10,000 Matching Annotations
  1. Aug 2024
    1. Reviewer #1 (Public Review):

      The hypothesis is based on the idea that inversions capture genetic variants that have antagonistic effects on male sexual success (via some display traits) and survival of females (or both sexes) until reproduction. Furthermore, a sufficiently skewed distribution of male sexual success will tend to generate synergistic epistasis for male fitness even if the individual loci contribute to sexually selected traits in an additive way. This should favor inversions that keep these male-beneficial alleles at different loci together at a cis-LD. A series of simulations are presented and show that the scenario works at least under some conditions. While a polymorphism at a single locus with large antagonistic effects can be maintained for a certain range of parameters, a second such variant with somewhat smaller effects tends to be lost unless closely linked. It becomes much more likely for genomically distant variants that add to the antagonism to spread if they get trapped in an inversion; the model predicts this should drive accumulation of sexually antagonistic variants on the inversion versus standard haplotype, leading to the evolution of haplotypes with very strong cumulative antagonistic pleiotropic effects. This idea has some analogies with one of predominant hypotheses for the evolution of sex chromosomes, and the authors discuss these similarities. The model is quite specific, but the basic idea is intuitive and thus should be robust to the details of the model assumption. It makes perfect sense in the context of the geographic pattern of inversion frequencies.

      To provide empirical support for this idea, the authors study the dynamics of inversions in population cages over one generation, tracking their frequencies through amplicon sequencing at three time points: (young adults), embryos and very old adult offspring of either sex (>2 months from adult emergence). Out of four inversions included in the experiment, two show patterns consistent with antagonistic effects on male sexual success (competitive paternity) and the survival of offspring, especially females, until an old age, which the authors interpret as consistent with their theory.

      There are several reasons why the support from these data for the proposed theory is not waterproof.

      (1) As I have already pointed out in my previous review, survival until 2 months (in fact, it is 10 weeks and so 2.3 months) of age is of little direct relevance to fitness, whether under natural conditions or under typical lab conditions.

      The authors argue this objection away with two arguments<br /> First, citing Pool (2015) they claim that the average generation time (i.e. the average age at which flies reproduce) in nature is 24 days. That paper made an estimate of 14.7 generations per year under the North Carolina climate. As also stated in Pool (2015), the conditions in that locality for Drosophila reproduction and development are not suitable during three months of the year. This yields an average generation length of about 19.5 days during the 9 months during which the flies can reproduce. On the highly nutritional food used in the lab and at the optimal temperature of 25 C, Drosophila need about 11-12 days to develop from egg to adult. Even assuming these perfect conditions, the average age (counted from adult eclosion) would be about 8 days. In practice, larval development in nature is likely longer for nutritional and temperature reasons, and thus the genomic data analyzed by Pool imply that the average adult age of reproducing flies in nature would be about 5 days, and not 24 days, and even less 10 weeks. This corresponds neatly to the 2-6 days median life expectancy of Drosophila adults in the field based on capture-recapture (e.g., Rosewell and Shorrocks 1987).<br /> Second, the authors also claim that survival over a period of 2 month is highly relevant because flies have to survive long periods where reproduction is not possible. However, to survive the winter flies enter a reproductive diapause, which involves profound physiological changes that indeed allow them to survive for months, remaining mostly inactive, stress resistant and hidden from predators. Flies in the authors' experiment were not diapausing, given that they were given plentiful food and kept warm. It is still possible that survival to the ripe old age of 10 weeks under these conditions still correlates well with surviving diapause under harsh conditions, but if so, the authors should cite relevant data. Even then, I do not think this allows the authors to conclude that longevity is "the main selective pressure" on Drosophila (l. 936).

      (2) It appears that the "parental" (in fact, paternal) inversion frequency was estimated by sequencing sires that survived until the end of the two-week mating period. No information is provided on male mortality during the mating period, but substantial mortality is likely given constant courtship and mating opportunities. If so, the difference between the parental and embryo inversion frequency could reflect the differential survival of males until the point of sampling rather than / in addition to sexual selection.

      (3) Finally, irrespective of the above caveats, the experimental data only address one of the elements of the theoretical hypothesis, namely antagonistic effects of inversions on reproduction and survival, notably that of females. It does not test for two other key elements of the proposed theory: the assumption of frequency-dependence of selection on male sexual success, and the prediction of synergistic epistasis for male fitness among genetic variants in the inversion. To be fair, particularly testing the latter prediction would be exceedingly difficult. Nonetheless, these limitations of the experiment mean that the paper is much stronger theoretical than empirical contribution.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In their manuscript the authors address the question of whether the inversion polymorphism in D. melanogaster can be explained by sexually antagonistic selection. They designed a new simulation tool to perform computer simulations, which confirmed their hypothesis. They also show a tradeoff between male reproduction and survival. Furthermore, some inversions display sex-specific survival.

      Strengths:<br /> It is an interesting idea on how chromosomal inversions may be maintained

      Weaknesses:<br /> General points:<br /> The manuscript lacks clarity of writing. It is impossible to fully grasp what the authors did in this study and how they reached their conclusions. Therefore, I cannot guarantee that I spotted all the problems in the study and in my review I will only highlight some cases that I found problematic.<br /> Although this is an interesting idea, but it clearly cannot explain the apparent influence of seasonal and clinal variation on inversion frequencies.

      Comments on the latest version:

      I would like to give an example of the confusing terminology of the authors:

      "Additionally, fitness conveyed by an allele favoring display quality is also frequency-dependent: since mating success depends on the display qualities of other males, the relative advantage of a display trait will be diminished as more males carry it..."

      I do not understand the difference to an advantageous allele, as it increases in frequency the frequency increase of this allele decreases, but this has nothing to do with frequency dependent selection. In my opinion, the authors re-define frequency dependent selection, as for frequency dependent selection needs to change with frequency, but from their verbal description this is not clear.

      One example of how challenging the style of the manuscript is comes from their description of the DNA extraction procedure. In principle a straightforward method, but even here the authors provide a convoluted uninformative description of the procedure.

      It is not apparent to the reviewer why the authors have not invested more effort to make their manuscript digestible.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this study, McAllester and Pool develop a new simulation model to explain the maintenance of balanced inversion polymorphism, based on (sexually) antagonistic alleles and a trade-off between male reproduction and survival (in females or both sexes). In support of the plausibility of this model, the authors use laboratory experiments on four naturally occurring inversion polymorphisms in Drosophila melanogaster, finding evidence for the existence of the above-mentioned trade-off in two out of the four cases.

      Strengths:<br /> (1) The study develops and analyzes a new (Drosophila melanogaster-inspired) model for the maintenance of balanced inversion polymorphism, combining elements of (sexually) antagonistically (pleiotropic) alleles, negative frequency-dependent selection and synergistic epistasis. To this end, the authors develop and use a new simulator.

      (2) The above-mentioned model assumes, as a specific example, a trade-off between male reproductive display and survival; in the second part of their study, the authors perform laboratory experiments on four common D. melanogaster inversions to study whether these polymorphisms may be subject to such a trade-off. The authors find that two of the four inversions show suggestive evidence that is consistent with a trade-off between male reproduction and survival. The new amplicon sequencing approach to track inversion frequencies used by the authors seems promising in terms of studying fitness effects / trade-offs associated with polymorphic inversions and how such effects play out dynamically.

      Weaknesses:<br /> A gap in the current modeling is that, while a diploid situation is being studied, the model does not investigate the effects of varying degrees of dominance. It would be important and interesting to fill this gap in future work.

      Comments on the latest version:

      Most of the comments which I have made in my public review have been adequately addressed.

      Some of the writing still seems somewhat verbose and perhaps not yet maximally succinct; some additional line-by-line polishing might still be helpful at this stage in terms of further improving clarity and flow (for the authors to consider and decide).

    1. Reviewer #1 (Public Review):

      Malaria parasites detoxify free heme molecules released from digested host hemoglobins by biomineralizing them into inert hemozoin. Thus, why malaria parasites retain PfHO, a dead enzyme that loses the capacity of catabolizing heme, is an outstanding question that has puzzled researchers for more than a decade. In the current manuscript, the authors addressed this question by first solving the crystal structure of PfHO and aligning it with structures of other heme oxygenase (HO) proteins. They found that the N-terminal 95 residues of PfHO, which failed to crystalize due to their disordered nature, may serve as signal and transit peptides for PfHO subcellular localization. This was confirmed by subsequent microscopic analysis with episomally expressed PfHO-GFP and a GFP reporter fused to the first 83 residues of PfHO (PfHO N-term-GFP). To investigate the functional importance of PfHO, the authors generated an anhydrotetracycline (aTC) controlled PfHO knockdown strain. Strikingly, the parasites lacking PfHO failed to grow and lost their apicoplast. Finally, by chromatin immunoprecipitation (ChIP), quantitative PCR/RT-PCR, and growth assays, the authors showed that both the cognate N-terminus and HO-like domain were required for PfHO function as an apicoplast DNA interacting protein.

      The authors systemically performed multidisciplinary approaches to address this difficult question: what is the function of this enzymatically dead PfHO? I enjoyed reading this manuscript and its thoughtful discussion. This study is not of clinical importance for antimalarial treatments but also deepens our understanding of protein function evolution. While I understand these experiments are challenging to conduct in malaria parasites, the data quality of some of the experiments could be improved. For example, most of the Western blots and Southern blots are not of high quality.

    2. Reviewer #2 (Public Review):

      Summary:

      Blackwell et al. investigated the structure, localization, and physiological function of Plasmodium falciparum (Pf) heme oxygenase (HO). Pf and other malaria parasites scavenge and digest large amounts of hemoglobin from red cells for sustenance. To counter the potentially cytotoxic effects of heme, it is biomineralized into hemozoin and stored in the food vacuole. Another mechanism to counteract heme toxicity is through its enzymatic degradation via heme oxygenases. However, it was previously found by the authors that PfHO lacks the ability to catalyze heme degradation, raising the intriguing question of what the physiological function of PfHO is. In the current contribution, the authors determine that PfHO localizes to the apicoplast, determine its targeting sequence, establish the essentiality of PfHO for parasite viability, and determine that PfHO is required for proper maintenance of apicoplasts and apicoplast gene expression. In sum, the authors establish an essential physiological function for PfHO, thereby providing new insights into the role of PfHO in plasmodium metabolism.

      Strengths:

      The studies are rigorously conducted and the results of the experiments unambiguously support a role for PfHO as being an apicoplast-targeted protein required for parasite viability and maintenance of apicoplasts.

      Weaknesses:

      While the studies conducted are rigorous and support the primary conclusions, the lack of experiments probing the molecular function of PfHO limits the impact of the work. Nevertheless, the knowledge that PfHO is required for parasite viability and plays a role in the maintenance of apicoplasts is still an important advance.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.

      Strengths:

      This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In summary, this work makes an exciting and important contribution to the literature.

      Weaknesses:

      There have been several recent papers that have identified issues with alternative forced choice (AFC) tests as a method of assessing statistical learning (e.g. Isbilen et al. 2020, Cognitive Science). A key argument is that while statistical learning is typically implicit, AFC involves explicit deliberation and therefore does not match the learning process well. The use of AFC in this study thus leaves open the question of whether the AFC measure benefits the explicit learners in particular, given the congruence between knowledge and testing format, and whether, more generally, the results would have been different had the method of assessing generalization been implicit. Prior work has shown that explicit and implicit measures of statistical learning do not always produce the same results (eg. Kiai & Melloni, 2021, bioRxiv; Liu et al. 2023, Cognition).

      Given that the explicit/implicit classification was based on an exit survey, it is unclear when participants who are labeled "explicit" gained that explicit knowledge. This might have occurred during or after either of the sessions, which could impact the interpretation of the effects.

    2. Reviewer #2 (Public Review):

      Summary:

      Sleep has not only been shown to support the strengthening of memory traces but also their transformation. A special form of such transformation is the abstraction of general rules from the presentation of individual exemplars. The current work used large online experiments with hundreds of participants to shed further light on this question. In the training phase, participants saw composite items (scenes) that were made up of pairs of spatially coupled (i.e., they were next to each other) abstract shapes. In the initial training, they saw scenes made up of six horizontally structured pairs, and in the second training phase, which took place after a retention phase (2 min awake, 12 h incl. sleep, 12 h only wake, 24 h incl. sleep), they saw pairs that were horizontally or vertically coupled. After the second training phase, a two-alternatives-forced-choice (2-AFC) paradigm, where participants had to identify true pairs versus randomly assembled foils, was used to measure the performance of all pairs. Finally, participants were asked five questions to identify, if they had insight into the pair structure, and post-hoc groups were assigned based on this. Mainly the authors find that participants in the 2-minute retention experiment without explicit knowledge of the task structure were at chance level performance for the same structure in the second training phase, but had above chance performance for the vertical structure. The opposite was true for both sleep conditions. In the 12 h wake condition these participants showed no ability to discriminate the pairs from the second training phase at all.

      Strengths:

      All in all, the study was performed to a high standard and the sample size in the implicit condition was large enough to draw robust conclusions. The authors make several important statistical comparisons and also report an interesting resampling approach. There is also a lot of supplemental data regarding robustness.

      Weaknesses:

      My main concern regards the small sample size in the explicit group and the lack of experimental control.

    3. Reviewer #3 (Public Review):

      In this project, Garber and Fiser examined how the structure of incidentally learned regularities influences subsequent learning of regularities, that either have the same structure or a different one. Over a series of six online experiments, it was found that the structure (spatial arrangement) of the first set of regularities affected the learning of the second set, indicating that it has indeed been abstracted away from the specific items that have been learned. The effect was found to depend on the explicitness of the original learning: Participants who noticed regularities in the stimuli were better at learning subsequent regularities of the same structure than of a different one. On the other hand, participants whose learning was only implicit had an opposite pattern: they were better in learning regularities of a novel structure than of the same one. This opposite effect was reversed and came to match the pattern of the explicit group when an overnight sleep separated the first and second learning phases, suggesting that the abstraction and transfer in the implicit case were aided by memory consolidation.

      These results are interesting and can bridge several open gaps between different areas of study in learning and memory. However, I feel that a few issues in the manuscript need addressing for the results to be completely convincing:

      (1) The reported studies have a wonderful and complex design. The complexity is warranted, as it aims to address several questions at once, and the data is robust enough to support such an endeavor. However, this work would benefit from more statistical rigor. First, the authors base their results on multiple t-tests conducted on different variables in the data. Analysis of a complex design should begin with a large model incorporating all variables of interest. Only then, significant findings would warrant further follow-up investigation into simple effects (e.g., first find an interaction effect between group and novelty, and only then dive into what drives that interaction). Furthermore, regardless of the statistical strategy used, a correction for multiple comparisons is needed here. Otherwise, it is hard to be convinced that none of these effects are spurious. Last, there is considerable variation in sample size between experiments. As the authors have conducted a power analysis, it would be good to report that information per each experiment, so readers know what power to expect in each.

      (2) Some methodological details in this manuscript I found murky, which makes it hard to interpret results. For example, the secondary results section of Exp1 (under Methods) states that phase 2 foils for one structure were made of items of the other structure. This is an important detail, as it may make testing in phase 2 easier, and tie learning of one structure to the other. As a result, the authors infer a "consistency effect", and only 8 test trials are said to be used in all subsequent analyses of all experiments. I found the details, interpretation, and decision in this paragraph to lack sufficient detail, justification, and visibility. I could not find either of these important design and analysis decisions reflected in the main text of the manuscript or in the design figure. I would also expect to see a report of results when using all the data as originally planned. Similarly, the matched sample analysis is a great addition, but details are missing. Most importantly, it was not clear to me why the same matching method should be used for all experiments instead of choosing the best matching subgroup (regardless of how it was arrived at), and why the nearest-neighbor method with replacement was chosen, as it is not evident from the numbers in Supplementary Table 1 that it was indeed the best-performing method overall. Such omissions hinder interpreting the work.

      (3) To me, the most surprising result in this work relates to the performance of implicit participants when phase 2 followed phase 1 almost immediately (Experiment 1 and Supplementary Experiment 1). These participants had a deficit in learning the same structure but a benefit in learning the novel one. The first part is easier to reconcile, as primacy effects have been reported in statistical learning literature, and so new learning in this second phase could be expected to be worse. However, a simultaneous benefit in learning pairs of a new structure ("structural novelty effect") is harder to explain, and I could not find a satisfactory explanation in the manuscript. After possible design and statistical confounds (my previous comments) are ruled out, a deeper treatment of this finding would be warranted, both empirically (e.g., do explicit participants collapse across Experiments 1 and Supplementary Experiment 1 show the same effect?) and theoretically (e.g., why would this phenomenon be unique only to implicit learning, and why would it dissipate after a long awake break?).

    1. Reviewer #1 (Public Review):

      Summary:

      The study by Nelson et al. is focused on the formation of the Drosophila Posterior Signaling Center (PSC) which ultimately acts as a niche to support hematopoietic stem cells of the lymph gland (LG). Using a combination of genetics and live imaging, the authors show that PSC cells migrate as a tight collective and associate with multiple tissues during a trajectory that positions them at the posterior of the LG.<br /> This is an important study that identifies Slit-Robo signaling as a regulator of PSC morphogenesis, and highlights the complex relationship of interacting cell types - PSC, visceral mesoderm (VM), and cardioblasts (CBs) - in the coordinated development of these three tissues during organ development. However, one point requiring clarification is the idea that PSC cells exhibit a collective cell migration; it is not clear that the cells are migrating rather than being pushed to a more dorsal position through dorsal closure and/or other similar large-scale embryo movement. This does not detract from the very interesting analysis of PSC morphogenesis as presented.

      Strengths:

      (1) Using the expression of Hid or Grim to ablate associated tissues, they find evidence that the VM and CB of the dorsal vessel affect PSC migration/morphology whereas the alary muscles do not. Slit is expressed by both VM and CBs, and therefore Slit-Robo signaling was investigated as PSCs express Robo.

      (2) Using a combination of approaches, the authors convincingly demonstrate that Slit expression in the CBs and VM acts to support PSC positioning. A strength is the ability to knockdown slit levels in particular tissue types using the Gal4 system and RNAi.

      (3) Although in the analysis of robo mutants, the PSC positioning phenotype is weaker in the individual mutants (robo1 and robo2) with only the double mutant (robo1,robo2) exhibiting a phenotype comparable to the slit RNAi. The authors make a reasonable argument that Slit-Robo signaling has an intrinsic effect, likely acting within PSCs because PSCs show a phenotype even when CBs do not (Figure 4G).

      (4) New insight into dorsal vessel formation by VM is presented in Figure 4A, B, as loss of the VM can affect dorsal vessel morphogenesis. This result additionally points to the VM as important.

      Weaknesses:

      (1) The authors are cautioned to temper the result that Slit-Robo signaling is intrinsic to PSC since the loss of robo may affect other cell types (besides CBs and PSCs) to indirectly affect PSC migration/morphogenesis. In fact, in the robo2, robo1 mutant, the VM appears to be incorrectly positioned (Figure 4G).

      (2) If possible, the authors should use RNAi to knockdown Robo1 and Robo2 levels specifically in the PSCs if a Gal4 is available; might Antp.Gal4 (Fig 1K) be useful? Even if knockdown is achieved in PSCs+CBs, this would be a better/complementary experiment to support the approach outlined in Figure 4D.

      (3) Movies are hard to interpret, as it seems unclear that the PSCs actively migrate rather than being pushed/moved indirectly due to association with VM and CBs/dorsal vessel.

    2. Reviewer #2 (Public Review):

      The paper by Nelson KA, et al. explored the collective migration, coalescence, and positioning of the posterior signaling center (PSC) cells in Drosophila embryo. With live imaging, the authors observed the dynamic progress of PSC migration. Throughout this process, visceral mesoderm (VM), alary muscles (Ams), and cardioblasts (CBs) are in proximity to PSC. Genetic ablation of these tissues reveals the requirement for VM and CBs, but not AMs in this process. Genetic manipulations further demonstrated that Slit-Robo signaling was critical during PSC migration and positioning. While the genetic mechanisms of positioning the PSC were explored in much detail, including using live imaging, the functional consequence of mispositioning or (partial) absence of PSC cells has not been addressed, but would much increase the relevance of their findings. A few additional issues need to be addressed as well in this otherwise well-done study.

      Major points:

      (1) The only readout in their experiments is the relative correctness of PSC positioning. Importantly, what is the functional consequence if PSC is not properly positioned? This would be particularly important with robo-sli manipulations, where the PSC is present but some cells are misplaced. What is the consequence? Are the LGs affected, like the specification of their cell types, structure, and function? To address this for at least the robo-slit requirement in the PSC, it may be important to manipulate them directly in the PSC with a split Gal4 system, using Antp and Odd promoters.

      (2) The densely, parallel aligned fibers in the part of Figure 1J seemed to be visceral mesoderm, but further up (dorsally) that may be epidermis. It is possible that the PSC migrate together with the epidermis? This should be addressed.

      (3) Although the authors described the standards of assessing PSC positioning as "normal" or "abnormal", it is rather subtle at times and variable in the mutant or KD/OE examples. The criteria should be more clearly delineated and analyzed double-blind, also since this is the only readout. Further examples of abnormal positioning in supplementary figures would also help.

      (4) The Discussion is very lengthy and should shortened.

    3. Reviewer #3 (Public Review):

      Summary:

      This work is a detailed and thorough analysis of the morphogenesis of the posterior signaling center (PSC), a hematopoietic niche in the Drosophila larva. Live imaging is performed from the stage of PSC determination until the appearance of a compact lymph gland and PSC in the stage 16 embryo. This analysis is combined with genetic studies that clarify the involvement of adjacent tissue, including the visceral mesoderm, alary muscle, and cardioblasts/dorsal vessels. Lastly, the Slit/Robo signaling system is clearly implicated in the normal formation of the PSC.

      Strengths:

      The data are clearly presented, well documented, and fully support the conclusions drawn from the different experiments. The manuscript differs in character from the mainstay of "big data" papers (for example, no sets of single-cell RNAseq data of, for instance, PSC cells with more or less Slit input, are offered), but what it lacks in this regard, it makes up in carefully planned and executed visualizations and genetic manipulations.

      Weaknesses:

      A few suggestions concerning improvement of the way the story is told and contextualized.

      (1) The minute cluster of PSC progenitors (5 or so cells per side) is embedded (as known before and shown nicely in this study) in other "migrating" cell pools, like the cardioblasts, pericardial cells, lymph gland progenitors, alary muscle progenitors. These all appear to move more or less synchronously. What should also be mentioned is another tissue, the dorsal epidermis, which also "moves" (better: stretches?) towards the dorsal midline during dorsal closure. Would it be reasonable to speculate (based on previously published data) that without the force of dorsal closure, operating in the epidermis, at least the lateral>medial component of the "migration" of the PSC (and neighboring tissues) would be missing? If dorsal closure is blocked, do essential components of PSC and lymph gland morphogenesis (except for the coming-together of the left and right halves) still occur? Are there any published data on this?

      (2) Along similar lines: the process of PSC formation is characterized as "migration". To be fair: the authors bring up the possibility that some of the phenotypes they observe could be "passive"/secondary: "Thus, it became important to test whether all PSC phenotypes might be 'passive', explained by PSC attachment to a malforming dorsal vessel. Alternatively, the PSC defects could reflect a requirement for Robo activation directly in PSC cells." And the issue is resolved satisfactorily. But more generally, "cell migration" implies active displacement (by cytoskeletal forces) of cells relative to a substrate or to their neighbors (like for example migration of hemocytes). This to me doesn't seem really clearly to happen here for the dorsal mesodermal structures. Couldn't one rather characterize the assembly of PSC, lymph gland, pericardial cells, and dorsal vessel in terms of differential adhesion, on top of a more general adhesion of cells to each other and the epidermis, and then dorsal closure as a driving force for cell displacement? The authors should bring in the published literature to provide a background that does (or does not) justify the term "migration".

      (3) That brings up the mechanistic centerpiece of this story, the Slit/Robo system. First: I suggest adding more detailed data from the study by Morin-Poulard et al 2016, in the Introduction, since these authors had already implicated Slit-Robo in PSC function and offered a concrete molecular mechanism: "vascular cells produce Slit that activates Robo receptors in the PSC. Robo activation controls proliferation and clustering of PSC cells by regulating Myc, and small GTPase and DE-cadherin activity, respectively". As stated in the Discussion: the mechanism of Slit/Robo action on the PSC in the embryo is likely different, since DE-cadherin is not expressed in the embryonic PSC; however, it maybe not be THAT different: it could also act on adhesion between PSC cells themselves and their neighbors. What are other adhesion proteins that appear in the late lateral mesodermal structures? Could DN-cadherin or Fasciclins be involved?

    1. Reviewer #1 (Public Review):

      The authors describe a massively parallel reporter assays (MPRA) screen focused on identifying polymorphisms in 5' and 3' UTRs that affect translation efficiency and thus might have a functional impact on cells. The topic is of timely interest, and indeed, several related efforts have recently been published and preprinted (e.g., https://pubmed.ncbi.nlm.nih.gov/37516102/ and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635273/). This study has several major issues with the results and their presentation.

      Major comments:

      (1) The main issue is that it appears that the screen has largely failed, yet the reasons for that are unclear, which makes it difficult to interpret. The authors start with a library that includes approximately 6,000 variants, which makes it a medium-sized MPRA. But then, only 483 pairs of WT/mutated UTRs yield high-confidence information, which is already a small number for any downstream statistical analysis, particularly since most don't actually affect translation in the reporter screen setting (which is not unexpected). It is unclear why >90% of the library did not give high-confidence information. The profiles presented as base-case examples in Figure 2B don't look very informative or convincing. All the subsequent analysis is done on a very small set of UTRs that have an effect, and it is unclear to this reviewer how these can yield statistically significant and/or biologically relevant associations.

      (2) From the variants that had an effect, the authors go on to carry out some protein-level validations and see some changes, but it is not clear if those changes are in the same direction as observed in the screen.

      (3) The authors follow up on specific motifs and specific RBPs predicted to bind them, but it is unclear how many of the hits in the screen actually have these motifs, or how significant motifs can arise from such a small sample size.

      (4) It is particularly puzzling how the authors can build a machine learning predictor with >3,000 features when the dataset they use for training the model has just a few dozens of translation-shifting variants.

      (5) The lack of meaningful validation experiments altering the SNPs in the endogenous loci by genome editing limits the impact of the results.

    2. Reviewer #2 (Public Review):

      Summary:

      In their paper "Massively Parallel Polyribosome Profiling Reveals Translation Defects of Human Disease‐Relevant UTR Mutations" the authors use massively parallel polysome profiling to determine the effects of 5' and 3' UTR SNPs (from dbSNP/ClinVar) on translational output. They show that some UTR SNPs cause a change in the polysome profile with respect to the wild-type and that pathogenic SNPs are enriched in the polysome-shifting group. They validate that some changes in polysome profiles are predictive of differences in translational output using transiently expressed luciferase reporters. Additionally, they identify sequence motifs enriched in the polysome-shifting group. They show that 2 enriched 5' UTR motifs increase the translation of a luciferase reporter in a protein-dependent manner, highlighting the use of their method to identify translational control elements.

      Strengths:

      This is a useful method and approach, as UTR variants have been more difficult to study than coding variants. Additionally, their evidence that pathogenic mutations are more likely to cause changes in polysome association is well supported.

      Weaknesses:

      The authors acknowledge that they "did not intend to immediately translate the altered polysome profile into an increase or decrease in translation efficiency, as the direction of the shift was not readily evident. Additionally, sedimentation in the sucrose gradient may have been partially affected by heavy particles other than ribosomes." However, shifted polysome distribution is used as a category for many downstream analyses. Without further clarity or subdivision, it is very difficult to interpret the results (for example in Figure 5A, is it surprising that the polysome shifting mutants decrease structure? Are the polysome "shifts" towards the untranslated or heavy fractions?)

    1. Reviewer #1 (Public Review):

      Summary:

      Even though this is not the first report that the mutation in the DNAH12 gene causes asthenoteratozoospermia, the current study explores the sperm phenotype in-depth. The authors show experimentally that the said mutation disrupts the proper axonemal arrangement and recruitment of DNALI1 and DNAH1 - proteins of inner dynein arms. Based on these results, the authors propose a functional model of DNAH12 in proper axonemal development. Lastly, the authors demonstrate that the male infertility caused by the studies mutation can be rescued by ICSI treatment at least in the mouse. This study furthers our understanding of male infertility caused by a mutation of axonemal protein DNAH12, and how this type of infertility can be overcome using assisted reproductive therapy.

      Strengths:<br /> This is an in-depth functional study, employing multiple, complementary methodologies to support the proposed working model.

      Weaknesses:

      The study strength could be increased by including more controls such as peptide blocking of the inhouse raised mouse and rat DNAH12 antibodies, and mass spectrometry of control IP with beads/IgG only to exclude non-specific binding. Objective quantifications of immunofluorescence images and WB seem to be missing. At least three technical replicates of western blotting of sperm and testis extracts could have been performed to demonstrate that the decrease of the signal intensity between WT and mutant was not caused by a methodological artifact.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors first conducted whole exome sequencing for infertile male patients and families where they co-segregated the biallelic mutations in the Dynein Axonemal Heavy Chain 12 (DNAH12) gene.<br /> Sperm from patients with biallelic DNAH12 mutations exhibited a wide range of morphological abnormalities in both tails and heads, reminiscing a prevalent cause of male infertility, asthenoteratozoospermia. To deepen the mechanistic understanding of DNAH12 in axonemal assembly, the authors generated two distinct DNAH12 knockout mouse lines via CRISPR/Cas9, both of which showed more severe phenotypes than observed in patients. Ultrastructural observations and biochemical studies revealed the requirement of DNAH12 in recruiting other axonemal proteins and that the lack of DNAH12 leads to the aberrant stretching in the manchette structure as early as stage XI-XII. At last, the authors proposed intracytoplasmic sperm injection as a potential measure to rescue patients with DNAH12 mutations, where the knockout sperm culminated in the blastocyst formation with a comparable ratio to that in WT.

      Strengths:

      The authors convincingly showed the importance of DNAH12 in assembling cilia and flagella in both human and mouse sperm. This study is not a mere enumeration of the phenotypes, but a strong substantiation of DNAH12's essentiality in spermiogenesis, especially in axonemal assembly.

      The analyses conducted include basic sperm characterizations (concentration, motility), detailed morphological observations in both testes and sperm (electron microscopy, immunostaining, histology), and biochemical studies (co-immunoprecipitation, mass-spec, computational prediction). Molecular characterizations employing knockout animals and recombinant proteins beautifully proved the interactions with other axonemal proteins.

      Many proteins participate in properly organizing flagella, but the exact understanding of the coordination is still far from conclusive. The present study gives the starting point to untangle the direct relationships and order of manifestation of those players underpinning spermatogenesis. Furthermore, comparing flagella and trachea provides a unique perspective that attracts evolutional perspectives.

      Weaknesses:

      Seemingly minor, but the discrepancies found in patients and genetically modified animals were not fully explained. For example, both knockout mice vastly reduced the count of sperm in the epididymis and the motility, while phenotypes in patients were rather milder. Addressing the differences in the roles that the orthologs play in spermatogenesis would deepen the comprehensive understanding of axonemal assembly.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors reveal a new role for SDG7 in the regulation of H3K36me2 and me3. SDG7 appear to be functionally redundant to SDG8 as the double mutant presents lower levels of H3K36me and stronger phenotypes than either single mutant, however, their mechanisms of action might differ as the proteins displayed different localization on their target genes, with SDG7 localizing preferentially to TSS and TES while SDG8 covers the gene body. SDG7 binds preferentially to PREs, which recruit PRC2 for H3K27me3 deposition. The authors therefore present an interesting model where SDG7 evicts PRC2 from silenced genes, leading to a loss of H3K27me3. This would allow the transcriptional activation of the genes and the deposition of H3K36me3.

      Strengths:

      Overall, the manuscript is well-written and organized, although some paragraphs need clarifications. The figures are clear and well designed and the proposed model is compelling. While the manuscript is already interesting as it is, I think addressing the following questions would elevate it even more and refine the proposed model:

      Weaknesses/potential aspects to address:

      (1) It is still unclear whether SDG7 directly catalyzes H3K36me or if it promotes its deposition simply by eviction of PRC2. The AlphaFold and structure analyses show a significant similarity between the catalytic domains which would support the first possibility, but some more experiments would be required to prove this more definitively.

      (2) Does SDG7 directly recognize the PRE (as suggested by the model in Figure 5F) or is it recruited by some transcription factors? Is SDG7 known to interact with any of the PRC2 recruiters?

      (3) Line154/Figure 2A: The metagene plot for H3K36me3 shows a lower level on the gene body but a higher peak in sdg7sdg8 double mutants compared to the Wild-type, which is a bit surprising, especially considering that the immunostaining in reference 19 showed a near complete loss of H3K36me3 signal in the same double mutant. Can this higher peak be an artifact from the normalization strategy, or due to the existence of different subpopulations of genes?

      Indeed, on the genome tracks presented by the authors, the hypomethylated genes show a loss of signal on the entire gene body, and not a higher peak near the TSS. It might be interesting to generate metagene plots for H3K36me3 hypo and hyper-methylated genes, to see if the higher peak at the TSS is solely due to the hyper-methylated genes.

      (4) Figure 2C: More than 40% of differentially methylated genes are actually hypermethylated, but the authors do not discuss this at all. What are those genes, are they targeted by SDG7 or 8? Could they be responsible for the higher peak at the TSS observed in the double mutant? (see previous comment).

      (5) Figure 2C and D: The method section states that the ChIP-seq was performed on 5-day-old seedlings, while the legend of this figure mentions root and shoot samples but this does not appear in the figure itself. There is also mention of shoot and root samples in Supplementary Tables 1 and 2. The authors should clarify which tissue was used for the data presented in Figure 2 and correct the legends or the methods accordingly.

      (6) Line 270/Fig 4K and L: The text mentions looking at the 838 genes "downregulated in clf sdg7 sdg8 relative to sdg7 sdg8" and in the overlap, the authors identified FLC. However, in Figure 5D, FLC is upregulated in clf sdg7-sdg8 compared to sdg7-sdg8, not downregulated as mentioned in line 270. The Venn diagram in Figure 4L mentions "sdg vs clf sdg up", which would fit the pattern seen in Figure 5D, but the number of genes (838) matches the number of downregulated genes in the sdg7sdg8 vs clf s dg7sdg8 volcano plot.

      I would actually expect the phenotype rescue to be caused by genes that are up in Wt vs clf, down in Wt vs sdg7-sdg8, and back up in sdg7-sdg8 vs clf-sdg7-sdg8, not "up/down/down" as mentioned in the text: genes would be downregulated in sdg7-sdg8 because of a loss of H3K36me and therefore hypermethylation of H3K27, but in the absence of CLF, this hypermethylation is reversed and the genes are upregulated in the triple mutant compared to the sdg7-sdg8 mutant. This is also what the authors see and describe in their cluster analysis in Figure 4M and line 280, mentioning an upregulation in clf-sdg7-sdg8 vs sdg7-sdg8. Could the authors please clarify these discrepancies between the different subplots and within the text itself? Was there maybe some error plotting the volcano plot and/or Venn diagram?

      In general, as this part is quite complicated, maybe it would benefit from a clearer explanation from the authors as to why they look at those particular overlaps, so that the reader can more easily follow their train of thought.

      (7) Figure 4N/Line 286: How were these 828 genes identified? Is it stemming from a clf-sdg7-sdg8 vs sdg7-sdg8 comparison? The legend says "genes shown by white color in Fig. 4M", do the authors mean the two clusters previously described?

      (8) Line 300: "suggesting that SDG8 primarily mediates target gene expression in conjunction with PAF1C". This statement is based on overlapping genes that are downregulated in sdg7-sdg8 double mutant and paf1c mutants but concludes only on the role of SDG8. I feel that to state that SDG8 regulates expression in conjunction with PAF1C, the authors should rather examine the genes downregulated in the sdg8 mutant, especially considering the reduced overlap between genes downregulated in sdg8 and sdg7-sdg8 (according to Figure 2C, only 30% of the genes downregulated in sdg8 are also downregulated in the double mutant), or this statement should be corrected to also include SDG7.

      Maybe it would be easier to read the figure if the authors created a master list of genes downregulated in at least one of the paf1c mutants they examined (as they anyway do not examine in detail the contribution of each individual paf1c mutant), and overlap it with the genes downregulated in sdg7, sdg8 or sdg7-sdg8.

      (9) Line 326: "We also discovered that SDG7 and SDG8 overcome PRC2-mediated silencing, leading to a switch from H3K27 methylation to H3K36 methylation during growth and development." While part of this statement is supported by the ChIP data presented in Figure 4E, I think a ChIP for H3K36me2 and/or me3 is necessary to prove the existence of a K27me to K36me switch.

      (10) Line 347: The authors state that SDG8 is located at the TSS and 3' end of genes, but on line 187 they state that it occupies the gene body (which is supported by the plot in Figure 3A).

      (11) Line 351: The authors suggest a role of RNApolII in the deposition of K36me, but their data are not sufficient to support this hypothesis. The transcriptome data show that both SDGs and PAF1C regulate a similar set of genes, but they do not show data demonstrating that RNApolII is necessary for the deposition of K36me. It might be interesting to examine H3K36me levels in a paf1c mutant to further consolidate their hypothesis.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors combined imaging approaches with molecular and genetic experiments to

      (i) for the first time establish a chromatin regulatory role for SDG7;<br /> (ii) examine its role in H3K36 methylation, along with its homolog SDG8;<br /> (iii) examine its potential role in mediating antagonism to PRC2, thereby mediating transcriptional activation.

      Strengths:

      The manuscript explores interesting and relevant mechanistic hypotheses about chromatin-mediated gene regulation by combining a range of experimental tools and a genome-wide perspective. The writing is very clear. The study makes good connections to existing data and generates datasets that complement existing datasets, providing a valuable resource to the community.

      Weaknesses:

      Some of the claims appear to need further supporting evidence to establish their robustness.

      Review of the main conclusions and supporting evidence:

      (1) SDG7 contributes to H3K36 methylation at several loci along with SDG8:<br /> This conclusion is supported by the genome-wide differences (measured by ChIP-seq) in H3K36me3 and me2 levels observed between WT, the sdg7 and sdg8 single mutants, and the double mutant. The reduction in H3K36 methylation levels observed at a large number of genes in the sdg7 mutant, and the further reduction in H3K36 methylation levels in the double mutant compared to sdg8 (observed at multiple genes) indicates that SDG7 promotes this transcription-associated modification. The significantly larger number of H3K36 hypomethylated genes in the double mutant (3380) compared to either of the single mutants (523 and 605) indicates lower overall H3K36me3 levels in the double mutant.<br /> While direct evidence of SDG7 methyltransferase activity on H3K36 is lacking, the study reports structural comparisons using AlphaFold predictions that suggest the possibility of such a role.

      (2) SDG7 influences gene expression together with SDG8:<br /> This conclusion is supported by a range of phenotypic differences observed between sdg8 and the double mutant sdg7 sdg8. The reported genome-wide differential gene expression between the WT and the double mutant as well as expression differences in specific genes detected by imaging are also consistent with SDG7 and SDG8 together influencing gene expression. However, a role specifically for SDG7 could be further supported by a direct differential expression analysis between the single mutant sdg8 and the double mutant sdg7 sdg8. A role for SDG7 in gene expression is also consistent with its observed effect on H3K36 methylation, which is generally associated with productive transcription.

      (3) SDG8 is exclusively nuclear, but SDG7 localises to the cytosol and the nucleus in meristematic cells:<br /> This conclusion is supported by imaging of fluorescent-tagged SDG8 and SDG7 in the root tip, which shows nuclear localisation of SDG8-GFP, consistent with previous reports, and a combination of nuclear and cytosolic localisation for SDG7-VENUS. However, the study presents only one replicate - more replicates are needed to establish the robustness of this conclusion.

      (4) Distinct binding patterns of SDG7 and SDG8 on chromatin:<br /> This conclusion is supported by the analysis of genome-wide binding patterns of these proteins measured by ChIP-seq (using fluorescent tagged versions). This data indicates that while SDG7 tends to localise to TSS and TES regions of genes, SDG8 tends to be more uniformly spread across gene loci. These patterns suggest that SDG7 and SDG8 may influence H3K36 methylation through distinct mechanisms, but do not indicate what these mechanisms may be.

      (5) SDG7/SDG8 antagonism with PRC2:<br /> a. SDG7 overlaps with PRC2 and its recruiters on chromatin and can bind to PREs<br /> This conclusion is supported by statistically significant overlaps genome-wide between cis-elements at SDG7 binding peaks and those previously reported to be Polycomb associated. This is further supported by the observation of SDG7 binding peaks close to PRC2 subunit binding peaks at known PRC2 targets.<br /> b. SDG7/SDG8 antagonism with PRC2<br /> This conclusion is supported by the observation that the sdg7 sdg8 double mutant phenotypes are partially rescued by disrupting CLF, one of the PRC2 methyltransferases. However, this does not necessarily suggest a direct antagonism with PRC2, but could be part of a more general antagonism between productive transcription (in which H3K36 methylation plays an active role), and PRC2-mediated silencing.<br /> c. SDG7 can evict PRC2 from PREs to overcome H3K27me3-mediated silencing<br /> This conclusion - that SDG7 directly antagonises PRC2 interaction with cis-elements that mediate its targeting - is partly supported by the observation that inducing overexpression of SDG7 (through dexamethasone induction) can cause changes in CLF occupancy and H3K27me3 levels at certain designated PREs. To establish the robustness of these conclusions, it will be necessary to examine designated regions to be used as a negative control and include a non-transgenic control for the SDG-7-HA ChIP. A suitable negative control may be a non-PRE region known to have a CLF peak and high H3K27me3 levels, where the levels would not be expected to change in this experiment.<br /> It remains to be established whether this apparent antagonism of PRC2 by SDG7 is only part of a more general antagonism of PRC2 by productive transcriptional activity, or whether SDG7 can evict PRC2 from PREs independent of transcripts and therefore is a precursor to switching to an active transcriptional state.<br /> Another aspect that would be interesting to examine in the light of recent findings is the single-cell-level behaviour at these genes targeted by SDG7-to examine whether SDG7 induction is causing individual copies of these genes to stochastically switch to an active transcriptional state so that the observed changes in H3K27me3 result from a fraction of copies completely losing silencing rather than all copies losing some H3K27me3.

      (6) H3K36me3 levels are co-regulated by SDG8 and Paf1c, SDG8 associates with Pol II to deliver transcription-coupled H3K36 methylation<br /> This conclusion is supported by analysis of a subset of loci previously reported to be regulated by Paf1c, which also exhibit changes in the sdg7 sdg8 double mutant as well as a clf mutant. This analysis is based on a qualitative examination of ChIP-seq signal at a small number of loci, and therefore provides indirect support for this conclusion. It is, therefore, difficult to draw mechanistic insights from this analysis that go beyond correlation.

    1. Reviewer #1 (Public Review):

      In this manuscript, Ferhat and colleagues describe their study aimed at developing a blood-brain barrier (BBB) penetrant agent that could induce hypothermia and provide neuroprotection from the sequelae of status epilepticus (SE) in mice. Hypothermia is used clinically in an attempt to reduce neurological sequelae of injury and disease. Hypothermia can be effective, but physical means used to reduce core body temperature are associated with untoward effects. Pharmacological means to induce hypothermia could be as effective with fewer untoward complications. Intracerebroventricularly applied neurotensin can cause hypothermia; however, neurotensin applied peripherally is degraded and does not cross the BBB. Here the authors develop and characterize a neurotensin conjugate that can reach the brain, induce hypothermia, and reduce seizures, cognitive changes, and inflammatory changes associated with status epilepticus.

      Strengths:

      (1) In general, the study is well-reasoned, well-designed, and seemingly well-executed.

      (2) Strong dose-response assessment of multiple neurotensin conjugates in mice.

      (3) Solid assessment of binding affinity, in vitro stability in blood, and brain uptake of the conjugate.

      (4) Appropriate inclusion of controls for SE and for drug injections. However, perhaps a vehicle control could have been employed.

      (5) Multifaceted assessment of neurodegeneration, inflammation, and mossy fiber sprouting in the different groups.

      (6) Inclusion of behavioral assessments.

      (7) Evaluates NSTR1 receptor distribution in multiple ways; however, does not evaluate changes in receptor distribution or ping wo/w SE and/or various drugs.

      (8) Demonstrates that this conjugate can induce hypothermia and have positive effects on the sequelae of SE. Could have a great impact on the application of pharmacologically-induced hypothermia as a neuroprotective measure in patients.

      Weaknesses:

      (1) The authors make the claim, repeatedly, that the hypothermia caused by the neurotensin conjugate is responsible for the effects they see; however, what they really show is that the conjugate causes hypothermia AND has favorable effects on the sequelae of SE. They need to discuss that they did not administer the conjugate without allowing the pharmacological hypothermia (e.g., by warming the animal, etc.).

      (2) In the status epilepticus studies, it is unclear how or whether they monitored animals for the development of spontaneous seizures. Can the authors please describe this?

      (3) They do not evaluate changes in receptor distribution or ping wo/w SE and/or various drugs.

      (4) It is not clear why several different mouse strains were employed.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors generated analogs consisting of modified neurotensin (NT) peptides capable of binding to low-density lipoprotein (LDL) and NT receptors. Their lead analog was further evaluated for additional validation as a novel therapeutic. The putative mechanism of action for NT in its antiseizure activity is hypothermia, and as therapeutic hypothermia has been demonstrated in epilepsy, NT analogs may confer antiseizure activity and avoid the negative effects of induced hypothermia.

      Strengths:

      The authors demonstrate an innovative approach, i.e. using LDLR as a means of transport into the brain, that may extend to other compounds. They systematically validate their approach and its potential through binding, brain penetration, in vivo antiseizure efficacy, and neuroprotection studies.

      Weaknesses:

      Tolerability studies are warranted, given the mechanism of action and the potential narrow therapeutic index. In vivo studies were used to assess the efficacy of the peptide conjugate analogs in the mouse KA model. However, it would be beneficial to have shown tolerability in naïve animals to better understand the therapeutic potential of this approach.

      Mice may be particularly sensitive to hypothermia. It would be beneficial to show similar effects in a rat model.

    1. Reviewer #1 (Public Review):

      Carignano et al propose an extension of the self-returning random walk (SRRW) model for chromatin to include excluded volume aspects and use it to investigate generic local and global properties of the chromosome 3D organization inside eukaryotic nuclei. In particular, they focus on chromatin volumic density, contact probability and domain size and suggest that their framework can recapitulate several experimental observations and predict the effect of some perturbations.

      Strengths:<br /> • The developed methodology is convincing and may offer an alternative - less computationally demanding - framework to investigate the single-cell and population structural properties of 3D genome organization at multiple scales.<br /> • Compared to the previous SRRW model, it allows for investigation of the role of excluded volume locally.<br /> • They perform some experiments to compare with model predictions and show consistency between the two.

      Weaknesses:<br /> • The model currently cannot fully account for specific mechanisms that may shape the heterogeneous, complex organization of chromosomes (TAD at specific positions, A/B compartmentalization, promoter-enhancer loops, etc.).<br /> • By construction of their framework, excluded volume only impacts locally the polymer organization and larger-scale properties for which excluded volume could be a main actor (formation of chromosome territories [Rosa & Everaers, PLoS CB 2009], bottle-brush effects due to loop extrusion [Polovnikov et al, PRX 2023], etc.) cannot be captured.<br /> • Comparisons with experiments are solid but are not clearly quantified.

      Impact:<br /> Building on the presented framework in the future to incorporate TAD and compartments may offer an interesting model to study the single-cell heterogeneity of chromatin organization. But currently, in this reviewer's opinion, standard polymer modeling frameworks may offer more possibilities.

    1. Reviewer #1 (Public Review):

      Summary:

      In this work, the authors present a novel, multi-layer computational model of motor control to produce realistic walking behaviour of a Drosophila model in the presence of external perturbations and under sensory and motor delays. The novelty of their model of motor control is that it is modular, with divisions inspired by the fly nervous system, with one component based on deep learning while the rest are based on control theory. They show that their model can produce realistic walking trajectories. Given the mostly reasonable assumptions of their model, they convincingly show that the sensory and motor delays present in the fly nervous system are the maximum allowable for robustness to unexpected perturbations.

      Their fly model outputs torque at each joint in the leg, and their dynamics model translates these into movements, resulting in time-series trajectories of joint angles. Inspired by the anatomy of the fly nervous system, their fly model is a modular architecture that separates motor control at three levels of abstraction:<br /> (1) oscillator-based model of coupling of phase angles between legs,<br /> (2) generation of future joint-angle trajectories based on the current state and inputs for each leg (the trajectory generator), and<br /> (3) closed-loop control of the joint-angles using torques applied at every joint in the model (control and dynamics).

      These three levels of abstraction ensure coordination between the legs, future predictions of desired joint angles, and corrections to deviations from desired joint-angle trajectories. The parameters of the model are tuned in the absence of external perturbations using experimental data of joint angles of a tethered fly. A notable disconnect from reality is that the dynamics model used does not model the movement of the body and ground contacts as is the case in natural walking, nor the movement of a ball for a tethered fly, but instead something like legs moving in the air for a tethered fly.

      In order to validate the realism of the generated simulated walking trajectories, the authors compare various attributes of simulated to real tethered fly trajectories and show qualitative and quantitative similarities, including using a novel metric coined as Kinematic Similarity (KS). The KS score of a trajectory is a measure of the likelihood that the trajectory belongs to the distribution of real trajectories estimated from the experimental data. While such a metric is a useful tool to validate the quality of simulated data, there is some room for improvement in the actual computation of this score. For instance, the KS score is computed for any given time-window of walking simulation using a fraction of information from the joint-angle trajectories. It is unclear if the remaining information in joint-angle trajectories that are not used in the computation of the KS score can be ignored in the context of validating the realism of simulated walking trajectories.

      The authors validate simulated walking trajectories generated by the trained model under a range of sensorimotor delays and external perturbations. The trained model is shown to generate realistic joint-angle trajectories in the presence of external perturbations as long as the sensorimotor delays are constrained within a certain range. This range of sensorimotor delays is shown to be comparable to experimental measurements of sensorimotor delays, leading to the conclusion that the fly nervous system is just fast enough to be robust to perturbations.

      Strengths:

      This work presents a novel framework to simulate Drosophila walking in the presence of external perturbations and sensorimotor delay. Although the model makes some simplifying assumptions, it has sufficient complexity to generate new, testable hypotheses regarding motor control in Drosophila. The authors provide evidence for realistic simulated walking trajectories by comparing simulated trajectories generated by their trained model with experimental data using a novel metric proposed by the authors. The model proposes a crucial role in future predictions to ensure robust walking trajectories against external perturbations and motor delay. Realistic simulations under a range of prediction intervals, perturbations, and motor delays generating realistic walking trajectories support this claim. The modular architecture of the framework provides opportunities to make testable predictions regarding motor control in Drosophila. The work can be of interest to the Drosophila community interested in digitally simulating realistic models of Drosophila locomotion behaviors, as well as to experimentalists in generating testable hypotheses for novel discoveries regarding neural control of locomotion in Drosophila. Moreover, the work can be of broad interest to neuroethologists, serving as a benchmark in modelling animal locomotion in general.

