4,378 Matching Annotations
  1. Feb 2024
    1. Reviewer #3 (Public Review):

      Summary:

      This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials induced by the stimulation. They also studied the extent that the blood brain barrier (BBB) was opened by the prolonged stimulation and whether that played a role in the plasticity. They found that there was potentiation of the amplitude and area under the curve of the evoked potential after prolonged stimulation and this was long-lasting (>5 hrs). They also implicated extravasation of serum albumin, caveolae-mediated transcytosis, and TGFb signalling, as well as neuronal activity and upregulation of PSD95. Transcriptomics was done and implicated plasticity related genes in the changes after prolonged stimulation, but not proteins associated with the BBB or inflammation. Next, they address the application to humans using a squeeze ball task. They imaged the brain and suggest that the hand activity led to an increased permeability of the vessels, suggesting modulation of the BBB.

      Strengths:

      The strengths of the paper are the novelty of the idea that stimulation of the limb can induce cortical plasticity in a normal condition, and it involves opening of the BBB with albumin entry. In addition, there are many datasets and both rat and human data.

      Weaknesses:

      The conclusions are not compelling however because of a lack of explanation of methods. The explanation of why prolonged stimulation in the rat was considered relevant to normal conditions should be as clear in the paper as it is in the rebuttal. The authors need to ensure other aspects of the rebuttal are as clear in the paper as in the rebuttal too. The only remaining concern that is significant is that it is hard to understand the figures.

    1. Reviewer #3 (Public Review):

      A brain region called the retrotrapezoid nucleus (RTN) regulates breathing in response to changes in CO2/H+, a process termed central chemoreception. A transcription factor called PHOX2B is important for RTN development and mutations in the PHOX2B gene result in a severe type of sleep apnea called Congenital Central Hypoventilation Syndrome. PHOX2B is also expressed throughout life, but its postmitotic functions remain unknown. This study shows that knockdown of PHOX2B in the RTN region in adult rats decreased expression of Task2 and Gpr4 in Nmb-expressing RTN chemoreceptors and this corresponded with a diminished ventilatory response to CO2 but did not impact baseline breathing or the hypoxic ventilatory response. These results provide novel insight regarding the postmitotic functions of PHOX2B in RTN neurons.

      Main issues:<br /> 1) The experimental approach was not targeted to Nmb+ neurons and since other cells in the area also express Phox2b, conclusions should be tempered to focus on Phox2b expressing parafacial neurons NOT specifically RTN neurons

      2) It is not clear whether PHOX2B is important for the transcription of pH sensing machinery, cell health, or both. If knockdown of PHOX2B knockdown results in loss of RTN neurons this is also expected to decrease Task2 and Gpr4 levels, albeit by a transcription-independent mechanism.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study claims to investigate trunk representations in elephant trigeminal nuclei located in the brainstem. The researchers identified large protrusions visible from the ventral surface of the brainstem, which they examined using a range of histological methods. However, this ventral location is usually where the inferior olivary complex is found, which challenges the author's assertions about the nucleus under analysis. They find that this brainstem nucleus of elephants contains repeating modules, with a focus on the anterior and largest unit which they define as the putative nucleus principalis trunk module of the trigeminal. The nucleus exhibits low neuron density, with glia outnumbering neurons significantly. The study also utilizes synchrotron X-ray phase contrast tomography to suggest that myelin-stripe-axons traverse this module. The analysis maps myelin-rich stripes in several specimens and concludes that based on their number and patterning they likely correspond with trunk folds; however, this conclusion is not well supported if the nucleus has been misidentified.

      Strengths:<br /> The strength of this research lies in its comprehensive use of various anatomical methods, including Nissl staining, myelin staining, Golgi staining, cytochrome oxidase labeling, and synchrotron X-ray phase contrast tomography. The inclusion of quantitative data on cell numbers and sizes, dendritic orientation and morphology, and blood vessel density across the nucleus adds a quantitative dimension. Furthermore, the research is commendable for its high-quality and abundant images and figures, effectively illustrating the anatomy under investigation.

      Weaknesses:<br /> While the research provides potentially valuable insights if revised to focus on the structure that appears to be the inferior olivary nucleus, there are certain additional weaknesses that warrant further consideration. First, the suggestion that myelin stripes solely serve to separate sensory or motor modules rather than functioning as an "axonal supply system" lacks substantial support due to the absence of information about the neuronal origins and the termination targets of the axons. Postmortem fixed brain tissue limits the ability to trace full axon projections. While the study acknowledges these limitations, it is important to exercise caution in drawing conclusions about the precise role of myelin stripes without a more comprehensive understanding of their neural connections.

      Second, the quantification presented in the study lacks comparison to other species or other relevant variables within the elephant specimens (i.e., whole brain or brainstem volume). The absence of comparative data for different species limits the ability to fully evaluate the significance of the findings. Comparative analyses could provide a broader context for understanding whether the observed features are unique to elephants or more common across species. This limitation in comparative data hinders a more comprehensive assessment of the implications of the research within the broader field of neuroanatomy. Furthermore, the quantitative comparisons between African and Asian elephant specimens should include some measure of overall brain size as a covariate in the analyses. Addressing these weaknesses would enable a richer interpretation of the study's findings.

    1. Reviewer #3 (Public Review):

      Summary: This study investigated the role of mTORC1 and 2 in a mouse model of developmental epilepsy which simulates the epilepsy in cortical malformations. Given activation of genes such as PTEN activate TORC1, and this is considered to be excessive in cortical malformations, the authors asked whether inactivating mTORC1 and 2 would ameliorate the seizures and malformation in the mouse model. The work is highly significant because a new mouse model is used where Raptor and Rictor, which regulate mTORC1 and 2 respectively, were inactivated in one hemisphere of the cortex. The work is also significant because the deletion of both Raptor and Rictor improved the epilepsy and malformation. In the mouse model, the seizures were generalized or there were spike wave discharges (SWD). They also examined the interictal EEG. The malformation was manifested by increased cortical thickness and soma size.

      Strengths: The presentation and writing is strong. Quality of data are strong. The data support the conclusions for the most part. The results are significant: Generalized seizures and SWDs were reduced when both Torc1 and 2 were inactivated but not when one was inactivated.

      Weaknesses: One of the limitations is a somewhat small sample size. Another is that there was hippocampal expression. A third is that recordings of seizures were not continuous and different for each mouse. Another concern is they only measured layer II/III neurons.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This work examined efference copy related to eye movements in healthy adults who have high autistic traits. Efference copies allow the brain to make predictions about sensory outcomes of self-generated actions, and thus serve important roles in motor planning and maintaining visual stability. Consequently, disrupted efference copies have been posited as a potential mechanism underlying motor and sensory symptoms in psychopathology such as Autism Spectrum Disorder (ASD), but so far very few studies have directly investigated this theory. Therefore, this study makes an important contribution as an attempt to fill in this knowledge gap. The authors conducted two eye-tracking experiments examining the accuracy of motor planning and visual perception following a saccade and found that participants with high autistic traits exhibited worse task performance (i.e., less accurate second saccade and biased perception of object displacement), consistent with their hypothesis of less impact of efference copies on motor and visual updating. Moreover, the motor and visual biases are positively correlated, indicative of a common underlying mechanism. These findings are promising and can have important implications for clinical intervention if they can be replicated in a clinical sample.

      Strengths:<br /> The authors utilized well-established and rigorously designed experiments and sound analytic methods. This enables easy translations between similar work in non-human primates and humans and readily points to potential candidates for underlying neural circuits that could be further examined in follow-up studies (e.g., superior colliculus, frontal eye fields, mediodorsal thalamus). The finding of no association between initial saccade accuracy and level of autistic trait in both experiments also serves as an important control analysis and increases one's confidence in the conclusion that the observed differences in task performance were indeed due to disrupted efference copies, not confounding factors such as basic visual/motor deficits or issues with working memory. The strong correlation between the observed motor and visual biases further strengthens the claim that the findings from both experiments may be explained by the same underlying mechanism - disrupted efference copies. Lastly, the authors also presented a thoughtful and detailed mechanistic theory of how efference copy impairment may lead to ASD symptomatology, which can serve as a nice framework for more research into the role of efference copies in ASD.

      Weaknesses:<br /> Although the paper has a lot of strengths, the main weakness of the paper is that a direct link with ASD symptoms (i.e., sensory overload and motor inflexibility as the authors suggested) cannot be established. First of all, the participants are all healthy adults who do not meet the clinical criteria for an ASD diagnosis. Although they could be considered a part of the broader autism phenotype, the results cannot be easily generalized to the clinical population without further research. Secondly, the measure used to quantify the level of autistic traits, Autistic Quotient (AQ), does not actually capture any sensory or motor symptoms of ASD. Therefore, it is unknown whether those who scored high on AQ in this study experienced high, or even any, sensory or motor difficulties. In other words, more evidence is needed to demonstrate a direct link between disrupted efference copies and sensory/motor symptoms in ASD.

    1. Reviewer #3 (Public Review):

      Observers make judgements about expected stimuli faster and more accurately. How expectations facilitate such perceptual decisions remains an ongoing area of investigation, however, as expectations may exert their effects in multiple ways. Expectations may directly influence the encoding of sensory signals. Alternatively (or additionally), expectations may influence later stages of decision-making, such as motor preparation, when they bear on the appropriate behavioral response.

      In the present study, Walsh and colleagues directly measured the effect of expectations on sensory and motor signals by making clever use of the encephalogram (EEG) recorded from human observers performing a contrast discrimination task. On each trial, a predictive cue indicated which of two superimposed stimuli would likely be higher contrast and, therefore, whether a left or right button press was likely to yield a correct response. Deft design choices allowed the authors to extract both contrast-dependent sensory signals and motor preparation signals from the EEG. The authors provide compelling evidence that, when predictive cues provide information about both a forthcoming stimulus and the appropriate behavioral response, expectation effects are immediately manifest in motor preparation signals and only emerge in sensory signals after extensive training.

      Future work should attempt to reconcile these results with related investigations in the field. As the authors note, several groups have reported expectation-induced modulation of sensory signals (using both fMRI and EEG/MEG) on shorter timescales (e.g. just one or two sessions of a few hundred trials, versus the intensive multi-session study reported here). One interesting possibility is that perceptual expectations are not automatic but demand the deployment of feature-based attention, while motor preparation is comparatively less effortful and so dominates when both sources of information are available, as in the present study. This hypothesis is consistent with the authors' thoughtful analysis showing decreased neural signatures of attention over posterior electrodes following predictive cues. Therefore, observing the timescale of sensory effects using the same design and methods (facilitating direct comparison with the present work), but altering task demands slightly such that cues are no longer predictive of the appropriate behavioral response, could be illuminating.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper explores the relationships among evolutionary and epidemiological quantities in influenza, using a wide range of datasets and features, and using both correlations and random forests to examine, primarily, what are the drivers of influenza epidemics. It's a strong paper representing a thorough and fascinating exploration of potential drivers, and it makes a trove of relevant data readily available to the community.

