and reliable way to detect structural changes between conditions by quantitative CSMS (qCSMS).

      The authors do an excellent job describing the design choices of the isobaric crosslinkers and how they have been optimized to allow for efficient intra- and inter-protein crosslinking to provide relevant structural information. Next, they do a series of experiments to provide compelling evidence that the Qlinker strategy is well suited to detect structural changes between conditions by qCSMS. First, they confirm the quantitative power of the novel-developed isobaric crosslinkers by a controlled mixing experiment. Then they show that they can indeed recover known structural changes in a set of purified proteins (complexes) - starting with single subunit proteins up to a very large 0.5 MDa multi-subunit protein complex - the polII complex.

      The authors give a very measured and fair assessment of this novel isobaric crosslinker and its potential power to contribute to the study of protein structure changes. They show that indeed their novel strategy picks up expected structural changes, changes in surface exposure of certain protein domains, changes within a single protein subunit but also changes in protein-protein interactions. However, they also point out that not all expected dynamic changes are captured and that there is still considerable room for improvement (many not limited to this crosslinker specifically but many crosslinkers used for CSMS).

      Taken together the study presents a novel set of isobaric crosslinkers that indeed open up the opportunity to provide better qCSMS data, which will enable researchers to study dynamic changes in the shape and structure of proteins and their complexes.

      Comments on latest version:

      The authors have not really addressed most of the concerns. They have added minimal discussion points to the text. This is okay from my perspective as eLife's policy is to leave it up to the authors of how strongly to consider the reviewers' comments. I should add that I do fully agree with the other reviewer that the quantitative assessment from Figure 1 should have been done in triplicates at least and that this would actually be essential.

    1. Reviewer #2 (Public review):

      Significance:

      TREM2 is an immunomodulatory receptor expressed on myeloid cells and microglia in the brain. TREM2 consists of a single immunoglobular (Ig) domain that leads into a flexible stalk, transmembrane helix, and short cytoplasmic tail. Extracellular proteases can cleave TREM2 in its stalk and produce a soluble TREM2 (sTREM2). TREM2 is genetically linked to Alzheimer's disease (AD), with the strongest association coming from an R47H variant in the Ig domain. Despite intense interest, the full TREM2 ligand repertoire remains elusive, and it is unclear what function sTREM2 may play in the brain. The central goal of this paper is to assess the ligand-binding role of the flexible stalk that is generated during the shedding of TREM2. To do this, the authors simulate the behavior of constructs with and without stalk. However, it is not clear why the authors chose to use the isolated Ig domain as a surrogate for full-length TREM2. Additionally, experimental binding evidence that is misrepresented by the authors contradicts the proposed role of the stalk.

      Summary and strengths:

      The authors carry out MD simulations of WT and R47H TREM2 with and without the flexible stalk. Simulations are carried out for apo TREM2 and for TREM2 in complex with various lipids. They compare results using just the Ig domain to results including the flexible stalk that is retained following cleavage to generate sTREM2. The computational methods are well-described and should be reproducible. The long simulations are a strength, as exemplified in Figure 2A where a CDR2 transition happens at ~400-600 ns. The stalk has not been resolved in structural studies, but the simulations suggest the intriguing and readily testable hypothesis that the stalk interacts with the Ig domain and thereby contributes to the stability of the Ig domain and to ligand binding. I suspect biochemists interested in TREM2 will make testing this hypothesis a high priority.

      Weaknesses:

      Unfortunately, the work suffers from two fundamental flaws.

      (1) The authors state that reported differences in ligand binding between the TREM2 and sTREM2 remain unexplained, and the authors cite two lines of evidence. The first line of evidence, which is true, is that there are differences between lipid binding assays and lipid signaling assays. However, signaling assays do not directly measure binding. Secondly, the authors cite Kober et al 2021 as evidence that sTREM2 and TREM2 showed different affinities for Abeta1-42 in a direct binding assay. Unfortunately, when Kober et al measured the binding of sTREM2 and Ig-TREM2 to Abeta they reported statistically identical affinities (Kd = 3.8 {plus minus} 2.9 µM vs 5.1 {plus minus} 3.7 µM) and concluded that the stalk did not contribute measurably to Abeta binding.

      (2) The authors appear to take simulations of the Ig domain (without any stalk) as a surrogate for the full-length, membrane-bound TREM2. They compare the Ig domain to a sTREM2 model that includes the stalk. While it is fully plausible that the stalk could interact with and stabilize the Ig domain, the authors need to demonstrate why the full-length TREM2 could not interact with its own stalk and why the isolated Ig domain is a suitable surrogate for this state.

    1. Reviewer #2 (Public review):

      Summary:

      The flexibility of the ligand binding domain (LBD) of NRs allows various modes of ligand binding leading to various cellular outcomes. In the case of PPARγ, it's known that two ligands can cobind to the receptor. However, whether a covalent inhibitor functions by blocking the binding of a non-covalent ligand, or cobind in a manner that weakens the binding of a non-covalent ligand remains unclear. In this study, the authors first used TR-FRET and NMR to demonstrate that covalent inhibitors (such as GW9662 and T0070907) weaken but do not prevent non-covalent synthetic ligands from binding, likely via an allosteric mechanism. The AF-2 helix can exchange between active and repressive conformations, and covalent inhibitors shift the conformation toward a transcriptionally repressive one to reduce orthosteric binding of the non-covalent ligands. By co-crystal studies, the authors further reveal the structural details of various non-covalent ligand binding mechanisms in a ligand specific manner (e.g., an alternate binding site, or a new orthosteric binding mode by alerting covalent ligand binding pose).

      Strengths:

      The biochemical and biophysical evidence as presented is strong and convincing.

      Additional comments:

      The co-crystal studies were performed by soaking a non-covalent ligand to LBD pre-crystalized with a covalent inhibitor. Since the covalent inhibitors would shift the LBD toward transcriptionally repressive conformation which reduces orthosteric binding of non-covalent ligands, one might ask if the sequence was reversed (i.e., soaking a covalent inhibitor to LBD pre-crystalized with a non-covalent ligand), would similar conclusion be drawn? The authors have reasonably speculated that it might be difficult to soak a covalent inhibitor into preformed crystals where the PPARγ LBD is already bound to a non-covalent ligand, because the larger non-covalent ligand could block the covalent inhibitor to gain access to the region of the orthosteric pocket required for covalent modification.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors study how the deubiquitinase USP8 regulates endosome maturation in C. elegans and mammalian cells. The authors have isolated USP8 mutant alleles in C. elegans and used multiple in vivo reporter lines to demonstrate the impact of USP8 loss-of-function on endosome morphology and maturation. They show that in USP8 mutant cells, the early endosomes and MVB-like structures are enlarged while the late endosomes and lysosomal compartments are reduced. They elucidate that USP8 interacts with Rabx5, a guanine nucleotide exchange factor (GEF) for Rab5, and show that USP8 likely targets specific lysine residue of Rabx5 to dissociate it from early endosomes. They also find that localization of USP8 to early endosomes are disrupted in Rabx5 mutant cells. They observe that in both Rabx5 and USP8 mutant cells, the Rab7 GEF SAND-1 puncta which likely represents late endosomes are diminished, although that Rabex5 are accumulated in USP8 mutant cells. The authors provide evidence that USP8 regulates endosomal maturation in a similar fashion in mammalian cells. Based on their observations they propose that USP8 dissociates Rabex5 from early endosomes and enhances the recruitment of SAND-1 to promote endosome maturation.

      Strengths:

      The major highlights of this study include the direct visualization of endosome dynamics in a living multi-cellular organism, C. elegans. The high-quality images provide clear in vivo evidences to support the main conclusions. The authors have generated valuable resources to study mechanisms involved in endosome dynamics regulation in both the worm and mammalian cells, which would benefit many members in the cell biology community. The work identifies a fascinating link between USP8 and the Rab5 guanine nucleotide exchange factor Rabx5, which expands the targets and modes of action of USP8. The findings make a solid contribution toward the understanding of how endosomal trafficking is controlled.

      Weaknesses:

      - The authors utilized multiple fluorescent protein reporters, including those generated by themselves, to label endosomal vesicles. Although these are routine and powerful tools for studying endosomal trafficking, these results cannot tell that whether the endogenous proteins (Rab5, Rabex5, Rab7, etc.) are affected in the same fashion. Note that the authors have provided convincing evidence about the effects on Rab proteins in the revised manuscript.<br /> - The authors clearly demonstrated a link between USP8 and Rabx5, and they showed that cells deficient of both factors displayed similar defects in late endosomes/lysosomes. But the authors didn't confirm whether and/or to which extent that USP8 regulates endosome maturation through Rabx5. Additional genetic and molecular evidence might be required to better support their working model. Note that the authors have provided convincing evidence about the role of USP8-Rabx5 axis in the revised manuscript.

    1. Reviewer #2 (Public review):

      Summary:<br /> mRNA translation regulation permits cells to rapidly adapt to diverse stimuli by fine tuning gene expression. Specifically, the 13-subunit eukaryotic initiation factor 3 (eIF3) complex is critical for translation initiation as it aids in 48S PIC assembly to allow for ribosome scanning. In addition, eIF3 has been shown to drive transcript-specific translation by binding mRNA 5' cap structures through the eIF3d subunit. Dysregulation of eIF3 has been implicated in oncogenesis, however the precise eIF3 subunit contributions are unclear. Here, Herrmannová et al. aim to investigate how eIF3 subcomplexes, generated by knock down (KD) of either eIF3e, eIF3d or eIF3h, affect the global translatome. Using Ribo-seq and RNA-seq, the authors identified a large number of genes that exhibit altered translation efficiency upon eIF3d/e KD, while translation defects upon eIF3h KD were mild. eIF3d/eKD share multiple dysregulated transcripts, perhaps due to both subcomplexes lacking eIF3d. Both eIF3d/e KD increase translation efficiency (TE) of transcripts encoding lysosomal, ER and ribosomal proteins, suggesting a role of eIF3 in ribosome biogenesis and protein quality control. Many transcripts encoding ribosomal proteins harbor a TOP motif, and eIF3d KD and eIF3e KD cells exhibit a striking induction of these TOP-modified transcripts. On the other hand, eIF3d KD and eIF3e KD leads to a reduction of MAPK/ERK pathway proteins. Despite this downregulation, eIF3d KD and eIF3e KD activates MAPK/ERK signaling as ERK1/2 and c-Jun phosphorylation was induced. Finally, in all three knockdowns, MDM2 and ATF4 protein levels are reduced. This is notable because MDM2 and ATF4 both contain short uORFs upstream of the start codon, and further supports a role of eIF3 in reinitiation. Altogether, Herrmannová et al. have gained key insights to precise eIF3-mediated translational control as it relates to key signaling pathways implicated in cancer.

      Strengths:<br /> The authors have provided a comprehensive set of data to analyze RNA and ribosome footprinting upon perturbation of eIF3d, eIF3e, and eIF3h. As described above in the summary, these data present many interesting starting points to understand additional roles of the eIF3 complex and specific subunits in translational control.

      Weaknesses:<br /> - The differences between eIF3e and eIF3d knockdown are difficult to reconcile, especially since eIF3e knockdown leads to reduction in eIF3d levels.<br /> - The paper would be strengthened by experiments directly testing what RNA determinants allow for transcript-specific translation regulation by the eIF3 complex. This would allow the paper to be less descriptive.<br /> - The paper would have more biological relevance if eIF3 subunits were perturbed to mimic naturally occurring situations where eIF3 is dysregulated. For example, eIF3e is aberrantly upregulated in certain cancers, and therefore an overexpression and profiling experiment would have been more relevant than a knockdown experiment.

      The first review is unchanged as no additional experiments were provided to address the first review.

    1. Reviewer #3 (Public review):

      Summary:

      This study examined the role that the activation and plasma membrane localisation of a calcium dependent protein kinase (CPK3) plays in plant defence against viruses.<br /> The authors clearly demonstrate that the ability to hamper the cell-to-cell spread of the virus P1AMV is not common to other CPKs which have roles in defence against different types of pathogens, but appears to be specific to CPK3 in Arabidopsis. Further, they show that lateral diffusion of CPK3 in the plasma membrane is reduced upon P1AMV infection, with CPK3 likely present in nano-domains. This stabilisation however, depends on one of its phosphorylation substrates a Remorin scaffold protein REM1-2. However, when REM1-2 lateral diffusion was tracked, it showed an increase in movement in response to P1AMV infection. These contrary responses to P1AMV infection were further demonstrated to be interdependent, which led the authors to propose a model in which activated CPK3 is stabilised in nano-domains in part by its interaction with REM1.2, which it binds and phosphorylates, allowing REM1-2 to diffuse more dynamically within the membrane.

      The likely impact of this work is that it will lead to closer examination of the formation of nano-domains in the plasma membrane and dissection of their role in immunity to viruses, as well as further investigation into the specific mechanisms by which CPK3 and REM1-2 inhibit the cell-to-cell spread of viruses, including examination of their roles in cytoskeletal dynamics.

      Strengths:

      The paper provided compelling evidence about the roles of CPK3 and REM1-2 through a combination of logical reverse genetics experiments and advanced microscopy techniques, particularly in single particle tracking.

      Weaknesses:

      There is limited discussion or exploration of the role that CPK3 has in cytoskeletal organisation and whether this may play a role in the plant's defence against viral propagation. Further. although the authors show that there is no accumulation of CPK3/Rem1.2 at plasmodesmata, it would be interesting to investigate whether the demonstrated reduction of viral propagation is due to changes in PD permeability.

    1. Reviewer #2 (Public review):

      Summary:

      The authors tested the efficiency of a model combining Pavlovian fear valuation and instrumental valuation. This model is amenable to many behavioral decision and learning setups - some of which have been or will be designed to test differences in patients with mental disorders (e.g., anxiety disorder, OCD, etc.).

      Strengths:

      (1) Simplicity of the model which can at the same time model rather complex environments.

      (2) Introduction of a flexible omega parameter.

      (3) Direct application to a rather advanced VR task.

      (4) The paper is extremely well written. It was a joy to read.

      Weaknesses:

      Almost none! In very few cases, the explanations could be a bit better.

    1. Reviewer #2 (Public review):

      Summary:

      The authors show that small EVs trigger the formation of filopodia in both cancer cells and neurons. They go on to show that two cargo proteins, endoglin, and THSD7A, are important for this process. This possibly occurs by activating the Rho-family GTPase CDC42.

      Strengths:

      The EV work is quite strong and convincing. The proteomics work is well executed and carefully analyzed. I was particularly impressed with the chick metastasis assay that added strong evidence of in vivo relevance.

      Weaknesses:

      The weakest part of the paper is the Cdc42 work at the end of the paper. It is incomplete and not terribly convincing. This part of the paper needs to be improved significantly

    1. Reviewer #2 (Public review):

      Summary:

      This paper investigates whether large language models (LLMs) of increasing size more accurately align with brain activity during naturalistic language comprehension. The authors extracted word embeddings from LLMs for each word in a 30-minute story and regressed them against electrocorticography (ECoG) activity time-locked to each word as participants listened to the story. The findings reveal that larger LLMs more effectively predict ECoG activity, reflecting the scaling laws observed in other natural language processing tasks.

      Strengths:

      (1) The study compared model activity with ECoG recordings, which offer much better temporal resolution than other neuroimaging methods, allowing for the examination of model encoding performance across various lags relative to word onset.

      (2) The range of LLMs tested is comprehensive, spanning from 82 million to 70 billion parameters. This serves as a valuable reference for researchers selecting LLMs for brain encoding and decoding studies.

      (3) The regression methods used are well-established in prior research, and the results demonstrate a convincing scaling law for the brain encoding ability of LLMs. The consistency of these results after PCA dimensionality reduction further supports the claim.

      Weaknesses:

      (1) Some claims of the paper are less convincing. The authors suggested that "scaling could be a property that the human brain, similar to LLMs, can utilize to enhance performance", however, many other animals have brains with more neurons than the human brain, making it unlikely that simple scaling alone leads to better language performance. Additionally, the authors claim that their results show 'larger models better predict the structure of natural language.' However, it remains unclear to what extent the embeddings of LLMs capture the "structure" of language better than the lexical semantics of language.

      (2) The study lacks control LLMs with randomly initialized weights and control regressors, such as word frequency and phonetic features of speech, making it unclear what the baseline is for the model-brain correlation.

      (3) The finding that peak encoding performance tends to occur in relatively earlier layers in larger models is somewhat surprising and requires further explanation. Since more layers mean more parameters, if the later layers diverge from language processing in the brain, it raises the question of what aspects of the larger models make them more brain-like.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors extend their previous studies on trans-activation, cis-inhibition (PMID: 25255098) and cis-activation (PMID: 30628888) of the Notch pathway. Here they create a large number of cell lines using CHO-K1 and C2C12 cells expressing either Notch1-Gal4 or Notch2-Gal4 receptors which express a fluorescent protein upon receptor activation (receiver cells). For cis-inhibition and cis-activation assays, these cells were engineered to express one of the four canonical Notch ligands (Dll1, Dll4, Jag1, Jag2) under tetracycline control. Some of the receiver cells were also transfected with a Lunatic fringe (Lfng) plasmid to produce cells with a range of Lfng expression levels. Sender cells expressing all of the canonical ligands were also produced. Cells were mixed in a variety of co-culture assays to highlight trans-activation, cis-activation, and cis-inhibition. All four ligands were able to trans-activate Notch1 and Notch 2, although Jag1 transactivated Notch1 weakly. Lfng enhanced trans-activation of both Notch receptors by Dll1 and Dll4, and inhibited both receptors by Jag 1 and Jag2. Cis-expression of all four ligands were predominantly inhibitory, but Dll1 and Dll4 showed strong cis-activation of Notch2. Interestingly, cis-ligands preferentially inhibited trans-activation by the same ligand, with varying effects on other trans-ligands.

      Strengths:

      This represents the most comprehensive and rigorous analysis of the effects of canonical ligands on cis- and trans-activation, and cis-inhibition, of Notch1 and Notch2 in the presence or absence of Lfng so far. Studying cis-inhibition and cis-activation is difficult in vivo due to the presence of multiple Notch ligands and receptors (and Fringes) that often occur in single cells. The methods described here are a step towards generating cells expressing more complex arrays of ligands, receptors and Fringes to better mimic in vivo effects on Notch function.

      In addition, the fact that their transactivation results with most ligands on Notch1 and 2 in the presence or absence of Lfng were largely consistent with previous publications provides confidence that the author's assays are working properly.

      Weaknesses:

      In the original version, there was a major concern about quantifying the amount of Notch receptors and ligands on the cell surface (especially Jag1) based on total fluorescence. The authors have added data to demonstrate that most of the receptors and ligands are on the cell surface, allaying most of these concerns.

    1. Reviewer #2 (Public Review):

      Colomb et al. investigated here the heparin-binding activity of the HpARI family proteins from H. polygyrus. HpARIs bind to IL-33, a pleiotropic cytokine, and modulate its activities. HpARI1/2 has suppressive functions, while HpARI3 can enhance the interaction between IL-33 and its receptor. This study builds upon their previous observation that HpARI2 binds DNA via its CCP1 domain. Here, the authors tested the CCP1 domain of HpARIs in binding heparan sulfate, an important component of the extracellular matrix, and found that 1/2 bind heparan, but 3 cannot, which is related to their half-lives in vivo.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript analyzes and attempts to discriminate genetic requirements for DNA damage-induced cell cycle checkpoint induction, maintenance, and adaptation in budding yeast bearing one or two unrepairable DNA double strand breaks using auxin-induced degradation (AID) of key DNA damage response (DDR) factors. The study paid particular attention to solving a puzzle regarding how yeasts bearing two unrepaired DNA breaks fail to engage in "adaptation" whereas those with a single unrepairable break eventually resume cell cycling after a prolonged (up to 12 h) G2 arrest.

      The key findings are: 1. Genetic requirements for the entry and the maintenance of DDC are separable. For instance, Dun1 is partially required for the entry but not the DDC maintenance whereas Chk1 is only required for maintenance. 2. Cells with two unrepairable breaks respond to DDR only up to a certain time (~12-15 h post damage) and beyond this point, depend on spindle assembly checkpoint (SAC) and mitotic exit network (MEN) to halt cell cycling. 3. The authors also propose an interesting concept that the location of DNA breaks and their distance to centromeres are important factors dictating the effect of SAC/MEN on the duration of cell cycle arrest after prolonged arrest (and cells become "deaf" to persistent arrest signals) and yeast's adaptability following DNA damage. The results provide most compelling evidence to date on the role of SAC/MEN in DNA damage response and cell cycle arrest albeit its impact might be limited to the handful of model systems due to the vastly different centromeric elements and far larger chromosome sizes in metazoan cells. The study albeit briefly discussed the basis of transitions from entry, maintenance, and adaptation ( ex. changes in centromeric architectures), it does not offer detailed explanations or a testable hypothesis to this topic.

      Overall, the conclusion of the study is well supported by the elegant set of genetic experimental data and employed multiple readouts on DDC factor depletion on checkpoint integrity and cell cycle status. Although the study simply measures Rad53 phosphorylation as the primary metric to assess checkpoint status, it successfully demonstrated how the signaling is modified through the different stages and that eventually cells become recalcitrant to DDC signaling after a prolonged arrest. The results are clear, and rigorously tested and carefully interpreted with good discussion on the possible limitations. The revision provided detailed responses to the reviewers' comments and addressed a few key concerns, one of which is universally raised by the reviewers on the full functionality of AID tagged DDC factors, by simply expressing excess Rad9-AID to restore more normal looking checkpoint response. It will be interesting if the excess expression of other DDC factors could overcome suboptimal checkpoints in cells after 24 h post damage.

    1. Reviewer #2 (Public review):

      The current draft by Deischel et.al., describes the role of Pkc53E in the phosphorylation of Su(H) to down regulate its transcriptional activity to mount a successful immune response upon parasitic wasp-infection. Overall, I find the study interesting and relevant especially the identification of Pkc53E in phosphorylation of Su(H) is very nice. The authors have proved the central idea linking phosphorylation of Su(H) via Pkc53E to implying its modulation of Notch activity to mount a robust immune response is now well addressed in its entirety and I find the paper indeed very interesting.

      Comments on revised version:

      The authors have addressed all pending concerns and I have no further comments. I indeed complement the authors for their wonderful piece of work.

    1. Reviewer #3 (Public review):

      In this work the authors present a multi-strain SIR model in which viruses circulate in a heterogeneous population with different groups characterized by different cross-immunity structures. They reformulate the qualitative features of these SIR dynamics as a random walk characterized by new variants saturating at intermediate frequencies. Then they recast their microscopic description to an effective formalism in which viral strains lose fitness independently from one another. They study several features of this process numerically and analytically, such as the average variants frequency, the probability of fixation, and the coalescent time. They compare qualitatively the dynamics of this model to variants dynamics in RNA viruses such as flu and SARS-CoV-2

      The idea that vanishing fitness mechanisms that produce partial sweeps may explain important features of flu evolution is very interesting. Its simplicity and potential generality make it a powerful framework. As noted by the authors, this may have important implications for predictability of virus evolution and such a framework may be beneficial when trying to build predictive models for vaccine design. The vanishing fitness model is well analyzed and produces interesting structures in the strains coalescent. Even though the comparison with data is largely qualitative, this formalism would be helpful when developing more accurate microscopic ingredients that could reproduce viral dynamics quantitatively.<br /> This general framework has the potential to be more universal than human RNA viruses, in situations where invading mutants would saturate at intermediate frequencies.

      The qualitative connection between the coarse-grained features of these vanishing fitness dynamics and structured SIR processes offers additional intuition relevant to host-pathogens interactions, although as noted by the authors other ecological processes could drive similar evolutionary patterns. The additions in the revised manuscript, substantiating more thoroughly the connection between the SIR and the vanishing fitness description, are important to better appreciate the scope of the work.

    1. Reviewer #2 (Public review):

      Summary:

      The present study explores how thoughts map onto brain activity, a notoriously challenging question because of the dynamic, subjective, and abstract nature of thoughts. To tackle this question, the authors collected continuous thought ratings from participants watching a movie, and additionally made use of an open-source fMRI dataset recorded during movie watching as well as five established gradients of brain variation as identified in resting state data. Using a voxel-space approach, the results show that episodic knowledge, verbal detail, and sensory engagement of thoughts commonly modulate visual and auditory cortex, while intrusive distraction modulates the frontoparietal network. Additionally, sensory engagement mapped onto a gradient from primary to association cortex, while episodic knowledge mapped onto a gradient from the dorsal attention network to visual cortex. Building on the association between behavioral performance and neural activation, the authors conclude that sensory coupling to external input and frontoparietal executive control are key to comprehension in naturalistic settings.

      The manuscript stands out for its methodological advancements in quantifying thoughts over time and its aim to study the implementation of thoughts in the brain during naturalistic movie watching. However, the conceptualization of thoughts remains vague, limiting the study's insights into brain function.

      Strengths:

      (1) The study raises a question that has been difficult to study in naturalistic settings so far but is key to understanding human cognition, namely how thoughts map onto brain activation.<br /> (2) The thought ratings introduce a novel method for continuously tracking thoughts, promising utility beyond this study.<br /> (3) The authors used diverse data types, metrics, and analyses to substantiate the effects of thinking from multiple perspectives.

      Weaknesses:

      (1) The distinction between thinking and stimulus processing (in the sense of detecting and assigning meaning to features, modulated by factors such as attention) remains unclear. Is "thinking" a form of conscious access or a reportable read-out from sensory and higher-level stimulus processing? Or does it simply refer to the method used here to identify different processing states?<br /> (2) The dimensions of thought appear to be directly linked to brain areas traditionally associated with core faculties of perception and cognition. For example, superior temporal cortex codes for speech information, which is also where thought reports on verbal detail localize in this study. This raises the question of whether the present study truly captures mechanisms specific to thinking and distinct from processing, especially given that individual variations in reports were not considered and movie-specific features were not controlled for.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Yu et al. demonstrates that activation of caspase-3 is essential for synapse elimination by microglia, but not by astrocytes. This study also reveals that caspase 3 activation-mediated synapse elimination is required for retinogeniculate circuit refinement and eye-specific territories segregation in dLGN in an activity-dependent manner. Inhibition of synaptic activity increases caspase-3 activation and microglial phagocytosis, while caspase-3 deficiency blocks microglia-mediated synapse elimination and circuit refinement in the dLGN. The authors further demonstrate that caspase-3 activation mediates synapse loss in AD, loss of caspase-3 prevented synapse loss in AD mice. Overall, this study reveals that caspase-3 activation is an important mechanism underlying the selectivity of microglia-mediated synapse elimination during brain development and in neurodegenerative diseases.