      Weaknesses:

      As the authors acknowledge in their work, the control and dynamics model makes some simplifying assumptions about Drosophila physics/physiology in the context of walking. For instance, the model does not incorporate ground contact forces and inertial effects of the fly's body. It is not clear how these simplifying assumptions would affect some of the quantitative results derived by the authors. The range of tolerable values of sensorimotor delays that generate realistic walking trajectories is shown to be comparable with sensorimotor delays inferred from physiological measurements. It is unclear if this comparison is meaningful in the context of the model's simplifying assumptions. The authors propose a novel metric coined as Kinematic Similarity (KS) to distinguish realistic walking trajectories from unrealistic walking trajectories. Defining such an objective metric to evaluate the model's predictions is a useful exercise, and could potentially be applied to benchmark other computational animal models that are proposed in the future. However, the KS score proposed in this work is calculated using only the first two PCA modes that cumulatively account for less than 50% of the variance in the joint angles. It is not obvious that the information in the remaining PCA modes may not change the log-likelihood that occurs in the real walking data.

    2. Reviewer #2 (Public Review):

      Summary:

      In this study, Karashchuk et al. develop a hierarchical control system to control the legs of a dynamic model of the fly. They intend to demonstrate that temporal delays in sensorimotor processing can destabilize walking and that the fly's nervous system may be operating with as long of delays as could possibly be corrected for.

      Strengths:

      Overall, the approach the authors take is impressive. Their model is trained using a huge dataset of animal data, which is a strength. Their model was not trained to reproduce animal responses to perturbations, but it successfully rejects small perturbations and continues to operate stably. Their results are consistent with the literature, that sensorimotor delays destabilize movements.

      Weaknesses:

      The model is sophisticated and interesting, but the reviewer has great concerns regarding this manuscript's contributions, as laid out in the abstract:

      (1) Much simpler models can be used to show that delays in sensorimotor systems destabilize behavior (e.g., Bingham, Choi, and Ting 2011; Ashtiani, Sarvestani, and Badri-Sproewitz 2021), so why create this extremely complex system to test this idea? The complexity of the system obscures the results and leaves the reviewer wondering if the instability is due to the many, many moving parts within the model. The reviewer understands (and appreciates) that the authors tested the impact of the delay in a controlled way, which supports their conclusion. However, the reviewer thinks the authors did not use the most parsimonious model possible, and as such, leave many possible sources for other causes of instability.

      (2) In a related way, the reviewer is not sure that the elements the authors introduced reflect the structure or function of the fly's nervous system. For example, optimal control is an active field of research and is behind the success of many-legged robots, but the reviewer is not sure what evidence exists that suggests the fly ventral nerve cord functions as an optimal controller. If this were bolstered with additional references, the reviewer would be less concerned.

      (3) "The model generates realistic simulated walking that matches real fly walking kinematics...". The reviewer appreciates the difficulty in conducting this type of work, but the reviewer cannot conclude that the kinematics "match real fly walking kinematics". The range of motion of several joints is 30% too small compared to the animal (Figure 2B) and the reviewer finds the video comparisons unpersuasive. The reviewer would understand if there were additional constraints, e.g., the authors had designed a robot that physically could not complete the prescribed motions. However the reviewer cannot think of a reason why this simulation could not replicate the animal kinematics with arbitrary precision, if that is the goal.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript described a clinical trial to understand the different treatment durations of loperamide in preventing pyrotinib-induced diarrhea. The authors concluded that no significant differences were observed between 21-day and 42-day loperamide durations in preventing grade {greater than or equal to} grade 3 diarrhea. The authors suggested that considering the economic cost and patient compliance, 21-day loperamide prophylaxis might represent a more pragmatic and appropriate approach for clinical application.

      Strengths:

      It is essential to understand if loperamide for primary prevention of diarrhea helps or not for postoperative treatment with nab-paclitaxel and pyrotinib in HER2-positive patients. This clinical trial would answer this question eventually.

      Weaknesses:

      (1) There are no patients who have not received prophylactic treatment for diarrhea to serve as a control group. This limited the finding that if the loperamide for primary prevention of diarrhea benefits or not for postoperative treatment with nab-paclitaxel and pyrotinib in HER2-positive patients. This would not help much for the guidance of clinical use of the loperamide for primary prevention of diarrhea.

      (2) The clinical trial needs double-blinding for evaluation of treatment. In this manuscript, the blinding was not employed.

    2. Reviewer #2 (Public Review):

      Summary:

      Pyrotinib, a pan-HER tyrosine kinase inhibitor, has shown significant survival benefits in patients with HER2-positive breast cancer. However, diarrhea is a frequent and important adverse event during pyrotinib treatment. Severe diarrhea may require interruption of pyrotinib treatment, thus affecting its anti-tumor effect and becoming a clinical safety issue. This study evaluated the incidence of diarrhea in patients with early-stage HER2-positive breast cancer treated with nab-paclitaxel and pyrotinib using 42- and 21-day loperamide primary prevention strategies. No significant differences were observed between the 21- and 42-day loperamide durations in the prevention of grade 3 and above diarrhea. Considering the economic cost and patient compliance, 21-day loperamide prophylaxis might represent a more pragmatic and appropriate approach for clinical application.

      Strengths:

      This study has a reasonable design, a clear hypothesis and methodology, and clear results, making the conclusion reliable. Most importantly, the findings have practical implications for the clinical management of pyrotinib-induced diarrhea.

      Weaknesses:

      Although the paper does have strengths in the practical implications for the clinical management of pyrotinib-induced diarrhea, there are still many data presentations that are not clear:

      (1) The baseline characteristics mention that at the cut-off date on September 27, 2023, two patients withdrew from the 21-day group due to intolerable diarrhea and received other anti-tumor therapies for liposarcoma on the face. In the 42-day group, one patient was lost to follow-up and two withdrew from the study due to intolerable diarrhea and bone metastases. So, in the study, how many cases are in each group? The numbers of cases indicated in Figures 1 and 2 are inconsistent.

      (2 ) Why does Figure 3a only compare 3 months of data, while Figure 3b compares 12 months of data?

      (3) It is mentioned in lines 222-229 that a combination treatment of nab-paclitaxel plus pyrotinib is 1-3 months, whereas those of pyrotinib alone is 3-12 months. So, what is the exact duration of the combination treatment and pyrotinib alone treatment?

      (4) This study found that no significant differences were observed between 21-day and 42-day loperamide durations in preventing grade 3 and above diarrhea. However, nab-paclitaxel can also cause diarrhea, and the conclusions would be more reliable if a control group that was not given loperamide were added. It is suggested that the authors add relevant data to further confirm the conclusion.

    1. Reviewer #1 (Public Review):

      Summary:

      Colomb et al have further explored the mechanisms of action of a family of three immunodulatory proteins produced by the murine gastrointestinal nematode parasite Heligmosomoides polygyrus bakeri. The family of HpARI proteins binds to the alarmin interleukin 33 and depending on family members, exhibits differential activities, either suppressive or enhancing. The present work extends previous studies by this group showing the binding of DNA by members of this family through a complement control protein (CCP1) domain. Moreover, they identify two members of the family that bind via this domain in a non-specific manner to the extracellular matrix molecule heparan sulphate through a basic charged patch in CCP1. The authors thus propose that binding to DNA or heparan sulphate extends the suppressive action of these two parasite molecules, whereas the third family member does not bind and consequently has a shorter half-life and may function via diffusion.

      Strengths:

      A strength of the work is the multifaceted approach to examining and testing their hypotheses, using a well-established and well-defined family of immunomodulatory molecules using multiple approaches including an in vivo setting.

      Weaknesses:

      There are a few weaknesses of the approach. Perhaps some discussion and speculation as to how these three family members might operate in concert during Heligmosomoides polygyrus bakeri infection would help place the biology of these molecules in context for the reader, e.g. when and where they are produced.

    2. Reviewer #2 (Public Review):

      Summary:

      Colomb et al. investigated here the heparin-binding activity of the HpARI family proteins from H. polygyrus. HpARIs bind to IL-33, a pleiotropic cytokine, and modulate its activities. HpARI1/2 has suppressive functions, while HpARI3 can enhance the interaction between IL-33 and its receptor. This study builds upon their previous observation that HpARI2 binds DNA via its CCP1 domain. Here, the authors tested the CCP1 domain of HpARIs in binding heparan sulfate, an important component of the extracellular matrix, and found that 1/2 bind heparan, but 3 cannot, which is related to their half-lives in vivo.

      Strengths:

      The authors use a comprehensive multidisciplinary approach to assess the binding and their effects in vivo, coupled with molecular modeling.

      Weaknesses:

      (1) Figure 1C should include Western.

      (2) Figure 1E: Why does HpARI1 stop binding DNA at 50%?

      (3) ITC binding experiment with HpARI1?Also, the ITC results from HpARI2 do not seem to saturate, thus it is difficult to really determine the affinity.

      (4) It would be helpful to add docking results from HpARI1.

      (5) Some conclusions are speculative and need to remain in the Discussion. e.g.:<br /> a) That HpARI3 may be able to diffuse farther<br /> b) That DNA/HS may trap HpARI1/2 at the infection site.

    1. Reviewer #3 (Public Review):

      Summary:

      Pyruvate kinase M2 (PKM2) is a rate limiting enzyme in glycolysis and its translocation to nucleus in astrocytes in various nervous system pathologies has been associated with a metabolic switch to glycolysis which is a sign of reactive astrogliosis. Authors investigated whether this occurs in experimental autoimmune encephalomyelitis (EAA), an animal model of multiple sclerosis (MS). They show that in EAA, PKM2 is ubiquitinated by TRIM21 and transferred to the nucleus in astrocytes. Inhibition of TRIM21-PKM2 axis efficiently blocks reactive gliosis and partially alleviates symptoms of EAA. Authors conclude that this axis can be a potential new therapeutic target in the treatment of MS.

      Strengths:

      The study is well-designed, controls are appropriate and a comprehensive battery of experiments has been successfully performed. Results of in vitro assays, single cell RNA sequencing, immunoprecipitation, RNA interference, molecular docking and in vivo modeling etc. complement and support each other.

      Weaknesses:

      Though EAA is a valid model of MS, a proposed new therapeutic strategy based on this study needs to have support from human studies.

      The comments above are still valid for this revised version of the manuscript.

    2. Reviewer #1 (Public Review):

      Summary:

      Yang. Hu et al. investigated the molecular mechanism that cause astrocyte activation and its implications for multiple sclerosis. This study focuses on the enzyme PKM2, known for its role in glycolysis, and its nuclear translocation in reactive astrocytes in a mouse model of multiple sclerosis (EAE). Preventing the nuclear translocation of PKM2 reduces astrocyte activation, proliferation, glycolysis, and inflammatory cytokine secretion. Importantly, the study reveals that TRIM21 controls PKM2's nuclear translocation through ubiquitination, promoting its nuclear import and enhancing its activity. Single-cell RNA sequencing and immunofluorescence confirm TRIM21 upregulation in EAE astrocytes, and alteration of TRIM21 levels affect PKM2-dependent glycolysis and proliferation. Their findings suggest that targeting the TRIM21-PKM2 axis could be a therapeutic strategy for treating neurological diseases involving astrocyte activation.

      Strength:

      This work provides a comprehensive exploration of PKM2's nuclear role and its interaction with TRIM21 in EAE, offering new insights for therapeutic strategies targeting metabolic reprogramming in astrocyte activation. The strength of the study is the use of advanced techniques such as single cell RNA sequencing, in vitro and in vivo knockdown techniques to support the data. With the addition of new data and explanations in the manuscript, the authors have rendered their claimed ideas more supportive.

      Weakness:

      The revisions and implementation of suggestions have greatly improved the overall quality of the manuscript. I would like to thank the authors for carefully evaluating all the suggestions and for providing extra explanations and response figures. However, there are still some points that need to be corrected and clarified.

    3. Reviewer #2 (Public Review):

      This study significantly advances our understanding of the metabolic reprogramming underlying astrocyte activation in neurological diseases such as multiple sclerosis. By employing an experimental autoimmune encephalomyelitis (EAE) mouse model, the authors discovered a notable nuclear translocation of PKM2, a key enzyme in glycolysis, within astrocytes. Preventing this nuclear import via DASA 58 substantially attenuated primary astrocyte activation, characterized by reduced proliferation, glycolysis, and inflammatory cytokine secretion.

      Moreover, the authors uncovered a novel regulatory mechanism involving the ubiquitin ligase TRIM21, which mediates PKM2 nuclear import. TRIM21 interaction with PKM2 facilitated its nuclear translocation, enhancing its activity in phosphorylating STAT3, NFκB, and c-myc. Single-cell RNA sequencing and immunofluorescence staining further supported the upregulation of TRIM21 expression in astrocytes during EAE.

      Manipulating this pathway, either through TRIM21 overexpression in primary astrocytes or knockdown of TRIM21 in vivo, had profound effects on disease severity, CNS inflammation, and demyelination in EAE mice. This comprehensive study provides invaluable insights into the pathological role of nuclear PKM2 and the ubiquitination-mediated regulatory mechanism driving astrocyte activation.

      The author's use of diverse techniques, including single-cell RNA sequencing, immunofluorescence staining, and lentiviral vector knockdown, underscores the robustness of their findings and interpretations. Ultimately, targeting this PKM2-TRIM21 axis emerges as a promising therapeutic strategy for neurological diseases involving astrocyte dysfunction.

      While the strengths of this piece of work are undeniable, some concerns could be addressed to refine its impact and clarity further.

    4. Reviewer #4 (Public Review):

      The authors report the role of the Piruvate Kinase M2 (PKM2) enzyme nuclear translocation as fundamental in the activation of astrocytes in a model of autoimmune encephalitis (EAE). They show that astrocytes, activated through culturing in EAE splenocytes medium, increase their nuclear PKM2 with a consequent activation of NFkB and STAT3 pathways. Prevention of PKM2 nuclear translocation decreases astrocyte counteracts this activation. The authors found that the E3 ubiquitin ligase TRIM21 interacts with PKM2 and promotes its nuclear translocation. In vivo, either silencing of TRIM21 or inhibition of PKM2 nuclear translocation ameliorates the severity of the disease in the EAE model.

      Strengths

      This work contributes to the knowledge of the complex action of the PKM2 enzyme in the context of an autoimmune-neurological disease, highlighting its nuclear role and a novel partner, TRIM21, promoting its nuclear translocation. In vivo amelioration of the pathological signs through inhibition of either of the two, PKM2 and TRIM21, provides a novel rationale for therapeutic targeting.

      Weaknesses

      I believe that the major weakness is the fact that TRIM21 is known to have per se many roles in autoimmune and immune pathways and some of the effects observed might be due to a PKM2-independent action. Some of the experiments to link the two proteins, besides their interaction, are not completely clarifying the issue. On top of that, the in vivo experiments address the role of TRIM21 and the nuclear localisation of PKM2 independently, thus leaving the matter unsolved.

      In general, the conclusions of the manuscript are supported by the reported results. The points to be addressed in future are the assessment of PKM2 as substrate of TRIM21 ubiquitin ligase activity and the proof of the epistatic relationship of TRIM21 and PKM2 in astrocyte activation. However, the data surely open novel directions to follow for the understanding of multiple sclerosis and related pathologies.

    1. Reviewer #2 (Public Review):

      The paper by Willems aimed to uncover the neural implementations of threat omissions and showed that the VTA/SN activity was stronger following the omissions of more probable and intense shock stimulation, mimicking a reward PE signal.

      My main concern remains regarding the interpretation of the task as a learning paradigm (extinction) or simply an expectation violation task (difference between instructed and experienced probability), though I appreciate some of the extra analyses in the responses to the reviewers. Looking at both the behavioral and neural data, a clear difference emerges among different US intensities and non-0% vs. 0% contrasts, however, the difference across probabilities was not clear in the figures, potentially partly due to the false instructions subjects received about the shock probabilities.

      The lack of probability related PE demonstration, both in behavior and to a less extent in imaging data, does not fully support the PE axioms (0% and 100% are by themselves interesting categories since the instruction and experience matched well and therefore might need to be interpreted differently from other probabilities).

      As the other reviewers pointed out, the application of instruction together with extinction paradigm complicates the interpretation of results. Also, the trial-by-trial analysis suggestion was responded by the probability x run interaction analysis, which still averaged over trials within each run to estimate a beta coefficient. So my evaluation remains that this is a valuable study to test PE axioms in the human reward and salience systems but authors need to be extremely careful with their wordings as to why this task is not a particularly learning paradigm (or the learning component did not affect their results, which was in conflict with the probability related SCR, pleasantness ratings as well as BOLD signals).

    2. Reviewer #1 (Public Review):

      Summary:

      Willems and colleagues test whether unexpected shock omissions are associated with reward-related prediction errors by using an axiomatic approach to investigate brain activation in response to unexpected shock omission. Using an elegant design that parametrically varies shock expectancy through verbal instructions, they see a variety of responses in reward-related networks, only some of which adhere to the axioms necessary for prediction error. In addition, there were associations between omission-related responses and subjective relief. They also use machine learning to predict relief-related pleasantness and find that none of the a priori "reward" regions were predictive of relief, which is an interesting finding that can be validated and pursued in future work.

      Strengths:

      The authors pre-registered their approach and the analyses are sound. In particular, the axiomatic approach tests whether a given region can truly be called a reward prediction error. Although several a priori regions of interest satisfied a subset of axioms, no ROI satisfied all three axioms, and the authors were candid about this. A second strength was their use of machine learning to identify a relief-related classifier. Interestingly, none of the ROIs that have been traditionally implicated in reward prediction error reliably predicted relief, which opens important questions for future research.

      Weaknesses:

      The authors have done many analyses to address weaknesses in response to reviews. I will still note that given that one third of participants (n=10) did not show parametric SCR in response to instructions, it seems like some learning did occur. As prediction error is so important to such learning, a weakness of the paper is that conclusions about prediction error might differ if dynamic learning were taken into account using quantitative models.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors conducted a human fMRI study investigating the omission of expected electrical shocks with varying probabilities. Participants were informed of the probability of shock and shock intensity trial-by-trial. The time point corresponding to the absence of the expected shock (with varying probability) was framed as a prediction error producing the cognitive state of relief/pleasure for the participant. fMRI activity in the VTA/SN and ventral putamen corresponded to the surprising omission of a high probability shock. Participants' subjective relief at having not been shocked correlated with activity in brain regions typically associated with reward-prediction errors. The overall conclusion of the manuscript was that the absence of an expected aversive outcome in human fMRI looks like a reward-prediction error seen in other studies that use positive outcomes.

      Strengths:

      Overall, I found this to be a well-written human neuroimaging study investigating an often overlooked question on the role of aversive prediction errors, and how they may differ from reward-related prediction errors. The paper is well-written and the fMRI methods seem mostly rigorous and solid.

      Once again, the authors were very responsive to feedback. I have no further comments.

    1. Reviewer #1 (Public Review):

      Summary:

      Federer et al. tested AAVs designed to target GABAergic cells and parvalbumin-expressing cells in marmoset V1. Several new results were obtained. First, AAV-h56D targeted GABAergic cells with high specificity but in ways that varied across serotype and layer. Second, AAV-PHP.eB.S5E2 targeted parvalbumin-expressing neurons with similarly high specificity. Third, immunohistochemical GABA and PV signals were attenuated near viral injection sites.

      A strength of this study is the analysis of marker gene expression at AAV injection sites. Some endogenous genes are difficult to detect following AAV injections, which is an important observation. A second contribution is the demonstration that AAV-S5E2 drives transgene expression selectively in parvalbumin-expressing neurons when vectors are delivered intraparenchymally (the study introducing AAV-S5E2 used intravenous injections).

      A weakness of this study is that the data set is small. Which of the results would hold up had a larger number of injections been made into a larger number of marmosets remains unclear.

      A major goal of this study was to quantify the specificity and coverage of AAV-h56D and AAV-S5E2 vectors in marmoset cortex. This goal was achieved. This report provides a valuable guide for other investigators using these tools. It also provides a rigorous survey of the laminar distributions of GABA+ and PV+ neurons in marmoset V1 which has value independent of the viral injections.

    2. Reviewer #3 (Public Review):<br /> Summary:

      Federer et al. describe the laminar profiles of GABA+ and of PV+ neurons in marmoset V1. They also report on the selectivity and efficiency of expression of a PV-selective enhancer (S5E2) across laminae. Three further viruses were tested, with a view to characterizing the expression profiles of a GABA-selective enhancer (h56d), but these results are preliminary.

      Strengths:

      The derivation of cell-type specific enhancers is key for translating the types of circuit analyses that can be performed in mice - which rely on germline modifications for access to cell-type specific manipulation - in higher-order mammals. Federer et al. further validate the utility of S5E2 as a PV-selective enhancer in NHPs.

      Additionally, the authors characterize the laminar distribution pattern of GABA+ and PV+ cells in V1. This survey may prove valuable to researchers seeking to understand and manipulate the microcircuitry mediating the excitation-inhibition balance in this region of the marmoset brain.

      Weaknesses:

      Enhancer/promoter specificity and efficiency cannot be directly compared, because they were packaged in different serotypes of AAV.

      The three different serotypes of AAV expressing reporter under the h56D promoter were only tested once each, and all in the same animal. There are many variables that can contribute to the success (or failure) of a viral injection, so observations with an n=1 cannot be considered reliable.

      Added after revision:

      The revisions satisfy my concerns. In particular, the new language to qualify the strength of evidence relating to the interpretation of the data relating to the 3 different serotypes of virus used to test h56D is appropriate.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors of this manuscript characterize new anion conducting that is more red-shifted in its spectrum than prior variants called MsACR1. An additional mutant variant of MsACR1 that is renamed raACR has a 20 nm red-shifted spectral response with faster kinetics. Due to the spectral shift of these variants, the authors proposed that it is possible to inhibit expression of MsACR1 and raACR with lights at 635 nm in vivo and in vitro. The authors were able to demonstrate inhibition in vitro and in vivo with 635 nm light. Overall the new variants with unique properties should be able to suppress neuronal activities with red-shifted light stimulation.

      Strengths:

      The authors were able to identify a new class of anion conducting channelrhodopsin and have variants that respond strongly to lights with wavelength >550 nm. The authors were able to demonstrate this variant, MsACR1, can alter behavior in vivo with 635 nm light.

      The second major strength of the study is the development of a red-shifted mutant of MsACR1 that has faster kinetics and 20 nm red-shifted from a single mutation.

      Weaknesses:

      There are many claims not supported by the evidence provided in the submitted version of the manuscript and would require further experiments to support such claims.

      (1) From the data shown, the red-shifted raACR work much less efficiently than MsACR1 even with 635 nm light illumination both in vivo (Figure 4D) and in vitro (Figure 3E) despite the 20 nm red-shift. This is inconsistent with the benefits and effects of red-shifting the spectrum in raACR. The authors claimed that this is due to the faster kinetics of raACR which is plausible from the data shown in Fig 3E but this could be experimentally shown if more examples of continuous illumination and pulsed illumination (such as the one shown in Fig 3D) can be shown in supplemental figures. If this is truly due to the off-kinetics, the spikes would appear after the termination of the pulses but there is little difference in the cases of continuous illumination or during illumination. The fact that 635nm is equally effective as raACR suggests that there is an overall stronger effect of MsACR1 that compensates for the red-shift of raACR.

      (2) There are limited comparisons to existing variants of ACRs under the same conditions in the manuscript overall. There should be more parallel comparison with gtACR1, ZipACR and RubyACR in identical conditions in cultured cell line, cultured neurons and in vivo. In terms of overall performance, efficiency, expression in identical conditions. Without this information, it is unclear whether the effects at 635 nm is due to the expression level which can compensate for the spectral shift (which may be the case for MsACR1). The authors stated they are saving this data for another manuscript, this is important data for the current manuscript which should be presented in the existing manuscript.

      (3) Despite being able to activate the channelrhodopsin with 635 nm light, the main utility of the variant would be transcranial stimulation which were not demonstrated here.

      (4) For the in vivo characterization, there is no mention of animal number and results from Fig 4 and 5 appear to come from multiple samples from a single animal. This is not sufficient scientific evidence to support the claims. Fig 4 and 5 should have statistical analysis from multiple animals and not multiple measurements from single animals in each of the conditions.

      (5) As reviewer 2 also pointed out, there is a lack of proper controls (in addition to the low number of animals). The authors point out the current absence of technicians in the laboratory, this should not be a reason to not attempt or do the experiments.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors identified a new chloride-conducting Channelrhodopsin (MsACR1) that can be activated at low light intensities and within the red part of the visible spectrum. Additional engineering of MsACR1 yielded a variant (raACR1) with increased current amplitudes, accelerated kinetics, and a 20nm red-shifted peak excitation wavelength. Stimulation of MsACR1 and raACR1 expressing neurons with 635nm in mice's primary motor cortices inhibited the animals' locomotion.

      Strengths:

      The in vitro characterization of the newly identified ACRs is very detailed and confirms the biophysical properties as described by the authors. Notably, the ACRs are very light sensitive and allow for efficient in vitro inhibition of neurons in the nano Watt/mm^2 range. These new ACRs give neuroscientists and cell biologists a new tool to control chloride flux over biological membranes with high temporal and spatial precision. The red-shifted excitation peaks of these ACRs could allow for multiplexed application with blue-light excited optogenetic tools such as cation-conducting channelrhodopsins or green-fluorescent calcium indicators such as GCaMP.

      Weaknesses:

      (1) The in-vivo characterization of MsACR1 and raACR1 lacks critical control experiments and is, therefore, too preliminary. The experimental conditions differ fundamentally between in vitro and in vivo characterizations. For example, chloride gradients differ within neurons which can weaken inhibition or even cause excitation at synapses, as pointed out by the authors. Notably, the patch pipettes for the in vitro characterization in neurons contained low chloride concentrations that might not reflect possible conditions found in vivo preparations, i.e., increasing chloride gradients from dendrites to synapses.<br /> 2nd review: The authors have addressed this comment in their rebuttal.

      (2) Interestingly, the authors used soma-targeted (st) MsACR1 and raACR1 for some of their in vitro characterization yielding more efficient inhibition and reduction of co-incidental "on-set" spiking. Still, the authors do not seem to have utilized st-variants in vivo.<br /> 2nd review: The authors offered an explanation in their rebuttal and aim to add these experiments later.

      (3) Most importantly, critical in vivo control experiments, such as negative controls like GFP or positive controls like NpHR, are missing. These controls would exclude potential behavioral effects due to experimental artifacts. Moreover, in vivo electrophysiology could have confirmed whether targeted neurons were inhibited under optogenetic stimulations.<br /> Some of these concerns stem from the fact that the pulsed raACR stimulation at 635 nm at 10Hz (Fig. 3E) was far less efficient compared to MsACR1, yet the in vivo comparison yielded very similar results (Fig. 4D).<br /> Also, the cortex is highly heterogeneous and comprises excitatory and inhibitory neurons. Using the synapsin promoter, the viral expression paradigm could target both types and cause differential effects, which has not been investigated further, for example, by immunohistochemistry. An alternative expression system, for example, under VGLUT1 control, could have mitigated some of these concerns.<br /> 2nd review: The authors have not added control experiments in Fig 4 yet but plan to conduct them later. They added a new set of experiments in Fig.5 in which PV neurons were exclusively targeted. However, the authors show in vivo electrophysiology demonstrating the expected inhibition of firing neurons (presumably PV neurons expressing raACR) under 635 nm light and disinhibition (presumably excitatory neurons).

      (4) Furthermore, the authors applied different light intensities, wavelengths, and stimulation frequencies during the in vitro characterization, causing varying spike inhibition efficiencies. The in vivo characterization is notably lacking this type of control. Thus, it is unclear why the 635nm, 2s at 20Hz every 5s stimulation protocol, which has no equivalent in the in vitro characterization, was chosen.<br /> 2nd review: The authors offered a satisfactory explanation.

      In summary, the in vivo experiments did not confirm whether the observed inhibition of mouse locomotion occurred due to the inhibition of neurons or experimental artifacts.<br /> 2nd review: New experiments were added which demonstrate the expected inhibition of raACR expressing PV neurons in vivo.

      In addition, the author's main claim of more efficient neuronal inhibition would require to threshold MsACR1 and raACR1 against alternative methods such as the red-shifted NpHR variant Jaws or other ACRs to give readers meaningful guidance when choosing an inhibitory tool.<br /> The light sensitivity of MsACR1 and raACR1 are impressive and well characterized in vitro. However, the authors only reported the overall light output at the fiber tip for the in vivo experiments: 0.5 mW. Without context, it is difficult to evaluate this value. Calculating the light power density at certain distances from the light fiber or thresholding against alternative tools such as NpHR, Jaws, or other ACRs would allow for a more meaningful evaluation.<br /> 2nd review: The authors added Supl Fig. 8 in which light power density and propagation of photons at 550 nm and 635nm through brain tissue was calculated when emitted from light fibers of varying diameter.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study investigated spatial representations in deep feedforward neural network models (DDNs) that were often used in visual tasks. The authors create a three-dimensional virtual environment, and let a simulated agent randomly forage in a smaller two-dimensional square area. The agent "sees" images of the room within its field of view from different locations and heading directions. These images were processed by DDNs. Analyzing model neurons in DDNs, they found response properties similar to those of place cells, border cells and head direction cells in various layers of deep nets. A linear readout of network activity can recover key spatial variables. In addition, after removing neurons with strong place/border/head direction selectivity, one can still decode these spatial variables from the remaining neurons in the DNNs. Based on these results, the authors argue that that the notion of functional cell types in spatial cognition is misleading.

      Strengths:<br /> This paper contains interesting and original ideas, and I enjoy reading it. Most previous studies (e.g., Banino, Nature, 2018; Cueva & Wei, ICLR, 2018; Whittington et al, Cell, 2020) using deep network models to investigate spatial cognition mainly relied on velocity/head rotation inputs, rather than vision (but see Franzius, Sprekeler, Wiskott, PLoS Computational Biology, 2007). Here, the authors find that, under certain settings, visual inputs alone may contain enough information about the agent's location, head direction and distance to the boundary, and such information can be extracted by DNNs. If confirmed, this is potentially an interesting and important observation.

      Weaknesses:<br /> While the findings reported here are interesting, it is unclear whether they are the consequence of the specific model setting, and how well they would generalize. Furthermore, I feel the results are over-interpreted. There are major gaps between the results actually shown and the claim about the "superfluousness of cell types in spatial cognition". Evidence directly supporting the overall conclusion seems to be weak at the moment.

      Major concerns:

      (1) The authors reported that, in their model setting, most neurons throughout the different layers of CNNs show strong spatial selectivity. This is interesting and perhaps also surprising. It would be useful to test/assess this prediction directly based on existing experimental results. It is possible that the particular 2-d virtual environment used is special. The results will be strengthened if similar results hold for other testing environments.

      In particular, examining the pictures shown in Fig. 1A, it seems that local walls of the 'box' contain strong oriented features that are distinct across different views. Perhaps the response of oriented visual filters can leverage these features to uniquely determine the spatial variable. This is concerning because this is a very specific setting that is unlikely to generalize.

      (2) Previous experimental results suggest that various function cell types discovered in rodent navigation circuits persist in dark environments. If we take the modeling framework presented in this paper literally, the prediction would be that place cells/head direction cells should go away in darkness. This implies that key aspects of functional cell types in the spatial cognition are missing in the current modeling framework. This limitation needs to be addressed or explicitly discussed.

      (3) Place cells/border cell/ head direction cells are mostly studied in the rodent's brain. For rodents, it is not clear whether standard DNNs would be good models of their visual systems. It is likely that rodent visual system would not be as powerful in processing visual inputs as the DNNs used in this study.

      (4) The overall claim that those functional cell types defined in spatial cognition are superfluousness seems to be too strong based on the results reported here. The paper only studied a particular class of models, and arguably, the properties of these models have a major gap to those of real brains. Even though, in the DNN models simulated in this particular virtual environment, (i) most model neurons have strong spatial selectivity; (ii) removing model neurons with the strongest spatial selectivity still retain substantial spatial information, why this is relevant to the brain? The neural circuits may operate in a very different regime. Perhaps a more reasonable interpretation of the results would be: these results raise the possibility that those strongly selective neurons observed in the brain may not be essential for encoding certain features, as something like this is observed in certain models. It is difficult to draw definitive conclusions about the brain based on the results reported.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors aim at challenging the relevance of cell populations with characteristic selectivity for specific aspects of navigation (e.g. place cells, head direction and border cells) in the processing of spatial information. Their claim is that such cells naturally emerge in any system dealing with the estimation of position in an environment, without the need for a special involvement of these cells in the computations. In particular the work shows how when provided with spatial error signals, networks designed for invariant object recognition spontaneously organize the activity in their hidden layers into a mixture of spatially selective cells, some of them passing classification criteria for place, head direction or border cells. Crucially, these cells are not necessary for position decoding, nor are they the most informative when it comes to the performance of the network in reconstructing spatial position from visual scenes. These results lead the authors to claim that focusing on the classification of specific cell types is hindering rather than helping advancement in the understanding of spatial cognition. In fact they claim that the attention should rather be pointed at understanding highly-dimensional population coding, regardless of its direct interpretability or its appeal to human observers.

      Strengths:<br /> Methodologically the paper is consistent and convincingly support the author claims regarding the role of cell types in coding for spatial aspects of cognition. It is also interesting how the authors leverage on established machine learning systems to provide a sort of counter-argument to the use of such techniques to establish a parallel between artificial and biological neural representations. In the recent past similar applications of artificial neural networks to spatial navigation have been directed at proving the importance of specific neural substrates (take for example Banino et al. 2018 for grid cells), while in this case the same procedure is used to unveil them as epiphenomena, so general and unspecific to be of very limited use in understanding the actual functioning of the neural system. I am quite confident that this stance regarding the role of place cells and co. could gather large sympathy and support in the greater part of the neuroscience community, or at least among the majority of theoretical neuroscientists with some interest in the hippocampus and higher cognition.

      Weaknesses:<br /> My criticism of the paper can be articulated in three main points:<br /> - What about grid cells? Grid cells are notably not showing up in the analyses of the paper. But they surely can be considered as the 'mother' of all tailored spatial cells of the hippocampal formation. Are they falling outside the author's assessment of the importance of this kind of cells? Some discussion of the place grid cells occupy in the vision of the authors would greatly help.<br /> - The network used in the paper is still guided by a spatial error signal, and the network is trained to minimize spatial decoding error. In a sense, although object classfication networks are not designed for spatial navigation, one could say that the authors are in some way hacking this architecture and turning it into a spatial navigation one through learning. I wonder if their case could be strengthened by devising a version of their experiment based on some form of self-supervised or unsupervised learning.<br /> - The last point is more about my perception of the community studying hippocampal functions, rather than being directed at the merits of the paper itself. My question is whether the paper is fighting an already won battle. That is whether the focus on the minute classification of response profiles of cells in the hippocampus is in fact already considered an 'old' approach, very useful for some initial qualitative assessments but of limited power when asked to provide deeper insight into the functioning of hippocampal computations (or computations of any other brain circuit).

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this paper, the authors demonstrate the inevitably of the emergence of some degree of spatial information in sufficiently complex systems, even those that are only trained on object recognition (i.e. not "spatial" systems). As such, they present an important null hypothesis that should be taken into consideration for experimental design and data analysis of spatial tuning and its relevance for behavior.

      Strengths:<br /> The paper's strengths include the use of a large multi-layer network trained in a detailed visual environment. This illustrates an important message for the field: that spatial tuning can be a result of sensory processing. While this is a historically recognized and often-studied fact in experimental neuroscience, it is made more concrete with the use of a complex sensory network. Indeed, the manuscript is a cautionary tale for experimentalists and computational researchers alike against blindly applying and interpreting metrics without adequate controls.

      Weaknesses:<br /> However, the work has a number of significant weaknesses. Most notably: the degree and quality of spatial tuning is not analyzed to the standards of evidence historically used in studies of spatial tuning in the brain, and the authors do not critically engage with past work that studies the sensory influences of these cells; there are significant issues in the authors' interpretation of their results and its impact on neuroscientific research; the ability to linearly decode position from a large number of units is not a strong test of spatial information, nor is it a measure of spatial cognition; and the authors make strong but unjustified claims as to the implications of their results in opposition to, as opposed to contributing to, work being done in the field.

      The first weakness is that the degree and quality of spatial tuning that emerges in the network is not analyzed to the standards of evidence that have been used in studies of spatial tuning in the brain. Specifically, the authors identify place cells, head direction cells, and border cells in their network and their conjunctive combinations. However, these forms of tuning are the most easily confounded by visual responses, and it's unclear if their results will extend to forms of spatial tuning that are not. Further, in each case, previous experimental work to further elucidate the influence of sensory information on these cells has not been acknowledged or engaged with.

      For example, consider the head direction cells in Figure 3C. In addition to increased activity in some directions, these cells also have a high degree of spatial nonuniformity, suggesting they are responding to specific visual features of the environment. In contrast, the majority of HD cells in the brain are only very weakly spatially selective, if at all, once an animal's spatial occupancy is accounted for (Taube et al 1990, JNeurosci). While the preferred orientation of these cells are anchored to prominent visual cues, when they rotate with changing visual cues the entire head direction system rotates together (cells' relative orientation relationships are maintained, including those that encode directions facing AWAY from the moved cue), and thus these responses cannot be simply independent sensory-tuned cells responding to the sensory change) (Taube et al 1990 JNeurosci, Zugaro et al 2003 JNeurosci, Ajbi et al 2023).

      As another example, the joint selectivity of detected border cells with head direction in Figure 3D suggests that they are "view of a wall from a specific angle" cells. In contrast, experimental work on border cells in the brain has demonstrated that these are robust to changes in the sensory input from the wall (e.g. van Wijngaarden et al 2020), or that many of them are not directionally selective (Solstad et al 2008).

      The most convincing evidence of "spurious" spatial tuning would be the emergence of HD-independent place cells in the network, however, these cells are a small minority (in contrast to hippocampal data, Thompson and Best 1984 JNeurosci, Rich et al 2014 Science), the examples provided in Figure 3 are significantly more weakly tuned than those observed in the brain, and the metrics used by the authors to quantify place cell tuning are not clearly defined in the methods, but do not seem to be as stringent as those commonly used in real data. (e.g. spatial information, Skaggs et al 1992 NeurIPS).

      Indeed, the vast majority of tuned cells in the network are conjunctively selective for HD (Figure 3A). While this conjunctive tuning has been reported, many units in the hippocampus/entorhinal system are *not* strongly hd selective (Muller et al 1994 JNeurosci, Sangoli et al 2006 Science, Carpenter et al 2023 bioRxiv). Further, many studies have been done to test and understand the nature of sensory influence (e.g. Acharya et al 2016 Cell), and they tend to have a complex relationship with a variety of sensory cues, which cannot readily be explained by straightforward sensory processing (rev: Poucet et al 2000 Rev Neurosci, Plitt and Giocomo 2021 Nat Neuro). E.g. while some place cells are sometimes reported to be directionally selective, this directional selectivity is dependent on behavioral context (Markus et al 1995, JNeurosci), and emerges over time with familiarity to the environment (Navratiloua et al 2012 Front. Neural Circuits). Thus, the question is not whether spatially tuned cells are influenced by sensory information, but whether feed-forward sensory processing alone is sufficient to account for their observed turning properties and responses to sensory manipulations.

      These issues indicate a more significant underlying issue of scientific methodology relating to the interpretation of their result and its impact on neuroscientific research. Specifically, in order to make strong claims about experimental data, it is not enough to show that a control (i.e. a null hypothesis) exists, one needs to demonstrate that experimental observations are quantitatively no better than that control.

      Where the authors state that "In summary, complex networks that are not spatial systems, coupled with environmental input, appear sufficient to decode spatial information." what they have really shown is that it is possible to decode *some degree* of spatial information. This is a null hypothesis (that observations of spatial tuning do not reflect a "spatial system"), and the comparison must be made to experimental data to test if the so-called "spatial" networks in the brain have more cells with more reliable spatial info than a complex-visual control.

      Further, the authors state that "Consistent with our view, we found no clear relationship between cell type distribution and spatial information in each layer. This raises the possibility that "spatial cells" do not play a pivotal role in spatial tasks as is broadly assumed." Indeed, this would raise such a possibility, if 1) the observations of their network were indeed quantitatively similar to the brain, and 2) the presence of these cells in the brain were the only evidence for their role in spatial tasks. However, 1) the authors have not shown this result in neural data, they've only noticed it in a network and mentioned the POSSIBILITY of a similar thing in the brain, and 2) the "assumption" of the role of spatially tuned cells in spatial tasks is not just from the observation of a few spatially tuned cells. But from many other experiments including causal manipulations (e.g. Robinson et al 2020 Cell, DeLauilleon et al 2015 Nat Neuro), which the authors conveniently ignore. Thus, I do not find their argument, as strongly stated as it is, to be well-supported.

      An additional weakness is that linear decoding of position is not a strong test, nor is it a measure of spatial cognition. The ability to decode position from a large number of weakly tuned cells is not surprising. However, based on this ability to decode, the authors claim that "'spatial' cells do not play a privileged role in spatial cognition". To justify this claim, the authors would need to use the network to perform e.g. spatial navigation tasks, then investigate the network's ability to perform these tasks when tuned cells were lesioned.

      Finally, I find a major weakness of the paper to be the framing of the results in opposition to, as opposed to contributing to, the study of spatially tuned cells. For example, the authors state that "If a perception system devoid of a spatial component demonstrates classically spatially-tuned unit representations, such as place, head-direction, and border cells, can "spatial cells" truly be regarded as 'spatial'?" Setting aside the issue of whether the perception system in question does indeed demonstrate spatially-tuned unit representations comparable to those in the brain, I ask "Why not?" This seems to be a semantic game of reading more into a name then is necessarily there. The names (place cells, grid cells, border cells, etc) describe an observation (that cells are observed to fire in certain areas of an animal's environment). They need not be a mechanistic claim (that space "causes" these cells to fire) or even, necessarily, a normative one (these cells are "for" spatial computation). This is evidenced by the fact that even within e.g. the place cell community, there is debate about these cells' mechanisms and function (eg memory, navigation, etc), or if they can even be said to serve only a single function. However, they are still referred to as place cells, not as a statement of their function but as a history-dependent label that refers to their observed correlates with experimental variables. Thus, the observation that spatially tuned cells are "inevitable derivatives of any complex system" is itself an interesting finding which *contributes to*, rather than contradicts, the study of these cells. It seems that the authors have a specific definition in mind when they say that a cell is "truly" "spatial" or that a biological or artificial neural network is a "spatial system", but this definition is not stated, and it is not clear that the terminology used in the field presupposes their definition.

      In sum, the authors have demonstrated the existence of a control/null hypothesis for observations of spatially-tuned cells. However, 1) It is not enough to show that a control (null hypothesis) exists, one needs to test if experimental observations are no better than control, in order to make strong claims about experimental data, 2) the authors do not acknowledge the work that has been done in many cases specifically to control for this null hypothesis in experimental work or to test the sensory influences on these cells, and 3) the authors do not rigorously test the degree or source of spatial tuning of their units.

    1. Reviewer #1 (Public Review):<br /> Summary:<br /> This interesting and well written article by Tuckowski et al. summarizes work connecting the flavin-containing monooxygenase FMO-4 with increased lifespan through a mechanism involving calcium signaling in the nematode Caenorhabditis elegans.

      The authors have previously studied another fmo in worms, FMO-2, prompting them to look at additional members of this family of proteins. They show that fmo-4 is up in dietary restricted worms and necessary for the increased lifespan of these animals as well as of rsks-1 (s6 kinase) knockdown animals. They then show that overexpression of fmo-4 is sufficient to significantly increase lifespan, as well as healthspan and paraquat resistance. Further, they demonstrate that overexpression of fmo-4 solely in the hypodermis of the animal recapitulates the entire effect of fmo-4 OE.

      In terms of interactions between fmo-2 and fmo-4 they show that fmo-4 is necessary for the previously reported effects of fmo-2 on lifespan, while the effects of fmo-4 do not depend on fmo-2.

      Next the authors use RNASeq to compare fmo-4 OE animals to wild type. Their analyses suggested the possibility that FMO-4 was modulating calcium signaling, and through additional experiments specifically identified the calcium signaling genes crt-1, itr-1, and mcu-1 as important fmo-4 interactors<br /> in this context. As previously published work has shown that loss of the worm transcription factor atf-6 can extend lifespan through crt-1, itr-1 and mcu-1, the authors asked about interactions between fmo-4 and atf-6. They showed that fmo-4 is necessary for both lifespan extension and increased paraquat resistance upon RNAi knockdown of atf-6.

      Overall this clearly written manuscript summarizes interesting and novel findings of great interest in the biology of aging and suggests promising avenues for future work in this area.

      Strengths:<br /> This paper contains a large number of careful, well executed and analysed experiments in support of its existing conclusions, and which also point toward significant future directions for this work. In addition it is clear and very well written.

      Weaknesses:<br /> Within the scope of the current work there are no major weaknesses. That said, the authors themselves note pressing questions beyond the scope of this study that remain unanswered. For instance, the mechanistic nature of the interactions between FMO-4 and the other players in this story, for example in terms of direct protein-protein interactions, is not at all understood yet. Further, powerful tools such as GCaMP expressing animals will enable a much more detailed understanding of what exactly is happening to calcium levels, and where and when it is happening, in these animals.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Members of a conserved family of flavin-containing monooxygenases (FMOs) are necessary and at least partly sufficient for lifespan extension induced by diet restriction and hypoxia. Of 5 FMOs in C. elegans, fmo-2 has received the majority of attention, but this study identifies that fmo-4 is also an important, positive modulator of lifespan. Based on differential requirements of fmo-2 and fmo-4 in stress resistance and lifespan extension paradigms, the authors conclude that fmo-4 acts through mechanisms that are overlapping, but distinct from fmo-2. Ultimately, the authors place fmo-2 genetically within a pathway involving atf-6, calreticulin, the IP3 receptor, and mitochondrial calcium uniporter, which was previously shown to link ER calcium homeostasis to mitochondrial homeostasis and longevity. Because the known enzymatic activity of FMOs involves oxygenating xenobiotic and endogenous metabolites, these findings highlight a potential new link between redox/metabolic homeostasis and ER-mitochondrial calcium signaling, while revealing that different FMO family members regulate stress resistance and lifespan through distinct mechanisms.

      Strengths:<br /> The authors have used genetics to discover an interesting and unanticipated new link between conserved FMOs and ER calcium pathways known to regulate lifespan.

      The genetic epistasis patterns for lifespan and stress resistance phenotypes are generally clean and compelling.

      Weaknesses:<br /> The effects of carbachol and EDTA on intracellular calcium levels are inferred, especially in the tissues where fmo-4 is acting. Validating that these agents and fmo-4 itself have an impact on calcium in relevant subcellular compartments is important to support conclusions on how fmo-4 regulates and responds to calcium.

      Experiments are generally reliant on RNAi. While in most cases experiments reveal positive results, indicating RNAi efficacy, key conclusions could be strengthened with the incorporation of mutants.

      While FMO-4 is clearly placed in the ER calcium pathway genetically, a putative molecular mechanism by which FMO-4 would alter ER calcium remains unclear. Notably, Tuckowski et al. highlight this gap in the discussion as well.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors assessed the potential involvement of fmo-4 in a diverse set of longevity interventions, showing that this gene is required for DR and S6 kinase knockdown related lifespan extension. Using comprehensive epistasis experiments they find this gene to be a required downstream player in the longevity and stress resistance provided by fmo-2 overexpression. They further showed that fmo-4 ubiquitous overexpression is sufficient to provide longevity and paraquat (mitochondrial) stress resistance, and that overexpression specifically in the hypodermis is sufficient to recapitulate most of these effects.

      Interestingly, they find that fmo-4 overexpression sensitizes worms to thapsigargin during development, an effect that they link with a potential dysregulation in calcium signalling. They go on to show that fmo-4 expression is sensitive to drugs that both increase or decrease calcium levels, and these drugs differentially affect lifespan of fmo-4 mutants compared to wild-type worms. Similarly, knockdown of genes involved in calcium binding and signalling also differentially affect lifespan and paraquat resistance of fmo-4 mutants.

      Finally, they suggest that atf-6 limits the expression of fmo-4, and that fmo-4 is also acting downstream of benefits produced by atf-6 knockdown.

      Strengths:<br /> • comprehensive lifespans experiments: clear placement of fmo-4 within established longevity interventions.<br /> • clear distinction in functions and epistatic interactions between fmo-2 and fmo-4 which lays a strong foundation for a longevity pathway regulated by this enzyme family.

      Weaknesses:<br /> • no obvious transcriptomic evidence supporting a link between fmo-4 and calcium signalling: either for knockout worms or fmo-4 overexpressing strains.<br /> • no direct measures of alterations in calcium flux, signalling or binding that strongly support a connection with fmo-4.<br /> • no measures of mitochondrial morphology or activity that strongly support a connection with fmo-4.<br /> • lack of a complete model that places fmo-4 function downstream of DR and mTOR signalling (first Results section), fmo-2 (second Results section) and at the same time explains connection with calcium signalling.

    1. Reviewer #1 (Public Review):

      This manuscript by Kleinman & Foster investigates the dependence of hippocampal replay on VTA activity. They recorded neural activity from the dorsal CA1 region of the hippocampus while chemogenetically silencing VTA dopamine neurons as rats completed laps on a linear track with reward delivery at each end. Reward amount changed across task epochs within a session on one end of the track. The authors report that VTA activity is necessary for an increase in sharp-wave rate to remain localized to the feeder that undergoes a change in reward magnitude, an effect that was especially pronounced in a novel environment. They follow up on this result with a second experiment in which reward magnitude varies unpredictably at one end of the linear track and report that changes in sharp-wave rate at the variable location reflect both the amount of reward rats just received there, in addition to a smaller modulation that is reminiscent of reward prediction error coding, in which the previous reward rats received at the variable location affects the magnitude of the subsequent change in sharp-wave rate that occurs on the present visit.

      This work is technically innovative, combining neural recordings with chemogenetic inactivation. The question of how VTA activity affects replay in the hippocampus is interesting and important given that much of the work implicating hippocampal replay in memory consolidation and planning comes from reward-motivated behavioral tasks. Enthusiasm for the manuscript is dampened by some technical considerations about the chemogenetic portion of the experiments. Additionally, there are some interpretational issues related to whether changes in reward magnitude affected sharp-wave rate directly, or whether the reported changes in sharp-wave rate alter behavior and these behavioral changes affect sharp-wave rate.

      Major issues:

      Chemogenetics validation

      Little validation is provided for the chemogenetic manipulations. The authors report that animals were excluded due to lack of expression but do not quantify/document the extent of expression in the animals that were included in the study. There's no independent verification that VTA was actually inhibited by the chemogenetic manipulation besides the experimental effects of interest.

      The authors report a range of CNO doses. What determined the dose that each rat received? Was it constant for an individual rat? If not, how was the dose determined? The authors may wish to examine whether any of their CNO effects were dependent on dose.

      The authors tested the same animal multiple times per day with relatively little time between recording sessions. Can they be certain that the effect of CNO wore off between sessions? Might successive CNO injections in the same day have impacted neural activity in the VTA differently? Could the chemogenetic manipulation have grown stronger with each successive injection (or maybe weaker due to something like receptor desensitization)? The authors could test statistically whether the effects of CNO that they report do not depend on the number of CNO injections a rat received over a short period of time.

      Motivational considerations

      In a similar vein, running multiple sessions per day raises the possibility that rats' motivation was not constant across all data collection time points. The authors could test whether any measures of motivation (laps completed, running speed) changed across the sessions conducted within the same day. This is a particularly tricky issue, because my read of the methods is that saline sessions were only conducted as the first session of any recording day, which means there's a session order/time of day and potential motivational confound in comparing saline to CNO sessions.

      Statistics, statistical power, and effect sizes

      Throughout the manuscript, the authors employ a mixture of t-tests, ANOVAs, and mixed-effects models. Only the mixed effects models appropriately account for the fact that all of this data involves repeated measurements from the same subject. The t-tests are frequently doubly inappropriate because they both treat repeated measures as independent and are not corrected for multiple comparisons.