      Strengths:<br /> This paper makes links between epidemiological and evolutionary data for influenza. Placing each in the context of the other is crucial for understanding influenza dynamics and evolution and this paper does a thorough job of this, with many analyses and nuances. The results on the extent to which evolutionary factors relate to epidemic burden, and on interference among influenza types, are particularly interesting. The github repository associated with the paper is clear, comprehensive, and well-documented.

      Weaknesses:<br /> The format of the results section can be hard to follow, and we suggest improving readability by restructuring and simplifying in some areas. There are a range of choices made about data preparation and scaling; the authors could explore sensitivity of the results to some of these.

    1. Reviewer #3 (Public Review):

      In this study, Ruan et al. investigate the role of the IQCH gene in spermatogenesis, focusing on its interaction with calmodulin and its regulation of RNA-binding proteins. The authors examined sperm from a male infertility patient with an inherited IQCH mutation as well as Iqch CRISPR knockout mice. The authors found that both human and mouse sperm exhibited structural and morphogenetic defects in multiple structures, leading to reduced fertility in Ichq-knockout male mice. Molecular analyses such as mass spectrometry and immunoprecipitation indicated that RNA-binding proteins are likely targets of IQCH, with the authors focusing on the RNA-binding protein HNRPAB as a critical regulator of testicular mRNAs. The authors used in vitro cell culture models to demonstrate an interaction between IQCH and calmodulin, in addition to showing that this interaction via the IQ motif of IQCH is required for IQCH's function in promoting HNRPAB expression. In sum, the authors concluded that IQCH promotes male fertility by binding to calmodulin and controlling HNRPAB expression to regulate the expression of essential mRNAs for spermatogenesis. These findings provide new insight into molecular mechanisms underlying spermatogenesis and how important factors for sperm morphogenesis and function are regulated.

      The strengths of the study include the use of mouse and human samples, which demonstrate a likely relevance of the mouse model to humans; the use of multiple biochemical techniques to address the molecular mechanisms involved; the development of a new CRISPR mouse model; ample controls; and clearly displayed results. There are some minor weaknesses in that more background details could be provided to the reader regarding the proteins involved; some assays could benefit from more rigorous quantification; some of the mouse testis images and analyses could be improved; and larger sample sizes, especially for the male mouse breeding tests, could be increased. Overall, the claims made the authors in this manuscript are well-supported by the data provided, but there some technical issues that, if addressed, could increase the robustness and rigor of the study.

      1. More background details are needed regarding the proteins involved, in particular IQ proteins and calmodulin. The authors state that IQ proteins are not well-represented in the literature, but do not state how many IQ proteins are encoded in the genome. They also do not provide specifics regarding which calmodulins are involved, since there are at least 5 family members in mice and humans. This information could help provide more granular details about the mechanism to the reader and help place the findings in context.

      2. The mouse fertility tests could be improved with more depth and rigor. There was no data regarding copulatory plug rate; data was unclear regarding how many WT females were used for the male breeding tests and how many litters were generated; the general methodology used for the breeding tests in the Methods section was not very explicitly or clearly described; the sample size of n=3 for the male breeding tests is rather small for that type of assay; and, given that ICHQ appears to be expressed in testicular interstitial cells (Fig. S10) and somewhat in other organs (Fig. S2), another important parameter of male fertility that should be addressed is reproductive hormone levels (e.g., LH, FSH, and testosterone). While normal epididymal size in Fig. S3 suggests that hormone (testosterone) levels are normal, epididymal size and/or weight were not rigorously quantified.

      3. The Western blots in Figure 6 should be rigorously quantified from multiple independent experiments so that there is stronger evidence supporting claims based on those assays.

      4. Some of the mouse testis images could be improved. For example, the PNA and PLCz images in Figure S7 are difficult to interpret in that the tubules do not appear to be stage-matched, and since the authors claimed that testicular histology is unaffected in knockout testes, it should be feasible to stage-match control and knockout samples. Also, the anti-ICHQ and CaM immunofluorescence in Figure S10 would benefit from some cell-type-specific co-stains to more rigorously define their expression patterns, and they should also be stage-matched.

    1. Reviewer #3 (Public Review):

      In this study, the authors investigate the role of the Notch signalling regulator RBP-J on Ly6Clow monocyte biology starting with the observation that RBP-J-deficient mice have increased circulating Ly6low monocytes. Using myeloid specific conditional mouse models, the authors investigate how RBP-J deficiency effects circulating monocytes and lung interstitial macrophages.<br /> A major strength of this study is that it provides compelling evidence that RBP-J is a novel, critical factor regulating Ly6Clow monocyte cell frequency in the blood. The authors demonstrate that RBP-J deficiency leads to increased Ly6Clow monocytes in the blood and lung and CD16.2+ interstitial macrophages in steady state. The authors use a number of different techniques to confirm this finding including bone marrow transplantation experiments and parabiosis.

      The main conclusion of the paper is that RBP-J controls the fate of Ly6ClowCCR2hi monocytes in a cell-intrinsic manner. This conclusion is strongly supported by the data provided. However, this paper is predominantly descriptive and further research is required to fully uncover the mechanisms by which RBP-J deficiency leads to Ly6Clo monocyte numbers increasing specifically in the blood and lungs and the consequence of RBP-J deficiency on Ly6C-low monocyte functionality.

      The authors have performed RNA-seq and more in-depth analysis of this sequencing may provide clues for uncovering the thus far elusive mechanism.

    1. Reviewer #3 (Public Review):

      In this study, the authors utilized mass spectrometry-based quantification of polar metabolites and lipids in normal and cancerous tissue interstitial fluid and plasma. This showed that nutrient availability in tumor interstitial fluid was similar to that of interstitial fluid in adjacent normal kidney tissue, but that nutrients found in both interstitial fluid compartments were different from those found in plasma. This suggests that the nutrients in kidney tissue differ from those found in blood and that nutrients found in kidney tumors are largely dictated by factors shared with normal kidney tissue. Those data could be useful as a resource to support further study and modeling of the local environment of RCC and normal kidney physiology.

      In Figures 1D and 1E, there were about 30% of polar metabolites and 25% of lipids significantly different between TIF and KIF, which could be key factors for RCC tumors. This reviewer considers that the authors should make comments on this.

    1. Reviewer #3 (Public Review):

      Mohammed et al perform functional follow-up studies on the single nucleotide polymorphism rs6740960 located on chromosome 2p21 that was previously linked to lower jaw and chin shape variation and an increased risk of non-syndromic orofacial clefting. Through a combination of in silico multi-species alignment, in vitro enhancer marks, and finally in vivo data the team could confirm that the SNP is located in an active enhancer element driving transgene expression in the upper and lower jaw. The team tested the human and chimp orthologs in transgenic mice. Interestingly the mouse ought to look did not show any active enhancer activity in the LacZ reporter assay. Next, the authors could show a selective interaction of the enhancer element with the neighboring gene PKDCC in chondrocytes using H3K27ac HiChIP. Deletion of this enhancer in vitro led to an allele specific reduction of PKC expression. Finally, the authors aimed at evaluating the effect of rs6740960 in vivo using a mouse model. Since the enhancer sequence of the mouse did not show any positive reporter activity, the authors decided to use previously described Pkdcc full knockout mouse model (Kinoshita et al. 2009). Using sophisticated imaging technologies the authors were able to show that in mice several facial bones are Pkdcc dose sensitive.

      Overall this is an extremely exciting manuscript that addresses one of the key challenges in the post GWAS time: the functional connection of lead SNPs to their target genes and a detailed evaluation of the biological and morphological consequences.<br /> The manuscript is well written, and the conclusions are completely supported by the evidence provided. I really think this is a great paper, however I have several major concerns with the manuscript and its current format.

      Major comments:

      1: My main concern about the manuscript in its current format is the disconnection between the beautiful work of linking rs6740960 to Pkdcc in the first part of the manuscript and the investigation of dose sensitivity of Pkdcc itself in end of the manuscript. While I realized that this is because the enhancer itself is not conserved between humans and mice, in my opinion it still weakens the novelty of the finding of the second part of the manuscript quite significantly. The Pkdcc knockout has been well described and that the authors now present evidence that also heterozygous knockouts show a minimal phenotype in the facial bones is really not surprising. More importantly it doesn't show how the rs6740960 influences Pkdcc expression in vivo.

      A rather straightforward and very interesting experimental approach would be to replace the mouse enhancer sequence with the human or chimp enhancer carrying the risk allele or the wild type. In the last figure the authors have nicely shown that the entire experimental setup for the functional analysis of even minor changes to the facial bones caused by the SNP are available to the team. Even if the result was negative this experiment would significantly enhance the scientific impact of the paper.

      2: Another option would be to repeat the LacZ reporter essay with the human wild type and the risk allele in direct comparison. A beautiful example of such an experiment was recently shown by Yanchuset et al (A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation, Yanchuset al.,Science378,68-78 2022)

      3: It is unclear how the H3K27ac HiChIP signal looks like at the Pkdcc locus in H9 ESC. What is the naïve interaction profile?

    1. Reviewer #3 (Public Review):

      This study represents a useful addition to the authors' previous study examining the effects of paternal high-fat diet on offspring metabolism and gene expression in offspring (PMID: 35183795). It differs from the previous study in some of the details of the experimental model (age of sire when exposed to the diet manipulation, mouse substrain, and the nature of the control diet) and the results are largely in line with previous findings. The major finding is that many genes at which sperm H3K4me3 signal is altered also have altered expression in the placenta; some of these genes are paternally imprinted, providing a paternal-specific epigenetic signature. Strengths of the study include establishment of an important dataset correlating the sperm epigenome with gene expression in placental tissue, leading to an interesting and provocative conclusion. Weaknesses include a relatively superficial analysis of the dataset, revealing broad patterns but few specific conclusions, reliance on correlative analysis to draw conclusions, and absence of validation studies. Deconvolution analysis of bulk RNA-seq data helps to account for differences in cell composition between placental datasets, but does not add additional insight toward the central question of how sperm epigenetic state contributes to offspring gene expression. Overall the advance over previous work is relatively small.

      Specific points:

      1) The analysis as it stands is limited. To compare sperm H3K4me3 and placental expression, numbers of overlapping genes are provided, but no statistical analysis is done to indicate the significance of the overlap.