      Strengths:

      A previous study (Gyorffy B. et al., PNSA 2018) has shown that caspase-3 signal correlates with C1q tagging of synapses (mostly using in vitro approaches), which suggests that caspase-3 would be an underlying mechanism of microglial selection of synapses for removal. The current study provides direct in vivo evidence demonstrating that caspase-3 activation is essential for microglial elimination of synapses in both brain development and neurodegeneration.

      The paper is well-organized and easy to read. The schematic drawings are helpful for understanding the experimental designs and purposes.

      Weaknesses:

      It seems that astrocytes contain large amounts of engulfed materials from ipsilateral and contralateral axon terminals (Figure S11B) and that caspase-3 deficiency also decreased the volume of engulfed materials by astrocytes (Figures S11C, D). So the possibility that astrocyte-mediated synapse elimination contributes to circuit refinement in dLGN cannot be excluded.

      Does blocking single or dual inactivation of synapse activity (using TeTxLC) increase microglial or astrocytic engulfment of synaptic materials (of one or both sides) in dLGN?

    1. Reviewer #2 (Public review):

      Summary:

      While it is often assumed that the cerebellar cortex connects, via its sole output neuron, the Purkinje cell, exclusively to the cerebellar nuclei, axonal projections of the Purkinje cells to dorsal brainstem regions have been well documented. This paper provides comprehensive mapping and quantification of such extracerebellar projections of the Purkinje cells, most of which are confirmed with electrophysiology in slice preparation. A notable methodological strength of this work is the use of highly Purkinje cell-specific transgenic strategies, enabling selective and unbiased visualization of Purkinje terminals in the brainstem. By utilizing these selective mouse lines, the study offers compelling evidence challenging the general assumption that Purkinje cell targets are limited to the cerebellar nuclei. While the individual connections presented are not entirely novel, this paper provides a thorough and unambiguous demonstration of their collective significance. Regarding another major claim of this paper, "characterization of direct Purkinje cell outputs (Title)", however, the depth of electrophysiological analysis is limited to the presence/absence of physiological Purkinje input to postsynaptic brainstem neurons whose known cell types are mostly blinded. Overall, conceptual advance is largely limited to confirmatory or incremental, although it would be useful for the field to have the comprehensive landscape presented.

      Strengths:

      (1) Unsupervised comprehensive mapping and quantification of the Purkinje terminals in the dorsal brainstem are enabled, for the first time, by using the current state-of-the-art mouse lines, BAC-Pcp2-Cre and synaptophysin-tdTomato reporter (Ai34).

      (2) Combinatorial quantification with vGAT puncta and synaptophysin-tdTomato labeled Purkinje terminals clarifies the anatomical significance of the Purkinje terminals as an inhibitory source in each dorsal brainstem region.

      (3) Electrophysiological confirmation of the presence of physiological Purkinje synaptic input to 7 out of 9 dorsal brainstem regions identified.

      (4) Pan-Purkinje ChR2 reporter provides solid electrophysiological evidence to help understand the possible influence of the Purkinje cells onto LC.

      Weaknesses:

      (1) The present paper is largely confirmatory of what is presented in a previous paper published by the author's group (Chen et al., 2023, Nat Neurosci). In this preceding paper, the author's group used AAV1-mediated anterograde transsynaptic strategy to identify postsynaptic neurons of the Purkinje cells. The experiments performed in the present paper are, by nature, complementary to the AAV1 tracing which can also infect retrogradely and thus is not able to demonstrate the direction of synaptic connections between reciprocally connected regions. Anatomical findings are all consistent with the preceding paper. The likely absence of robust physiological connections from the Purkinje to LC has also been evidenced in the preceding paper by examining c-Fos response to Purkinje terminal photoinhibition at the PBN/LC region.

      (2) Although the authors appear to assume uniform cell type and postsynaptic response in each of the dorsal brainstem nuclei (as noted in the Discussion, "PCs likely function similarly to their inputs to the cerebellar nuclei, where a very brief pause in firing can lead to large and rapid elevations in target cell firing"), we know that the responses to the Purkinje cell input are cell type dependent, which vary in neurotransmitter, output targets, somata size, and distribution, in the cerebellar and vestibular nuclei (Shin et al., 2011, J Neurosci; Najac and Raman, 2015, J Neurosci; Özcan et al., 2020, J Neurosci). This consideration impacts the interpretation of two key findings: (a) "Large ... PC-IPSCs are preferentially observed in subregions with the highest densities of PC synapses (Abstract)". For example, we know that the terminal sparse regions reported in the present paper do contain Floccular Targeted Neurons that are sparse yet have dense somatic terminals with profound postinhibitory rebound (Shin et al.). Despite their sparsity, these postsynaptic neurons play a distinct and critical role in proper vestibuloocular reflex. Therefore, associating broad synaptic density with "PC preferential" targets, as written in the Abstract, may not fully capture the behavioral significance of Purkinje extracerebellar projections. (b) "We conclude ... only a small fraction of cell. This suggests that PCs target cell types with specific behavioral roles (Abstract, the last sentence)". Prior research has already established that "PCs target cell types with specific behavioral roles in brainstem regions". Also, whether 23 % (for PCG), for example, is "a small fraction" would be subjective: it might represent a numerically small but functionally important cell type population. The physiological characterization provided in the present cell type-blind analysis could, from a functional perspective, even be decremental when compared to existing cell type-specific analyses of the Purkinje cell inputs in the literature.

      (3) The quantification analyses used to draw conclusions about<br /> (a) the significance of PC terminals among all GABAergic terminals and<br /> (b) the fractions of electrophysiologically responsive postsynaptic brainstem neurons may have potential sampling considerations:.<br /> (b.i) this study appears to have selected subregions from each brainstem nucleus for quantification (Figure 2). However, the criteria for selecting these subregions are not explicitly detailed, which could affect the interpretation of the results.<br /> (b.ii) the mapping of recorded cells (Figure 3) seems to show a higher concentration in terminal-rich regions of the vestibular nuclei.

    1. when putting thoughts into words. Words that remain in our head are freeto exist independent of how they’re used by other people.

      On one level, the reason is obvious: accountability. There’s a lot at stake...

      except somehow for Donald J. Trump and some in identity politics...

      How do they get around it? system 1 vs system 2

    1. Reviewer #2 (Public review):

      Summary:

      In Ferrareti et al. they identify adaptively introgressed genes using VolcanoFinder and then identify pathways enriched for adaptively introgressed genes. They use signet to identify pathways that are enriched for Denisovan alleles. The authors find that angiogenesis is one of the biological functions enriched for introgression.

      Strengths:

      Most papers that have studied the genetic basis of high altitude (HA) adaptation in Tibet have highly emphasized the role of a few genes (e.g. EPAS1, EGLN1), and in this paper the authors look for more subtle signals of selection in other genes to investigate how archaic introgression may be enriched at the pathway level. A couple of methods are used to confirm the consistency of the results.

      Looking into the biological functions enriched for Denisovan introgression in Tibetans is important for characterizing the impact of Denisovan introgression in facilitating high altitude adaptations.

      Weaknesses:

      I thank the authors for providing an improved version of their manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      To design proteins and predict disease, we want to predict the effects of mutations on the function of a protein. To make these predictions, biologists have long turned to statistical models that learn patterns that are conserved across evolution. There is potential to improve our predictions however by incorporating structure. In this paper the authors build a denoising auto-encoder model that incorporates sequence and structure to predict mutation effects. The model is trained to predict the sequence of a protein given its perturbed sequence and structure. The authors demonstrate that this model is able to predict the effects of mutations better than sequence-only models.

      As well, the authors curate a set of assays measuring the effect of mutations on thermostability. They demonstrate their model also predicts the effects of these mutations better than previous models and make this benchmark available for the community.

      Strengths:

      The authors describe a method that makes accurate mutation effect predictions by informing its predictions with structure.

      Weaknesses:

      In the review period, the authors included a previous method, SaProt, that similarly uses protein structure to predict the effects of mutations, in their evaluations.<br /> They see that SaProt performs similarly to their method.

      Readers should note that methods labelled as "few-shot" in comparisons do not make use of experimental labels, but rather use sequences inferred as homologous; these sequences are also often available even if the protein has never been experimentally tested.

      ProteinGym is largely made of deep mutational scans, which measure the effect of every mutation on a protein. These new benchmarks contain on average measurements of less than a percent of all possible point mutations of their respective proteins. It is unclear what sorts of protein regions these mutations are more likely to lie in; therefore it is challenging to make conclusions about what a model has necessarily learned based on its score on this benchmark. For example, several assays in this new benchmark seem to be similar to each other, such as four assays on ubiquitin performed in pH 2.25 to pH 3.0.

      The authors state that their new benchmarks are potentially more useful than those of ProteinGym, citing Frazer 2021; readers should be aware that the mutations from the later source are actually mutations whose impact on human health has been determined through multiple sources, including population genetics, clinical evidence and some experiment.

    1. Reviewer #2 (Public review):

      Summary:

      To follow-up on recent reports of Xist-autosome interaction the authors examine female (and male transgenic) mESCs and MEFs by CHARTseq. Upon finding that only 10% of reads map to X, they sought to identify reproducible alternative sites of Xist-binding, and identify ~100 autosomal Xist-binding sites and show a transient impact on expression.

      Strengths:

      The authors address a topical and interesting question with a series of models including developmental timepoints and utilize unbiased approaches (CHARTseq, RNAseq). For the CHARTseq they have controls of both sense probes and male cells; and indeed do detect considerable background with their controls. The use of deletions emphasizes that intact functional Xist is involved. The use of 'metagene' plots provides a visual summation of genic impact.

      Weaknesses:

      Overall, the result presentation has many 'sample' gene presentations (in contrast to the stronger 'metagene' summation of all genes). The manuscript often relies on discussion of prior X chromosomal studies, while the data generated would allow assessment of the X within this study to confirm concordance with prior results using the current methodology/cell lines. Many of the 'follow-up' analyses are in fact reprocessing and comparison of published datasets. The figure legends are limited, and sample size and/or source of control is not always clear. While similar numbers of autosomal Xist-binding sites were often observed, the presented data did not clarify how many were consistent across time-points/cell types. While there were multiple time points/lines assessed, only 2 replicates were generally done.

      Aim achievement:

      The authors do identify autosomal sites with enrichment of chromatin marks and evidence of silencing. More details regarding sample size and controls (both treatment, and most importantly choice of 'non-targets' - discussed in comments to authors) are required to determine if the results support the conclusions.

      Specific scenarios for which I am concerned about the strength of evidence underlying the conclusion:

      I found the conclusion "Thus, RepB is required not only for Xist to localize to the X- chromosome but also for its localization to the ~100 autosomal genes " (p5) in constrast to the statement 2 lines prior: "A similar number of Xist peaks across autosomes in ΔRepB cells was observed and the autosomal targets remained similar". Some quantitative statistics would assist in determining impact, both on autosomes and also X; perhaps similar to the quintile analysis done for expression.

      It is stated that there is a significant suppression of X-linked genes with the autosomal transgenes; however, only an example is shown in Figure 4B. To support this statement, a full X chromosomal geneset should be shown in panels F and G, which should also list the number of replicates. As these are hybrid cells, perhaps allelic suppression could be monitored? Is Med14 usually subject to X inactivation in the Ctrl cells, and is the expression reduced from both X chromosomes or preferentially the active (or inactive) X chromosome?

      The expression change for autosomes after transgene induction is barely significant; and it was not clear what was used as the Ctrl? This is a critical comparator as doxycycline alone can change expression patterns.

      In the discussion there is the statement. "Genetic analysis coupled to transcriptomic analysis showed that Xist down-regulates the target autosomal genes without silencing them. This effect leads to clear sex difference - where female cells express the ~100 or so autosomal genes at a lower level than male cells (Figure 7H)." This sweeping statement fails to include that in MEFs there is no significant expression difference, in transgenics only borderline significance, and at d14 no significant expression difference. The down-regulation overall seems to be transient during development while targeting is ongoing?

      Finally, I would have liked to see discussion of the consistency of the identified genes to support the conclusion that the autosomal sites are not merely the results of Xist diffusion.

      The impact of Xist on autosomes is important for consideration of impact of changes in Xist expression with disease (notably cancers). Knowing the targets (if consistent) would enable assessment of such impact.

    1. Reviewer #2 (Public review):

      This focused study by Lowry and colleagues that identifies a key molecular motif that controls ion permeation vs combined ion permeation and lipid transport in three families of channel/scramblase proteins, in TMEM16 channels, in the plant-expressed and stress-gated cation channel OSCA, and in the mammalian homolog and mechanosensitive cation channel, TMEM63. Between them, these three channels share low sequence similarity and have seemingly differing functions, as anion (TMEM16 channels), or stress-activated cation channels (OSCA/TMEM63). The study finds that in all three families, mutating a single hydrophobic residue in the ion permeation pathway of the channels confers lipid transport through the pores of the channels, indicating that TMEM16 and related OSCA and TMEM63 channels have a conserved potential for both ion and lipid permeation. The authors interpret the findings as revealing that these channel/scramblase proteins have a relatively low "energetic barrier for scramblase" activity. The experiments are done with a high level of rigor and the revised paper is very well written and addresses the previous concerns.

    1. Reviewer #3 (Public review):

      When members of two related but diverged species mate, the resulting hybrids can produce offspring where parts of one species' genome replace those of the other. These "introgressions" often create regions with a much greater density of sequence differences than are normally found between members of the same species. Previous studies have shown that increased sequence differences, when heterozygous, can reduce recombination during meiosis specifically in the region of increased difference. However, most of these studies have focused on crossover recombination, and have not measured noncrossovers. The current study uses a pair of Saccharomyces uvarum crosses: one between two natural isolates that, while exhibiting some divergence, do not contain introgressions; the other is between two fermentation strains that,<br /> when combined, are heterozygous for 9 large regions of introgression that have much greater divergence than the rest of the genome. The authors wished to determine if introgressions differently affected crossovers and noncrossovers, and, if so, what impact that would have on the gene shuffling that occurs during<br /> meiosis.

      While both crossovers and noncrossovers were measured, assessing the true impact of increased heterology (inherent in heterozygous introgressions) is complicated by the fact that the increased marker density in heterozygous introgressions also increases the ability to detect noncrossovers. The authors now use a revised correction aimed at compensating for this difference, and based on that correction, conclude that, while as expected crossovers are decreased by increased sequence heterology, noncrossovers neither increase nor decrease substantially. They then show that genetic shuffling overall is substantially reduced in regions of heterozygous introgression, which is not surprising given that one type of event is reduced and the other remains at similar levels. However, the correction currently used remains poorly justified, tests of its validity are not presented. Thus, the only possibly novel conclusion, that noncrossovers are less affected by heterology than crossovers, remains to be adequately tested.

      In conclusion, of the three main conclusions as stated in the abstract, one (that crossovers go down) has been shown in many systems, one (that noncrossovers increase) is wrong, and the third (that allele shuffling is reduced) is obvious. Given this, the impact of this work on the field will be minimal at best, and negative to the extent that readers are led astray.

    1. Reviewer #3 (Public review):

      Summary:

      How is it that animals find learned food locations in their daily life? Do they use landmarks to home in on these learned locations or do they learn a path based on self-motion (turn left, take ten steps forward, turn right, etc.). This study carefully examines this question in a well-designed behavioral apparatus. A key finding is that to support the observed behavior in the hidden food arena, mice appear to not use the distal cues that are present in the environment for performing this task. Removal of such cues did not change the learning rate, for example. In a clever analysis of whether the resulting cognitive map based on self-motion cues could allow a mouse to take a shortcut, it was found that indeed they are. The work nicely shows the evolution of the rodent's learning of the task, and the role of active sensing in the targeted reduction of uncertainty of food location proximal to its expected location.

      Strengths:

      A convincing demonstration that mice can synthesize a cognitive map for the finding of a static reward using body frame-based cues. Showing that uncertainty of final target location is resolved by an active sensing process of probing holes proximal to the expected location. Showing that changing the position of entry into the arena rotates the anticipated location of the reward in a manner consistent with failure to use distal cues.

      Weaknesses:

      Weaknesses: The Reviewing Editor felt that previously identified weaknesses from Reviewer #3 were adequately addressed in the final manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Plectin is a cytolinker that associates with all three main components of the cytoskeleton and intercellular junctions and is essential for epithelial tissue integrity. Previous reports showed that PLEC regulates tumor growth and metastasis in different cancers. In this manuscript, the authors described PLEC as a target in the initiation and growth of HCC. They showed that inhibiting PLEC reduced tumorigenesis in different in vitro and in vivo HCC models, including in a xenograft model, DEN model, oncogene-induced HCC model, and a lung metastasis model. Mechanistically, the authors showed that inhibiting PLEC results in a disorganized cytoskeleton, deficiency in cell migration, and changes in relevant signaling pathways.

      Strengths:

      In general, the data are shown in multiple ways and support the main conclusion of the manuscript. The results add to the field by highlighting the importance of cellular mechanics in cancer progression.

      Weaknesses:

      (1) The annotation of mouse numbers is confusing. In Figures 2A B D E F, it should be the same experiment, but the N numbers in A are 6 and 5. In E and F they are 8 and 3. Similarly, in Figure 2H, in the tumor size curve, the N values are 4,4,5,6. In the table, N values are 8,8,10,11 (the authors showed 8,7,8,7 tumors that formed in the picture).

      (2) In Figure 3D and Figure S3C, the changes in most of the proteins/phosphorylation sites are not convincing/consistent. These data are not essential for the conclusion of the paper and WB is semi-quantitative. Maybe including more plots of the proteins from proteomic data could strengthen their detailed conclusions about the link between Plectin and the FAK, MAPK/Erk, PI3K/Akt pathways as shown in 3E.

      (3) Figure S7A and B, The pictures do not show any tumor, which is different from Figure 7A and B (and from the quantification in S7A lower right). Is it just because male mice were used in Figure 7 and female mice were used in Figure S7? Is there literature supporting the sex difference for the Myc-sgP53 model?

      (4) Figure 2F, S2A, PleΔAlb mice more frequently formed larger tumors, as reflected by overall tumor size increase. The interpretation of the authors is "possibly implying reduced migration or increased cohesion of plectin-depleted cells". It is quite arbitrary to make this suggestion in the absence of substantial data or literature to support this theory.

      (5) Mutation or KO PLEC has been shown to cause severe diseases in humans and mice, including skin blistering, muscular dystrophy, and progressive familial intrahepatic cholestasis. Please elaborate on the potential side effects of targeting plectin to treat HCC.

    1. Reviewer #2 (Public review):

      Summary:

      This study comprehensively presents data from single nuclei sequencing of Heigai pig skeletal muscle in response to conjugated linoleic acid supplementation. The authors identify changes in myofiber type and adipocyte subpopulations induced by linoleic acid at depth previously unobserved. The authors show that linoleic acid supplementation decreased the total myofiber count, specifically reducing type II muscle fiber types (IIB), myotendinous junctions, and neuromuscular junctions, whereas type I muscle fibers are increased. Moreover, the authors identify changes in adipocyte pools, specifically in a population marked by SCD1/DGAT2. To validate the skeletal muscle remodeling in response to linoleic acid supplementation, the authors compare transcriptomics data from Laiwu pigs, a model of high intramuscular fat, to Heigai pigs. The results verify changes in adipocyte subpopulations when pigs have higher intramuscular fat, either genetically or diet-induced. Targeted examination using cell-cell communication network analysis revealed associations with high intramuscular fat with fibro-adipogenic progenitors (FAPs).  The authors then conclude that conjugated linoleic acid induces FAPs towards adipogenic commitment. Specifically, they show that linoleic acid stimulates FAPs to become SCD1/DGAT2+ adipocytes via JNK signaling. The authors conclude that their findings demonstrate the effects of conjugated linoleic acid on skeletal muscle fat formation in pigs, which could serve as a model for studying human skeletal muscle diseases.

      Strengths:

      The comprehensive data analysis provides information on conjugated linoleic acid effects on pig skeletal muscle and organ function. The notion that linoleic acid induces skeletal muscle composition and fat accumulation is considered a strength and demonstrates the effect of dietary interactions on organ remodeling. This could have implications for the pig farming industry to promote muscle marbling. Additionally, these data may inform the remodeling of human skeletal muscle under dietary behaviors, such as elimination and supplementation diets and chronic overnutrition of nutrient-poor diets. However, the biggest strength resides in thorough data collection at the single nuclei level, which was extrapolated to other types of Chinese pigs.

      Weaknesses:

      Although the authors compiled a substantial and comprehensive dataset, the scope of cellular and molecular-level validation still needs to be expanded. For instance, the single nuclei data suggest changes in myofiber type after linoleic acid supplementation, but these findings need more thorough validation. Further histological and physiological assessments are necessary to address fiber types and oxidative potential. Similarly, the authors propose that linoleic acid alters adipocyte populations, FAPs, and preadipocytes; however, there are limited cellular and molecular analyses to confirm these findings. The identified JNK signaling pathways require additional follow-ups on the molecular mechanism or transcriptional regulation. However, these issues are discussed as potential areas for future exploration. While various individual studies have been conducted on mouse/human skeletal muscle and adipose tissues, these have only been briefly discussed, and further investigation is warranted. Additionally, the authors incorporate two pig models into their results, but they only examine one muscle group. Exploring whether other muscle groups respond similarly or differently to linoleic acid supplementation would be valuable. Furthermore, the authors should discuss how their results translate to human and pig nutrition, such as the desirability and cost-effectiveness for pig farmers and human diets high in linoleic acid. Notably, while the single nuclei data is comprehensive, there needs to be a statement on data deposition and code availability, allowing others access to these datasets.

    1. Reviewer #2 (Public review):

      Summary:

      The authors set out to demonstrate a mechanistic link between Fcgamma receptor (IIIA) glycosylation and IgG binding affinity and signaling - resulting in antibody-dependent cellular cytotoxicity - ADCC. The work builds off prior findings from this group about the general impact of glycosylation on FcR (Fc receptor)-IgG binding.

      Strengths:

      The structural data (NMR) is highly compelling and very significant to the field. A demonstration of how IgG interacts with FcgRIIIA in a manner sensitive to glycosylation of both the IgG and the FcR fills a critical knowledge gap. The approach to demonstrate the selective impact of glycosylation at N162 is also excellent and convincing. The manuscript/study is, overall, very strong.

      Weaknesses:

      After revision, which I feel addressed the minor concerns well, the last comment about significance in the long-term is all that remains. Essentially, it will be important in downstream research to determine whether changes in N162 glycan composition ever occur naturally as a result of some factor(s) that include various disease states, inflammation, age, and so on. The answer (either way) does not diminish the importance of understanding molecular details governing antibody-receptor interactions, but it would be very interesting to know if those glycans are regulated in a way that modulates ADCC activity.

    1. Reviewer #2 (Public review):

      Summary:

      This is a high-quality biophysical study providing valuable new in vitro information on the modes of HIV-1 integrase protein (IN) interaction with the double stranded (ds)DNA.

      Strengths:

      Both main experimental approaches used in this study: magnetic tweezers (MT) and atomic force microscopy (AFM) are used at the state-of-the-art level.

      Weaknesses:

      (1) The findings of Fig.1 suggest modest preference of IN oligomers for the processed DNA ends typical of the viral dsDNA in the intasome and the DNA with blunt ends relative to the IN-oligomer binding to the random internal sites on DNA. This is an impressive result. Is it completely new? What was known about it? Can IN oligomer bind and unbind on the time of experiment? Is it an equilibrium preference? Was the effect of Mg2+ in that binding known?

      (2) Regarding the AFM-observed IN-induced DNA bending and looping. How defined is the DNA crossover angle in the looped state? How many IN molecules typically hold it together? What density of IN per DNA length is needed to observe formation of IN oligomers, and their induced DNA beds and loops? It looks like more information on the two dsDNA crossover points held together by IN oligomers can be obtained from the AFM images, similar to the ones in Fig. S22. In particular, the preferred crossover angle (similar to bending angel of one DNA) and the total number of IN proteins within the oligomer holding this crossover point together can be extracted from the AFM data at higher resolution.

      (3) Similarly, questions for Fig.3. What is the typical binding density (i.e. IN per DNA unit length) required for the IN-induced rosette formation? For the IN-induced 3D condensation? I understand that the AFM is not the good method to estimate the protein:DNA stoichiometry, as the mica surface and its treatment affect the protein/DNA interactions compared to the bulk solution. But still, in combination with the MT data there should be at least approximate estimate of the degree of DNA saturation. With IN oligomers that cause these sharp cooperative structural transitions of the complex. The fact that higher salt increases critical concentration of IN for these transitions is consistent with the critical levels of DNA saturation with IN required for each transition. Also, the fact that the rosette formation is not observed on shorter 3Kbp DNA but is observed on longer 4.8Kbp and 9Kbp comes from the lower probability of looping in the shorter DNA and can be discussed/interpreted. Maybe the persistence length of the DNA/IN complex at this level of its saturation can be estimated from these data. This persistence length should be shorter than for the bare DNA, as the IN binding induces DNA bending.

      (4) In the section describing the simulations of the IN-induced dsDNA compaction the authors introduce a very simple model in which IN tetramer is presented as a bead of the size of ~12 bp similar to the binding site size of the singe IN on DNA with the four binding sites for DNA. It would be useful to discuss the published experimental structural data on the IN-DNA complexes available to better rationalize this choice of the model. In general, more overview of the available information on IN-DNA complexes and discussion of how present results fit into the general story and add to it would be useful. The authors fit their modeling results to their experimental data to obtain the individual monomeric IN-DNA interaction strength of 5 kBT. What is the geometry of these for DNA binding sites on the IN tetramer? Is it important for the complex structure? Also, the authors mention that the additional IN-IN interactions are required to reproduce their AFM results. What is the geometry and the strength of these interactions? It should matter for the structure of the IN-DNA aggregate. For example, if the IN molecules or DNA-bound oligomers were only interacting head-to-tail on the DNA that they bind to, it would lead to the filament formation, rather than the 3D condensate. What was the density of the IN oligomers on DNA to lead to each of the two AFM-observed transitions: (i) the "rosette formation" and (ii) the denser 3D aggregate formation? It may be possible to answer these important questions based on the AFM images. Is the higher resolution AFM measuring the oligomer sizes and their densities on the DNA possible?