      The number of animals in these studies is on the lower end for this sort of work, raising questions about whether all of these results are statistically reliable and likely to generalize. This is particularly pronounced in the reward volatility experiment, where the number of rats in the experimental group is halved to just two. The results of this experiment are potentially very exciting, but the sample size makes this feel more like pilot data than a finished product.

      The effect sizes of the various manipulations appear to be relatively modest, and I wonder if the authors could help readers by contextualizing the magnitude of these results further. For instance, when VTA inactivation increases mis-localization of SWRs to the unchanged end of the track, roughly how many misplaced sharp-waves are occurring within a session, and what would their consequence be? On this particular behavioral task, it's not clear that the animals are doing worse in any way despite the mislocalization of sharp-waves. And it seems like the absolute number of extra sharp-waves that occur in some of these conditions would be quite small over the course of a session, so it would be helpful if the authors could speculate on how these differences might translate to meaningful changes in processes like consolidation, for instance.

      How directly is reward affecting sharp-wave rate?

      Changes in reward magnitude on the authors' task cause rats to reallocate how much time they spent at each end. Coincident with this behavioral change, the authors identify changes in the sharp-wave rate, and the assumption is that changing reward is altering the sharp-wave rate. But it also seems possible that by inducing longer pauses, increased reward magnitude is affecting the hippocampal network state and creating an occasion for more sharp-waves to occur. It's possible that any manipulation so altering rats' behavior would similarly affect the sharp-wave rate.

      For instance, in the volatility experiment, on trials when no reward is given sharp-wave rate looks like it is effectively zero. But this rate is somewhat hard to interpret. If rats hardly stopped moving on trials when no reward was given, and the hippocampus remained in a strong theta network state for the full duration of the rat's visit to the feeder, the lack of sharp-waves might not reflect something about reward processing so much as the fact that the rat's hippocampus didn't have the occasion to emit a sharp-wave. A better way to compute the sharp-wave rate might be to use not the entire visit duration in the denominator, but rather the total amount of time the hippocampus spends in a non-theta state during each visit. Another approach might be to include visit duration as a covariate with reward magnitude in some of the analyses. Increasing reward magnitude seems to increase visit duration, but these probably aren't perfectly correlated, so the authors might gain some leverage by showing that on the rare long visit to a low-reward end sharp-wave rate remains reliably low. This would help exclude the explanation that sharp-wave rate follows increases in reward magnitude simply because longer pauses allow a greater opportunity for the hippocampus to settle into a non-theta state.

      The authors seem to acknowledge this issue to some extent, as a few analyses have the moments just after the rat's arrival at a feeder and just before departure trimmed out of consideration. But that assumes these sorts of non-theta states are only occurring at the very beginning and very end of visits when in fact rats might be doing all sorts of other things during visits that could affect the hippocampus network state and the propensity to observe sharp-waves.

      Minor issues

      The title/abstract should reflect that only male animals were used in this study.

      The title refers to hippocampal replay, but for much of the paper the authors are measuring sharp-wave rate and not replay directly, so I would favor a more nuanced title.

      Relatedly, the interpretation of the mislocalization of sharp-waves following VTA inactivation suggests that the hippocampus is perhaps representing information inappropriately/incorrectly for consolidation, as the increased rate is observed both for a location that has undergone a change in reward and one that has not. However, the authors are measuring replay rate, not replay content. It's entirely possible that the "mislocalized" replays at the unchanged end are, in fact, replaying information about the changed end of the track. A bit more nuance in the discussion of this effect would be helpful.

      The authors use decoding accuracy during movement to determine which sessions should be included for decoding of replay direction. Details on cross-validation are omitted and would be appreciated. Also, the authors assume that sessions failed to meet inclusion criteria because of ensemble size, but this information is not reported anywhere directly. More info on the ensemble size of included/excluded sessions would be helpful.

      For most of the paper, the authors detect sharp-waves using ripple power in the LFP, but for the analysis of replay direction, they use a different detection procedure based on the population firing rate of recorded neurons. Was there a reason for this switch? It's somewhat difficult to compare reported sharpwave/replay rates of the analyses given that different approaches were used.

    2. Reviewer #2 (Public Review):

      (1) Summary<br /> Kleinman and Foster's study investigates the role of dopamine signaling in the ventral tegmental area (VTA) on hippocampal replay and sharp-wave ripples (SWR) in rats exposed to changes in reward magnitude and environmental novelty. The authors utilize chemogenetic silencing techniques to modulate dopamine neuron activity in the VTA while conducting simultaneous electrophysiological recordings from the hippocampal CA1 region. Their findings suggest that VTA dopamine signaling is critical for modulating hippocampal replay in response to changes in reward context and novelty, with specific disruptions observed in replay dynamics when VTA is inhibited, particularly in novel environments.

      (2) Strengths<br /> The research addresses a significant gap in our understanding of the neurobiological underpinnings of memory and spatial learning, highlighting the importance of dopamine-mediated processes. The methodological approach is robust, combining chemogenetic silencing with precise electrophysiological measurements, which allows for a detailed examination of the neural circuits involved. The study provides important insights into how hippocampal replay and SWR are influenced by reward prediction errors, as well as the role of dopamine in these processes. Specifically, the authors note that VTA silencing unexpectedly did not prevent increases in ripple activities where reward was increased, but induced significant aberrant increases in environments where reward levels were unchanged, highlighting a novel dependency of hippocampal replay on dopamine and a VTA-independent reward prediction error signal in familiar environments. These findings are critical for understanding the consolidation of episodic memory and the neural basis of learning.

      (3) Weaknesses<br /> Despite the strengths in methodology and conceptual framework, the study has several weaknesses that could affect the interpretation of the results. There is a need for more rigorous histological validation to confirm the extent and specificity of viral expression and electrode placements, which is crucial for ensuring the accuracy of the findings. Variability in the dosing and timing of chemogenetic interventions could also lead to inconsistencies in the data, suggesting a need for more standardized experimental protocols.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors of this work are trying to understand the role dopaminergic terminals coming from VTA have on hippocampal mechanisms of memory consolidation, with emphasis on the replay of hippocampal patterns of activity during periods of consummatory behavior in reward locations. Previous work suggested that replay of relevant spatial trajectories supports reward localization and influences behavior.

      The authors then tried to separate two conditions that were known to cause an increase in replay activity - spatial novelty encoding and variation of reward magnitude - and evaluate how these changed when VTA dopamine neurons were inactivated by a chemogenetic tool. They found that the rate of reverse replay (trajectory going away from the goal location) is increased with reward only in novel, but not in familiar environments. Overall this suggests that the VTA dopamine signal is critical during learning of novel locations, but not during explorations of already familiar environments.

      Strengths:<br /> The inactivation of VTA projections during goal-oriented behavior and in-vivo analysis of patterns of hippocampal activity during both novelty and reward variability. This work also adds to the body of evidence that reverse replay constitutes an important mechanism in learning spatial goal locations. It also points to the role of VTA in reward prediction errors with consequences for spatial navigation.

      Weaknesses:<br /> It remains to be determined whether novelty and larger rewards are associated with longer ripple duration, not just rate, and larger content/trajectories of replay sequences as previously described (Fernández-Ruiz, 2019), and whether dopamine signal from the VTA has a role on this.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors re-analyzed Experiment 1 of a public dataset (Rademaker et al, 2019, Nature Neuroscience) which includes fMRI and behavioral data recorded while participants held an oriented grating in visual working memory (WM) and performed a delayed recall task at the end of an extended delay period. In that experiment, participants were pre-cued on each trial as to whether there would be a distracting visual stimulus presented during the delay period (filtered noise or randomly oriented grating). In this manuscript, the authors focused on identifying whether the neural code in the retinotopic cortex for remembered orientation was 'stable' over the delay period, such that the format of the code remained the same, or whether the code was dynamic, such that information was present, but encoded in an alternative format. They identify some time points - especially towards the beginning/end of the delay - where the multivariate activation pattern fails to generalize to other time points and interpret this as evidence for a dynamic code. Additionally, the authors compare the representational format of remembered orientation in the presence vs absence of a distracting stimulus, averaged over the delay period. This analysis suggested a 'rotation' of the representational subspace between distracting orientations and remembered orientations, which may help preserve simultaneous representations of both remembered and viewed stimuli.

      Strengths:

      (1) Direct comparisons of coding subspaces/manifolds between time points and task conditions is an innovative and useful approach for understanding how neural representations are transformed to support cognition.

      (2) Re-use of existing datasets substantially goes beyond the authors' previous findings by comparing the geometry of representational spaces between conditions and time points, and by looking explicitly for dynamic neural representations

      Weaknesses:

      (1) Only Experiment 1 of Rademaker et al (2019) is reanalyzed. The previous study included another experiment (Expt 2) using different types of distractors which did result in distractor-related costs to neural and behavioral measures of working memory. The Rademaker et al (2019) study uses these two results to conclude that neural WM representations are protected from distraction when distraction does not impact behavior, but conditions that do impact behavior also impact neural WM representations. Considering this previous result is critical for relating the present manuscript's results to the previous findings, it seems necessary to address Experimentt 2's data in the present work

      (2) Primary evidence for 'dynamic coding', especially in the early visual cortex, appears to be related to the transition between encoding/maintenance and maintenance/recall, but the delay period representations seem overall stable, consistent with previous findings

      (3) Dynamicism index used in Figure 1f quantifies the proportion of off-diagonal cells with significant differences in decoding performance from the diagonal cell. It's unclear why the proportion of time points is the best metric, rather than something like a change in decoding accuracy. This is addressed in the subsequent analysis considering coding subspaces, but the utility of the Figure 1f analysis remains weakly justified.

      (4) There is no report of how much total variance is explained by the two PCs defining the subspaces of interest in each condition, and timepoint. It could be the case that the first two principal components in one condition (e.g., sensory distractor) explain less variance than the first two principal components of another condition.

      (5) Converting a continuous decoding metric (angular error) to "% decoding accuracy" serves to obfuscate the units of the actual results. Decoding precision (e.g., sd of decoding error histogram) would be more interpretable and better related to both the previous study and behavioral measures of WM performance.

      (6) This report does not make use of behavioral performance data in the Rademaker et al (2019) dataset.

      (7) Given there were observed differences between individual retinotopic ROIs in the temporal cross-decoding analyses shown in Figure 1, the lack of data presented for the subspace analyses for the corresponding individual ROIs is a weakness

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, Degutis and colleagues addressed an interesting issue related to the concurrent coding of sensory percepts and visual working memory contents in visual cortices. They used generalization analyses to test whether working memory representations change over time, diverge from sensory percepts, and vary across distraction conditions. Temporal generalization analysis demonstrated that off-diagonal decoding accuracies were lower than on-diagonal decoding accuracies, regardless of the presence of intervening distractions, implying that working memory representations can change over time. They further showed that the coding space for working memory contents showed subtle but statistically significant changes over time, potentially explaining the impaired off-diagonal decoding performance. The neural coding of sensory distractions instead remained largely stable. Generalization analyses between target and distractor codes showed overlaps but were not identical. Cross-condition decodings had lower accuracies compared to within-condition decodings. Finally, within-condition decoding revealed more reliable working memory representations in the condition with intervening random noises compared to cross-condition decoding using a trained classifier on data from the no-distraction condition, indicating a change in the VWM format between the noise distractor and no-distractor trials.

      Strengths:

      This paper demonstrates a clever use of generalization analysis to show changes in the neural codes of working memory contents across time and distraction conditions. It provides some insights into the differences between representations of working memory and sensory percepts, and how they can potentially coexist in overlapping brain regions.

      Weaknesses:

      (1) An alternative interpretation of the temporal dynamic pattern is that working memory representations become less reliable over time. As shown by the authors in Figure 1c and Figure 4a, the on-diagonal decoding accuracy generally decreased over time. This implies that the signal-to-noise ratio was decreasing over time. Classifiers trained with data of relatively higher SNR and lower SNR may rely on different features, leading to poor generalization performance. This issue should be addressed in the paper.

      (2) The paper tests against a strong version of stable coding, where neural spaces representing WM contents must remain identical over time. In this version, any changes in the neural space will be evidence of dynamic coding. As the paper acknowledges, there is already ample evidence arguing against this possibility. However, the evidence provided here (dynamic coding cluster, angle between coding spaces) is not as strong as what prior studies have shown for meaningful transformations in neural coding. For instance, the principal angle between coding spaces over time was smaller than 8 degrees, and around 7 degrees between sensory distractors and WM contents. This suggests that the coding space for WM was largely overlapping across time and with that for sensory distractors. Therefore, the major conclusion that working memory contents are dynamically coded is not well-supported by the presented results.

      (3) Relatedly, the main conclusions, such as "VWM code in several visual regions did not generalize well between different time points" and "VWM and feature-matching sensory distractors are encoded in separable coding spaces" are somewhat subjective given that cross-condition generalization analyses consistently showed above chance-level performance. These results could be interpreted as evidence of stable coding. The authors should use more objective descriptions, such as 'temporal generalization decoding showed reduced decoding accuracy in off-diagonals compared to on-diagonals.

    1. Reviewer #1 (Public Review):

      In this work Jeong and colleagues focus on exploring the role of the acyltransferase ZDHHC9 in myelinating OLs in particular in the palmitoylation of several myelin proteins. After confirming the specific enrichment of the Zdhhc9 transcript in mouse and human OLs, the authors examine the subcellular localization of the protein in vitro and observed that in comparison with other isoforms, ZDHHC9 localizes at OLs cell bodies and at discrete puncta in the processes. These observations (Figures 1 and 2) led the authors to hypothesize that ZDHHC9 plays an important role in myelination. No gross changes were detected in OL development in Zdhhc9 KO mice and analyses from P28 Zdhhc9 KO mice crossed with Mobp-EGFP reporter mice did not show changes in EGFP+ OL differentiation (Figure 3). However, and given the observed subcellular localization of ZDHHC9 in OL processes (Figure 2) and the observation that the percentage of unmyelinated axons is increased in Zdhhc9 KO (Figure 6), early time points to examine the differentiated pools of OLs and their capacity to extend processes/contact axons need to be considered.

      Maturation of OL in Zdhhc9 KO was examined by crossing Zdhhc9 KO with Pdgfra-CreER; R26- EGFP and following the newly EGFP-labelled OPCs following tamoxifen administration. No changes in the numbers of EGFP+ OL were detected. The authors concluded that the loss of ZDHHC9 does not alter oligodendrogenesis in either the young or mature CNS. The authors observed defects in Zdhhc9 KO OL protrusions that they attributed to abnormal OL membrane expansion (Fig 4 and 5). Can they show evidence for this?

      The authors report that Zdhhc9 KO primary and secondary branches in OL were longer, some contained spheroid-like swellings and the OL protrusion complexity was higher. However, these data is partially contradictory to what they show in OL differentiation experiments in vitro (Fig 7). There is also no evidence for increased membrane expansion in Zdhhc9 knockdown myelin forming cells in culture. How to reconcile this?

    2. Reviewer #2 (Public Review):

      This study provides an in-depth exploration of the impact of X-linked ZDHHC9 gene mutations on cognitive deficits and epilepsy, with a particular focus on the expression and function of ZDHHC9 in myelin-forming oligodendrocytes (OLs). These findings offer crucial insights into understanding ZDHHC9-related X-linked intellectual disability (XLID) and shed light on the regulatory mechanisms of palmitoylation in myelination. The experimental design and analysis of results are convincing, providing a valuable reference for further research in this field. However, upon careful review, I believe the article still needs further improvement and supplementation in the following aspects:

      (1) Regarding the subcellular localization experiment of ZDHHC9 mutants in OL, it is currently limited to in vitro cultured OL, lacking validation in vivo OL or myelin sheath. Additionally, it is necessary to investigate whether the abnormal subcellular localization of ZDHHC9 mutants affects their enzyme activity and palmitoylation modification of substrate proteins.

      (2) The experimental period (P21+21 days) using genetic labeling to track the development of myelinating cells may not be long enough. It is recommended to extend the observation time and analyze at more time points to more comprehensively reflect the impact of Zdhhc9 KO.

      (3) The author speculates that Zdhhc9 may regulate myelination by affecting the membrane localization of specific myelin proteins, but lacks direct experimental evidence to support this. It is suggested to detect the expression and distribution of relevant proteins in the myelin of Zdhhc9 KO mice.

      (4) Although the article mentions the association of Zdhhc9 with intellectual disabilities, it does not involve behavioral analysis of Zdhhc9 KO mice. It is recommended to supplement some behavioral experimental data to support the important role of Zdhhc9 in maintaining normal cognitive function, enhancing the clinical relevance of the article.

      (5) For the abnormal myelination observed in Zdhhc9 KO mice, including unmyelinated large-diameter axons and excessively myelinated small-diameter axons, the article lacks in-depth research and explanation on the exact mechanism and mode of action of ZDHHC9 in regulating myelination.

      (6) The function of ZDHHC9 in OL may be related to the Golgi apparatus, but its exact role in these structures is still unclear. It is suggested to discuss in more detail the role of ZDHHC9 in the Golgi apparatus in the discussion section.

      (7) More experimental support and in-depth research are needed on the detailed mechanism of how ZDHHC9 and Golga7 cooperatively regulate MBP palmitoylation, and how this decrease in palmitoylation level leads to myelination defects.

      In summary, it is recommended that the authors address the above issues through additional experiments and improved discussions to further strengthen the credibility and clinical relevance of the article.

    1. Reviewer #1 (Public Review):

      Summary:

      In the paper, Yan and her colleagues investigate at which stage of development different categorical signals can be detected with EEG using a steady-state visual evoked potential paradigm. The study reports the development trajectory of selective responses to five categories (i.e., faces, limbs, corridors, characters, and cars) over the first 1.5 years of life. It reveals that while responses to faces show significant early development, responses to other categories (i.e., characters and limbs) develop more gradually and emerge later in infancy. The paper is well-written and enjoyable, and the content is well-motivated and solid.

      Strengths:

      (1) This study contains a rich dataset with a substantial amount of effort. It covers a large sample of infants across ages (N=45) and asks an interesting question about when visual category representations emerge during the first year of life.

      (2) The chosen category stimuli are appropriate and well-controlled. These categories are classic and important for situating the study within a well-established theoretical framework.

      (3) The brain measurements are solid. Visual periodicity allows for the dissociation of selective responses to image categories within the same rapid image stream, which appears at different intervals. This is important for the infant field, as it provides a robust measure of ERPs with good interpretability.

      Weaknesses:

      The study would benefit from a more detailed explanation of analysis choices, limitations, and broader interpretations of the findings. This includes:<br /> a) improving the treatment of bias from specific categories (e.g., faces) towards others;<br /> b) justifying the specific experimental and data analysis choices;<br /> c) expanding the interpretation and discussion of the results.

      I believe that giving more attention to these aspects would improve the study and contribute positively to the field.

    2. Reviewer #2 (Public Review):

      Summary:

      The current work investigates the neural signature of category representation in infancy. Neural responses during steady-state visually-evoked potentials (ssVEPs) were recorded in four age groups of infants between 3 and 15 months. Stimuli (i.e., faces, limbs, corridors, characters, and cars) were presented at 4.286 Hz with category changes occurring at a frequency of 0.857 Hz. The results of the category frequency analyses showed that reliable responses to faces emerge around 4-6 months, whereas responses to libs, corridors, and characters emerge at around 6-8 months. Additionally, the authors trained a classifier for each category to assess how consistent the responses were across participants (leave-one-out approach). Spatiotemporal responses to faces were more consistent than the responses to the remaining categories and increased with increasing age. Faces showed an advantage over other categories in two additional measures (i.e., representation similarity and distinctiveness). Together, these results suggest a different developmental timing of category representation.

      Strengths:

      The study design is well organized. The authors described and performed analyses on several measures of neural categorization, including innovative approaches to assess the organization of neural responses. Results are in support of one of the two main hypotheses on the development of category representation described in the introduction. Specifically, the results suggest a different timing in the formation of category representations, with earlier and more robust responses emerging for faces over the remaining categories. Graphic representations and figures are very useful when reading the results.

      Weaknesses:

      The role of the adult dataset in the goal of the current work is unclear. All results are reported in the supplementary materials and minimally discussed in the main text. The unique contribution of the results of the adult samples is unclear and may be superfluous.

      It would be useful to report the electrodes included in the analyses and how they have been selected.

    3. Reviewer #3 (Public Review):

      Yan et al. present an EEG study of category-specific visual responses in infancy from 3 to 15 months of age. In their experiment, infants viewed visually controlled images of faces and several non-face categories in a steady state evoked potential paradigm. The authors find visual responses at all ages, but face responses only at 4-6 months and older, and other category-selective responses at later ages. They find that spatiotemporal patterns of response can discriminate faces from other categories at later ages.

      Overall, I found the study well-executed and a useful contribution to the literature. The study advances prior work by using well-controlled stimuli, subgroups of different ages, and new analytic approaches.

      I have two main reservations about the manuscript: (1) limited statistical evidence for the category by age interaction that is emphasized in the interpretation; and (2) conclusions about the role of learning and experience in age-related change that are not strongly supported by the correlational evidence presented.

      (1) The overall argument of the paper is that selective responses to various categories develop at different trajectories in infants, with responses to faces developing earlier. Statistically, this would be most clearly demonstrated by a category-by-age interaction effect. However, the statistical evidence for a category by interaction effect presented is relatively weak, and no interaction effect is tested for frequency domain analyses. The clearest evidence for a significant interaction comes from the spatiotemporal decoding analysis (p. 10). In the analysis of peak amplitude and latency, an age x category interaction is only found in one of four tests, and is not significant for latency or left-hemisphere amplitude (Supp Table 8). For the frequency domain effects, no test for category by age interaction is presented. The authors find that the effects of a category are significant in some age ranges and not others, but differences in significance don't imply significant differences. I would recommend adding category by age interaction analysis for the frequency domain results, and ensuring that the interpretation of the results is aligned with the presence or lack of interaction effects.

      (2) The authors argue that their results support the claim that category-selective visual responses require experience or learning to develop. However, the results don't bear strongly on the question of experience. Age-related changes in visual responses could result from experience or experience-independent maturational processes. Finding age-related change with a correlational measure does not favor either of these hypotheses. The results do constrain the question of experience, in that they suggest against the possibility that category-selectivity is present in the first few months of development, which would in turn suggest against a role of experience. However the results are still entirely consistent with the possibility of age effects driven by experience-independent processes. The manner in which the results constrain theories of development could be more clearly articulated in the manuscript, with care taken to avoid overly strong claims that the results demonstrate a role of experience.

    1. Reviewer #1 (Public Review):

      This work presents a replicable difference in predictive processing between subjects with and without tinnitus. In two independent MEG studies and using a passive listening paradigm, the authors identify an enhanced prediction score in tinnitus subjects compared to control subjects. In the second study, individuals with and without tinnitus were carefully matched for hearing levels (next to age and sex), increasing the probability that the identified differences could truly be attributed to the presence of tinnitus. Results from the first study could successfully be replicated in the second, although the effect size was notably smaller.

      Throughout the manuscript, the authors provide a thoughtful interpretation of their key findings and offer several interesting directions for future studies. Their conclusions are fully supported by their findings. Moreover, the authors are sufficiently aware of the inherent limitations of cross-sectional studies.

      Strengths:

      The robustness of the identified differences in prediction scores between individuals with and without tinnitus is remarkable, especially as successful replication studies are rare in the tinnitus field. Moreover, the authors provide several plausible explanations for the decline of the effect size observed in the second study.

      The rigorous matching for hearing loss, in addition to age and sex, in the second study is an important strength. This ensures that the identified differences cannot be attributed to differences in hearing levels between the groups.

      The used methodology is explained clearly and in detail, ensuring that the used paradigms may be employed by other researchers in future studies. Moreover, the registering of the data collection and analysis methods for Study 2 as a Registered Report should be commended, as the authors have clearly adhered to the methods as registered.

      Weaknesses:

      Although the authors have been careful to match their experimental groups for age, sex, and hearing loss, there are other factors that may confound the current results. For example, subjects with tinnitus might present with psychological comorbidities such as anxiety and depression. The authors' exclusion of distress as a candidate for explaining the found effects is based solely on an assessment of tinnitus-related distress, while it is currently not possible to exclude the effects of elevated anxiety or depression levels on the results. Additionally, as the authors address in the discussion, the presence of hyperacusis may also play a role in predictive processing in this population.

      The authors write that sound intensity was individually determined by presenting a short audio sequence to the participants and adjusting the loudness according to an individual pleasant volume. Neural measurements made during listening paradigms might be influenced by sound intensity levels. The intensity levels chosen by the participants might therefore also have an effect on the outcomes. The authors currently do not provide information on the sound intensity levels in the experimental groups, making it impossible to assess whether sound intensity levels might have played a role.

    2. Reviewer #2 (Public Review):

      Summary:

      This study aimed to test experimentally a theoretical framework that aims to explain the perception of tinnitus, i.e., the perception of a phantom sound in the absence of external stimuli, through differences in auditory predictive coding patterns. To this aim, the researchers compared the neural activity preceding and following the perception of a sound using MEG in two different studies. The sounds could be highly predictable or random, depending on the experimental condition. They revealed that individuals with tinnitus and controls had different anticipatory predictions. This finding is a major step in characterizing the top-down mechanisms underlying sound perception in individuals with tinnitus.

      Strengths:

      This article uses an elegant, well-constructed paradigm to assess the neural dynamics underlying auditory prediction. The findings presented in the first experiment were partially replicated in the second experiment, which included 80 participants. This large number of participants for an MEG study ensures very good statistical power and a strong level of evidence. The authors used advanced analysis techniques - Multivariate Pattern Analysis (MVPA) and classifier weights projection - to determine the neural patterns underlying the anticipation and perception of a sound for individuals with or without tinnitus. The authors evidenced different auditory prediction patterns associated with tinnitus. Overall, the conclusions of this paper are well supported, and the limitations of the study are clearly addressed and discussed.

      Weaknesses:

      Even though the authors took care of matching the participants in age and sex, the control could be more precise. Tinnitus is associated with various comorbidities, such as hearing loss, anxiety, depression, or sleep disorders. The authors assessed individuals' hearing thresholds with a pure tone audiogram, but they did not take into account the high frequencies (6 kHz to 16 kHz) in the patient/control matching. Moreover, other hearing dysfunctions, such as speech-in-noise deficits or hyperacusis, could have been taken into account to reinforce their claim that the observed predictive pattern was not linked to hearing deficits. Mental health and sleep disorders could also have been considered more precisely, as they were accounted for only indirectly with the score of the 10-item mini-TQ questionnaire evaluating tinnitus distress. Lastly, testing the links between the individuals' scores in auditory prediction and tinnitus characteristics, such as pitch, loudness, duration, and occurrence (how often it is perceived during the day), would have been highly informative.

    1. Reviewer #2 (Public Review):

      Summary:

      Here the authors show a novel direct neuronal reprogramming model using a very pure culture system of oligodendrocyte progenitor cells and demonstrate hallmarks of corticospinal neurons to be induced when using Neurogenin2, a dominant-negative form of Olig2 in combination with the CSN master regulator Fezf2.

      Strengths:

      This is a major achievement as the specification of reprogrammed neurons towards adequate neuronal subtypes is crucial for repair and still largely missing. The work is carefully done and the comparison of the neurons induced only by Neurogenin 2 versus the NVOF cocktail is very interesting and convincingly demonstrates a further subtype specification by the cocktail.

      Weaknesses:

      As carefully as it is done in vitro, the identity of projection neurons can best be assessed in vivo. If this is not possible, it could be interesting to co-culture different brain regions and see if these neurons reprogrammed with the cocktail, indeed preferentially send out axons to innervate a co-cultured spinal cord versus other brain region tissue.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Ozcan et al., presents compelling evidence demonstrating the latent potential of glial precursors of the adult cerebral cortex for neuronal reprogramming. The findings substantially advance our understanding of the potential of endogenous cells in the adult brain to be reprogrammed. Moreover, they describe a molecular cocktail that directs reprogramming toward corticospinal neurons (CSN).

      Strengths:

      Experimentally, the work is compelling and beautifully designed, with no major caveats. The main conclusions are fully supported by the experiments. The work provides a characterization of endogenous progenitors, genetic strategies to isolate them, and proof of concept of exploiting these progenitors' potential to produce a specific desired neuronal type with "a la carte" combination of transcription factors.

      Weaknesses:

      Some issues need to be addressed or clarified before publication. The manuscript requires editing. It is dense and rich in details while in other parts there are a few mistakes.

    3. Reviewer #3 (Public Review):

      Summary:

      Ozkan, Padmanabhan, and colleagues aim to develop a lineage reprogramming strategy towards generating subcerebral projection neurons from endogenous glia with the specificity needed for disease modelling and brain repair. They set out by targeting specifically Sox6-positive NG2 glia. This choice is motivated by the authors' observation that the early postnatal forebrain of Sox6 knockout mice displays marked ectopic expression of the proneural transcription factor (TF) Neurog2, suggesting a latent neurogenic program may be derepressed in NG2 cells, which normally express Sox6. Cultured NG2 glia transfected with a construct ("NVOF") encoding Neurog2, the corticofugal neuron-specifying TF Fezf2, and a constitutive repressor form of Olig2 are efficiently reprogrammed to neurons. These acquire complex morphologies resembling those of mature endogenous neurons and are characterized by fewer abnormalities when compared to neurons induced by Neurog2 alone. NVOF-induced neurons, as a population, also express a narrower range of cortical neuron subtype-specific markers, suggesting narrowed subtype specification, a potential step forward for Neurog2-driven neuronal reprogramming. Comparison of NVOF- and Neurog2-induced neurons to endogenous subcerebral projection neurons (SCPN) also indicates Fezf2 may aid Neurog2 in directing the generation of SCPN-like neurons at the expense of other cortical neuronal subtypes.

      Strengths:

      The report describes a novel, highly homogeneous in vitro system amenable to efficient reprogramming. The authors provide evidence that Fezf2 shapes the outcome of Neurog2-driven reprogramming towards a subcerebral projection neuron identity, consistent with its known developmental roles. Also, the use of the modified RNA for transient expression of Neurog2 is very elegant.

      Weaknesses:

      The molecular characterization of NVOF-induced neurons is carried out at the bulk level, therefore not allowing to fully assess heterogeneity among NVOF-induced neurons. The suggestion of a latent neurogenic potential in postnatal cortical glia is only partially supported by the data from the Sox6 knockout. Finally, some of the many exciting implications of the study remain untested.

      Discussion:

      The study has many exciting implications that could be further tested. For example, an ultimate proof of the subcerebral projection neuron identity would be to graft NVOF cells into neonatal mice and study their projections. Another important implication is that Sox6-deficient NG2 glia may not only express Neurog2 but activate a more complete neurogenic programme, a possibility that remains untested here. Also, is the subcerebral projection neuron dependent on the starting cell population? Could other NG2 glia, not expressing Sox6, also be co-axed by the NVOF cocktail into subcerebral projection neurons? And if not, do they express other (Sox) transcription factors that render them more amenable to reprogramming into other cortical neuron subtypes? The authors state that Sox6-positive NG2 glia are a quiescent progenitor population. Given that NG2 glia is believed to undergo proliferation as a whole, are Sox6-positive NG2 glia an exception from this rule? Finally, the authors seem to imply that subcerebral projection neurons and Sox6-positive NG2 glia are lineage-related. However, direct evidence for this conjecture seems missing.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper presents a compelling and comprehensive study of decision-making under uncertainty. It addresses a fundamental distinction between belief-based (cognitive neuroscience) formulations of choice behavior with reward-based (behavioral psychology) accounts. Specifically, it asks whether active inference provides a better account of planning and decision making, relative to reinforcement learning. To do this, the authors use a simple but elegant paradigm that includes choices about whether to seek both information and rewards. They then assess the evidence for active inference and reinforcement learning models of choice behavior, respectively. After demonstrating that active inference provides a better explanation of behavioral responses, the neuronal correlates of epistemic and instrumental value (under an optimized active inference model) are characterized using EEG. Significant neuronal correlates of both kinds of value were found in sensor and source space. The source space correlates are then discussed sensibly, in relation to the existing literature on the functional anatomy of perceptual and instrumental decision-making under uncertainty.

    2. Reviewer #2 (Public Review):

      Summary:

      Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task.

      Strengths:

      The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      I appreciate the addition of details about model fitting, comparison, and recovery, as well as the change in some of the methods.

      Weaknesses:

      The authors do not cite what is probably the most relevant contextual bandit study, by Collins & Frank (2018, PNAS), which uses EEG.

      The authors cite Collins & Molinaro as a form of contextual bandit, but that's not the case (what they call "context" is just the choice set). They should look at the earlier work from Collins, starting with Collins & Frank (2012, EJN).

      Placing statistical information in a GitHub repository is not appropriate. This needs to be in the main text of the paper. I don't understand why the authors refer to space limitations; there are none for eLife, as far as I'm aware.

      In answer to my question about multiple comparisons, the authors have added the following: "Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations." I'm sorry, but this does not make sense. Either the authors are doing multiple comparisons, in which case multiple comparison correction is relevant, or they are doing a single test on the extended timeseries, in which case they need to report that. There exist tools for this kind of analysis (e.g., Gershman et al., 2014, NeuroImage). I'm not suggesting that the authors should necessarily do this, only that their statistical approach should be coherent. As a reference point, the authors might look at the aforementioned Collins & Frank (2018) study.

      I asked the authors to show more descriptive comparison between the model and the data. Their response was that this is not possible, which I find odd given that they are able to use the model to define a probability distribution on choices. All I'm asking about here is to show predictive checks which build confidence in the model fit. The additional simulations do not address this. The authors refer to figures 3 and 4, but these do not show any direct comparison between human data and the model beyond model comparison metrics.

    3. Reviewer #3 (Public Review):

      Summary:

      This paper aims to investigate how the human brain represents different forms of value and uncertainty that participate in active inference within a free-energy framework, in a two-stage decision task involving contextual information sampling, and choices between safe and risky rewards, which promotes shifting between exploration and exploitation. They examine neural correlates by recording EEG and comparing activity in the first vs second half of trials and between trials in which subjects did and did not sample contextual information, and perform a regression with free-energy-related regressors against data "mapped to source space."

      Strengths:

      This two-stage paradigm is cleverly designed to incorporate several important processes of learning, exploration/exploitation and information sampling that pertain to active inference. Although scalp/brain regions showing sensitivity to the active-inference related quantities do not necessary suggest what role they play, they are illuminating and useful as candidate regions for further investigation. The aims are ambitious, and the methodologies impressive. The paper lays out an extensive introduction to the free energy principle and active inference to make the findings accessible to a broad readership.

      Weaknesses:<br /> In its revised form the paper is complete in providing the important details. Though not a serious weakness, it is important to note that the high lower-cutoff of 1 Hz in the bandpass filter, included to reduce the impact of EEG noise, would remove from the EEG any sustained, iteratively updated representation that evolves with learning across trials, or choice-related processes that unfold slowly over the course of the 2-second task windows.

    1. Reviewer #1 (Public Review):

      The manuscript by Feng et al. reported that the Endothelin B receptor (ETBR) expressed by the satellite glial cells (SGCs) in the dorsal root ganglions (DRG) acted to inhibit sensory axon regeneration in both adult and aged mice. Thus, pharmacological inhibition of ETBR with specific inhibitors resulted in enhanced sensory axon regeneration in vitro and in vivo. In addition, sensory axon regeneration significantly reduces in aged mice and inhibition of ETBR could restore such defect in aged mice. Moreover, the study provided some evidence that the reduced level of gap junction protein connexin 43 might act downstream of ETBR to suppress axon regeneration in aged mice. Overall, the study revealed an interesting SGC-derived signal in the DRG microenvironment to regulate sensory axon regeneration. It provided additional evidence that non-neuronal cell types in the microenvironment function to regulate axon regeneration via cell-cell interaction.

      However, the molecular mechanisms by which ETBR regulates axon regeneration are unclear, and the manuscript's structure is not well organized, especially in the last section. Some discussion and explanation about the data interpretation are needed to improve the manuscript.

      (1) The result showed that the level of ETBR did not change after the peripheral nerve injury. Does this mean that its endogenous function is to limit spontaneous sensory axon regeneration? In other words, the results suggest that SGCs expressing ETBR or vascular endothelial cells expressing its ligand ET-1 act to suppress sensory axon regeneration. Some explanation or discussion about this is necessary. Moreover, does the protein level of ETBR or its ligand change during aging?

      (2) In ex vivo experiments, NGF was added to the culture medium. Previous studies have shown that adult sensory neurons could initiate fast axon growth in response to NGF within 24 hours. In addition, dissociated sensory neurons could also initiate spontaneous regenerative axon growth without NGF after 48 hours. Some discussion or rationale is needed to explain the difference between NGF-induced or spontaneous axon growth of culture adult sensory neurons and the roles of ETBR and SGCs.

      (3) In cultured dissociated sensory neurons, inhibiting ETBR also enhanced axon growth, which meant the presence of SGCs surrounding the sensory neurons. Some direct evidence is needed to show the cellular relationship between them in culture.

      (4) In Figure 3, the in vivo regeneration experiments first showed enhanced axon regeneration either 1 day or 3 days after the nerve injury. The study then showed that inhibiting ETBR could enhance sensory axon growth in vitro from uninjured naïve neurons or conditioning lesioned neurons. To my knowledge, in vivo sensory axon regeneration is relatively slow during the first 2 days after the nerve injury and then enters the fast regeneration mode on the 3rd day, representing the conditioning lesion effect in vivo. Some discussion is needed to compare the in vitro and the in vivo model of axon regeneration.

      (5) In Figure 5, the study showed that the level of connexin 43 increased after ETBR inhibition in either adult or aged mice, proposing an important role of connexin 43 in mediating the enhancing effect of ETBR inhibition on axon regeneration. However, in the study, there was no direct evidence supporting that ETBR directly regulates connexin 43 expression in SGCs. Moreover, there was no functional evidence that connexin 43 acted downstream of ETBR to regulate axon regeneration.

    2. Reviewer #2 (Public Review):

      Summary:

      In this interesting and original study, Feng and colleagues set out to address the effect of manipulating endothelin signaling on nerve regeneration, focusing on the crosstalk between endothelial cells (ECs) in dorsal root ganglia (DRG), which secrete ET-1 and satellite glial cells (SGCs) expressing ETBR receptor. The main finding is that ETBR signaling is a default brake on axon growth, and inhibiting this pathway promotes axon regeneration after nerve injury and counters the decline in regenerative capacity that occurs during aging. ET-1 and ETBR are mapped in ECs and SGCs, respectively, using scRNA-seq of DRGs from adult or aged mice. Although their expression does not change upon injury, it is modulated during aging, with a reported increase in plasma levels of ET-1 (a potent vasoconstrictive signal). Using in vitro explant assays coupled with pharmacological inhibition in mouse models of nerve injury, the authors demonstrate that ET-1/ETBR curbs axonal growth, and the ETAR/ETBR antagonist Bosentan boosts regrowth during the early phase of repair. In addition, Bosentan restores the ability of aged DRG neurons to regrow after nerve lesions. Despite Bosentan inhibiting both endothelin receptors A and B, comparison with an ETAR-specific antagonist indicates that the effects can be attributed to the ET-1/ETBR pathway. In the DRGs, ETBR is mostly expressed by SGCs (and a subset of Schwann cells) a cell type that previous studies, including work from this group, have implicated in nerve regeneration. SGCs ensheath and couple with DRG neurons through gap junctions formed by Cx43. Based on their own findings and evidence from the literature, the pro-regenerative effects of ETBR inhibition are in part attributed to an increase in Cx43 levels, which are expected to enhance neuron-SGC coupling. Finally, gene expression analysis in adult vs aged DRGs predicts a decrease in fatty acid and cholesterol metabolism, for which previous work by the authors has shown a requirement in SGCs to promote axon regeneration.

      Strengths:

      The study is well-executed and the main conclusion that "ETBR signaling inhibits axon regeneration after nerve injury and plays a role in age-related decline in regenerative capacity" (line 77) is supported by the data. Given that Bosentan is an FDA-approved drug, the findings may have therapeutic value in clinical settings where peripheral nerve regeneration is suboptimal or largely impaired, as it often happens in aged individuals. In addition, the study highlights the importance of vascular signals in nerve regeneration, a topic that has gained traction in recent years. Importantly, these results further emphasize the contribution of long-neglected SGCs to nerve tissue homeostasis and repair. Although the study does not reach a complete mechanistic understanding, the results are robust and are expected to attract the interest of a broader readership.

      Weaknesses:

      Despite these positive comments provided above, the following points should be considered:

      (1) This study examines the contribution of the ET-1 pathway in the ganglia, and in vitro assays are consistent with the idea that important signaling events take place there. Nevertheless, it remains to be determined whether the accelerated axon regrowth observed in vivo depends also on cellular crosstalk mediated by ET-1 at the lesion site. Are ECs along the nerve secreting ET-1? What cells are present in the nerve stroma that could respond and participate in the repair process? Would these interactions be sensitive to Bosentan? It may be difficult to dissect this contribution, but it should at least be discussed.

      (2) It is suggested that the permeability of DRG vessels may facilitate the release of "vascular-derived signals" (lines 82-84). Is it possible that the ET-1/ETBR pathway modulates vascular permeability, and that this, in turn, contributes to the observed effects on regeneration?

      (3) Is the affinity of ET-3 for ETBR similar to that of ET-1? Can it be excluded that ET-3 expressed by fibroblasts is relevant for controlling SGC responses upon injury/aging?

      (4) ETBR inhibition in dissociated (mixed) cultures uncovers the restraining activity of endothelin signaling on axon growth (Figure 2C). Since neurons do not express ET-1 receptors, based on scRNA-seq analysis, these results are interpreted as an indication that basal ETBR signaling in SGC curbs the axon growth potential of sensory neurons. For this to occur in dissociated cultures, however, one should assume that SGC-neuron association is present, similar to in vivo, or to whole DRG cultures (Figure 2C). Has this been tested? In both in vitro experimental settings (dissociated and whole DRG cultures) how is ETBR stimulated over up to 7 days of culture? In other words, where does endothelin come from in these cultures (which are unlikely to support EC/blood vessel growth)? Is it possible that the relevant ligand here derives from fibroblasts (see point #6)? Or does it suggest that ETBR can be constitutively active (i.e., endothelin-independent signaling)? Is there any chance that endothelin is present in the culture media or Matrigel?

      (5) The discovery that ET-1/ETBR signaling in SGC curtails the growth capacity of axons at baseline raises questions about the physiological role of this pathway. What happens when ETBR signaling is prevented over a longer period of time? This could be addressed with pharmacological inhibitors, or better, with cell-specific knock-out mice. The experiments would certainly be of general interest, although not within the scope of this story. Nevertheless, it could be worth discussing the possibilities.

      (6) Assessing Cx43 levels by measuring the immunofluorescence signal (Figure 5E-F) is acceptable, particularly when the aim is to restrict the analysis to SGCs. The modulation of Cx43 expression by ET-1/ETBR plays an important part in the proposed model. Therefore, a complementary analysis of Cx43 expression by quantitative RT-PCR on sorted SGCs would be a valuable addition to the immunofluorescence data. Is this attainable?

      (7) The conclusions "We thus hypothesize that ETBR inhibition in SGCs contributes to axonal regeneration by increasing Cx43 levels, gap junction coupling or hemichannels and facilitating SGC-neuron communication" (lines 303-305) are consistent with the findings but seem in contrast with the effect of aging on gap junction coupling reported by others and cited in line 210: "the number of gap junctions and the dye coupling between these cells increases (Huang et al., 2006)". I am confused by what distinguishes a potential, and supposedly beneficial, increase in coupling after ETBR inhibition, from what is observed in aging.

      (8) I find it difficult to reconcile the results in Figure 5F with the proposed model since (1) injury increases Cx43 levels in both adult and aged mice, (2) the injured aged/vehicle group has a similar level to the uninjured adult group, (3) upon injury, aged+Bosentan is much lower than adult+Bosentan (significance not tested). It seems hard to explain the effect of Bosentan only through the modulation of Cx43 levels. Whether the increase in Cx43 levels following ETBR inhibition actually results in higher SGC-neuron coupling has not been assessed experimentally.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript suggests that inhibiting ETBR via the FDA-approved compound Bosentan can disrupt ET-1-ETBR signalling that they found detrimental to nerve regeneration, thus promoting repair after nerve injury in adult and aged mice.

      Strengths:

      (1) The clinical need to identify molecular and cellular mechanisms that can be targeted to improve repair after nerve injury.

      (2) The proposed mechanism is interesting.

      (3) The methodology is sound.

      Weaknesses:

      (1) The data appear preliminary and the story appears incomplete.

      (2) Lack of causality and clear cellular and molecular mechanism. There are also some loose ends such as the role of connexin 43 in SGCs: how is it related to ET-1- ETBR signalling?

    1. Reviewer #1 (Public Review):

      Summary:

      This work sets out to elucidate mechanistic intricacies in inflammatory responses in pneumonia in the context of the aging process (Terc deficiency - telomerase functionality).

      Strengths:

      Very interesting, conceptually speaking, approach that is by all means worth pursuing. An overall proper approach to the posited aim.

      Weaknesses:

      The work is heavily underpowered and may have statistical deficits. This precludes it in its current state from drawing unequivocal conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors demonstrate heightened susceptibility of Terc-KO mice to S. aureus-induced pneumonia, perform gene expression analysis from the infected lungs, find an elevated inflammatory (NLRP3) signature in some Terc-KO but not control mice, and some reduction in T cell signatures. Based on that, They conclude that disregulated inflammation and T-cell dysfunction play a major role in these phenomena.

      Strengths:

      The strengths of the work include a problem not previously addressed (the role of the Terc component of the telomerase complex) in certain aspects of resistance to bacterial infection and innate (and maybe adaptive) immune function.

      Weaknesses:

      The weaknesses outweigh the strengths, dominantly because conclusions are plagued by flaws in experimental design, by lack of rigorous controls, and by incomplete and inadequate approaches to testing immune function. These weaknesses are as follows

      (1) Terc-KO mice are a genomic knockout model, and therefore the authors need to carefully consider the impact of this KO on a wide range of tissues. This, however, is not the case. There are no attempts to perform cell transfers or use irradiation chimera or crosses that would be informative.

      (2) Throughout the manuscript the authors invoke the role of telomere shortening in aging, and according to them, their Terc-KO mice should be one potential model for aging. Yet the authors consistently describe major differences between young Terc-KO and naturally aging old mice, with no discussion of the implications. This further confuses the biological significance of this work as presented.

      (3) Related to #2, group design for comparisons lacks a clear rationale. The authors stipulate that Terc-KO will mimic natural aging, but in fact, the only significant differences seen between groups in susceptibility to S. aureus are, contrary to the authors' expectation, between young Terc-KO and naturally old mice (Figures 1A and B, no difference between young Terc-KO and young wt); or there are no significant differences at all between groups (Figures 1, C, D,).<br /> Another example of inadequate group design is when the authors begin dividing their Terc-KO groups by clinical score into animals with or without "systemic infection" (the condition where a bacterium spreads uncontrollably across the many organs and via blood, which should be properly called sepsis), and then compare this sepsis group to other groups (Supplementary Figures 1G; Figure 2; lines 374-376 and 389-391). This gives them significant differences in several figures, but because they did not clearly indicate where they applied this stratification in the figure legends, the data are somewhat confusing. Most importantly, methodologically it is highly inappropriate to compare one mouse with sepsis to another one without. If Terc-KO mice with sepsis are a comparator group, then their controls have to be wild-type mice with sepsis, who are dealing with the same high bacterial load across the body and are presumably forced to deploy the same set of immune defenses.

      (4) The authors conclude that disregulated inflammation and T-cell dysfunction play a major role in S. aureus susceptibility. This may or may not be an important observation, because many KO mice are abnormal for a variety of reasons, and until such reasons are mechanistically dissected, the physiological importance of the observation will remain unclear. Two points are important here. First, there is no natural counterpart to a Terc-KO, which is a complete loss of a key non-enzymatic component of the telomerase complex starting in utero. Second, the authors truly did not examine the key basic features of their model, including the features of basic and induced inflammatory and immune responses. This analysis could be done either using model antigens in adjuvants, defined innate immune stimuli (e.g. TLR, RLR, or NLR agonists), or microbial challenge. The only data provided along these lines are the baseline frequencies of total T cells in the spleen of the three groups of mice examined (not statistically significant, Figure 4B). We do not know if the composition of naïve to memory T cell subsets may have been different, and more importantly, we have no data to evaluate whether recruitment of the immune response (including T cells) to the lung upon microbial challenge is similar or different. So, what are the numbers and percentages of T cells and alveolar macrophages in the lung following S. aureus challenge and are they even comparable or are there issues in mobilizing the T cell response to the site of infection? If, for example, Terc-KO mice do not mobilize enough T cells to the lung during infection, that would explain the paucity in many T-cell-associated genes in their transcriptomic set that the authors report. That in turn may not mean dysfunction of T cells but potentially a whole different set of defects in coordinating the response in Terc-KO mice.

      (5) Related to that, immunological analysis is also inadequate. First, the authors pull signatures from the total lung tissue, which is both imprecise and potentially skewed by differences, not in gene expression but in types of cells present and/or their abundance, a feature known to be affected by aging and perhaps by Terc deficiency during infection. Second, to draw any conclusions about immune responses, the authors would have to track antigen-specific T cells, which is possible for a wide range of microbial pathogens using peptide-MHC multimers. This would allow highly precise analysis of phenomena the authors are trying to conclude about. Moreover, it would allow them to confirm their gene expression data in populations of physiological interest

      Third, the authors co-incubate AM and T cells with S. aureus. There is no information here about the phenotype of T cells used. Were they naïve, and how many S. aureus-specific T cells did they contain? Or were they a mix of different cell types, which we know will change with aging (fewer naïve and many more memory cells of different flavors), and maybe even with a Terc-KO? Naïve T cells do not interact with AM; only effector and memory cells would be able to do so, once they have been primed by contact with dendritic cells bringing antigen into the lymphoid tissues, so it is unclear what the authors are modeling here. Mature primed effector T cells would go to the lung and would interact with AM, but it is almost certain that the authors did not generate these cells for their experiment (or at least nothing like that was described in the methods or the text).

      (6) Overall, the authors began to address the role of Terc in bacterial susceptibility, but to what extent that specifically involves inflammation and macrophages, T cell immunity, or aging remains unclear at present.

    1. Reviewer #1 (Public Review):

      Summary:

      The report describes the control of the activity of the RNA-activated protein kinase, PKR, by the Vaccinia virus K3 protein. Repressive binding of K3 to the kinase prevents phosphorylation of its recognised substrate, EIF2α (the α subunit of the Eukaryotic Initiation Factor 2). The interaction of K3 is probed by saturation mutation within four regions of PKR chosen by modelling the molecules' interaction. They identify K3-resistant PKR variants that recognise that the K3/EIF2α-binding surface of the kinase is malleable. This is reasonably interpreted as indicating the potential adaptability of this antiviral protein to combat viral virulence factors.

      Strengths:

      This is a well-conducted study that probes the versatility of the antiviral response to escape a viral inhibitor. The experimentation is very diligent, generating and screening a large number of variants to recognise the malleability of residues at the interface between PKR and K3.

      Weaknesses:

      These are minor. The protein interaction between PKR and K3 has been previously well-explored through phylogenetic and functional analyses and molecular dynamics studies, as well as with more limited site-directed mutational studies using the same experimental assays. Accordingly, these findings largely reinforce what had been established rather than making major discoveries.

      There are some presumptions:

      It isn't established that the different PKR constructs are expressed equivalently so there is the contingency that this could account for some of the functional differences.

      Details about the confirmation of PKR used to model the interaction aren't given so it isn't clear how accurately the model captures the active kinase state. This is important for the interaction with K3/EIF2α.

      Not all regions identified to form the interface between PKR and K3 were assessed in the experimentation. It isn't clear why residues between positions 332-358 weren't examined, particularly as this would have made this report more complete than preceding studies of this protein interaction.