      2) There is little direct connection to biological systems or validation of differential enrichment/expression analysis. Gene ontology enrichments for genes differentially enriched for H3K4me3 in sperm or differentially expressed in placenta (broken up by sex) are performed, but the biological significance of these categories is not clear.

      3) The overall effect size is small. In most cases the magnitude of differences is minor, and it is not clear which of these changes are significant over noise. For example, the y-axis for the metagene plots in Figure 2B does not start at zero, so the total range of the difference in H3K4me3 is small. In Figure 6C, DEGs detected in hypoxic placenta after deconvolution analysis do not look very different compared to control.

      4) Deconvolution analysis was done on bulk RNA-seq data from placenta, and the numbers of DEGs identified with this analysis compared to the original analysis are shown, but is not clear how the deconvolution analysis changes the specific biological conclusions. In addition, the reference dataset for deconvolution is a published dataset generated in another lab, and it is unclear how comparable the reference sample is to the samples analyzed in this study, or how robust this analysis is when using a dataset generated under different conditions.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, Verma et al. set out to visualize cytoplasmic dynein in living cells and describe their behaviour. They first generated heterozygous CRISPR-Cas9 knock-ins of DHC1 and p50 subunit of dynactin and used spinning disk confocal microscopy and TIRF microscopy to visualize these EGFP-tagged molecules. They describe robust localization and movement of DHC and p50 at the plus tips of MTs, which was abrogated using SiR tubulin to visualize the pool of DHC and p50 on the MTs. These DHC and p50 punctae on the MTs showed similar, highly processive movement on MTs. Based on comparison to inducible EGFP-tagged kinesin-1 intensity in Drosophila S2 cells, the authors concluded that the DHC and p50 punctae visualized represented 1 DHC-EGFP dimer+1 untagged DHC dimer and 1 p50-EGFP+3 untagged p50 molecules.

      Strengths:<br /> The idea and motivation behind this work are commendable.

      Weaknesses:<br /> There are several major issues with the characterization of the knock-in lines generated, the choice of imaging and analysis methods, and inadequate discussion of prior findings.

      The specific points are below:

      1. CRISPR-edited HeLa clones:<br /> (i) The authors indicate that both the DHC-EGFP and p50-EGFP lines are heterozygous and that the level of DHC-EGFP was not measured due to technical difficulties. However, quantification of the relative amounts of untagged and tagged DHC needs to be performed - either using Western blot, immunofluorescence or qPCR comparing the parent cell line and the cell lines used in this work.<br /> (ii) The localization of DHC predominantly at the plus tips (Fig. 1A) is at odds with other work where endogenous or close-to-endogenous levels of DHC were visualized in HeLa cells and other non-polarized cells like HEK293, A-431 and U-251MG (e.g.: OpenCell (https://opencell.czbiohub.org/target/CID001880), Human Protein Atlas (https://www.proteinatlas.org/ENSG00000197102-DYNC1H1/subcellular#human), https://www.biorxiv.org/content/10.1101/2021.04.05.438428v3). The authors should perform immunofluorescence of DHC in the parental cells and DHC-EGFP cells to confirm there are no expression artifacts in the latter. Additionally, a comparison of the colocalization of DHC with EB1 in the parental and DHC-EGFP and p50-EGFP lines would be good to confirm MT plus-tip localisation of DHC in both lines.<br /> (iii) It would also be useful to see entire fields of view of cells expressing DHC-EGFP and p50-EGFP (e.g. in Spinning Disk microscopy) to understand if there is heterogeneity in expression. Similarly, it would be useful to report the relative levels of expression of EGFP (by measuring the total intensity of EGFP fluorescence per cell) in those cells employed for the analysis in the manuscript.<br /> (iv) Given that the authors suspect there is differential gene regulation in their CRISPR-edited lines, it cannot be concluded that the DHC-EGFP and p50-EGFP punctae tracked are functional and not piggybacking on untagged proteins. The authors could use the FKBP part of the FKBP-EGFP tag to perform knock-sideways of the DHC and p50 to the plasma membrane and confirm abrogation of dynein activity by visualizing known dynein targets such as the Golgi (Golgi should disperse following recruitment of EGFP-tagged DHC-EGFP or p50-EGFP to the PM), or EGF (movement towards the cell center should cease).

      2. TIFRM and analysis:<br /> (i) What was the rationale for using TIRFM given its limitation of visualization at/near the plasma membrane? Are the authors confident they are in TIRF mode and not HILO, which would fit with the representative images shown in the manuscript?<br /> (ii) At what depth are the authors imaging DHC-EGFP and p50-EGFP?<br /> (iii) The authors rely on manual inspection of tracks before analyzing them in kymographs - this is not rigorous and is prone to bias. They should instead track the molecules using single particle tracking tools (eg. TrackMate/uTrack), and use these traces to then quantify the displacement, velocity, and run-time.<br /> (iv) It is unclear how the tracks that were eventually used in the quantification were chosen. Are they representative of the kind of movements seen? Kymographs of dynein movement along an entire MT/cell needs to be shown and all punctae that appear on MTs need to be tracked, and their movement quantified.<br /> (v) What is the directionality of the moving punctae?<br /> (vi) Since all the quantification was performed on SiR tubulin-treated cells, it is unclear if the behavior of dynein observed here reflects the behavior of dynein in untreated cells. Analysis of untreated cells is required.

      3. Estimation of stoichiometry of DHC and p50<br /> Given that the punctae of DHC-EGFP and p50 seemingly bleach on MT before the end of the movie, the authors should use photobleaching to estimate the number of molecules in their punctae, either by simple counting the number of bleaching steps or by measuring single-step sizes and estimating the number of molecules from the intensity of punctae in the first frame.

      4. Discussion of prior literature<br /> Recent work visualizing the behavior of dyneins in HeLa cells (DOI: 10.1101/2021.04.05.438428), which shows results that do not align with observations in this manuscript, has not been discussed. These contradictory findings need to be discussed, and a more objective assessment of the literature in general needs to be undertaken.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Using a protein degradation approach, Eaton et al show that INST11 can terminate the sense and anti-sense transcription but higher activity of CDK9 in the sense direction protects it from INS11-dependent termination. They developed sPOINT-seq that detects nascent 5'-capped RNA. The technique allowed them to reveal robust transcription initiation of sense-RNA as compared to anti-sense.

      Strengths:<br /> The strength of the paper is the acute degradation of proteins, eliminating the off-target effects. Further, the paper uses elegant approaches such as POINT and sPOINT-seq to measure nascent RNA and 5'-capped short RNA. Together, the combination of these three allowed the authors to make clean interpretations of data.

      Weaknesses:<br /> While the manuscript is well written, the details on the panel are not sufficient. The methods could be elaborated to aid understanding. Additional discussion on howthe authors' findings contradict the existing model of anti-sense transcription termination should be added.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Flaherty III S.E. et al identified SPAG7 gene in their forward mutagenetic screening and created the germline knockout and inducible knockout mice. The authors reported that the SPAG7 germline knockout mice had lower birth weight likely due to intrauterine growth restriction and placental insufficiency. The SPAG7 KO mice later developed obesity phenotype as result of reduced energy expenditure. However, the inducible SPAG7 knockout mice had normal body weight and composition.

      Strengths:

      In this reviewer's opinion, this study has high significance in the field of metabolic research for the following reasons.

      1) The authors' findings are significant in the field of obesity research, especially from the perspective of maternal-fetal medicine. The authors created and analyzed the SPAG7 KO mice and found that the KO mice had a "thrifty phenotype" and developed obesity.

      2) SPAG7 gene function hasn't been thoroughly studied. The reported phenotype will fill the gap of knowledge.

      Overall, the authors have presented their results in a clear and logically organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings.

      Comments on revised version:

      The authors have satisfactorily addressed my previous concerns.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Radial muscle growth involves an increase in overall muscle cross-sectional area. For decades this process has been described as the splitting of myofibrils to produce more myofibrils during the growth process. However, a closer look at the original papers shows that the evidence underlying this description was incomplete. In this paper, the authors have developed a novel method using fluorescence microscopy to directly measure myofibril size and number. Using a mouse model of mechanical loading and a human model of resistance exercise they discovered that myofibrillogenesis is playing a key role in the radial growth of muscle fibers.

      Strengths:<br /> 1. Well-written and clear description of hypothesis, background, and experiments.<br /> 2. Compelling series of experiments.<br /> 3. Different approaches to test the hypothesis.<br /> 4. Rigorous study design.<br /> 5. Clear interpretation of results.<br /> 6. Novel findings that will be beneficial to the muscle biology field.<br /> 7. Innovative microscopy methods that should be widely available for use in other muscle biology labs.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Previous research on the Drosophila mushroom body (MB) has made this structure the best-understood example of an associative memory center in the animal kingdom. This is in no small part due to the generation of cell-type specific driver lines that have allowed consistent and reproducible genetic access to many of the MB's component neurons. The manuscript by Shuai et al. now vastly extends the number of driver lines available to researchers interested in studying learning and memory circuits in the fly. It is an 800-plus collection of new cell-type specific drivers target neurons that either provide input (direct or indirect) to MB neurons or that receive output from them. Many of the new drivers target neurons in sensory pathways that convey conditioned and unconditioned stimuli to the MB. Most drivers are exquisitely selective, and researchers will benefit from the fact that whenever possible, the authors have identified the targeted cell types within the Drosophila connectome. Driver expression patterns are beautifully documented and are publicly available through the Janelia Research Campus's Flylight database where full imaging results can be accessed. Overall, the manuscript significantly augments the number of cell type-specific driver lines available to the Drosophila research community for investigating the cellular mechanisms underlying learning and memory in the fly. Many of the lines will also be useful in dissecting the function of the neural circuits that mediate sensorimotor circuits.

      Strengths:<br /> The manuscript represents a huge amount of careful work and leverages numerous important developments from the last several years. These include the thousands of recently generated split-Gal4 lines at Janelia and the computational tools for pairing them to make exquisitely specific targeting reagents. In addition, the manuscript takes full advantage of the recently released Drosophila connectomes. Driver expression patterns are beautifully illustrated side-by-side with corresponding skeletonized neurons reconstructed by EM. A comprehensive table of the new lines, their split-Gal4 components, their neuronal targets, and other valuable information will make this collection eminently useful to end-users. In addition to the anatomical characterization, the manuscript also illustrates the functional utility of the new lines in optogenetic experiments. In one example, the authors identify a specific subset of sugar reward neurons that robustly promotes associative learning.