      (5) Regarding the elastic and viscoelastic properties of the IN-DNA complexes studied in Fig. 4. These are very interesting observations that could take more interpretation. For example, why is the rosette center in Fig.4C has lower stiffness that the loop area? Is it because in the loops the stiffness is more of the background and bare DNA is felt? Does the stiffness of the fully compacted complex in Fig.4D follow the density of the globule?

      (6) Also, more interpretation of the observed dwell times and velocity distributions of the complex unfolding vs force can be provided, and what it tells us about the interactions that hold this complex together.

      (7) The effect of ALINIs on the structure of rosette and denser condensate is interesting. Based on the published notion on where ALINIS bind to IN and what kind of interactions they prevent can these results be better interpreted? Maybe the IN-IN interactions that hold the rosette together are the same as the ones that hold the dense aggregate together, but just at higher [IN]? And because the fewer IN interactions have to hold large DNA loops in the rosette, they are weaker interactions that are easier to disrupt via the same ALINI-IN interactions?

      (8) Finally, in the discussion it would be quite valuable if the authors could comment on the conclusions based on their findings for the in vivo IN-DNA interactions inside the mature capsid. As there are 100-150 IN molecules per capsid within the very small capsid volume, do all of these IN bunch up together on the dsDNA being synthesized? By the end of the reverse transcription when the vDNA ends are synthesized and processed, can this IN oligomer be re-bound to form the synapse of the vDNA ends?

    1. Reviewer #2 (Public review):

      Summary:

      Micronuclei are aberrant nuclear structures frequently seen following the missegregation of chromosomes. The authors present two image analysis methods, one robust and another rapid, to identify micronuclei (MN) bearing cells. The authors induce chromosome missegregation using an MPS1 inhibitor to check their software outcomes. In missegregation-induced cells, the authors do not distinguish cells that have MN from those that have MN with additional segregation defects. The authors use RNAseq to assess the outcomes of their MN-identifying methods: they do not observe a transcriptomic signature specific to MN but find changes that correlate with aneuploidy status. Overall, this work offers new tools to identify MN-presenting cells, and it sets the stage with clear benchmarks for further software development.

      Strengths:

      Currently, there are no robust MN classifiers with a clear quantification of their efficiency across cell lines (mIoU score). The software presented here tries to address this gap. GitHub material (tools, protocols, etc) provided is a great asset to naive and experienced computational biologists. The method has been tested in more than one cell line. This method can help integrate cell biology and 'omics' studies.

      Weaknesses:

      Although the classifier outperforms available tools for MN segmentation by providing mIOU, it's not yet at a point where it can be reliably applied to functional genomics assays where we expect a range of phenotypic penetrance.

      Spindle checkpoint loss (e.g., MPS1 inhibition) is expected to cause a variety of nuclear atypia: misshapen, multinucleated, and micronucleated cells. It may be difficult to obtain a pure MN population following MPS1 inhibitor treatment, as many cells are likely to present MN among multinucleated or misshapen nuclear compartments. Given this situation, the transcriptomic impact of MN is unlikely to be retrieved using this experimental design, but this does not negate the significance of the work. The discussion will have to consider the nature, origin, and proportion of MN/rupture-only states - for example, lagging chromatids and unaligned chromosomes can result in different states of micronuclei and also distinct cell fates.

    1. Reviewer #2 (Public review):

      This manuscript aims to investigate the biological impact and mechanisms of phosphodiesterase 1A (PDE1A) in promoting non-small cell lung cancer (NSCLC) progression. They first analyzed several databases and used three established NSCLC cell lines and a normal cell line to demonstrate that PDE1A is overexpressed in lung cancer and its expression negatively correlated with the outcomes of patients. Based on this data, they suggested PDE1A could be considered as a novel prognostic predictor in lung cancer treatment and progression. To study the biological function of PDE1A in NSCLC, they focused on testing the effect of inhibition of PDE1A genetically and pharmacologically on cell proliferation, migration, and invasion in vitro. They also used an experimental metastasis model via tail vein injection of H1299 cells to test if PDE1A promoted metastasis. By database analysis, they also decided to investigate if PDE1A promoted angiogenesis by co-culturing NSCLC cells with HUVECs as well as assessing the tumors from the subcutaneous xenograft model. However, in this model, whether PDE1A modulation impacted tumor metastasis was not examined. To address the mechanism of how PDE1A promotes metastasis, the authors again performed a bioinformatic and GSEA enrichment analysis and confirmed PDE1A indeed activated STAT3 signaling to promote migration. In combination with IP followed by Mass spectrometry, they found PDE1A is a partner of YTHDF2, the cooperation of PDE1A and YTHDF2 negatively regulated SOCS2 mRNA as demonstrated by RIP assay, and ultimately activated STAT3 signaling. Finally, the authors shifted the direction from metastasis to chemoresistance, specifically, they found that PDEA1 inhibitions sensitized NSCLC cells to cisplatin through MET and NRF2 signaling.

      Strength:

      Overall, the manuscript was well-written and the majority of the data supported the conclusions. The authors used a series of methods including cell lines, animal models, and database analysis to demonstrate the novel roles and mechanism of how PDE1 promotes NSCLC invasion and metastasis as well as cisplatin sensitivity. Given that PDE1A inhibitors have been perused to use in clinic, this study provided valuable findings that have the translational potential for NSCLC treatment.

      Weaknesses:

      The role of YTHDF2 in PDE1A-promoted tumor metastasis was not investigated. To make the findings more clinical and physiologically relevant, it would be interesting to test if inhibition of PDE1A impacts metastasis using lung cancer orthotopic and patient-derived xenograft models. It is also important to use a cisplatin-resistant NSCLC cell line to test if a PDE1A inhibitor has the potential to sensitize cisplatin in vitro and in vivo. Furthermore, this study relied heavily on different database analyses, although providing novel and compelling data that was followed up and confirmed in the paper, it is critical to have detailed statistical description section on data acquisition throughout the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Wei et al. present the X-ray crystallographic structures of two PL35 family glycosaminoglycan (GAG) lyases that display a broad substrate specificity. The structural data show that there is a high degree of structural homology between these enzymes and GAGases that have previously been structurally characterized. Central to this are the N-terminal (α/α)7 toroid domain and the C-terminal two-layered β-sheet domain. Structural alignment of these novel PL35 lyases with previously deposited structures shows a highly conserved triplet of residues at the heart of the active sites. Docking studies identified potentially important residues for substrate binding and turnover, and subsequent site-directed mutagenesis paired with enzymatic assays confirmed the importance of many of these residues. A third PL35 GAGase that is able to turn over alginate was not crystallized, but a predicted model showed a conserved active site Asn was mutated to a His, which could potentially explain its ability to act on alginate. Mutation of the His into either Ala or Asn abrogated its activity on alginate, providing supporting evidence for the importance of the His. Finally, a catalytic mechanism is proposed for the activity of the PL35 lyases. Overall, the authors used an appropriate set of methods to investigate their claims, and the data largely support their conclusions. These results will likely provide a platform for further studies into the broad substrate specificity of PL35 lyases, as well as for studies into the evolutionary origins of these unique enzymes

      Strengths:

      The crystallographic data are of very high quality, and the use of modern structural prediction tools to allow for comparison of GAGase III to GAGase II/GAGase VII was nice to see. The authors were comprehensive in their comparison of the PL35 lyases to those in other families. The use of molecular docking to identify key residues and the use of site-directed mutagenesis to investigate substrate specificity was good, especially going the extra distance to mutate the conserved Asn to His in GAGase II and GAGase VII.

      Weaknesses:

      The structural models simply are not complete. A cursory look at the electron density and the models show that there are many positive density peaks that have not had anything modelled into them. The electron density also does not support the placement of a Mn2+ in the model. The authors indicate that ICP-MS was done to identify the metal, but no ICP-MS data is presented in the main text or supplementary. I believe the authors put too much emphasis on the possibility of GAGase III representing an evolutionary intermediate between GAG lyases and alginate lyases based on a single Asn to His mutation in the active site, and I don't believe that enough time was spent discussing how this "more open and shorter" catalytic cavity would necessarily mean that the enzyme could accommodate a broader set of substrates. Finally, the proposed mechanism does not bring the enzyme back to its starting state.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have used large-scale atomistic and coarse-grained molecular dynamics simulations on the respiratory chain complex and investigated the effect of the complex on the inner mitochondrial membrane. They have also used a simple phenomenological model to establish that the super complex (SC) assembly and stabilisation are driven by the interplay between the "entropic" forces due to strain energy and the enthalpies forces (specific and non-specific) between lipid and protein domains. The authors also show that the SC in the membrane leads to thinning and there is preferential localisation of certain lipids (Cardiolipin) in the annular region of the complex. The data reports that the SC assembly has an effect on the conformational dynamics of individual proteins making up the assembled complex and they undergo "allosteric crosstalk" to maintain the stable functional complex. From their conformational analyses of the proteins (individual and while in the complex) and membrane "structural" properties (such as thinning/lateral organization etc) as well from the out of their phenomenological lattice model, the authors have provided possible implications and molecular origin about the function of the complex in terms of aspects such as charge currents in internal mitochondrion membrane, proton transport activity and ATP synthesis.

      Strengths:

      The work is bold in terms of undertaking modelling and simulation of such a large complex that requires simulations of about a million atoms for long time scales. This requires technical acumen and resources. Also, the effort to make connections to experimental readouts has to be appreciated (though it is difficult to connect functional pathways with limited (additive forcefield) simulations.

      Weakness:

      There are several weaknesses in the paper (please see the list below). Claims such as "entropic effect", "membrane strain energy" and "allosteric cross talks" are not properly supported by evidence and seem far-fetched at times. There are other weaknesses as well. Please see the list below.

      (i) Membrane "strain energy" has been loosely used and no effort is made to explain what the authors mean by the term and how they would quantify it. If the membrane is simulated in stress-free conditions, where are strains building up from?

      (ii) In result #1 (Protein membrane interaction modulates the lipid dynamics ....), I strongly feel that the readouts from simulations are overinterpreted. Membrane lateral organization in terms of lipids having preferential localisation is not new (see doi: 10.1021/acscentsci.8b00143) nor membrane thinning and implications to function (https://doi.org/10.1091/mbc.E20-12-0794). The distortions that are visible could be due to a mismatch in the number of lipids that need to be there between the upper and lower leaflets after the protein complex is incorporated. Also, the physiological membrane will have several chemically different lipids that will minimise such distortions as well as would be asymmetric across the leaflets - none of which has been considered. Connecting chain length to strain energy is also not well supported - are the authors trying to correlate membrane order (Lo vs Ld) with strain energy?

      (iii) Entropic effect: What is the evidence towards the entropic effect? If strain energy is entropic, the authors first need to establish that. They discuss enthalpy-entropy compensation but there is no clear data or evidence to support that argument. The lipids will rearrange themselves or have a preference to be close to certain regions of the protein and that generally arises because of enthalpies reasons (see the body of work done by Carol Robinson with Mass Spec where certain lipids prefer proteins in the GAS phase, certainly there is no entropy at play there). I find the claims of entropic effects very unconvincing.

      (iv) The changes in conformations dynamics are subtle as reported by the authors and the allosteric arguments are made based on normal mode analyses. In the complex, there are large overlapping regions between the CI, CIII2, and SCI/III2. I am not sure how the allosteric crosstalk claim is established in this work - some more analyses and data would be useful. Normal mode analyses (EDA) suggest that the motions are coupled and correlated - I am not convinced that it suggests that there is allosteric cross-talk.

      (v) The lattice model should be described better and the rationale for choosing the equation needs to be established. Specific interactions look unfavourable in the equation as compared to non-specific interactions.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript presents a valuable finding on the impact of FRMD8 loss on tumor progression and the resistance to tamoxifen therapy. The author conducted systematic experiments to explore the role of FRMD8 in breast cancer and its potential regulatory mechanisms, confirming that FRMD8 could serve as a potential target to revere tamoxifen resistance.

      Strengths:

      The majority of the research is logically clear, smooth, and persuasive.

      Weaknesses:

      Some research in the article lacks depth and some sentences are poorly organized.

    1. Reviewer #2 (Public review):

      Summary:

      It was previously documented that lysosomal localization of the Lysosomal transmembrane proteins LAPTM4 or 5 (including LAPTM4b) is regulated by Nedd4 family ubiquitin ligases, and independently, that Nedd4l regulates IPF (Idiopathic Pulmonary Fibrosis) in mouse lungs via regulation of the TGFb pathway (ie, Nedd4l lung-specific KO mice develop IPF due to reduced ability to suppress the TGFb pathway -PMID: 32332792 ). Here, Xu et al investigated the role of LAPTM4b in IPF and suggested that the suppression of IPF by LAPTM4b, which they discovered here, is mediated via its interaction with Nedd4L, which normally suppresses TGFb signaling.

      Strengths:

      Overall, this is an interesting paper that identified for the first time a suppressive role of LAPTM4b in IPF, using both in vivo mouse models and cell culture studies.

      Weaknesses:

      (1) The most obvious shortcoming of this study is the lack of experimental evidence that the suppressive effect of LAPTM4b on IPF is mediated by Nedd4l.

      (2) Along the same lines, despite the authors' claim, overexpression of Nedd4L in cells does not increase SMAD3 ubiquitination (Fig 6D), which is a marker of TGFbR activation. Likewise, in Fig 5E, SMAD2 seems to be ubiquitinated similarly in the presence or absence of LAPTM4b (despite claims that LAPTM4b promotes ubiquitination of SMAD2). Same for K48 ubiquitination of TGFbR (Figure 5H).

      (3) How does LAPTM4b interact with SMAD2 or 3, or TGFbR?

      (4) All immunofluorescence (IF) studies depict 1 or 2 cells, with no quantification or statistics.

      (5) Some of the Western blots (WB) are also not quantified, so any claims of an effect cannot be evaluated without such quantification and statistics.

      (6) In the IF studies showing lung tissue (eg Figure 1B), why is LAPTM4b (wildtype) localized to the plasma membrane instead of lysosomes/endosomes?

    1. Reviewer #2 (Public review):

      Summary:

      Wang et al. investigate the role of TseP, a Type VI secretion system (T6SS) effector molecule, revealing its dual enzymatic activities as both an amidase and a lysozyme. This discovery significantly enhances the understanding of T6SS effectors, which are known for their roles in interbacterial competition and survival in polymicrobial environments. TseP's dual function is proposed to play a crucial role in bacterial survival strategies, particularly in hostile environments where competition between bacterial species is prevalent.

      Strengths:

      (1) The dual enzymatic function of TseP is a significant contribution, expanding the understanding of T6SS effectors.

      (2) The study provides important insights into bacterial survival strategies, particularly in interbacterial competition.

      (3) The findings have implications for antimicrobial research and understanding bacterial interactions in complex environments.

      Weaknesses:

      (1) The manuscript assumes familiarity with previous work, making it difficult to follow. Mutants and strains need clearer definitions and references.

      (2) Figures lack proper controls, quantification, and clarity in some areas, notably in Figures 1A and 1C.

      (3) The Materials and Methods section is poorly organized, hindering reproducibility. Biophysical validation of Zn²⁺ interaction and structural integrity of proteins need to be addressed.

      (4) Discrepancies in protein degradation patterns and activities across different figures raise concerns about data reliability.

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents a very interesting use of a causal graph framework to identify the "root genes" of a disease phenotype. Root genes are the genes that cause a cascade of events that ultimately leads to the disease phenotype, assuming the disease progression is linear.

      Strengths:

      - The methodology has a solid theoretical background.<br /> - This is a novel use of the causal graph framework to infer root causes in a graph

      Weaknesses:

      (1) General Comments<br /> First, I have some general comments. I would argue that the main premise of the study might be inaccurate or incomplete. There are three major attributes of real biological systems, which are not considered in this work.

      One is that the process from health-to-disease is not linear most of the time with many checks along the way that aim to prevent the disease phenotype. This leads to a non-deterministic nature of the path from health-to-disease. In other words, with the same root gene perturbations, and depending on other factors outside of gene expression, someone may develop a phenotype in a year, another in 10 years and someone else never. Claiming that this information is included in the error terms might not be sufficient to address this issue. The authors should discuss this limitation.

      Two, the paper assumes that the network connectivity will remain the same after perturbation. This is not always true due to backup mechanisms in the cells. For example, suppose that a cell wants to create product P and it can do it through two alternative paths:<br /> Path #1: A -> B -> P Path #2: A -> C -> P<br /> Now suppose that path #1 is more efficient, so when B can be produced, path #2 is inactive. Once the perturbation blocks element B from being produced, the graph connectivity changes by activation of path #2. I did not see the authors taking this into consideration, which seems to be a major limitation in using perturb-seq results to infer connectivities.

      Three, there is substantial system heterogeneity that may cause the same phenotype. This goes beyond the authors claim that although the initial gene causes of a disease may differ from person to person, at some point they will all converge to changes in the same set of "root genes". This is not true for many diseases, which are defined based on symptoms and lab tests at the patient level. You may have two completely different molecular pathologies that lead to the development of the same symptoms and test results. Breast cancer with its subtypes is a prime example of that. In theory, this issue could be addressed if there is infinite sample size. However, this assumption is largely violated in all existing biological datasets.

      All the above limit the usefulness of this method for most chronic diseases, although it might still lead to interesting discoveries in cancer (in which the association between genes' dysregulation and development of cancer is more direct and occurs in less amount of time).

      With these in mind, the theoretical and algorithmic advances this paper offers are interesting. And the theoretical proofs are solid.

      (2) Specific comments.<br /> I am curious how the simulated data were generated and processed. Specifically, were the values of the synthetic variables Z-scored? If not, then I would expect that the variance of every variable will increase from the roots of the graph to the leaves. That will give an advantage in any algorithm aiming to identify causal relations based on error terms. For fairness and completeness, the authors should Z-score the values in the synthetic data and compare the results.

      The algorithm seems to require both RNA-seq and Perturb-seq data (Algorithm 1, page 14). Can it function with RNA-seq data only? What will be different in this case?

      (3) Additional comments:<br /> Although the manuscript is generally written clearly, some parts are not clear and others have missing details that make the narrative difficult to follow up. Some specific examples:<br /> - Synthetic data generation: how many different graphs (SEMs) did they start from? (30?) How many samples per graph? Did they test different sample sizes?<br /> - The presentation of comparative results (Suppl fig 4 and 7) is not clear. No details are given on how these results were generated. (what does it mean "The first column denotes the standard deviation of the outputs for each algorithm"?) Why all other methods have higher SD differences than RCSP? Is it a matter of scaling? Shouldn't they have at least some values near zero since the authors "added the minimum value so that all histograms begin at zero"? also, why RCSP results are more like a negative binomial distribution and every other is kind of normal?<br /> - What is the significance of genes changing expression "from left to right" in a UMAP plot? (eg Fig. 3h and 3g)

      The authors somewhat overstate the novelty of their algorithm. Representation of GRNs as causal graphs dates back in 2000 with the work of Nir Friedman in yeast. Other methods were developed more recently that look on regulatory network changes at the single sample level which the authors do not seem to be aware (e.g., Ellington et al, NeurIPS 2023 workshop GenBio and Bushur et al, 2019, Bioinformatics are two such examples). The methods they mention are for single cell data and they are not designed to connect single sample-level changes to a person's phenotype. The RCS method needs to be put in the right background context in order to bring up what is really novel about it.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the Authors propose that astrocytic water channel AQP4 represents the dominant pathway for tonic water efflux without which astrocytes undergo cell swelling. The authors measure changes in astrocytic sulforhodamine B fluorescence as the proxy for cell volume dynamics. Using this approach, they have performed a technically elegant series of ex vivo and in vivo experiments exploring changes in astrocytic volume "signal" in response to the AQP4 inhibitor TGN-020 and/or neuronal stimulation. The key findings are that TGN-020 produces an apparent swelling of astrocytes and modifies astrocytic cell volume dynamics after spreading depolarizations. This study is perceived as potentially highly significant. However, several technical caveats could be considered better and perhaps addressed through additional experiments.

      Strengths:

      (1) This is a technically sound study, in which the Authors employed a number of complementary ex vivo and in vivo techniques. The presented results are of interest to the field and potentially highly significant.

      (2) The innovative use of sulforhodamine B for in situ measurements of astrocyte cell volume dynamics is thoroughly validated in brain slices by quantifying changes in sulforhodamine fluorescence in response to hypoosmotic and hyperosmotic media.

      (3) The combination of cell volume measurements with registering functional outcomes in both astrocytes and neurons (cell-specific GCaMP6 signaling) is appropriate and adds to the significance of the work.

      (4) The use of ChR2 optogenetics for producing spreading depolarization allows to avoid many complications of chemical manipulations and much appreciated.

      Remaining limitations:

      (1) In the opinion of this reviewer, the effects of TGN-020 are not entirely consistent with the current knowledge on water permeability in astrocytes and the relative contribution of AQP4 to this process.

      Specifically, genetic deletion of AQP4 reduces plasmalemmal water permeability in astrocytes by ~two-three-fold (when measured at 37oC, E. Solenov et al., AJP-Cell, 2004). This difference is significant but thought to have limited impact on steady-state water distribution. To the best of this reviewer's knowledge, cultured AQP4-null astrocytes do not show changes in degree of hypoosmotic swelling or hyperosmotic shrinkage. Thus, the findings of Solenov et al. are not (entirely) congruent with the conclusions of the current manuscript.

      Also, as noted by the Authors, the AQP4 knockout does not modify astrocytes swelling induced by hypoosmotic solution in brain slices (T.R. Murphy et al., Front Neurosci., 2017), further suggesting that AQP4 is not a significant rate-limiting factor for water movement across astrocyte membranes.

      The Authors do discuss the above-mentioned discrepancies and explain them by the context-dependent changes in water fluxes. Nevertheless, with these caveats in mind, it would be highly desirable to utilize an independent method measuring astrocytic volume and extracellular volume fraction.

      (2) As noted by this reviewer and now discussed by the Authors, changes in ADC signal (presented in in Fig. 5) may be confounded by the previously reported TGN-020-induced hyphemia (e.g., H. Igarashi et al., NeuroReport, 2013) and/or changes water fluxes across pia matter which is highly enriched in AQP4. If this is the case, the proposed brain water accumulation may be explained by factors other than astrocytic water homeostasis. This caveat certainly deserves further experimental exploration.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have utilised deep profiling methods to generate deeper insights into the features of the TME that drive responsiveness to PD-1 therapy in NSCLC.

      Strengths:

      The main strengths of this work lie in the methodology of integrating single cell sequencing, genetic data and TCRseq data to generate hypotheses regarding determinants of IO responsiveness.

      Some of the findings in this study are not surprising and well precedented eg. association of Treg, STAT3 and NFkB with ICI resistance and CD8+ activation in ICI responders and thus act as an additional dataset to add weight to this prior body of evidence. Whilst the role of Th17 in PD-1 resistance has been previously reported (eg. Cancer Immunol Immunother 2023 Apr;72(4):1047-1058, Cancer Immunol Immunother 2024 Feb 13;73(3):47, Nat Commun. 2021; 12: 2606 ) these studies have used non-clinical models or peripheral blood readouts. Here the authors have supplemented current knowledge by characterization of the TME of the tumor itself.

      Weaknesses:

      Unfortunately, the study is hampered by the small sample size and heterogeneous population and whilst the authors have attempted to bring in an additional dataset to demonstrate robustness of their approach, the small sample size has limited their ability to draw statistically supported conclusions. There is also limited validation of signatures/methods in independent cohorts and no functional characterisation of the findings. Because of these factors, this work (as it stands) does have value to the field but will likely have a relatively low overall impact.

    1. Reviewer #2 (Public review):

      This study by Matsuo-Takasaki et al. reported the development of a novel suspension culture system for hiPSC maintenance using Wnt/PKC inhibitors. The authors showed elegantly that inhibition of the Wnt and PKC signaling pathways would repress spontaneous differentiation into neuroectoderm and mesendoderm in hiPSCs, thereby maintaining cell pluripotency in suspension culture. This is a solid study with substantial data to demonstrate the quality of the hiPSC maintained in the suspension culture system, including long-term maintenance in >10 passages, robust effect in multiple hiPSC lines, and a panel of conventional hiPSC QC assays. Notably, large-scale expansion of a clinical grade hiPSC using a bioreactor was also demonstrated, which highlighted the translational value of the findings here. In addition, the author demonstrated a wide range of applications for the IWR1+LY suspension culture system, including support for freezing/thawing and PBMC-iPSC generation in suspension culture format. The novel suspension culture system reported here is exciting, with significant implications in simplifying the current culture method of iPSC and upscaling iPSC manufacturing.

      Review for second submission:

      In this revised manuscript, the authors provided new data to further support that suspension culture with Wnt/PKC inhibitors can be used for long-term hiPSC maintenance across multiple cell lines, as well as comparison with current benchmark culture system. New discussion sections were also added to put the findings into perspective of current development and the need for hiPSC maintenance culture system, and the figures were updated to improve readability. Overall, the authors have addressed all my concerns in this revised manuscript. Congratulations to the authors on this very interesting study.

    1. Reviewer #2 (Public review):

      Summary

      The authors present multiple machine-learning methodologies to predict post-stroke epilepsy (PSE) from admission clinical data.

      Strengths

      The Statistical Approach section is very well written. The approaches used in this section are very sensible for the data in question.

      Typos have now been addressed and improved interpretability has been added to the paper, which is appreciated.

      Weaknesses

      The authors have clarified that the first features available for each patient have been used. However, they have not shown that these features did not occur before the time of post-stroke epilepsy. Explicit clarification of this should be performed.

      The likely impact of the work on the field

      If this model works as claimed, it will be useful for predicting PSE. This has some direct clinical utility.

      Analysis of features contributing to PSE may provide clinical researchers with ideas for further research on the underlying aetiology of PSE.