    2. Reviewer #2 (Public Review):

      Chambers et al. (2024) present a systematic and unbiased approach to explore the evolutionary potential of the human antiviral protein kinase R (PKR) to evade inhibition by a poxviral antagonist while maintaining one of its essential functions.

      The authors generated a library of 426 single-nucleotide polymorphism (SNP)-accessible non-synonymous variants of PKR kinase domain and used a yeast-based heterologous virus-host system to assess PKR variants' ability to escape antagonism by the vaccinia virus pseudo-substrate inhibitor K3. The study identified determinant sites in the PKR kinase domain that harbor K3-resistant variants, as well as sites where variation leads to PKR loss of function. The authors found that multiple K3-resistant variants are readily available throughout the domain interface and are enriched at sites under positive selection. They further found some evidence of PKR resilience to viral antagonist diversification. These findings highlight the remarkable adaptability of PKR in response to viral antagonism by mimicry.

      Significance of the findings:

      The findings are important with implications for various fields, including evolutionary biology, virus-host interfaces, genetic conflicts, and antiviral immunity.

      Strength of the evidence:

      Convincing methodology using state-of-the-art mutational scanning approach in an elegant and simple setup to address important challenges in virus-host molecular conflicts and protein adaptations.

      Strengths:

      ● Systematic and Unbiased Approach:<br /> The study's comprehensive approach to generating and characterizing a large library of PKR variants provides valuable insights into the evolutionary landscape of the PKR kinase domain. By focusing on SNP-accessible variants, the authors ensure the relevance of their findings to naturally occurring mutations.

      ● Identification of Key Sites:<br /> The identification of specific sites in the PKR kinase domain that confer resistance or susceptibility to a poxvirus pseudosubstrate inhibition is a significant contribution.

      ● Evolutionary Implications:<br /> The authors performed meticulous comparative analyses throughout the study between the functional variants from their mutagenesis screen ("prospective") and the evolutionarily-relevant past adaptations ("retrospective").

      ● Experimental Design:<br /> The use of a yeast-based assay to simultaneously assess PKR capacity to induce cell growth arrest and susceptibility/resistance to various VACV K3 alleles is an efficient approach. The combination of this assay with high-throughput sequencing allows for the rapid characterization of a large number of PKR variants.

      Areas for Improvement:

      ● Validation of the screen:<br /> The results would be strengthened by validating results from the screen on a handful of candidate PKR variants, either using a similar yeast heterologous assay, or - even more powerfully - in another experimental system assaying for similar function (cell translation arrest) or protein-protein interaction.

      ● Evolutionary Data:<br /> Beyond residues under positive selection, the screen would allow the authors to also perform a comparative analysis with PKR residues under purifying selection. Because they are assessing one of the most conserved ancestral functions of PKR (i.e. cell translation arrest), it may also be of interest to discuss these highly conserved sites.

      ● Mechanistic Insights:<br /> While the study identifies key sites and residues involved in vaccinia K3 resistance, it could benefit from further investigation into the underlying molecular mechanisms. The study's reliance on a single experimental approach, deep mutational scanning, may introduce biases and limit the scope of the findings. The authors may acknowledge these limitations in the Discussion.

      ● Viral Diversity:<br /> The study focuses on the viral inhibitor K3 from vaccinia. Expanding the analysis to include other viral inhibitors, or exploring the effects of PKR variants on a range of viruses would strengthen and expand the study's conclusions. Would the identified VACV K3-resistant variants also be effective against other viral inhibitors (from pox or other viruses)? or in the context of infection with different viruses? Without such evidence, the authors may check the manuscript is specific about the conclusions.

      Overall Assessment:

      The systematic approach, identification of key sites, and evolutionary implications are all notable strengths. While there is room for further investigation into the mechanistic details and broader viral diversity, the findings are robust and already provide important advancements. The manuscript is well-written and clear, and the figures are informative. Specific minor comments are further shared below.

      Minor revisions addressing the areas for improvement mentioned above are recommended.

    3. Reviewer #3 (Public Review):

      Summary:

      - This study investigated how genetic variation in the human protein PKR can enable sensitivity or resistance to a viral inhibitor from the vaccinia virus called K3.

      - The authors generated a collection of PKR mutants and characterized their activity in a high-throughput yeast assay to identify 1) which mutations alter PKR's intrinsic biochemical activity, 2) which mutations allow for PKR to escape from viral K3, and 3) which mutations allow for escape from a mutant version of K3 that was previously known to inhibit PKR more efficiently.

      - As a result of this work, the authors generated a detailed map of residues at the PKR-K3 binding surface and the functional impacts of single mutation changes at these sites.

      Strengths:

      - Experiments assessed each PKR variant against three different alleles of the K3 antagonist, allowing for a combinatorial view of how each PKR mutant performs in different settings.

      - Nice development of a useful, high-throughput yeast assay to assess PKR activity, with highly detailed methods to facilitate open science and reproducibility.

      - The authors generated a very clean, high-quality, and well-replicated dataset.

      Weaknesses:

      - The authors chose to focus solely on testing residues in or near the PKR-K3 predicted binding interface. As a result, there was only a moderately complex library of PKR mutants tested. The residues selected for investigation were logical, but this limited the potential for observing allosteric interactions or other less-expected results.

      - For residues of interest, some kind of independent validation assay would have been useful to demonstrate that this yeast fitness-based assay is a reliable and quantitative readout of PKR activity.

      - As written, the current version of the manuscript could use more context to help a general reader understand 1) what was previously known about these PKR and K3 variants, 2) what was known about how other genes involved in arms races evolve, or 3) what predictions or goals the authors had at the beginning of their experiment. As a result, this paper mostly provides a detailed catalog of variants and their effects. This will be a useful reference for those carrying out detailed, biochemical studies of PKR or K3, but any broader lessons are limited.

      I felt there was a missed opportunity to connect the study's findings to outside evolutionary genetic information, beyond asking if there was overlap with PKR sites that a single previous study had identified as positively selected. For example, are there any signals of balancing selection for PKR? How much allelic diversity is there within humans, and are people typically heterozygous for PKR variants? Relatedly, although PKR variants were tested in isolation here, would the authors expect their functional impacts to be recessive or dominant, and would this alter their interpretations? On the viral diversity side, how much variation is there among K3 sequences? Is there an elevated evolutionary rate, for example, in K3 at residues that contact PKR sites that can confer resistance? None of these additions are essential, but some kind of discussion or analysis like this would help to connect the yeast-based PKR phenotypic assay presented here back to the real-world context for these genes.

    1. Reviewer #1 (Public Review):

      Summary:

      Torsekar et al. use a leaf litter decomposition experiment across seasons, and in an aridity gradient, to provide a careful test of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition. The authors found that large-sized invertebrates are more active in the summer and small-sized invertebrates in the winter. The summed effects of all invets then translated into similar levels of decomposition across seasons. The system breaks down in hyper-arid sites.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang and colleagues identify biallelic variants of DNAH3 in four unrelated Han Chinese infertile men through whole-exome sequencing, which contributes to abnormal sperm flagellar morphology and ultrastructure. To investigate the importance of DNAH3 in male infertility, the authors generated crispant Dnah3 knockout (KO) male mice. They observed that KO mice are also infertile, showing a severe reduction in sperm movement with abnormal IDA (inner dynein arms) and mitochondrion structure. Moreover, nonfunctional DNAH3 expression decreased the expression of IDA-associated proteins in the spermatozoa of patients and KO mice, which are involved in the disruption of sperm motility. Interestingly, the infertility of patients and KO mice is rescued by intracytoplasmic sperm injection (ICSI). Taken together, the authors propose that DNAH3 is a novel pathogenic gene for asthenoterozoospermia and male infertility.

      Strengths:

      This work investigates the role of DNAH3 in sperm mobility and male infertility. By using gold-standard molecular biology techniques, the authors demonstrate with exquisite resolution the importance of DNAH3 in sperm morphology, showing strong evidence of its role in male infertility. Overall, this is a very interesting, well-written, and appealing article. All aspects of the study design and methods are well described and appropriate to address the main question of the manuscript. The conclusions drawn are consistent with the analyses conducted and supported by the data.

      Weaknesses:

      The paper is solid, and in its current form, I have not detected relevant weaknesses.

    2. Reviewer #2 (Public Review):

      Wang et al. investigated the role of dynein axonemal heavy chain 3 (DNAH3) in male infertility. They found that variants of DNAH3 were present in four infertile men, and the deficiency of DNAH3 in sperm affects sperm mobility. Additionally, they showed that Dnah3 knockout male mice are infertile. Furthermore, they demonstrated that DNAH3 influences inner dynein arms by regulating several DNAH proteins. Importantly, they showed that intracytoplasmic sperm injection (ICSI) can rescue the infertility in Dnah3 knockout mice and two patients with DNAH3 variants.

      Strengths:

      The conclusions of this paper are well-supported by data.

      Weaknesses:

      The sample/patient size is small; however, the findings are consistent with those of a recent study on DNAH3 in male infertility involving 432 patients.

    3. Reviewer #3 (Public Review):

      Summary:

      (1) To further explore the genetic basis of asthenoteratozoospermia, the authors performed whole-exome sequencing analyses among infertile males affected by asthenoteratozoospermia. Four unrelated Han Chinese patients were found to carry biallelic variations of DNAH3, a gene encoding IDA-associated protein.<br /> (2) To verify the function of IDA associated protein DNAH3, the authors generated a Dnah3-KO mouse model and revealed that the loss of DNAH3 leads to severe male infertility as a result of the severe reduction in sperm movement with the abnormal IDA and mitochondrion structures.<br /> (3) Mechanically, they confirmed decreased expression of IDA-associated proteins (including DNAH1, DNAH6 and DNALI1) in the spermatozoa from patients with DNAH3 mutations and Dnah3-KO male mice.<br /> (4) Then, they also found that male infertility caused by DNAH3 deficiency could be rescued by intracytoplasmic sperm injection (ICSI) treatment in humans and mice.

      Strengths:

      (1) In addition to existing research, the authors provided novel variants of DNAH3 as important factors leading to asthenoteratozoospermia. This further expands the spectrum of pathogenic variants in asthenoteratozoospermia.<br /> (2) By mechanistic studies, they found that DNAH3 deficiency led to decreased expression of IDA-associated proteins, which may be used to explain the disruption of sperm motility and reduced fertility caused by DNAH3 deficiency.<br /> (3) Then, successful ICSI outcomes were observed in patients with DNAH3 mutations and Dnah3 KO mice, which will provide an important reference for genetic counselling and clinical treatment of male infertility.

    1. Reviewer #1 (Public Review):

      Summary:

      This study uses an online cognitive task to assess how reward and effort are integrated in a motivated decision-making task. In particular the authors were looking to explore how neuropsychiatric symptoms, in particular, apathy and anhedonia, and circadian rhythms affect behavior in this task. Amongst many results, they found that choice bias (the degree to which integrated reward and effort affect decisions) is reduced in individuals with greater neuropsychiatric symptoms, and late chronotypes (being an 'evening person').

      Strengths:

      The authors recruited participants to perform the cognitive task both in and out of sync with their chronotypes, allowing for the important insight that individuals with late chronotypes show a more reduced choice bias when tested in the morning.<br /> Overall, this is a well-designed and controlled online experimental study. The modelling approach is robust, with care being taken to both perform and explain to the readers the various tests used to ensure the models allow the authors to sufficiently test their hypotheses.

      Weaknesses:

      This study was not designed to test the interactions of neuropsychiatric symptoms and chronotypes on decision making, and thus can only make preliminary suggestions regarding how symptoms, chronotypes and time-of-assessment interact.

    2. Reviewer #2 (Public Review):

      Summary:

      The study combines computational modeling of choice behavior with an economic, effort-based decision-making task to assess how willingness to exert physical effort for a reward varies as a function of individual differences in apathy and anhedonia, or depression, as well as chronotype. They find an overall reduction in effort selection that scales with apathy, anhedonia and depression. They also find that later chronotypes are less likely to choose effort than earlier chronotypes and, interestingly, an interaction whereby later chronotypes are especially unwilling to exert effort in the morning versus the evening.

      Strengths:

      This study uses state-of-the-art tools for model fitting and validation and regression methods which rule out multicollinearity among symptom measures and Bayesian methods which estimate effects and uncertainty about those estimates. The replication of results across two different kinds of samples is another strength. Finally, the study provides new information about the effects not only of chronotype but also chronotype by timepoint interactions which are previously unknown in the subfield of effort-based decision-making.

      Weaknesses:

      The study has few weaknesses. The biggest drawback is that it does not provide evidence for the idea that a match between chronotype and delay matters is especially relevant for people with depression or continuous measures like anhedonia and apathy. It is unclear whether disorders further interact with chronotype and time of day to determine a bias against effort. On the other hand, the study does provide evidence that future studies should consider such interactions when examining questions about effort expenditure in psychiatric disorders.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Mehrhof and Nord study a large dataset of participants collected online (n=958 after exclusions) who performed a simple effort-based choice task. They report that the level of effort and reward influence choices in a way that is expected from prior work. They then relate choice preferences to neuropsychiatric syndromes and, in a smaller sample (n<200), to people's circadian preferences, i.e., whether they are a morning-preferring or evening-preferring chronotype. They find relationships between the choice bias (a model parameter capturing the likelihood to accept effort-reward challenges, like an intercept) and anhedonia and apathy, as well as chronotype. People with higher anhedonia and apathy and an evening chronotype are less likely to accept challenges (more negative choice bias). People with an evening chronotype are also more reward sensitive and more likely to accept challenges in the evening, compared to the morning.

      Strengths:

      This is an interesting and well-written manuscript which replicates some known results and introduces a new consideration related to chronotype relationships which have not been explored before. It uses a large sample size and includes analyses related to transdiagnostic as well as diagnostic criteria.

      Weaknesses:

      The authors do not explore how chronotype and depression are related (does one mediate the effect of the other etc). Both variables are included in the same model in the revised article now which is a great improvement, but it also means psychopathology and circadian rhythms are treated as distinct phenomena and their relationship in predicting effort-reward preferences is not examined.

    1. Reviewer #1 (Public Review):

      Summary:

      The work in the manuscript utilized patch-clamp techniques to explore the electrophysiological characteristics of VIP interneurons in the early stages of AD using the 3xTg mouse model. The study revealed that VIP interneurons exhibited prolonged action potentials and reduced firing rates. These changes could not be attributed to modifications in input signals or morphological transformations. The authors attributed aberrant VIP activity to the accumulation of beta-amyloid in those interneurons.

      The decreased frequency of VIP inhibitory events were associated with no observed changes in excitatory drive to these interneurons. Consequently, heightened activity in the general population of CA1 interneurons was observed during a decision-making task and an object recognition test. In light of these findings, the authors concluded that the altered firing patterns of VIP interneurons may initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.

      Strengths:

      Overall the work is novel and moves the field of Alzheimer's disease forward in a significant way. The manuscript reports a novel concept of aberrant activity in VIP interneurons during the early stages of AD thus contributing to dysfunctions of the CA1 microcircuit. This results in enhancement of the inhibitory tone on the primary cells of CA1. Thus, the disinhibition by VIP interneurons of Principal Cells is dampened. The manuscript was skillfully composed, the study was of strong scientific rigor featuring well-designed experiments. Necessary controls were present. Both sexes were included.

      Major limitations were not adequately addressed in the revised manuscript

      (1) The authors attributed aberrant circuit activity to accumulation of "Abeta intracellularly" inside IS-3 cells. That is problematic. 6E10 antibody recognizes amyloid plaques in addition to Amyloid Precursor Protein (APP) as well as the C99 fragment. There are no plaques at the ages 3xTg mice were examined. Lack of plaques was addressed in revised manuscript. The staining shown in Fig. 1a is of APP/C99 inside neurons, not abeta accumulations in neurons. At the ages of 3-6 months, 3xTg mice start producing and releasing extracellular abeta oligomers and potentially tau oligomers as well (Takeda et al., 2013 PMID: 23640054; Takeda et al., 2015 PMID: 26458742 and others). Emerging literature suggests that extracellular not intracellular abeta and tau oligomers disrupt circuit function. Thus, a more likely explanation of extracellular abeta and tau oligomers disrupting the activity of VIP neurons is plausible. Presence of intracellular abeta is currently controversial in the field and needs to be discussed as such. Some of the references added in the revised version of the manuscript are erroneously cited. The authors provide no original data in support of "intracellular" abeta.

      (2) Authors suggest that their animals do not exhibit loss of synaptic connections and show Fig. 3d in support of that suggestion. However, imaging with confocal microscopy of 70 micron thick sections would not allow resolution of pre- and post-synaptic terminals. More sensitive measures such as electron microscopy or array tomography are the appropriate techniques to pursue. It is important for the authors to either remove that data from the manuscript or address/discuss the limitations of their technique in the discussion section. There is a possibility of loss of synaptic connections in their mouse model at the ages examined. Discussion of that possibility and of the limitations of the methodology used is missing.

    1. Reviewer #1 (Public Review):

      In this study, the authors address a fundamental unresolved question in cerebellar physiology: do synapses between granule cells (GCs) and Purkinje cells (PCs) made by the ascending part of the axon (AA) have different synaptic properties to those made by parallel fibers? This is an important question because GCs integrate sensorimotor information from many brain areas with a precise and complex topography.

      The authors argue that GCs located close to the PCs essentially contact PC dendrites through the ascending part of their axon. They demonstrate that high-frequency (100 Hz) joint stimulation of distant parallel fibers and local GCs potentiates AA-PC synapses, while parallel fiber-PC synapses are depressed. On the basis of paired pulse ratio analysis, they concluded that evoked plasticity was postsynaptic. When individual pathways are stimulated alone, no LTP is observed. This associative plasticity appears to be sensitive to timing, as stimulation of parallel fibers first results in depression, while stimulation of the AA pathway has no effect. NMDA, mGluR1 and GABAA receptors are involved in this plasticity.

      Overall, associative modulation of synaptic transmission is convincing, and the experiments carried out support this conclusion.

      One of its weaknesses is that it contradicts the numerous experiments conducted by many groups that have studied plasticity at this connection (e.g. Bouvier et al 2016, Piochon et al 2016, Binda et al, 2016, Schonewille et al 2021). According to the literature, high-frequency stimulation of parallel fibers leads to postsynaptic potentiation under many different experimental conditions (blocked or unblocked inhibition, stimulation protocols, internal solution composition). This discrepancy was not investigated experimentally.

      Another weakness is the lack of evidence that AAs have been stimulated. Indeed, without filling the PC with fluorescent dye or biocytin during the experiment, and without reconstructing the anatomical organization, it is difficult to assess whether the stimulating pipette is actually positioned in the GC cluster that potentially contacts the PC with AAs. Although the idea that AAs repeatedly contact the same Purkinje cell has been propagated, to the reviewer's knowledge, no direct demonstration of this hypothesis has yet been published. In fact, what has been demonstrated (Walter et al 2009; Spaeth et al 2022) is that GCs have a higher probability of being connected to nearby PCs, but not necessarily associated with AAs.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors describe a form of synaptic plasticity at synapses from granule cells onto Purkinje cells in the mouse cerebellum, which is specific to synapses from granule cells close to the cell body but not to distal ones. This plasticity is induced by the paired or associative stimulation of the two types of synapses because it is not observed with stimulation of one type of synapse alone. In addition, this form of plasticity is dependent on the order in which the stimuli are presented and is dependent on NMDA receptors, metabotropic glutamate receptors and to some degree on GABAA receptors.

      Strengths:

      The focus of the authors on the properties of two different synapse-types on cerebellar Purkinje cells is interesting and relevant, given previous results that ascending and parallel fiber synapses might be functionally different and undergo different forms of plasticity (although it hasn't been proven here that the two types of synapses are indeed ascending vs parallel fiber synapses). Nevertheless, the interaction between proximal vs. distal stimulation driven synapse types during plasticity is important for understanding cerebellar function. The demonstration of timing and order-dependent potentiation of only one pathway, and not another, after associative stimulation of both pathways, changes our understanding of potential plasticity mechanisms. In addition, this observation opens up many new questions on underlying intracellular mechanisms as well as on its relevance for cerebellar learning.

      Weaknesses:

      A concern with this study is that all recordings demonstrate "rundown", a progressive decrease in the amplitude of the EPSC, starting during the baseline period and continuing after the plasticity-induction stimulus. The issues that are causing rundown are not known and may or may not be related to the cellular processes involved in synaptic plasticity. This concern applies in particular to all the experiments where there is a decrease in synaptic strength. However, a key finding of this paper is the associative potentiation of one pathway, which is clearly different from all conditions where there is a decrease in synaptic strength and raises confidence in the authors' conclusions.

      In addition, there is some inconsistency with previous results; specifically, that no PF-LTP was induced by PF-alone repeated stimulation.

      It remains for future work to identify what these two synapse types, distinguished by the stimulation location, actually are, and where they are on the Purkinje cell dendritic tree. What this specific timing rule is important for is also something that remains to be discovered. Its potential relevance for plasticity and learning will depend on what information these AA vs PF synapses carry, and why their association is meaningful for the circuit and for a behavior. Overall, this study opens up many new questions for the field.

    3. Reviewer #3 (Public Review):

      Summary:

      Granule cells' axons bifurcate to form parallel fibers (PFs) and ascending axons (AAs). While the significance of PFs on cerebellar plasticity is widely acknowledged, the importance of AAs remains unclear. In the current paper, Conti and Auger conducted electrophysiological experiments in rat cerebellar slices and identified a new form of synaptic plasticity in the AA-Purkinje cell (PC) synapses.

      Strengths:

      The authors applied simultaneous stimulation of AAs and PFs and recorded from PCs and discovered that the strength of AA-PC synapses and PF-PC synapses change in opposite directions: while AA-PC EPSCs increased, PFs-EPSCs decreased. This finding suggests that synaptic responses to AAs and PFs in PCs are jointly regulated, working as an additional mechanism to integrate motor/sensory input. The existence of such plasticity mechanisms may offer new perspectives in studying and modeling cerebellum-dependent behavior. Overall, the experiments are performed well.

      Weaknesses:

      There are two weaknesses. First, the baseline of electrophysiological recordings is influenced significantly by run-down, limiting the interpretability of the data. Because the amplitude of AA-EPSCs is relatively small, the run-down may have masked some of the changes in EPSCs. However, the authors managed this difficulty using appropriate controls and statistical analysis. Second, while the authors show AA-LTP depends on mGluR, NMDA receptors, and GABA-A receptors, which cell types express these receptors and how they contribute to plasticity is not clarified. Cell-type-specific knockdown of these receptors may clarify this point in future studies.

    1. Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head restrained mice running down a virtual linear path. Mice were trained to collect water reward at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile, and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      The revised manuscript included additional evidence of increased (but transient) signal in LC axons after a transition to a novel environment during periods of immobility, and also that a change from dark to familiar environment induces a peak in LC axon activity, showing that LC input to dCA1 may not solely signal novelty.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis at the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      Weaknesses:

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.

      The LC axonal recordings are well powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compare to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.

      AFTER REVISIONS:

      The authors have addressed my concerns in a thorough manner. The reviewer also appreciates the increased transparency of reporting in the revised manuscript.

      Listed below are some remaining comments.<br /> The increase in LC activity with any change in environment (from familiar to novel or from dark to familiar) suggests that LC input acts not solely as a novelty signal, but as a general arousal or salience signal in response to environmental changes. Based on this, I have a couple of questions:

      • Is the overall claim that LC input to the dHC signals novelty still valid based on observed findings - as claimed throughout the manuscript?<br /> • Would the omission of a reward be considered a salient change in the environment that activates LC signals, or is the LC not involved with processing reward-related information? Has the activity of LC and VTA axons been analysed in the seconds following reward presentation and/or omission?

    2. Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:<br /> - In a familiar environment, activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, activity of LC axons ramped up before initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected approach of a learned reward and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Comments on revised version:

      I thank the authors for including a sample size justification.

      The justification is based on previous studies using similar sample sizes to characterize behavioral correlates of LC and VTA activity and on practical reasons. I note that to improve reproducibility, it would be preferable to have predefined target sample sizes based on predefined plans for statistical analysis.

    3. Reviewer #3 (Public Review):

      Summary:

      Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength to their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches to accommodate their unequal LC-CA1 and VTA-CA1 sample sizes. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of navigation and memory.

      Weaknesses:

      The conclusions of this manuscript are mostly well supported by the data. However, increasing the sample size of the VTA-CA1 group and using experimental methods that are identical among LC-CA1 and VTA-CA1 groups would help to fully support the author's conclusions.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a pothential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critially, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.

      Strengths:<br /> New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provide a wealth of information for taxonmic and phylogenic analyses.

      Weaknesses:<br /> The weaknesses of this work is obvious in a number of aspects. Technically, ventral morphlogy is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphomitric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by author's description of free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of cephalic shield, e.g. hypostome and fixgena. Critically, homology of cephalic slits (eye slits, eye notch, doral suture, facial suture) not extensivlely discussed either morphologically or functionally. Finally, authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can be explain a deep homology of cephalic suture in molecular level and multiple co-options within the Atiopoda.

      Comments on the revised version:

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.<br /> (2) There are also imprecise descriptions of features.<br /> (3) Ontogeny of the cephalon was not described.<br /> (3) The critical head element is the so called "ventral plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives an indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

    2. Reviewer #3 (Public Review):

      Summary:

      Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are proposed be associated with ventral plates that the authors homologise with the free cheeks of trilobites (although also testing alternative homologies). An update of a published phylogenetic dataset permits reconsideration of whether dorsal ecdysial sutures have a single or multiple origins in trilobites and their relatives.

      Strengths:

      Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variation within a single species. New microtomographic data shed light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.

      I think the revision does a satisfactory job of reconciling the data and analyses with the conclusions drawn from them. Referee 1's valid concerns about whether a synonymy of Acanthomeridion anacanthus is justified have been addressed by the addition of a length/width scatterplot in Figure 6. Referee 2's doubts about homology between the librigenae of trilobites and ventral plates of Acanthomeridion have been taken on board by re-running the phylogenetic analyses with a coding for possible homology between the ventral plates and the doublure of olenelloid trilobites. The authors sensibly added more trilobite terminals to the matrix (including Olenellus) and did analyses with and without constraints for olenelloids being a grade at the base of Trilobita. My concerns about counting how many times dorsal sutures evolved on a consensus tree have been addressed (the authors now play it safe and say "multiple" rather than attempting to count them on a bushy topology). The treespace visualisation (Figure 9) is a really good addition to the revised paper.

      Weaknesses:

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion and Trilobita. The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites). This paper is not a game-changer because these questions have been asked several times over the past seven years, but there are solid, worthy advances made here.

      I'd like to see some of the most significant figures from the Supplementary Information included in the main paper so they will be maximally accessed. The "stick-like" exopods are not best illustrated in the main paper; their best imagery is in Figure S1. Why not move that figure (or at least its non-redundant panels) as well as the reconstruction (Figure S7) to the main paper? The latter summarises the authors' interpretation that a large axe-shaped hypostome appears to be contiguous with ventral plates. The specimens depict evidence for three pairs of post-antennal cephalic appendages but it's a bit hard to picture how they functioned if there's no room between the hypostome and ventral plates. Also, a comment is required on the reconstruction involving all cephalic appendages originating against/under the hypostome rather the first pair being paroral near the posterior end of the hypostome and the rest being post-hypostomal as in trilobites.

    1. Reviewer #1 (Public Review):

      In this paper the authors provide a characterisation of auditory responses (tones, noise, and amplitude modulated sounds) and bimodal (somatosensory-auditory) responses and interactions in the higher order lateral cortex (LC) of the inferior colliculus (IC) and compare these characteristic with the higher order dorsal cortex (DC) of the IC - in awake and anaesthetised mice. Dan Llano's group have previously identified gaba'ergic patches (modules) in the LC distinctly receiving inputs from somatosensory structures, surrounded by matrix regions receiving inputs from auditory cortex. They here use 2P calcium imaging combined with an implanted prism to - for the first time - get functional optical access to these subregions (modules and matrix) in the lateral cortex of IC in vivo, in order to also characterise the functional difference in these subparts of LC. They find that both DC and LC of both awake and anaesthetised appears to be more responsive to more complex sounds (amplitude modulated noise) compared to pure tones and that under anesthesia the matrix of LC is more modulated by specific frequency and temporal content compared to the gaba'ergic modules in LC. However, while both LC and DC appears to have low frequency preferences, this preference for low frequencies is more pronounced in DC. Furthermore, in both awake and anesthetized mice somatosensory inputs are capable of driving responses on its own in the modules of LC, but very little in the matrix. The authors now compare bimodal interactions under anaesthesia and awake states and find that effects are different in some cases under awake and anesthesia - particularly related to bimodal suppression and enhancement in the modules.

      The paper provides new information about how subregions with different inputs and neurochemical profiles in the higher order auditory midbrain process auditory and multisensory information, and is useful for the auditory and multisensory circuits neuroscience community.

    2. Reviewer #2 (Public Review):

      Summary:

      The study describes differences in responses to sounds and whisker deflections as well as combinations of these stimuli in different neurochemically defined subsections of the lateral and dorsal cortex of the inferior colliculus in anesthetised and awake mice.

      Strengths:

      A major achievement of the work lies in obtaining the data in the first place as this required establishing and refining a challenging surgical procedure to insert a prism that enabled the authors to visualise the lateral surface of the inferior colliculus. Using this approach, the authors were then able to provide the first functional comparison of neural responses inside and outside of the GABA-rich modules of the lateral cortex. The strongest and most interesting aspects of the results, in my opinion, concern the interactions of auditory and somatosensory stimulation. For instance, the authors find that a) somatosensory-responses are strongest inside the modules and b) somatosensory-auditory suppression is stronger in the matrix than in the modules. This suggests that, while somatosensory inputs preferentially target the GABA-rich modules, they do not exclusively target GABAergic neurons within the modules (given that the authors record exclusively from excitatory neurons we wouldn't expect to see somatosensory responses if they targeted exclusively GABAergic neurons) and that the GABAergic neurons of the modules (consistent with previous work) preferentially impact neurons outside the modules, i.e. via long-range connections.

    3. Reviewer #3 (Public Review):

      The lateral cortex of the inferior colliculus (LC) is a region of the auditory midbrain noted for receiving both auditory and somatosensory input. Anatomical studies have established that somatosensory input primarily impinges on "modular" regions of the LC, which are characterized by high densities of GABAergic neurons, while auditory input is more prominent in the "matrix" regions that surround the modules. However, how auditory and somatosensory stimuli shape activity, both individually and when combined, in the modular and matrix regions of the LC has remained unknown.

      The major obstacle to progress has been the location of the LC on the lateral edge of the inferior colliculus where it cannot be accessed in vivo using conventional imaging approaches. The authors overcame this obstacle by developing methods to implant a microprism adjacent to the LC. By redirecting light from the lateral surface of the LC to the dorsal surface of the microprism, the microprism enabled two-photon imaging of the LC via a dorsal approach in anesthetized and awake mice. Then, by crossing GAD-67-GFP mice with Thy1-jRGECO1a mice, the authors showed that they could identify LC modules in vivo using GFP fluorescence while assessing neural responses to auditory, somatosensory, and multimodal stimuli using Ca2+ imaging. Critically, the authors also validated the accuracy of the microprism technique by directly comparing results obtained with a microprism to data collected using conventional imaging of the dorsal-most LC modules, which are directly visible on the dorsal IC surface, finding good correlations between the approaches.

      Through this innovative combination of techniques, the authors found that matrix neurons were more sensitive to auditory stimuli than modular neurons, modular neurons were more sensitive to somatosensory stimuli than matrix neurons, and bimodal, auditory-somatosensory stimuli were more likely to suppress activity in matrix neurons and enhance activity in modular neurons. Interestingly, despite their higher sensitivity to somatosensory stimuli than matrix neurons, modular neurons in the anesthetized prep were overall more responsive to auditory stimuli than somatosensory stimuli (albeit with a tendency to have offset responses to sounds). This suggests that modular neurons should not be thought of as primarily representing somatosensory input, but rather as being more prone to having their auditory responses modified by somatosensory input. However, this trend was different in the awake prep, where modular neurons became more responsive to somatosensory stimuli. Thus, to this reviewer, one of the most intriguing results of the present study is the extent to which neural responses in the LC changed in the awake preparation. While this is not entirely unexpected, the magnitude and stimulus specificity of the changes caused by anesthesia highlight the extent to which higher-level sensory processing is affected by anesthesia and strongly suggests that future studies of LC function should be conducted in awake animals.

      Together, the results of this study expand our understanding of the functional roles of matrix and module neurons by showing that responses in LC subregions are more complicated than might have been expected based on anatomy alone. The development of the microprism technique for imaging the LC will be a boon to the field, finally enabling much-needed studies of LC function in vivo. The experiments were well-designed and well-controlled, the limitations of two-photon imaging for tracking neural activity are acknowledged, and appropriate statistical tests were used.

    1. Reviewer #2 (Public Review):

      Ma X. et al proposed that A. muciniphila was a key strain that promotes the proliferation and differentiation of intestinal stem cells through acting on the Wnt/b-catenin signaling pathway. They used various models, such as piglet model, mouse model and intestinal organoids to address how A. muciniphila and B. fragilis offer the protection against ETEC infection. They showed that FMT with fecal samples, A. muciniphila or B. fragilis protected piglets and/or mice from ETEC infection, and this protection is manifested as reduced intestinal inflammation/bacterial colonization, increased tight junction/Muc2 proteins, as well as proper Treg/Th17 cells. Additionally, they demonstrated that A. muciniphila protected basal-out and/or apical-out intestinal organoids against ETEC infection via Wnt signaling.

      Comments on revised version:

      Please add proper references to indicate the invasion of ETEC into organoids after 1 h of infection.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      After an additional revision, the bioinformatics section of the methods has changed significantly from previous versions and now indicates a third sequencer was used instead: Ion S5 XL. Important parameters required to replicate analysis have still not been provided. Inspection of the SRA data indicates a mix of Illumina MiSeq and Illumina HiSeq 2500. It is now unclear which sequencing technology was used as authors have variably reported 4 different sequencers for these samples. Appropriate metadata was not provided in the SRA, although some groups may be inferred from sample names. These changing descriptions of the methodologies and ambiguity in making the data available create concerns about rigor of study and results.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors originally investigated the function of p53 isoforms with an alternative C-terminus encoded by the Alternatively Spliced (AS) exon in place of exon 11 encoding the canonical "α" C-terminal domain. For this purpose, the authors create a mouse model with a specific deletion of the AS exon.

      Strengths:

      Interestingly, wt or p53ΔAS/ΔAS mouse embryonic fibroblasts did not differ in cell cycle control, expression of well-known p53 target genes, proliferation under hyperoxic conditions, or the growth of tumor xenografts. However, p53-AS isoforms were shown to confer male-specific protection against lymphomagenesis in Eμ-Myc transgenic mice, prone to highly penetrant B-cell lymphomas. In fact, p53ΔAS/ΔAS Eμ-Myc mice were less protected from developing B-cell lymphomas compared to WT counterparts. The important difference that the authors find between WT and p53ΔAS/ΔAS Eμ-Myc males is a higher number of immature B cells in p53ΔAS/ΔAS vs WT mice. Higher expression of Ackr4 and lower expression of Mt2 was found in p53+/+ Eμ-Myc males compared to p53ΔAS/ΔAS counterparts, suggesting that these two transcripts are in part regulators of B-cell lymphomagenesis and enrichment for immature B cells.

      The manuscript integrates an elegant genetic approach with in vivo analyses providing a robust set of data which strengthens the role of p53 isoforms in leukemogenesis.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript provides a detailed analysis of B-cell lymphomagenesis in mice lacking an alternative exon in region encoding the C-terminal (regulatory) domain of the p53 protein and thus enable to assemble the so-called p53AS isoform. This isoform differs from canonical p53 by the replacement of roughly 30 c-terminal residues by about 10 residues encoded by the alternative exon. There is biochemical and biological evidence that p53AS retains strong transcriptional and somewhat enhanced suppressive activities, with mouse models expressing protein constructs similar to p53AS showing signs of increased p53 activity leading to rapid and lethal anemia. However, the precise role of the alternative p53AS variant has not been addressed so far in a mouse model aimed at demonstrating whether the lack of this particular p53 isoform (trp53ΔAS/ΔAS mice) may cause a specific pathological phenotype.

      Results show that lack of AS expression does not noticeably affect p53 the patterns of protein expression and transcriptional activity but reveals a subtle pathogenic phenotype, with trp53ΔAS/ΔAS males, but not females, tending to develop more frequently and earlier B-cell lymphoma than WT. Next, the authors then introduced ΔAS in transgenic Eμ-Myc mice that show accelerated lymphomagenesis. They show that lack of AS caused increased lethality and larger tumor lymph nodes in p53ΔAS Eμ-Myc males compared to their p53WT Eμ-Myc male counterparts, but not in females. Comparative transcriptomics identified a small set of candidate, differentially expressed gene, including Ackr4 (atypical chemokine receptor 4), which was significantly expressed in the spleens of ΔAS compared to WT controls. Ackr4 encodes a dummy receptor acting as an interceptor for multiple chemokines and thus may negatively regulate a chemokine/cytokine signalling axis involved in lymphomagenesis, which is down-regulated by estrogen signalling. Using in vitro cell models, the authors provide evidence that Ackr4 is a transcriptional target for p53 and that its p53-dependent activation is repressed by 17b-oestradiol. Finally, seeking evidence for a relevance for this gene in human lymphomagenesis, the authors analyse Burkitt lymphoma transcriptomic datasets and show that high ACKR4 expression correlated with better survival in males, but not in females

    1. Reviewer #1 (Public Review):

      Summary

      This article delves into the role of Ecdysone in regulating female sexual receptivity in Drosophila. The researchers discovered that PTTH, a positive regulator of Ecdysone production, hurts the receptivity of adult virgin females. Specifically, the researchers found that losing larval PTTH before metamorphosis significantly increases female receptivity immediately after adult eclosion. In addition, Ecdysone, through its receptor EcR-A, is necessary during metamorphic neurodevelopment for the proper development of P1 neurons, as its silencing leads to morphological changes associated with reduced adult female receptivity. Furthermore, Torso enhances receptivity in the adult stage. The molecular mechanisms linking each molecule to female receptivity have yet to be fully understood; therefore, the involvement of the juvenile-to-adult hormonal pathway (PTTH/Torso/ecdysone) in female receptivity is not proven.

      Strengths

      (1) Robust Methodology and Experimental Design: The study employs a comprehensive and well-structured experimental approach, combining genetic manipulations, behavioral assays, and molecular analyses. This multi-faceted methodology allows for a thorough investigation of the role of PTTH and Ecdysone in regulating female sexual receptivity in Drosophila. The use of specific gene knockouts, RNA interference, and overexpression techniques provides strong evidence supporting the findings.<br /> (2) Clear and Substantial Findings: The authors provide compelling data showing that PTTH negatively regulates female receptivity during the larval stage, which is rescued by Ecdysone feeding. Instead, metamorphic Ecdysone has a positive role during neurodevelopment. The experiments demonstrate this dual and temporally distinct role of PTTH/Ecdysone, shedding light on a complex hormonal regulation mechanism.<br /> (3) Clarification of Experimental Details: In response to the initial review, the authors have clarified important experimental details, such as the precise timing of genetic manipulations and the specific developmental stages examined. This clarification enhances the reproducibility and understanding of the study.

      Weaknesses

      (1) Unresolved Contradictions and Complexity in Results: Despite the detailed responses, the paper still presents complex and somewhat contradictory findings regarding the roles of PTTH, Torso, and Ecdysone. The observed increase in EcR-A expression in PTTH mutants and the nuanced explanation regarding the feedforward relationship, while insightful, do not fully resolve the initial confusion about the differing effects of PTTH and Ecdysone manipulations on female receptivity. This required more exploration.<br /> (2) Insufficient Exploration of Mechanistic Pathways: The potential mechanisms underlying the role of PTTH/Torso-Ecdysone across different developmental stages remain underexplored. While the authors suggest a feedforward relationship and possible interaction with other neurons, these hypotheses are not thoroughly tested or elaborated upon, leaving gaps in the mechanistic understanding.<br /> (3) Limited Scope of Validation Experiments: While the authors addressed some reviewer concerns about validation, the scope remains somewhat limited. The lack of existing PTTH mutants and the challenges in manipulating PTTH expression without affecting receptivity suggests that further work is needed to validate these pathways robustly. The inability to fully replicate the PTTHdelete phenotype through other means leaves some questions unanswered.<br /> (4). Complexity in Interpretation of dsx-Positive Neurons: The relevance of dsx-positive neurons in the context of PTTH's effects on female receptivity remains ambiguous. Although the authors provide some context, the biological significance of these observations is not fully clarified.

      Conclusion<br /> The manuscript presents a well-conceived study with significant findings that advance the understanding of hormonal regulation of female receptivity in Drosophila. However, complexities in the data and unresolved mechanistic questions suggest that further work is needed to clarify the exact pathways and interactions involved. The authors' responses to feedback have strengthened the paper, but additional experiments and more thorough mechanistic exploration would enhance the robustness and clarity of the conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors tried to identify novel adult functions of the classical Drosophila juvenile-adult transition axis (i.e. ptth-ecdysone). Surprisingly, larval ptth-expressing neurons expressed the sex-specific doublesex gene, thus belonging to the sexual dimorphic circuit. Lack of ptth during late larval development caused enhanced female sexual receptivity, effect rescued by supplying ecdysone in the food. Among many other cellular players, pC1 neurons control receptivity by encoding the mating status of females. Interestingly, during metamorphosis a subtype of pC1 neurons required Ecdysone Receptor A in order to regulate such female receptivity. A transcriptomic analysis using pC1-specific Ecdyone signaling down-regulation gives some hints of possible downstream mechanisms.

      Strengths:

      The manuscript showed solid genetic evidence that lack of ptth during development caused enhanced copulation rate in female flies, which includes ptth mutant rescue experiments by over-expressing ptth as well as by adding ecdysone-supplemented food. They also present elegant data dissecting the temporal requirements of ptth-expressing neurons by shifting animals from non-permissive to permissive temperatures, in order to inactivate neuronal function (although not exclusively ptth function). They showed that EcR-A is up-regulated in ptth mutant background. By combining different drivers together with EcR-A RNAi and torso RNAi lines authors also identified the Ecdysone receptor and torso requirements of a particular subtype of pC1 neurons during metamorphosis. Convincing live calcium imaging showed no apparent effect of EcR-A in neural activity, although some effect on morphology is uncovered. Finally, bulk RNAseq shows differential gene expression after EcR-A down-regulation.

      Weaknesses:

      The paper has three main weaknesses. The first one refers to temporal requirements of ptth and ecdysone signaling. Whereas ptth is necessary during larval development, ecdysone effect appears during pupal development. ptth induces ecdysone synthesis during larval development but there is no published evidence about a similar role for ptth during pupal stages. The down-regulation of EcR-A by RNAi requires at least 8 h to be complete, whereas the activation of ptth neurons in larva stages is immediate. Furthermore, larval and pupal ecdysone functions are different (triggering metamorphosis vs tissue remodeling). The second caveat is the fact that ptth and ecdysone/torso loss-of-function experiments render opposite effects (enhancing and decreasing copulation rates, respectively). The most plausible explanation is that both functions are independent of each other, also suggested by differential temporal requirements. Finally, in order to identify the effect in the transcriptional response of down-regulating EcR-A in a very small population of neurons, a scRNAseq study should have been performed instead of bulk RNAseq.

      In summary, despite the authors providing convincing evidence that ptth and ecdysone signaling pathways are involved in female receptivity, the main claim that ptth regulates this process through ecdysone is not supported by results. More likely, they'd rather be independent processes.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript shows that mutations that disable the gene encoding the PTTH gene cause an increase in female receptivity (they mate more quickly), a phenotype that can be reversed by feeding these mutants the molting hormone, 20-hydoxyecdysone (20E). The use of an inducible system reveals that inhibition or activation of PTTH neurons during the larval stages increases and decreases female receptivity, respectively, suggesting that PTTH is required during the larval stages to affect the receptivity of the (adult) female fly. Showing that these neurons express the sex-determining gene dsx leads the authors to show that interfering with 20E actions in pC1 neurons, which are dsx-positive neurons known to regulate female receptivity, reduces female receptivity and increases the arborization pattern of pC1 neurons. The work concludes by showing that targeted knockdown of EcRA in pC1 neurons causes 527 genes to be differentially expressed in the brains of female flies, of which 123 passed a false discovery rate cutoff of 0.01; interestingly, the gene showing the greatest down-regulation was the gene encoding dopamine beta-monooxygenase.

      This reviewer appreciates the effort that was done to revise the manuscript and address the various comments made by the reviewers. Nevertheless, I feel that the main concerns remain. These are not necessarily due to an unwillingness on the part of the authors to address them, but rather to difficulties that are inherent to trying to assign specific roles to EcR and pC1 neurons at a time when major changes are occurring (or are about to occur) in the nervous system, and do so using tools that are currently not sharp or specific enough. Many of the conclusions are supported by the results and those that may have alternative interpretations can remain more speculative until better tools become available. It is, nevertheless, an interesting and provocative piece of work.

      Strengths

      This is an interesting piece of work, which may shed light on the basis for the observation noted previously that flies lacking PTTH neurons show reproductive defects ("... females show reduced fecundity"; McBrayer, 2007; DOI 10.1016/j.devcel.2007.11.003).

      Weaknesses:

      There are some results whose interpretation seem ambiguous and findings whose causal relationship is implied but not demonstrated.

      (1) At some level, the findings reported here are not at all surprising. Since 20E regulates the profound changes that occur in the central nervous system (CNS) during metamorphosis, it is not surprising that PTTH would play a role in this process. Although animals lacking PTTH (rather paradoxically) live to adulthood, they do show greatly extended larval instars and a corresponding great delay in the 20E rise that signals the start of metamorphosis. For this reason, concluding that PTTH plays a SPECIFIC role in regulating female receptivity seems a little misleading, since the metamorphic remodeling of the entire CNS is likely altered in PTTH mutants. Since these mutants produce overall normal (albeit larger--due to their prolonged larval stages) adults, these alterations are likely to be subtle. Courtship has been reported as one defect expressed by animals lacking PTTH neurons, but this behavior may stand out because reduced fertility and increased male-male courtship (McBrayer, 2007) would be noticeable defects to researchers handling these flies. By contrast, detecting defects in other behaviors (e.g., optomotor responses, learning and memory, sleep, etc) would require closer examination. For this reason I would ask the authors to temper their statement that PTTH is SPECIFICALLY involved in regulating female receptivity.<br /> (2) The link between PTTH and the role of pC1 neurons in regulating female receptivity is not clear. Again, since 20E controls the metamorphic changes that occur in the CNS, it is not surprising that 20E would regulate the arborization of pC1 neurons. And since these neurons have been implicated in female receptivity, it would therefore be expected that altering 20E signaling in pC1 neurons would affect this phenotype. However, this does not mean that the defects in female receptivity expressed by PTTH mutants are due to defects in pC1 arborization. For this the authors would at least have to show that PTTH mutants show the changes in pC1 arborization shown in Fig. 6. And even then the most that could be said is that the changes observed in these neurons "may contribute" to the observed behavioral changes. Indeed, the changes observed in female receptivity may be caused by PTTH/20E actions on different neurons.<br /> (3) Some of the results need commenting on, or refining, or revising:<br /> (a) For some assays PTTH behaves sometimes like a recessive gene and at other times like a semi-dominant, and yet at others like a dominant gene. For instance, in Fig. 1D-G, PTTH[-]/+ flies behave like wildtype (D), express an intermediate phenotype (E-F), or behave like the mutant (G). This may all be correct but merits some comment.<br /> (b) Some of the conclusions are overstated. i) Although Fig. 2E-G does show that silencing the PTTH neurons during the larval stages affects copulation rate (E) the strength of the conclusion is tempered by the behavior of one of the controls (tub-GAL80[ts]/+, UAS-Kir2.1/+) in panels F and G, where it behaves essentially the same as the experimental group (and quite differently from the PTTH-GAL4/+ control; blue line).(Incidentally, the corresponding copulation latency should also be shown for these data.). ii) For Fig. 5I-K, the conclusion stated is that "Knock-down of EcR-A during pupal stage significantly decreased the copulation rate." Although strictly correct, the problem is that panel J is the only one for which the behavior of the control lacking the RNAi is not the same as that of the experimental group. Thus, it could just be that when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental. Again, the results shown in J are strictly speaking correct but the statement is too definitive given the behavior of one of the controls in panels I and K. Note also that panel F shows that the UAS-RNAi control causes a massive decrease in female fertility, yet no mention is made of this fact.

    1. Reviewer #1 (Public Review):

      Summary:

      Winged seeds or ovules from the Devonian are crucial to understanding the origin and early evolutionary history of wind dispersal strategy. Based on exceptionally well-preserved fossil specimens, the present manuscript documented a new fossil plant taxon (new genus and new species) from the Famennian Series of Upper Devonian in eastern China and demonstrated that three-winged seeds are more adapted to wind dispersal than one-, two- and four-winged seeds by using mathematical analysis.

      Strengths:

      The manuscript is well organised and well presented, with superb illustrations. The methods used in the manuscript are appropriate.

      Weaknesses:

      I would only like to suggest moving the "Mathematical analysis of wind dispersal of ovules with 1-4 wings" section from the supplementary information to the main text, leaving the supplementary figures as supplementary materials.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Medina-Feliciano et al. investigated the single cell transcriptomic profile of holoturian regenerating intestine following evisceration, a process used to expel their viscera in response to predation. Using single cell RNA-sequencing and standard analysis such as "Find cluster markers", "Enrichment analysis of Gene Ontology" and "RNA velocity", they identify 13 cell clusters and potential identity. Based merely on bioinformatic analysis they identified potentially proliferating clusters and potential trajectories of cell differentiation. This manuscript represents a useful dataset that can provide candidate cell types and cell markers for more in-depth functional analysis for gaining a better understanding of the holoturian intestine regeneration. The conclusions of this paper are supported only by bioinformatic analyses, since the in vivo validation through HCR does not sufficiently support them.

      Strengths:<br /> - The Authors are providing a single cell dataset obtained from sea cucumber regenerating their intestine. This represents a first fundamental step to an unbiased approach to better understand this regeneration process and the cellular dynamics taking part in it.<br /> - The Authors run all the standard analyses providing the reader with a well digested set of information about cell clusters, potential cell types, potential functions and potential cell differentiation trajectories.

      Weaknesses:<br /> - The entire study is based on only 2 adult animals, that were used for both the single cell dataset and the HCR. Additionally, the animals were caught from the ocean preventing information about their age or their life history. This makes the n extremely small and reduces the confidence of the conclusions.<br /> - All the fluorescent pictures present in this manuscript present red nuclei and green signals being not color-blind friendly. Additionally, many of the images lack sufficient quality to determine if the signal is real. Additional images of a control animal (not eviscerated) and of a negative control would help data interpretation. Finally, in many occasions a zoomed out image would help the reader to provide context and have a better understanding of where the signal is localized.<br /> - The Authors frequently report the percentage of cells with a specific feature (either labelled or expressing a certain gene or belonging to a certain cluster). This number can be misleading since that is calculated after cell dissociation and additional procedures (such as staining or sequencing and dataset cleanup) that can heavily bias the ratio between cell types. Similarly, the Authors cannot compare cell percentage between anlage and mesentery samples since that can be affected by technical aspects related to cell dissociation, tissue composition and sequencing depth.<br /> - The Authors decided to validate only a few clusters and in many cases there are no positive controls (such as specific localization, specific function, changes between control and regenerating animals, co-stain) that could actually validate the cluster identity and the specificity of the selected marker. There is no validation of the trajectory analysis and there is no validation of the proliferating cluster with H3P or BrdU stainings.<br /> - It is not clear what is already known about holothurian intestine regeneration and what are the new findings in this manuscript. The Authors reference several papers throughout the whole result sectioning mentioning how the steps of regeneration, the proliferating cells, some of the markers and some of the cell composition of mesenteries and anlages was already known.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This research offers a comprehensive analysis of the regenerative process in sea cucumbers and builds upon decades of previous research. The approach involves a detailed examination using single-cell sequencing, making it a crucial reference paper while shedding new light on regeneration in this organism.