      Weaknesses:<br /> While the manuscript succeeds in making a mass of descriptive detail quite accessible to the reader, the way the collection is initially described - and the new lines categorized - in the text is sometimes confusing. Most of the details can be found elsewhere, but it would be useful to know how many of the lines are being presented for the first time and have not been previously introduced in other publications/contexts. And where can the lines be found at Flylight? Are they listed as one collection or as many? Also, the authors say that some of the lines were included in the collection despite not necessarily targeting the intended type of neuron (presumably one that is involved in learning and memory). What percentage of the collection falls into this category? And what about the lines that the authors say they included in the collection despite a lack of specificity? How many lines does this represent?

    1. Reviewer #3 (Public Review):

      Summary:

      Te Rietmolen et al., investigated the selectivity of cortical responses to speech and music stimuli using neurosurgical stereo EEG in humans. The authors address two basic questions: 1. Are speech and music responses localized in the brain or distributed; 2. Are these responses selective and domain-specific or rather domain-general and shared? To investigate this, the study proposes a nomenclature of shared responses (speech and music responses are not significantly different), domain selective (one domain is significant from baseline and the other is not), domain preferred (both are significant from baseline but one is larger than the other and significantly different from each other). The authors employ this framework using neural responses across the spectrum (rather than focusing on high gamma), providing evidence for a low level of selectivity across spectral signatures. To investigate the nature of the underlying representations they use encoding models to predict neural responses (low and high frequency) given a feature space of the stimulus envelope or peak rate (by time delay) and find stronger encoding for both in the low-frequency neural responses. The top encoding electrodes are used as seeds for a pair-wise connectivity (coherence) in order to repeat the shared/selective/preferred analysis across the spectra, suggesting low selectivity. Spectral power and connectivity are also analyzed on the level of the regional patient population to rule out (and depict) any effects driven by a select few patients. Across analyses the authors consistently show a paucity of domain selective responses and when evident these selective responses were not represented across the entire cortical region. The authors argue that speech and music mostly rely on shared neural resources.

      Strengths:

      I found this manuscript to be rigorous providing compelling and clear evidence of shared neural signatures for speech and music. The use of intracranial recordings provides an important spatial and temporal resolution that lends itself to the power, connectivity, and encoding analyses. The statistics and methods employed are rigorous and reliable, estimated based on permutation approaches, and cross-validation/regularization was employed and reported properly. The analysis of measures across the entire spectra in both power, coherence, and encoding models provides a comprehensive view of responses that no doubt will benefit the community as an invaluable resource. Analysis of the level of patient population (feasible with their high N) per region also supports the generalizability of the conclusions across a relatively large cohort of patients. Last but not least, I believe the framework of selective, preferred, and shared is a welcome lens through which to investigate cortical function.

      Weaknesses:

      I did not find methodological weaknesses in the current version of the manuscript. I do believe that it is important to highlight that the data is limited to passively listening to naturalistic speech and music. The speech and music stimuli are not completely controlled with varying key acoustic features (inherent to the different domains). Overall, I found the differences in stimulus and lack of attentional controls (passive listening) to be minor weaknesses that would not dramatically change the results or conclusions.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper explores the cost of toxin resistance in snakes that prey on newts defended by highly potent TTX. Two species of garter snakes, T. atratus and T. sirtalis, are examined. Both species have resistant and sensitive populations. Resistance is achieved by substitutions in the voltage-gated sodium channels, which block TTX binding. Resistant T. atratus carry the triple substitutions EPN while resistant T. sirtalis carry the quadruple LVNV. These substitutions occur on the third and fourth intracellular domains of the voltage-gated sodium-channel gene Nav1.4, which is the paralog found in skeletal muscle. EPN and LVNV have been previously attributed to conferring resistance to TXX through target-site insensitivity of the channel. Previous work has also shown that snakes from resistant populations have reduced locomotor capabilities compared to their non-resistant counterparts.

      The authors systematically test the hypothesis that the resistance-conferring substitutions affect other phenotypes related to the function of the voltage-gated sodium channel, which is, in turn, responsible for the reduced locomotor capabilities. First, they compare the effects of EPN and LVNV on recombinantly expressed rat Nav1.4 with and without EPN and LVNV (in vitro). They find that both EPN and LVNV significantly reduce the channel's conductance. On top of that, LVNV also causes premature deactivation of the channel, thus reducing the current passing through the membrane. Next, they compare muscle tissue function between resistant and non-resistant populations of T. atratus and T. sirtalis (ex vivo). They find that both resistant populations have reduced twitch force (with T. sirtalis, carrying LVNV, having an even stronger reduction), reduced peak rate of force development, and overall reduced force. In addition, T. sirtalis (LVNV) muscle also has reduced peak tetanic force. Finally, they compare the biophysical effects of EPN and LVNV through homology modeling of Nav1.4 to explain the in vitro and in vivo results (in silico). They found that E1248 (of EPN) has a counteracting effect on the destabilizing effect of N1539, shared by both species. T. sirtalis (LVNV) lacks such a counteracting mutation, which could explain the stronger negative effects observed in LVNV channels and muscles.

      Strengths:<br /> A particular strength of this paper is the multi-level approach used to tease apart the negative pleiotropic effects of resistance-conferring substitutions. Each level of experiments informed the next, creating a focused comprehensive analysis of the costs associated with this specialized dietary adaptation in snakes. The results make an important contribution to our understanding of the role of negative pleiotropy in adaptive evolution and would be of broad interest to readers. The paper is well-written, and the data and analyses are clearly presented.

      Weaknesses:<br /> The sheer size of the Nav1.4 gene makes it difficult to clone into an expression vector and that's probably why an already cloned rat Nav1.4 was selected for the in vitro experiments. It would be great if the authors could comment on how the level of resistance produced by mutations on the rat Nav1.4 compared to the garter snake Nav1.4s. Are there previous data on tissue-isolated T. sirtalis and T. atratus channels? Is it possible that the snake mutations have slightly different effects on the rat genetic background due to epistatic interactions with sites beyond the 3rd and 4th domains?

      Following up on the first comment, sometimes negative pleiotropic effects are mitigated by compensatory mutations in other regions of the protein. This reviewer would recommend that the authors comment on this possibility. Are there substitutions beyond the 3rd and 4th domains that could potentially play a role in this adaptation?

      Based on the results, it seems that resistant T. sirtalis got the shorter end of the stick concerning negative pleiotropic effects, despite having similar (the same?) levels of resistance to TTX. Does this difference/disadvantage scale up to locomotor performance as well?

      It would be great if the authors could comment on how these resistant populations have persisted despite the locomotor/muscular disadvantages. Are there known differences in predation rates between the populations? The benefit must have outweighed the cost in these cases.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors of this study aim to develop OpenNucleome, a computational tool designed to simulate the structure and dynamics of the human nucleus. This software models nuclear components like chromosomes and nuclear bodies, leveraging GPU acceleration for improved performance. The key objective is to enhance our understanding of nuclear organization, providing a tool that aligns with experimental data and is accessible to the genome architecture scientific community.

      Strengths:<br /> OpenNucleome offers a detailed and dynamic model of the nucleus, a significant step forward in computational biology.

      The integration of GPU acceleration with the OpenMM package is a good technical advancement, potentially enhancing performance.

      The comparison with experimental data adds credibility to the tool's accuracy and relevance.

      Weaknesses:<br /> The lack of comprehensive tutorials and clear documentation on the OpenNucleome GitHub page is a considerable barrier to accessibility and user-friendliness.

      The process for generating necessary input files is not adequately explained, which could hinder the tool's practical application.

      The paper could benefit from more explicit explanations on the standardization of practices and cross-validation with existing tools like OpenMiChroM.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In the manuscript "Overflow metabolism originates from growth optimization and cell heterogeneity" the author Xin Wang investigates the hypothesis that the transition into overflow metabolism at large growth rates actually results from an inhomogeneous cell population, in which every individual cell either performs respiration or fermentation.

      Weaknesses:<br /> The paper has several major flaws. First, and most importantly, it repeatedly and wrongly claims that the origins of overflow metabolism are not known. The paper is written as if it is the first to study overflow metabolism and provide a sound explanation for the experimental observations. This is obviously not true and the author actually cites many papers in which explanations of overflow metabolism are suggested (see e.g. Basan et al. 2015, which even has the title "Overflow metabolism in E. coli results from efficient proteome allocation"). The paper should be rewritten in a more modest and scientific style, not attempting to make claims of novelty that are not supported. In fact, all hypotheses in this paper are old. Also the possiblility that cell heterogeneity explains the observed 'smooth' transition into overflow metabolism has been extensively investigated previously (see de Groot et al. 2023, PNAS, "Effective bet-hedging through growth rate dependent stability") and the random drawing of kcat-values is an established technique (Beg et al., 2007, PNAS, "Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity"). Thus, in terms of novelty, this paper is very limited. It reinvents the wheel and it is written as if decades of literature debating overflow metabolism did not exist.

      Moreover, the manuscript is not clearly written and is hard to understand. Variables are not properly introduced (the M-pools need to be discussed, fluxes (J_E), "energy coefficients" (eta_E), etc. need to be more explicitly explained. What is "flux balance at each intermediate node"? How is the "proteome efficiency" of a pathway defined? The paper continues to speak of energy production. This should be avoided. Energy is conserved (1st law of thermodynamics) and can never be produced. A scientific paper should strive for scientific correctness, including precise choice of words.

      The statement that the "energy production rate ... is proportional to the growth rate" is, apart from being incorrect - it should be 'ATP consumption rate' or similar (see above), a non-trivial claim. Why should this be the case? Such statements must be supported by references. The observation that the catabolic power indeed appears to increase linearly with growth rate was made, based on chemostat data for E.coli and yeast, in a recent preprint (Ebenhöh et al, 2023, bioRxiv, "Microbial pathway thermodynamics: structural models unveil anabolic and catabolic processes").

      All this criticism does not preclude the possibility that cell heterogeneity plays a role in overflow metabolism. However, according to Occam's razor, first the simpler explanations should be explored and refuted before coming up with a more complex solution. Here, it means that the authors first should argue why simpler explanations (e.g. the 'Membrane Real Estate Hypothesis', Szenk et al., 2017, Cell Systems; maximal Gibbs free energy dissipation, Niebel et al., 2019, Nature Metabolism; Saadat et al., 2020, Entropy) are not considered, resp. in what way they are in disagreement with observations, and then provide some evidence of the proposed cell heterogeneity (are there single-cell transcriptomic data supporting the claim?).