    1. Reviewer #2 (Public review):

      Summary:

      Watanabe et al. introduce a novel approach for activity-dependent labeling of neural circuits in Drosophila at single-cell resolution, based on detecting the expression of the immediate early gene Hr38 using in situ hybridization. While activity mapping of neurons during specific behaviors is well-established in rodent models, its application in Drosophila has been limited, primarily due to technical constraints. By overcoming these challenges, this study tackles an important and timely issue, providing a foundational tool that will serve as a key reference in the field of circuit neuroscience.

      Strengths:

      The principal strength of this method lies in its versatility and high sensitivity. It can be applied to a broad range of biological questions and enables the investigation of dynamic transcriptional regulation across an unlimited number of genes with a strong signal-to-noise ratio. As such, it holds great potential for widespread use across research labs.

      Weaknesses:

      No major weaknesses; all concerns have been adequately addressed.

    1. Reviewer #2 (Public Review):

      Adjuvants boost antigen-specific immune responses to vaccines. However, whether adjuvants modulate the epitope immunodominance and the mechanisms involved in adjuvant's effect on antigen processing and presentation are not fully characterized. In this manuscript, Li et al report that immunodominant epitopes recognized by antigen-specific T cells are altered by adjuvants.

      Using MPLA, CpG, and MDP adjuvants and H. pylori antigens, the authors screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that adjuvants altered antigen-specific CD4+ T cell immunodominant epitope hierarchy. They show that adjuvants, MPLA and CpG especially, modulate the peptide repertoires presented on the surface of APCs. Surprisingly, adjuvant favored the presentation of low-stability peptides rather than high-stability peptides by APCs. As a result, the low stability peptide presented in adjuvant groups elicits T cell response effectively.

    1. Reviewer #2 (Public review):

      Summary:

      This important study uses convincing evidence to compare how different operationalizations of adverse childhood experience exposure related to patterns of skin conductance response during a fear conditioning task in a large sample of adults. Specifically, the authors compared the following operationalizations: dichotomization of the sample into "exposed" and "non-exposed" categories, cumulative adversity exposure, specificity of adversity exposure, and dimensional (threat versus deprivation) adversity exposure. The paper is thoughtfully framed and provides clear descriptions and rationale for procedures, as well as package version information and code. The authors' overall aim of translating theoretical models of adversity into statistical models, and comparing the explanatory power of each model, respectively, is an important and helpful addition to the literature.

      Several outstanding strengths of this paper are the large sample size and its primary aim of statistically comparing leading theoretical models of adversity exposure in the context of skin conductance response. This paper also helpfully reports Cohen's d effect sizes, which aid in interpreting the magnitude of the findings. The methods and results are thorough and well-described.

    1. Reviewer #2 (Public review):

      Shah et al. investigate the role of an understudied neural circuitry, specifically the dLS -> LHA -> RVM pathway, in mediating stress-induced analgesia. The authors use a combination of advanced techniques to provide convincing evidence for the involvement of this circuit in modulating pain under stress.

      The study begins by mapping the neural circuitry through a series of intersectional tracings. Following this, the authors use behavioral tests along with optogenetic and chemogenetic manipulations to confirm the pathway's role in promoting analgesia. Additionally, fiber photometry is employed to monitor the activity of each brain region in response to stress and pain.

      While the study is comprehensive and the findings are convincing, a key concern arises regarding the overarching hypothesis that restraint-induced stress promotes analgesia. A more straightforward interpretation could be that intense struggling, rather than stress itself, might drive the observed analgesic responses.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates cold induced states in C. elegans, using polysome profiling and RNA seq to identify genes that are differentially regulated and concluding that cold-specific gene regulation occurs at the transcriptional level. This study also includes analysis of one gene from the differentially regulated set, lips-11 (a lipase), and finds that it is regulated in response to a specific set of ER stress factors.

      Strengths:

      (1) Understanding how environmental conditions are linked to stress pathways is generally interesting.

      (2) The study used well-established genetic tools to analyze ER stress pathways.

      Weaknesses:

      (1) The conclusions regarding a general transcriptional response are based on one gene, lips-11, which does not affect survival in response to cold. We would suggest altering the title, to replace "Reprograming gene expression: with" Regulation of the lipase lips-11".

      (2) There is no gene ontology with the gene expression data.

      (3) Definitive conclusions regarding transcription vs translational effects would require use of blockers such as alpha amanatin or cyclohexamide.

      (4) Conclusions regarding the role of lipids are based on supplementation with oleic acid or choline, yet there is no lipid analysis of the cold animals, or after lips-1 knockdown. Although choline is important for PC production, adding choline in normal PC could have many other metabolic impacts and doesn't necessarily implicate PC with out lipidomic or genetic evidence.

    1. Reviewer #2 (Public review):

      Summary:

      In the present work, the authors present an engineering solution to sample preparation in 96-well plates for high-throughput super resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit expansion of the gel. They thus engineered a device that can spot a small droplet of hydrogel solution and keep it in place as it polymerises. It occupies only a small portion space at the center of each well, the gel can expand into all directions and imaging and staining can proceed by liquid handling robots and an automated microscope.

      Strengths:

      In contrast to Reference 8, the authors system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high throughput exM and high throughout super resolution microscopy, which is a timely and important goal.

      Addition upon revision:

      The authors addressed this reviewer's suggestions.

    1. Reviewer #2 (Public review):

      This study advances the model that the first canonical amino acids to emerge in life bound the earliest cofactors and led to the first proteins. The focus is on organic/organometallic cofactors, building on previous work on metals - ie. those in the groups of Bromberg, Dupont and others as well cited in the manuscript. Studies of this type are limited both by data availability and confounding chemical effects that are exacerbated by the timescale of evolutionary inference tackled here. However, the analysis provides a solid addition to the field and complements existing metal-focused studies as well as those Longo, Russell and others (also well cited).

    1. Reviewer #2 (Public Review):

      Summary:

      The authors propose a new method for self-supervised learning of 3d semantic segmentation for fluorescence microscopy. It is based on a WNet architecture (Encoder / Decoder using a UNet for each of these components) that reconstructs the image data after binarization in the bottleneck with a soft n-cuts clustering. They annotate a new dataset for nucleus segmentation in mesoSPIM imaging and train their model on this dataset. They create a napari plugin that provides access to this model and provides additional functionality for training of own models (both supervised and self-supervised), data labeling, and instance segmentation via post-processing of the semantic model predictions. This plugin also provides access to models trained on the contributed dataset in a supervised fashion.

      Strengths:

      (1) The idea behind the self-supervised learning loss is interesting.

      (2) The paper addresses an important challenge. Data annotation is very time-consuming for 3d microscopy data, so a self-supervised method that yields similar results to supervised segmentation would provide massive benefits.

      Weaknesses:

      The experiments presented by the authors do not adequately support the claims made in the paper. There are several shortcomings in the design of the experiment and presentation of the results. Further, it is unclear if results of similar quality as reported can be achieved within the GUI by non-expert users.

      Major weaknesses:

      (1) The main experiments are conducted on the new mesoSPIM dataset, which contains quite small and well separated nuclei. It is unclear if the good performance of the novel self-supervised learning method compared to CellPose and StarDist would hold for dataset with other characteristics, such as larger nuclei with a more complex morphology or crowded nuclei. Further, additional preprocessing of the mesoSPIM images may improve results for StarDist and CellPose (see the first point in minor weaknesses). Note: having a method that works better for small nuclei would be an important contribution. But I am uncertain the claims hold for larger and/or more crowded nuclei as the current version of the paper implies. The contribution of the paper would be stronger if a comparison with StarDist / CellPose was also done on the additional datasets from Figure 2.

      (2) The experimental setup for the additional datasets seems to be unrealistic. In general, the description of these experiments is quite short and so the exact strategy is unclear from the text. However, you write the following: "The channel containing the foreground was then thresholded and the Voronoi-Otsu algorithm used to generate instance labels (for Platynereis data), with hyperparameters based on the Dice metric with the ground truth." I.e., the hyperparameters for the post-processing are found based on the ground truth. From the description it is unclear whether this is done a) on the part of the data that is then also used to compute metrics or b) on a separate validation split that is not used to compute metrics. If a): this is not a valid experimental setup and amounts to training on your test set. If b): this is ok from an experimental point of view, but likely still significantly overestimates the quality of predictions that can be achieved by manual tuning of these hyperparameters by a user that is not themselves a developer of this plugin or an absolute expert in classical image analysis, see also 3. Note that the paper provides notebooks to reproduce the experimental results. This is very laudable, but I believe that a more extended description of the experiments in the text would still be very helpful to understand the set-up for the reader. Further, from inspection of these notebooks it becomes clear that hyper-parameters where indeed found on the testset (a), so the results are not valid in the current form.

      (3) I cannot obtain similar results to the ones reported in the manuscript using the plugin. I tried to obtain some of the results from the paper qualitatively: First I downloaded one of the volumes from the mesoSPIM dataset (c5image) and applied the WNet3D to it. The prediction looks ok, however the value range is quite narrow (Average BG intensity ~0.4, FG intensity 0.6-0.7). I try to apply the instance segmentation using "Convert to instance labels" from "Utilities". Using "Voronoi-Otsu" does not work due to an error in pyClesperanto ("clGetPlatformIDs failed: PLATFORM_NOT_FOUND_KHR"). Segmentation via "Connected Components" and "Watershed" requires extensive manual tuning to get a somewhat decent result, which is still far from perfect.

      Then I tried to obtain the results for the Mouse Skull Nuclei Dataset from EmbedSeg. The results look like a denoised version of the input image, not a semantic segmentation. I was skeptical from the beginning that the method would transfer without retraining, due to the very different morphology of nuclei (much larger and elongated). None of the available segmentation methods yield a good result, the best I can achieve is a strong over-segmentation with watersheds.

      Minor weaknesses:

      (1) CellPose can work better if images are resized so that the median object size in new images matches the training data. For CellPose the cyto2 model should do this automatically. It would be important to report if this was done, and if not would be advisable to check if this can improve results.

      (2) It is a bit confusing that F1-Score and Dice Score are used interchangeably to evaluate results. The dice score only evaluates semantic predictions, whereas F1-Score evaluates the actual instance segmentation results. I would advise to only use F1-Score, which is the more appropriate metric. For Figure 1f either the mean F1 score over thresholds or F1 @ 0.5 could be reported. Furthermore, I would advise adopting the recommendations on metric reporting from https://www.nature.com/articles/s41592-023-01942-8.

      (3) A more conceptual limitation is that the (self-supervised) method is limited to intensity-based segmentation, and so will not be able to work for cases where structures cannot be distinguished based on intensity only. It is further unclear how well it can separate crowded nuclei. While some object separation can be achieved by morphological operations this is generally limited for crowded segmentation tasks and the main motivation behind the segmentation objective used in StarDist, CellPose, and other instance segmentation methods. This limitation is only superficially acknowledged in "Note that WNet3D uses brightness to detect objects [...]" but should be discussed in more depth.

      Note: this limitation does not mean at all that the underlying contribution is not significant, but I think it is important to address this in more detail so that potential users know where the method is applicable and where it isn't.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have worked up a ``virtual thymus' using EPISIM, which has already been published. Attractive features of the computational model are stochasticity, cell-to-cell variability, and spatial heterogeneiety. They seek to explore the role of TECs, that release IL-7 which is important in the process of thymocyte division.

      In the model, ordinary clones have IL7R levels chosen from a distribution, while `lesioned' clones have an IL7R value set to the maximum. The observation is that the lesioned clones are larger families, but the difference is not dramatic. This might be called a cell-intrinsic mechanism. One promising cell-extrinsic mechanism is mentioned: if a lesioned clone happens to be near a source of IL-7 and begins to proliferate, the progeny can crowd out cells of other clones and monopolise the IL-7 source. The effect will be more noticeable if sources are rare, so is seen when the TEC network is sparse.

      Strengths:

      Thymic disfunctions are of interest, not least because of T-ALL. New cells are added, one at a time, to simulate the conveyor belt of thymocytes on a background of stationary cells. They are thus able to follow cell lineages, which is interesting because one progenitor can give rise to many progeny.

      There are some experimental results in Figures 4,5 and 6. For example, il7 crispant embryos have fewer thymocytes and smaller thymii; but increasing IL-7 availability produces large thymii.

      Weaknesses:

      On the negative side, like most agent-based models, there are dozens of parameters and assumptions whose values and validity are hard to ascertain.

      The stated aim is to mimic a 2.5-to-11 day-old medaka thymus, but the constructed model is a geometrical subset that holds about 100 cells at a time in a steady state. The manuscript contains very many figures and lengthy descriptions of simulations run with different parameters values and assumptions. The abstract and conclusion did not help me understand what exactly has been done and learned. No attempt to synthesise observations in any mathematical formula is made.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Huang and colleagues focuses on GLP-1 producing enteroendocrine (EEC) L-cells and their regulation of GLP-1 production by a mechanogated ion channel Piezo1. The study describes Piezo1 expression by L-cells and using an exciting intersectional mouse model (villin to target epithelium and Gcg to target GLP-1 producing cells and others like glucagon producing pancreatic endocrine cells), which allows L-cell specific Piezo1 knockout. Using this model, they find an impairment of glucose tolerance, increased body weight, reduced GLP-1 content, and changes to the CaMKKbeta-CaMKIV-mTORC1 signaling pathway using normal diet and then high fat diet. Piezo1 chemical agonist and intestinal bead implantation reversed these changes and improved the disrupted phenotype. Using primary sorted L-cells and cell model STC-1, they found that stretch and Piezo1 activation increased GLP-1 and altered the molecular changes described above.

      Strengths:

      This is an interesting study testing a novel hypothesis that may have important mechanistic and translational implications. The authors generated an important intersectional genetics mouse model that allowed them to target Piezo1 L-cells specifically, and the surprising result of impaired metabolism is intriguing.

      Weaknesses:

      However, there are several critical limitations that require resolution before making the conclusions that the authors make. (1) A potential explanation for the data, and one that is consistent with existing literature [see for example, PMC5334365, PMC4593481], is that epithelial Piezo1, which is broadly expressed by the GI epithelium, impacts epithelial cell density and survival, and as such, if Piezo1 is involved in L-cell physiology, it may be through regulation of cell density. Thus, it is critical to determine L-cell densities and epithelial integrity in controls and Piezo1 knockouts systematically across the length of the gut, since the authors do not make it clear which gut region contributes to the phenotype they see. Current immunohistochemistry data are not convincing. (2) Calcium signaling in L-cells is implicated in their typical role of being gut chemosensors, and Piezo1 is a calcium channel, so it is not clear whether any calcium-related signaling mechanism would phenocopy these results. (3) Intestinal bead implantation, while intriguing, does not have clear mechanisms - and is likely to provide a point of intestinal obstruction and dysmotility. (4) previous studies, some that are very important, but not cited, contradict the presented results (e.g., epithelial Piezo1 role in insulin secretion) and require reconciliation.<br /> Overall, this study makes an interesting observation but the data are not currently strong enough to support the conclusions.

      - There needs to be data localizing Piezo1 to L-cells and importantly, this needs to be quantified - are all L-cells (small bowel and colon) Piezo1 positive? This is because several studies show Piezo1 affecting epithelial cell densities. If there are changes in L-cell or other EEC densities in Piezo1 knockout, that shift can potentially explain the changes that the authors see in glucose metabolism and weight.<br /> - The intersectional model for L-cell transduction needs a deeper validation. Images in Fig 1e are not convincing for transduction of GFP in L-cells. The co-localization studies are not convincing, especially because Piezo1 labeling is very broad. There needs to be stronger validation of the intersectional Gcg-Villin-Piezo1 KO model. It is important to determine whether L-cell Piezo1 localization epithelium in small bowel and colon is present (above) and affected specifically in the knockout.<br /> - The authors state that "Villin-1 (encoded by Vill1 gene) is expressed in the gastrointestinal epithelium, including L cells, but not in pancreatic α cells" (line 378-379). However, Villin is highly expressed in whole mouse islets (https://doi.org/10.1016/j.molmet.2016.05.015, Figure 1A).<br /> - There needs to be quantification of L-cells in Piezo1 knockout. This is because several studies show Piezo1 affecting epithelial cell densities. If there are changes in L-cell or other EEC densities in Piezo1 knockout, that shift can potentially explain the changes that the authors see in glucose metabolism and weight.<br /> - L-cells are classically considered to be chemosensors. Do nutritive signals, which presumably also increase calcium compete or complement or dominate L-cell GLP1 synthesis regulation?<br /> - The mechanism of Glp1 synthesis vs release downstream of Piezo1 is not clear. The authors hypothesize that "Piezo1 might regulate GLP-1 synthesis through the CaMKKβ/CaMKIV-mTOR signaling pathway". However, references cited suggest that Ca2+ or cAMP lead to GLP-1-release, while mTOR primarily acts on the regulation of gene expression by promoting Gcg gene expression. These pathways do not clearly link to Piezo1  GLP-1 production. These mechanisms need to be reconciled.<br /> - Previous study PMID 32640190 (not cited here) found that Villin-driven Piezo1 knockout, which knocks out Piezo1 from all epithelial intestinal cells (including L-cells), showed no significant alterations in blood glucose or body weight. This is opposite of the presented findings and therefore the current results require reconciliation.

      Comments on revised version:

      The authors have addressed several comments that were common to the reviewers - specificity and validity of the intersectional model, mechanism of signaling downstream of Piezo1 and reconciliation of the results with previous studies. The authors have provided extensive experiments and revisions which have made the manuscript stronger. However, many important questions remain, and unfortunately, the intersectional mouse model and mechanisms remain unclear.

      - I appreciate the authors quantifying the density of L cells in the intersectional Piezo knockout. There is a very clear >50% drop-off in GLP-1+ cells with the Piezo1 knockout (Supp fig 7c, d). Interestingly, there was not a decrease in PYY+ cells, which is curious because GLP1 and PYY are co-expressed in L cells. The mechanism of regulation of one hormone but not the other in the same cell requires clarification and would be relevant for this work. To begin with, co-labeling PYY and GLP1 and showing that one hormone can be found without the other would be useful.<br /> - Piezo1 immunofluorescence has very high background and overall poor specificity (Fig supp 5 and Fig supp 6B are good examples of poor Piezo1 immunofluorescence). Another method for labeling Piezo1 (e.g. via RNAscope) is required - and where tried (e.g., Fig 1L), the results are not convincing.<br /> - The intersectional mouse model requires further validation. The data presented in Fig 1E do not help - the GFP positive cells do not look like L-cells and there appear to be GFP positive cells in the muscle and submucosa.<br /> - Since Piezo1 is known to affect epithelial cell life span, barrier function maybe compromised. While I appreciate that the authors have obtain some images and measured zonular and occluded, this is unfortunately a suboptimal evaluation of barrier function.<br /> - The mechanisms of calcium signaling that will presumably lead to GLP1 release due to Piezo1 activation and mTOR which authors link to GLP1 synthesis remain unreconciled.<br /> - Intestinal bead implantation may provide an important area of obstruction, in addition to potential mechanical stimulation. Unfortunately whole gut transit time and fecal weight do not assay these functions well.<br /> - I believe that the explanation regarding lack of previous findings connecting Piezo1 in the epithelium and glucose tolerance remain poorly reconciled with the current findings.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of Hox genes in the specification of forelimb position. The central conclusions are that Hox paralogy group (PG) 6/7 genes are both necessary and sufficient to induce forelimb buds. In addition, the authors argue that HoxPG4/5 genes are necessary, but, by contrast to Hox PG6/7 genes, Hox PG4/5 genes are not sufficient to induce forelimb budding. To test the roles of Hox4-7 genes in limb development, the authors use both gain-of-function (GOF) and loss-of-function (LOF) approaches in chick embryos.

      In LOF experiments, they produced dominant negative forms of Hoxa4, Hoxa5, Hoxa6, and Hoxa7, which lack the DNA-binding domain, and they electroporated these constructs into the prospective wing field of the lateral plate mesoderm (LPM) in pre-limb bud stage (HH12) chick embryos. All 4 constructs resulted in down-regulation of Tbx5 (an early marker of forelimb development), and of its target gene, Fgf10, which is required for the initiation of limb budding, in the lateral plate mesoderm. The dominant negative experiments also caused down-regulation of Fgf8 in the overlying limb ectoderm and a marked reduction in the size of the early wing bud. Based on the LOF results, the authors conclude that each of the Hoxa4-7 genes is required for the specification of the forelimb field and for the establishment of the Fgf10-Fgf8 feedback loop in wing bud mesenchyme and overlying epithelium.

      The authors then use a GOF strategy to investigate whether the same genes are sufficient to induce forelimb budding. They test this hypothesis using the neck, a region that is known to be incompetent to form limbs in response to Fgf signaling. Overexpression of full-length Hoxa6 and Hoxa7 in the neck region caused ectopic expression of Tbx5 in the neck region, which fits with "posteriorization" of cells at neck level, as Tbx5 typically marks the forelimb and flank (interlimb) region of the lateral plate mesoderm. Consistent with a posterior transformation of positional identity (neck to forelimb), overexpression of Hoxa6 or Hoxa7 leads to activation of Fgf10 expression and development of an ectopic forelimb bud from (or extension of the normal forelimb bud into) the neck region). By contrast, overexpression of either Hoxa4 or Hoxa5 in the neck region is not sufficient to induce ectopic forelimb budding. Curiously, the ectopic forelimb buds do not express Fgf8 in the overlying ectoderm or develop beyond the bud stage. The latter finding is consistent with previous work showing that neck ectoderm is not competent to support outgrowth of transplanted limb bud mesenchyme. The authors investigate the mechanistic basis of this early arrest of outgrowth by comparing the transcriptomes of ectopic limb buds, normal forelimb buds, and normal neck cells.

      The RNA sequencing analysis shows that while some limb development genes (e.g., Lmx1b, Hoxa9, Hoxd9, Hoxa10, Hoxd10) are activated in the ectopic limb bud, other key components of the circuit (e.g., Shh, Fgf8, Hox12/13 paralogs) are not established, leading them to conclude that failure of neck ectoderm to form an AER underlies the arrested outgrowth of ectopic limb buds.

      Strengths:

      This study provides the first evidence that altering the Hox code in neck lateral plate mesoderm (LPM) is sufficient to induce ectopic development of forelimb buds at the neck level. For more than 30 years, developmental biologists have speculated and provided indirect evidence that Hox genes are involved in the specification of forelimb position, but to my knowledge, no study has shown that altering Hox gene expression alone can induce limb development outside of the normal limb field. The finding that Hox6/7 paralogs are sufficient for forelimb bud development, whereas Hox4/5 paralogs are not, suggests that specification of forelimb identity requires instructive signaling that is a specific property of Hox6/7 paralogs. The GOF experiments significantly extend the knowledge of limb specification beyond that which has come from Hox gene manipulations in mice.

      Weaknesses:

      (1) By contrast to the GOF experiments that induce ectopic limb budding, the LOF experiments, which use dominant negative forms of Hoxa4, Hoxa5, Hoxa6, and Hoxa7, are more challenging to interpret due to the absence of data on the specificity of the dominant negative constructs. Absent such controls, one cannot be certain that effects on limb development are due to disruption of the specific Hox proteins that are being targeted.

      (2) A test of their central hypothesis regarding the necessity and sufficiency of the Hox genes under investigation would be to co-transfect the neck with full-length Hoxa6/a7 AND the dnHoxA4/a5. If their hypothesis is correct, then the dn constructs should block the limb-inducing ability of Hoxa6/a7 overexpression (again, validation of specificity of the DN constructs is important here).

      (3) The paper could be strengthened by providing some additional data, which should already exist in their RNA-Seq dataset, such as supplementary material that shows the actual gene expression data that are represented in the Venn diagram, heatmap, and GO analysis in Figure 3.

      (4) The results of these experiments in chick embryos are rather unexpected based on previous knockout experiments in mice, and this needs to be discussed.

    1. Reviewer #2 (Public review):

      Summary:

      This study explores how maternal behaviors influence vocal learning in the greater sac-winged bat (Saccopteryx bilineata). Over two field seasons, researchers tracked 19 bat pups from six wild colonies, examining vocal development aspects such as vocal practice duration, syllable repertoire size, and song syllable acquisition. The findings show that maternal behaviors significantly impact the length of daily babbling sessions and the overall babbling phase, while the presence of adult male tutors does not.

      The researchers conducted detailed acoustic analyses, categorizing syllables and evaluating the variety and presence of learned song syllables. They discovered that maternal interactions enhance both the number and diversity of learned syllables and the production of mature syllables in the pups' vocalizations. A notable correlation was found between the extent of acoustic changes in the most common learned syllable type and maternal activity, highlighting the key role of maternal feedback in shaping pups' vocal development.

      In summary, this study emphasizes the crucial role of maternal social feedback in the vocal development of S. bilineata. Maternal behaviors not only increase vocal practice but also aid in acquiring and refining a complex vocal repertoire. These insights enhance our understanding of social interactions in mammalian vocal learning and draw interesting parallels between bat and human vocal development.

      Strengths:

      This paper makes significant contributions to the field of vocal learning by looking at the role of maternal behaviors in shaping the vocal learning phenotype of Saccopteryx bilineata. The paper uses a longitudinal approach, tracking the vocal ontogeny of bat pups from birth to weaning across six colonies and two field seasons, allowing the authors to assess how maternal interactions influence various aspects of vocal practice and learning, providing strong empirical evidence for the critical role of social feedback in non-human mammalian vocal learners. This kind of evidence highlights the complexity of the vocal learning phenotype and shows that it goes beyond the right auditory experience and having the right circuitry.

      The paper offers a nuanced understanding of how specific maternal behaviors impact the acquisition and refinement of the vocal repertoire, while showing the number of male tutors - the source of adult song - did not have much of an effect. The correlation between maternal activity and acoustic changes in learned syllable types is a novel finding that underscores the importance of non-vocal social interactions in vocal learning. In vocal learning research, with some notable exceptions, experience is often understood as auditory experience. This paper highlights how, even though that is one important piece of the puzzle, other kinds of experience directly affect the development of vocal behavior. This is of particular importance in the case of a mammalian species such as Saccopteryx bilineata, as this kind of result is perhaps more often associated with avian species.