      Strengths:<br /> Detailed analysis of single-cell sequencing data and high-quality RNA localization images provide significant new insights into regeneration in sea cucumbers and, more broadly, in animals.

      Weaknesses:<br /> The spatial context of the RNA localization images is not well represented, making it difficult to understand how the schematic model was generated from the data. In addition, multiple strong statements in the conclusion should be better justified and connected to the data provided.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors have done a good job of creating a "resource" paper for the study of gut regeneration in sea cucumbers. They present a single-cell RNAseq atlas for the reconstitution of Holothuria glaberrima gut following self-evisceration in response to a potassium chloride injection. The authors provide data characterizing cellular populations and precursors of the regenerating anlage at 9 days post evisceration. As a "Tools and Resources" contribution to eLife, this work, with some revisions, could be appropriate. It will be impactful in the fields of regeneration, particularly in invertebrates, but also in comparative studies in other species, including evolutionary studies. Some of these comparative studies could extend to vertebrates and could therefore impact regenerative medicine in the future.

      Strengths:<br /> • Novel and useful information for a model organism and question for which this type of data has not yet been reported<br /> • Single-cell gene expression data will be valuable for developing testable hypotheses in the future<br /> • Marker genes for cell types provided to the field<br /> • Interesting predictions about possible lineage relationships between cells during sea cucumber gut regeneration

      Weaknesses:<br /> • Possible theoretical advances regarding lineage trajectories of cells during sea cucumber gut regeneration, but the claims that can be made with this data alone are still predictive<br /> • Better microscopy is needed for many figures to be convincing<br /> • Some minor additions to the figures will help readers understand the data more clearly

    1. Reviewer #1 (Public Review):

      Summary:

      Dalal and Haddad investigated how neurons in the olfactory bulb are synchronized in oscillatory rhythms at gamma frequency. Temporal coordination of action potentials fired by projection neurons can facilitate information transmission to downstream areas. In a previous paper (Dalal and Haddad 2022, https://doi.org/10.1016/j.celrep.2022.110693), the authors showed that gamma frequency synchronization of mitral/tufted cells (MTCs) in the olfactory bulb enhances the response in the piriform cortex. The present study builds on these findings and takes a closer look at how gamma synchronization is restricted to a specific subset of MTCs in the olfactory bulb. They combined odor and optogenetic stimulations in anesthetized mice with extracellular recordings.<br /> The main findings are that lateral synchronization of MTCs at gamma frequency is mediated by granule cells (GCs), independent of the spatial distance, and strongest for MTCs with firing rates close to 40 Hz. The authors conclude that this reveals a simple mechanism by which spatially distributed neurons can form a synchronized ensemble. In contrast to lateral synchronization, they found no evidence for the involvement of GCs in lateral inhibition of nearby MTCs.

      Strengths:

      Investigating the mechanisms of rhythmic synchronization in vivo is difficult because of experimental limitations for the readout and manipulation of neuronal populations at fast timescales. Using spatially patterned light stimulation of opsin-expressing neurons in combination with extracellular recordings is a nice approach. The paper provides evidence for an activity-dependent synchronization of MTCs in gamma frequency that is mediated by GCs.

      Weaknesses:

      An important weakness of the study is the lack of direct evidence for the main conclusion - the synchronization of MTCs in gamma frequency. The data shows that paired optogenetic stimulation of MTCs in different parts of the olfactory bulb increases the rhythmicity of individual MTCs (Figure 1) and that combined odor stimulation and GC stimulation increases rhythmicity and gamma phase locking of individual MTCs (Figure 4). However, a direct comparison of the firing of different MTCs is missing. This could be addressed with extracellular recordings at two different locations in the olfactory bulb. The minimum requirement to support this conclusion would be to show that the MTCs lock to the same phase of the gamma cycle. Also, showing the evoked gamma oscillations would help to interpret the data.

      Another weakness is that all experiments are performed under anesthesia with ketamine/medetomidine. Ketamine is an antagonist of NMDA receptors and NMDA receptors are critically involved in the interactions of MTCs and GCs at the reciprocal synapses (see for example Lage-Rupprecht et al. 2020, https://doi.org/10.7554/eLife.63737; Egger and Kuner 2021, https://doi.org/10.1007/s00441-020-03402-7). This should be considered for the interpretation of the presented data.

      Furthermore, the direct effect of optogenetic stimulation on GCs activity is not shown. This is particularly important because they use Gad2-cre mice with virus injection in the olfactory bulb and expression might not be restricted to granule cells and might not target all subtypes of granule cells (Wachowiak et al., 2013, https://doi.org/10.1523/JNEUROSCI.4824-12.2013). This should be considered for the interpretation of the data, particularly for the absence of an effect of GC stimulation on lateral inhibition.

      Several conclusions are only supported by data from example neurons. The paper would benefit from a more detailed description of the analysis and the display of some additional analysis at the population level:

      - What were the criteria based on which the spots for light-activation were chosen from the receptive field map?

      - The absence of an effect on firing rate for paired stimulations is only shown for one example (Figure 1c). A quantification of the population level would be interesting.

      - Only one example neuron is shown to support the conclusion that "two different neural circuits mediate suppression and entrainment" in Figure 3. A population analysis would provide more evidence.

      - Only one example neuron is shown to illustrate the effect of GC stimulation on gamma rhythmicity of MTCs in Figures 4 f,g.

      - In Figure 5 and the corresponding text, "proximal" and "distal" GC activation are not clearly defined.

    2. Reviewer #2 (Public Review):

      Summary

      This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.

      The authors use a clever combination of single-cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of lateral glomerular MTC ensembles. This assay is rounded off by a gain-of-function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization to gamma (they had used this manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation).

      Strengths

      This study is of high interest for olfactory processing - since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance the synchronization of single neurons to gamma in one channel (and thus by inference most likely in both). These interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities.

      In my view, parallels between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.

      Such enhanced local synchronization was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve the reduction of firing rates, drops off with distance and most likely is caused by a different circuit-mediated by PV+ neurons (PVN; the evidence for which is circumstantial).

      Weaknesses/Room for improvement

      Thus this study is an impressive proof of concept that however does not yet allow for broad generalization. Therefore the framing of results should be slightly more careful in my opinion.

      Along this line, the conclusions regarding two different circuits underlying lateral inhibition vs enhanced synchronization are not quite justified by the data, e.g.

      (1) The authors mention that their granule cell stimulation results in a local cold spot (l. 527 ff) - how can they then said to be not involved in the inhibition of firing rate (bullet point in Highlights)? Please elaborate further. In l.406 they also state that GCs can inhibit MTCs under certain conditions. The argument, that this stimulation is not physiological, makes sense, but still does not rule out anything. You might want to cite Aghvami et al 2022 on the very small amplitude of GC-mediated IPSPs, also McIntyre and Cleland 2015.

      (2) Even from the shown data, it appears that laterally increased synchronization might co-occur with lateral suppression (See also comment on Figures 1d,e and Figure S1c)

      (3) There are no manipulations of PVN activity in this study, thus there is no direct evidence for the substrate of the second circuit.

      (4) The manipulation of GC activity was performed in a transgenic line with viral transfection, which might result in a lower permeation of the population compared to the line used for optogenetic stimulation of MTCs.

      In some instances, the authors tend to cite older literature - which was not yet aware of the prominent contribution of EPL interneurons including PVN to recurrent and lateral inhibition of MT cells - as if roles that then were ascribed to granule cells for lack of better knowledge can still be unequivocally linked to granule cells now. For example, they should discuss Arevian et al (2006), Galan et al 2006, Giridhar et al., Yokoi et al. 1995, etc in the light of PVN action.

      Therefore it is also not quite justified to state that their result regarding the role of GCs specifically for synchronization, not suppression, is "in contrast to the field" (e.g. l.70 f.,, l.365, l. 400 ff).

      Why did the authors choose to use the term "lateral suppression", often interchangeably with lateral inhibition? If this term is intended to specifically reflect reductions of firing rates, it might be useful to clearly define it at first use (and cite earlier literature on it) and then use it consistently throughout.

      A discussion of anesthesia effects is missing - e.g. GC activity is known to be reportedly stronger in awake mice (Kato et al). This is not a contentious point at all since the authors themselves show that additional excitation of GCs enhances synchrony, but it should be mentioned.

      Some citations should be added, in particular relevant recent preprints - e.g. Peace et al. BioRxiv 2024, Burton et al. BioRxiv 2024 and the direct evidence for a glutamate-dependent release of GABA from GCs (Lage-Rupprecht et al. 2020).

      The introduction on the role of gamma oscillations in sensory systems (in particular vision) could be more elaborated.

    3. Reviewer #3 (Public Review):

      Summary:

      This study by Dalal and Haddad analyzes two facets of cooperative recruitment of M/TCs as discerned through direct, ChR2-mediated spot stimulations:

      (1) mutual inhibition and<br /> (2) entrainment of action potential timing within the gamma frequency range.

      This investigation is conducted by contrasting the evoked activity elicited by a "central" stimulus spot, which induces an excitatory response alone, with that elicited when paired with stimulations of surrounding areas. Additionally, the effect of Gad2-expressing granule cells is examined.

      Based on the observed distance dependence and the impact of GC stimulations, the authors infer that mutual inhibition and gamma entrainment are mediated by distinct mechanisms.

      Strengths:

      The results presented in this study offer a nice in vivo validation of the significant in vitro findings previously reported by Arevian, Kapoor, and Urban in 2008. Additionally, the distance-dependent analysis provides some mechanistic insights.

      Weaknesses:

      The results largely reproduce previously reported findings, including those from the authors' own work, such as Dalal and Haddad (2022), where a key highlight was "Modulating GC activities dissociates MTCs odor-evoked gamma synchrony from firing rates." Some interpretations, particularly the claim regarding the distance independence of the entrainment effect, may be considered over-interpretations.

    1. Reviewer #1 (Public Review):

      Kainov et al investigated the prevalence of mutations in 3'UTR that affect gene expression in cancer to identify noncoding cancer drivers.

      The authors used data from normal controls (1000 genome data) and compared it to cancer data (PCAWG). They found that in cancer 3'UTR mutations had a stronger effect on cleavage than the normal population. These mutations are negatively selected in the normal population and positively selected in cancers. The authors used PCAWG data set to identify such mutations and found that the mutations that lead to a reduction of gene expression are enriched in tumor suppressor genes and those that are increased in gene expression are enriched for oncogenes. 3'UTR mutations that reduce gene expression or occur in TSGs co-occur with non-synonymous mutations. The authors then validate the effect of 3'UTR mutations experimentally using a luciferase reporter assay. These data identify a novel class of noncoding driver genes with mutations in 3'UTR that impact polyadenylation and thus gene expression.

      This is an elegant study with fundamental insight into identifying cancer driver genes. The conclusions of this paper are mostly well supported by data, but some aspects of data analysis need to be extended.

      (1) It would be important for the authors to show if the findings of this study hold for metastatic cancers since most deaths occur due to metastasis and tumor heterogeneity changes when cancer progresses to metastasis. The authors should use the Hartwig data and show if metastatic cancers are enriched for 3'UTR mutations.

      (2) Figure 2 should show the distribution of 3'UTR mutations by cancer type especially since authors go on to use colorectal cancer only for validations. It would be helpful to bring Figures S3A and S3C to this panel since these findings make the connections to cancer biology. Are any molecular functions enriched in addition to biological processes? Are kinases, phosphatases, etc more or less affected by 3'UTR mutations?

      (3) Figure 3 looks at the co-occurrence of 3'UTR mutations with non-synonymous mutations but what about copy number change? You would expect the loss of the other allele to be enriched. Along the same line, are these data phased? Do you know that the non-synonymous mutations are in the other allele or in the same allele that shows 3'UTR mutation?

    2. Reviewer #2 (Public Review):

      Summary:

      To evaluate whether somatic mutations in cancer genomes are enriched with mutations in polyadenylation signal regions, the authors analyzed 1000 genomes data and PCAWG data as a control and experimental set, respectively. They observed increased enrichment of somatic mutations that may affect the function of polyA signals and confirmed that these mutations may influence the expression of the gene through a minigene expression experiment.

      Strengths:

      This study provides a systematic evaluation of polyA signal, which makes it valuable. Overall, the analytic approach and results are solid and supported by experimental validation.

      Weaknesses:

      (1) This study uses APARENT2 as a tool to evaluate functional alteration in polyA signal sequences. Based on the original paper and the results shown in this paper, the algorithm appears to be of high quality. However, the whole study is dependent on the output of APARENT2. Therefore, it would be nice to<br /> (a) run and show a positive control run, which can show that the algorithm works well, and<br /> (b) describe the rationale for selecting this algorithm in the main text.

      (2) Are there recurrent somatic mutation calls (= exactly the same mutation across different tumor samples) in the poly(A) region of certain genes?

      (3) The authors nicely showed that the minigene with A>G mutation altered gene expression. Maybe one can reach a similar conclusion by analyzing a cancer dataset that has mutation and gene expression data? That is, genes with or without polyA mutations show different expression levels.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the mechanism underlying Congenital NAD Deficiency Disorder (CNDD) using a mouse model with loss of function of the HAAO enzyme which mediates a key step in the NAD de novo synthesis pathway. This study builds on the observation that the kynurenine pathway is required in the conceptus, as HAAO null embryos are sensitive to maternal deficiency of NAD precursors (vitamin B3) and tryptophan, and narrows the window of sensitivity to a 3-day period.

      An important finding is that de novo NAD synthesis occurs in an extra-embryonic tissue, the visceral yolk sac, before the liver develops in the embryo. It is suggested that lack of this yolk sac activity leads to impaired NAD supply in the embryo leading to structural abnormalities found later in development.

      Strengths:

      Previous studies show a requirement for HAAO activity for the normal development of embryos. Abnormalities develop under conditions of maternal vitamin B3 deficiency, indicating a requirement for NAD synthesis in the conceptus. Analysis of scRNA-seq datasets combined with metabolite analysis of yolk sac tissue shows that the NAD synthesis pathway is expressed and functional in the yolk sac from E10.5 onwards (prior to liver development).

      HAAO enzyme assay enabled quantification of enzyme activity in relevant tissues including the liver (from E12.5), placenta, and yolk sac (from E11.5).

      Comprehensive metabolite analysis of the NAD synthesis pathway supports the predicted effects of Haao knockout and provides analysis of the yolk sac, placenta, and embryo at a series of stages.

      The dietary study (with lower vitamin B3 in maternal diet from E7.5-10.5) is an incremental addition to previous studies that imposed similar restrictions from E7.5-12.5.

      Nevertheless, this emphasises the importance of the synthesis pathway on the conceptus at stages before the liver activity is prominent.

      Weaknesses:

      The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in the yolk sac and embryo at E10.5. However, without analysis of embryos at later stages in this experiment it is not known how long is needed for NAD synthesis to be recovered - and therefore until when the period of exposure to insufficient NAD lasts. This information would inform the understanding of the developmental origin of the observed defects.

      More importantly, there is still a question of whether in addition to the yolk sac, there is HAAO activity within the embryo itself prior to E12.5 (when it has first been assayed in the liver - Figure 1C). The prediction is that within the conceptus (embryo, chorioallantoic placenta, and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development. Reanalysis of scRNA-seq (Fig 1B) shows expression of all the enzymes of the kynurenine pathway from E9.5 onwards. However, the expression of another available dataset at E10.5 (Fig S3) suggested that expression is 'negligible'. While the expression in Figure 1B, Figure S1 is weak this creates a lack of clarity about the possible expression of HAAO in the hepatocyte lineage, or especially elsewhere in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). Given these questions, a direct analysis of RNA and/or protein expression in the embryos at E7.5-10.5 would be helpful.

    2. Reviewer #2 (Public Review):

      Summary:

      Disruption of the nicotinamide adenine dinucleotide (NAD) de novo Synthesis Pathway, by which L-tryptophan is converted to NAD results in multi-organ malformations which collectively has been termed Congenital NAD Deficiency Disorder (CNDD).

      While NAD de novo synthesis is primarily active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. However, mouse embryos are susceptible to CNDD between E7.5-E12.5, before the embryo has developed a functional liver. Therefore, NAD de novo synthesis is likely active in another cell or tissue during this time window of susceptibility.

      The body of work presented in this paper continues the corresponding author's lab investigation of the cause and effects of NAD Deficiency and the primary goal was to determine the cell or tissue responsible for NAD de novo synthesis during early embryogenesis.

      The authors conclude that visceral yolk sac endoderm is the source of NAD de novo synthesis, which is essential for mouse embryonic development, and furthermore that the dynamics of NAD synthesis are conserved in human equivalent cells and tissues, the perturbation of which results in CNDD.

      Strengths:

      Overall, the primary findings regarding the source of NAD synthesis, the temporal requirement, and conservation between rodent and human species are quite novel and important for our understanding of NAD synthesis and its function and role in CNDD.

      The authors used UHPLC-MS/MS to quantify NAD+ and NAD-related metabolites and showed convincingly that the NAD salvage pathway can compensate for the loss of NAD synthesis in Haao-/- embryos, then determined that Haao activity was present in the yolk sac prior to hepatic development identifying this organ as the site of de novo NAD synthesis. Dietary modulation between E7.5-10.5 was sufficient to induce CNDD phenotypes, narrowing the window of susceptibility, and then re-analysis of RNA-seq datasets suggested the endoderm was the cell source of NAD synthesis.

      Weaknesses:

      Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency.

      Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway?

      Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis.

      Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD might require conditional deletion of Haoo in the yolk sac versus embryo using appropriate Cre driver lines or in the absence of a conditional allele, could be performed by tetraploid embryo-ES cell complementation approaches. But temporal dietary intervention can also approximate the same thing by perturbing NAD synthesis Shen the yolk sac is the primary source versus when the liver becomes the primary source in the embryo.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aim to measure the apoptotic fraction of motorneurons in developing zebrafish spinal cord to assess the extent of neuronal apoptosis during the development of a vertebrate embryo in an in vivo context.

      Strengths:

      The transgenic fish line tg (mnx1:sensor C3) appears to be a good reagent for motorneuron apoptosis studies, while further validation of its motorneuron specificity should be performed.

      Weaknesses:

      The results do not support the conclusions. The main "selling point" as summarized in the title is that the apoptotic rate of zebrafish motorneurons during development is strikingly low (~2% ) as compared to the much higher estimate (~50%) by previous studies in other systems. The results used to support the conclusion are that only a small percentage (under 2%) of apoptotic cells were found over a large population at a variety of stages 24-120hpf. This is fundamentally flawed logic, as a short-time window measure of percentage cannot represent the percentage in the long term. For example, at any year under 1% of the human population dies, but over 100 years >99% of the starting group will have died. To find the real percentage of motorneurons that died, the motorneurons born at different times must be tracked over the long term or the new motorneuron birth rate must be estimated.

      A similar argument can be applied to the macrophage results. Here the authors probably want to discuss well-established mechanisms of apoptotic neuron clearance such as by glia and microglia cells.

      The conclusion regarding the timing of axon and cell body caspase activation and apoptosis timing also has clear issues. The ~minutes measurement is too long as compared to the transport/diffusion timescale between the cell body and the axon, caspase activity could have been activated in the cell body, and either caspase or the cleaved sensor moves to the axon in several seconds. The authors' results are not high-frequency enough to resolve these dynamics

      Many statements suggest oversight of literature, for example, in the abstract "However, there is still no real-time observation showing this dying process in live animals.".

      Many statements should use more scholarly terms and descriptions from the spinal cord or motor neuron, neuromuscular development fields, such as line 87 "their axons converged into one bundle to extend into individual somite, which serves as a functional unit for the development and contraction of muscle cells"

      The transgenic line is perhaps the most meaningful contribution to the field as the work stands. However, the mnx1 promoter is well known for its non-specific activation - while the images suggest the authors' line is good, motor neuron markers should be used to validate the line. This is especially important for assessing this population later as mnx1 may be turned off in mature neurons.

      Overall, this work does not substantiate its biological conclusions and therefore does not advance the field. The transgenic line has the potential to address the questions raised but requires different sets of experiments. The line and the data as reported are useful on their own by providing a short-term rate of apoptosis of the motorneuron population.

    2. Reviewer #2 (Public Review):

      Summary:

      Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study the death of zebrafish spinal motor neurons.

      Strengths:<br /> Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish.

      Weaknesses:<br /> However, they have ignored significant literature describing the death of an identified zebrafish motor neuron, expression of the mnx gene in interneurons that are closely related to motor neurons, the increase in number of zebrafish motor neurons over developmental time, and potential differences between the limb-innervating motor neurons whose death has been characterized in chicks and rodents and the body wall-innervating motor neurons whose death they characterized using their biosensor. Thus, although their new tool is likely to be useful in the future, it does not provide new insights into zebrafish motor neuron programmed cell death.

    1. Reviewer #1 (Public Review):

      The authors report the results of a randomized clinical trial of taVNS as a neuromodulation technique in SAH patients. They found that taVNS appears to be safe without inducing bradycardia or QT prolongation. taVNS also increased parasympathetic activity, as assessed by heart rate variability measures. Acute elevation in heart rate might be a biomarker to identify SAH patients who are likely to respond favorably to taVNS treatment. The latter is very important in light of the need for acute biomarkers of response to neuromodulation treatments.

      Comments:

      (1) Frequency domain heart rate variability measures should be analyzed and reported. Given the short duration of the ECG recording, the frequency domain may more accurately reflect autonomic tone.

      (2) How was the "dose" chosen (20 minutes twice daily)?

      (3) The use of an acute biomarker of response is very important. A bimodal response to taVNS has been previously shown in patients with atrial fibrillation (Kulkarni et al. JAHA 2021).

    2. Reviewer #2 (Public Review):

      Summary:

      This study investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on cardiovascular dynamics in subarachnoid hemorrhage (SAH) patients. The researchers conducted a randomized clinical trial with 24 SAH patients, comparing taVNS treatment to a Sham treatment group (20 minutes per day twice a day during the ICU stay). They monitored electrocardiogram (ECG) readings and vital signs to assess acute as well as middle-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. The results showed that repetitive taVNS did not significantly alter heart rate, corrected QT interval, blood pressure, or intracranial pressure. However, it increased overall heart rate variability and parasympathetic activity after 5-10 days of treatment compared to the sham treatment. Acute taVNS led to an increase in heart rate, blood pressure, and peripheral perfusion index without affecting corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who showed clinical improvement. In conclusion, the study found that taVNS treatment did not cause adverse cardiovascular effects, suggesting it is a safe immunomodulatory treatment for SAH patients. The mild acute increase in heart rate post-treatment could potentially serve as a biomarker for identifying SAH patients who may benefit more from taVNS therapy.

      Strengths:

      The paper is overall well written, and the topic is of great interest. The methods are solid and the presented data are convincing.

      Weaknesses:

      (1) It should be clearly pointed out that the current paper is part of the NAVSaH trial (NCT04557618) and presents one of the secondary outcomes of that study while the declared first outcomes (change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt) are available as a pre-print and currently under review (doi: 10.1101/2024.04.29.24306598.). The authors should better stress this point as well as the potential association of the primary with the secondary outcomes.

      (2) The references should be implemented particularly concerning other relevant papers (including reviews and meta-analysis) of taVNS safety, particularly from a cardiovascular standpoint, such as doi: 10.1038/s41598-022-25864-1 and doi: 10.3389/fnins.2023.1227858).

      (3) The dose-response issue that affects both VNS and taVNS applications in different settings should be mentioned (doi: 10.1093/eurheartjsupp/suac036.) as well as the need for more dose-finding preclinical as well as clinical studies in different settings (the best stimulation protocol is likely to be disease-specific).

      Overall, the present work has the important potential to further promote the usage of taVNS even on critically ill patients and might set the basis for future randomized studies in this setting.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors aimed to characterize the cardiovascular effects of acute and repetitive taVNS as an index of safety. The authors concluded that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation.

      Strengths:

      This study has the potential to contribute important information about the clinical utility of taVNS as a safe immunomodulatory treatment approach for SAH patients.

      Weaknesses:

      A number of limitations were identified:

      (1) A primary hypothesis should be clearly stated. Even though the authors state the design is a randomized clinical trial, several aspects of the study appear to be exploratory. The method of randomization was not stated. I am assuming it is a forced randomization given the small sample size and approximately equal numbers in each arm.

      (2) The authors "first investigated whether taVNS treatment induced bradycardia or QT prolongation, both potential adverse effects of vagus nerve stimulation. This analysis showed no significant differences in heart rate calculated from 24-hour ECG recording between groups." A justification should be provided for why a difference is expected from 20 minutes of taVNS over a period of 24 hours. Acute ECG changes are a concern for increasing arrhythmic risk, for example, due to cardiac electrical restitution properties.

      (3) More rigorous evaluation is necessary to support the conclusion that taVNS did not change heart rate, HRV, QTc, etc. For example, shifts in peak frequencies of the high-frequency vs. low-frequency power may be effective at distinguishing the effects of taVNS. Further, compensatory sympathetic responses due to taVNS should be explored by quantifying the changes in the trajectory of these metrics during and following taVNS.

      (4) The authors do not state how the QT was corrected and at what range of heart rates. Because all forms of corrections are approximations, the actual QT data should be reported along with the corrected QT.

      (5) The QT extraction method needs to be more robust. For example, in Figure 2C, the baseline voltage of the ECG is shifting while the threshold appears to be fixed. If indeed the threshold is not dynamic and does not account for baseline fluctuations (e.g., due to impedance changes from respiration), then the measures of the QT intervals were likely inaccurate.

      (6) More statistical rigor is needed. For example, in Figure 2D, the change in heart rate for days 5-7, 8-10, and 11-13 is clearly a bimodal distribution and as such, should not be analyzed as a single distribution. Similarly, Figure 2E also shows a bimodal distribution. Without the QT data, it is unclear whether this is due to the application of the heart rate correction method.

      (7) Figure 3A shows a number of outliers. A SDNN range of 200 msec should raise concern for a non-sinus rhythm such as arrhythmia or artifact, instead of sinus arrhythmia. Moreover, Figure 3B shows that the Sham RMSSD data distribution is substantially skewed by the presence of at least 3 outliers, resulting in lower RMSSD values compared to taVNS. What types of artifact or arrhythmia discrimination did the authors employ to ensure the reported analysis is on sinus rhythm? The overall results seem to be driven by outliers.

      (8) The above concern will also affect the power analysis, which was reported by authors to have been performed based on the t-test assuming the medium effect size, but the details of sample size calculations were not reported, e.g., X% power, t-test assumed Bonferroni correction in the power analysis, etc.

      (9) If the study was designed to show a cardiovascular effect, I am surprised that N=10 per group was considered to be sufficiently powered given the extensive reports in the literature on how HRV measures (except when pathologically low) vary within individuals. Moreover, HRV measures are especially susceptible to noise, artifacts, and outliers.

      If the study was designed to show a lack of cardiovascular effect (as the conclusions and introduction seem to suggest), then a several-fold larger sample size is warranted.

    1. Reviewer #1 (Public Review):

      Summary:

      Gekko, Nomura et al., show that Drp1 elimination in zygotes using the Trim-Away technique leads to mitochondrial clustering and uneven mitochondrial partitioning during the first embryonic cleavage, resulting in embryonic arrest. They monitor organellar localization and partitioning using specific targeted fluorophores. They also describe the effects of mitochondrial clustering in spindle formation and the detrimental effect of uneven mitochondrial partitioning to daughter cells.

      Strengths:

      The authors have gathered solid evidence for the uneven segregation of mitochondria upon Drp1 depletion through different means: mitochondrial labelling, ATP labelling and mtDNA copy number assessment in each daughter cell. Authors have also characterised the defects in cleavage mitotic spindles upon Drp1 loss

      Weaknesses:

      While this study convincingly describes the phenotype seen upon Drp1 loss, my major concern is that the mechanism underlying these defects in zygotes remains unclear. The authors refer to mitochondrial fragmentation as the mechanism ensuring organelle positioning and partitioning into functional daughters during the first embryonic cleavage. However, could Drp1 have a role beyond mitochondrial fission in zygotes? I raise these concerns because, as opposed to other Drp1 KO models (including those in oocytes) which lead to hyperfused/tubular mitochondria, Drp1 loss in zygotes appears to generate enlarged yet not tubular mitochondria. Lastly, while the authors discard the role of mitochondrial transport in the clustering observed, more refined experiments should be performed to reach that conclusion.

    2. Reviewer #2 (Public Review):

      Gekko et al investigate the impact of perturbing mitochondrial during early embryo development, through modulation of the mitochondrial fission protein Drp1 using Trim-Away technology. They aimed to validate a role for mitochondrial dynamics in modulating chromosomal segregation, mitochondrial inheritance and embryo development and achieve this through the examination of mitochondrial and endoplasmic reticulum distribution, as well as actin filament involvement, using targeted plasmids, molecular probes and TEM in pronuclear stage embryos through the first cleavages divisions. Drp1 deletion perturbed mitochondrial distribution, leading to asymmetric partitioning of mitochondria to the 2-cell stage embryo, prevented appropriate chromosomal segregation and culminated in embryo arrest. Resultant 2-cell embryos displayed altered ATP, mtDNA and calcium levels. Microinjection of Drp1 mRNA partially rescued embryo development. A role for actin filaments in mitochondrial inheritance is described, however the actin-based motor Myo19 does not appear to contribute.

      Overall, this study builds upon their previous work and provides further support for the role of mitochondrial dynamics in mediating chromosomal segregation and mitochondrial inheritance. In particular, Drp1 is required for redistribution of mitochondria to support symmetric partitioning and support ongoing development.

      Strengths:<br /> The study is well designed, the methods appropriate and the results clearly presented. The findings are nicely summarised in a schematic.

      Understanding the role of mitochondria in binucleation and mitochondrial inheritance is of clinical relevance for patients undergoing infertility treatment, particularly those undergoing mitochondrial replacement therapy.

      Weaknesses:

      The authors first describe the redistribution of mitochondria during normal development, followed by alterations induced by Drp1 depletion. It would be useful to indicate the time post-hCG for imaging of fertilised zygotes (first paragraph of the results/Figure 1) to compare with subsequent Drp1 depletion experiments.

      It is noted that Drp1 protein levels were undetectable 5h post-injection, suggesting earlier times were not examined, yet in Figure 3A it would seem that aggregation has occurred within 2 hours (relative to Figure 1).

      Mitochondria appear to be slightly more aggregated in Drp1 fl/fl embryos than in control, though comparison with untreated controls does not appear to have been undertaken. There also appears to be some variability in mitochondrial aggregation patterns following Drp1 depletion (Figure 2-suppl 1 B) which are not discussed.

      The authors use western blotting to validate the depletion of Drp1, however do not quantify band intensity. It is also unclear whether pooled embryo samples were used for western blot analysis.

      Likewise, intracellular ROS levels are examined however quantification is not provided. It is therefore unclear whether 'highly accumulated levels' are of significance or related to Drp1 depletion.

      In previous work, Drp1 was found to have a role as a spindle assembly checkpoint (SAC) protein. It is therefore unclear from the experiments performed whether aggregation of mitochondria separating the pronuclei physically (or other aspects of mitochondrial function) prevents appropriate chromosome segregation or whether Drp1 is acting directly on the SAC.

    3. Reviewer #3 (Public Review):

      Why mitochondria are finely maintained in the female germ cell (oocyte), zygotes, and preimplantation embryos? Mitochondrial fusion seems beneficial in somatic cells to compensate for mitochondria with mutated mtDNA that potentially defuel the respiratory activity if accumulated above a certain threshold. However, in the germ cells, it may rather increase the risk of transmitting mutated mtDNA to the next generation, as authors discussed. Also, finely maintained mitochondria would also be beneficial for efficient removal when damaged. Due in part to the limited suitable model, the physiological role of mitochondrial fission in embryos were obscure. In this study, authors demonstrated that mitochondrial fission prevents multiple adverse outcomes, even including the aberrant demixing of parental genome in zygotic stage. This is an important study that could contribute by proposing a new mechanism for solving problems that actually arise in the field of reproductive medicine. The conclusion is simple and clear, but the high level of technology has made it possible to overcome the difficulties of proving the results, making this an extremely excellent study.

      Seemingly, there are few apparent shortcomings. Following are the specific comments to activate the further open discussion.<br /> - Line 246: Comments on cristae morphology of mitochondria in Drp1-depleted embryos would better be added.<br /> - Regarding Figure 2H: If possible, a representative picture of Ateam would better be included in the figure. As the authors discussed in line 458, Ateam may be able to detect whether any alterations of local energy demand occurred in the Drp1-depleted embryos.<br /> - Line 282: In Figure 3-Video 1, mitochondria were seemingly more aggregated around female pronucleus. Is it OK to understand that there is no gender preference of pronuclei being encircled by more aggregated mitochondria?<br /> - Line 317: A little more explanation of the "variability" would be fine. Does that basically mean that the Ca2+ response in both Drp1-depleted blastomeres were lower than control and blastomere with more highly aggregated mitochondria show severer phenotype compared to the other blastomere with fewer mito?<br /> - Regarding Figure 5B (& Figure 1-figure supplement 1B): Do authors think that there would be less abnormalities in the embryos if Drp1 is trim-awayed after 2-cell or 4-cell, in which mitochondria are less involved in the spindle?

    1. Reviewer #2 (Public Review):

      This paper examines the recruitment of the inflammasome seeding pattern recognition receptor NLRP3 to the Golgi. Previously, electrostatic interactions between the polybasic region of NLRP3 and negatively charged lipids were implicated in membrane association. The current study concludes that reversible S-acylation of the conserved Cys-130 residue, in conjunction with upstream hydrophobic residues plus the polybasic region, act together to promote Golgi localization of NLRP3, although additional parts of the protein are needed for full Golgi localization. Treatment with the bacterial ionophore nigericin inhibits membrane traffic and apparently prevents Golgi-associated thioesterases from removing the acyl chain, causing NLRP3 to become immobilized at the Golgi. This mechanism is put forth as an explanation for how NLRP3 is activated in response to nigericin.

      The experiments are generally well presented. It seems likely that Cys-130 does indeed play a previously unappreciated role in Golgi association of NLRP3. However, the evidence for S-acylation at Cys-130 is largely indirect, and the process by which nigericin enhances membrane association is not yet fully understood. Therefore, this interesting study points the way for further analysis.

    1. Reviewer #3 (Public Review):

      Summary:

      The pathomechanism underlying Sjögren's syndrome (SS) remains elusive. The Authors have studied if altered calcium signaling might be a factor in SS development in a commonly used mouse model. They provide a thorough and straightforward characterization of the salivary gland fluid secretion, cytoplasmic calcium signaling and mitochondrial morphology and respiration. A special strength of the study is the spectacular in vivo imaging, very few if any groups could have succeeded with the studies. The Authors show that the cytoplasmic calcium signaling is upregulated in the SS model and the Ca2+ regulated Cl- channels normally localized and function, still fluid secretion is suppressed. They also find altered localization of the IP3R and speculate about lesser exposure of Cl- channels to high local [Ca2+]. In addition, they describe changes in mitochondrial morphology and function that might also contribute to the attenuated secretory response. Although, the exact contribution of calcium and mitochondria to secretory dysfunction remains to be determined, the results seem to be useful for a range of scientists.

      Comments on revised version:

      I appreciate the Authors' responses and am satisfied with the revised manuscript.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors address cellular mechanisms underlying the early stages of Sjogren's syndrome, using a mouse model in which 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) is applied to stimulate the interferon gene (STING) pathway. They show that in this model salivary secretion in response to neural stimulation is greatly reduced, even though calcium responses of individual secretory cells was enhanced. They attribute the secretion defect to reduced activation of Ca2+ -activated Cl- channels (TMEM16a), due to an increased distance between Ca2+ release channels (IP3 receptors) and TMEM16a which is expected to reduce the [Ca2+] sensed by TMEM16a. A variety of disruptions in mitochondria were also observed after DMXAA treatment, including reduced abundance, altered morphology, depolarization and reduced oxygen consumption rate. The results of this study shed new light on some of the early events leading to the loss of secretory function in Sjogren's syndrome, at a time before inflammatory responses cause the death of secretory cells.

      Strengths:

      Two-photon microscopy enabled Ca2+ measurements in the salivary glands of intact animals in response to physiological stimuli (nerve stimulation. This approach has been shown previously by the authors as necessary to preserve the normal spatiotemporal organization of calcium signals that lead to secretion under physiological conditions.

      Superresolution (STED) microscopy allowed precise measurements of the spacing of IP3R and TMEM16a and the cell membranes that would otherwise be prevented by the diffraction limit. The measured increase of distance (from 84 to 155 nm) would be expected to reduce [Ca2+] at the TMEM16a channel.

      The authors effectively ruled out a variety of alternative explanations for reduced secretion, including changes in AQP5 expression, and TMEM16a expression, localization and Ca2+ sensitivity as indicated by Cl- current in response to defined levels of Ca2+. Suppression of Cl- currents by a fast buffer (BAPTA) but not a slow one (EGTA) supports the idea that increased distance between IP3R and TMEM16A contributes to the secretory defect in DMXAA-treated cells.

      Weaknesses:

      While the Ca2+ distribution in the cells was less restricted to the apical region in DMXAA-treated cells, it is not clear that this is relevant to the reduced activation of TMEM16a or to pathophysiological changes associated with Sjogren's syndrome.

      Despite the decreased level of secretion, Ca2+ signal amplitudes were higher in the treated cells, raising the question of how much this might compensate for the increased distance between IP3R and TMEM16a. The authors assume that the increased separation of IP3R and TMEM16a (and the resulting decrease in local [Ca2+]) outweighed the effect of higher global [Ca2+], but this point was not addressed directly.

      The description of mitochondrial changes in abundance, morphology, membrane potential, and oxygen consumption rate were not well integrated into the rest of the paper. While they may be a facet of the multiple effects of STING activation and may occur during Sjogren's syndrome, their possible role in reducing secretion was not examined. As it stands, the mitochondrial results are largely descriptive and more studies are needed to connect them to the secretory deficits in SJogren's syndrome.

    3. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes a very eloquent study of disrupted stimulus -secretion coupling in salivary acinar cells in the early stages of an animal model (DMXAA) of Sjogren's syndrome (SS). The study utilizes a range of technically innovative in vivo imaging of Ca signaling, in vivo salivary secretion, patch clamp electrophysiology to assess TMEM16a activity, immunofluorescence and electron microscopy and a range of morphological and functional assays of mitochondrial function. Results show that in mice with DMXAA-induced Sjogren's syndrome, there was a reduced nerve stimulation induced salivary secretion, yet surprisingly the nerve stimulation induced Ca signaling was enhanced. There was also a reduced carbachol (CCh)-induced activation of TMEM16a currents in acinar cells from DMXAA-induced SS mice, whereas the intrinsic Ca-activated TMEM16a currents were unaltered, further supporting that stimulus-secretion coupling was impaired. Consistent with this, high resolution STED microscopy revealed that there was a loss of close physical spatial coupling between IP3Rs and TMEM16a, which may contribute to the impaired stimulus-secretion coupling. Furthermore, the authors show that the mitochondria were both morphologically and functionally impaired, suggesting that bioenergetics may be impaired in salivary acinar cells of DMXAA-induced SS mice.

      Strengths:

      Overall, this is an outstanding manuscript, that will have a huge impact on the field. The manuscript is beautifully well-written with a very clear narrative. The experiments are technically innovative, very well executed and with a logical design The data are very well presented and appropriately analyzed and interpreted.

      Review of Revised Manuscript:

      The authors have now addressed all my comments and concerns in the revised manuscript to my satisfaction.

    1. Reviewer #1 (Public Review):

      In this manuscript, Leikina et al. investigate the role of redox changes in the ubiquitous protein La in promotion of osteoclast fusion. In a recently published manuscript, the investigators found that osteoclast multinucleation and resorptive activity are regulated by a de-phosphorylated and proteolytically cleaved form of the La protein that is present on the cell surface of differentiating osteoclasts. In the present work, the authors build upon these findings to determine the physiologic signals that regulate La trafficking to the cell membrane and ultimately, the ability of this protein to promote fusion. Building upon other published studies that show 1) that intracellular redox signaling can elicit changes in the confirmation and localization of La, and 2) that osteoclast formation is dependent on ROS signaling, the authors hypothesize that oxidation of La in response to intracellular ROS underlies the re-localization of La to the cell membrane and that this is necessary for its pro-fusion activity. The authors test this hypothesis in a rigorous manner using antioxidant treatments, recombinant La protein, and modification of cysteine residues predicted to be key sites of oxidation. Osteoclast fusion is then monitored in each condition using fluorescence microscopy. These data strongly support the conclusion that oxidized La is de-phosphorylated, increases in abundance at the cell surface of differentiating osteoclasts, and promotes cell-cell fusion. A strength of this manuscript is the use of multiple complementary approaches to test the hypothesis, especially the use of Cys mutant forms of La to directly tie the observed phenotypes to changes in residues that are key targets for oxidation. The manuscript is also well written and describes a clearly articulated hypothesis based on a precise summation of the existing literature. The findings of this manuscript will be of interest to researchers in the field of bone biology, but also more generally to cell biologists. The data in this manuscript may also lead to future studies that target La for bone diseases in which there is increased osteoclast activity. Weaknesses of the first version of the manuscript were minor and predominantly related to data presentation choices and some statistical analyses. These weaknesses were comprehensively addressed in the revised manuscript, and therefore the study has increased clarity and rigor.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Bone resorption by osteoclasts plays an important role in bone modeling and homeostasis. The multinucleated mature osteoclasts have higher bone-resorbing capacity than their mononuclear precursors. The previous work by authors has identified that increased cell-surface level of La protein promotes fusion of mononuclear osteoclast precursor cells to form fully active multinucleated osteoclasts. In the present study, the authors further provided convincing data obtained from cellular and biochemical experiments to demonstrate that the nuclear localized La protein where it regulates RNA metabolism was oxidized by redox signaling during osteoclast differentiation and the modified La protein was translocated to osteoclast surface where it associated with other proteins and phospholipids to trigger cell-cell fusion process. The work provides novel mechanistic insights into osteoclast biology and provides a potential therapeutic target to suppress excessive bone resorption in metabolic bone diseases such as osteoporosis and arthritis.

      Strengths:<br /> Increased intracellular ROS induced by osteoclast differentiation cytokine RANKL has been widely studied in enhancing RANKL signaling during osteoclast differentiation. The work provides novel evidence that redox signaling can post-translationally modify proteins to alter the translocation and functions of critical regulators in the late stage of osteoclastogenesis. The results and conclusions are mostly supported by the convincing cellular and biochemical assays,

      Weaknesses:<br /> Lack of in vivo studies in animal models of bone diseases such as postmenopausal osteoporosis, inflammatory arthritis, and osteoarthritis reduces the translational potential of this work.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript the authors investigate the contributions of the long noncoding RNA snhg3 in liver metabolism and MAFLD. The authors conclude that liver-specific loss or overexpression of Snhg3 impacts hepatic lipid content and obesity through epigenetic mechanisms. More specifically, the authors invoke that nuclear activity of Snhg3 aggravates hepatic steatosis by altering the balance of activating and repressive chromatin marks at the Pparg gene locus. This regulatory circuit is dependent on a transcriptional regulator SNG1.

      Strengths:

      The authors developed a tissue specific lncRNA knockout and KI models. This effort is certainly appreciated as few lncRNA knockouts have been generated in the context of metabolism. Furthermore, lncRNA effects can be compensated in a whole organism or show subtle effects in acute versus chronic perturbation, rendering the focus on in vivo function important and highly relevant. In addition, Snhg3 was identified through a screening strategy and as a general rule the authors the authors attempt to follow unbiased approaches to decipher the mechanisms of Snhg3.

      Weaknesses:

      Despite efforts at generating a liver-specific knockout, the phenotypic characterization is not focused on the key readouts. Notably missing are rigorous lipid flux studies and targeted gene expression/protein measurement that would underpin why loss of Snhg3 protects from lipid accumulation. Along those lines, claims linking the Snhg3 to MAFLD would be better supported with careful interrogation of markers of fibrosis and advanced liver disease. In other areas, significance is limited since the presented data is either not clear or rigorous enough. Finally, there is an important conceptual limitation to the work since PPARG is not established to play a major role in the liver.

    2. Reviewer #2 (Public Review):

      Through RNA analysis, Xie et al found LncRNA Snhg3 was one of the most down-regulated Snhgs by high fat diet (HFD) in mouse liver. Consequently, the authors sought to examine the mechanism through which Snhg3 is involved in the progression of metabolic dysfunction-associated fatty liver diseases (MASLD) in HFD-induced obese (DIO) mice. Interestingly, liver-specific Sngh3 knockout reduced, while Sngh3 over-expression potentiated fatty liver in mice on a HFD. Using the RNA pull-down approach, the authors identified SND1 as a potential Sngh3 interacting protein. SND1 is a component of the RNA-induced silencing complex (RISC). The authors found that Sngh3 increased SND1 ubiquitination to enhance SND1 protein stability, which then reduced the level of repressive chromatin H3K27me3 on PPARg promoter. The upregulation of PPARg, a lipogenic transcription factor, thus contributed to hepatic fat accumulation.

      The authors propose a signaling cascade that explains how LncRNA sngh3 may promote hepatic steatosis. Multiple molecular approaches have been employed to identify molecular targets of the proposed mechanism, which is a strength of the study. There are, however, several potential issues to consider before jumping to the conclusion.

      (1) First of all, it's important to ensure the robustness and rigor of each study. The manuscript was not carefully put together. The image qualities for several figures were poor, making it difficult for the readers to evaluate the results with confidence. The biological replicates and numbers of experimental repeats for cell-based assays were not described. When possible, the entire immunoblot imaging used for quantification should be presented (rather than showing n=1 representative). There were multiple mis-labels in figure panels or figure legends (e.g., Fig. 2I, Fig. 2K and Fig. 3K). The b-actin immunoblot image was reused in Fig. 4J, Fig. 5G and Fig. 7B with different exposure times. These might be from the same cohort of mice. If the immunoblots were run at different times, the loading control should be included on the same blot as well.

      (2) The authors can do a better job in explaining the logic for how they came up with the potential function of each component of the signaling cascade. Sngh3 is down-regulated by HFD. However, the evidence presented indicates its involvement in promoting steatosis. In Fig. 1C, one would expect PPARg expression to be up-regulated (when Sngh3 was down-regulated). If so, the physiological observation conflicts with the proposed mechanism. In addition, SND1 is known to regulate RNA/miRNA processing. How do the authors rule out this potential mechanism? How about the hosting snoRNA, Snord17? Does it involve in the progression of NASLD?

      (3) The role of PPARg in fatty liver diseases might be a rodent-specific phenomenon. PPARg agonist treatment in humans may actually reduce ectopic fat deposition by increasing fat storage in adipose tissues. The relevance of the finding to human diseases should be discussed.

    1. Reviewer #1 (Public Review):

      This study presents a valuable finding on the expression levels of circHMGCS1 regulating arginase-1 by sponging miR-4521observed in diabetes-induced vascular endothelial dysfunction, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity. Further, increase in the expression of adhesion molecules and generation of cellular reactive oxygen species reduced vasodilation and accelerated the impairment of vascular endothelial function.<br /> Modulating circHMGCS1/miR-4521/ARG1 axis could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases.

      Comments on revised version:

      The authors answered all questions satisfactorily.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors observed an aggravated vascular endothelial dysfunction upon overexpressing circHMGCS1 and inhibiting miR-4521. This study discovered that circHMGCS1 promotes arginase 1 expression by sponging miR-4521, which accelerated the impairment of vascular endothelial function.

      Strengths:

      The study is systematic and establishes the regulatory role of the circHMGCS1-miR-4521 axis in diabetes-induced cardiovascular diseases.

      Weaknesses:

      (1) The authors show direct evidence of interaction between circHMGCS1 and miR-4521 by pulldown assay. However, the changes in miRNA expression opposite to the levels of target circRNA could be through Target RNA-Directed MicroRNA Degradation. Since the miRNA level is downregulated, the downstream target gene is expected to be upregulated even in the absence of circRNA.

    1. Reviewer #1 (Public Review):

      Summary:

      In this work, the authors continue their investigations on the key role of glycosylation to modulate the function of a therapeutic antibody. As a follow-up to their previous demonstration on how ADCC was heavily affected by the glycans at the Fc gamma receptor (FcγR)IIIa, they now dissect the contributions of the different glycans that decorate the diverse glycosylation sites. Using a well-designed mutation strategy, accompanied by exhaustive biophysical measurements, with extensive use of NMR, using both standard and newly developed methodologies, they demonstrate that there is one specific locus, N162, which is heavily involved in the stabilization of (FcγR)IIIa and that the concomitant NK function is regulated by the glycan at this site.

      Strengths:

      The methodological aspects are carried out at the maximum level.

      Weaknesses:

      The exact (or the best possible assessment) of the glycan composition at the N162 site is not defined.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors set out to demonstrate a mechanistic link between Fcgamma receptor (IIIA) glycosylation and IgG binding affinity and signaling - resulting in antibody-dependent cellular cytotoxicity - ADCC. The work builds off prior findings from this group about the general impact of glycosylation on FcR (Fc receptor)-IgG binding.

      Strengths:

      The structural data (NMR) is highly compelling and very significant to the field. A demonstration of how IgG interacts with FcgRIIIA in a manner sensitive to glycosylation of both the IgG and the FcR fills a critical knowledge gap. The approach to demonstrate the selective impact of glycosylation at N162 is also excellent and convincing. The manuscript/study is, overall, very strong.

      Weaknesses:

      There are a number of minor weaknesses that should be addressed.

      (1) Since S164A is the only mutant in Figure 1 that seems to improve affinity, even if minimally, it would be a nice reference to highlight that residue in the structural model in panel B.

      (2) It is confusing why some of the mutants in the study are not represented in Figure 1 panel A. Those affinities and mutants should be incorporated into panel A so the reader can easily see where they all fall on the scale. T167Y in particular needs to be shown, as it is one of few mutants that fall between what seems to be ADCC+ and ADCC- lines. Also, that mutant seems to have a stronger affinity compared to wt (judged by panel D), yet less ADCC than wt. This would imply that the relationship between affinity and activity is not as clean as stated, though it is clearly important. Comments about this would strengthen the overall manuscript.

      (3) This statement feels out of place: "In summary, this result demonstrates that the sensitivity to antibody fucosylation may be eliminated through FcγRIIIa engineering while preserving antibody-binding affinity." In Figure 2, the authors do indeed show that mutations in FcgRIIIa can alter the impact of IgG core fucosylation, but implying that receptor engineering is somehow translatable or as impactful therapeutically as engineering the antibody itself deflates the real basic science/biochemical impact of understanding these interactions in molecular detail. Not everything has to be immediately translatable to be important.

      (4) The findings reported in Figure 2, panel C are exciting. Controls for the quality of digestion at each step should be shown (perhaps in supplementary data).

      (5) Figure 3 is confusing (mislabeled?) and does not show what is described in the Results. First, there is a F158V variant in the graph but a V158F variant in the text. Please correct this. Second, this variant (V158F/F158V) does not show the 2-fold increase in ADCC with kifunesine as stated. Finally, there are no statistical evaluations between the groups (+/- kif; +/- fucose). The differences stated are not clearly statistically significant given the wide spread of the data. This is true even for the wt variant.