    1. Reviewer #3 (Public Review):

      The manuscript by Agha et al. explores mechanisms of rhythmicity in V2a neurons in larval zebrafish. Two subpopulations of V2a neurons are distinguishable by anatomy, connectivity, level of GFP, and speed-dependent recruitment properties consistent with V2a neurons involved in rhythm generation and pattern formation. The descending neurons proposed to be consistent with rhythm-generating neurons are active during either slow or fast locomotion, and their firing frequencies during current steps are well matched with the swim frequency they firing during. The bifurcating (patterning neurons) are active during a broader swim frequency range unrelated to their firing during current steps. All of the V2a neurons receive strong inhibitory input but the phasing of this input is based on neuronal type and swim speed when the neuron is active, with prominent in-phase inhibition in slow descending V2a neurons and bifurcating V2a neurons active during fast swimming. Antiphase inhibition is observed in all V2a neurons but it is the main source of rhythmic inhibition in fast descending V2a neurons and bifurcating neurons active during slow swimming. The authors suggest that properties supporting rhythmic bursting are not directly related to locomotor speed but rather to functional neuronal subtypes.

      This is a well-written paper with many strengths including the rigorous approach. Many parameters, including projection pattern, intracellular properties, inhibition received, and activity during slow/fast swimming were obtained from the same neuron. This links up very well with prior data from the lab on cell position, birth order, morphology/projections, and control of MN recruitment to provide a comprehensive overview of the functioning of V2a interneuronal populations in the larval zebrafish. The overall conclusions are well supported by the data. Weaknesses are relatively minor and were largely related to terminology for some of the secondary conclusions.

      1. The assumption is made that all in-phase inhibition is recurrent and out-of-phase inhibition is reciprocal. The latter is likely true but the definition of recurrent may be a bit loose as could be multisegmental feed-forward inhibition as well.

      2. In a few places, it is mentioned that the properties of the V2a-D neurons are consistent with pacemakers. This could be true of both the V2a-D and -B neurons that burst in response to depolarizing steps but the properties of the remaining (fast) V2a-D neurons do not seem to be consistent with pacemakers, based on the properties shown. Tonic firing at a frequency related to the locomotor speed the neuron is active during and strong antiphase inhibition may instead suggest a stronger network component driving the rhythmicity.

    1. Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

    1. Reviewer #3 (Public Review):

      Summary: The manuscript by Erice et al describes let-7 miRNA promotes Tc17 differentiation and emphysema by repressing the transcription factor RORgt. The authors found that overall expression of the let-7 miRNA clusters, let-7b/let-7c2 and let-7a1/let-30 7f1/let-7d are reduced in the lungs and T cells of mice with cigarette smoke-induced emphysema. They also found that the loss of the let-7b/let-7c2-cluster in T cells exaggerated cigarette smoke-induced emphysema. It appears that deletion of the let-7b/let-7c2-cluster lead to enhancement of IL-17-secreting CD8+ T cells (Tc17) in mice with emphysema. The opposite phenotype was observed when let-7 was overexpressed in T cells. They found a potential let-7 binding site in the 3' UTR of RORgt. They demonstrated a direct effect of let-7 on RORgt expression using let-7 mimic in a RORgt luciferase reporter assay. They have done an outstanding job of translating the finding of reduced let-7 expression in emphysema patients to a thorough delineation of its mechanism in a mouse model. Together, this study suggests an important role for let-7 miRNA in Tc17 cells in emphysema which appears to be mediated via repression of RORgt.

      Strengths: This well written manuscript flows logically and the data supports the overall claim let-7 miRNA promotes Tc17 differentiation during emphysema. There are several strengths to this study including the use of conditional let-7 knock out animals to decipher the role of this miRNA in Tc17 cells in emphysema.

      Weaknesses: There are no major weaknesses in this study. It would be interesting to see if knockdown RORgt could rescue enhanced Tc17 differentiation seen in let-7b/let-7c2-cluster-deficient T cells. The authors show no change in frequencies of Treg cells in let-7bc2LOF mice exposed to nCB. Do these Treg cells also express higher levels of RORgt and IL-17? The major question that was not addressed in this study is how let-7 expression is regulated in emphysema. The other recommendation is that the authors include the sequences of the let-7 mimic oligos used in the luciferase assay.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Adamic and colleagues present fMRI data from ADE patients and a healthy control group acquired during two interoceptive tasks (attention and perturbation) from the same session. They report convergent activity within the granular and dysgranular insular cortex during both tasks, with a patient group-specific lateralisation effect. Furthermore, insular functional connectivity was found to be linked to disease severity.

      Strengths:<br /> The study is well-designed and - despite some limitations noted by the authors - provides much-needed insight into the functional pathways of interoceptive processing in health and disease. The manuscript is clear, concise, and well-written so that I only have a few comments I would mostly regard as minor points.

      Weaknesses:<br /> There are a few instances where it is not entirely clear whether the authors' claims are fully supported by the underlying statistics.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Here the authors show global synchronization of cerebral blood flow (CBF) induced by oscillating visual stimuli in the mouse brain. The study validates the use of endogenous autofluorescence to quantify the vessel "shadow" to assess the magnitude of frequency-locked cerebral blood flow changes. This approach enables straightforward estimation of artery diameter fluctuations in wild-type mice, employing either low magnification wide-field microscopy or deep-brain fibre photometry. For the visual stimuli, awake mice were exposed to vertically oscillating stripes at a low temporal frequency (0.25 Hz), resulting in oscillatory changes in artery diameter synchronized to the visual stimulation frequency. This phenomenon occurred not only in the primary visual cortex but also across a broad cortical and cerebellar surface. The induced CBF changes adapted to various stimulation parameters, and interestingly, repeated trials led to plastic entrainment. The authors control for different artefacts that may have confounded the measurements such as light contamination and eye movements but found no influence of these variables. The study also tested horizontally oscillating visual stimuli, which induce the horizontal optokinetic response (HOKR). The amplitude of eye movement, known to increase with repeated training sessions, showed a strong correlation with CBF entrainment magnitude in the cerebellar flocculus. The authors suggest that parallel plasticity in CBF and neuronal circuits is occurring. Overall, the study proposes that entrained "vasomotion" contributes to meeting the increased energy demand associated with coordinated neuronal activity and subsequent neuronal circuit reorganization.

      Strengths:<br /> -The paper describes a simple and useful method for tracking vasomotion in awake mice through an intact skull.<br /> -The work controls for artefacts in their primary measurements.<br /> -There are some interesting observations, including the nearly brain-wide synchronization of cerebral blood flow oscillations to visual stimuli and that this process only occurs after mice are trained in a visual task.<br /> -This topic is interesting to many in the CBF, functional imaging, and dementia fields.

      Weaknesses:<br /> -I have concerns with the main concepts put forward, regarding whether the authors are actually studying vasomotion as they state, as opposed to functional hyperemia which is sensory-induced changes in blood flow, which is what they are actually doing. I recommend several additional experiments/analyses for them to explore. This is mostly further characterizing their effect which will benefit the interpretations.

      -Neuronal calcium imaging would also benefit the study and improve the interpretations.

      -The plastic effects in vasomotion synchronization that occur with training are interesting but they could use an additional control for stress. Is this really a plastic effect, or is it caused by progressively decreasing stress as trials and progress? I recommend a habituation control experiment.

      Appraisal<br /> I think the authors have an interesting effect that requires further characterization and controls. Their interpretations are likely sound and additional experiments will continue to support the main hypothesis. If brain-wide synchrony of blood flow can be trained and entrained by external stimuli, this may have interesting therapeutic potential to help clear out toxic proteins from the brain as seen in several neurodegenerative diseases.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study provides a detailed analysis of the chromosomal rearrangements related to the deletions of histidine-rich protein 2 (pfhrp2) and pfhrp3 genes in P. falciparum that have clinical significance since malaria rapid diagnostic tests detect these parasite proteins. A large number of publicly available short sequence reads for the whole genome of the parasite were analyzed, and data on coverage and discordant mapping allowed the authors to identify deletions, duplications, and chromosomal rearrangements related to pfhrp3 deletions. Long-read sequences showed support for the presence of a normal chromosome 11 and a hybrid 13-11 chromosome lacking pfhrp3 in some of the pfhrp3-deleted parasites. The findings support that these translocations have repeatedly occurred in natural populations. The authors discuss the implications of these findings and how they do or do not support previous hypotheses on the emergence of these deletions and the possible selective pressures involved.

      Strengths:<br /> The genomic regions where these genes are located are challenging to study since they are highly repetitive and paralogous and the use of long-read sequencing allowed to span the duplicated regions, giving support to the identification of the hybrid 13-11 chromosome.

      All publicly available whole-genome sequences of the malaria parasite from around the world were analysed which allowed an overview of the worldwide variability, even though this analysis is biased by the availability of sequences, as the authors recognize.

      Despite the reduced sample size, the detailed analysis of haplotypes and identification of the location of breakpoints gives support to a single origin event for the 13-5++ parasites.

      The analysis of haplotype variation across the duplicated chromosome-11 segment identified breakpoints at varied locations that support multiple translocation events in natural populations. The authors suggest these translocations may be occurring at high frequency in meiosis in natural populations but are strongly selected against in most circumstances, which remains to be tested.

      Weaknesses:<br /> Relying on sequence data publicly available, that were collected based on diagnostic test positivity and that are limited by sequencing availability, limits the interpretation of the occurrence and relative frequency of the deletions. In the discussion, caution is needed when identifying the least common and most common mechanisms and their geographical associations. The identification of only one type of deletion pattern for Pfhrp2 may be related to these biases.

      The specific objectives of the study are not stated clearly, and it is sometimes difficult to know which findings are new to this study. Is it the first study analyzing all the worldwide available sequences? Is it the first one to do long-read sequencing to span the entire duplicated region?

      Another aspect that should be explained in the introduction is that there was previous information about the association of the deletions to patterns found in chromosomes 5 and 11. In the short-read sequences results, it is not clear if these chromosomes were analysed because of the associations found in this study (and no associations were found to putative duplications or deletions in other chromosomes), or if they were specifically included in the analysis because of the previous information (and the other chromosomes were not analysed).

      An interesting statement in the discussion is that existing pfhrp3 deletions in a low-transmission environment may provide a genetic background on which less frequent pfhrp2 deletion events can occur. Does it mean that the occurrence of pfhrp3 deletions would favor the pfhrp2 deletion events? How, and is there any evidence for that?

    1. Reviewer #3 (Public Review):

      This neuroimaging study investigated how brain activity related to visual pattern-based reasoning changes over the adult lifespan, addressing the topic of functional compensation in older age. To this end, the authors employed a version of the Cattell task, which probes visual pattern recognition for identifying commonalities and differences within sets of abstract objects in order to infer the odd object among a given set. Using a state-of-the-art univariate analysis approach on fMRI data from a large lifespan sample, the authors identified brain regions in which the activation contrast between hard and easy Cattell task conditions was modulated by both age and performance. Regions identified comprised prefrontal areas and bilateral cuneus. Applying a multivariate decoding approach to activity in these regions, the authors went on to show that only in older adults, the cuneus, but not the prefrontal regions, carried information about the task condition (hard vs. easy) beyond that already provided by activity patterns of voxels that showed a univariate main effect of task difficulty. This was taken as compelling evidence for task-specific compensatory activity in the cuneus in advanced age.