      Moreover, the study's findings have broader implications for our understanding of vocal learning across species. By drawing parallels between bat and human vocal development (and in some ways to bird vocal development), the paper highlights common mechanisms that may underlie vocal practice and learning in both humans and other mammals. This interdisciplinary perspective enriches the field and encourages further comparative studies, ultimately advancing our knowledge of the evolutionary and developmental processes that shape vocal productive learning in all its dimensions.

      Weaknesses:

      Some weaknesses can be pointed out, but in fairness, the authors acknowledge them in one way or another. As such, these are not flaws per se, but gaps that can be filled with further research.

      Experimental manipulations, such as controlled playback experiments or controlled environments, could strengthen the causal claims by directly testing the effects of specific maternal behaviors on vocal development. Certainly, the strengths of the paper will be consolidated after such work is performed.

      The reliance on the number of singing males as a proxy for social acoustic input. This measure does not account for the variability in the quality, frequency, or duration of the male songs to which the pups are exposed. A more detailed analysis of the acoustic environment, including direct measurements of song exposure and its impact on vocal learning, would provide a clearer understanding of the role of male tutors.

      Finally, and although it would be unlikely that these results are unique to Saccopteryx bilineata, the study's focus on a single species limits at present the generalizability of some of its findings to other vocal learning mammals. While the parallels drawn between bat and human vocal development are intriguing, the conclusions will be more robust when supported by comparative studies involving multiple species of vocal learners. This will help to identify whether the observed maternal influences on vocal development reported here are unique to Saccopteryx bilineata or represent a broader phenomenon in chiropteran, mammalian, or general vocal learning. Expanding the scope of research to include a wider range of species and incorporating cross-species comparisons will significantly enhance the contribution of this study to the field of vocal learning.

    1. Reviewer #2 (Public review):

      Summary

      Schubert et al. recorded MEG and eye-tracking activity while participants were listening to stories in single-speaker or multi-speaker speech. In a separate task, MEG was recorded while the same participants were listening to four types of pure tones in either structured (75% predictable) or random (25%) sequences. The MEG data from this task was used to quantify individual 'prediction tendency': the amount by which the neural signal is modulated by whether or not a repeated tone was (un)predictable, given the context. In a replication of earlier work, this prediction tendency was found to correlate with 'neural speech tracking' during the main task. Neural speech tracking is quantified as the multivariate relationship between MEG activity and speech amplitude envelope. Prediction tendency did not correlate with 'ocular speech tracking' during the main task. Neural speech tracking was further modulated by local semantic violations in the speech material, and by whether or not a distracting speaker was present. The authors suggest that part of the neural speech tracking is mediated by ocular speech tracking. Story comprehension was negatively related to ocular speech tracking.

      Strengths

      This is an ambitious study, and the authors' attempt to integrate the many reported findings related to prediction and attention in one framework is laudable. The data acquisition and analyses appear to be done with great attention to methodological detail (perhaps even with too much focus on detail-see below). Furthermore, the experimental paradigm used is more naturalistic than was previously done in similar setups (i.e. stories instead of sentences).

      Weaknesses

      For many of the key variables and analysis choices (e.g. neural/ocular speech tracking, prediction tendency, mediation) it is not directly clear how these relate to the theoretical entities under study, and why they were quantified in this particular way. Relatedly, while the analysis pipeline is outlined in much detail, an overarching rationale and important intermediate results are often missing, which makes it difficult to judge the strength of the evidence presented. Furthermore, some analysis choices appear rather ad-hoc and should be made uniform and/or better motivated.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates the role of KIF7, a ciliary kinesin involved in the Sonic Hedgehog (SHH) signaling pathway, in cortical development using Kif7 knockout mice. The researchers examined embryonic cortex development (mainly at E14.5), focusing on structural changes and neuronal migration abnormalities.

      Strengths:

      (1) The phenotype observed is interesting, and the findings provide neurodevelopmental insight into some of the symptoms and malformations seen in patients with KIF7 mutations.

      (2) The authors assess several features of cortical development, including structural changes in layers of the developing cortex, connectivity of the cortex with the thalamus, as well as migration of cINs from CGE and MGE to the cortex.

      Weaknesses:

      (1) The Kif7 null does have phenotype differences from individual mutations seen in patients. It would be interesting to add more thoughts about how the null differs from these mutants in ciliary structure and SHH signaling via the cilium.

      (2) The description of altered cortex development at E14.5 is perhaps rather descriptive. It would be useful to assess more closely the changes occurring in different cell types and stages. For this it seems very important to have a time course of cortical development and how the structural organization changes over time. This would be easy to assess with the addition of serial sections from the same mice. It might also be interesting to see how SHH signaling is altered in different cortical cell types over time with a SHH signaling reporter mouse.

      (3) Abnormal neurodevelopmental phenotypes have been widely reported in the absence of other key genes affecting primary cilia function (Willaredt et al., J Neurosci 2008; Guo et al., Nat Commun 2015). It would be interesting to have more discussion of how the Kif7 null phenotype compares to some of these other mutants.

      (4) The authors see alterations in cIN migration to the cortex and observe distinct differences in the pattern of expression of Cxcl12 as well as suggest cell-intrinsic differences within cIN in their ability to migrate. The slice culture experiments though make it a little difficult to interpret the cell intrinsic effects on cIN of loss of Kif7, as the differences in Cxcl12 patterns still exist presumably in the slice cultures. It would be useful to assess their motility in an assay where they were isolated, as well as assess transcriptional changes in cINs in vivo lacking KIF7 for expression patterns that may affect motility or other aspects of migration.

    1. Reviewer #2 (Public review):

      Summary:

      This work used multiple approaches to show that CCK is critical for long-term potentiation (LTP) in the auditory thalamocortical pathway. They also showed that the CCK mediation of LTP is age-dependent and supports frequency discrimination. This work is important because it opens up a new avenue of investigation of the roles of neuropeptides in sensory plasticity.

      Strengths:

      The main strength is the multiple approaches used to comprehensively examine the role of CCK in auditory thalamocortical LTP. Thus, the authors do provide a compelling set of data that CCK mediates thalamocortical LTP in an age-dependent manner.

      Weaknesses:

      The behavioral assessment is relatively limited but may be fleshed out in future work.

    1. Reviewer #2 (Public review):

      The authors of this article investigated the impact of the host enzyme AOAH on the progression of MASLD in mice. To achieve this, they utilized whole-body Aoah-/- mice. The authors demonstrated that AOAH reduced LPS-induced lipid accumulation in the liver, probably by decreasing the expression and activation of SREBP1. In addition, AOAH reduced hepatic inflammation and minimized tissue damage.

      However, this paper is descriptive without a clear mechanistic study. Another major limitation is the use of who-body KO mice so the cellular source of the enzyme remains undefined. Moreover, since LPS-mediated SREBP1 regulation or LPS-mediated MASLD progression is already documented, the role of AOAH in SREBP1-dependent lipid accumulation and MASLD progression is largely expected.

      Specific comments:

      (1) The overall human relevance of the current study remains unclear.

      (2) Is AOAH secreted from macrophages or other immune cells? Are there any other functions of AOAH within the cells?

      (3) Due to using whole-body KO mice, the role of AOAH in specific cell types was unclear in this study, which is one of the major limitations of this study. The authors should at least conduct in vitro experiments using a co-culture system of hepatocytes and Kupffer cells (or other immune cells) isolated from WT or Aoah-/- mice.

      (4) It has been well-known that intestinal tight junction permeability is increased by LPS or inflammatory cytokines. However, in Figure 3E, intestinal permeability is comparable between the groups in both diet groups. The authors should discuss more about this result. In addition, intestinal junctional protein should be determined by Western blot and IHC (or IF) to further confirm this finding.

      (5) In Figure 6, LPS i.g. Aoah-/- group is missing. This group should be included to better interpret the results.

      (6) The term NAFLD has been suggested to be changed to MASLD as the novel nomenclature according to the guidelines of AASLD and EASL.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present the results of molecular phylogenetic analysis with very comprehensive samplings including 471 specimens belonging to 250 species, trying to give a holistic reconstruction of the evolutionary history of freshwater fishes (Nemacheilidae) across Eurasia since the early Eocene. This is of great interest to general readers.

      Strengths:

      They provide very vast data and conduct comprehensive analyses. They suggested that Nemacheilidae contain 6 major clades, and the earliest differentiation can be dated to the early Eocene.

      Weaknesses:

      The analysis is incomplete, and the manuscript discussion is not well organized. The authors did not discuss the systematic problems that widely exist. They also did not use the conventional way to discuss the evolutionary process of branches or clades, but just chronologically described the overall history.

    1. Reviewer #2 (Public review):

      Summary:

      Tanaka et al. investigated the role of CCR4 in early atherosclerosis, focusing on the immune modulation elicited by this chemokine receptor under hypercholesterolemia. The study found that Ccr4 deficiency led to qualitative changes in atherosclerotic plaques, characterized by an increased inflammatory phenotype. The authors further analyzed the CD4 T cell immune response in para-aortic lymph nodes and atherosclerotic aorta, showing an increase mainly in Th1 cells and the Th1/Treg ratio in Ccr4-/-Apoe-/- mice compared to Apoe-/- mice. They then focused on Tregs, demonstrating that Ccr4 deficiency impaired their immunosuppressive function in in-vitro assays and elegantly showed that Ccr4-deficient Tregs had, as expected, impaired migration to the atherosclerotic aorta. Adoptive cell transfer of Ccr4-/- Tregs to Apoe-/- mice mimicked early atherosclerosis development in Ccr4-/-Apoe-/- mice. Therefore, this work shows that CCR4 plays an important role in early atherosclerosis but not in advanced stages.

      Strengths:

      Several in vivo and in vitro approaches were used to address the role of CCR4 in early atherosclerosis. Particularly, through the adoptive cell transfer of CCR4+ or CCR4- Tregs, the authors aimed to directly demonstrate the role of CCR4 in Tregs' protection against early atherosclerosis.

      Weaknesses:

      The isolation of Tregs was inadequately controlled; they were isolated based solely on CD4 and CD25 expression. CD25 is also expressed by activated effector T cells, meaning the analyzed cells could be a pool of mainly Tregs but also include effector T cells.

      The study primarily focused on Th1 and Tregs without thoroughly investigating other CD4 T cell subsets. Th17 cells are known to play an important role in atherosclerosis; non-pathogenic Th17 cells express CCR4, while pathogenic Th17 cells do not. Considering that Figure 3 shows an increased frequency of IL17-expressing CD4 T cells compared to Apoe-/- mice, and given the imprecise Treg isolation, differences in non-pathogenic Th17 cells could be contributing to the observed effects.

      Furthermore, the clinical relevance of these findings is not discussed. As an initial approach, the authors could analyze public datasets to determine if certain Ccr4 single nucleotide polymorphisms correlate with a higher incidence of atherosclerosis.

    1. Reviewer #2 (Public review):

      I appreciate the authors' thorough revision of the manuscript, which has significantly improved its quality. I have no additional comments or requests for further changes.

      However, I remain in slight disagreement regarding the characterization of the neutral condition. My perspective is that it resembles more of a "medium" condition, making it challenging to understand what would be common to "high-medium" and "low-medium" contrasts. I suspect that the neutral condition might represent a state of high uncertainty since participants are informed that the algorithm cannot provide a prediction. From this viewpoint, the observed similarities in effects for both positive and negative expectations may actually reflect differences between certainty and uncertainty rather than the specific expectations themselves.

      Nevertheless, the authors have addressed alternative interpretations of their discussion section, and I have no further requests. The paper is well-executed and demonstrates several strengths: the procedure effectively induced varying levels of expectations with clear impacts on pain ratings. Additionally, the integration of fMRI with EEG is commendable for tracking the transition from anticipatory to pain periods. Overall, the manuscript is strong and contributes valuable insights to the field.

    1. Reviewer #2 (Public review):

      The present study aims to investigate brain white matter predictors of back pain chronicity. To this end, a discovery cohort of 28 patients with subacute back pain (SBP) was studied using white matter diffusion imaging. The cohort was investigated at baseline and one-year follow-up when 16 patients had recovered (SBPr) and 12 had persistent back pain (SBPp). A comparison of baseline scans revealed that SBPr patients had higher fractional anisotropy values in the right superior longitudinal fasciculus SLF) than SBPp patients and that FA values predicted changes in pain severity. Moreover, the FA values of SBPr patients were larger than those of healthy participants, suggesting a role of FA of the SLF in resilience to chronic pain. These findings were replicated in two other independent datasets. The authors conclude that the right SLF might be a robust predictive biomarker of CBP development with the potential for clinical translation.<br /> Developing predictive biomarkers for pain chronicity is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are convincing, and the interpretation is adequate. A particular strength of the study is the discovery-replication approach with replications of the findings in two independent datasets.

    1. Reviewer #2 (Public review):

      Summary:

      The main aim of this research was to explore whether and how self-associations (as opposed to other associations) bias early attentional selection, and whether this can explain well-known self-prioritization phenomena, such as the self-advantage in perceptual matching tasks. The authors adopted the Visual Attention Theory (VAT) by estimating VAT parameters using a hierarchical Bayesian model from the field of attention and applied it to investigate the mechanisms underlying self-prioritization. They also discussed the constraints on the self-prioritization effect in attentional selection. The key conclusions reported were:

      (1) Self-association enhances both attentional weights and processing capacity

      (2) Self-prioritization in attentional selection occurs automatically but diminishes when active social decoding is required, and

      (3) Social and perceptual salience capture attention through distinct mechanisms.

      Strengths:

      Transferring the Theory of Visual Attention parameters estimated by a hierarchical Bayesian model to investigate self-prioritization in attentional selection was a smart approach. This method provides a valuable tool for accessing the very early stages of self-processing, i.e., attention selection. The authors conclude that self-associations can bias visual attention by enhancing both attentional weights and processing capacity and that this process occurs automatically. These findings offer new insights into self-prioritization from the perspective of the early stage of attentional selection.

      Weaknesses:

      (1) The results are not convincing enough to definitively support their conclusions. This is due to inconsistent findings (e.g., the model selection suggested condition-specific c parameters, but the increase in processing capacity was only slight; the correlations between attentional selection bias and SPE were inconsistent across experiments), unexpected results (e.g., when examining the impact of social association on processing rates, the other-associated stimuli were processed faster after social association, while the self-associated stimuli were processed more slowly), and weak correlations between attentional bias and behavioral SPE, which were reported without any p-value corrections. Additionally, the reasons why the attentional bias of self-association occurs automatically but disappears during active social decoding remain difficult to explain. It is also possible that the self-association with shapes was not strong enough to demonstrate attention bias, rather than the automatic processes as the authors suggest. Although these inconsistencies and unexpected results were discussed, all were post hoc explanations. To convince readers, empirical evidence is needed to support these unexpected findings.

      (2) The generalization of the findings needs further examination. The current results seem to rely heavily on the perceptual matching task. Whether this attentional selection mechanism of self-prioritization can be generalized to other stimuli, such as self-name, self-face, or other domains of self-association advantages, remains to be tested. In other words, more converging evidence is needed.

      (3) The comparison between the "social" and "perceptual" tasks remains debatable, as it is challenging to equate the levels of social salience and perceptual salience. In addition, these two tasks differ not only in terms of social decoding processes but also in other aspects such as task difficulty. Whether the observed differences between the tasks can definitively suggest the specificity of social decoding, as the authors claim, needs further confirmation.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.

      Strengths:

      The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.

      In this revised version, the points raised/weaknesses were clarified and discussed in the article.

    1. Reviewer #2 (Public review):

      Summary:

      Liu et al investigated the performance of a novel imaging technique called RIM-Deep to enhance the imaging depth for cleared samples. Usually, the imaging depth using the classical confocal microscopy sample chamber is limited due to optical aberrations, resulting in loss of resolution and image quality. To overcome this limitation and increase depth, they generated a special imaging chamber, that is affixed to the objective and filled with a solution matching the refractive indices to reduce aberrations. Importantly, the study was conducted using a standard confocal microscope, that has not been modified apart from exchanging the standard sample chamber with the RIM-Deep sample holder. Upon analysing the imaging depth, the authors claim that the RIM-Deep method increased the depth from 2 mm to 5 mm. In summary, RIM-Deep has the potential to significantly enhance imaging quality of thick samples on a low budget, making in-depth measurements possible for a wide range of researchers that have access to an inverted confocal microscope.

      Strengths:

      The authors used different clearing methods to demonstrate the suitability of RIM-Deep for various sample preparation protocols with clearing solutions of different refractive indices. They clearly demonstrate that the RIM-Deep chamber is compatible with all 3 methods. Brain samples are characterized by complex networks of cells and are often hard to visualize. Despite the dense, complex structure of brain tissue, the RIM-Deep method generated high quality images of all 3 samples given. As the authors already stated, increasing imaging depth often goes hand in hand with purchasing expensive new equipment, exchanging several microscopy parts or purchasing a new microscopy set-up. Innovations, such as the RIM-Deep chamber, hence, might pave the way for cost-effective imaging and expand the applicability of an inverted confocal microscope.

      Weaknesses:

      (1) However, since this study introduces a novel imaging technique, and therefore, aims to revolutionize the way of imaging large samples, additional control experiments would strengthen the data. From the 3 clearing protocol used (CUBIC, MACS and iDISCO), only the brain section from Macaca fascicularis cleared with iDISCO was imaged with the standard chamber and the RIM-Deep method. This comparison indeed shows that the imaging depth thereby increases more than 2-fold, which is a significant enhancement in terms of microscopy. However, it would have been important to evaluate and show the difference of the imaging depth also on the other two samples, since they were cleared with different protocols and, thus, treated with clearing solutions of different refractive indices compared to iDCISCO.

      (2) The description of the figures and figure panels should be improved for a better understanding of the experiments performed and the thus resulting images/data.

      (3) While the authors used a Nikon AX inverted laser scanning confocal microscope, the study would highly benefit from evaluating the performance of the RIM-Deep method using other inverted confocal microscopes or even wide-field microscopes.

    1. Reviewer #2 (Public review):

      Summary:

      The paper reconsiders the formation of Hebbian-type assemblies, with their spontaneous reactivation representing the statistics of the sensory inputs, in the light of predictive synaptic plasticity. It convincingly shows that not all plasticity rules can be predictive in the narrow sense. While plasticity for the excitatory synapses (the forward projecting and recurrent ones) are predictive, two types of plasticity in the recurrent inhibition is required: a homeostatic and competitive one.

      Details:

      Besides the excitatory forward and recurrent connections that are learned based on predictive synaptic plasticity, two types of inhibitory plasticity are considered. A first type of inhibition is homeostatic and roughly balances excitation within the cell assemblies. Plasticity in this type 1 inhibition is also predictive, analogous to the plasticity of the excitatory synapses. However, plasticity in type 2 inhibition is competitive and has a switched sign. Both types of inhibitory plasticity, the predictive (homeostatic) and the anti-predictive (competitive) one, work together with the predictive excitatory plasticity to form cell assemblies representing sensory stimuli. Only if the two types of homeostatic and competitive inhibitory plasticity are present, will the spontaneous replay of the assemblies reflect the statistics of the stimulus presentation.

      Critical review:

      The simulations include Dale's law, making them more biologically realistic. The paper emphasizes predictive plasticity and introduces type 1 inhibitory plasticity that, by construction, tries to fully explain away the excitatory input. In the absence of external inputs, however, due to the symmetry between the excitatory and inhibitory-type-1 plasticity rules, excitation and inhibition tend to fully cancel each other. Multiple options may solve the dilemma:

      (1) As other predictive dendritic plasticity models assume, the presynaptic source for recurrent inhibition is typically less informative than the presynaptic source of excitation, so that inhibition is not able to fully explain away excitation.

      (2) Beside the inhibitory predictive plasticity that mirrors the analogous excitatory predictive plasticity, and additional competitive plasticity can be introduced.

      The paper chooses solution (2) and suggests and additional inhibitory recurrent pathway that is not predictive, but instead anti-predictive with a reversed sign. The combination of the two types of inhibitory plasticities lead to a stable formation of cell assemblies. The stable target activity of the plasticity rules in a memory recall is not anymore 0, as it would be with only type-1-inhibitory plasticity.<br /> Instead, the target activity of plasticity is now enhanced within a winning assembly, and also positive but reduced in the loosing assemblies.

    1. Reviewer #2 (Public review):

      Summary:

      This study primarily aims to examine the relationship between collective performance and group identification. Additionally, the authors propose that inter-brain synchronization (IBS) underlies collective performance and that changes in intra-brain functional connectivity or single-brain activation may, in turn, underlie IBS. The topic addressed in this paper is of great importance in the field using hyperscanning. However, the details of the experiments and analysis described in the paper are unclear, and the hypothesis as to why IBS is thought to underlie collective performance is not clearly presented. In addition, some of the analysis seems to be inappropriate.

      Strengths:

      I find the model presented in Figure 7 to be intriguing. Understanding why inter-brain synchronization occurs and how it is supported by specific single-brain activations or intra-brain functional connectivity is indeed a critical area for researchers conducting hyperscanning studies to explore.

      Understanding triadic-interaction is really important, while almost all hyperscanning neuroimaging focuses on the dyadic interaction. The exploring neural/behavioral/psychological basis behind triadic interaction is a promising method for understanding collective behavior and decision-making.

      Weaknesses:

      The authors need to clearly articulate their hypothesis regarding why neural synchronization occurs during social interaction. For example, in line 284, it is stated that "It is plausible that neural synchronization is closely associated with group identification and collective performance...", but this is far from self-evident. Neural synchronization can occur even when people are merely watching a movie (Hasson et al., 2004), and movie-watchers are not engaged in collective behavior. There is no direct link between the IBS and collective behavior. The authors should explain why they believe inter-brain synchronization occurs in interactive settings and why they think it is related to collective behavior/performance.

      The authors state that "GNS in the OFC was a reliable neuromarker, indicating the influence of group identification on collective performance," but this claim is too strong. Please refer to Figure 4B. Do the authors really believe that collective performance can be predicted given the correlation with the large variance shown? There is a significant discrepancy between observing a correlation between two variables and asserting that one variable is a predictive biomarker for the other.

      Why are the individual answers being analyzed as collective performance (See, L-184)? Although these are performances that emerge after the group discussion, they seem to be individual performances rather than collective ones. Typically, wouldn't the result of a consensus be considered a collective performance? The authors should clarify why the individual's answer is being treated as the measure of collective performance.

      Performing SPM-based mapping followed by conducting a t-test on the channels within statistically significant regions constitutes double dipping, which is not an acceptable method (Kriegeskorte et al., 2011). This issue is evident in, for example, Figures 3A and 4A.

      Please refer to the following source:<br /> https://www.nature.com/articles/nn.2303

      In several key analyses within this study (e.g., single-brain activation in the paragraph starting from L398, neural synchronization in the paragraph starting from L393), the TPJ is mentioned alongside the DLPFC. However, in subsequent detailed analyses, the TPJ is entirely ignored.

      The method for analyzing single-brain activation is unclear. Although it is mentioned that GLM (generalized linear model) was used, it is not specified what regressors were prepared, nor which regressor's β-values are reported as brain activity. Without this information, it is difficult to assess the validity of the reported results.

      While the model illustrated in Figure 7 seems to be interesting, for me, it seems not to be based on the results of this study. This is because the study did not investigate the causal relationships among the three metrics. I guess, Figure 5D might be intended to explain this, but the details of the analysis are not provided, making it unclear what is being presented.

      The details of the experiment are not described at all. While I can somewhat grasp what was done abstractly, the lack of specific information makes it impossible to replicate the study.

    1. Reviewer #2 (Public review):

      Summary:

      Nishi et al, investigate the well-known and previously described phenomenon of age-associated myeloid-biased hematopoiesis. Using a previously established HoxB5mCherry mouse model, they used HoxB5+ and HoxB5- HSCs to discriminate cells with long-term (LT-HSCs) and short-term (ST-HSCs) reconstitution potential and compared these populations to immunophenotypically defined 'bulk HSCs' that consists of a mixture of LT-HSC and ST-HSCs. They then isolated these HSC populations from young and aged mice to test their function and myeloid bias in non-competitive and competitive transplants into young and aged recipients. Based on quantification of hematopoietic cell frequencies in the bone marrow, peripheral blood, and in some experiments the spleen and thymus, the authors argue against the currently held belief that myeloid-biased HSCs expand with age.

      While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Fig 3; Fig 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.

      As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.

      It is also unclear why the authors believe that the observed reduction of ST-HSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation.

      Based on my understanding of the presented data, the authors argue that myeloid-biased HSCs do not exist, as<br /> a) they detect no difference between young/aged HSCs after transplant (mind low n-numbers and large std!!!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSC in myeloid output LT-HScs in competitive transplants (mind low n-numbers and large std!!!).<br /> However, given the low n-numbers and high variance of the results, the argument seems weak and the presented data does not support the claims sufficiently. That the number of downstream progenitors does not change could be explained by other mechanisms, for instance, the frequently reported differentiation short-cuts of HSCs and/or changes in the microenvironment.

      Strengths:

      The authors present an interesting observation and offer an alternative explanation of the origins of aged-associated myeloid-biased hematopoiesis. Their data regarding the role of the microenvironment in the spleen and thymus appears to be convincing.

      Weaknesses:

      "Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Fig. 3, B and C)."<br /> [Comment to the authors]: Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity.

      Line 293: "Based on these findings, we concluded that myeloid-biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones."<br /> Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of ST-HSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs?

    1. Reviewer #2 (Public review):

      This paper shows and analyzes an interesting phenomenon. It shows that when people are exposed to sequences of moving dots (that is moving dots in one direction, followed by another direction, etc.), showing either the starting movement direction or ending movement direction causes a coarse-grained brain response that is similar to that elicited by the complete sequence of 4 directions. However, they show by decoding the sensor responses that this brain activity actually does not carry information about the actual sequence and the motion directions, at least not on the time scale of the initial sequence. They also show a reverse reply on a highly compressed time scale, which is elicited during the period of elevated activity, and activated by the first and last elements of the sequence, but not others. Additionally, these replays seem to occur during periods of cortical ripples, similar to what is found in animal studies.