      (6) The kifunensine impact is somewhat confusing. They report a major change in ADCC, yet similar large changes with trimming only occur once most of the glycan is nearly gone (Figure 2). Kifunensine will tend to generate high mannose and possibly a few hybrid glycans. It is difficult to understand what glycoforms are truly important outside of stating that multi-branched complex-type N-glycans decrease affinity.

      (7) This is outside of the immediate scope, but I feel that the impact would be increased if differences in NK cell (and thus FcgRIIIA) glycosylation are known to occur during disease, inflammation, age, or some other factor - and then to demonstrate those specific changes impact ADCC activity via this mechanism.

    1. Reviewer #2 (Public Review):

      Summary:

      With this work, the authors tried to expand and integrate the concept of realized niche in the context of movement ecology by using fine-scale GPS data of 55 juvenile Golden eagles in the Alps. Authors found that ontogenic changes influence the percentage of area flyable to the eagles as individuals exploit better geographic uplifts that allow them to reduce the cost of transport.

      Strengths:

      Authors made insightful work linking changes in ontogeny and energy landscapes in large soaring birds that may not only advance the understanding of how changes in the life cycle affect the exploitability of aerial space but also offer valuable tools for the management and conservation of large soaring species in the changing world.

      Weaknesses:

      Future research may test the applicability of the present work by including more individuals and/or other species from other study areas.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors propose that the energy landscape of animals can be thought of in the same way as the fundamental versus realized niche concept in ecology. Namely, animals will use a subset of the fundamental energy landscape due to a variety of factors. The authors then show that the realized energy landscape of eagles increases with age as the animals are better able to use the energy landscape.

      Strengths:

      This is a very interesting idea and that adds significantly to the energy landscape framework. They provide convincing evidence that the available regions used by birds increase with size.

      Review of revised version:

      The authors have addressed all my comments and concerns. This is a really nice and important manuscript. I have one minor suggestion: Line 74-85: when discussing the effect of ontogeny, the authors give examples of how these may change due to improved cognition and memory. I would recommend they also give examples of how these may change with morphology (e.g. change in wing or fin relative area, buoyancy in sharks etc) should also be included. Most growth in fish for example is allometric so the relative measures of area of fins to body size should also change.

      This is of course up to the authors but it would highlight how their study is applicable to many other systems beyond just birds (even though morphology is of little importance for their eagles).

    1. Reviewer #1 (Public Review):

      Summary:

      The authors report an inability to reproduce a transgenerational memory of avoidance of the pathogen PA14 in C. elegans. Instead, the authors demonstrate intergenerational inheritance for a single F1 generation, in embryos of mothers exposed to OP50 and PA14, where embryos isolated from these mothers by bleaching are capable of remembering to avoid PA14 in a manner that is dependent on systemic RNAi proteins sid-1 and sid-2. This could reflect systemic sRNAs generated by neuronal daf-7 signaling that are transmitted to F1 embryos. The authors note that transgenerational memory of PA14 was reported by the Murphy group at Princeton, but that environmental or strain variation (worms or bacteria) might explain the single generation of inheritance observed at Harvard. The Hunter group tried different bacterial growth conditions and different worm growth temperatures for independent PA14 strains, which they showed to be strongly pathogenic. However, the authors could not reproduce a transgenerational effect at Harvard. This important data will allow members of the scientific community to focus on the robust and reproducible inheritance of PA14 avoidance transmitted to F1 embryos of mothers exposed to PA14, which the authors demonstrate depends on small RNAs in a manner that is downstream of or in parallel to daf-7. This paper honestly and importantly alters expectations and questions the model that avoidance of PA14 is mediated by a bacterial ncRNA whose siRNAs target a C. elegans gene. Instead, endogenous C. elegans sRNAs that affect pathogen response may be the culprit that explains sRNA-mediated avoidance.

      Overall, this is an important paper that demonstrates that one model for transgenerational inheritance in C. elegans is not reproducible. This is important because it is not clear how many of the reported models of transgenerational inheritance reported in C. elegans are reproducible. The authors do demonstrate a memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.

      Strengths:

      The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to the memory of PA14 avoidance, speaking to an intergenerational phenotype.

      The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that single copy daf-7::GFP is not elevated in F1 progeny of sid mutants. Because the Murphy group reported that daf-7 mutation abolishes avoidance for F1 progeny, this means that the sid genes function downstream of daf-7 or in parallel, rather than upstream as previously suggested.

      The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. Importantly, the authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, is unlikely to affect maco-1 expression by generating sRNAs that target maco-1 in C. elegans. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. The Murphy group might wish to consider following up on these genes and their possible relationship with P11.

      Weaknesses:

      This very thorough and interesting manuscript is at times pugnacious.

      Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.

    2. Reviewer #2 (Public Review):

      This paper examines the reproducibility of results reported by the Murphy lab regarding transgenerational inheritance of a learned avoidance behavior in C. elegans. It has been well established by multiple labs that worms can learn to avoid the pathogen pseudomonas aeruginosa (PA14) after a single exposure. The Murphy lab has reported that learned avoidance is transmittable to 4 generations and dependent on a small RNA expressed by PA14 that elicits the transgenerational silencing of a gene in C. elegans. The Hunter lab now reports that although they can reproduce inheritance of the learned behavior by the first generation (F1), they cannot reproduce inheritance in subsequent generations.

      This is an important study that will be useful for the community. Although they fail to identify a "smoking gun", the study examines several possible sources for the discrepancy, and their findings will be useful to others interested in using these assays. The preference assay appears to work in their hands in as much as they are able to detect the learned behavior in the P0 and F1 generations, suggesting that the failure to reproduce the transgenerational effect is not due to trivial mistakes in the protocol. An obvious reason, however, to account for the differing results is that the culture conditions used by the authors are not permissive for the expression of the small RNA by PA14 that the MUrphy lab identified as required for transgenerational inheritance. It would seem prudent for the authors to determine whether this small RNA is present in their cultures, or at least acknowledge this possibility. The authors should also note that their protocol was significantly different from the Murphy protocol (see comments below) and therefore it remains possible that protocol differences cumulatively account for the different results.

    3. Reviewer #3 (Public Review):

      Summary:

      It has been previously reported in many high-profile papers, that C. elegans can learn to avoid pathogens. Moreover, this learned pathogen avoidance can be passed on to future generations - up to the F5 generation in some reports. In this paper, Gainey et al. set out to replicate these findings. They successfully replicated pathogen avoidance in the exposed animals, as well as a strong increase in daf-7 expression in ASI neurons in F1 animals, as determined by a daf-7::GFP reporter construct. However, they failed to see strong evidence for pathogen avoidance or daf-7 overexpression in the F2 generation. The failure of replication is the major focus of this work.

      Given their failure to replicate these findings, the authors embark on a thorough test of various experimental confounders that may have impacted their results. They also re-analyze the small RNA sequencing and mRNA sequencing data from one of the previously published papers and draw some new conclusions, extending this analysis.

      Strengths:

      (1) The authors provide a thorough description of their methods, and a marked-up version of a published protocol that describes how they adapted the protocol to their lab conditions. It should be easy to replicate the experiments.

      (2) The authors test the source of bacteria, growth temperature (of both C. elegans and bacteria), and light/dark husbandry conditions. They also supply all their raw data, so that the sample size for each testing plate can be easily seen (in the supplementary data). None of these variations appears to have a measurable effect on pathogen avoidance in the F2 generation, with all but one of the experiments failing to exhibit learned pathogen avoidance.

      (3) The small RNA seq and mRNA seq analysis is well performed and extends the results shown in the original paper. The original paper did not give many details of the small RNA analysis, which was an oversight. Although not a major focus of this paper, it is a worthwhile extension of the previous work.

      (4) It is rare that negative results such as these are accessible. Although the authors were unable to determine the reason that their results differ from those previously published, it is important to document these attempts in detail, as has been done here. Behavioral assays are notoriously difficult to perform and public discourse around these attempts may give clarity to the difficulties faced by a controversial field.

      Weaknesses:

      (1) Although the "standard" conditions have been tested over multiple biological replicates, many of the potential confounders that may have altered the results have been tested only once or twice. For example, changing the incubation temperature to 25{degree sign}C was tested in only two biological replicates (Exp 5.1 and 5.2) - and one of these experiments actually resulted in apparent pathogen avoidance inheritance in the F2 generation (but not in the F1). An alternative pathogen source was tested in only one biological replicate (Exp 3). Given the variability observed in the F2 generation, increasing biological replicates would have added to the strengths of the report.

      (2) A key difference between the methods used here and those published previously, is an increase in the age of the animals used for training - from mostly L4 to mostly young adults. I was unable to find a clear example of an experiment when these two conditions were compared, although the authors state that it made no difference to their results.

      (3) The original paper reports a transgenerational avoidance effect up to the F5 generation. Although in this work the authors failed to see avoidance in the F2 generation, it would have been prudent to extend their tests for more generations in at least a couple of their experiments to ensure that the F2 generation was not an aberration (although this reviewer acknowledges that this seems unlikely to be the case).

    1. Reviewer #3 (Public Review):

      Summary:

      In this work, the authors plate different type of cells on circular micropatterns and question how the organization and dynamics of the actin cytoskeleton correlate with particular actin chiral properties and rotational direction of the nucleus. The observe that cell spreading on large patterns correlates with the emergence of anti-clockwise rotations (ACW), while spreading on small patterns leads preferentially to clockwise rotations (CW). ACW originate, as previously demonstrated, from the polymerization of radial fibers, while clockwise rotations (CW) are observed when radial fibers are disorganized or absent and when transverse arcs take over to power CW rotations. These data are supported by a large number of observations and use of multiple drugs lead to observations that are consistent with the proposed model.

      Strengths:

      This is a beautiful work in which the authors rely on a large number of high-quality microscopic observations and use a full arsenal of drugs to test their model as thoroughly as possible.<br /> This study examines the influence of multiple actin networks. This is a challenging task in that the assembly and dynamics of different actin networks are interdependent, making it difficult to unambiguously analyze the importance of any specific network.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper uses single-molecule FRET to investigate the molecular basis for the distinct activation mechanisms between 2 GPCR responding to the chemokine CXCL12 : CXCR4, that couples to G-proteins, and ACKR3, which is G-protein independent and displays a higher basal activity.

      Strengths:

      It nicely combines the state-of-the-art techniques used in the studies of the structural dynamics of GPCR. The receptors are produced from eukaryotic cells, mutated, and labeled with single molecule compatible fluorescent dyes. They are reconstituted in nanodiscs, which maintain an environment as close as possible to the cell membrane, and immobilized through the nanodisc MSP protein, to avoid perturbing the receptor's structural dynamics by the use of an antibody for example.

      The smFRET data are analysed using the HHMI technique, and the number of states to be taken into account is evaluated using a Bayesian Information Criterion, which constitutes the state-of-the-art for this task.

      The data show convincingly that the activation of the CXCR4 and ACKR3 by an agonist leads to a shift from an ensemble of high FRET states to an ensemble of lower FRET states, consistent with an increase in distance between the TM4 and TM6. The two receptors also appear to explore a different conformational space. A wider distribution of states is observed for ACKR3 as compared to CXCR4, and it shifts in the presence of agonists toward the active states, which correlates well with ACKR3's tendency to be constitutively active. This interpretation is confirmed by the use of the mutation of Y254 to leucine (the corresponding residue in CXCR4), which leads to a conformational distribution that resembles the one observed with CXCR4. It is correlated with a decrease in constitutive activity of ACKR3.

      Weaknesses:

      Although the data overall support the claims of the authors, there are however some details in the data analysis and interpretation that should be modified, clarified, or discussed in my opinion.

      Concerning the amplitude of the changes in FRET efficiency: the authors do not provide any structural information on the amplitude of the FRET changes that are expected. To me, it looks like a FRET change from ~0.9 to ~0.1 is very important, for a distance change that is expected to be only a few angstroms concerning the movement of the TM6. Can the authors give an explanation for that? How does this FRET change relate to those observed with other GPCRs modified at the same or equivalent positions on TM4 and TM6?

      Concerning the intermediate states: the authors observe several intermediate states.

      (1) First I am surprised, looking at the time traces, by the dwell times of the transitions between the states, which often last several seconds. Is such a long transition time compatible with what is known about the kinetic activation of these receptors?

      (2) Second is it possible that these « intermediate » states correspond to differences in FRET efficiencies, that arise from different photophysical states of the dyes? Alexa555 and Cy5 are Cyanines, that are known to be very sensitive to their local environment. This could lead to different quantum yields and therefore different FRET efficiencies for a similar distance. In addition, the authors use statistical labeling of two cysteines, and have therefore in their experiment a mixture of receptors where the donor and acceptor are switched, and can therefore experience different environments. The authors do not speculate structurally on what these intermediate states could be, which is appreciated, but I think they should nevertheless discuss the potential issue of fluorophore photophysics effects.

      (3) It would also have been nice to discuss whether these types of intermediate states have been observed in other studies by smFRET on GPCR labeled at similar positions.

      On line 239: the authors talk about the R↔R' transitions that are more probable. In fact it is more striking that the R'↔R* transition appears in the plot. This transition is a signature of the behaviour observed in the presence of an agonist, although IT1t is supposed to be an inverse agonist. This observation is consistent with the unexpected (for an inverse agonist) shift in the FRET histogram distribution. In fact, it appears that all CXCR4 antagonists or inverse agonists have a similar (although smaller) effect than the agonist. Is this related to the fact that these (antagonist or inverse agonist) ligands lead to a conformation that is similar to the agonists, but cannot interact with the G-protein ?? Maybe a very interesting experiment would be here to repeat these measurements in the presence of purified G-protein. G-protein has been shown to lead to a shift of the conformational space explored by GPCR toward the active state (using smFRET on class A and class C GPCR). It would be interesting to explore its role on CXCR4 in the presence of these various ligands. Although I am aware that this experiment might go beyond the scope of this study, I think this point should be discussed nevertheless.

      The authors also mentioned in Figure 6 that the energetic landscape of the receptors is relatively flat ... I do not really agree with this statement. For me, a flat conformational landscape would be one where the receptors are able to switch very rapidly between the states (typically in the submillisecond timescale, which is the timescale of protein domain dynamics). Here, the authors observed that the transition between states is in the second timescale, which for me implies that the transition barrier between the states is relatively high to preclude the fast transitions.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript uses single-molecule fluorescence resonance energy transfer (smFRET) to identify differences in the molecular mechanisms of CXCR4 and ACKR3, two 7-transmembrane receptors that both respond to the chemokine CXCL12 but otherwise have very different signaling profiles. CXCR4 is highly selective for CXCL12 and activates heterotrimeric G proteins. In contrast, ACKR3 is quite promiscuous and does not couple to G proteins, but like most G protein-coupled receptors (GPCRs), it is phosphorylated by GPCR kinases and recruits arrestins. By monitoring FRET between two positions on the intracellular face of the receptor (which highlights the movement of transmembrane helix 6 [TM6], a key hallmark of GPCR activation), the authors show that CXCR4 remains mostly in an inactive-like state until CXCL12 binds and stabilizes a single active-like state. ACKR3 rapidly exchanges among four different conformations even in the absence of ligands, and agonists stabilize multiple activated states.

      Strengths:

      The core method employed in this paper, smFRET, can reveal dynamic aspects of these receptors (the breadth of conformations explored and the rate of exchange among them) that are not evident from static structures or many other biophysical methods. smFRET has not been broadly employed in studies of GPCRs. Therefore, this manuscript makes important conceptual advances in our understanding of how related GPCRs can vary in their conformational dynamics.

      Weaknesses:

      (1) The cysteine mutations in ACKR3 required to site-specifically install fluorophores substantially increase its basal and ligand-induced activity. If, as the authors posit, basal activity correlates with conformational heterogeneity, the smFRET data could greatly overestimate the conformational heterogeneity of ACKR3.

      (2) The probes used cannot reveal conformational changes in other positions besides TM6. GPCRs are known to exhibit loose allosteric coupling, so the conformational distribution observed at TM6 may not fully reflect the global conformational distribution of receptors. This could mask important differences that determine the ability of intracellular transducers to couple to specific receptor conformations.

      (3) While it is clear that CXCR4 and ACKR3 have very different conformational dynamics, the data do not definitively show that this is the main or only mechanism that contributes to their functional differences. There is little discussion of alternative potential mechanisms.

      (4) The extent to which conformational heterogeneity is a characteristic feature of ACKRs that contributes to their promiscuity and arrestin bias is unclear. The key residue the authors find promotes ACKR3 conformational heterogeneity is not conserved in most other ACKRs, but alternative mechanisms could generate similar heterogeneity.

      (5) There are no data to confirm that the two receptors retain the same functional profiles observed in cell-based systems following in vitro manipulations (purification, labeling, nanodisc reconstitution).

    3. Reviewer #3 (Public Review):

      Summary:

      This is a well-designed and rigorous comparative study of the conformational dynamics of two chemokine receptors, the canonical CXCR4 and the atypical ACKR3, using single-molecule fluorescence spectroscopy. These receptors play a role in cell migration and may be relevant for developing drugs targeting tumor growth in cancers. The authors use single-molecule FRET to obtain distributions of a specific intermolecular distance that changes upon activation of the receptor and track differences between the two receptors in the apo state, and in response to ligands and mutations. The picture emerging is that more dynamic conformations promote more basal activity and more promiscuous coupling of the receptor to effectors.

      Strengths:

      The study is well designed to test the main hypothesis, the sample preparation and the experiments conducted are sound and the data analysis is rigorous. The technique, smFRET, allows for the detection of several substates, even those that are rarely sampled, and it can provide a "connectivity map" by looking at the transition probabilities between states. The receptors are reconstituted in nanodiscs to create a native-like environment. The examples of raw donor/acceptor intensity traces and FRET traces look convincing and the data analysis is reliable to extract the sub-states of the ensemble. The role of specific residues in creating a more flat conformational landscape in ACKR3 (e.g., Y257 and the C34-C287 bridge) is well documented in the paper.

      Weaknesses:

      The kinetics side of the analysis is mentioned, but not described and discussed. I am not sure why since the data contains that information. For instance, it is not clear if greater conformational flexibility is accompanied by faster transitions between states or not.

      The method to choose the number of states seems reasonable, but the "similarity" of states argument (Figures S4 and S6) is not that clear.

      Also, the "dynamics" explanation offered for ACKR3's failure to couple and activate G proteins is not very convincing. In other studies, it was shown that activation of GPCRs by agonists leads to an increase in local dynamics around the TM6 labelling site, but that did not prevent G protein coupling and activation.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper by Zhang, the authors build a physical framework to probe the mechanisms that underlie exchange of molecules between coexisting dense and dilute liquid-like phases of condensates. They first propose a continuum model, in the context of a FRAP-like experiment where the fluorescently labeled molecules inside the condensate are bleached at t=0 and the recovery of fluorescence is measured. Through this model, they identify how the key timescales of internal molecular mixing, replenishment from dilute phase, and interface transfer contribute to molecular exchange timescale. Motivated by a recent experiment reported by some of the co-authors previously (Brangwynne et al. in 2019) finding strong interfacial resistance in in vitro protein droplets of LAF-1, they seek to understand the microscopic features contributing to the interfacial conductance (inversely proportional to the resistance). To check, they perform coarse-grained MD-simulations of sticker-spacer self-associative polymers and report how conductance varies significantly even across the few explored sequences. Further, by looking at individual trajectories, they postulate the "bouncing" i.e., molecules that approach the interface but are not successfully absorbed is a strong contributor to this mass transfer limitation. Consistent with their predictions, sequences that have more free unbound stickers (i.e., for example through imbalance sequence sticker stoichiometries) have higher conductances and they show a simple linear scaling between number of unbound stickers and conductance. Finally, they predict that an droplet-size dependent transition in recovery time behavior.

      Strengths:

      (1) This paper is overall well-written and clear to understand.<br /> (2) By combining coarse-grained simulations, continuum modeling, and comparison to published data, the authors provide a solid picture of how their proposed framework relates to molecular exchange mechanisms that are dominated by interface resistance and LAF-1 droplets.<br /> (3) The choice of different ways to estimate conductance from simulation and reported data are thoughtful and convincing on their near-agreement (although a little discussion of why and when they differ would be merited as well).

      Updated re-review:

      This revised update by Zhang et al. is improved and addresses many of the concerns raised by myself and the other reviewer, especially with the expanded discussion, contextualized text in model description, and the addition of a nice example case-study in revised Fig. 4. I believe the paper provides solid evidence of how "bouncing" may contribute to interfacial resistance/exchange dynamics in biomolecular condensates and is a useful study for the community.

      Note:<br /> In their response, the authors bring up an important point in references for LAF1 mutant FRAP data. While I found a few papers, for example https://www.pnas.org/doi/abs/10.1073/pnas.2000223117 and https://www.cell.com/biophysj/fulltext/S0006-3495(23)00464-2 , these are likely to be not whole droplet bleaches. I wonder whether it may be possible to approximately predict the conductance from other parameters (such as from effective expressions in eq 14) to roughly estimate what the effect maybe since LAF-1 has fairly "known" stickers and spacers. Note that this is not required at all, but I just bring this up in case it may be of interest to authors!

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors describe the construction of an extremely large-scale anatomical model of juvenile rat somatosensory cortex (excluding the barrel region), which extends earlier iterations of these models by expanding across multiple interconnected cortical areas. The models are constructed in such a way as to maintain biological detail from a granular scale - for example, individual cell morphologies are maintained, and synaptic connectivity is founded on anatomical contacts. The authors use this model to investigate a variety of properties, from cell-type specific targeting (where the model results are compared to findings from recent large-scale electron microscopy studies) to network metrics. The model is also intended to serve as a platform and resource for the community by being a foundation for simulations of neuronal circuit activity and for additional anatomical studies that rely on the detailed knowledge of cellular identity and connectivity.

      Strengths:

      As the authors point out, the combination of scale and granularity of their model is what makes this study valuable and unique. The comparisons with recent electron microscopy findings are some of the most compelling results presented in the study, showing that certain connectivity patterns can arise directly from the anatomical configuration, while other discrepancies highlight where more selective targeting rules (perhaps based on molecular cues) are likely employed. They also describe intriguing effects of cortical thickness and curvature on circuit connectivity and characterize the magnitude of those effects on different cortical layers.

      The detailed construction of the model is drawn on a wide range of data sources (cellular and synaptic density measures, neuronal morphologies, cellular composition measures, brain geometry, etc.) that are integrated together; other data sources are used for comparison and validation. This consolidation and comparison also represent a valuable contribution to the overall understanding of the modeled system.

      Weaknesses:

      The scale of the model, which is a primary strength, also can carry some drawbacks. In order to integrate all the diverse data sources together, many specific decisions must be made about, for example, translating findings from different species or regions to the modeled system, or deciding which aspects of the system can be assumed to be the same and which should vary. All these decisions will have effects on the predicted results from the model, which could limit the types of conclusions that can be made (both by the others and by others in the community who may wish to use the model for their own work).

      As an example, while it is interesting that broad brain geometry has effects on network structure (Figure 7), it is not clear how those effects are actually manifested. I am not sure if some of the effects could be due to the way the model is constructed - perhaps there may be limited sets of morphologies that fit into columns of particular thicknesses, and those morphologies may have certain idiosyncrasies that could produce different statistics of connectivities where they are heavily used. That may be true to biology, but it may also be somewhat artifactual if, for example, the only neurons in the library that fit into that particular part of the cortex differ from the typical neurons that are actually found in that region (but may not have been part of the morphological sampling). I also wonder how much the assumption that the layers have the same relative thicknesses everywhere in the cortex affects these findings, since layer thicknesses do in fact vary across the cortex.

      In addition, the complexity of the model means that some complicated analyses and decisions are only presented in this manuscript with perhaps a single panel and not much textual explanation. I find, for example, that the panels of Figure S2 seem to abstract or simplify many details to the point where I am not clear about what they are actually illustrating - how does Figure S2D represent the results of "the process illustrated in B"? Why are there abrupt changes in connectivity at region borders (shown as discontinuous colors), when dendrites and axons span those borders and so would imply interconnectivity across the borders? What do the histograms in E1 and E2 portray, and how are they related to each other?

      Overall, the model presented in this study represents an enormous amount of work and stands as a unique resource for the community, but also is made somewhat unwieldy for the community to employ due to the weight of its manifold specific construction decisions, size, and complexity.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors build a colossal anatomical model of juvenile rat non-barrel primary somatosensory cortex, including inputs from the thalamus. This enhances past models by incorporating information on the shape of the cortex and estimated densities of various types of excitatory and inhibitory neurons across layers. This is intended to enable an analysis of the micro- and mesoscopic organisation of cortical connectivity and to be a base anatomical model for large-scale simulations of physiology.

      Strengths:

      • The authors incorporate many diverse data sources on morphology and connectivity.

      • This paper takes on the challenging task of linking micro- and mesoscale connectivity.

      • By building in the shape of the cortex, the authors were able to link cortical geometry to connectivity. In particular, they make an unexpected prediction that cortical conicality affects the modularity of local connectivity, which should be testable.

      • The author's analysis of the model led to the interesting prediction that layer 5 neurons connect local modules, which may be testable in the future, and provide a basis to link from detailed anatomy to functional computations.

      • The visualisation of the anatomy in various forms is excellent.

      • A subnetwork of the model is openly shared (but see question below).

      Weaknesses:

      • Why was non-barrel S1 of the juvenile rat cortex selected as the target for this huge modelling effort? This is not explained.

      • There is no effort to determine how specific or generalisable the findings here are to other parts of the cortex.

      • Although there is a link to physiological modelling in another paper, there is no clear pathway to go from this type of model to understand how the specific function of the modelled areas may emerge here (and not in other cortical areas).

      • In a few places the manuscript could be improved by being more specific in the language, for example:<br /> - "our anatomy-based approach has been shown to be powerful", I would prefer instead to read about specific contributions of past papers to the field, and how this builds on them.<br /> - similarly: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment.

      • Some of the decisions seem a little ad-hoc, and the means to assess those decisions are not always available to the reader e.g.<br /> - pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised?<br /> - "In the remaining layers the results of the objective classification were used to validate the class assignments of individual pyramidal cells. We found the objective classification to match the expert classification closely (i.e., for 80-90% of the morphologies). Consequently, we considered the expert classification to be sufficiently accurate to build the model." The description of the validation is a little informal. How many experts were there? What are their initials? Was inter-rater or intra-rater reliability assessed? What are these numbers? The match with Kanari's classification accuracy should be reported exactly. There are clearly experts among the author list, but we are all fallible without good controls in place, and they should be more explicit about those controls here, in my opinion.<br /> - "Morphology selection was then performed as previously (Markram et al., 2015), that is, a morphology was selected randomly from the top 10% scorers for a given position." A lot of the decisions seem a little ad-hoc, without justification other than this group had previously done the same thing. For example, why 10% here? Shouldn't this be based on selecting from all of the reasonable morphologies?

      • I would like to know if one of the key results relating to modularity and cortical geometry can be further explored. In particular, there seem to be sharp changes in the data at the end of the modelled cortical regions, which need to be explored or explained further.

      • The shape of the juvenile cortex - a key novelty of this work - was based on merely a scalar reduction of the adult cortex. This is very surprising, and surely an oversimplification. Huge efforts have gone into modelling the complex nonlinear development of the cortex, by teams including the developing Human Connectome Project. For such a fundamental aspect of this work, why isn't it possible to reconstruct the shape of this relatively small part of the juvenile rat cortex?

      • The same relative laminar depths are used for all subregions. This will have a large impact on the model. However, relative laminar depths can change drastically across the cortex (see e.g. many papers by Palomero-Gallagher, Zilles, and colleagues). The authors should incorporate the real laminar depths, or, failing that, show evidence to show that the laminar depth differences across the subregions included in the model are negligible.

      • The authors perform an affine mapping between mouse and rat cortex. This is again surprising. In human imaging, affine mappings are insufficient to map between two individual brains of the same species and nonlinear transformations are instead used. That an affine transformation should be considered sufficient to map between two different species is then very surprising. For some models, this may be fine, but there is a supposed emphasis here on biological precision in terms of anatomical location.

      • One of the most interesting conclusions, that the connectivity pattern observed is in part due to cooperative synapse formation, is based on analyses that are unfortunately not shown.

      • Open code:<br /> - Why is only a subvolume available to the community?<br /> - Live nature of the model. This is such a colossal model, and effort, that I worry that it may be quite difficult to update in light of new data. For example, how much person and computer time would it take to update the model to account for different layer sizes across subregions? Or to more precisely account for the shape of the juvenile rat cortex?

    3. Reviewer #3 (Public Review):

      This manuscript reports a detailed model of the rat non-barrel somatosensory cortex, consisting of 4.2 million morphologically and biophysically detailed neuron models, arranged in space and connected according to highly sophisticated rules informed by diverse experimental data. Due to its breadth and sophistication, the model will undoubtedly be of interest to the community, and the reporting of anatomical details of modeling in this paper is important for understanding all the assumptions and procedures involved in constructing the model. While a useful contribution to this field, the model and the manuscript could be improved by employing data more directly and comparing simple features of the model's connectivity - in particular, connection probabilities - with relevant experimental data.

      The manuscript is well-written overall but contains a substantial number of confusing or unclear statements, and some important information is not provided.

      Below, major concerns are listed, followed by more specific but still important issues.

      MAJOR ISSUES

      (1) Cortical connectivity.

      Section 2.3, "Local, mid-range and extrinsic connectivity modeled separately", and Figure 4: I am confused about what is done here and why. The authors have target data for connectivity (Figure 4B1). But then they use an apposition-based algorithm that results in connectivity that is quite different from the data (Figure 4B2, C). They then use a correction based on the data (Figure 4E) to arrive at a more realistic connectivity. Why not set the connectivity based on the data right away then? That would seem like a more straightforward approach.

      The same comment applies to Section 2.4., "Specificity of axonal targeting": the distributions of synapses on different types of target cell compartments were not well captured by the original model based on axon-dendrite overlap and pruning, so the authors introduced further pruning to match data specificity. While details of this process and what worked and what didn't may be interesting to some, overall it is not surprising, as it has been well known that cell types exhibit connectivity that is much more specific than "Peters rule" or its simple variations. The question is, since one has the data, why not use the data in the first place to set up the connectivity, instead of using the convoluted process of employing axon-dendrite overlap followed by multiple corrections?

      Most importantly, what is missing from the whole paper is the characterization of connection probabilities, at least for the local circuit within one area. Such connection probabilities can be obtained from the data that the authors already use here, such as the MICRONS dataset. Another good source of such data is Campagnola et al., Science, 2022. Both datasets are for mouse V1, but they provide a comprehensive characterization across all cortical layers, thus offering a good benchmark for comparison of the model with the data. It would be important for the authors to show how connection probabilities realized in their model for different cell types compared to these data.

      (2) Section 2.5, "Structure of thalamic inputs" and Figure 6.

      The text in section 2.5 should provide more details on what was done - namely, that the thalamic axons were generated based on the axon density profiles and then synapses were established based on their overall with cortical dendrites. Figure S10 where the target axon densities from data and the model axon densities are compared is not even mentioned here. Now, Figure S10 only shows that the axon densities were generated in a way that matches the data reasonably well. However, how can we know that it results in connectivity that agrees with data? Are there data sources that can be used for that purpose? For example, the authors show that in their model "the peaks of the mean number of thalamic inputs per neuron occur at lower depths than the peaks of the synaptic density". Is this prediction of the model consistent with any available data?

      Most importantly, the authors should show how the different cell types in their model are targeted by the thalamic inputs in each layer. Experimental studies have been done suggesting specificity in targeting of interneuron types by thalamic axons, such as PV cells being targeted strongly whereas SST and VIP cells being targeted less.

      (3) "We have therefore made not only the model but also most of our tool chain openly available to the public (Figure 1; step 7)."<br /> In fact it is not the whole model that is made publicly available, but only about 5% of it (211,000 out of 4,200,000 neurons). Also, why is "most" of the tool chain made openly available, and not the whole tool chain?

      OTHER ISSUES

      "At each soma location, a reconstruction of the corresponding m-type was chosen based on the size and shape of its dendritic and axonal trees (Figure S6). Additionally, it was rotated to according to the orientation towards the cortical surface at that point."

      After this procedure, were cells additionally rotated around the white matter-pia axis? If yes, then how much and randomly or not? If not, then why not? Such rotations would seem important because otherwise additional order potentially not present in the real cortex is introduced in the model affecting connectivity and possibly also in vivo physiology (such as the dynamics of the extracellular electric field).

      The term "new in vivo reconstructions" for the 58 neurons used in this paper in addition to "in vitro reconstructions" is a misnomer. It is not straightforward to see where the procedure is described, but then one finds that the part of Methods that describes experimental manipulations is mostly about that (so, a clearer pointer to that part of Methods could be useful). However, the description in Methods makes it clear that it is only labeling that is done in vivo; the microscopy and reconstruction are done subsequently in vitro. I would recommend changing the terminology here, as it is confusing. Also, can the authors show reconstructions of these neurons in the supplementary figures? Is the reconstruction shown in Figure 4A representative?

      In the Discussion, "This was taken into account during the modeling of the anatomical composition, e.g. by using three-dimensional, layer-specific neuron density profiles that match biological measurements, and by ensuring the biologically correct orientation of model neurons with respect to the orientation towards the cortical surface. As local connectivity was derived from axo-dendritic appositions in the anatomical model, it was strongly affected by these aspects.<br /> However, this approach alone was insufficient at the large spatial scale of the model, as it was limited to connections at distances below 1000μm."

      As mentioned above, it is not clear that this approach was sufficient for local connectivity either. It would be great if the authors showed a systematic comparison of local connection probabilities between different cell types in their model with experimental data and commented here in the Discussion about how well the model agrees with the data.

      In the Discussion: "The combined connectome therefore captures important correlations at that level, such as slender-tufted layer 5 PCs sending strong non-local cortico-cortical connections, but thick-tufted layer 5 PCs not." (Also the corresponding findings in Results.)

      If I understand this statement correctly, it may not agree with biological data. See analysis from MICRONS dataset in Bodor et al., https://www.biorxiv.org/content/10.1101/2023.10.18.562531v1.

      Table 2 is confusing. What do pluses and minuses mean? What does it mean that some entries have two pluses? This table is not mentioned anywhere else in the text. If pluses mean some meaningful predictions of the model, then their distribution in the table seems quite liberal and arbitrary. It is not clear to me that the model makes that many predictions, especially for type-specificity and plasticity. Also, why is the hippocampus mentioned in this table? I don't see anything about the hippocampus anywhere else in the paper.

      In the Discussion, "Thus, we made the tools to improve our model also openly available (see Data and Code availability section)."<br /> As mentioned before, the authors themselves write that they made "most of our tool chain openly available to the public", but not all of it.

      Table S2 has multiple question marks. It is not clear whether the "predictions" listed in that table are truly well-thought-out and/or whether experimental confirmations are real.

      Introduction: It would be quite appropriate to cite here Einevoll et al., Neuron, 2019 ("The Scientific Case for Brain Simulations").

    1. Reviewer #1 (Public Review):

      Summary:

      Ren et al developed a novel computational method to investigate cell evolutionary trajectory for scRNA-seq samples. This method, MGPfact, estimates pseudotime and potential branches in the evolutionary path by explicitly modeling the bifurcations in a Gaussian process. They benchmarked this method using synthetic as well as real-world samples and showed superior performance for some of the tasks in cell trajectory analysis. They further demonstrated the utilities of MGPfact using single-cell RNA-seq samples derived from microglia or T cells and showed that it can accurately identify the differentiation timepoint and uncover biologically relevant gene signatures.

      Strengths:

      Overall I think this is a useful new tool that could deliver novel insights for the large body of scRNA-seq data generated in the public domain. The manuscript is written in a logical way and most parts of the method are well described.

      Weaknesses:

      Some parts of the methods are not clear.

      It should be outlined in detail how pseudo time T is updated in Methods. It is currently unclear either in the description or Algorithm 1.

      There should be a brief description in the main text of how synthetic data were generated, under what hypothesis, and specifically how bifurcation is embedded in the simulation.

      Please explain what the abbreviations mean at their first occurrence.

      In the benchmark analysis (Figures 2/3), it would be helpful to include a few trajectory plots of the real-world data to visualize the results and to evaluate the accuracy.

      It is not clear how this method selects important genes/features at bifurcation. This should be elaborated on in the main text.

      It is not clear how survival analysis was performed in Figure 5. Specifically, were critical confounders, such as age, clinical stage, and tumor purity controlled?

      I recommend that the authors perform some sort of 'robustness' analysis for the consensus tree built from the bifurcation Gaussian process. For example, subsample 80% of the cells to see if the bifurcations are similar between each bootstrap.

    2. Reviewer #2 (Public Review):

      Summary of the manuscript:

      The authors present MGPfactXMBD, a novel model-based manifold-learning framework designed to address the challenges of interpreting complex cellular state spaces from single-cell RNA sequences. To overcome current limitations, MGPfactXMBD factorizes complex development trajectories into independent bifurcation processes of gene sets, enabling trajectory inference based on relevant features. As a result, it is expected that the method provides a deeper understanding of the biological processes underlying cellular trajectories and their potential determinants.

      MGPfactXMBD was tested across 239 datasets, and the method demonstrated similar to slightly superior performance in key quality-control metrics to state-of-the-art methods. When applied to case studies, MGPfactXMBD successfully identified critical pathways and cell types in microglia development, validating experimentally identified regulons and markers. Additionally, it uncovered evolutionary trajectories of tumor-associated CD8+ T cells, revealing new subtypes with gene expression signatures that predict responses to immune checkpoint inhibitors in independent cohorts.

      Overall, MGPfactXMBD represents a relevant tool in manifold learning for scRNA-seq data, enabling feature selection for specific biological processes and enhancing our understanding of the biological determinants of cell fate.

      Summary of the outcome:

      The novel method addresses core state-of-the-art questions in biology related to trajectory identification. The design and the case studies are of relevance.

      However, in my opinion, the manuscript requires several clarifications and updates.

      Also, how the methods compare with existing Deep Learning based approaches such as TIGON is a question mark. If a comparison would be possible, it should be conducted; if not, it should be clarified why.

      Strengths:

      (1) Relevant methodology for a current field of research.

      (2) Relevant case studies with relevant outcomes.

      Weaknesses:

      (1) In general, the manuscript may be improved by making the text more accessible to the Journal's audience: (i) intuitive explanation of some concepts; (ii) review the flow of some explanations.

      (2) Additionally, several parts require more details on how the methods work, especially the case studies.

      (3) Finally, there are missing references to published work and possibly some additional comparisons to make.

    1. Reviewer #1 (Public Review):

      The authors proposed a framework to estimate the posterior distribution of parameters in biophysical models. The framework has two modules: the first MLP module is used to reduce data dimensionality and the second NPE module is used to approximate the desired posterior distribution. The results show that the MLP module can capture additional information compared to manually defined summary statistics. By using the NPE module, the repetitive evaluation of the forward model is avoided, thus making the framework computationally efficient. The results show the framework has promise in identifying degeneracy. This is an interesting work.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors improve the work of Jallais et al. (2022) by including a novel module capable of automatically learning feature selection from different acquisition protocols inside a supervised learning framework. Combining the module above with an estimation framework for estimating the posterior distribution of model parameters, they obtain rich probabilistic information (uncertainty and degeneracy) on the parameters in a reasonable computation time.

      The main contributions of the work are:<br /> (1) The whole framework allows the user to avoid manually defining summary statistics, which may be slow and tedious and affect the quality of the results.<br /> (2) The authors tested the proposal by tackling three different biophysical models for brain tissue and using data with characteristics commonly used by the diffusion-MR-microstructure research community.<br /> (3) The authors validated their method well with the state-of-the-art.

      The main weakness is:<br /> (1) The methodology was tested only on scenarios with a signal-to-noise ratio (SNR) equal to 50. It is interesting to show results with lower SNR and without noise that the method can detect the model's inherent degenerations and how the degeneration increases when strong noise is present. I suggest expanding the Figure in Appendix 1 to include this information.

      The authors showed the utility of their proposal by computing complex parameter descriptors automatically in an achievable time for three different and relevant biophysical models.

      Importantly, this proposal promotes tackling, analyzing, and considering the degenerated nature of the most used models in brain microstructure estimation.

    1. Reviewer #1 (Public Review):

      In their manuscript, Gan and colleagues identified a functional critical residue, Tyr404, which when mutated to W or A results in GOF and LOF of TRPML1 activity, respectively. In addition, the authors provide a high-resolution structure of TRPML1 with PI(4,5)P2 inhibitor. This high-resolution structure also revealed a bound phospholipid likely sphingomyelin at the agonist/antagonist site, providing a plausible explanation for sphingomyelin inhibition of TRPML1.

      This is an interesting study, revealing valuable additional information on TRPML1 gating mechanisms including effects on endogenous phospholipids on channel activity. The provided data are convincing. Some major open questions remain. The work will be of interest to a wide audience including industry researchers occupied with TRPML1 exploration as a drug target.

    2. Reviewer #2 (Public Review):

      The transient receptor potential mucolipin 1 (TRPML1) functions as a lysosomal organelle ion channel whose variants are associated with lysosomal storage disorder mucolipidosis type IV. Understanding sites that allosterically control the TRPML1 channel function may provide new molecular moieties to target with prototypic drugs.

      Gan et al provide the first high-resolution cryo-EM structures of the TRPML1 channel (Y404W) in the open state without any activating ligands. This new structure demonstrates how a mutation at a site some distance away from the pore can influence the channel's conducting state. However, the authors do not provide a structural analysis of the Y404W pore which would validate their open-state claims. Nonetheless, Gan et al provide compelling electrophysiology evidence which supports the proposed Y404W gain of function effect. The authors propose an allosteric mechanism with the following molecular details- the Y404 to W sidechain substitution provides extra van der Waals contacts within the pocket surrounded by helices of the VSD-like domain and causes S4 bending which in turn opens to the pore through the S4-S5 linker. Conversely, the author functionally demonstrates that an alanine mutation at this site causes a loss of function. Although the authors do not provide a structure of the Y404A mutation, they propose that the alanine substitution disrupts the sidechain packing and likely destabilizes the open conformation. TRPM1 channels are regulated by PIP2 species, which is related to their cell function. In the membrane of lysosomes, PI(3,5)P2 activates the channel, whereas PI(4,5)P2 found in the plasma membrane has inhibitory effects. To understand its lipid regulation, the authors solved a cryo-EM structure of TRPM1 bound to PI(4,5)P2 in its presumed closed state. Again, while the provided functional evidence suggests that PI(4,5)P2 occupancy inhibits TRPML1 current, the authors do not provide analysis of the pore which would support their closed state assertion. Within this same structure, the authors observe a density that may be attributed to sphingomyelin (or possibly phosphocholine). Using electrophysiology of WT and the Y404W channels, the authors report sphingomyelins antagonist effect on TRPML1 currents under low luminal (external) pH. Taken together, the results described in Gan et al provide compelling evidence for a gating (open, closed) mechanism of the TRPML1 pore which can be allosterically regulated by altered packing and lipid interactions within the VSDL.

    1. Reviewer #1 (Public Review):

      Summary:

      Sun et al. generated germline-specific cKO mice for the Znhit1 gene and examined its effect on male meiosis. The authors found that the loss of Znhit1 affects the transcriptional activation of pachytene. Znhit1 is a subunit of the SRCAP chromatin remodeling complex and a depositor of H2AZ, and in cKO spermatocytes, H2AZ is not deposited into the gene region. The authors claim that this is why the PGA was not activated. These findings provide important insights into the mechanisms of transcriptional regulation during the meiotic prophase.

      Strengths:

      The authors used samples from their original mouse model, analyzing both the epigenome and the transcriptome in detail using diverse NGS analyses to gain new insights into PGA. The quality of the results appeared excellent.

      Weaknesses:

      Overall, the data is inconsistent with the authors' claims and does not support their final conclusions. In addition, the sample used may not be the most suitable for the analysis, but a more suitable sample would dramatically improve the overall quality of the paper.

    2. Reviewer #2 (Public Review):

      Summary:

      The study demonstrates that Znhit1 regulates male meiosis, with deletion causing pachytene failure associated with defective expression of pachytene genes and subtle effects on X-Y pairing and DSB repair. The authors attribute this phenotype to the defective incorporation of the Znhit1 target H2A.Z into chromatin.

      Strengths:

      The paper and the figures are well presented and the narrative is clear. Evidence that the conditional deletion strategy removes Znhit1 is strong, with multiple orthogonal approaches used. Most of the meiotic phenotyping is well performed, and the omics analysis clearly identifies a dramatic effect on the meiotic gene expression program. The link to H2A.Z and A-MYB adds a mechanistic angle to the study.

      Weaknesses:

      (1) Current literature demonstrates that meiotic mutants arrest at one of two stages: midpachytene (stage IV of the seminiferous cycle) or metaphase I (stage XII of the seminiferous cycle). This study documents that in the Znhit1 KO the midpachytene marker H1t appears normally, but that cells arrest before diplotene. If this is true, then arrest must occur during late pachytene, which based on my knowledge has never been documented for a meiotic KO. To resolve this, the authors should present stronger histological substaging evidence to support their claim.

      (2) The authors overlooked the possible effects of Znhit1 deletion on MSCI. Defective MSCI is a well-established cause of pachytene arrest. Actually, the fact that they see X-Y pairing failure should alert them even more strongly to this possibility because MSCI failure is often associated with defective X-Y pairing. This could be easily addressed by examination of their RNAseq data.

      (3) The recombination assays need attention.<br /> - In the text the authors state that they studied RPA2 and DMC1, but the figures show RPA2 and RAD51.<br /> - The RPA counts are not quantitated.<br /> - The conclusion that crossover formation fails (based on MLH1 staining) is not justified. This marker does not appear in wt males until late pachytene, so if cells in this mutant are dying before that stage, MLH1 cannot be assessed.<br /> - The authors state that gH2AZ persists in the KO, but I'm not convinced that they are comparing equivalent stages in the wt and KO. In Figure 3C, the pachytene cell is late, whereas in the mutant the pachytene cell is early or mid (when residual gH2AX is expected, even in wt males).<br /> - Previous work (PMID: 23824539) has shown that antibodies reportedly detecting pATM in the sex body are non-specific. I therefore advise caution with the data shown in Figure 3D.

      (4) RNAseq data. The authors show convincingly that Znhit1 activates genes that are normally upregulated at the zyg-pachytene transition. They should repeat the analysis for genes normally upregulated at the prelep- lep and lep-zyg transition to show that this effect is really pachytene-gene specific.

      (5) I am puzzled that the title and overall gist of the study focuses on H2A.Z, when it is Znhit1 that has been deleted.

    3. Reviewer #3 (Public Review):

      Summary:

      Sun et al. present a manuscript detailing the phenotypic characterization of loss of Znhit1 in male germ cells. Znhit1 is a subunit of the chromatin regulating complex SRCAP that functions to deposit the histone variant H2A.Z. Given that meiosis, and specifically meiotic recombination, occurs in the context of the dynamic condensing of chromosomes, the role of chromatin regulators in general, and histone variants specifically, in mammalian meiosis is an active area of research. Previous work has shown that H2A.Z is found at the locations of recombination in plants, although H2A.Z was previously not found at recombination sites in mammalian meiosis. Here the authors use a conditional approach to ablate Znhit1 in spermatocytes and characterize a block in meiosis in prophase I in the transition from pachytene to diplotene stage.

      Strengths:

      The authors combine current methods in immunohistochemistry and functional genomics to provide strong evidence of meiotic block upon the loss of Znhit1. They find that loss of Znhit1 leads to reduced incorporation of the histone variant H2A.Z, specifically at promoters and enhancers. Further, RNA sequencing found more genes are down-regulated upon loss of Znhit1 compared to upregulated, suggesting that incorporation of H2A.Z is critical for the expression of genes necessary for successful meiotic progression.

      A strength of the manuscript is tying the locations of changes in H2A.Z deposition with binding of the transcription factor A-MYB, providing a mechanism that can potentially combine the changes in chromatin regulation with variable binding of a transcription factor in gene expression in pachytene stage spermatocytes.

      Weaknesses:

      A weakness in the single-cell RNA experiment using cells from 16-day-old male mice. The authors suggest that the rationale for the experiment was to determine where the Znhit1-sKO mutant showed an arrest in meiosis, and claim that this is the pachytene stage. However, in the 'first wave' of meiosis 16-day-old mice are just beginning to enter pachytene, so cells from later meiotic stages will be largely absent in these tubules. This is clear from the UMAP showing a similar pattern of cell distributions between wild-type and mutant mice. Using older mice would have better demonstrated where the mutant and wild-type mice differ in cell-type composition.

      The authors use the term pachytene genome activation (PGS) in the manuscript to suggest a novel process by which genes are specifically increased in expression in the pachytene stage of meiotic prophase I, without reference to literature that establishes the term. If the authors are putting forward a new concept defined by this term, it would strengthen the manuscript to describe it further and delineate what the genes are that are activated and discuss potential mechanisms.

      Generally speaking, the authors present solid evidence for a pachytene block in male germ cell development in mice lacking Znhit1 in spermatocytes. The evidence supporting a change in gene expression during pachytene, that more genes are downregulated in the mutant compared to increased expression, and changes in histone modification dynamics and placement of H2A.Z all support a role in alterations in meiotic gene regulation. However, the support that changes in H2A.Z impacting meiotic recombination (as suggested in the manuscript title) is less supported, rather than a general cell arrest in the pachytene stage leading to cell death. The conclusions around the role of Znhit1 influencing meiotic recombination directly could use further justification or mechanistic hypothesis.

    1. Reviewer #1 (Public Review):

      Summary:

      This work introduces a new imaging tool for profiling tumor microenvironments through glucose conversion kinetics. Using GL261 and CT2A intracranial mouse models, the authors demonstrated that tumor lactate turnover mimicked the glioblastoma phenotype, and differences in peritumoral glutamate-glutamine recycling correlated with tumor invasion capacity, aligning with histopathological characterization. This paper presents a novel method to image and quantify glucose metabolites, reducing background noise and improving the predictability of multiple tumor features. It is, therefore, a valuable tool for studying glioblastoma in mouse models and enhances the understanding of the metabolic heterogeneity of glioblastoma.

      Strengths:

      By combining novel spectroscopic imaging modalities and recent advances in noise attenuation, Simões et al. improve upon their previously published Dynamic Glucose-Enhanced deuterium metabolic imaging (DGE-DMI) method to resolve spatiotemporal glucose flux rates in two commonly used syngeneic GBM mouse models, CT2A and GL261. This method can be standardized and further enhanced by using tensor PCA for spectral denoising, which improves kinetic modeling performance. It enables the glioblastoma mouse model to be assessed and quantified with higher accuracy using imaging methods.

      The study also demonstrated the potential of DGE-DMI by providing spectroscopic imaging of glucose metabolic fluxes in both the tumor and tumor border regions. By comparing these results with histopathological characterization, the authors showed that DGE-DMI could be a powerful tool for analyzing multiple aspects of mouse glioblastoma, such as cell density and proliferation, peritumoral infiltration, and distant migration.

      Weaknesses:

      Although the paper provides clear evidence that DGE-DMI is a potentially powerful tool for the mouse glioblastoma model, it fails to use this new method to discover novel features of tumors. The data presented mainly confirm tumor features that have been previously reported. While this demonstrates that DGE-DMI is a reliable imaging tool in such circumstances, it also diminishes the novelty of the study.

      When using DGE-DMI to quantitatively map glycolysis and mitochondrial oxidation fluxes, there is no comparison with other methods to directly identify the changes. This makes it difficult to assess how sensitive DGE-DMI is in detecting differences in glycolysis and mitochondrial oxidation fluxes, which undermines the claim of its potential for in vivo GBM phenotyping.