      The study is well-motivated and well-written. The authors used appropriate, rigorous methods that allowed them to control for a range of possible confounds or alternative explanations. Laudable aspects include the large sample with a wide and even age distribution, the validation of the in-scanner task performance against previous results obtained with a more standard version outside the scanner, and the control for vascular age-related differences in hemodynamic activity via a BOLD signal amplitude measure obtained from a separate resting-state fMRI scan. Overall, the conclusions are well-supported by the data.

      In the following, I list some points of discussion that I would like to see addressed by the authors in a revision:

      1) I don't quite follow the argumentation that compensatory recruitment would need to show via non-redundant information carried by any given non-MDN region (cf. p14). Wouldn't the fact that a non-MDN region carries task-related information be sufficient to infer that it is involved in the task and, if activated increasingly with increasing age, that its stronger recruitment reflects compensation, rather than inefficiency or dedifferentiation? Put differently, wouldn't "more of the same" in an additional region suffice to qualify as compensation, as compared to the "additional information in an additional region" requirement set by the authors? As a consequence, in my honest opinion, showing that decoding task difficulty from non-MDN ROIs works better with higher age would already count as evidence for compensation, rather than asking for age-related increases in decoding boosts obtained from adding such ROIs. It would be interesting to see whether the arguably redundant frontal ROI would satisfy this less demanding criterion. At any rate, it seems useful to show whether the difference in log evidence for the real vs. shuffled models is also related to age.

      2) Relatedly, does the observed boost in decoding by adding the cuneal ROI (in older adults) really reflect "additional, non-redundant" information carried by this ROI? Or could it be that this boost is just a statistical phenomenon that is obtained because the cuneus just happens to show a more clear-cut, less noisy difference in hard vs. easy task activation patterns than does the MDN (which itself may suffer from increased neural inefficiency in older age), and thus the cuneaus improves decoding performance without containing additional (novel) pieces of information (but just more reliable ones)? If so, the compensation account could still be maintained by reference to the less demanding rationale for what constitutes compensation laid out above.

      3) On page 21, the authors state that "...traditional univariate criteria alone are not sufficient for identifying functional compensation." To me, this conclusion is quite bold as I'd think that this depends on the unvariate criterion used. For instance, it could be argued that compensation should be more clearly indicated by an over additive interaction as observed for the relationship of cuneal activity with age and performance (i.e., the activity increase with better performance becomes stronger with age), rather than by an additive effect of age and performance as observed for the prefrontal ROI (see Fig. 2C). In any case, I'd appreciate it if the authors discussed this issue and the relationship between univariate and multivariate results in more detail (e.g. how many differences in sensitivity between the two approaches have contributed), in particular since the sophisticated multivariate approach used here is not widely established in the field yet.

      4) As to the exclusion of poorly performing participants (see p24): If only based on the absolute number of errors, wouldn't you miss those who worked (overly) slowly but made few errors (possibly because of adjusting their speed-accuracy tradeoff)? Wouldn't it be reasonable to define a criterion based on the same performance measure (correct - incorrect) as used in the main behavioural analyses?

      5) Did the authors consider testing for negative relationships between performance and brain activity, given that there is some literature arguing that neural efficiency (i.e. less activation) is the hallmark of high intelligence (i.e. high performance levels in the Cattell task)? If that were true, at least for some regions, the set of ROIs putatively carrying task-related information could be expanded beyond that examined here. If no such regions were found, it would provide some evidence bearing on the neural efficiency hypothesis.

    1. Reviewer #3 (Public Review):

      In this manuscript, Sperry and colleagues identify SNC80 as a compound that can slow metabolism and mimic hibernation, thereby prolonging tissue viability in organ transplantation and cardiovascular disease settings. Overall, the use of varied and relevant model systems is a strength of this study.

      The authors perform a literature search to identify SNC80 as a promising hit. However, the details of the literature search, a list of other potential hits, and the criteria for identification of SNC80 are not described. The hypometabolic effect of SNC80 exposure is well-characterized in the Xenopus model. Furthermore, the authors show that SNC80 localises to the brain, but do not discuss several studies that have pointed to convulsions induced by exposure to high doses of SCN80, and whether this would be apparent in the Xenopus studies. The authors have promising data on the WB3 morpholino that retains or even improves on the hypometabolism phenotype of SCN80 while likely not retaining delta opioid activity. However, this is not functionally demonstrated. Moreover, WB3 is not used in any of the other assays and models used in the study. In the setting of cardiac transplant surgery, co-administration of SNC80 reduces metabolic activity and inflammation, although it is unclear if there is an improvement in recovery of organ function due to SCN80. The reversible induction of hypometabolic status is also demonstrated in two different organ chips. These models could identify the differential response of epithelial cells and vascular cells to drug perfusion, but the authors have mostly focused on the former. Finally, the authors identify specific targets for the hypometabolic effect of SNC80, which is a valuable resource for other screening studies and can form the basis for future work.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors are trying to find a vaccine solution for invasive candidiasis.

      Strengths:

      The testing of the antifungal activity of EDTA on Candida is not new as many other papers have examined this effect. The novelty here is the use of this EDTA-treated strain as a vaccine to protect against a secondary challenge with wild-type Candida.

      Weaknesses:

      However, data presented in Figure 5 and Figure 6 are not convincing and need further experimental controls and analysis as the authors do not show a time-dependent effect on the CFU of their vaccine formulation.

      The methodology used is also an issue. As it stands, the impact is minor.

    1. Reviewer #3 (Public Review):

      Summary:<br /> These studies focus on a very interesting, understudied phenomenon in vascular development - the formation of pial collaterals between cerebral arteries. Understanding the mechanism(s) that regulates this process during normal development could provide important insights for the treatment of adult stroke patients, for which repair is highly dependent on collateral formation. Insights may also be relevant to other collateral-dependent diseases, such as heart disease and chronic peripheral ischemia.

      Strengths:<br /> The investigators use lineage tracing and 3D imaging to show that, in mouse embryos, endothelial cells (ECs) predominantly from Bmx+ arteries and some from the Vegfr3+ microvasculature, invade pre-existing pre-collateral vascular structures in a process they termed "mosaic colonization", and arterialization of the vessel segments is said to occur concurrently with colonization, although details about EC phenotypes are lacking. Growth of the collaterals in response to ischemic injury relies on local replication of the ECs within the collaterals and not further recruitment from veins and the microvasculature. Although detailed molecular mechanisms are not provided, demonstration of the "cellular mechanism" of pial collateral vascularization is novel.

      Weaknesses:<br /> Nonetheless, there are some issues that should be addressed, particularly to clarify the phenotype of the ECs forming the collaterals and expanding in response to injury; only their "origin" was traced and not their identity/growth after labeling in Bmx+ vessels.

    1. Reviewer #3 (Public Review):

      Summary:

      Machhua et al. in their work focused on unravelling the molecular mechanism of daptomycin binding and interaction with bacterial cell membranes. Daptomycin (Dap) is an acidic, cyclic lipopeptide composed of 13 amino acids, known for preferential binding to anionic lipids, particularly phosphatidylglycerol (PG), which are prevalent components in the membranes of Gram-positive bacteria. The process of binding and antimicrobial efficacy of Dap is significantly influenced by the ionic composition of the surrounding environment, especially the presence of Ca2+ ions. The authors underscore the presence of significant knowledge gaps in our understanding of daptomycin's mode of action. Several critical questions remain unanswered, including the basis for selective recognition and accumulation in membranes of Gram-positive strains, the specific role of Ca2+ ions in this process, and the mechanisms by which daptomycin binds to and inserts into the cell membrane.

      Dap is intrinsically fluorescent due to its kynurenine residue (Kyn-13) and this property allows direct imaging of Dap binding to model cell membranes without the need for additional labeling. Taking advantage of this Dap autofluorescence, authors monitored the emission intensity of micelles, composed of varying DMPG content upon their exposure to Dap and compared it with the kinetics of fluorescence observed for zwitterionic DMPC and other negatively charged lipids such as cardiolipin (CA), POPA and POPS. The authors noted that the linear relationship between DMPG content and Dap fluorescence is strongly lipid-specific, as it was not observed for other anionic lipids. The manuscript sheds light on the specificity of Dap's interaction with CA and DMPG lipids. Through Ca2+ sequestration with EGTA, the authors demonstrated that the binding of Dap with CA is reversible, while its interaction with DMPG results in the irreversible insertion of Dap into the lipid membrane structure, caused by the significant conformational change of this lipopeptide. The formation of a stable DMPG-Dap complex was also verified in bacterial cells isolated from Gram-positive bacteria B. subtilis, where Dap exhibited a permanent binding to PG lipids.

      Altogether, the authors endeavored to illuminate novel insights into the molecular basis of Dap binding, interaction, and the mechanism of insertion into bacterial cell membranes. Such understanding holds promise for the development of innovative strategies in combating drug resistance and the emergence of the so-called superbugs.

      Strengths:

      - The manuscript by Machhua et al. provides a comprehensive analysis of the Dap mechanism of binding and interaction with the membrane. It discusses various aspects of this, only apparently trivial interactions such as the importance of PG presence in the membrane, the impact of Ca2+ ions, and different mechanisms of Dap binding with other negatively charged lipids.

      - The authors focused not only on model membranes (micelles) but also extended their research to bacterial cell membranes obtained from B. subtilis.

      - The research is not only a report of the experimental findings but tries to give potential hypotheses explaining the molecular mechanisms behind the observed results.

      Weaknesses:

      - The authors overestimate their findings, stating that they propose a novel mechanism of Dap interaction with bacterial cell membranes. In fact, they rather extend the already reported hypotheses.

      - The literature study was not done as thoroughly as it should be. Many publications discussing the importance and mechanism of action of Ca2+ ions or conformational changes of daptomycin were not cited.

    1. Reviewer #3 (Public Review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This work addresses an important question of how Gtr1/2 small GTPases and Pib2, two major regulators of the TORC1 cell growth controller, differentially operate in yeast. They found not all the TORC1 downstream targets respond to Gtr1/2 and Pib2 equally. In fact, they demonstrate that TORC1-dependent phosphorylation of Ser33, a 3-phosphoglycerate dehydrogenase, is responsive to only Pib2. They attributed this specificity to the physical interaction between Ser33 and Pib2. This part is novel and important, revising the canonical view in the field that Gtr1/2 and Pib2 branches act towards the same TORC1 downstream targets. Of note, this claim largely agrees with a recent independent study (PMID: 38127619).