      These results are intriguing. They are based on MEG recordings in humans, and finding such replays in humans is novel. Also, this is based on what seems to be sophisticated statistical analysis. However, this is the main problem with this paper. The statistical analysis is not explained well at all, and therefore its validity is hard to evaluate. I am not at all saying it is incorrect; what I am saying is that given how it is explained, it cannot be evaluated.

    1. Reviewer #2 (Public review):

      Summary:

      Using in vivo fiber-photometry the authors first establish that DA release when contacting their partner mouse increases with days of cohabitation while this increase is not observed when contacting a stranger mouse. Similar effects are found in D1-MSNs and D2-MSNs with the D1-MSN responses increasing and D2-MSN responses decreasing with days of cohabitation. They then use slice physiology to identify underlying plasticity/adaptation mechanisms that could contribute to the changes in D1/D2-MSN responses. Last, to address causality the authors use chemogenetic tools to selectively inhibit or activate NAc shell D1 or D2 neurons that project to the ventral pallidum. They found that D2 inhibition facilitates bond formation while D2 excitation inhibits bond formation. In contrast, both D1-MSN activation and inhibition inhibit bond formation.

      Strengths:

      The strength of the manuscript lies in combining in vivo physiology to demonstrate circuit engagement and chemogenetic manipulation studies to address circuit involvement in pair bond formation in a monogamous vole.

      Weaknesses:

      Weaknesses include that a large set of experiments within the manuscript are dependent on using short promoters for D1 and D2 receptors in viral vectors. As the authors acknowledge this approach can lead to ectopic expression and the presented immunohistochemistry supports this notion. It seems to me that the presented quantification underestimates the degree of ectopic expression that is observed by eye when looking at the presented immunohistochemistry. However, given that Cre transgenic animals are not available for Microtus mandarinus and given the distinct physiological and behavioral outcomes when imaging and manipulating both viral-targeted populations this concern is minor.

      The slice physiology experiments provide some interesting outcomes but it is unclear how they can be linked to the in vivo physiological outcomes and some of the outcomes don't match intuitively (e.g. cohabitation enhances excitatory/inhibitory balance in D2-MSNs but the degree of contact-induced inhibition is enhanced in D2-MSN).

      One interesting finding is that the relationship between D2-MSN and pair bond formation is quite clear (inhibition facilitates while excitation inhibits pair bond formation). In contrast, the role of D1-MSNs is more complicated since both excitation and inhibition disrupt pair bond formation. This is not convincingly discussed.

      It seemed a missed opportunity that physiological readout is limited to males. I understand though that adding females may be beyond the scope of this manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports that a combination of two small molecules, 2C (CHIR99027 and A-485) enabled to induce the dedifferentiation of hESC-derived cardiomyocytes (CMs) into regenerative cardiac cells (RCC). These RCCs had disassembled sarcomeric structures and elevated expression of embryonic cardiogenic genes such as ISL1, which exhibited proliferative potential and were able to differentiate into cardiomyocytes, endothelial cells, and smooth muscle cells. Lineage tracing further suggested that RCCs originated from TNNT2+ cells, not pre-existing ISL1+ cells. Furthermore, 2C treatment increased the numbers of RCC cells in neonatal rat and adult mouse hearts, and improves cardiac function post-MI in adult mice. Mechanistically, bulk RNA-seq analysis revealed that 2C led to elevated expression of embryonic cardiogenic genes while down-regulation of CM-specific genes. Single-cell RNA-seq data showed that 2C promoted cardiomyocyte transition into an intermediate state that are marked with ACTA2 and COL1A1, which subsequently transform into RCCs. Finally, ChIP-seq analysis demonstrated that CHIR99027 enhanced H3K9Ac and H3K27Ac modifications in embryonic cardiac genes, while A-485 inhibited these modifications in cardiac-specific genes. These combined alterations effectively induced the dedifferentiation of cardiomyocytes into RCCs. Overall, this is an important work, presenting a putative cardiac regenerative cell types that may represent endogenous cardiac regeneration in regenerative animals. With that said, here are suggestions for the authors:

      Strengths:

      Overall, this work is quite comprehensive and is logically and rigorously designed. The phenotypic and functional data on 2C are strong.

      Weaknesses or suggestions:

      (1) In Figure 4, the authors should perform additional experiments on analyzing 2C effect on cardiomyocytes, endothelial cells, and fibroblasts in adult mouse hearts after myocardial infarction.<br /> (2) In Figures 5-7, the mechanistic insights of 2C are primarily derived from transcriptomic and genomic datasets without experimental verification.<br /> (3) The authors should compare transcriptomic profiling of the RCCs with other putative cardiac progenitors from public databases.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Mendes et al provides novel key insights in the role of chemotaxis and immune cell recruitment into the hypothalamus in the development of diet-induced obesity. Specifically, the authors first revealed that although transcriptional changes in hypothalamic resident microglia following exposure to high-fat feeding are minor, there are compelling transcriptomic differences between resident microglia and microglia recruited to the hypothalamus, and these are sexually dimorphic. Using independent loss-of-function studies, the authors also demonstrate an important role of CXCR3 and hypothalamic CXCL10 in the hypothalamic recruitment of CCR2+ positive cells on metabolism following exposure to high-fat diet-feeding in mice. This manuscript puts forth conceptually novel evidence that inhibition of chemotaxis-mediated immune cell recruitment accelerates body weight gain in high-fat diet-feeding, suggesting that a subset of microglia which express CXCR3 may confer protective, anti-obesogenic effects.

      Strengths:

      The work is exciting and relevant given the prevalence of obesity and the consequences of inflammation in the brain on perturbations of energy metabolism and ensuant metabolic diseases. Hypothalamic inflammation is associated with disrupted energy balance, and activated microglia within the hypothalamus resulting from excessive caloric intake and saturated fatty acids are often thought to be mediators of impairment of hypothalamic regulation of metabolism. The present work reports a novel notion in which immune cells recruited into the hypothalamus which express chemokine receptor CXCR3 may have a protective role against diet-induced obesity. In vivo studies reported herein demonstrate that inhibition of CXCR3 exacerbates high-fat diet-induced body weight gain, increases circulating triglycerides and fasting glucose levels, worsens glucose tolerance, and increases the expression of orexigenic neuropeptides, at least in female mice.

      This work provides a highly interesting and needed overview of preclinical and clinical brain inflammation, which is relevant to readers with an interest in metabolism and immunometabolism in the context of obesity.

      Using flow cytometry, cell sorting, and transcriptomics including RNA-sequencing, the manuscript provides novel insights on transcriptional landscapes of resident and recruited microglia in the hypothalamus. Importantly, sex differences are investigated.

      Overall, the manuscript is perceived to be highly interesting, relevant, and timely. The discussion is thoughtful, well-articulated, and a pleasure to read and felt to be of interest to a broad audience.

      Weaknesses:

      There were no major weaknesses perceived. Some comments for potential textual additions to the results/discussion are provided below.

      Could the authors comment on the choice of peripheral administration of CXCR3 antagonist as opposed to central (e.g. icv) administration? Indeed, systemic inhibition of CXCR3 produced significant alterations in body weight gain and glucose tolerance in female mice given high-fat diet and reduced CCR2 and CXCR3 immunostaining in the hypothalamus. Could changes to peripheral (e.g. WAT, liver) immune responses to the diet underlie the metabolic changes observed?

      Besides hypothalamic mRNA levels of chemokines and chemokine receptors, does systemic CXCR3 antagonism affect other aspects linked to diet-induced impairments of hypothalamic regulation of energy homeostasis, like inflammation, ER stress and/or mitochondrial dynamics/function? It would be interesting to reveal the consequence of reduced CCR2+ microglial migration to the hypothalamus with chronic high-fat diet exposure.

    1. Reviewer #2 (Public review):

      Summary:

      This paper reports the structures of two human biotin-dependent carboxylases. The authors used endogenously purified proteins and solved the structures in high resolutions. Based on the structures, they defined the binding site for acyl-CoA and biotin and reported the potential conformational changes in biotin position.

      Strengths:

      The authors effectively utilized the biotin of the two proteins and obtained homogeneous proteins from human cells. They determined the high-resolution structures of the two enzymes in apo and substrate-bound states.

      Comments and questions to the manuscripts:

      (1) I'm quite impressed with the protein purification and structure determination, but I think some functional characterization of the purified proteins should be included in the manuscript. The activity of enzymes should be the foundation of all structures and other speculations based on structures.

      (2) In Figure 1B, the structure of MCC is shown as two layers of beta units and two layers of alpha units, while there is only one layer of alpha units resolved in the density maps. I suggest the authors show the structures resolved based on the density maps and show the complete structure with the docked layer in the supplementary figure.

      (3) In the introduction, I suggest the author provide more information about the previous studies about the structure and reaction mechanisms of BDCs, what is the knowledge gap, and what problem you will resolve with a higher resolution structure. For example, you mentioned in line 52 that G437 and A438 are catalytic residues, are these residues reported as catalytic residues or this is based on your structures? Has the catalytic mechanism been reported before? Has the role of biotin in catalytic reactions revealed in previous studies?

      (4) In the discussion, the authors indicate that the movement of biotin could be related to the recognition of acyl-CoA in BDCs, however, they didn't observe a change in the propionyl-CoA bound MCC structure, which is contradictory to their speculation. What could be the explanation for the exception in the MCC structure?

      (5) In the discussion, the authors indicate that the selectivity of PCC to different acyl-CoA is determined by the recognition of the acyl chain. However, there are no figures or descriptions about the recognition of the acyl chain by PCC and MCC. It will be more informative if they can show more details about substrate recognition in Figures 3 and 4.

      (6) How are the solved structures compared with the latest Alphafold3 prediction?

    1. Reviewer #3 (Public review):

      Summary:

      In this study the authors aim to develop an experimental/computational pipeline to assess the modification status of an RNA following treatment with dimethylsulfate (DMS). Building upon the more common DMS Map method, which predominantly assesses the modification status of the Watson-Crick-Franklin face of A's and C's, the authors insert a chemical processing step in the workflow prior to deep sequencing that enables detection of methylation at the N7 position of guanosine residues. This approach, termed BASH MaP, provides a more complete assessment of the true modification status of an RNA following DMS treatment, and this new information provides a powerful set of constraints for assessing the secondary structure and conformational state of an RNA. In developing this work, the authors use Spinach as a model RNA. Spinach is a fluorogenic RNA that binds and activates the fluorescence of a small molecule ligand. Crystal structures of this RNA with ligand bound show that it contains a G-quadruplex motif. In applying BASH MaP to Spinach, the authors also perform the more standard DMS MaP for comparison. They show that the BASH MaP workflow appears to retain the information yielded by DMS MaP while providing new information about guanosine modifications. In Spinach, the G-quadruplex G's have the least reactive N7 positions, consistent with the engagement of N7 in hydrogen bonding interactions at G's involved in quadruplex formation. Moreover, because the inclusion of data corresponding to G increases the number of misincorporations per transcript, BASH MaP is more amenable to analysis of co-occurring misincorporations through statistical analysis, especially in combination with site-specific mutations. These co-occurring misincorporations provide information regarding what nucleotides are structurally coupled within an RNA conformation. By deploying a likelihood-ratio statistical test on BASH MaP data, the authors can identify Gs in G-quadruplexes, deconvolute G-G correlation networks, base-triple interactions and even stacking interactions. Further, the authors develop a pipeline to use the BASH MaP-derived G-modification data to assist in the prediction of RNA secondary structure and identify alternative conformations adopted by a particular RNA. This seems to help with the prediction of secondary structure for Spinach RNA.

      Strengths:

      The BASH Map procedure and downstream data analysis pipeline more fully identifies the complement of methylations to be identified from DMS treatment of RNA, thereby enriching the information content. This in turn allows for more robust computational/statistical analysis, which likely will lead to more accurate structure predictions. This seems to be the case for the Spinach RNA.

      Weaknesses:

      The authors demonstrate that their method can detect G-quadruplexes in Spinach and some other RNAs both in vitro and in cells. While application to other RNAs is beyond the scope of the current manuscript, the performance of BASH MaP and associated computational analysis in the context of other RNAs remains to be determined.

    1. Reviewer #3 (Public review):

      Summary:

      The work by Graca et al. describes a GMC flavoprotein dehydrogenase (MftG) in the ethanol metabolism of mycobacteria and provides evidence that it shuttles electrons from the mycofactocin redox cofactor to the electron transport chain.

      Strengths:

      Overall, this study is compelling, exceptionally well designed and thoroughly conducted. An impressively diverse set of different experimental approaches is combined to pin down the role of this enzyme and scrutinize the effects of its presence or absence in mycobacteria cells growing on ethanol and other substrates. Other strengths of this work are the clear writing style and stellar data presentation in the figures, which makes it easy also for non-experts to follow the logic of the paper. Overall, this work therefore closes an important gap in our understanding of ethanol oxidation in mycobacteria, with possible implications for the future treatment of bacterial infections.

      Weaknesses:

      I see no major weaknesses of this work, which in my opinion leaves no doubt about the role of MftG.

    1. Reviewer #2 (Public review):

      HIV infection is characterized by viral integration into permissive host cells - an event that occurs very early in viral-host encounter. This constitutes the HIV proviral reservoir and is a feature of HIV infection that provides the greatest challenge for eradicating HIV-1 infection once an individual is infected.

      This study looks at how starting HIV treatment very early after infection, which substantially reduces the peak viral load detectable (compared to untreated infection), affects the amount and characteristics of the viral reservoir. The authors studied 35 women in South Africa who were at high risk of getting HIV. Some of these women started HIV treatment very soon after getting infected, while others started later. This study is well designed and has as its focus a very well characterized cohort. Comparison groups are appropriately selected to address proviral DNA characterization and dynamics in the context of acute and chronic treated HIV-1. The amount of HIV and various characteristics of the genetic makeup of the virus (intact/defective proviral genome) was evaluated over one year of treatment. Methods employed for proviral DNA characterization are state of the art and provide in-depth insights into the reservoir in peripheral blood.

      While starting treatment early didn't reduce the amount of HIV DNA at the outset, it did lead to a gradual decrease in total HIV DNA quantity over time. In contrast, those who started treatment later didn't see much change in this parameter. Starting treatment early led to a faster decrease in intact provirus (a measure of replication-competence), compared to starting treatment later. Additionally, early treatment reduced genetic diversity of the viral DNA and resulted in fewer immune escape variants within intact genomes. This suggests that collectively having a smaller intact replication-competent reservoir, less viral variability, and less opportunity for virus to evade the immune system - are all features that are likely to facilitate more effective clearance of viral reservoir, especially when combined with other intervention strategies.

      Major strengths of the study include the cohort of very early treated persons with HIV and the depth of study. These are important findings, particularly as the study was conducted in HIV-1 subtype C infected women (more cure studies have focussed on men and with subtype B infection)- and in populations most affected by HIV and in need of HIV cure interventions. This is highly relevant because it cannot be assumed that any interventions employed for reducing/clearing the HIV reservoir would perform similarly in men and women or across different populations. Other factors also deserve consideration and include age, and environment (e.g. other comorbidities and coinfections).

    1. Reviewer #2 (Public review):

      Summary:

      In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.

      Strengths:

      The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.

      Weaknesses:

      Throughout the study, the authors have utilized a CRISPR knockout of VirR. VirR is a non-essential gene for the growth of Mtb; a null mutant of VirR would have been a better choice for the study.

      Comments on the revised version:

      Concerns flagged about using CRISPR -guide RNA mediated knockdown of viral has yet to be addressed entirely. I understand that the authors could not get knock out despite attempts and hence they have guide RNA mediated knockdown strategy. However, I wondered if the authors looked at the levels of the downstream genes in this knockdown.

      Authors have used the virmut-Comp strain for some of the experiments. However, the materials and methods must describe how this strain was generated. Given the mutant is a CRISPR-guide RNA mediated knockdown. The CRISPR construct may have taken up the L5 loci. Did authors use episomal construct for complementation? If so, what is the expression level of virR in the complementation construct? What are the expression levels of downstream genes in mutant and complementation strains? This is important because the transcriptome analysis was redone by considering complementation strain. The complemented strain is written as virmut-C or virmut-Comp. This has to be consistent.

    1. Reviewer #2 (Public review):

      Summary:

      The overall goal of Eleni et al. is to determine if the suppression of LH pulses during lactation is mediated by prolactin signaling at kisspeptin neurons. To address this, the authors used GCaMP fiber photometry and serial blood sampling to reveal that in vivo episodic arcuate kisspeptin neuron activity and LH pulses are suppressed throughout pregnancy and lactation. The authors further utilized knockout models to demonstrate that the loss of prolactin receptor signaling at kisspeptin cells prevents the suppression of kisspeptin cell activity and results in the early reestablishment of fertility during lactation. The work demonstrates exemplary design and technique, and the outcomes of these experiments are sophistically discussed.

      Strengths:

      This manuscript demonstrates exceptional skill with powerful techniques and reveals a key role for arcuate kisspeptin neurons in maintaining lactation-induced infertility in mice. In a difficult feat, the authors used fiber photometry to map the activity of arcuate kisspeptin cells into lactation and weaning without disrupting parturition, lactation, or maternal behavior. The authors used a knockout approach to identify if the inhibition of fertility by prolactin is mediated via direct signaling at arcuate kisspeptin cells. Although the model does not perfectly eliminate prolactin receptor expression in all kisspeptin neurons, results from the achieved knockdown support the conclusion that prolactin signaling at kisspeptin neurons is required to maintain lactational infertility. The methods are advanced and appropriate for the aims, the study is rigorously conducted, and the conclusions are thoughtfully discussed.

      Comments on the latest version:

      All comments and suggestions have been addressed by the authors in this revision.

    1. Reviewer #2 (Public review):

      This work by Pal et al. studied the relationship between protein expression noise and translational efficiency. They proposed a model based on ribosome demand to explain the positive correlation between them, which is new as far as I realize. Nevertheless, I found the evidence of the main idea that it is the ribosome demand generating this correlation is weak. Below are my major and minor comments.

      Major comments:

      (1) Besides a hypothetical numerical model, I did not find any direct experimental evidence supporting the ribosome demand model. Therefore, I think the main conclusions of this work are a bit overstated.

      (2) I found that the enhancement of protein noise due to high translational efficiency is quite mild, as shown in Figure 6A-B, which makes the biological significance of this effect unclear.

      (3) The captions for most of the figures are short and do not provide much explanation, making the figures difficult to read.

      (4) It would be helpful if the authors could define the meanings of noise (e.g., coefficient of variation?) and translational efficiency in the very beginning to avoid any confusion. It is also unclear to me whether the noise from the experimental data is defined according to protein numbers or concentrations, which is presumably important since budding yeasts are growing cells.

      (5) The conclusions from Figures 1D and 1E are not new. For example, the constant protein noise as a function of mean protein expression is a known result of the two-state model of gene expression, e.g., see Equation (4) in Paulsson, Physics of Life Reviews 2005.

      (6) In Figure 4C-D, it is unclear to me how the authors changed the mean protein expression if the translation initiation rate is a function of variation in mRNA number and other random variables.

      (7) If I understand correctly, the authors somehow changed the translation initiation rate to change the mean protein expression in Figures 4C-D. However, the authors changed the protein sequences in the experimental data of Figure 6. I am not sure if the comparison between simulations and experimental data is appropriate.

    1. Reviewer #2 (Public review):

      In this manuscript, Hou et al. investigate the interplay between OCT4 and SOX2 in driving the pluripotent state during early embryonic lineage development. Using knockout (KO) embryos, the authors specifically analyze the transcriptome and chromatin state within the ICM-to-EPI developmental trajectory. They emphasize the critical role of OCT4 and the supportive function of SOX2, along with other factors, in promoting embryonic fate. Although the paper presents high-quality data, several key claims are not well-supported, and direct evidence is generally lacking.

      Major Points:

      (1) Although the authors claim that both maternal KO and maternal KO/zygotic hetero KO mice develop normally, the molecular changes in these groups appear overestimated. A wildtype control is recommended for a more robust comparison.

      (2) The authors assert that OCT4 and SOX2 activate the pluripotent network via the OCT-SOX enhancer. However, the definition of this enhancer is based solely on proximity to TSSs, which is a rough approximation. Canonical enhancers are typically located in intronic and intergenic regions and marked by H3K4me1 or H3K27ac. Re-analyzing enhancer regions with these standards could be beneficial. Additionally, the definitions of "close to" or "near" in lines 183-184 are unclear and not defined in the legends or methods.

      (3) There is no evidence that the decreased peaks/enhancers could be the direct targets of Oct4 and Sox2 throughout this manuscript. Figures 2 and 4 show only minimal peak annotations related to OCT and SOX motifs, and there is a lack of chromatin IP data. Therefore, claims about direct targets are not substantiated and should be appropriately revised.

      (4) Lines 143-146 lack direct data to support the claim. Actually, the main difference in cluster I, 11 and 3, 8, 14 is whether the peak contains OCT-SOX motif. However, the reviewer cannot get any information of peaks activated by OCT4 rather than SOX2 in cluster I, 11.

      Minor Points:

      (1) Lines 153-159: The figure panel does not show obvious enrichment of SOX2 signals or significant differences in H3K27ac signals across clusters, thus not supporting the claim.

      (2) Lines 189-190: The term "identify" is overstated for the integrative analysis of RNA-seq and ATAC-seq, which typically helps infer TF targets rather than definitively identifying them.

      (3) The Discussion is lengthy and should be condensed.

    1. Reviewer #2 (Public review):

      Summary:

      This article investigates the distribution of synapses on the dendritic arbors of descending neurons in the looming circuit of the fly visual system. The authors use publicly available EM reconstruction data of the adult fly brain to identify the positions of synapses from several types of visual projection neuron (VPN) to descending neuron (DN) connections. VPN dendrites are retinotopically organized, and axons from different VPN populations innervate distinct optic glomeruli. Yet the authors did not find any retinotopic organization of the synapses in the VPN-DN pairs they analyzed. They then constructed passive electrical models of the DNs with their structures extracted from the EM reconstructions. They focused on two specific DNs and parameterized their models by conducting whole-cell recordings within a voltage range below spiking threshold. Simulation of these passive models showed that irrespective of the location of a synapse, EPSPs became very similar at the spike initiation zone. This is consistent with the idea of synaptic democracy where EPSPs at far away synapses have higher amplitude compared to those nearer to the spike initiation zone so that they all attenuate to similar amplitudes while reaching there. The authors found that activating synapses from individual VPNs have the same effect as activating a random set of synapses. They conclude that despite some clustering of VPN synapses at small scale, they are distributed randomly over the dendritic arbor of DNs so that their EPSP amplitude encode the number of activated synapses, avoiding sublinearity from shunting effect.

      Strengths:

      - Experimental confirmation of the location of the spike initiation zone in the DN arbors is interesting and may provide better understanding of signal processing in these neurons.<br /> - Passive parameters obtained through electrophysiological recordings are useful.<br /> - These morphologically detailed single neuron models, if made available publicly, will be beneficial for building more complete models to understand the fly visual circuit.<br /> - The authors have complemented the work of Dombrovski et al by analyzing the distribution of synapses in more detail from EM data for a different set of neurons.

      Weaknesses:

      DNs are upstream of motorneurons, and one would expect, as demonstrated by Dombrovski et al, that specific DNs being activated by input from specific regions of the visual field will activate motoneurons so that the fly moves away from a looming object.

      The current work analyzed the synapse distribution on two DNs that do not seem to have such role, and emphasize the lack of retinotopy. However, it is not clear why one would expect retinotopy in synapse location on the dendritic arbor. The comparison with mammalian visual circuits is not appropriate because those layers are extracting more and more complex visual features, whereas Drosophila DNs are supposed to drive motoneurons to generate suitable escape behavior.

      - The authors do not suggest the functional roles of these DNs in controlling the movement of the fly. They argue that the synapse distribution and the passive electrotonic structure of these neurons are optimized to make the composite EPSP encode the number of activated synapses, but do not explain why this is important.

      - Although DNs are spiking neurons, the authors limit their work to the subthreshold passive domain. If the EPSP at the spike initiation zone crosses spiking threshold, will encoding the number of synapses in EPSP amplitude still matter? Will it matter either if the composite EPSP remains subthreshold?

      - The temporal aspect of the input has been ignored by the authors in their simulations. First, it is not clear all the synapses from a single VPN should get activated together. One would expect a spike in a VPN to arrive at different synapses with different time delays depending on their electrotonic distance from the spike initiation zone and the signal propagation speed in the neurites.

      A looming stimulus should be expanding with time, but from the description of the simulations it does not seem that the authors have tried to incorporate this aspect in their design of the synaptic activation.

      - The suggestion in the abstract that linear encoding of synapse number is default strategy which is then tuned by active properties and plasticity seems strange. Developmentally active properties do not get inserted into passive neurons.

      - Much of the analysis (Figures 4, 5, 12) show relationships with physical distance along dendrite. In studying passive neurons it is more informative to use electrotonic distance which provides better insight.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript, Quian and colleagues identified a novel mechanism by which Pseudomonas control inflammatory responses upon inflammasome activation. They identified a caspase-11 substrate (VgrG2b) which, upon cleavage, binds and inhibits the NLRP3 to reduce the production of pro-inflammatory cytokines. This is a unique mechanism that allows for the tailoring of the innate immune response upon bacterial recognition.

      Strengths:

      The authors are presenting here a novel conceptual framework in host-pathogen interactions. Their work is supported by a range of approaches (biochemical, cellular immunology, microbiology, animal models), and their conclusions are supported by multiple independent evidences. The work is likely to have an important impact on the innate immunity field and host-pathogen interactions field and may guide the development of novel inhibitors.

      Weaknesses:

      Although quite exhaustive, a few of the authors' conclusions are not fully supported (e.g., caspase-11 directly cleaving VgrG2b, the unique affinity of VgrG2b-C for NLRP3) and would require complementary approaches to validate their findings fully. This is minimal.

    1. Reviewer #2 (Public review):

      Summary:

      The authors decoupled several players that are thought to contribute to the establishment of epithelial polarity and determined their causal relationship. This provides a new picture of the respective roles of junctional proteins (Par3), the centrosome, and endomembrane compartments (Cdc42, Rab11, Gp135) from upstream to downstream.<br /> Their conclusions are based on live imaging of all players during the early steps of polarity establishment and on the knock-down of their expression in the simplest ever model of epithelial polarity: a cell doublet surrounded by ECM.