      The study only used intracranial injections of two mouse glioblastoma cell lines, which limits the application of DGE-DMI in detecting and characterizing de novo glioblastomas. A de novo mouse model can show tumor growth progression and is more heterogeneous than a cell line injection model. Demonstrating that DGE-DMI performs well in a more clinically relevant model would better support its claimed potential usage in patients.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors attempt to noninvasively image metabolic aspects of the tumor microenvironment in vivo, in 2 mouse models of glioblastoma. The tumor lesion and its surrounding appearance are extensively characterized using histology to validate/support any observations made with the metabolic imaging approach. The metabolic imaging method builds on a previously used approach by the authors and others to measure the kinetics of deuterated glucose metabolism using dynamic 2H magnetic resonance spectroscopic imaging (MRSI), supported by de-noising methods.

      Strengths:

      Extensive histological evaluation and characterization.

      Measurement of the time course of isotope labeling to estimate absolute flux rates of glucose metabolism.

      Weaknesses:

      The de-noising method appears essential to achieve the high spatial resolution of the in vivo imaging to be compatible with the dimensions of the tumor microenvironment, here defined as the immediately adjacent rim of the mouse brain tumors. There are a few challenges with this approach. Often denoising methods applied to MR spectroscopy data have merely a cosmetic effect but the actual quantification of the peaks in the spectra is not more accurate than when applied directly to original non-denoised data. It is not clear if this concern is applicable to the denoising technique applied here. However, even if this is not an issue, no denoising method can truly increase the original spatial resolution at which data were acquired. A quick calculation estimates that the spatial resolution of the 2H MRSI used here is 30-40 times too low to capture the much smaller tumor rim volume, and therefore there is concern that normal brain tissue and tumor tissue will be the dominant metabolic signal in so-called tumor rim voxels. This means that the conclusions on metabolic features of the (much larger) tumor are much more robust than the observations attributed to the (much smaller) tumor microenvironment/tumor rim.

      To achieve their goal of high-level metabolic characterization the authors set out to measure the deuterium labeling kinetics following an intravenous bolus of deuterated glucose, instead of the easier measurement of steady-state after the labeling has leveled off. These dynamic data are then used as input for a mathematical model of glucose metabolism to derive fluxes in absolute units. While this is conceptually a well-accepted approach there are concerns about the validity of the included assumptions in the metabolic model, and some of the model's equations and/or defining of fluxes, that seem different than those used by others.

    3. Reviewer #3 (Public Review):

      Summary:

      Simoes et al enhanced dynamic glucose-enhanced (DGE) deuterium spectroscopy with Deuterium Metabolic Imaging (DMI) to characterize the kinetics of glucose conversion in two murine models of glioblastoma (GBM). The authors combined spectroscopic imaging and noise attenuation with histological analysis and showcased the efficacy of metabolic markers determined from DGE DMI to correlate with histological features of the tumors. This approach is also potent to differentiate the two models from GL261 and CT2A.

      Strengths:

      The primary strength of this study is to highlight the significance of DGE DMI in interrogating the metabolic flux from glucose. The authors focused on glutamine/glutamate and lactate. They attempted to correlate the imaging findings with in-depth histological analysis to depict the link between metabolic features and pathological characteristics such as cell density, infiltration, and distant migration.

      Weaknesses:

      (1) A lack of genetic interrogation is a major weakness of this study. It was unclear what underlying genetic/epigenetic aberrations in GL261 and CT2A account for the metabolic difference observed with DGE DMI. A correlative metabolic confirmation using mass spectrometry of the two tumor specimens would give insight into the observed imaging findings.

      (2) A better depiction of the imaging features and tumor heterogeneity would support the authors' multimodal attempt.

      (3) Integration of the various cell types in the tumor microenvironment, as allowed with the resolution of DGE DMI, will explain the observed difference between GL261 and CT2A. Is there a higher percentage of infiltrative "other cells" observed in GL261 tumor?

      (4)This underlying technology with DGE DMI is capable of identifying more heterogeneous GBM tumors. A validation cohort of additional in vivo models will offer additional support to the potential clinical impact of this study.

    1. Reviewer #1 (Public Review):

      Summary:

      Previous work has shown that the evolutionarily-conserved division-orienting protein LGN/Pins (vertebrates/flies) participates in division orientation across a variety of cell types, perhaps most importantly those that undergo asymmetric divisions. Micromere formation in echinoids relies on asymmetric cell division at the 16-cell stage, and these authors previously demonstrated a role for the LGN/Pins homolog AGS in that ACD process. Here they extend that work by investigating and exploiting the question of why echinoids but not other echinoderms form micromeres. Starting with a phylogenetics approach, they determine that much of the difference in ACD and micromere formation in echinoids can be attributed to differences in the AGS C-terminus, in particular a GoLoco domain (GL1) that is missing in most other echinoderms.

      Strengths:

      There is a lot to like about this paper. It represents a superlative match of the problem with the model system and the findings it reports are a valuable addition to the literature. It is also an impressively thorough study; the authors should be commended for using a combination of experimental approaches (and consequently generating a mountain of data).

      Weaknesses:

      There is an intriguing finding described in Figure 1. AGS in sea cucumbers looks identical to AGS in the pencil urchin, at least at the C terminus (including the GL1 domain). Nevertheless, there are no micromeres in sea cucumbers. Therefore another mechanism besides GL motif organization has arisen to support micromere formation. It is a consequential finding and an important consideration in interpreting the data, but I could not find any mention of it in the text. That is a missed opportunity and should be remedied, ideally not only through discussion but also experimentation. Specifically: does sea cucumber AGS (SbAGS) ever localize to the vegetal cortex in sea cucumbers? Can it do so in echinoids? Will that support micromere formation?

      The authors point out that AGS-PmGL demonstrates enrichment at the vegetal cortex (arrow in 5G, quantifications in 5H), unlike PmAGS. AGS-PmGL does not however support ACD. They interpret this result to indicate "that other elements of SpAGS outside of its C-terminus can drive its vegetal cortical localization but not function." This is a critical finding and deserves more attention. Put succinctly: Vegetal cortical localization of AGS is insufficient to promote ACD, even in echinoids. Why should this be?

      The authors did perform experiments to address this problem, hypothesizing that the difference might be explained by the linker region, which includes a conserved phosphorylation site that mediates binding to Dlg. They write "To test if this serine is essential for SpAGS localization, we mutated it to alanine (AGS-S389A in Fig. S3A). Compared to the Full AGS control, the mutant AGS-S389A showed reduced vegetal cortical localization (Fig. S3B-C) and function (Fig. S3D-E). Furthermore, we replaced the linker region of PmAGS with that of SpAGS (PmAGS-SpLinker in Fig. S4A-B). However, this mutant did not show any cortical localization nor proper function in ACD (Fig. S4C-F). Therefore, the SpAGS C-terminus is the primary element that drives ACD, while the linker region serves as the secondary element to help cortical localization of AGS."

      The experiments performed only make sense if the AGS-PmGL chimeric protein used in Figure 5 starts the PmGL sequence only after the Sp linker, or at least after the Sp phosphorylation site. I can't tell from the paper (Figure S3 indicates that it does, whereas S5 suggests otherwise), but it's a critical piece of information for the argument. Another piece of missing information is whether the PmAGS can be phosphorylated at its own conserved phosphorylation site. The authors don't test this, which they could at least try using a phosphosite prediction algorithm, but they do show that the candidate phosphorylation site has a slightly different sequence in Pm than in Et and Sp (Fig. S4A). With impressive rigor, the authors go on to mutate the PmAGS phosphorylation site to make it identical to Sp. Nothing happens. Vegetal cortical localization does not increase over AGS-PmGL alone. Micromere formation is unrescued.

      There is therefore a logic problem in the text, or at least in the way the text is written. The paragraph begins "Additionally, AGS-PmGL unexpectedly showed cortical localization (Figure 5G), while PmAGS showed no cortical localization (Figure 5B)." We want to understand why this is true, but the explanation provided in the remainder of the paragraph doesn't match the question: according to quite a bit of their own data, the phosphorylation site in the linker does not explain the difference. It might explain why AGS-PmGL fails to promote micromere formation, but only if the AGS-PmGL chimeric protein uses the Pm linker domain (see above).

      Another concern that is potentially related is the measurement of cortical signal. For example, in the control panel of Figure 5C, there is certainly a substantial amount of "non-cortical" signal that I believe is nuclear. I did not see a discussion of this signal or its implications. My impression of the pictures generally is that the nuclear signal and cortical signal are inversely correlated, which makes sense if they are derived from the same pool of total protein at different points of the cell cycle. If that's the case (and it might not be) I would expect some quantifications to be impacted. For example, the authors show in Figure S3B that AGS-S389A mutant does not localize to the cortex. However, this mutant shows a radically different localization pattern to the accompanying control picture (AGS), namely strong enrichment in what I assume to be the nucleus. Is the S389 mutant preventing AGS from making it to the cortex? Or are these pictures instead temporally distinct, meaning that AGS hasn't yet made it out of the nucleus? Notably, the work of Johnston et al. (Cell 2009), cited in the text, does not show or claim that the linker domain impacts Pins localization. Their model is rather that Pins is anchored at the cortex by Gαi, not Dlg, and that is the same model described in this manuscript. In agreement with that model and the results of Johnston et al., a later study (Neville et al. EMBO Reports 2023) failed to find a role for Dlg or the conserved phosphorylation site in Pins localization.

    2. Reviewer #2 (Public Review):

      This study from Dr. Emura and colleagues addresses the relevance of AGS3 mutations in the execution of asymmetric cell divisions promoting the formation of the micromere during sea-searching development. To this aim, the authors use quantitative imaging approaches to evaluate the localisation of AGS3 mutants truncated at the N-terminal region or at the C-terminal region, and correlate these distributions with the formation of micromere and correct development of embryos to the pluteus stage. The authors also analyse the capacity of these mutated proteins to rescue developmental defects observed upon AGS3 depletion by morpholino antisense nucleotides (MO). Collectively these experiments revealed that the C-terminus of AGS3, coding for four GoLoco motifs binding to cortical Gaphai proteins, is the molecular determinant for cortical localisation of AGS3 at the micromeres and correct pluteus development. Further genetic dissections and expression of chimeric AGS3 mutants carrying shuffled copies of the GoLoco motifs or four copies of the same motifs revealed that the position of GoLoco1 is essential for AGS3 functioning. To understand whether the AGS3-GoLoco1 evolved specifically to promote asymmetric cell divisions, the authors analyse chimeric AGS3 variants in which they replaced the sea urchin GoLoco region with orthologs from other echinoids that do not form micromeres, or from Drosophila Pins or human LGN. These analyses corroborate the notion that the GoLoco1 position is crucial for asymmetric AGS3 functions. In the last part of the manuscript, the authors explore whether SpAGS3 interacts with the molecular machinery described to promote asymmetric cell division in eukaryotes, including Insc, NuMA, Par3, and Galphai, and show that all these proteins colocalize at the nascent micromere, together with the fate determinant Vasa. Collectively this evidence highlighted how evolutionarily selected AGS3 modifications are essential to sustain asymmetric divisions and specific developmental programs associated with them.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors identified nanobodies that were specific for the trypanosomal enzyme pyruvate kinase in previous work seeking diagnostic tools. They have shown that a site involved in the allosteric regulation of the enzyme is targeted by the nanobody and using elegant structural approaches to pinpoint where binding occurs, opening the way to the design of small molecules that could also target this site.

      Strengths:

      The structural work shows the binding of a nanobody to a specific site on Trypanosoma congolense pyruvate kinase and provides a good explanation as to how binding inhibits enzyme activity. The authors go on to show that by expressing the nanobodies within the parasites they can get some inhibition of growth, which albeit rather weak, they provide a case on how this could point to targeting the same site with small molecules as potential trypanocidal drugs.

      Weaknesses:

      The impact on growth is rather marginal. Although explanations are offered on the reasons for that, including the high turnover rate of the expressed nanobody and the difficulty in achieving the high levels of inhibition of pyruvate kinase required to impact energy production sufficiently to kill parasites, this aspect of the work doesn't offer great support to developing small molecule inhibitors of the same site.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors show that the camelid single-chain antibody sdAb42 selectivity inhibits Trypanosome pyruvate kinase (PYK) but not human PYK. Through the determination of the crystal structure and biophysical experiments, the authors show that the nanobody binds to the inactive T-state of the enzyme, and in silico analysis shows that the binding site coincides with an allosteric hotspot, suggesting that nanobody binding may affect the enzyme active site. Binding to the T-state of the enzyme is further supported by non-linear inhibition kinetics. PYK is an important enzyme in the glycolytic pathway, and inhibition is likely to have an impact on organisms such a trypanosomes, that heavily rely on glycolysis for their energy production. The nanobody was generated against Trypanosoma congolense PYK, but for technical reasons the authors progressed to testing its impact on cell viability in Trypanosoma brucei brucei. First, they show that sdA42 is able to inhibit Tbb PYK, albeit with lower potency. Cell-based experiments next show that expression of sdA42 has a modest, and dose-dependent effect on the growth rate of Tbb. The authors conclude that their data indicates that targeting this allosteric site affects cell growth and is a valuable new option for the development of new chemotherapeutics for trypanosomatid diseases.

      Strengths:

      The work clearly shows that sdA42A inhibits Trypanosome and Leishmania PYK selectively, with no inhibition of the human orthologue. The crystal structure clearly identifies the binding site of the nanobody, and the accompanying analysis supports that the antibody acts as an allosteric inhibitor of PYK, by locking the enzyme in its apo state (T-state).

      Weaknesses:

      (1) The most impactful claim of this work is that sdAb42-mediated inhibition of PYK negatively affects parasite growth and that this presents an opportunity to develop novel chemotherapeutics for trypanosomatid diseases. For the following reasons I think this claim is not sufficiently supported:

      - The authors do not provide evidence of target-engagement in cells, i.e. they do not show that sdA42A binds to, or inhibits, Tbb PYK in cells and/or do not provide a functional output consistent with PYK inhibition (e.g. effect on ATP production). Measuring the extent of target engagement and inhibition is important to draw conclusions from the modest effect on growth.

      - The authors do not explore the selectivity of sdA42A in cells. Potentially sdA42A may cross-react with other proteins in cells, which would confound interpretation of the results.

      - sdA42A only affects minor growth inhibition in Tbb. The growth defect is used as the main evidence to support targeting this site with chemotherapeutics, however based on the very modest effect on the parasites, one could reasonably claim that PYK is actually not a good drug target. The strongest effect on growth is seen for the high expressor clone in Figure 4a, however here the uninduced cells show an unusual profile, with a sudden increase in growth rate after 4 days, something that is not seen for any of the other control plots. This unexplained observation accentuates the growth difference between induced and uninduced, and the growth differences seen in all other experiments, including those with the highest expressors (clones 54 and 55) are much more modest. The loss of expression of sdA42A over time is presented as a reason for the limited effect, and used to further support the hypothesis that targeting the allosteric site is a suitable avenue for the development of new drugs. However, strong evidence for this is missing.

      - For chemotherapeutic interventions to be possible, a ligandable site is required. There is no analysis provided of the antibody binding site to indicate that small molecule binding is indeed feasible.

      (2) The authors comment on the modest growth inhibition, and refer to the need to achieve over 88% reduction in Vmax of PYK to see a strong effect, something that may or may not be achieved in the cell-based model (no target-engagement or functional readout provided). The slow binding model and switch of species are also raised as potential explanations. While these may be plausible explanations, they are not tested which leaves us with limited evidence to support targeting the allosteric site on PYK.

      (3) The evidence to support an allosteric mechanism is derived from structural studies, including the in silico allosteric network predictions. Unfortunately, standard enzyme kinetics mode of inhibition studies are missing. Such studies could distinguish uncompetitive from non-competitive behaviour and strengthen the claim that sdAb42 locks the enzyme complex in the apo form.

      (4) As general comment, the graphical representation of the data could be improved in line with recent recommendations: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128, https://elifesciences.org/inside-elife/5114d8e9/webinar-report-transforming-data-visualisation-to-improve-transparency-and-reproducibility.

      - Bar-charts for potency are ideally presented as dot plots, showing the individual data points, or box plots with datapoints shown.

      - Images in Figure 7 show significant heterogeneity of nanobody expression, but the extent of this can not be gleaned from Figure 7B. It would be much better to use box plots or violin plots for each cell line on this figure panel. The same applies to Figure 10.

    3. Reviewer #3 (Public Review):

      Summary:

      Out of the 20 Neglected Tropical Diseases (NTD) highlighted by the WHO, three are caused by members of the trypanosomatids, namely Leishmanaisis, Trypanosomiasis, and Chagas disease. Trypanosomal glycolytic enzymes including pyruvate kinase (PyK) have long been recognised as potential targets. In this important study, single-chain camelid antibodies have been developed as novel and potent inhibitors of PyK from the T, congolense. To gain structural insight into the mode of action, binding was further characterised by biophysical and structural methods, including crystal structure determination of the enzyme-nanobody complex. The results revealed a novel allosteric mechanism/pathway with significant potential for the future development of novel drugs targeting allosteric and/or cryptic binding sites.

      Strengths:

      This paper covers an important area of science towards the development of novel therapies for three of the Neglected Tropical Diseases. The manuscript is very clearly written with excellent graphics making it accessible to a wide readership beyond experts. Particular strengths are the wide range of experimental and computational techniques applied to an important biological problem. The use of nanobodies in all areas from biophysical binding experiments and X-ray crystallography to in-vivo studies is particularly impressive. This is likely to inspire researchers from many areas to consider the use of nanobodies in their fields.

      Weaknesses:

      There is no particular weakness, but I think the computational analysis of allostery, which basically relies on a single server could have been more detailed.

    1. Reviewer #1 (Public Review):

      In the manuscript entitled "SARS-CoV-2 NSP13 interacts with TEAD to suppress Hippo-YAP signaling", Meng et al. report that SARS-CoV-2 infection disrupts YAP downstream gene transcription in both patient lung samples and the iPSC-cardiomyocytes. Among the tested SARS-CoV-2 proteins, the helicase nonstructural protein 13 (NSP13) was identified to target YAP transcriptional activity both in vitro and in vivo, independent of the Hippo pathway. Mechanistically, NSP13 inhibits YAP transcriptional activity through its interaction with TEAD4 and a group of nuclear repressor proteins, a process that requires its helicase activity. Overall, this study uncovers a novel regulation of the YAP/TEAD complex by SARS-CoV-2 infection, highlighting its impact on cellular signaling events. The manuscript is well-written and easy to follow. Here are some suggestions for the authors to further improve their work.

      Major points

      (1) The authors discovered a novel regulation of the Hippo-YAP pathway by SARS-CoV-2 infection but did not address the pathological significance of this finding. It remains unclear why YAP downstream gene transcription needs to be inhibited in response to SARS-CoV-2 infection. Is this inhibition crucial for the innate immune response to SARS-CoV-2? The authors should re-analyze their snRNA-seq and bulk RNA-seq data described in Figure 1 to determine whether any of the affected YAP downstream genes are involved in this process.

      (2) The authors concluded that helicase activity is required for NSP13-induced inhibition of YAP transcriptional activity based on mutation studies (Figure 3B). This finding is somewhat confusing, as K131, K345/K347, and R567 are all essential residues for NSP13 helicase activity while mutating K131 did not affect NSP13's ability to inhibit YAP (Figure 3B). Additionally, there are no data showing exactly how NSP13 inhibits the YAP/TEAD complex through its helicase function. This point was also not reflected in their proposed working model (Figure 4H).

      (3) The proposed model that NSP13 binds TEAD4 to recruit repressor proteins and inhibits YAP/TEAD downstream gene transcription (Figure 4H) needs further characterization. First, it is notable that the provided NSP13 IP-MS data did not reveal any TEAD family members as binding proteins for NSP13 (Supplement Figure 4C and the tables), suggesting that NSP13 may modulate the YAP/TEAD complex through other mechanisms, possibly involving other binding proteins. Second, NSP13 is a DNA-binding protein, and its nucleic acid-binding mutant K345A/K347A failed to inhibit YAP transcriptional activity (Figure 3B). The authors should investigate whether NSP13 could bind to the TEAD binding sequence or the nearby sequence on the genome to modulate TEAD's DNA binding ability. Third, regarding the identified nuclear repressors, the authors should validate the interaction of NSP13 with the ones whose loss activates YAP transcriptional activity (Figure 4G). Lastly, why can't NSP13 bind TEAD4 in the cytoplasmic fractionation if both NSP13 and TEAD4 are detected there (Figure 3B)? This finding indicates their interaction is not a direct protein-protein interaction but is mediated by something in the nucleus, such as genomic DNA.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Meng et al. describes a potential role for the coronavirus helicase NSP13 in the regulation of YAP-TEAD activity. The authors present data that NSP13 expression in cells reduces YAP-induced TEAD luciferase reporter activity and that NSP13 transduction in cardiomyocytes blocks hyperactive YAP-mutant phenotypes in vivo. Mechanisms by which viral proteins (particularly those from coronavirus) intersect with cellular signaling events is an important research topic, and the intersection of NSP13 with YAP-TEAD transcriptional activity (independent of upstream Hippo pathway mediated signals) offers new knowledge that is of interest to a broad range of researchers.

      Strengths:

      The manuscript presents convincing data mapping the effects of NSP13 on YAP-TEAD reporter activity in the helicase domain. Moreover, the in vivo data demonstrating that NSP13 expression in YAP5SA mouse cardiomyocytes increased survival animal rates, and restored cardiac function is striking and is supportive of the model presented.

      Weaknesses:

      Limitations to the study are the reliance on TEAD-reporter assays to show specific effects of NPS13 on YAP-TEAD activity, incomplete characterization of the interesting in vivo findings that are presented, and a lack of follow-up to the proposed mechanisms identified from the IP-MS experiments.

      Specific comments and suggestions for improvement of the manuscript:

      (1) NSP13 has been reported to block, in a helicase-dependent manner, episomal DNA transcription (PMID: 37347173), raising questions about the effects observed on the data shown from the HOP-Flash and 8xGTIIC assays. It would be valuable to demonstrate the specificity of the proposed effect of NSP13 on TEAD activation by YAP (versus broad effects on reporter assays) and also to show that NSP13 reduces the function of endogenous YAP-TEAD transcriptional activity (i.e., does ectopic NSP13 expression reduce the expression of YAP induced TEAD target genes in cells).

      (2) While the IP-MS experiment may have revealed new regulators of TEAD activity, the data presented are preliminary and inconclusive. No interactions are validated and beyond slight changes in TEAD reporter activity following knockdown, no direct links to YAP-TEAD are demonstrated, and no link to NPS13 was shown. Also, no details are provided about the methods used for the IP-MS experiment, raising some concerns about potential false positive associations within the data.

    1. Reviewer #1 (Public Review):

      Yun et al. examined the molecular and neuronal underpinnings of changes in Drosophila female reproductive behaviors in response to social cues. Specifically, the authors measure the ejaculate-holding period, which is the amount of time females retain male ejaculate after mating (typically 90 min in flies). They find that female fruit flies, Drosophila melanogaster, display shorter holding periods in the presence of a native male or male-associated cues, including 2-Methyltetracosane (2MC) and 7-Tricosene (7-T). They further show that 2MC functions through Or47b olfactory receptor neurons (ORNs) and the Or47b channel, while 7-T functions through ppk23 expressing neurons. Interestingly, their data also indicates that two other olfactory ligands for Or47b (methyl laurate and palmitoleic acid) do not have the same effects on the ejaculate-holding period. By performing a series of behavioral and imaging experiments, the authors reveal that an increase in cAMP activity in pC1 neurons is required for this shortening of the ejaculate-holding period and may be involved in the likelihood of remating. This work lays the foundation for future studies on sexual plasticity in female Drosophila.

      The conclusions of this paper are supported by the data and the authors have revised the manuscript in accordance with comments of the reviewers. This revised version also contains the expression pattern of the lines used for modulating individual pC1 subtypes. These data and reagents open interesting avenues for future studies on female receptivity and mate choice.

    2. Reviewer #2 (Public Review):

      The work by Yun et al. explores an important question related to post-copulatory sexual selection and sperm competition: Can females actively influence the outcome of insemination by a particular male by modulating storage and ejection of transferred sperm in response to contextual sensory stimuli? The present work is exemplary for how the Drosophila model can give detailed insight in basic mechanism of sexual plasticity, addressing the underlying neuronal circuits on a genetic, molecular and cellular level.

      Using the Drosophila model, the authors show that the presence of other males or mated females after mating shortens the ejaculate-holding period (EHP) of a female, i.e. the time she takes until she ejects the mating plug and unstored sperm. Through a series of thorough and systematic experiments involving the manipulation of olfactory and chemogustatory neurons and genes in combination with exposure to defined pheromones, they uncover two pheromones and their sensory cells for this behavior. Exposure to the male specific pheromone 2MC shortens EHP via female Or47b olfactory neurons, and the contact pheromone 7-T, present males and on mated females, does so via ppk23 expressing gustatory foreleg neurons. Both compounds increase cAMP levels in a specific subset of central brain receptivity circuit neurons, the pC1b,c neurons. By employing an optogenetically controlled adenyl cyclase, the authors show that increased cAMP levels in pC1b,c neurons increase their excitability upon male pheromone exposure, decrease female EHP and increase the remating rate. This provides convincing evidence for the role of pC1b,c neurons in integrating information about the social environment and mediating not only virgin, but also mated female post-copulatory mate choice.

      Understanding context and state-dependent sexual behavior is of fundamental interest. Mate behavior is highly context-dependent. In animals subjected to sperm competition, the complexities of optimal mate choice have attracted a long history of sophisticated modelling in the framework of game theory. These models are in stark contrast to how little we understand so far about the biological and neurophysiological mechanisms of how females implement post-copulatory or so-called "cryptic" mate choice and bias sperm usage when mating multiple times.

      The strength of the paper is decrypting "cryptic" mate choice, i.e. the clear identification of physiological mechanisms and proximal causes for female post-copulatory mate choice. The discovery of peripheral chemosensory nodes and of neurophysiological mechanisms in central circuit nodes will provide a fruitful starting point to fully map the circuits for female receptivity and mate choice during the whole gamut of female life history.

    1. Reviewer #1 (Public Review):

      The process of EMT is a major contributor of metastasis and chemoresistance in breast cancer. By using a modified PyMT model that allows identification of cells undergoing EMT and their decedents via S100A4-Cre mediated recombination of the mTmG allele, Ban et al. tackle a very important question of how tumor metastasis and therapy resistance by EMT can be blocked. They identified that pathways associated with ribosome biogenesis (RiBi) are activated during transition cell states. This finding represents a promising therapeutic target to block any transition from E to M (activated during cell dissemination and invasion) as well as from M to E (activated during metastatic colonization). Inhibition of RiBi-blocked EMT also reduced the establishment of chemoresistance that is associated with an EMT phenotype. Hence, RiBi blockage together with standard chemotherapy showed synergistic effects, resulting in impaired colonization/metastatic outgrowth in an animal model. The study is of great interest and of high clinical relevance as the authors show that blocking the transition from E to M or vice versa targets both aspects of metastasis, dissemination form the primary tumor and colonization in distant organs.

      The study is done with high skill using state of the art technology and the conclusions are convincing and solid, but some aspects require some additional experimental support and clarification. It remains elusive whether blocking of EMT/MET is necessary for the synergistic effect of standard chemotherapy together with RiBi blockage or whether a general growth disadvantage of RiBi treated cells independent of blocking transition is responsible. How can specific effect on state transition by RiBI block be seperated from global effects attributed to overall reduced protein biosynthesis, proliferation etc.? Some other aspects are misleading or need extension:

      In the revised version, the authors appropriately addressed all my comments. I'd like to congratulate the authors for this wonderful work!

    1. Reviewer #2 (Public Review):

      This study reports a physical interaction between the kinase DYRK1A and the Tuberous Sclerosis Complex (TSC) protein complex (TSC1, TSC2, TBC1D7). Furthermore, this study demonstrates that DYRK1A, upon interaction with the TSC proteins, regulates mTORC1 activity and cell size. Additionally, this study identifies T1462 on TSC2 as a phosphorylation target of DYRK1A. Finally, the authors demonstrate that DYRK1A impacts cell size using human, mouse and Drosophila cells.

      The interaction described here is highly impactful to the field of mTORC1-regulated cell growth and uncovers a previously unrecognized TSC-associated interacting protein. DYRK1A and its regulation of mTORC1 activation may have an impact for multiple diseases in which mTORC1 is hyperactivated.

    1. Reviewer #1 (Public Review):

      Summary:

      Working memory is imperfect - memories accrue error over time and are biased towards certain identities. For example, previous work has shown memory for orientation is more accurate near the cardinal directions (i.e., variance in responses is smaller for horizontal and vertical stimuli) while being biased towards diagonal orientations (i.e., there is a repulsive bias away from horizontal and vertical stimuli). The magnitude of errors and biases increase the longer an item is held in working memory and when more items are held in working memory (i.e., working memory load is higher). Previous work has argued that biases and errors could be explained by increased perceptual acuity at cardinal directions. However, these models are constrained to sensory perception and do not explain how biases and errors increase over time in memory. The current manuscript builds on this work to show how a two-layer neural network could integrate errors and biases over a memory delay. In brief, the model includes a 'sensory' layer with heterogenous connections that lead to the repulsive bias and decreased error at the cardinal directions. This layer is then reciprocally connected with a classic ring attractor layer. Through their reciprocal interactions, the biases in the sensory layer are constantly integrated into the representation in memory. In this way, the model captures the distribution of biases and errors for different orientations that has been seen in behavior and their increasing magnitude with time. The authors compare the two-layer network to a simpler one-network model, showing that the one model network is harder to tune and shows an attractive bias for memories that have lower error (which is incompatible with empirical results).

      Strengths:

      The manuscript provides a nice review of the dynamics of items in working memory, showing how errors and biases differ across stimulus space. The two-layer neural network model is able to capture the behavioral effects as well as relate to neurophysiological observations that memory representations are distributed across sensory cortex and prefrontal cortex.

      The authors use multiple approaches to understand how the network produces the observed results. For example, analyzing the dynamics of memories in the low-dimensional representational space of the networks provides the reader with an intuition for the observed effects.

      As a point of comparison with the two-layer network, the authors construct a heterogenous one-layer network (analogous to a single memory network with embedded biases). They argue that such a network is incapable of capturing the observed behavioral effects but could potentially explain biases and noise levels in other sensory domains where attractive biases have lower errors (e.g., color).

      The authors show how changes in the strength of Hebbian learning of excitatory and inhibitory synapses can change network behavior. This argues for relatively stronger learning in inhibitory synapses, an interesting prediction.

      The manuscript is well-written. In particular, the figures are well done and nicely schematize the model and the results.

      Weaknesses:

      Despite its strengths, the manuscript does have some weaknesses. These weaknesses are adequately discussed in the manuscript and motivate future research.

      One weakness is that the model is not directly fit to behavioral data, but rather compared to a schematic of behavioral data. As noted above, the model provides insight into the general phenomenon of biases in working memory. However, because the models are not fit directly to data, they may miss some aspects of the data.

      In addition, directly fitting the models to behavioral data could allow for a broader exploration of parameter space for both the one-layer and two-layer models (and their alternatives). Such an approach would provide stronger support for the papers claims (such as "....these evolving errors...require network interaction between two distinct modules."). That being said, the manuscript does explore several alternative models and also acknowledges the limitation of not directly fitting behavior, due to difficulties in fitting complex neural network models to data.

      One important behavioral observation is that both diffusive noise and biases increase with the number of items in working memory. The current model does not capture these effects and it isn't clear how the model architecture could be extended to capture these effects. That being said, the authors note this limitation in the Discussion and present it as a future direction.

      Overall:

      Overall, the manuscript was successful in building a model that captured the biases and noise observed in working memory. This work complements previous studies that have viewed these effects through the lens of optimal coding, extending these models to explain the effects of time in memory. In addition, the two-layer network architecture extends previous work with similar architectures, adding further support to the distributed nature of working memory representations.

    2. Reviewer #2 (Public Review):

      In this manuscript, Yang et al. present a modeling framework to understand the pattern of response biases and variance observed in delayed-response orientation estimation tasks. They combine a series of modeling approaches to show that coupled sensory-memory networks are in a better position than single-area models to support experimentally observed delay-dependent response bias and variance in cardinal compared to oblique orientations. These errors can emerge from a population-code approach that implements efficient coding and Bayesian inference principles and is coupled to a memory module that introduces random maintenance errors. A biological implementation of such operation is found when coupling two neural network modules, a sensory module with connectivity inhomogeneities that reflect environment priors, and a memory module with strong homogeneous connectivity that sustains continuous ring attractor function. Comparison with single-network solutions that combine both connectivity inhomogeneities and memory attractors shows that two-area models can more easily reproduce the patterns of errors observed experimentally.

      Strengths:

      The model provides an integration of two modeling approaches to the computational bases of behavioral biases: one based on Bayesian and efficient coding principles, and one based on attractor dynamics. These two perspectives are not usually integrated consistently in existing studies, which this manuscript beautifully achieves. This is a conceptual advancement, especially because it brings together the perceptual and memory components of common laboratory tasks.

      The proposed two-area model provides a biologically plausible implementation of efficient coding and Bayesian inference principles, which interact seamlessly with a memory buffer to produce a complex pattern of delay-dependent response errors. No previous model had achieved this.

      Weaknesses:

      The correspondence between the various computational models is not clearly shown. It is not easy to see clearly this correspondence because network function is illustrated with different representations for different models. In particular, the Bayesian model of Figure 2 is illustrated with population responses for different stimuli and delays, while the attractor models of Figure 3 and 4 are illustrated with neuronal tuning curves but not population activity.

      The proposed model has stronger feedback than feedforward connections between the sensory and memory modules (J_f = 0.1 and J_b = 0.25). This is not the common assumption when thinking about hierarchical processing in the brain. The manuscript argues that error patterns remain similar as long as the product of J_f and J_b is constant, so it is unclear why the authors preferred this network example as opposed to one with J_b = 0.1 and J_f = 0.25.

    3. Reviewer #3 (Public Review):

      Summary:

      The present study proposes a neural circuit model consisting of coupled sensory and memory networks to explain the circuit mechanism of the cardinal effect in orientation perception which is characterized by the bias towards the oblique orientation and the largest variance at the oblique orientation.

      Strengths:

      The authors have done numerical simulations and preliminary analysis of the neural circuit model to show the model successfully reproduces the cardinal effect. And the paper is well-written overall. As far as I know, most of the studies on the cardinal effect are at the level of statistical models, and the current study provides one possibility of how neural circuit models reproduce such an effect.

      Weaknesses:

      There are no major weaknesses and flaws in the present study, although I suggest the author conduct further analysis to deepen our understanding of the circuit mechanism of the cardinal effects. Please find my recommendations for concrete comments.

    1. Reviewer #1 (Public Review):

      This work by Stauber et al., is focused on understanding the signaling mechanisms that are associated with tendinopathy development, and by screening a panel of human tendinopathy samples, identified IL-6/JAK/STAT as a potential mediator of this pathology. Using an innovate explant model they delineated the requirement for IL-6 in the main body of the tendon to alter the dynamics of extrinsic fibroblasts. These studies are complemented by in vivo studies that include a Scx-GFP reporter. This approach facilitates examination of the effects of IL6-/- on Scx+ cells, and the differences observed between ex vivo and in vivo contexts.

      The use of a publicly available existing dataset is considered a strength, since this dataset includes expression data from several different human tendons experiencing tendinopathy. The revised analysis that includes only non-sheathed tendons facilitates the identification of potentially conserved regulators of the tendinopathy phenotype, with immunostaining for CD90, IL-6R, and IL-6 expression in human tendinopathy samples providing important validation of the transcriptomic studies.

    1. Reviewer #1 (Public Review):

      Summary:

      In their paper, Hou and co-workers explored the use of a FRET sensor for endogenous g-sec activity in vivo in the mouse brain. They used AAV to deliver the sensor to the brain for neuron specific expression and applied NIR in cranial windows to assess FRET activity; optimizing as well an imaging and segmentation protocol. In brief they observe clustered g-sec activity in neighboring cells arguing for a cell non-autonomous regulation of endogenous g-sec activity in vivo.

      Strengths:

      Mone.

      Weaknesses:

      Overall the authors provide a very limited data set and in fact only a proof of concept that their sensor can be applied in vivo. This is not really a research paper, but a technical note. With respect to their observation of clustered activity, they now provide an overview image, next to zoomed details. However, from these images one cannot conclude 'by eye' any clustering event. This aligns with the very low r values. All neurons in the field show variable activity and a clustering is not really evident from these examples. Even within a cluster, there is variability. The authors now confirm that expression levels are indeed variable but are independent from the ratio measurements. Further, they controlled for specificity by including DAPT treatments, but opposite to their own in vitro data (in primary neurons) the ratios increased. The authors argue that both distance and orientation can either decrease or increase ratios and that the use of this biosensor should be explored model-by-model. This doesn't really confer high confidence and may hinder other groups in using this sensor reliably.

      Secondly, there is still no physiological relevance for this observation. The experiments are performed in wild-type mice, but it would be more relevant to compare this with a fadPSEN1 KI or a PSEN1cKO model to investigate the contribution of a gain of toxic function or LOF to the claimed cell non-autonomous activations. The authors acknowledge this shortcoming but argue that this is for a follow-up study.

      For instance, they only monitor activity in cell bodies, and miss all info on g-sec activity in neurites and synapses: what is the relevance of the cell body associated g-sec and can it be used as a proxy for neuronal g-sec activity? If cells 'communicate' g-sec activities, I would expect to see hot spots of activity at synapses between neurons.

      Without some more validation and physiologically relevant studies, it remains a single observation and rather a technical note paper, instead of a true research paper.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Hou et al is a short technical report which details the potential use of a recently developed FRET based biosensor for gamma-secretase activity (Houser et al 2020) for in vivo imaging in the mouse brain. Gamma-secretase plays a crucial role in Alzheimer's disease pathology and therefore developing methodologies for precise in vivo measurements would be highly valuable to better understand AD pathophysiology in animal models.

      The current version of the sensor utilizes a pair of far-red fluorescent proteins fused to a substrate of the enzyme. Using live imaging, it was previously demonstrated it is possible to monitor gamma-secretase activity in cultured cells. Notably, this is a variant of a biosensor that was previously described using CFP-YFP variants FRET pair (Maesako et al, iScience. 2020). The main claim and hypothesis for the manuscript is that IR excitation and emission has considerable advantages in terms of depth of penetration, as well as reduction in autofluorescence. These properties would make this approach potentially suitable to monitor cellular level dynamics of Gama-secretase in vivo.

      The authors use confocal microscopy and show it is possible to detect fluorescence from single cortical cells. The paper described in detail technical information regarding imaging and analysis. The data presented details analysis of FRET ratio (FR) measurements within populations of cells. The authors claim it is possible to obtain reliable measurements at the level of individual cells. They compare the FR values across cells and mice and find a spatial correlation among neighboring cells. This is compared with data obtained after inhibition of endogenous gamma-secretase activity, which abolishes this correlation.

      Strengths:

      The authors describe in detail their experimental design and analysis for in vivo imaging of the reporter. The idea of using a far-red FRET sensor for in vivo imaging is novel and potentially useful to circumvent many of the pitfalls associated with intensity-based FRET imaging in complex biological environments (such as autofluorescence and scattering).

      Weaknesses:

      There are several critical points regarding the validation of this approach:

      (1) Regarding the variability and spatial correlation- the dynamic range of the sensor previously reported in vitro is in the range of 20-30% change (Houser et al 2020) whereas the range of FR detected in vivo is between cells is significantly larger in this MS. This raises considerable doubts for specific detection of cellular activity<br /> (2) One direct way to test the dynamic range of the sensor in vivo, is to increase or decrease endogenous gamma-secretase activity and to ensure this experimental design allows to accurately monitor gamma-secretase activity. In the previous characterization of the reporter (Hauser et al 2020), DAPT application and inhibition of gamma-secretase activity results in increased FR (Figures 2 and 3 of Houser et al). This is in agreement with the design of the biosensor, since FR should be inversely correlated with enzymatic activity. Here, the authors repeated the experiment, and surprisingly found an opposite effect, in which DAPT significantly reduced FR.<br /> The authors maintain that this result could be due to differences in cell-types, However, this experiment was previously performed in cultures cortical neurons and many different cell types, as noted by the authors in their rebuttal.<br /> Instead, I would argue that these results further highlight the concerns of using FR in vivo, since based on their own data, there is no way to interpret this quantification. If DAPT reduces FR, does this mean we should now interpret the results of higher FR corresponds to higher g-sec activity? Given a number of papers from the authors claiming otherwise, I do not understand how one can interpret the results as indicating a cell-specific effect.<br /> In conclusion, without any ground truth, it is impossible to assess and interpret what FR measurements of this sensor in vivo mean. Therefore, the use of this approach as a way to study g-sec activity in vivo seems premature.

    3. Reviewer #3 (Public Review):

      This paper builds on the authors' original development of a near infrared (NIR) FRET sensor by reporting in vivo real-time measurements for gamma-secretase activity in the mouse cortex. The in vivo application of the sensor using state-of-the-art techniques is supported by a clear description and straightforward data, and the project represents significant progress because so few biosensors work in vivo. Notably, the NIR biosensor is detectable to ~ 100 µm depth in the cortex. A minor limitation is that this sensor has a relatively modest ΔF as reported in Houser et al, which is an additional challenge for its use in vivo. Thus, the data is fully dependent on post-capture processing and computational analyses. This can unintentionally introduce biases but is not an insurmountable issue with the proper controls that the authors have performed here.

      The following opportunity for improving the system didn't initially present itself until the authors performed an important test of the FRET sensor in vivo following DAPT treatment. The authors get credit for diligently reporting the unexpected decrease in 720/670 FRET ratio. In turn this has led to a suggestion that this sensor would benefit from a control that is insensitive to gamma-secretase activity. FRET influences that are independent of gamma-secretase activity could be distinguished by this control.

      From previous results in cultured neurons, the authors expected an increase in FRET following DAPT treatment in vivo. These expectations fit with the sensor's mode-of-action because a block of gamma-secretase activity should retain the fluorophores in proximity. When the authors observed decreased FRET, the conclusion was that the sensor performs differently in different cellular contexts. However, a major concern is that mechanistically it is unclear how this could occur with this type of sensor. The relative orientation of fluorophores indeed can contribute to FRET efficiency in tension-based sensors. However, the proteolysis expected with gamma-secretase activity would release tension and orientation constraints. Thus, the major contributing FRET factor is expected to be distance, not orientation. Alternative possibilities that could inadvertently affect readouts include an additional DAPT target in vivo sequestering the inhibitor, secondary pH effects on FRET, photo-bleaching, or an unidentified fluorophore quencher in vivo stimulated by DAPT. Ultimately this new FRET sensor would benefit from a control that is insensitive to gamma-secretase activity. FRET influences that are independent of gamma-secretase activity could be distinguished by this control.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper suggests to apply intrinsically-motivated exploration for the discovery of robust goal states in gene regulatory networks.

      Strengths:

      The paper is well written. The biological motivation and the need for such methods are formulated extraordinarily well. The battery of experimental models is impressive.

      Weaknesses:

      (1) The proposed method is compared to the random search. That says little about the performance with regard to the true steady-state goal sets. The latter could be calculated at least for a few simple ODE (e.g., BIOMD0000000454, `Metabolic Control Analysis: Rereading Reder'). The experiment with 'oscillator circuits' may not be directly interpolated to the other models.

      The lack of comparison to the ground truth goal set (attractors of ODE) from arbitrary initial conditions makes it hard to evaluate the true performance/contribution of the method. A part of the used models can be analyzed numerically using JAX, while there are models that can be analyzed analytically.

      "...The true versatility of the GRN is unknown and can only be inferred through empirical exploration and proxy metrics....": one could perform a sensitivity analysis of the ODEs, identifying stable equilibria. That could provide a proxy for the ground truth 'versatility'.

      (2) The proposed method is based on `Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning', which assumes state action trajectories [s_{t_0:t}, a_{t_0:t}], (2.1 Notations and Assumptions' in the IMGEP paper). However, the models used in the current work do not include external control actions, but rather only the initial conditions can be set. It is not clear from the methods whether IMGEP was adapted to this setting, and how the exploration policy was designed w/o actual time-dependent actions. What does "...generates candidate intervention parameters to achieve the current goal...."<br /> mean considering that interventions 'Sets the initial state...' as explained in Table 2?

      (3) Fig 2 shows the phase space for (ERK, RKIPP_RP) without mentioning the typical full scale of ERK, RKIPP_RP. It is unclear whether the path from (0, 0) to (~0.575, ~3.75) at t=1000 is significant on the typical scale of this phase space. is it significant on the typical scale of this phase space?

      (4) Table 2:<br /> (a) Where is 'effective intervention' used in the method?<br /> (b) In my opinion 'controllability', 'trainability', and 'versatility' are different terms. If there correspondence is important I would suggest to extend/enhance the column "Proposed Isomorphism". otherwise, it may be confusing. I don't see how this table generalizes generalizes "concepts from dynamical complex systems and behavioral sciences under a common navigation task perspective".

    2. Reviewer #2 (Public Review):

      Summary:

      Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.

      Following revision, my overall perspective of the paper remains unchanged. The first half of the paper provides solid evidence to support an important conceptual framework. The evidence presented for the use cases in the latter half is incomplete; as the authors note, they are preliminary and meant to be built on in future work. I have included my first round comments below.

      Strengths:

      Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.

      The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.

      Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:

      (1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?

      Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.

      (2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only has 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.

      (3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system in one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.

      (4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method. [second round: the authors have included a comparison against CMA-ES, an evolutionary algorithm]

    1. Reviewer #1 (Public Review):

      The manuscript by Wang et al is, like its companion paper, very unusual in the opinion of this reviewer. It builds off of the companion theory paper's exploration of the "Wright-Fisher Haldane" model but applies it to the specific problem of diversity in ribosomal RNA arrays. The authors argue that polymorphism and divergence among rRNA arrays are inconsistent with neutral evolution, primarily stating that the amount of polymorphism suggests a high effective size and thus a slow fixation rate, while we, in fact, observe relatively fast fixation between species, even in putatively non-functional regions. They frame this as a paradox in need of solving, and invoke the WFH model.

      The same critiques apply to this paper as to the presentation of the WFH model and the lack of engagement with the literature, particularly concerning Cannings models and non-diffusive limits. However, I have additional concerns about this manuscript, which I found particularly difficult to follow.

      My first, and most major, concern is that I can never tell when the authors are referring to diversity in a single copy of an rRNA gene compared to when they are discussing diversity across the entire array of rRNA genes. I admit that I am not at all an expert in studies of rRNA diversity, so perhaps this is a standard understanding in the field, but in order for this manuscript to be read and understood by a larger number of people, these issues must be clarified.

      The authors frame the number of rRNA genes as roughly equivalent to expanding the population size, but this seems to be wrong: the way that a mutation can spread among rRNA gene copies is fundamentally different than how mutations spread within a single copy gene. In particular, a mutation in a single copy gene can spread through vertical transmission, but a mutation spreading from one copy to another is fundamentally horizontal: it has to occur because some molecular mechanism, such as slippage, gene conversion, or recombination resulted in its spread to another copy. Moreover, by collapsing diversity across genes in an rRNA array, the authors are massively increasing the mutational target size.

      For example, it's difficult for me to tell if the discussion of heterozygosity at rRNA genes in mice starting on line 277 is collapsed or not. The authors point out that Hs per kb is ~5x larger in rRNA than the rest of the genome, but I can't tell based on the authors' description if this is diversity per single copy locus or after collapsing loci together. If it's the first one, I have concerns about diversity estimation in highly repetitive regions that would need to be addressed, and if it's the second one, an elevated rate of polymorphism is not surprising, because the mutational target size is in fact significantly larger.

      Even if these issues were sorted out, I'm not sure that the authors framing, in terms of variance in reproductive success is a useful way to understand what is going on in rRNA arrays. The authors explicitly highlight homogenizing forces such as gene conversion and replication slippage but then seem to just want to incorporate those as accounting for variance in reproductive success. However, don't we usually want to dissect these things in terms of their underlying mechanism? Why build a model based on variance in reproductive success when you could instead explicitly model these homogenizing processes? That seems more informative about the mechanism, and it would also serve significantly better as a null model, since the parameters would be able to be related to in vitro or in vivo measurements of the rates of slippage, gene conversion, etc.

      In the end, I find the paper in its current state somewhat difficult to review in more detail, because I have a hard time understanding some of the more technical aspects of the manuscript while so confused about high-level features of the manuscript. I think that a revision would need to be substantially clarified in the ways I highlighted above.

    2. Reviewer #2 (Public Review):

      Summary:

      Multi-copy gene systems are expected to evolve slower than single-copy gene systems because it takes longer for genetic variants to fix in the large number of gene copies in the entire population. Paradoxically, their evolution is often observed to be surprisingly fast. To explain this paradox, the authors hypothesize that the rapid evolution of multi-copy gene systems arises from stronger genetic drift driven by homogenizing forces within individuals, such as gene conversion, unequal crossover, and replication slippage. They formulate this idea by combining the advantages of two classic population genetic models -- adding the V(k) term (which is the variance in reproductive success) in the Haldane model to the Wright-Fisher model. Using this model, the authors derived the strength of genetic drift (i.e., reciprocal of the effective population size, Ne) for the multi-copy gene system and compared it to that of the single-copy system. The theory was then applied to empirical genetic polymorphism and divergence data in rodents and great apes, relying on comparison between rRNA genes and genome-wide patterns (which mostly are single-copy genes). Based on this analysis, the authors concluded that neutral genetic drift could explain the rRNA diversity and evolution patterns in mice but not in humans and chimpanzees, pointing to a positive selection of rRNA variants in great apes.

      Strengths:

      Overall, the new WFH model is an interesting idea. It is intuitive, efficient, and versatile in various scenarios, including the multi-copy gene system and other cases discussed in the companion paper by Ruan et al.

      Weaknesses:

      Despite being intuitive at a high level, the model is a little unclear, as several terms in the main text were not clearly defined and connections between model parameters and biological mechanisms are missing. Most importantly, the data analysis of rRNA genes is extremely over-simplified and does not adequately consider biological and technical factors that are not discussed in the model. Even if these factors are ignored, the authors' interpretation of several observations is unconvincing, as alternative scenarios can lead to similar patterns. Consequently, the conclusions regarding rRNA genes are poorly supported. Overall, I think this paper shines more in the model than the data analysis, and the modeling part would be better presented as a section of the companion theory paper rather than a stand-alone paper. My specific concerns are outlined below.

      (1) Unclear definition of terms

      Many of the terms in the model or the main text were not clearly defined the first time they occurred, which hindered understanding of the model and observations reported. To name a few:

      (i) In Eq(1), although C* is defined as the "effective copy number", it is unclear what it means in an empirical sense. For example, Ne could be interpreted as "an ideal WF population with this size would have the same level of genetic diversity as the population of interest" or "the reciprocal of strength of allele frequency change in a unit of time". A few factors were provided that could affect C*, but specifically, how do these factors impact C*? For example, does increased replication slippage increase or decrease C*? How about gene conversion or unequal cross-over? If we don't even have a qualitative understanding of how these processes influence C*, it is very hard to make interpretations based on inferred C*. How to interpret the claim on lines 240-241 (If the homogenization is powerful enough, rRNA genes would have C*<1)? Please also clarify what C* would be, in a single-copy gene system in diploid species.

      (ii) In Eq(1), what exactly is V*(K)? Variance in reproductive success across all gene copies in the population? What factors affect V*(K)? For the same population, what is the possible range of V*(K)/V(K)? Is it somewhat bounded because of biological constraints? Are V*(K) and C*(K) independent parameters, or does one affect the other, or are both affected by an overlapping set of factors?