      Moving on, the authors describe different behaviors of TORC1 downstream readouts in intermediate nutrient conditions with a poor nitrogen source, with some readouts still active while others inactive. They argue that selective activation of certain TORC1 downstream targets reflects the "Gtr1/2 off, Pib2 on" state. However, this claim is not sufficiently supported by the presented data.

      Strengths:<br /> The data presented in this paper has high value to the TOR community. In particular, a rigorous and comprehensive phospho-proteomic dataset that compares the Gtr1/2- and Pib2-dependency of diverse TORC1 downstream targets is very informative, potentially stimulating follow-up studies on each target.

      Identification of Ser33 as a Pib2-specific TORC1 downstream is important and convincing (although whether Ser33 is a direct substrate of TORC1 was not addressed in this work). Physical interaction between Ser33 and Pib2 could represent a novel layer of TORC1 signaling regulation, in line with the mammalian Rag-TFEB interaction model, as discussed by the authors.

      Weaknesses:<br /> The authors' three-state model, particularly the claim that cells are in the "Gtr1/2 off, Pib2 on" state in a poor nitrogen condition (e.g., proline medium), is not convincing enough because of the following reasons.

      1) The "Pib2 on" claim contradicts with the observation that Ser33, Pib2-specific readout, is hypo-phosphorylated in proline medium (Fig 5F).

      2) In the genetic experiments (Figure 8), the authors compare pib2D with Gtr1/2OFF. This is not appropriate, because GTR1/2OFF (GTR1-GDP and Gtr2-GTP) actively inhibits TORC1, differing from the null nature of pib2D. pib2D should be compared with gtr1/2D instead.

      3) In general, diverse behaviors of TORC1 targets are not unexpected because their phosphorylation levels should have different dynamic ranges depending on how "good" they are as TORC1 substrates, with some requiring a higher TORC1 activity than others to be detectably phosphorylated. Although this aspect can be physiologically meaningful, and it is indeed important to look at multiple substrates as the authors suggest, this approach does not inform whether the signal is coming from Gtr1/2 or Pib2. An informative way in this context would be to look at the Gtr1/2- or Pib2-specific targets, but the former has not been identified, and observations on the latter, Ser33, do not support the "Pib2 on" claim as mentioned in the above 1).

      4) In addition, comparisons made between direct TORC1 substrates (e.g., Sch9) and indirect downstream targets (e.g., Rps6 and Par32) are not very informative, because indirect targets can be impacted by TORC1-independent regulation of the mediating factors (e.g., Ypk3 for Rps6 and Npr1 for Par32).

      In summary, the presented data do not tell us which of the two branches (Gtr1/2 or Pib2) is "more active" in the poor nitrogen condition. Their observations do not necessarily prefer their 3-state on/off model (Figure 8) over the more natural assumption that both branches have the gradation of activity depending on the nutrient status.

    1. Reviewer #3 (Public Review):

      Bing et al. attempt to address fundamental mechanisms of TAD formation in Drosophila by analyzing gene expression and 3D conformation within the vicinity of the eve TAD after insertion of a transgene harboring a Homie insulator sequence 142 kb away in different orientations. These transgenes along with spatial gene expression analysis were previously published in Fujioka et al. 2016, and the underlying interpretations regarding resulting DNA configuration in this genomic region were also previously published. This manuscript repeats the expression analysis using smFISH probes in order to achieve more quantitative analysis, but the main results are the same as previously published. The only new data are the Micro-C and an additional modeling/analysis of what they refer to as the 'Z3' orientation of the transgenes. The rest of the manuscript merely synthesizes further interpretation with the goal of addressing whether loop extrusion may be occurring or if boundary:boundary pairing without loop extrusion is responsible for TAD formation. The authors conclude that their results are more consistent with boundary:boundary pairing and not loop extrusion; however, most of this imaging data seems to support both loop extrusion and the boundary:boundary models. This manuscript lacks support, especially new data, for its conclusions. Furthermore, there are many parts of the manuscript that are difficult to follow. There are some minor errors in the labelling of the figures that if fixed would help elevate understanding. Lastly, there are several major points that if elaborated on, would potentially be helpful for the clarity of the manuscript.

      Major Points:<br /> 1. The authors suggest and attempt to visualize in the supplemental figures, that loop extrusion mechanisms would appear during crosslinking and show as vertical stripes in the micro-C data. In order to see stripes, a majority of the nuclei would need to undergo loop extrusion at the same rate, starting from exactly the same spots, and the loops would also have to be released and restarted at the same rate. If these patterns truly result from loop extrusion, the authors should provide experimental evidence from another organism undergoing loop extrusion.<br /> 2. On lines 311-314, the authors discuss that stem-loops generated by cohesin extrusion would possibly be expected to have more next-next-door neighbor contacts than next-door neighbor contacts and site their models in Figure 1. Based on the boundary:boundary pairing models in the same figure would the stem-loops created by head-to-tail pairing also have the same phenotype? Making possible enrichment of next-next-door neighbor contacts possible in both situations? The concepts in the text are not clear, and the diagrams are not well-labeled relative to the two models.<br /> 3. The authors appear to cite Chen et al., 2018 as a reference for the location of these transgenes being 700nM away in a majority of the nuclei. However, the exact transgenes in this manuscript do not appear to have been measured for distance. The authors could do this experiment and include expression measurements.<br /> 4. The authors discuss the possible importance of CTCF orientation in forming the roadblock to cohesin extrusion and discuss that Homie orientation in the transgene may impact Homie function as an effective roadblock. However, the Homie region inserted in the transgene does not contain the CTCF motif. Can the authors elaborate on why they feel the orientation of Homie is important in its ability to function as a roadblock if the CTCF motif is not present? Trans-acting factors responsible for Homie function have not been identified and this point is not discussed in the manuscript.<br /> 5. The imaging results seem to be consistent with both boundary:boundary interaction and loop extrusion stem looping.<br /> 6. The authors suggest that the eveMa TAD could only be formed by extrusion after the breakthrough of Nhomie and several other roadblocks. Additionally, the overall long-range interactions with Nhomie appear to be less than the interactions with endogenous Homie (Figures 7, 8, and supplemental 5). Is it possible that in some cases boundary:boundary pairing is occurring between only the transgenic Homie and endogenous Homie and not including Nhomie?<br /> 7. In Figure 4E, the GFP hebe expression shown in the LhomieG Z5 transgenic embryo does not appear in the same locations as the LlambdaG Z5 control. Is this actually hebe expression or just a background signal?<br /> 8. Figure 6- The LhomieG Z3 late-stage embryo appears to be showing the ventral orientation of the embryo rather than the lateral side of the embryo as was shown in the previous figure. Is this for a reason? Additionally, there are no statistics shown for the Z3 transgenic images. Were these images analyzed in the same way as the Z5 line images?<br /> 9. Do the Micro-C data align with the developmental time points used in the smFISH probe assays?

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Wang et. al. described the crystal structures of the N-terminal fragments of Scavenger receptor class F member 1 (SCARF1) ectodomains. SCARF1 recognizes modified LDLs, including acetylated LDL and oxidized LDL, and it plays an important role in both innate and adaptive immune responses. They characterized the dimerization of SCARF1 and the interaction of SCARF1 with modified lipoproteins by mutational and biochemical studies. The authors identified the critical residues for dimerization and demonstrated that SCARF1 may function as homodimers. They further characterized the interaction between SCARF1 and LDLs and identified the lipoprotein ligand recognition sites, the highly positively charged areas. Their data suggested that the teichoic acid inhibitors may interact with SCARF1 in the same areas as LDLs.

      Strengths:<br /> The crystal structures of SCARF1 were high quality. The authors performed extensive site-specific mutagenesis studies using soluble proteins for ELISA assays and surface-expressed proteins for flow cytometry.

      Weaknesses:<br /> 1. The schematic drawing of human SCARF1 and SCARF2 in Fig 1A did not show the differences between them. It would be useful to have a sequence alignment showing the polymorphic regions.<br /> 2. The description of structure determination was confusing. The f1 crystal structure was determined by SAD with Pt derivatives. Why did they need molecular replacement with a native data set? The f2 crystal structure was solved by molecular replacement using the structure of the f1 fragment. Why did they need to use EGF-like fragments predicted by AlphaFold as search models?<br /> 3. It's interesting to observe that SCARA1 binds modified LDLs in a Ca2+-independent manner. The authors performed the binding assays between SCARF1 and modified LDLs in the presence of Ca2+ or EDTA on Page 9. However, EDTA is not an efficient Ca2+ chelator. The authors should have performed the binding assays in the presence of EGTA instead.<br /> 4. The authors claimed that SCARF1Δ353-415, the deletion of a C-terminal region of the ectodomain, might change the conformation of the molecule and generate hinderance for the C-terminal regions. Why didn't SCARF1Δ222-353 have a similar effect? Could the deletion change the interaction between SCARF1 and the membrane? Is SCARF1Δ353-415 region hydrophobic?<br /> 5. What was the point of having Figure 8? Showing the SCARF1 homodimers could form two types of dimers on the membrane surface proposed? The authors didn't have any data to support that.

    1. Reviewer #3 (Public Review):

      Cheng et al. studied if and how blood flow regulates the differentiation of vascular smooth muscle cells (VSMC) in the Circle of Willis (CW) in zebrafish embryos. They show that CW vessels gradually acquire an arterial identity. VSMCs also undergo gradual differentiation, which correlates with blood flow velocity. Using cell culture they show that pulsatile blood flow promotes pericyte differentiation into smooth muscle cells. They further identify transcription factor klf2a as differentially regulated by blood flow, and show that klf2a inhibition results in VSMC differentiation. The authors conclude that pulsatile flow promotes VSMC differentiation through klf2a activation.

      Overall this is an important study, because VSMC differentiation in CW has not been previously studied, although analogous observations regarding the role of blood flow and klf2 involvement have been previously made in other systems and other vascular beds, for example, mouse klf2 mutants, which have deficient VSMC coverage of the dorsal aorta (Wu et al., 2008, JBC 283: 3942-50). The results convincingly show that VSMC differentiation in CW depends on the blood flow and that klf2a flow-dependent function regulates VSMC differentiation.

    1. Reviewer #3 (Public Review):

      Summary:<br /> It has been proposed in the literature, that the ATP release channel Panx1 can be activated in various ways, including by tyrosine phosphorylation of the Panx1 protein. The present study reexamines the commercial antibodies used previously in support of the phosphorylation hypothesis and the presented data indicate that the antibodies may recognize proteins unrelated to Panx1. Consequently, the authors caution about the use and interpretation of results obtained with these antibodies.

