Reviewer #1 (Public Review):
Weber et al. collect locus coeruleus (LC) tissue blocks from 5 neurotypical European men, dissect the dorsal pons around the LC and prepare 2-3 tissue sections from each donor on a slide for 10X spatial transcriptomics. From three of these donors, they also prepared an additional section for 10x single nucleus sequencing. Overall, the results validate well-known marker genes for the LC (e.g. DBH, TH, SLC6A2), and generate a useful resource that lists genes which are enriched in LC neurons in humans, with either of these two techniques. A comparison with publicly available mouse and rat datasets identifies genes that show reliable LC-enrichment across species. Their analyses also support recent rodent studies that have identified subgroups of interneurons in the region surrounding the LC, which show enrichment for different neuropeptides. In addition, the authors claim that some LC neurons co-express cholinergic markers, and that a population of serotonin (5-HT) neurons is located within or near the LC. These last two claims must be taken with great caution, as several technological limitations restrict the interpretation of these results. Overall, there is limited integration between the spatial and single-nucleus sequencing, thus the data does not yet provide a conclusive list of bona fide LC-specific genes. The authors transparently present limitations of their work in the discussion, but some points discussed below warrant further attention.
Specific comments:
1) snRNAseq:
a. Major concerns with the snRNAseq dataset are A) the low recovery rate of putative LC-neurons in the snRNAseq dataset, B) the fact that the LC neuron cluster is contaminated with mitochondrial RNA, and C) that a large fraction of the nuclei cannot be assigned to a clear cell type (presumably due to contamination or damaged nuclei). The authors chose to enrich for neurons using NeuN antibody staining and FACS. But it is difficult to assess the efficacy of this enrichment without images of the nuclear suspension obtained before FACS, and of the FACS results. As this field is in its infancy, more detail on preliminary experiments would help the reader to understand why the authors processed the tissue the way they did. It would be nice to know whether omitting the FACS procedure might in fact result in higher relative recovery of LC-neurons, or if the authors tried this and discovered other technical issues that prompted them to use FACS.
b. It is unclear what percentage of cells that make up each cluster.
c. The number of subjects used in each analysis was not always clear. Only 3 subjects were used for snRNAseq, and one of them only yielded 4 LC-nuclei. This means the results are essentially based on n=2. The authors report these numbers in the corresponding section, but the first sentence of the results section (and Figure 1C specifically!) create the impression that n=5 for all analyses. Even for spatial transcriptomics, if I understood it correctly, 1 sample had to be excluded (n=4).
2) Spatial transcriptomics:
a. It is not clear to me what the spatial transcriptomics provides beyond what can be shown with snRNAseq, nor how these two sets of results compare to each other. It would be more intuitive to start the story with snRNAseq and then try to provide spatial detail using spatial transcriptomics. The LC is not a homogeneous structure but can be divided into ensembles based on projection specificity. Spatial transcriptomics could - in theory - offer much-needed insights into the spatial variation of mRNA profiles across different ensembles, or as a first step across the spatial (rostral/caudal, ventral/dorsal) extent of the LC. The current analyses, however, cannot address this issue, as the orientation of the LC cannot be deduced from the slices analyzed.
b. Unfortunately, spatial transcriptomics itself is plagued by sampling variability to a point where the RNAscope analyses the authors performed prove more powerful in addressing direct questions about gene expression patterns. Given that the authors compare their results to published datasets from rodent studies, it is surprising that a direct comparison of genes identified with spatial transcriptomics vs snRNAseq is lacking (unless this reviewer missed this comparison). Supplementary Figure 17 seems to be a first step in that direction, but this is not a gene-by-gene comparison of which analysis identifies which LC-enriched genes. Such an analysis should not compare numbers of enriched genes using artificial cutoffs for significance/fold-change, but rather use correlations to get a feeling for which genes appear to be enriched in the LC using both methods. This would result in one list of genes that can serve as a reference point for future work.
c. Maybe the spatial transcriptomics could be useful to look at the peri-LC region, which has generated some excitement in rodent work recently, but remains largely unexplored in humans.
3) The comparison of snRNAseq data to published literature is laudable. Although the authors mention considerable methodological differences between the chosen rodent work and their own analyses, this needs to be further explained. The mouse dataset uses TRAPseq, which looks at translating mRNAs associated with ribosomes, very different from the nuclear RNA pool analyzed in the current work. The rat dataset used single-cell LC laser microdissection followed by microarray analyses, leading to major technical differences in terms of tissue processing and downstream analyses. The authors mention and reference a recent 10x mouse LC dataset (Luskin et al, 2022), however they only pick some neuropeptides from this study for their analysis of interneuron subtypes (Figure S13). Although this is a very interesting part of the manuscript, a more in-depth analysis of these two datasets would be very useful. It would likely allow for a better comparison between mouse and human, given that the technical approach is more similar (albeit without FACS), and Luskin et al have indicated that they are willing to share their data.
4) Statements in the manuscript about the unexpected identification of a 5-HT (serotonin) cell-cluster seem somewhat contradictory. Figure S14 suggests that 5-HT markers are expressed in the LC-regions just as much as anywhere else, but the RNAscope image in Figure S15 suggests spatial separation between these two populations. And Figure S17 again suggests almost perfect overlap between the LC and 5HT clusters. Maybe I misunderstood, in which case the authors should better clarify/explain these results.