      (iii) In the multi-copy gene system, how is fixation defined? A variant found at the same position in all copies of the rRNA genes in the entire population?

      (iv) Lines 199-201, HI, Hs, and HT are not defined in the context of a multi-copy gene system. What are the empirical estimators?

      (v) Line 392-393, f and g are not clearly defined. What does "the proportion of AT-to-GC conversion" mean? What are the numerator and denominator of the fraction, respectively?

      (2) Technical concerns with rRNA gene data quality

      Given the highly repetitive nature and rapid evolution of rRNA genes, myriads of things could go wrong with read alignment and variant calling, raising great concerns regarding the data quality. The data source and methods used for calling variants were insufficiently described at places, further exacerbating the concern.

      (i) What are the accession numbers or sample IDs of the high-coverage WGS data of humans, chimpanzees, and gorillas from NCBI? How many individuals are in each species? These details are necessary to ensure reproducibility and correct interpretation of the results.

      (ii) Sequencing reads from great apes and mice were mapped against the human and mouse rDNA reference sequences, respectively (lines 485-486). Given the rapid evolution of rRNA genes, even individuals within the same species differ in copy number and sequences of these genes. Alignment to a single reference genome would likely lead to incorrect and even failed alignment for some reads, resulting in genotyping errors. Differences in rDNA sequence, copy number, and structure are even greater between species, potentially leading to higher error rates in the called variants. Yet the authors provided no justification for the practice of aligning reads from multiple species to a single reference genome nor evidence that misalignment and incorrect variant calling are not major concerns for the downstream analysis.

      (vi) It is unclear how variant frequency within an individual was defined conceptually or computed from data (lines 499-501). The population-level variant frequency was calculated by averaging across individuals, but why was the averaging not weighted by the copy number of rRNA genes each individual carries? How many individuals are sampled for each species? Are the sample sizes sufficient to provide an accurate estimate of population frequencies?

      (vii) Fixed variants are operationally defined as those with a frequency>0.8 in one species. What is the justification for this choice of threshold? Without knowing the exact sample size of the various species, it's difficult to assess whether this threshold is appropriate.

      (viii) It is not explained exactly how FIS, FST, and divergence levels of rRNA genes were calculated from variant frequency at individual and species levels. Formulae need to be provided to explain the computation.

      (3) Complete ignorance of the difference in mutation rate difference between rRNA genes and genome-wide average

      Nearly all data analysis in this paper relied on comparison between rRNA genes with the rest (presumably single-copy part) of the genome. However, mutation rate, a key parameter determining the diversity and divergence levels, was completely ignored in the comparison. It is well known that mutation rate differs tremendously along the genome, with both fine and large-scale variation. If the mutation rate of rRNA genes differs substantially from the genome average, it would invalidate almost all of the analysis results. Yet no discussion or justification was provided.

      Related to mutation rate: given the hypermutability of CpG sites, it is surprising that the evolution/fixation rate of rRNA estimated with or without CpG sites is so close (2.24% vs 2.27%). Given the 10 - 20-fold higher mutation rate at CpG sites in the human genome, and 2% CpG density (which is probably an under-estimate for rDNA), we expect the former to be at least 20% higher than the latter.

      Among the weaknesses above, concern (1) can be addressed with clarification, but concerns (2) and (3) invalidate almost all findings from the data analysis and cannot be easily alleviated with a complete revamp work.

    1. Reviewer #1 (Public Review):

      In this manuscript, Lee et al. compared encoding of odor identity and value by calcium signaling from neurons in the ventral pallidum (VP) in comparison to D1 and D2 neurons in the olfactory tubercle (OT).

      Strengths:

      They utilize a strong comparative approach, which allows the comparison of signals in two directly connected regions. First, they demonstrate that both D1 and D2 OT neurons project strongly to the VP, but not the VTA or other examined regions, in contrast to accumbal D1 neurons which project strongly to the VTA as well as the VP. They examine single unit calcium activity in a robust olfactory cue conditioning paradigm that allows them to differentiate encoding of olfactory identity versus value, by incorporating two different sucrose, neutral and air puff cues with different chemical characteristics. They then use multiple analytical approaches to demonstrate strong, low-dimensional encoding of cue value in the VP, and more robust, high-dimensional encoding of odor identity by both D1 and D2 OT neurons, though D1 OT neurons are still somewhat modulated by reward contingency/value. Finally, they utilize a modified conditioning paradigm that dissociates reward probability and lick vigor to demonstrate that VP encoding of cue value is not dependent on encoding of lick vigor during sucrose cues, and that separable populations of VP neuros encode cue value/sucrose probability and lick vigor. Direct comparisons of single unit responses between the two regions now utilize linear mixed effects models with random effects for subject,

      Weaknesses:

      The manuscript still includes mention of differences in effect size or differing "levels" of significance between VP and OT D1 neurons without reports of a direct comparisons between the two populations. This is somewhat mitigated by the comprehensive statistical reporting in the supplemental information, but interpretation of some of these results is clouded by the inclusion of OT D2 neurons in these analyses, and the limited description or contextualization in the main text.

    2. Reviewer #2 (Public Review):

      We appreciate the authors revision of this manuscript and toning down some of the statements regarding "contradictory" results. We still have some concerns about the major claims of this paper which lead us to suggest this paper undergo more revision as follows since, in its present form, we fear this paper is misleading for the field in two areas. here is a brief outline:

      (1) Despite acknowledging that the injections only occurred in the anteromedial aspect of the tubercle, the authors still assert broad conclusions regarding where the tubercle projects and what the tubercle does. for instance, even the abstract states "both D1 and D2 neurons of the OT project primarily to the VP and minimally elsewhere" without mention that this is the "anteromedial OT". Every conclusion needs to specify this is stemming from evidence in just the anteromedial tubercle, as the authors do in some parts of the the discussion.

      (2) The authors now frame the 2P imaging data that D1 neuron activity reflects "increased contrast of identity or an intermediate and multiplexed encoding of valence and identity". I struggle to understand what the authors are actually concluding here. Later in discussion, the authors state that they saw that OT D1 and D2 neurons "encode odor valence" (line 510). We appreciate the authors note that there is "poor standardization" when it comes to defining valence (line 521). We are ok with the authors speculating and think this revision is more forthcoming regarding the results and better caveats the conclusions. I suggest in abstract the authors adjust line 14/15 to conclude that, "While D1 OT neurons showed larger responses to rewarded odors, in line with prior work, we propose this might be interpreted as identity encoding with enhanced contrast." [eliminating "rather than valence encoding" since that is a speculation best reserved for discussion as the authors nicely do.

      The above items stated, one issue comes to mind, and that is, why of all reasons would the authors find that the anteromedial aspect of the tubercle is not greatly reflecting valence. the anteromedial aspect of the tubercle, over all other aspects of the tubercle, is thought my many to more greatly partake in valence and other hedonic-driven behaviors given its dense reception of VTA DAergic fibers (as shown by Ikemoto, Kelsch, Zhang, and others). So this finding is paradoxical in contrast to if the authors would had studied the anterolateral tubercle or posterior lateral tubercle which gets less DA input.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript describes a study of the olfactory tubercle in the context of reward representation in the brain. The authors do so by studying the responses of OT neurons to odors with various reward contingencies and compare systematically to the ventral pallidum. Through careful tracing, they present convincing anatomical evidence that the projection from the olfactory tubercle is restricted to the lateral portion of the ventral pallidum.

      Using a clever behavioral paradigm, the authors then investigate how D1 receptor- vs. D2 receptor-expressing neurons of the OT respond to odors as mice learn different contingencies. The authors find that, while the D1-expressing OT neurons are modulated marginally more by the rewarded odor than the D2-expressing OT neurons as mice learn the contingencies, this modulation is significantly less than is observed for the ventral pallidum. In addition, neither of the OT neuron classes shows conspicuous amount of modulation by the reward itself. In contrast, the OT neurons contained information that could distinguish odor identities. These observations have led the authors to conclude that the primary feature represented in the OT may not be reward.

      Strengths:

      The highly localized projection pattern from olfactory tubercle to ventral pallidum is a valuable finding and suggests that studying this connection may give unique insights into the transformation of odor by reward association.

      Comparison of olfactory tubervle vs. ventral pallidum is a good strategy to further clarify the olfactory tubercle's position in value representation in the brain.

      Weaknesses:

      The study comes to a different conclusion about the olfactory tubercle regarding reward representations from several other prior works. Whether this stems from a difference in the experimental configurations such as behavioral paradigms used or indeed points to a conceptually different role for the olfactory tubercle remains to be seen.

    1. Reviewer #1 (Public Review):

      Summary:

      This work explored intra and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores and mesocarnivores in the Qilian Mountain National Park of China, using camera trapping data and DNA metabarcoding sequencing data. They conclude that spatial niche partitioning plays a key role in facilitating the coexistence of apex carnivore species, spatial and temporal niche partitioning facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Strengths:

      Extensive fieldwork is evident in the study. Aiming to cover a large percentage of the Qilian Mountain National Park, the study area was subdivided into squares, as a geographical reference to distribute the sampling points where the camera traps were placed and the excreta samples were collected.

      They were able to obtain many records in their camera traps and collected many samples of excreta. This diversity of data allowed them to conduct robust analyses. The data analyses carried out were adequate to obtain clear and meaningful results that enabled them to answer the research questions posed. The conclusions of this paper are mostly well supported by data.

      The study has demonstrated the coexistence of carnivore species in the landscapes of the Qilian Mountains National Park, complementing the findings of previous studies. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Weaknesses:

      It is necessary to better explain the methodology because it is not clear what is the total sampling effort. In methodology, they only claim to have used 280 camera traps, and in the results, they mention that there are 319 sampling sites. However, the total sampling effort (e.g. total time of active camera traps) carried out in the study and at each site is not specified.

    2. Reviewer #2 (Public Review):

      Summary:

      The study entitled "Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China" by Cong et al. addresses the compelling topic of carnivores' coexistence in a biodiversity hotspot in China. The study is interesting given it considers all three components affecting sympatric carnivores' distribution and co-occurrence, namely the temporal, the spatial, and the dietary partition within the carnivore guild. The authors have found that spatial co-occurrence is generally low, which represents the major strategy for coexistence, while there is temporal and dietary overlap. I also appreciated the huge sampling effort carried out for this study by the authors: they were able to deploy 280 camera trapping sites (which became 322 in the result section?) and collect a total of 480 scat samples. However, I have some concerns about the study on the non-consideration of the human dimension and potential anthropogenic disturbance that could affect the spatial and temporal distribution of carnivores, the choice of the statistical model to test co-occurrence, and the lack of clearly stated ecological hypotheses.

      Strengths:

      The strengths of the study are the investigation of all three major strategies that can mitigate carnivores' coexistence, therefore, the use of multiple monitoring techniques (both camera trapping and DNA metabarcoding) and the big dataset produced that consists of a very large sampled area with a noteworthy number of camera tap stations and many scat samples for each species.

      Weaknesses:

      I think that some parts of the manuscript should be written better and more clearly. A clear statement of the ecological hypotheses that could affect the partitioning among the carnivore guild is lacking. I think that the human component (thus anthropogenic disturbance) should have been considered more in the spatial analyses given it can influence the use of the environment by some carnivores. Additionally, a multi-species co-occurrence model would have been a more robust approach to test for spatial co-occurrence given it also considers imperfect detection.

      Temporal and dietary results are solid and this latter in particular highlights a big predation pressure on some prey species such as the pika. This implies important conservation and management implications for this species, and therefore for the trophic chain, given that i) the pika population should be conserved and ii) a potential poisoning campaign against small mammals could be incredibly dangerous also for mesocarnivores feeding on them due to secondary poisoning.

    1. Reviewer #1 (Public Review):

      Kainate receptors play various important roles in synaptic transmission. The receptors can be divided into low affinity kainate receptors (GluK1-3) and high affinity kainate receptos (GluK4-5). The receptors can assemble as homomers (GluK1-3) or low-high affinity heteromers (GluK4-5). The functional diversity is further increased by RNA splicing. Previous studies have investigated C-terminal splice variants of GluK1, but GluK1 N-terminal (exon 9) insertions have not been previously characterized. In this study Dhingra et al investigate the functional implications of a GluK1 splice variant that inserts a 15 amino acid segment into the extracellular N-terminal region of the protein using whole-cell and excised outside-out electrophysiology.<br /> The authors convincingly show that the insertion profoundly impacts the function of GluK1-1a - the channels that have the insertion are slower to desensitize. The data also shows that the insertion changes the modulatory effects of Neto proteins, resulting in altered rates of desensitization and recovery from desensitization. To determine the mechanism by which the insertion exerts these functional effects, the authors perform pull-down assays of Neto proteins, and extensive mutagenesis on the insert.<br /> The electrophysiological part of the study is very rigorous and meticulous.

      The biggest weakness of the manuscript is the structural work. Due to issues with preferred orientation (a common problem in cryo-EM), the 3D reconstructions are at a low resolution (in the 5-8 Å range) and cannot offer much mechanistic insight into the effects of the insertion. Based on the available data, the authors posit that the insertion does not change the arrangement of the subunits in the desensitized state. However, there is no comparison with a structure that does not contain the insertion, so while the statement may well be true, no data is shown to support it.

      Overall, the cryo-EM contributes little and distracts from the good parts of the manuscript.

      Another part that does not contribute much is the RNAseq data that has been pulled from a database and analyzed for the paper. It is being used to show that the exon 9 insertion variant is predominantly expressed in the cerebellar cortex at early stages of brain development. The methods do not describe in detail how the data has been analyzed (e.g., is the data scaled per sample/gene or globally?) so it is hard to know what we can compare in the heat plots. In Figure 1- supplement 1 there aren't striking differences in expression (at least not obviously visible in the current illustration).

      Despite these weaknesses, the study is a valuable contribution to the field because it characterizes a GluK1 variant that has not been studied before and highlights the functional diversity that exists within the kainate receptor family.

      Revised manuscript:

      The authors have clarified some of the issues raised by the reviewers, but no new data has been added to strengthen the manuscript. The structural part of the manuscript remains its weakest point, and the extent of mechanistic insight remains low.

    2. Reviewer #2 (Public Review):

      Among ionotropic glutamate receptors, kainate receptors (KAR) are still the object of intense investigation to understand their role in normal and pathological excitatory synaptic transmission. Like other receptors, KAR appear under different splicing variants and their respective physiological function is still debated. In this manuscript, Dhingra et al explored the impact of the presence and of the absence of Exon9 of the GluK1 receptors on the pharmacological, biophysi cal and structural properties of the receptors. They further investigated how it is impacted by the association of KAR with their cognate auxiliary subunit Neto 1 and 2. This study represents a large body of work and data. The authors addressed the issue in a very systematic and rigorous manner.

      First, by exploring RNAseq database, authors showed that GluK1 transcripts containing the exon 9 are present in many brain structures and especially in the cerebellum suggesting that a large part of GluK1 contains effectively this exon9.<br /> Using HEK cells as an expression system, they characterized many gating and biophysical properties of GluK1 receptors containing or not the exon9. Evaluated parameters were desensitization, relative potency of glutamate versus kainate, and polyamine block.

      It is known that the association of GluK1 with auxiliary proteins Neto1/2 modulates the properties of the receptors. Authors investigated systematically whether Neto1 and 2 similarly alter GluK1 properties in function of the presence of exon9. This study provides many quantitative data that could be reused for modeling the role of kainate receptors. Given the change shown by the authors, the presence of exon in GluK1 is noticeable and likely should have an impact of synaptic transmission.<br /> Interestingly, authors used a mutational approach to identify critical residues encoded by exon9 that are responsible for the functional differences between the two splice variants. In many cases, the replacement of a single amino acid leads to the absence of current confirming the crucial role of the segment of the receptor. However, it made the comparison and the identification of critical residues more challenging.

      Authors attempted to establish the structure GluK1 receptors comprising the exon9 using different preparation methods. They succeeded in obtaining structures with equivalent or lower resolution compared with previous reports on GluK1 and GluK2 receptors. However, the organization of the peptide coded by exon is poorly defined and limited possible analyses. Despite this, they could observe that the presence of the exon9 does not alter significantly the structure of GluK1.

    3. Reviewer #3 (Public Review):

      GluK1 forms glutamate-gated ion channels with an important function in synaptic transmission and neuronal excitability. Alternative RNA splicing has been described for these channels, allowing the diversification of GluK1 channels. The GluK1 splice variant GluK1-1a contains 15 residues in the amino-terminal domain, resulting from the Exon 9 splice insert. GluK1-1a displays significant expression in different regions of the brain, likely co-expressing with other Gluk channels. The impact of the 15 residues on GluK1 channel properties and the overall structure has not been studied yet. The paper by Dhingra et al. aims to evaluate the impact of the Exon 9 splice insert on GluK1.1 channel function and structure. This work uses electrophysiological approaches, including whole-cell and patch clamp recordings, to determine the effect of the splice insert on GluK1.1 gating properties, including desensitization, agonist efficacy, recovery from desensitization, and rectification. By using mutagenesis and biochemical approaches, the authors studied the role of positively charged residues in the splice insert on channel properties and the interaction with modulatory Neto proteins. This work also shows the effect of the splice insert on the regulation of GluK1 channels by Neto proteins. Finally, by using Cryo-EM and single-particle analysis, the authors reconstructed a model for a homomeric GluK1-1a channel. Overall, this work provides two major milestones: 1) the first functional characterization of the GluK1-1a variant and 2) the first structure of this channel.

      The functional data supporting the role of the insert on channel properties is convincing, although the current data does not provide significant insights about the mechanism. The overall structure in a putative desensitized state shows no differences with channels lacking the splice insert. However, some domains, including most of the 15 residues unique for the GluK1-1a variant were not resolved, suggesting high flexibility or conformational heterogeneity in those regions. Also, the low resolution of the obtained structures precludes conclusions on the structural basis for the role of the insert in channel function/regulation. Nonetheless, this paper represents an important advance in the study of glutamate receptors and invites the field to elucidate the structural basis for gating properties in GluK1-1a channels as well as other glutamate receptors. A more in-depth study about the role of splicing variants on ligand binding affinity, regulation by modulatory subunits such as Neto proteins, and the potential impact of this specific variant on heteromeric channels would also be relevant.

    1. Reviewer #1 (Public Review):

      Summary:

      This study examines lipid profiles in cancer patients treated with the neurotoxic chemotherapy paclitaxel. Multiple methods, including machine learning as well as more conventional statistical modelling, were used to classify lipid patterns before and after paclitaxel treatment and in conjunction with neuropathy status. Lipid profiles before and after paclitaxel therapy were analysed from 31 patients. The study aimed to characterize from the lipid profile if plasma samples were collected pre paclitaxel or post paclitaxel and their relevance to neuropathy status. Sphingolipids including sphinganine-1-phosphate (SA1P) differed between patients with and without neuropathy. To examine the potential role of SA1P, it was applied to murine primary sensory neuron cultures, and produced calcium transients in a proportion of neurons. This response was abolished by application of a TRPV1 antagonist. The number of neurons responding to SA1P was partially reduced by the sphingosine 1-phosphate receptor (S1PR1) modulator fingolimod.

      Strengths:

      The strengths of this study include the use of multiple methods to classify lipid patterns and the attempt to validate findings from the clinical cohort in a preclinical model using primary sensory neurons.

      Weaknesses:

      These still stand from the original review and are repeated here:

      There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy.

      Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.

      Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to pos- paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment timepoints.

      Primary sensory neuron cultures were used to examine the effects of SA1P application. SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.

      Impact:

      Taken in total, the data presented do not provide sufficient evidence to support the contention that SA1P has an important role in paclitaxel induced peripheral neuropathy. Further, the results do not provide evidence to support the use of S1PR1 receptor antagonists as a therapeutic strategy. It is important to be careful with language use in the discussion, as the significance of the present results are overstated.

      However, based on the results of previous studies, it is likely that sphingolipid metabolism plays a role in chemotherapy induced peripheral neuropathy. Based on this existing evidence, the S1PR1 receptor antagonist fingolimod has already been examined in experimental models and in clinical trials. Further work is needed to examine the links between lipid mediators and neuropathy development and identify additional strategies for intervention.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors performed a Multi-Omics Factor Analysis (MOFA) on analysis of two published MDS patient cohorts-1 from bone marrow mononuclear cells (BMMNCs) and CD34 cells (ref 17) and another from CD34+ cells (ref 15) --with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, Retrotransposon (RTE) expression, and cell- type composition, were derived from these modalities to attempt to identify the latent factors with significant impact on MDS prognosis.

      SF3B1 was found to be the only mutation among 13 mutations in the BMMNC cohort that indicated a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34+ cohort. The MOFA factor representing inflammation showed a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases showed a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Also, MOFA identified RTE expression as a risk factor for MDS. They proposed that this work showed the efficacy of their integrative approach to assess MDS prognostic risk that 'goes beyond all the scoring systems described thus far for MDS'.

    1. Reviewer #1 (Public Review):<br /> The authors present the cryo-EM structure of of PSI-fucoxanthin chlorophyll a/c-binding proteins (FCPs) supercomplex from the diatom Thalassiosira pseudonana CCMP1335 at a global resolution of 2.3 Å. This exceptional resolution allows the authors to construct a near-atomic model of the entire supercomplex and elucidate the molecular details of FCPs arrangement. The high-resolution structure reveals subunits not previously identified in earlier reconstructions and models, as well as sequence analysis of PSI-FCPIs from other diatoms and red algae. Additionally, the authors use their model in conjunction with a phylogenetic analysis to compare and contrast the structural features of the T. pseudonana supercomplex with those of Chaetoceros gracilis, uncovering key structural features that contribute to the efficiency of light energy conversion in diatoms.

      The study employs the advanced technique of single particle cryo-electron microscopy to visualize the complex architecture of the PSI supercomplex at near-atomic resolution and analyze the specific roles of FCPs in enhancing photosynthetic performance in diatoms.

      Overall, the approach and data are both compelling and of high quality. The paper is well written and will be of wide interest for comprehending the molecular mechanisms of photosynthesis in diatoms. This work provides valuable insights for applications in bioenergy, environmental conservation, plant physiology, and membrane protein structural biology.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript elucidated the cryo-electron microscopic structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Combining structural, sequence, and phylogenetic analyses, the authors provided solid evidence to reveal the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits and provided valuable information about the molecular mechanisms governing the assembly and selective binding of FCPIs in diatoms.

      Strengths:

      The manuscript is well-written and presented clearly as well as consistently. The supplemental figures are also of high quality.

      Weaknesses:

      Only minor comments (provided in recommendations for authors) to help improve the manuscript.

    3. Reviewer #3 (Public Review):

      Summary:

      Understanding the structure and function of the photosynthetic machinery is crucial for grasping its mode of action. Photosystem I (PSI) plays a vital role in light-driven electron transfer, which is essential for generating cellular reducing power. A primary strategy to mitigate light and environmental stresses involves incorporating peripheral light-harvesting proteins. Among various lineages, the number of LHCIs and their protein and pigment compositions differ significantly in PSI-LHCI structures. However, it is still unclear how LHCIs recognize their specific binding sites in the PSI core. This study aims to address this question by obtaining a high-resolution structure of the PSI supercomplex, including fucoxanthin chlorophyll a/c-binding proteins (FCPs), referred to as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana. Through structural and sequence analyses, distinct protein-protein interactions are identified at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves.

      Strengths:

      The primary strength of this work lies in its superb isolation and structural determination, followed by clear discussion and conclusions. However, the interactions among the protein complexes and their relevance in formulating general rules are not definitively established. While efficiency is a crucial aspect, preventing damage is equally important, and currently, we cannot infer this from the provided structures.

      Weaknesses:

      The interactions among the protein complexes and their relevance in formulating general rules are not definitively established. While efficiency is a crucial aspect, preventing damage is equally important, and currently, we cannot infer this from the provided structures.

    1. Reviewer #1 (Public Review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Strengths:

      The subject is of importance.

      Weaknesses:

      The conclusions are too strong for the presented data. The lack of statistical analysis makes this paper incomplete. The novelty of the findings is not clear.

      Major issues:

      (1) The novelty is in question since in the Abstract the authors highlight their main finding, which is that both the chemotaxis complex and the flagella localize to the same pole, as surprising. However, in the Introduction they state that "pathway-related receptors that mediate chemotaxis, as well as the flagellum are localized at the same cell pole17,18". I am not a pseudomonas researcher and from my short glance at these references, I could not tell whether they report colocalization of the two structures to the same pole. However, I trust the authors that they know the literature on the localization of the chemotaxis complex and flagella in their organism. See also major issue number 5 on the novelty regarding the involvement of c-di-GMP.

      (2) Statistics for the microscopy images, on which most conclusions in this manuscript are based, are completely missing. Given that most micrographs present one or very few cells, together with the fact that almost all conclusions depend on whether certain macromolecules are at one or two poles and whether different complexes are in the same pole, proper statistics, based on hundreds of cells in several fields, are absolutely required. Without this information, the results are anecdotal and do not support the conclusions. Due to the importance of statistics for this manuscript, strict statistical tests should be used and reported. Moreover, representative large fields with many cells should be added as supportive information.

      The problem is more pronounced when the authors make strong statements, as in lines 157-158: "The results revealed that the chemoreceptor arrays no longer grow robustly at the cell pole (Figure 2A)". Looking at the seven cells shown in Figure 2A, five of them show polar localization of the chemoreceptors. The question is then: what is the percentage of cells that show precise polar, near-polar, or mid cell localization (the three patterns shown here) in the mutant and in the wild type? Since I know that these three patterns can also be observed in WT cells, what counts is the difference, and whether it is statistically significant.

      Even for the graphs shown in Figures 3C and 3D, where the proportion of cells with obvious chemoreceptor arrays and absolute fluorescence brightness of the chemosensory array are shown, respectively, the questions that arise are: for how many individual cells these values hold and what is the significance of the difference between each two strains?

      (3) The authors conclude that "Motor structural integrity is a prerequisite for chemoreceptor self-assembly" based on the reduction in cells with chemoreceptor clusters in mutants deleted for flagellar genes, despite the proper polar localization of the chemotaxis protein CheY. They show that the level of CheY in the WT and the mutant strains is similar, based on Western blot, which in my opinion is over-exposed. "To ascertain whether it is motor integrity rather than functionality that influences the efficiency of chemosensory array assembly", they constructed a mutant deleted for the flagella stator and found that the motor is stalled while CheY behaves like in WT cells. The authors further "quantified the proportion of cells with receptor clusters and the absolute fluorescence intensity of individual clusters (Figures 3C-D)". While Figure 3DC suggests that, indeed, the flagella mutants show fewer cells with a chemotaxis complex, Figure 3D suggests that the differences in fluorescence intensity are not statistically significant.

      Since it is obvious that the regulation of both structures' production and localization is codependent, I think that it takes more than a Western blot to make such a decision.

      (4) I wonder why the authors chose to label CheY, which is the only component of the chemotaxis complex that shuttles back and forth to the base of the flagella. In any case, I think that they should strengthen their results by repeating some key experiments with labeled CheW or CheA.

      (5) The last section of the results is very problematic, regarding the rationale, the conclusions, and the novelty. As far as the rationale is concerned, I do not understand why the authors assume that "a spatial separation between the chemoreceptors and flagellar motors should not significantly impact the temporal comparison in bacterial chemotaxis". Is there any proof for that? More surprising for me was to read that "The signal transduction pathways in E. coli are relatively simple, and the chemotaxis response regulator CheY-P affects only the regulation of motor switching". There are degrees of complexity among signal transduction pathways in E. coli, but the chemotaxis seems to be ranked at the top. CheY is part of the adaptation. Perfect adaptation, as many other issues related to the chemotaxis pathway, which include the wide dynamic range, the robustness, the sensitivity, and the signal amplification (gain), are still largely unexplained. Hence, such assumptions are not justified.

      More perplexing is the novelty of the authors' documentation of the effect of the chemotaxis proteins on the c-di-GMP level. In 2013, Kulasekara et al. published a paper in eLife entitled "c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility". In the same year, Kulasekara published a paper entitled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa". The authors did not cite these works and I wonder why.

      (6) Throughout the manuscript, the authors refer to foci of fluorescent CheY as "chemoreceptor arrays". If anything, these foci signify the chemotaxis complex, not the membrane-traversing chemoreceptors.

      Conclusions:

      The manuscript addresses an interesting subject and contains interesting, but incomplete, data.

    2. Reviewer #2 (Public Review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. FlhF is known to cause the motor to localize to the pole in a different bacterial species, Vibrio cholera, but it is not involved in receptor localization in that bacterium. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strengths:

      The experiments and data look to be high-quality.

      Weaknesses:

      However, the interpretations and conclusions drawn from the experimental observations are not fully justified in my opinion.

      I see two main issues with the evidence provided for the authors' claims.

      (1) Assumptions about receptor localization:

      The authors rely on YFP-tagged CheY to identify the location of the receptor cluster, but CheY is a diffusible cytoplasmic protein. In E. coli, CheY has been shown to localize at the receptor cluster, but the evidence for this in PA is less strong. The authors refer to a paper by Guvener et al 2006, which showed that CheY localizes to a cell pole, and CheA (a receptor cluster protein) also localizes to a pole, but my understanding is that colocalization of CheY and CheA was not shown. My concern is that CheY could instead localize to the motor in PA, say by binding FliM. This "null model" would explain the authors' observations, without colocalization of the receptors and motor.

      Verifying that CheY and CheA are colocalized in PA would be a very helpful experiment to address this weakness.

      (2) Argument for the functional importance of receptor-motor colocalization at the pole:

      The authors argue that colocalization of the receptors and motors at the pole is important because it could keep phosphorylated CheY, CheY-p, restricted to a small region of the cell, preventing crosstalk with other signaling pathways. Their evidence for this is that overexpressing CheY leads to higher intracellular cdG levels and cell aggregation.

      Say that the receptors and motors are colocalized at the pole. In E. coli, CheY-p rapidly diffuses through the cell. What would prevent this from occurring in PA, even with colocalization?

      Elevating CheY concentration may increase the concentration of CheY-p in the cell, but might also stress the cells in other unexpected ways. It is not so clear from this experiment that elevated CheY-p throughout the cell is the reason that they aggregate, or that this outcome is avoided by colocalizing the receptors and motor at the same pole.

      If localization of the receptor array and motor at one pole were important for keeping CheY-p levels low at the opposite pole, then we should expect cells in which the receptors and motor are not at the pole to have higher CheY-p at the opposite pole. According to the authors' argument, it seems like this should cause elevated cdG levels and aggregation in the delta flhF mutants with wild-type levels of CheY. But it does not look like this happened.

      Instead of varying CheY expression, the authors could test their hypothesis that receptor-motor colocalization at the pole is important for preventing crosstalk by measuring cdG levels in the flhF mutant, in which the motor (and maybe the receptor cluster) are no longer localized in the cell pole.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild-type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.

      Weaknesses:

      The major weakness in this paper is that the authors never discussed how the flagellar gene expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? How many classes are there for these genes? Is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, Davies and Plate set out to discover conserved host interactors of coronavirus non-structural proteins (Nsp). They used 293T cells to ectopically express flag-tagged Nsp2 and Nsp4 from five human and mouse coronaviruses, including SARS-CoV-1 and 2, and analyzed their interaction with host proteins by affinity purification mass-spectrometry (AP-MS). To confirm whether such interactors play a role in coronavirus infection, the authors measured the effects of individual knockdowns on replication of murine hepatitis virus (MHV) in mouse Delayed Brain Tumor cells. Using this approach, they identified a previously undescribed interactor of Nsp2, Malectin (Mlec), which is involved in glycoprotein processing and shows a potent pro-viral function in both MHV and SARS-CoV-2. Although the authors were unable to confirm this interaction in MHV-infected cells, they show that infection remodels many other Mlec interactions, recruiting it to the ER complex that catalyzes protein glycosylation (OST). Mlec knockdown reduced viral RNA and protein levels during MHV infection, although such effects were not limited to specific viral proteins. However, knockdown reduced the levels of five viral glycopeptides that map to Spike protein, suggesting it may be affected by Mlec.

      Strengths:<br /> This is an elegant study that uses a state-of-the-art quantitative proteomic approach to identify host proteins that play critical roles in viral infection. Instead of focusing on a single protein from a single virus, it compares the interactomes of two viral proteins from five related viruses, generating a high confidence dataset. The functional follow-ups using multiple live and reporter viruses, including MHV and CoV2 variants, convincingly depict a pro-viral role for Mlec, a protein not previously implicated in coronavirus biology.

      Weaknesses:<br /> Although a commonly used approach, AP-MS of ectopically expressed viral proteins may not accurately capture infection-related interactions. The authors observed Mlec-Nsp2 interactions in transfected 293T cells (1C) but were unable to reproduce those in mouse cells infected with MHV (3C). EIF4E2/GIGYF2, two bonafide interactors of CoV2 Nsp2 from previous studies, are listed as depleted compared to negative controls (S1D). Most other CoV2 Nsp2 interactors are also depleted by the same analysis (S1D). Previously reported MERS Nsp2 interactors, including ASCC1 and TCF25, are also not detected (S1D). Furthermore, although GIGYF2 was not identified as an interactor of MHV Nsp2/4 in human cells (S1D), its knockdown in mouse cells reduced MHV titers about 1000 fold (S4). The authors should attempt to explain these discrepancies.

      More importantly, the authors were unable to establish a direct link between Mlec and the biogenesis of any viral or host proteins, by mass-spectrometry or otherwise. Although it is clear that Mlec promotes coronavirus infection, the mechanism remains unclear. Its knockdown does not affect the proteome composition of uninfected cells (S15B), suggesting it is not required for proteome maintenance under normal conditions. The only viral glycopeptides detected during MHV infection originated from Spike (5D), although other viral proteins are also known to be glycosylated. Cells depleted for Mlec produce ~4-fold less Spike protein (4E) but no more than 2-fold less glycosylated spike peptides (5D), compounding the interpretation of Mlec effects on viral protein biogenesis. Furthermore, Spike is not essential for the pro-viral role of Mlec, given that Mlec knockdown reduces replication of SARS-CoV-2 replicons that express all viral proteins except for Spike (6A/B).

      Any of the observed effects on viral protein levels could be secondary to multiple other processes. Interventions that delay infection for any reason could lead to an imbalance of viral protein levels because Spike and other structural proteins are produced at a much higher rate than non-structural proteins due to the higher abundance of their cognate subgenomic RNAs. Similarly, the observation that Mlec depletion attenuates MHV-mediated changes to the host proteome (S15C/D) can also be attributed to indirect effects on viral replication, regardless of glycoprotein processing. In the discussion, the authors acknowledge that Mlec may indirectly affect infection through modulation of replication complex formation or ER stress, but do not offer any supporting evidence. Interestingly, plant homologs of Mlec are implicated in innate immunity, favoring a more global role for Mlec in mammalian coronavirus infections.

      Finally, the observation that both Nsp2 (3C) and Mlec (3E/F) are recruited to the OST complex during MHV infection neither support nor refute any of these alternate hypotheses, given that Mlec is known to interact with OST in uninfected cells and that Nsp2 may interact with OST as part of the full length unprocessed Orf1a, as it co-translationally translocates into the ER.

      Therefore, the main claims about the role of Mlec in coronavirus protein biogenesis are only partially supported.

    2. Reviewer #1 (Public Review):

      In this manuscript, the authors employ a combined proteomic and genetic approach to identify the glycoprotein QC factor malectin as an important protein involved in promoting coronavirus infection. Using proteomic approaches, they show that the non-structural protein NSP2 and malectin interact in the absence of viral infection, but not in the presence of viral infection. However, both NSP2 and malectin engage the OST complex during viral infection, with malectin also showing reduced interactions with other glycoprotein QC proteins. Malectin KD reduce replication of coronaviruses, including SARS-COV2. Collectively, these results identify Malectin as a glycoprotein QC protein involved in regulating coronavirus replication that could potentially be targeted to mitigate coronavirus replication.

      Overall, the experiments described appear well performed and the interpretations generally reflect the results. Moreover, this work identifies Malectin as an important pro-viral protein whose activity could potentially be therapeutically targeted for the broad treatment of coronavirus infection. However, there are some weaknesses in the work that, if addressed, would improve the impact of the manuscript.

      Notably, the mechanism by which malectin regulates viral replication is not well described. It is clear from the work that malectin is a pro-viral protein in the work presented, but the mechanistic basis of this activity is not pursued. Some potential mechanisms are proposed in the discussion, but the manuscript would be strengthened if additional insight was included. For example, does the UPR activated to higher levels in infected cells depleted of malectin? Do glycosylation patterns of viral (or non-viral) proteins change in malectin-depleted cells? Additional insight into this specific question would significantly improve the manuscript.

      Further, the evidence for increased interactions between OST and malectin during viral infection is fairly weak, despite being a major talking point throughout the manuscript. The reduced interactions between malectin and other glycoproteostasis QC factors is evident, but the increased interactions with OST are not well supported. I'd recommend backing off on this point throughout the text, instead, continuing to highlight the reduced interactions.

      I was also curious as to why non-structural proteins, nsp2 and nsp4, showed robust interactions with host proteins localized to both the ER and mitochondria? Do these proteins localize to different organelles or do these interactions reflect some other type of dysregulation? It would be useful to provide a bit of speculation on this point.

      Again, the overall identification of malectin as a pro-viral protein involved in the replication of multiple different coronaviruses is interesting and important, but additional insights into the mechanism of this activity would strengthen the overall impact of this work.

    3. Reviewer #2 (Public Review):

      Summary:<br /> A strong case is presented to establish that the endoplasmic reticulum carbohydrate binding protein malectin is an important factor for coronavirus propagation. Malectin was identified as a coronavirus nsp2 protein interactor using quantitative proteomics and its importance in the viral life cycle was supported by using a functional genetic screen and viral assays. Malectin binds diglucosylated proteins, an early glycoform thought to transiently exist on nascent chains shortly after translation and translocation; yet a role for malectin has previously been proposed in later quality control decisions and degradation targeting. These two observations have been difficult to reconcile temporally. In agreement with results from the Locher lab, the malectin-interactome shown here includes a number of subunits of the oligosaccharyltransferase complex (OST). These results place malectin in close proximity to both the co-translational (STT3A or OST-A) and post-translational (STT3B or OST-B) complexes. It follows that malectin knockdown was associated with coronavirus Spike protein hypoglycosylation.

      Strengths:<br /> Strengths include using multiple viruses to identify interactors of nsp2 and quantitative proteomics along with multiple viral assays to monitor the viral life cycle.

      Weaknesses:<br /> Malectin knockdown was shown to be associated with Spike protein hypoglycosylation. This was further supported by malectin interactions with the OSTs. However, no specific role of malectin in glycosylation was discussed or proposed.

      Given the likelihood that malectin plays a role in the glycosylation of heavily glycosylated proteins like Spike, it is unfortunate that only 5 glycosites on Spike were identified using the MS deamidation assay when Spike has a large number of glycans (~22 sites). The mass spec data set would also include endogenous proteins. Were any heavily glycosylated endogenous proteins hypoglycosylated in the MS analysis in Fig 5D?

      The inclusion of the nsp4 interactome and its partial characterization is a distraction from the storyline that focuses on malectin and nsp2.

    1. Reviewer #1 (Public Review):

      EnvA-pseudotyped glycoprotein-deleted rabies virus has emerged as an essential tool for tracing monosynaptic inputs to genetically defined neuron populations in the mammalian brain. Recently, in addition to the SAD B19 rabies virus strain first described by Callaway and colleagues in 2007, the CVS N2c rabies virus strain has become popular due to its low toxicity and high trans-synaptic transfer efficiency. However, despite its widespread use in the mammalian brain, particularly in mice, the application of this cell-type-specific monosynaptic rabies tracing system in zebrafish has been limited by low labeling efficiency and high toxicity. In this manuscript, the authors aimed to develop an efficient retrograde monosynaptic rabies-mediated circuit mapping tool for larval zebrafish. Given the translucent nature of larval zebrafish, whole-brain neuronal activities can be monitored, perturbed, and recorded over time. Introducing a robust circuit mapping tool for larval zebrafish would enable researchers to simultaneously investigate the structure and function of neural circuits, which would be of significant interest to the neural circuit research community. Furthermore, the ability to track rabies-labeled cells over time in the transparent brain could enhance our understanding of the trans-synaptic retrograde tracing mechanism of the rabies virus.

      To establish an efficient rabies virus tracing system in the larval zebrafish brain, the authors conducted meticulous side-by-side experiments to determine the optimal combination of trans-expressed rabies G proteins, TVA receptors, and recombinant rabies virus strains. Consistent with observations in the mouse brain, the CVS N2c strain trans-complemented with N2cG was found to be superior to the SAD B19 combination, offering lower toxicity and higher efficiency in labeling presynaptic neurons. Additionally, the authors tested various temperatures for the larvae post-virus injection and identified 36{degree sign}C as the optimal temperature for improved virus labeling. They then validated the system in the cerebellar circuits, noting evolutionary conservation in the cerebellar structure between zebrafish and mammals. The monosynaptic inputs to Purkinje cells from granule cells were neatly confirmed through ablation experiments.

      However, there are a couple of issues that this study should address. Additionally, conducting some extra experiments could provide valuable information to the broader research field utilizing recombinant rabies viruses as retrograde tracers.

      (1) It was observed that many radial glia were labeled, which casts doubt on the specificity of trans-synaptic spread between neurons. The issues of transneuronal labeling of glial cells should be addressed and discussed in more detail. In this manuscript, the authors used a transgenic zebrafish line carrying a neuron-specific Cre-dependent reporter and EnvA-CVS N2c(dG)-Cre virus to avoid the visualization of virally infected glial cells. However, this does not solve the real issue of glial cell labeling and the possibility of a non-synaptic spread mechanism.

      In addition, wrong citations in Line 307 were made when referring to previous studies discovering the same issue of RVdG-based transneuronal labeling radial glial cells.

      "The RVdG-based transneuronal labeling of radial glial cells was commonly observed in larval zebrafish29,30".

      The cited work was conducted using vesicular stomatitis virus (VSV). A more thorough analysis and/or discussion on this topic should be included. Several key questions should be addressed:

      Does the number of labeled glial cells increase over time?<br /> Do they increase at the same rate over time as labeled neurons?<br /> Are the labeled glial cells only present around the injection site?<br /> Can the phenomenon of transneuronal labeling of radial glial cells be mitigated if the tracing is done in slightly older larvae?<br /> What is the survival rate of the infected glial cells over time?<br /> If an infected glial cell dies due to infection or gets ablated, does the rabies virus spread from the dead glial cells?<br /> If TVA and rabies G are delivered to glial cells, followed by rabies virus injection, will it lead to the infection of other glial cells or neurons?

      Answers to any of these questions could greatly benefit the broader research community.

      (2) The optimal virus tracing effect has to be achieved by raising the injected larvae at 36C. Since the routine temperature of zebrafish culture is around 28C, a more thorough characterization of the effect on the health of zebrafish should be conducted.

      (3) Given the ability of time-lapse imaging of the infected larval zebrafish brain, the system can be taken advantage of to tackle important issues of rabies virus tracing tools.<br /> a) Toxicity.<br /> The toxicity of rabies viruses is an important issue that limits their application and affects the interpretation of traced circuits. For example, if a significant proportion of starter cells die before analysis, the traced presynaptic networks cannot be reliably assigned to a "defined" population of starter cells. In this manuscript, the authors did an excellent job of characterizing the effects of different rabies strains, G proteins derived from various strains, and levels of G protein expression on starter cell survival. However, an additional parameter that should be tested is the dose of rabies virus injection. The current method section states that all rabies virus preparations were diluted to 2x10^8 infection units per ml, and 2-5 nl of virus suspension was injected near the target cells. It would be interesting to know the impact of the dose/volume of virus injection on retrograde tracing efficiency and toxicity. Would higher titers of the virus lead to more efficient labeling but stronger toxicities? What would be the optimal dose/volume to balance efficiency and toxicity? Addressing these questions would provide valuable insights and help optimize the use of rabies viruses for circuit tracing.

      b) Primary starters and secondary starters:<br /> Given that the trans-expression of TVA and G is widespread, there is the possibility of coexistence of starter cells from the initial infection (primary starters) and starter cells generated by rabies virus spreading from the primary starters to presynaptic neurons expressing G. This means that the labeled input cells could be a mixed population connected with either the primary or secondary starter cells.

      It would be immensely interesting if time-lapse imaging could be utilized to observe the appearance of such primary and secondary starter cells. Assuming there is a time difference between the initial appearance of these two populations, it may be possible to differentiate the input cells wired to these populations based on a similar temporal difference in their initial appearance. This approach could provide valuable insights into the dynamics of rabies virus spread and the connectivity of neural circuits.

    2. Reviewer #2 (Public Review):

      The study by Chen, Deng et al. aims to develop an efficient viral transneuronal tracing method that allows efficient retrograde tracing in the larval zebrafish. The authors utilize pseudotyped-rabies virus that can be targeted to specific cell types using the EnvA-TvA systems. Pseudotyped rabies virus has been used extensively in rodent models and, in recent years, has begun to be developed for use in adult zebrafish. However, compared to rodents, the efficiency of the spread in adult zebrafish is very low (~one upstream neuron labeled per starter cell). Additionally, there is limited evidence of retrograde tracing with pseudotyped rabies in the larval stage, which is the stage when most functional neural imaging studies are done in the field. In this study, the authors systematically optimized several parameters of rabies tracing, including different rabies virus strains, glycoprotein types, temperatures, expression construct designs, and elimination of glial labeling. The optimal configurations developed by the authors are up to 5-10 fold higher than more typically used configurations.

      The results are solid and support the conclusions. However, the methods should be described in more detail to allow other zebrafish researchers to apply this method in their own work.

      Additionally, some findings are presented anecdotally, i.e., without quantification or sufficient detail to allow close examinations. Lastly, there is concern that the reagents created by the authors will not be easily accessible to the zebrafish community.

      (1) The titer used in each experiment was not stated. In the methods section, it is stated that aliquots are stored at 2x10e8. Is it diluted for injection? Are all of the experiments in the manuscripts with the same titer?

      2) The age for injection is quite broad (3-5 dpf in Fig 1 and 4-6 dpf in Fig 2). Given that viral spread efficiency is usually more robust in younger animals, describing the exact injection age for each experiment is critical.

      (3) More details should be provided for the paired electrical stimulation-calcium imaging study. How many GC cells were tested? How many had corresponding PC cell responses? What is the response latency? For example, images of stimulated and recorded GCs and PCs should be shown.

      (4) It is unclear how connectivity between specific PC and GC is determined for single neuron connectivity. In other images (Figure 4C), there are usually multiple starter cells and many GCs. It was not shown that the image resolution can establish clear axon-dendritic contacts between cell pairs.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors establish reagents and define experimental parameters useful for defining neurons retrograde to a neuron of interest.

      Strengths:

      A clever approach, careful optimization, novel reagents, and convincing data together lead to convincing conclusions.

      Weaknesses:

      In the current version of the manuscript, the tracing results could be better centered with respect to past work, certain methods could be presented more clearly, and other approaches worth considering.

      Appraisal/Discussion:

      Trans-neuronal tracing in the larval zebrafish preparation has lagged behind rodent models, limiting "circuit-cracking" experiments. Previous work has demonstrated that pseudotyped rabies virus-mediated tracing could work, but published data suggested that there was considerable room for optimization. The authors take a major step forward here, identifying a number of key parameters to achieve success and establishing new transgenic reagents that incorporate modern intersectional approaches. As a proof of concept, the manuscript concludes with a rough characterization of inputs to cerebellar Purkinje cells. The work will be of considerable interest to neuroscientists who use the zebrafish model.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang, Y. et al. used a silicone wire embolus to definitively and acutely clot the pterygopalatine ophthalmic artery in addition to carotid artery ligation to completely block blood supply to the mouse inner retina, which mimic clinical acute retinal artery occlusion. A detailed characterization of this mouse model determined the time course of inner retina degeneration and associated functional deficits, which closely mimic human patients. Whole retina transcriptome profiling and comparison revealed distinct features associated with ischemia, reperfusion, and different model mechanisms. Interestingly and importantly, this team found a sequential event including reperfusion-induced leukocyte infiltration from blood vessels, residual microglial activation, and neuroinflammation that may lead to neuronal cell death.

      Strengths:

      Clear demonstration of the surgery procedure with informative illustrations, images, and superb surgical videos.<br /> Two time points of ischemia and reperfusion were studied with convincing histological and in vivo data to demonstrate the time course of various changes in retinal neuronal cell survivals, ERG functions, and inner/outer retina thickness.<br /> The transcriptome comparison among different retinal artery occlusion models provides informative evidence to differentiate these models.<br /> The potential applications of the in vivo retinal ischemia-reperfusion model and relevant readouts demonstrated by this study will certainly inspire further investigation of the dynamic morphological and functional changes of retinal neurons and glial cell responses during disease progression and before and after treatments.

      Weaknesses:

      It would be beneficial to the manuscript and the readers if the authors could improve the English of this manuscript by correcting obvious grammar errors, eliminating many of the acronyms that are not commonly used by the field, and providing a reason why this complicated but clever surgery procedure was designed and a summary table with time course of all the morphological, functional, cellular, and transcriptome changes associated with this model.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors of this manuscript aim to develop a novel animal model to accurately simulate the retinal ischemic process in retinal artery occlusion (RAO). A unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model was established using silicone wire embolization combined with carotid artery ligation. This manuscript provided data to show the changes of major classes of retinal neural cells and visual dysfunction following various durations of ischemia (30 minutes and 60 minutes) and reperfusion (3 days and 7 days) after UPOAO. Additionally, transcriptomics was utilized to investigate the transcriptional changes and elucidate changes in the pathophysiological process in the UPOAO model post-ischemia and reperfusion. Furthermore, the authors compared transcriptomic differences between the UPOAO model and other retinal ischemic-reperfusion models, including HIOP and UCCAO, and revealed unique pathological processes.

      Strengths:

      The UPOAO model represents a novel approach for studying retinal artery occlusion. The study is very comprehensive.

      Weaknesses:

      Originally, some statements were incorrect and confusing. However, the authors have made clarifications in the revised manuscript to avoid confusion.

    1. Reviewer #1 (Public Review):

      Summary:

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction, and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.

      Strengths:

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells.<br /> - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.

      Weaknesses:

      - The authors claim that the cellular Potts Model (CPM) is unable to achieve the results of the vertex model (VM) simulations due to naturally non-straight cellular junctions in the CPM versus the VM. The lack of a substantial comparison undermines this assertion. None of the references mentioned in the manuscript are from a work using vertex model with straight cellular junctions, simulating apical constriction purely by a enhancing a length-independent apical tension. Sherrard et al and Pérez-González et al. use 2D and 3D Vertex Models, respectively, with a "contractility" force driving apical constriction. However, their models allow cell curvature. Both references suggest that the cell side flexibility of the CPM shouldn't be the main issue of the "contractility model" for apical constriction.<br /> - The myosin cable is assumed to encircle the invaginated cells. Therefore, it is not clear why the force acts over the entire system (even when decreasing towards the center), and not locally in the contour of the group of cells under constriction. The specific form of the associated potential is missing. It is unclear how dependent the results of the manuscript are on these not-well-motivated and model-specific rules for the myosin cable.<br /> - The authors are using different names than the conventional ones for the energy terms. Their current attempt to clarify what is usually done in other works might lead to further confusion.

    2. Reviewer #2 (Public Review):

      Summary:

      In their work, the Authors study local mechanics in an invaginating epithelial tissue. The work, which is mostly computational, relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The Authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity".

      Strengths:

      It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue.

      Weaknesses:

      Although the Authors have improved and clarified certain aspects of their results as suggested by the Reviewers, the presentation still mostly relies on showing simulation snapshots. Snapshots can be useful, but when there are too many, the results are hard to read. The manuscript would benefit from more quantitative plots like phase diagrams etc.