      The position of the centrosome is often taken as a readout for the orientation of the cell polarity axis. There is a long-standing debate about the actual role of the centrosome in the establishment of this polarity axis. Here, using a minimal model of epithelial polarization, a doublet of daugthers MDCK cultured in Matrigel, the authors made several key observations that bring new light to our understanding of a mechanism that has been studied for many years without being fully explained:

      (1) They showed that centriole can reach their polarized position without most of their microtubule-anchoring structures. These observations challenge the standard model according to which centrosomes are moved by the production and transmission of forces along microtubules.

      (2) (However) they showed that epithelial polarity can be established in the absence of centriole.

      (3) (Somehow more expectedly) they also showed that epithelial polarity can't be established in the absence of Par3.

      (4) They found that most other polarity players that are transported through the cytoplasm in lipid vesicles, and finally fused to the basal or apical pole of epithelial cells, are moved along an axis which is defined by the position of centrosome and orientation of microtubules.

      (5) Surprisingly, two non-daughters cells that were brought in contact (for 6h) could partially polarize by recruiting a few Par3 molecules but not the other polarity markers.

      (6) Even more surprisingly, in the absence of ECM, Par 3 and centrosomes could move to their proper position close to the intercellular junction after cytokinesis but other polarity markers (at least GP135) localized to the opposite, non-adhesive, side. So the polarity of the centrosome-microtubule network could be dissociated from the localisation of GP135 (which was believed to be transported along this network).

      Strengths:

      (1) The simplicity and reproducibility of the system allow a very quantitative description of cell polarity and protein localisation.

      (2) The experiments are quite straightforward, well-executed, and properly analyzed.

      (3) The writing is clear and conclusions are convincing.

      Weaknesses:

      (1) The simplicity of the system may not capture some of the mechanisms involved in the establishment of cell polarity in more physiological conditions (fluid flow, electrical potential, ion gradients,...).

      (2) The absence of centriole in centrinone-treated cells might not prevent the coalescence of centrosomal protein in a kind of MTOC which might still orient microtubules and intracellular traffic. How are microtubules organized in the absence of centriole? If they still form a radial array, the absence of a centriole at the center of it somehow does not conflict with classical views in the field.

      (3) The mechanism is still far from clear and this study shines some light on our lack of understanding. Basic and key questions remain:<br /> a) How is the centrosome moved toward the Par3-rich pole? This is particularly difficult to answer if the mechanism does not imply the anchoring of MTs to the centriole or PCM.<br /> b) What happens during cytokinesis that organises Par3 and intercellular junction in a way that can't be achieved by simply bringing two cells together? In larger epithelia cells have neighbours that are not daughters, still, they can form tight junctions with Par3 which participates in the establishment of cell polarity as much as those that are closer to the cytokinetic bridge (as judged by the overall cell symmetry). Is the protocol of cell aggregation fully capturing the interaction mechanism of non-daughter cells?

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript by Torelli et al., the authors propose that the major function of MYR1 and MYR1-dependent secreted proteins is to contribute to parasite survival in a paracrine manner rather than to protect parasites from cell-autonomous immune response. The authors conclude that these paracrine effects rescue ∆MYR1 or knockouts of MYR1-dependent effectors within pooled in vivo CRISPR screens.

      Strengths:

      The authors raised a more general concern that pooled CRISPR screens (not only in Toxoplasma but also other microbes or cancers) would miss important genes by "paracrine masking effect". Although there is no doubt that pooled CRISPR screens (especially in vivo CRISPR screens) are powerful techniques, I think this topic could be of interest to those fields and researchers.

      Weaknesses:

      In this version, the reviewer is not entirely convinced of the 'paracrine masking effect' because the in vivo experiments should include appropriate controls (see major point 2).

      (1) It is convincing that co-infection of WT and ∆MYR1 parasites could rescue the growth of ∆MYR1 in mice shown by in vivo luciferase imaging. Also, this is consistent with ∆MYR1 parasites showing no in vivo fitness defect in the in vivo CRISPR screens conducted by several groups. Meanwhile, it has been reported previously and shown in this manuscript that ∆MYR1 parasites have an in vitro growth defect; however, ∆MYR1 parasites show no in vitro fitness defect the in vitro pooled CRISPR screen. The authors show that the competition defect of ∆MYR1 parasites cannot be rescued by co-infection with WT parasites in Figure 1c, which might indicate that no paracrine rescue occurred in an in vitro environment. The authors seem not to mention these discrepancies between in vitro CRISPR screens and in vitro competition assays. Why do ∆MYR1 parasites possess neutral in vitro fitness scores in in vitro CRISPR screens? Could the authors describe a reasonable hypothesis?

      (2) The authors developed a mixed infection assay with an inoculum containing a 20:80 ratio of ΔMYR1-Luc parasites with either WT parasites or ΔMYR1 mutants not expressing luciferase, showing that the in vivo growth defect of ∆MYR1 parasites is rescued by the presence of WT parasites. Since this experiment lacks appropriate controls, interpretation could be difficult. Is this phenomenon specific to MYR1? If a co-inoculum of ∆GRA12-Luc with either WT parasites or GRA12 parasites not expressing luciferase is included, the data could be appropriately interpreted.

      (3) In the Discussion part, the authors argue that the rescue phenotype of mixed infection is not due to co-infection of host cells (lines 307-310). This data is important to support the authors' paracrine hypothesis and should be shown in the main figure.

      (4) In the Discussion part, the authors assume that the rescue phenotype is the result of multiple MYR1-dependent effectors. I admit that this hypothesis could be possible since a recently published paper described the concerted action of numerous MYR1-dependent or independent effectors contributing to the hypermigration of infected cells (Ten Hoeve et al., mBio, 2024). I think this paragraph would be kind of overstated since the authors did not test any of the candidate effectors. Since the authors possess ∆IST parasites, they can test whether IST is involved in the "paracrine masking effect" or not to support their claim.

    1. Reviewer #2 (Public review):

      In this paper, Hotinger et. al. propose an improved barcoded library system, called STAMPR, to study Salmonella population dynamics during infection. Using this system, the authors demonstrate significant diversity in the colonization of different Salmonella clones (defined by the presence of different barcodes) not only across different organs (liver, spleen, adipose tissues, pancreas, and gall bladder) but also within different compartments of the same gastrointestinal tissue. Additionally, this system revealed that microbiota competition is the major bottleneck in Salmonella intestinal colonization, which can be mitigated by streptomycin treatment. However, this has been demonstrated previously in numerous publications. They also show that there was minimal sharing between populations found in the intestine and those in the other organs. Upon IV and IP infection to bypass the intestinal bottleneck, they were able to demonstrate, using this library, that Salmonella can renter the intestine through two possible routes. One route is essentially the reverse path used to escape the gut, leading to a diverse intestinal population; while the other, through the bile, typically results in a clonal population. Although the authors showed that the STAMPR pipeline improved the ability to identify founder populations and their diversity within the same animal during infections, some of the conclusions appear speculative and not fully supported.

      (1) It's particularly interesting how the authors, using this system, demonstrate the dominant role of the microbiota bottleneck in Salmonella colonization and how it is widened by antibiotic treatment (Figure 1). Additionally, the ability to track Salmonella reseeding of the gut from other organs starting with IV and IP injections of the pathogen provides a new tool to study population dynamics (Figure 5). However, I don't think it is possible to argue that the proximal and distal small intestine, Peyer's patches (PPs), cecum, colon, and feces have different founder populations for reasons other than stochastic variations. All the barcoded Salmonella clones have the same fitness and the fact that some are found or expanded in one region of the gastrointestinal tract rather than another likely results from random chance - such as being forced in a specific region of the gut for physical or spatial reasons-and subsequent expansion, rather than any inherent biological cause. For example, some bacteria may randomly adhere to the mucus, some may swim toward the epithelial layer, while others remain in the lumen; all will proliferate in those respective sites. In this way, different founder populations arise based on random localization during movement through the gastrointestinal tract, which is an observation, but it doesn't significantly contribute to understanding pathogen colonization dynamics or pathogenesis. Therefore, I would suggest placing less emphasis on describing these differences or better discussing this aspect, especially in the context of the gastrointestinal tract.

      (2) I do think that STAMPR is useful for studying the dynamics of pathogen spread to organs where Salmonella likely resides intracellularly (Figure 3). The observation that the liver is colonized by an early intestinal population, which continues to proliferate at a steady rate throughout the infection, is very interesting and may be due to the unique nature of the organ compared to the mucosal environment. What is the biological relevance during infection? Do the authors observe the same pattern (Figures 3C and G) when normalizing the population data for the spleen and mesenteric lymph nodes (mLN)? If not, what do the authors think is driving this different distribution?

      (3) Figure 6: Could the bile pathology be due to increased general bacterial translocation rather than Salmonella colonization specifically? Did the authors check for the presence of other bacteria (potentially also proliferating) in the bile? Do the authors know whether Salmonella's metabolic activity in the bile could be responsible for gallbladder pathology?

    1. Reviewer #2 (Public review):

      Summary:

      The authors sequence 45 new samples of S. Gallinarum, a commensal Salmonella found in chickens, which can sometimes cause disease. They combine these sequences with around 500 from public databases, determine the population structure of the pathogen, and coarse relationships of lineages with geography. The authors further investigate known anti-microbial genes found in these genomes, how they associate with each other, whether they have been horizontally transferred, and date the emergence of clades.

      Strengths:

      (1) It doesn't seem that much is known about this serovar, so publicly available new sequences from a high-burden region are a valuable addition to the literature.

      (2) Combining these sequences with publicly available sequences is a good way to better contextualise any findings.

      Weaknesses:

      There are many issues with the genomic analysis that undermine the conclusions, the major ones I identified being:

      (1) Recombination removal using gubbins was not presented fully anywhere. In this diversity of species, it is usually impossible to remove recombination in this way. A phylogeny with genetic scale and the gubbins results is needed. Critically, results on timing the emergence (fig2) depend on this, and cannot be trusted given the data presented.

      (2) The use of BEAST was also only briefly presented, but is the basis of a major conclusion of the paper. Plot S3 (root-to-tip regression) is unconvincing as a basis of this data fitting a molecular clock model. We would need more information on this analysis, including convergence and credible intervals.

      (3) Using a distance of 100 SNPs for a transmission is completely arbitrary. This would at least need to be justified in terms of the evolutionary rate and serial interval.

      (4) The HGT definition is non-standard, and phylogeny (vertical inheritance) is not controlled for.<br /> The cited method:<br /> 'In this study, potentially recently transferred ARGs were defined as those with perfect identity (more than 99% nucleotide identity and 100% coverage) in distinct plasmids in distinct host bacteria using BLASTn (E-value {less than or equal to}10−5)'<br /> This clearly does not apply here, as the application of distinct hosts and plasmids cannot be used. Subsequent analysis using this method is likely invalid, and some of it (e.g. Figure 6c) is statistically very poor.

      (5) Associations between lineages, resistome, mobilome, etc do not control for the effect of genetic background/phylogeny. So e.g. the claim 'the resistome also demonstrated a lineage-preferential distribution' is not well-supported.

      (6) The invasiveness index is not well described, and the difference in means is not biologically convincing as although it appears significant, it is very small.

      (7) 'In more detail, both the resistome and mobilome exhibited a steady decline until the 1980s, followed by a consistent increase from the 1980s to the 2010s. However, after the 2010s, a subsequent decrease was identified.'<br /> Where is the data/plot to support this? Is it a significant change? Is this due to sampling or phylogenetics?

      (8) It is not clear what the burden of disease this pathogen causes in the population, or how significant it is to agricultural policy. The article claims to 'provide valuable insights for targeted policy interventions.', but no such interventions are described.

      (9) The abstract mentions stepwise evolution as a main aim, but no results refer to this.

      (10) The authors attribute changes in population dynamics to normalisation in China-EU relations and hen fever. However, even if the date is correct, this is not a strongly supported causal claim, as many other reasons are also possible (for example other industrial processes which may have changed during this period).

      (11) No acknowledgment of potential undersampling outside of China is made, for example, 'Notably, all bvSP isolates from Asia were exclusively found in China, which can be manually divided into three distinct regions (southern, eastern, and northern).'. Perhaps we just haven't looked in other places?

      (12) Many of the conclusions are highly speculative and not supported by the data.

      (13) The figures are not always the best presentation of the data:<br /> a. Stacked bar plots in Figure 1 are hard to interpret, the total numbers need to be shown. Panel C conveys little information.<br /> b. Figure 4B: stacked bars are hard to read and do not show totals.<br /> c. Figure 5 has no obvious interpretation or significance.

      In summary, the quality of analysis is poor and likely flawed (although there is not always enough information on methods present to confidently assess this or provide recommendations for how it might be improved). So, the stated conclusions are not supported.

    1. Reviewer #2 (Public review):

      Temperature is a critical factor affecting the progression of viral diseases in vertebrates and invertebrates. In the current study, the authors investigate mechanisms by which high temperatures promote anti-viral resistance in shrimp. They show that high temperatures induce HSF1 expression, which in turn upregulates AMPs. The AMPs target viral envelope proteins and inhibit viral infection/replication. The authors confirm this process in drosophila and suggest that there may be a conserved mechanism of high-temperature mediated anti-viral response in arthropods. These findings will enhance our understanding of how high temperature improves resistance to viral infection in animals.

      The conclusions of this paper are mostly well supported by data, but some aspects of data analysis need to be clarified and extended. Further investigation on how WSSV infection is affected by AMP would have strengthened the study.

    1. Reviewer #2 (Public review):

      Summary:

      This study, based on their previous findings that TFH cells can be converted into TR1 cells, conducted a highly detailed and comprehensive epigenetic investigation to answer whether TR1 differentiation from TFH is driven by epigenetic changes. Their evidence indicated that the downregulation of TFH-related genes during the TFH to TR1 transition depends on chromatin closure, while the upregulation of TR1-related genes does not depend on epigenetic changes.

      Strengths:

      A significant advantage of their approach lies in its detailed and comprehensive assessment of epigenetics. Their analysis of epigenetics covers chromatin open regions, histone modifications, DNA methylation, and using both single-cell and bulk techniques to validate their findings. As for their results, observations from different epigenetic perspectives mutually supported each other, lending greater credibility to their conclusions. This study effectively demonstrates that 1. the TFH-to-TR1 differentiation process is associated with massive closure of OCRs, and 2. the TR1-poised epigenome of TFH cells is a key enabler of this transdifferentiation process. Considering the extensive changes in epigenetic patterns involved in other CD4+ T lineage commitment processes, the similarity between TFH and TR1 in their epigenetics is intriguing.

      They performed correlation analysis to answer the association between "pMHC-NP-induced epigenetic change" and "gene expression change in TR1". Also, they have made their raw data publicly available, providing a comprehensive epigenomic database of pMHC-NP induced TR1 cells. This will serve as a valuable reference for future research.

      Weaknesses:

      A major limitation is that this study heavily relies on a premise from the previous studies performed by the same group on pMHC-NP-induced T cell responses. This significantly limits the relevance of their conclusion to a broader perspective. Specifically, differential OCRs between Tet+ and naïve T cells were limited to only 821, as compared to 10,919 differential OCRs between KLH-TFH and naïve T cells (Fig. 2A), indicating that the precursors and T cell clonotypes that responded to pMHC-NP were extremely limited. I acknowledge that this limitation has been added and discussed in the Discussion section of the revised manuscript.

    1. Reviewer #2 (Public review):

      It is challenging to study the biophysical properties of organelle channels using conventional electrophysiology. The conventional reconstitution methods requires multiple steps and can be contaminated by endogenous ionophores from the host cell lines after purification. To overcome this challenge, in this manuscript, Larmore et al. described a fully synthetic method to assay the functional properties of the TRPP channel family. The TRPP channels are an important organelle ion channel family that natively traffic to primary cilia and ER organelles. The authors utilized cell-free protein expression and reconstitution of the synthetic channel protein into giant unilamellar vesicles (GUV), the single channel properties can be measured using voltage-clamp electrophysiology. Using this innovative method, the authors characterized their membrane integration, orientation, and conductance, comparing the results to those of endogenous channels. The manuscript is well-written and may present broad interest to the ion channel community studying organelle ion channels. Particularly because of the challenges of patching native cilia cells, the functional characterization is highly concentrated in very few labs. This method may provide an alternative approach to investigate other channels resistant to biophysical analysis and pharmacological characterization.

      Comments on revised version:

      The authors have addressed my concerns. This excellent method manuscript would benefit the study of organelle channels.

    1. Reviewer #2 (Public review):

      The relationships between genes and phenotypes are complex and the impact of deleting or a gene can often have multifaceted and unforeseen consequences. This paper dissected the role of calcineurin, encoded by tax-6, in various phenotypes in C. elegans, including lifespan, pathogen susceptibility, the defecation motor program, and nutrient absorption or calorie restriction, through a series of genetic and behavioral analyses. Many genes in these pathways were tested yielding robust results. Classic epistasis analyses were used to distinguish between genes operating in the same or separate pathways. Researchers in the related fields will be very interested in looking through the data presented in this paper in great detail and benefit from it.

      Overall, this paper supports a model in which the increased lifespan and heightened pathogen susceptibility observed following calcineurin inhibition result from the disruptions in the defecation motor program but through distinct pathways. A defective defecation motor program leads to intestine bloating and compromised nutrient absorption. Calorie restriction resulting from poor nutrient absorption affects lifespan, whereas increased colonization in the bloated intestine heightens pathogen susceptibility. The observation that knockdown of several other DMP-related genes also results in increased lifespan and pathogen susceptibility further reinforces the proposed model.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors inquire in particular whether the receptor Gpr156, which is necessary for hair cells to reverse their polarities in the zebrafish lateral line and mammalian otolith organs downstream of the differential expression of the transcription factor Emx2, also controls the mechanosensitive properties of hair cells and ultimately an animal's behavior. This study thoroughly addresses the issue by analyzing the morphology, electrophysiological responses, and afferent connections of hair cells found in different regions of the mammalian utricle and the Ca2+ responses of lateral line neuromasts in both wild-type animals and gpr156 mutants. Although many features of hair cell function are preserved in the mutants-such as development of the mechanosensory organs and the Emx2-dependent, polarity-specific afferent wiring and synaptic pairing-there are a few key changes. In the zebrafish neuromast, the magnitude of responses of all hair cells to water flow resembles that of the wild-type hair cells that respond to flow arriving from the tail. These responses are larger than those observed in hair cells that are sensitive to flow arriving from the head and resemble effects previously observed in Emx2 mutants. The authors note that this behavior suggests that the Emx2-GPR156 signaling axis also impinges on hair cell mechanotransduction. Although mutant mice exhibit normal posture and balance, they display defects in swimming behavior. Moreover, their vestibulo-ocular reflexes are perturbed. The authors note that the gpr156 mutant is a good model to study the role of opposing hair cell polarity in the vestibular system, for the wiring patterns follow the expression patterns of Emx2, even though hair cells are all of the same polarity. This paper excels at describing the effects of gpr156 perturbation in mouse and zebrafish models and will be of interest to those studying the vestibular system, hair cell polarity, and the role of inner-ear organs in animal behavior.

      The study is exceptional in including, not only morphological and immunohistochemical indices of cellular identity but also electrophysiological properties. The mutant hair cells of murine maculæ display essentially normal mechanoelectrical transduction and adaptation-with two or even three kinetic components-as well as normal voltage-activated ionic currents.

    1. Reviewer #2 (Public review):

      Summary:

      Here the authors describe a model for tracking time-varying coupling between neurons from multi-electrode spike recordings. Their approach extends a GLM with static coupling between neurons to include dynamic weights, learned by a long-short-term-memory (LSTM) model. Each connection has a corresponding LSTM embedding and is read-out by a multi-layer perceptron to predict the time-varying weight.

      Strengths:

      This is an interesting approach to an open problem in neural data analysis. I think, in general, the method would be interesting to computational neuroscientists.

      Weaknesses:

      It is somewhat difficult to interpret what the model is doing. I think it would be worthwhile to add some additional results that make it more clear what types of patterns are being described and how.

      Major Issues:

      Simulation for dynamic connectivity. It certainly seems doable to simulate a recurrent spiking network whose weights change over time, and I think this would be a worthwhile validation for this DyNetCP model. In particular, I think it would be valuable to understand how much the model overfits, and how accurately it can track known changes in coupling strength. If the only goal is "smoothing" time-varying CCGs, there are much easier statistical methods to do this (c.f. McKenzie et al. Neuron, 2021. Ren, Wei, Ghanbari, Stevenson. J Neurosci, 2022), and simulations could be useful to illustrate what the model adds beyond smoothing.

      Stimulus vs noise correlations. For studying correlations between neurons in sensory systems that are strongly driven by stimuli, it's common to use shuffling over trials to distinguish between stimulus correlations and "noise" correlations or putative synaptic connections. This would be a valuable comparison for Fig 5 to show if these are dynamic stimulus correlations or noise correlations. I would also suggest just plotting the CCGs calculated with a moving window to better illustrate how (and if) the dynamic weights differ from the data.

      Minor Issues:

      Introduction - it may be useful to mention that there have been some previous attempts to describe time-varying connectivity from spikes both with probabilistic models: Stevenson and Kording, Neurips (2011), Linderman, Stock, and Adams, Neurips (2014), Robinson, Berger, and Song, Neural Computation (2016), Wei and Stevenson, Neural Comp (2021) ... and with descriptive statistics: Fujisawa et al. Nat Neuroscience (2008), English et al. Neuron (2017), McKenzie et al. Neuron (2021).

      In the sections "Static DyNetCP ...reproduce". It may be useful to have some additional context to interpret the CCG-DyNetCP correlations and CCG-GLMCC correlations (for simulation). If I understand right, these are on training data (not cross-validated) and the DyNetCP model is using NM+1 parameters to predict ~100 data points (It would also be good to say what N and M are for the results here). The GLMCC model has 2 or 3 parameters (if I remember right?).

      In the section "Static connectivity inferred by the DyNetCP from in-vivo recordings is biologically interpretable"... I may have missed it, but how is the "functional delay" calculated? And am I understanding right that for the DyNetCP you are just using [w_i\toj, w_j\toi] in place of the CCG?

    1. Reviewer #2 (Public review):

      Summary:

      This paper tackles the problem of understanding when the dynamics of neural population activity do and do not align with some target output, such as an arm movement. The authors develop a theoretical framework based on RNNs showing that an alignment of neural dynamics to an output can be simply controlled by the magnitude of the read-out weight vector while the RNN is being trained: small magnitude vectors result in aligned dynamics, where low-dimensional neural activity recapitulates the target; large magnitude vectors result in "oblique" dynamics, where encoding is spread across many dimensions. The paper further explores how the aligned and oblique regimes differ, in particular that the oblique regime allows degenerate solutions for the same target output.

      Strengths:

      - A really interesting new idea that different dynamics of neural circuits can arise simply from the initial magnitude of the output weight vector: once written out (Eq 3) it becomes obvious, which I take as the mark of a genuinely insightful idea

      - The offered framework potentially unifies a collection of separate experimental results and ideas, largely from studies of motor cortex in primate: the idea that much of the ongoing dynamics do not encode movement parameters; the existence of the "null space" of preparatory activity; and that ongoing dynamics of motor cortex can rotate in the same direction even when the arm movement is rotating in opposite directions.

      - The main text is well written, with a wide-ranging set of key results synthesised and illustrated well and concisely

      - Shows the occurrence of the aligned and oblique regimes generalises across a range of simulated behavioural tasks

      - A deep analytical investigation of when the regimes occur and how they evolve over training

      - Shows where the oblique regime may be advantageous: allows multiple solutions to the same problem; and differs in sensitivity to perturbation and noise

      - An insightful corollary result that noise in training is needed to obtain the oblique regime

      - Tests whether the aligned and oblique regimes can be seen in neural recordings from primate cortex in a range of motor control tasks

      - The revised text offers greater clarity and precision about when the aligned and oblique regimes occur and in the interpretation of the analyses of neural data

      Weaknesses:

      - The depth of analytical treatment in the Methods is impressive; however, the paper and the Methods analyses are largely independent, with the numerous results in the latter not being mentioned in the Results or Discussion. It in effect operates as two papers.

    1. Reviewer #2 (Public review):

      In the revised manuscript, the authors investigated the role of a presynaptic protein, Rab3A, in the homeostatic synaptic plasticity in cultured cortical neurons. The study was motivated by their previous findings that Rab3A is required for expression of similar homeostatic mechanisms at the neuromuscular junction. The authors first show that untreated WT neurons express homeostatic synaptic plasticity in response to 48h of TTX treatment (upregulation of both mEPSC amplitude and frequency), whereas neurons lacking Rab3A or carrying a dominant negative mutated Rab3A (earlybird) do not. They also demonstrate that only neuronal, but not glial Rab3A is responsible for this defect. Furthermore, they confirm the increased mEPSC amplitudes in WT neurons reflect the addition of GluA2-containing AMPA receptors rather than calcium-permeable ones, as previously reported by multiple labs. However, the increase in mEPSC amplitude is not accompanied by a corresponding upregulation of GluA2 synaptic clusters according to their IHC data (cluster size and intensity trend slightly upwards but not reaching significance). They further show that this modest upward trend is absent in Rab3A KO neurons, and conclude that Rab3A is involved in postsynaptic GluA2 upregulation during homeostatic synaptic plasticity.

      When compared to the original version, the authors have done an admirable job in switching to more established ways to assess homeostatic synaptic plasticity by comparing the mean mEPSC amplitude and frequency, which has greatly improved the legibility of the manuscript to the public. Their data in Figures 1,2, and 8 clearly demonstrate that functional Rab3A in cortical neurons is required for the homeostatic regulation of mEPSCs.

      However, the authors still have not provided further investigation of the mechanisms behind the role of Rab3A in this form of plasticity, and the revision therefore has added little to the significance of the study. Moreover, the experimental design for the investigation of the mismatch between mEPSC amplitude and GluA2 cluster fluorescence remains questionable, making it difficult to draw any credible conclusions from groups of data that not only look similar to the eye but also show no significance statistically.

      A major claim the authors want to make is that Rab3A, although a presynaptic protein, regulates postsynaptic GluA2, and they do this by showing in Figure 5 that the upward trend of GluA2 cluster size and intensity is absent in Rab3A KO neurons. First, it is difficult to convince readers that this upward trend is real in Figures 5B-D without getting more samples. Second, the authors pick GluA2 clusters on the primary dendrites, whereas mEPSC events come from a much larger synapse population (e.g., more distal), therefore it makes sense that these two forms of measurement do not show matching changes, and this caveat could be addressed by sampling more diverse dendritic locations. Without a convincing phenotype in WT neurons, the support for this claim is weak.

      Another claim of the authors is that this mismatch between mEPSC amplitude and GluA2 cluster sizes with the same culture suggests there are other factors contributing to the mEPSC amplitude. They do this by comparing results from individual culture dissociations, which greatly suffer from undersampling (Figure 6). In particular, they point out that 2 out of 3 dissociations show "matching" upward trends in mEPSC and GluA2 cluster (figure 6A and 6B) while the third one shows opposite trends, and use this to support their claim. Anyone who has done culture preparation would know the high variability between dissociations, which is why culture data are always pooled for assessment of any population trend. Anything could have happened to this particular dissociation (culture #3, figure 6C), and drawing conclusion from this single incident does little to support this claim. At least, they should double the dissociation numbers, and their claim would be much more convincing if a similar phenomenon occurs again. Besides, as mentioned above, all these mismatching trends could just be due to sampling differences.

      In summary, this study establishes that neuronal Rab3A plays a role in homeostatic synaptic plasticity, but so do a number of other molecules that have been implicated in homeostatic synaptic plasticity in the past two decades (only will grow with the new techniques such as RNAseq). Without going beyond this finding and demonstrating how exactly Rab3A participates in the induction and/or expression of this form of plasticity, or maybe the potential Rab3A-mediated functional and behavioral defects in vivo, the contribution of the current study to the field is limited. However, given the presynaptic location of Rab3A, this finding could serve as a starting point for researchers interested in pre-postsynaptic cross-talk during homeostatic plasticity in general.

    1. Reviewer #2 (Public review):

      Summary:

      The present manuscript addresses a longstanding challenge in neuroscience: how the brain assigns credit for delayed outcomes, especially in real-world learning scenarios where decisions and outcomes are separated by time. The authors focus on the lateral orbitofrontal cortex and hippocampus, key regions involved in contingent learning. By integrating fMRI data and behavioral tasks, the authors examined how neural circuits maintain a causal link between past decisions and delayed outcomes. Their findings offer insights into mechanisms that could have critical implications for understanding human decision-making.

      Strengths:

      (1) The experimental designs were extremely well thought-out. The authors successfully coupled behavioral data and neural measures (through fMRI) to explore the neural mechanisms of contingent learning. This integration adds robustness to the findings and strengthens their relevance.

      (2) The emphasis on the interaction between the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) in this study is very well-targeted. The reported findings regarding their dynamic interactions provide valuable insights into contingent learning in humans.

      (3) The use of an advanced modeling framework and analytical techniques allowed the authors to uncover new mechanistic insights regarding a complex case of the decision-making process. The methods developed will also benefit analyses of future neuroimaging data on a range of decision-making tasks as well.

      Weaknesses:

      Given the limited temporal resolution of fMRI and that the measured signal is an indirect measure of neural activity, it is unclear the extent to which the reported causality reflects the true relationship/interactions between neurons in different regions.

    1. Reviewer #2 (Public review):

      Summary:

      Deshmukh and colleagues studied the evolution of mimetic morphs in the Papilio polytes species group. They investigate the timing of origin of haplotypes associated with different morphs, their dominance relationships, associations with different isoform expressions, and evidence for selection and recombination in the sequence data. P. polytes is a textbook example of a Batesian mimic, and this study provides important nuanced insights into its evolution, and will therefore be relevant to many evolutionary biologists. I find the results regarding dominance and the sequence of events generally convincing, but I have some concerns about the motivation and interpretation of some other analyses, particularly the tests for selection.

      Strengths:

      This study uses widespread sampling, large sample sizes from crossing experiments, and a wide range of data sources.

      Weaknesses:

      (1) Purpose and premise of selective sweep analysis

      A major narrative of the paper is that new mimetic alleles have arisen and spread to high frequency, and their dominance over the pre-existing alleles is consistent with Haldane's sieve. It would therefore make sense to test for selective sweep signatures within each morph (and its corresponding dsx haplotype), rather than at the species level. This would allow a test of the prediction that those morphs that arose most recently would have the strongest sweep signatures.

      Sweep signatures erode over time - see Figure 2 of Moest et al. 2020 (https://doi.org/10.1371/journal.pbio.3000597), and it is unclear whether we expect the signatures of the original sweeps of these haplotypes to still be detectable at all. Moest et al show that sweep signatures are completely eroded by 1N generations after the event, and probably not detectable much sooner than that, so assuming effective population sizes of these species of a few million, at what time scale can we expect to detect sweeps? If these putative sweeps are in fact more recent than the origin of the different morphs, perhaps they would more likely be associated with the refinement of mimicry, but not necessarily providing evidence for or against a Haldane's sieve process in the origin of the morphs.

      (2) Selective sweep methods

      A tool called RAiSD was used to detect signatures of selective sweeps, but this manuscript does not describe what signatures this tool considers (reduced diversity, skewed frequency spectrum, increased LD, all of the above?). Given the comment above, would this tool be sensitive to incomplete sweeps that affect only one morph in a species-level dataset? It is also not clear how RAiSD could identify signatures of selective sweeps at individual SNPs (line 206). Sweeps occur over tracts of the genome and it is often difficult to associate a sweep with a single gene.

      (3) Episodic diversification

      Very little information is provided about the Branch-site Unrestricted Statistical Test for Episodic Diversification (BUSTED) and Mixed Effects Model of Evolution (MEME), and what hypothesis the authors were testing by applying these methods. Although it is not mentioned in the manuscript, a quick search reveals that these are methods to study codon evolution along branches of a phylogeny. Without this information, it is difficult to understand the motivation for this analysis.

      (4) GWAS for form romulus

      The authors argue that the lack of SNP associations within dsx for form romulus is caused by poor read mapping in the inverted region itself (line 125). If this is true, we would expect strong association in the regions immediately outside the inversion. From Figure S3, there are four discrete peaks of association, and the location of dsx and the inversion are not indicated, so it is difficult to understand the authors' interpretation in light of this figure.

      (5) Form theseus

      Since there appears to be only one sequence available for form theseus (actually it is said to be "P. javanus f. polytes/theseus"), is it reasonable to conclude that "the dsx coding sequence of f. theseus was identical to that of f. polytes in both P. javanus and P. alphenor" (Line 151)? Looking at the Clarke and Sheppard (1972) paper cited in the statement that "f. polytes and f. theseus show equal dominance" (line 153), it seems to me that their definition of theseus is quite different from that here. Without addressing this discrepancy, the results are difficult to interpret.

    1. Reviewer #2 (Public review):

      Summary:

      Pluripotent stem cells are powerful tools for understanding development, differentiation, and disease modeling. The capacity of stem cells to differentiate into various cell types holds great promise for therapeutic applications. However, ethical concerns restrict the use of human embryonic stem cells (hESCs). Consequently, induced human pluripotent stem cells (ihPSCs) offer an attractive alternative for modeling rare diseases, drug screening, and regenerative medicine. A comprehensive understanding of ihPSCs is crucial to establish their similarities and differences compared to hESCs. This work demonstrates systematic differences in the reprogramming of nuclear and non-nuclear proteomes in ihPSCs.

      Strengths:

      The authors employed quantitative mass spectrometry to compare protein expression differences between independently derived ihPSC and hESC cell lines. Qualitatively, protein expression profiles in ihPSC and hESC were found to be very similar. However, when comparing protein concentration at a cellular level, it became evident that ihPSCs express higher levels of proteins in the cytoplasm, mitochondria, and plasma membrane, while the expression of nuclear proteins is similar between ihPSCs and hESCs. A higher expression of proteins in ihPSCs was verified by an independent approach, and flow cytometry confirmed that ihPSCs had larger cell size than hESCs. The differences in protein expression were reflected in functional distinctions. For instance, the higher expression of mitochondrial metabolic enzymes, glutamine transporters, and lipid biosynthesis enzymes in ihPSCs was associated with enhanced mitochondrial potential, increased ability to uptake glutamine, and increased ability to form lipid droplets.

      Weaknesses:

      While this finding is intriguing and interesting, the study falls short of explaining the mechanistic reasons for the observed quantitative proteome differences. It remains unclear whether the increased expression of proteins in ihPSCs is due to enhanced transcription of the genes encoding this group of proteins or due to other reasons, for example, differences in mRNA translation efficiency. Another unresolved question pertains to how the cell type origin influences ihPSC proteomes. For instance, whether ihPSCs derived from fibroblasts, lymphocytes, and other cell types all exhibit differences in their cell size and increased expression of cytoplasmic and mitochondrial proteins. Analyzing ihPSCs derived from different cell types and by different investigators would be necessary to address these questions.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors work to extend their previous observation that galectin-9 interacts with arabinogalactans of Mtb in their EMBO reports 2021 manuscript. Here they provide evidence for the CARD2 domain of galectin-9 can inhibit the growth of Mtb in culture. In addition, antibodies that also bind to AG appear to inhibit Mtb growth in culture. These data indicate that independent of the common cell-associated responses to galectin-9 and antibodies, interaction of these proteins with AG of mycobacteria may have consequences for bacterial growth.

      Strengths:

      The authors provided several lines of evidence in culture media that the introduction of galectin-9 proteins and antibodies inhibit the growth rate of Mtb.

      Weaknesses:

      The methodology for generating and screening the anti-AG antibodies lacks pertinent details for recapitulating and interpreting the results.

      The figure legends and methods associated with the microscopy assays lack sufficient details to appropriately interpret the experiments conducted.

      The galectin-9 measured in the sera of TB patients does not approach the concentrations required for Mtb growth restriction in the in vitro assays performed by the authors. It remains difficult to envision how greater levels of galectin-9 release might contribute to Mtb control in severe forms of TB, since higher levels of serum Gal9 has been observed in other human studies and correlate with poorly controlled infection. The authors over-interpret the role of Gal9 in bacterial control during disease/infection without any evidence of impact on in vivo (animal model) control.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, Witten et al. assess visual acuity, cone density, and fixational behavior in the central foveal region in a large number of subjects.<br /> This work elegantly presents a number of important findings, and I can see this becoming a landmark work in the field. First, it shows that acuity is determined by the cone mosaic, hence, subjects characterized by higher cone densities show higher acuity in diffraction limited settings. Second, it shows that humans can achieve higher visual resolution than what is dictated by cone sampling, suggesting that this is likely the result of fixational drift, which constantly moves the stimuli over the cone mosaic. Third, the study reports a correlation between the amplitude of fixational motion and acuity, namely, subjects with smaller drifts have higher acuities and higher cone density. Fourth, it is shown that humans tend to move the fixated object toward the region of higher cone density in the retina, lending further support to the idea that drift is not a random process, but is likely controlled. This is a beautiful and unique work that furthers our understanding of the visuomotor system and the interplay of anatomy, oculomotor behavior, and visual acuity.

      Strengths:

      The work is rigorously conducted, it uses state-of-the-art technology to record fixational eye movements while imaging the central fovea at high resolution, and examines exactly where the viewed stimulus falls on individuals' foveal cone mosaic with respect to different anatomical landmarks in this region. Figures are clear and nicely packaged. It is important to emphasize that this study is a real tour-de-force in which the authors collected a massive amount of data on 20 subjects. This is particularly remarkable considering how challenging it is to run psychophysics experiments using this sophisticated technology. Most of the studies using psychophysics with AO are, indeed, limited to a few subjects. Therefore, this work shows a unique set of data, filling a gap in the literature.

      Weaknesses:

      Data analysis has been improved after the first round of review. The revised version of the manuscript is solid, and there are no weaknesses that should be addressed. The authors added more statistical tests and analyses, reported comparable effects even when different metrics are used (e.g., diffusion constant), and removed the confusing text on myopia. I think this work represents a significant scientific contribution to vision science.

    1. Reviewer #2 (Public review):

      Summary:

      This study focused on using strictly the slope of the power spectral density (PSD) to perform automated sleep scoring and evaluation of the durations of sleep cycles. The method appears to work well because the slope of the PSD is highest during slow-wave sleep, and lowest during waking and REM sleep. Therefore, when smoothed and analyzed across time,there are cyclical variations in the slope of the PSD, fit using an IRASA (Irregularly resampled auto-spectral analysis) algorithm proposed by Wen & Liu (2016).

      Strengths:

      The main novelty of the study is that the non-fractal (oscillatory) components of the PSD that are more typically used during sleep scoring can be essentially ignored because the key information is already contained within the fractal (slope) component. The authors show that for the most part, results are fairly consistent between this and conventional sleep scoring, but in some cases show disagreements that may be scientifically interesting.

      Weaknesses:

      The previous weaknesses were well-addressed by the authors in the revised manuscript. I will note that from the fractal cycle perspective, waking and REM sleep are not very dissimilar. Combining these states underlies some of the key results of this study.

    1. Reviewer #2 (Public review):

      Liu et al. applied hidden Markov models (HMM) to fMRI data from 64 participants listening to audio stories. The authors identified three brain states, characterized by specific patterns of activity and connectivity, that the brain transitions between during story listening. Drawing on a theoretical framework proposed by Berwick et al. (TICS 2023), the authors interpret these states as corresponding to external sensory-motor processing (State 1), lexical processing (State 2), and internal mental representations (State 3). States 1 and 3 were more likely to transition to State 2 than between one another, suggesting that State 2 acts as a transition hub between states. Participants whose brain state trajectories closely matched those of an individual with high comprehension scores tended to have higher comprehension scores themselves, suggesting that optimal transitions between brain states facilitated narrative comprehension.

      Overall, the conclusions of the paper are well-supported by the data. Several recent studies (e.g., Song, Shim, and Rosenberg, eLife, 2023) have found that the brain transitions between a small number of states; however, the functional role of these states remains under-explored. An important contribution of this paper is that it relates the expression of brain states to specific features of the stimulus in a manner that is consistent with theoretical predictions.

      (1) It is worth noting, however, that the correlation between narrative features and brain state expression (as shown in Figure 3) is relatively low (~0.03). Additionally, it was unclear if the temporal correlation of the brain state expression was considered when generating the null distribution. It would be helpful to clarify whether the brain state expression time courses were circularly shifted when generating the null.

      (2) A strength of the paper is that the authors repeated the HMM analyses across different tasks (Figure 5) and an independent dataset (Figure S3) and found that the data was consistently best fit by 3 brain states. However, it was not entirely clear to me how well the 3 states identified in these other analyses matched the brain states reported in the main analyses. In particular, the confusion matrices shown in Figure 5 and Figure S3 suggests that that states were confusable across studies (State 2 vs. State 3 in Fig. 5A and S3A, State 1 vs. State 2 in Figure 5B). I don't think this takes away from the main results, but it does call into question the generalizability of the brain states across tasks and populations.

      (3) The three states identified in the manuscript correspond rather well to areas with short, medium, and long temporal timescales (see Hasson, Chen & Honey, TiCs, 2015). Given the relationship with behavior, where State 1 responds to acoustic properties, State 2 responds to word-level properties, and State 3 responds to clause-level properties, the authors may want to consider a "single-process" account where the states differ in terms of the temporal window for which one needs to integrate information over, rather than a multi-process account where the states correspond to distinct processes.

    1. Reviewer #2 (Public review):

      Summary:

      The authors inspect the stability and compensatory plasticity in the retinotopic mapping in patients with congenital achromatopsia. They report an increased cortical thickness in central (eccentricities 0-2 deg) in V1 and the expansion of this effect to V2 (trend) and V3 in a cohort with an average age of adolescents.

      In analyzing the receptive fields, they show that V1 had increased receptive field sizes in achromats, but there were no clear signs of reorganization filling in the rod-free area.<br /> In contrast, V3 showed an altered readout of V1 receptive fields. V3 of achromats oversampled the receptive fields bordering the rod-free zone, presumably to compensate and arrive at similar receptive fields as in the controls.

      These findings support a retention of peripheral-V1 connectivity, but a reorganization of later hierarchical stages of the visual system to compensate for the loss, highlighting a balance between stability and compensation in different stages of the visual hierarchy.

      Strengths:

      The experiment is carefully analyzed, and the data convey a clear and interesting message about the capacities of plasticity.

      Weaknesses:

      The existence of unstable fixation and nystagmus in the patient group is alluded to, but not quantified or modeled out in the analyses. The authors may want to address this possible confound with a quantitative approach.

    1. Reviewer #2 (Public review):

      Summary:

      Ziółkowska et al. characterize the synaptic mechanisms at the basis of the REdCA1 contribution to the consolidation of fear memory extinction. In particular, they describe a layer specific modulation of RE-dCA1 excitatory synapses modulation associated to contextual fear extinction which is impaired by transient chemogenetic inhibition of this pathway. These results indicate that RE activity-mediated modulation of synaptic morphology contributes to the consolidation of contextual fear extinction

      Strengths:

      The manuscript is well conceived, the statistical analysis is solid and methodology appropriate. The strength of this work is that it nicely builds up on existing literature and provides new molecular insight on a thalamo-hippocampal circuit previously known for its role in fear extinction. In addition, the quantification of pre- and post-synapses is particularly thorough.

      Weaknesses:

      The findings in this paper are well supported by the data more detailed description of the methods is needed.

      (1) In the paragraph Analysis of dCA1 synapses after contextual fear extinction (CFE), more experimental and methodological data should be given in the text: -how was PSD95 used for the analysis, what was the difference between RE. Even if Thy1-GFP mice were used in Fig.2, it appears they were not used for bouton size analysis. To improve clarity, I suggest moving panel 2C to Figure 3. It is not clear whether all RE axons were indiscriminately analysed in Fig. 2 or if only the ones displaying colocalization with both PSD95 and GFP were analysed. If GFP was not taken into account here, analysed boutons could reflect synapses onto inhibitory neurons and this potential scenario should be discussed<br /> (2) in the methods: The volume of intra-hippocampal CNO injections should be indicated. The concentration of 3 uM seems pretty low in comparison with previous studies. More details of what software/algorithm was used to score freezing should be included. CNO source is missing. Antibody dilutions for IHC should be indicated. Secondary antibody incubation time should be indicated

      No statement about code and data availability is present.

    1. Reviewer #2 (Public review):

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit the replication of different viruses, indicating that the evolution of IFIT1 across mammals has resulted in host species-specific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in the direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race".

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data, although there are some important analyses that need to be done to remove any confounding effects from gene recombination that has previously been described between IFIT1 and its paralog IFIT1B. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below.

      Strengths:

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit the replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described.

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins.

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function.

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species.

      Weaknesses:

      (1) The evolutionary analyses the authors perform appear to indicate that IFIT1 genes in several mammalian groups have evolved under positive selection. However, IFIT1 has previously been shown to have undergone recurrent instances of recombination with the paralogous IFIT1B, which can confound positive selection analyses such as the ones the authors perform. The authors should analyze their alignments for evidence of recombination using a tool such as GARD (in the same HyPhy package along with MEME and FUBAR). Detection of recombination in these alignments would invalidate their positive selection inferences, in which case the authors need to either analyze individual non-recombining domains or limit the number of species to those that are not undergoing recombination. While it is likely that these analyses will still reveal a signature of positive selection, this step is necessary to ensure that the signatures of selection and sites of positive selection are accurate.

      (2) The choice of IFIT1 homologs chosen for study needs to be described in more detail. Many mammalian species encode IFIT1 and IFIT1B proteins, which have been shown to have different antiviral specificity, and the evolutionary relationship between IFIT1 and IFIT1B paralogs is complicated by recombination. As such, the assertion that the proteins studied in this manuscript are IFIT1 orthologs requires additional support than the percent identity plot shown in Figure 3B.

      (3) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the chimpanzee data are interesting, but it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis is somewhat confusing. It would be more clear to discuss this as a natural loss of function of this IFIT1, which has occurred elsewhere repeatedly across the mammalian tree.

      (4) In other places in the manuscript, the strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of VSV versus VEEV from Figure 3C and 3D, but it is difficult for a reader to assess this as most of the dots are unlabeled and the primary data are not uploaded. A few potential suggestions would be to have a table of each ortholog with % infection by VSV and % infection by VEEV. Another possibility would be to plot these data as an XY scatter plot. This would highlight any species that deviate from the expected linear relationship between the inhibition of these two viruses, which would provide a larger panel of interesting IFIT1 antiviral specificities than the smaller number of species shown in Figure 4.

    1. Reviewer #2 (Public review):

      Summary:

      The authors try to demonstrate that PD-1 regulates not only the quantity but also the quality of the immune response determining the Th differentiation. The authors suggest that the ability of PD-1 agonists to dampen Th2 differentiation could be exploited in allergies or classical Th2-mediated disease as a therapeutical approach.

      Strengths:<br /> The authors performed a series of elegant experiments using OVA-specific CD4 T cells from mice, showing a strong reduction of Th2 differentiation in vitro. They also perform some experiments with a model of allergies, showing an amelioration of the phenotype after administration of PD-1 agonist with a reduction of Th2 cells.

      Weaknesses:

      The authors perform all the experiments using DO11.10 mouse cells. Such cells have a TCR with very high affinity, it would be relevant to repeat at least some of the in vitro assays in a more physiological setting (you can immunise mice with ova to increase the pool of OVA-specific T cells, and then repeat the restimulation experiment). Also, a longer kinetic would be of interest to see the effect of the agonist on Th1 cells.

      Another drawback is the lack of experiments with human cells. It would be really important to repeat the experiments with CD4 T cells from healthy donors (the antibody that the authors use as PD-1 agonist is human, so it would not be a complicated experiment).

      It would be also interesting to show in the allergic disease model the effect of the agonism on the T cell response in general.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have set out to investigate and explain how early members of the Pterosauria were able to maintain stiffness in the vane of their tails. This stiffness, it is said, was crucial for flight in early members of this clade. Through the use Laser-Stimulated Fluorescence imaging, the authors have revealed that certain pterosaurs had a sophisticated dynamic tensioning system that has previously been unappreciated.

      Strengths:

      The choice of method of investigation for the key question is sound enough, and the execution of the same is excellent. Overall the paper is well written and well presented, and provides a very succinct, accessible and clear conclusion.

      Weaknesses:

      None

    1. Reviewer #2 (Public review):

      Summary:

      This study evaluated the aperiodic component in the medial prefrontal cortex (mPFC) using resting-state EEG recordings from 149 individuals with chronic pain and 115 healthy participants. The findings showed no significant differences in the aperiodic component of the mPFC between the two groups, nor was there any correlation between the aperiodic component and pain intensity. These results were consistent across various chronic pain subtypes and were corroborated by whole-brain analyses. The study's robustness was further reinforced by preregistration and multiverse analyses, which accounted for a wide range of methodological choices.

      Strengths:

      This study was rigorously conducted, yielding clear and conclusive results. Furthermore, it adhered to stringent open and reproducible science practices, including preregistration, blinded data analysis, and Bayesian hypothesis testing. All data and code have been made openly available, underscoring the study's commitment to transparency and reproducibility.

      Weaknesses:

      The aperiodic exponent of the EEG power spectrum is often regarded as an indicator of the excitatory/inhibitory (E/I) balance. However, this measure may not be the most accurate or optimal for quantifying E/I balance, a limitation that the authors might consider addressing in the future.

    1. Reviewer #2 (Public review):

      This article presents an analysis of the chemical composition of head-space generated by fruit at differing stages of ripeness. The authors used gas chromatography-mass spectrometry (GC-MS) to record the chemical makeup of the respective head-space samples. The authors process the data and present it in a low dimensional space. They then draw conclusions from the geometry of that representation about the process of fermentation.

      I have a number of major concerns with some of the stages in the argument advanced by the authors:

      (1) As far as I understand, the authors restrict their analysis to 13 molecules which appear in samples of all three levels of ripeness. This choice causes the analysis to overlook the very likely (and meaningful) possibility that different molecules present at different levels of ripeness are informative and might support different results.

      (2) It is unclear what was used as control? Empty bag? Please include the control results in your supplementary table, or indicate in the text if you eliminated compounds that were found in the control.

      (3) It is not clear that Figure 2-H _looks_ like a spiral. The authors should provide a quantifiable measure of the quality of the fit of a spiral rather than other paths. Furthermore, in the section "collective spiral ..." the end of paragraph one, "the points were best fitted by a two parameter archemedian spiral" best out of what? best out of all two parameter spirals? Please explain

      (4) In the section "estimating odor source phenotype ... " the authors write: "we first calculated the association of odorant compounds with different phenotypes in this dataset" how was that done?

      (5) Even if hyperbolic space MDS is slightly better, an R^2 value for Euclidean MDS of 0.797 is very good and one could say that Euclidean MDS is also an option.

      (6) In the section "collective spiral ..." near end of paragraph two: " we removed outlier samples for days 10 and 17 for two reasons...". Why does a smaller number of samples should make a certain day an outlier.

      (7) In section titles "collective spiral progression of multiple..." the authors write: the hyperbolic t-sne embedding exhibited batch effects across runs that amounted to rotation of the data. To compensate for these effects and combine data across runs we performed Procrustes analysis to align data across runs".

      Can we be sure that this process does itself not manufacture an alignment of data? The authors should apply the same process to random or shuffled data and see if the result is different from the actual data.

    1. Reviewer #3 (Public review):

      The present study used an experimental procedure involving time-pressure for responding, in order to uncover how the control of saccades by exogenous and endogenous attention unfolds over time. The findings of the study indicate that saccade planning is influenced by the locus of endogenous attention, but that this influence was short-lasting and could be overcome quickly. Taken together, the present findings reveal new dynamics between endogenous attention and eye movement control and lead the way for studying them using experiments under time-pressure.

      The results achieved by the present study advance our understanding of vision, eye movements, and their control by brain mechanisms for attention. In addition, they demonstrate how tasks involving time-pressure can be used to study the dynamics of cognitive processes. Therefore, the present study seems highly important not only for vision science, but also for psychology, (cognitive) neuroscience, and related research fields in general.

      I think the authors' addressed all of the reviewers' points successfully and in detail, so that I don't have any further suggestions or comments.