      Strengths:<br /> The manuscript by Ruan et al. addresses an important issue in Panx1 research, i.e. the activation of the channel formed by Panx1 via protein phosphorylation. If the authors' conclusions are correct, the previous claims for Panx1 phosphorylation on the basis of the commercial anti-phospho-Panx1 antibodies would be in question.

      This is a very detailed and comprehensive analysis making use of state-of-the-art techniques, including mass spectrometry and phos-tag gel electrophoresis.

      In general, the study is well-controlled as relating to negative controls.

      The value of this manuscript is, that it could spawn new, more function-oriented studies on the activation of Panx1 channels.

      Weaknesses:<br /> Although the manuscript addresses an important issue, the activation of the ATP-release channel Panx1 by protein phosphorylation, the data provided do not support the firm conclusion that such activation does not exist. The failure to reproduce published data obtained with commercial anti-phospho Panx1 antibodies can only be of limited interest for a subfield.

      1. The title claiming that "Panx1 is NOT phosphorylated..." is not justified by the failure to reproduce previously published data obtained with these antibodies. If, as claimed, the antibodies do not recognize Panx1, their failure cannot be used to exclude tyrosine phosphorylation of the Panx1 protein. There is no positive control for the antibodies.

      2. The authors claim that exogenous SRC expression does not phosphorylate Y198. DeLalio et al. 2019 show that Panx1 is constitutively phosphorylated at Y198, so an effect of exogenous SRC expression is not necessarily expected.

      3. The authors argue that the GFP tag of Panx1at the COOH terminus does not interfere with folding since the COOH modified (thrombin cleavage site) Panx1 folds properly, forming an amorphous glob in the cryo-EM structure. However, they do not show that the COOH-modified Panx1 folds properly. It may not, because functional data strongly suggest that the terminal cysteine dives deep into the pore. For example, the terminal cysteine, C426, can form a disulfide bond with an engineered cysteine at position F54 (Sandilos et al. 2012).

      4. The authors dismiss the additional arguments for tyrosine phosphorylation of Panx1 given by the various previous studies on Panx1 phosphorylation. These studies did not, as implied, solely rely on the commercial anti-phospho-Panx1 antibodies, but also presented a wealth of independent supporting data. Contrary to the authors' assertion, in the previous papers the pY198 and pY308 antibodies recognized two protein bands in the size range of glycosylated and partial glycosylated Panx1.

      5. A phosphorylation step triggering channel activity of Panx1 would be expected to occur exclusively on proteins embedded in the plasma membrane. The membrane-bound fraction is small in relation to the total protein, which is particularly true for exogenously expressed proteins. Thus, any phosphorylated protein may escape detection when total protein is analyzed. Furthermore, to be of functional consequence, only a small fraction of the channels present in the plasma membrane need to be in the open state. Consequently, only a fraction of the Panx1 protein in the plasma membrane may need to be phosphorylated. Even the high resolution of mass spectroscopy may not be sufficient to detect phosphorylated Panx1 in the absence of enrichment processes.

      6. In the electrophysiology experiments described in Figure 7, there is no evidence that the GFP-tagged Panx1 is in the plasma membrane. Instead, the image in Figure 7a shows prominent fluorescence in the cytoplasm. In addition, there is no evidence that the CBX-sensitive currents in 7b are mediated by Panx1-GFP and are not endogenous Panx1. Previous literature suggests that the hPanx1 protein needs to be cleaved (Chiu et al. 2014) or mutated at the amino terminus (Michalski et al 2018) to see voltage-activated currents, so it is not clear that the currents represent hPANX1 voltage-activated currents.

    1. Reviewer #3 (Public Review):

      This is a manuscript that attempts to validate Plasmodium M1 alanyl aminopeptidase as a target for antimalarial drug development. The authors provide evidence that MIPS2673 inhibits recombinant enzymes from both Pf and Pv and is selective over other proteases. There is in vitro antimalarial activity. Chemoproteomic experiments demonstrate selective targeting of the PfA-M1 protease.

      This is a continuation of previous work focused on designing inhibitors for aminopeptidases by a subset of these authors. Medicinal chemistry explorations resulted in the synthesis of MIPS2673 which has improved properties including potent inhibition of PfA-M1 and PvA-M1 with selectivity over a closed related peptidase. The compound also demonstrated selectivity over several human aminopeptidases and was not toxic to HEK293 cells at 40 uM. The activity against P. falciparum blood-stage parasites was about 300 nM.

      Thermal stability studies confirmed that PfA-M1 was a binding target, however, there were other proteins consistently identified in the thermal stability studies. This raises the question as to their potential role as additional targets of this inhibitor. The authors dismiss these because they are not metalloproteases, but further analysis is warranted. This is particularly important as the authors were not able to generate mutants using in vitro evolution of resistance strategies. This often indicates that the inhibitor has more than one target.

      The next set of experiments focused on a limited proteolysis approach. Again several proteins were identified as interacting with MIPS2673 including metalloproteases. The authors go on to analyze the LiP-MS data to identify the peptide from PfA-M1 which putatively interacts with MIPS2673. The authors are clearly focused on PfA-M1 as the target, but a further analysis of the other proteins identified by this method would be warranted and would provide evidence to either support or refute the authors' conclusions.

      The final set of experiments was an untargeted metabolomics analysis. They identified 97 peptides as significantly dysregulated after MIPS2673 treatment of infected cells and most of these peptides were derived from one of the hemoglobin chains. The accumulation of peptides was consistent with a block in hemoglobin digestion. This experiment does reveal a potential functional confirmation, but questions remain as to specificity.

      Overall, this is an interesting series of experiments that have identified a putative inhibitor of PfA-M1 and PvA-M1. The work would be significantly strengthened by structure-aided analysis. It is unclear why putative binding sites cannot be analyzed via specific mutagenesis of the recombinant enzyme. In the thermal stability and LiP -MS analysis, other proteins were consistently identified in addition to PfA-M1 and yet no additional analysis was undertaken to explore these as potential targets. The metabolomics experiments were potentially interesting, but without significant additional work including different lengths of treatment and different stages of the parasite, the conclusions drawn are overstated. Many treatments disrupt hemoglobin digestion - either directly or indirectly and from the data presented here it is premature to conclude that treatment with MIPS2673 directly inhibits hemoglobin digestion. Finally, the potency of this compound on parasites grown in vitro is 300 nM - this would need improvements in potency and demonstration of in vivo efficacy in the SCID mouse model to consider this a candidate for a drug.

      Summary:<br /> Overall, this is an interesting series of experiments that have identified a putative inhibitor of the Plasmodium M1 alanyl aminopeptidases, PfA-M1 and PvA-M1.

      Strengths:<br /> The main strengths include the synthesis of MIPS2673 which is selectively active against the enzymes and in whole-cell assay.

      Weaknesses:<br /> The weaknesses include the lack of additional analysis of additional targets identified in the chemoproteomic approaches.

    1. Reviewer #4 (Public Review):

      I am a new reviewer for this manuscript, which has been reviewed before. The authors provide a variational autoencoder that has three objectives in the loss: linear reconstruction of behavior from embeddings, reconstruction of neural data, and KL divergence term related to the variational model elements. They take the output of the VAE as the "behaviorally relevant" part of neural data and call the residual "behaviorally irrelevant". Results aim to inspect the linear versus nonlinear behavior decoding using the original raw neural data versus the inferred behaviorally relevant and irrelevant parts of the signal.

      Overall, studying neural computations that are behaviorally relevant or not is an important problem, which several previous studies have explored (for example PSID in (Sani et al. 2021), TNDM in (Hurwitz et al. 2021), TAME-GP in (Balzani et al. 2023), pi-VAE in (Zhou and Wei 2020), and dPCA in (Kobak et al. 2016), etc). However, this manuscript does not properly put their work in the context of such prior works. For example, the abstract states "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive", which is not the case given that these prior works have done that. The same is true for various claims in the main text, for example "Furthermore, we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that using raw signals to estimate the neural dimensionality of behaviors leads to an overestimation" (line 321). This finding was presented in (Sani et al. 2021) and (Hurwitz et al. 2021), which is not clarified here. This issue of putting the work in context has been brought up by other reviewers previously but seems to remain largely unaddressed. The introduction is inaccurate also in that it mixes up methods that were designed for separation of behaviorally relevant information with those that are unsupervised and do not aim to do so (e.g., LFADS). The introduction should be significantly revised to explicitly discuss prior models/works that specifically formulated this behavior separation and what these prior studies found, and how this study differs.

      Beyond the above, some of the main claims/conclusions made by the manuscript are not properly supported by the analyses and results, which has also been brought up by other reviewers but not fully addressed. First, the analyses here do not support the linear readout from the motor cortex because i) by construction, the VAE here is trained to have a linear readout from its embedding in its loss, which can bias its outputs toward doing well with a linear decoder/readout, and ii) the overall mapping from neural data to behavior includes both the VAE and the linear readout and thus is always nonlinear (even when a linear Kalman filter is used for decoding). This claim is also vague as there is no definition of readout from "motor cortex" or what it means. Why is the readout from the bottleneck of this particular VAE the readout of motor cortex? Second, other claims about properties of individual neurons are also confounded because the VAE is a population-level model that extracts the bottleneck from all neurons. Thus, information can leak from any set of neurons to other sets of neurons during the inference of behaviorally relevant parts of signals. Overall, the results do not convincingly support the claims, and thus the claims should be carefully revised and significantly tempered to avoid misinterpretation by readers.

      Below I briefly expand on these as well as other issues, and provide suggestions:

      1) Claims about linearity of "motor cortex" readout are not supported by results yet stated even in the abstract. Instead, what the results support is that for decoding behavior from the output of the dVAE model -- that is trained specifically to have a linear behavior readout from its embedding -- a nonlinear readout does not help. This result can be biased by the very construction of the dVAE's loss that encourages a linear readout/decoding from embeddings, and thus does not imply a finding about motor cortex.

      2) Related to the above, it is unclear what the manuscript means by readout from motor cortex. A clearer definition of "readout" (a mapping from what to what?) in general is needed. The mapping that the linearity/nonlinearity claims refer to is from the *inferred* behaviorally relevant neural signals, which themselves are inferred nonlinearly using the VAE. This should be explicitly clarified in all claims, i.e., that only the mapping from distilled signals to behavior is linear, not the whole mapping from neural data to behavior. Again, to say the readout from motor cortex is linear is not supported, including in the abstract.

      3) Claims about individual neurons are also confounded. The d-VAE distilling processing is a population level embedding so the individual distilled neurons are not obtainable on their own without using the population data. This population level approach also raises the possibility that information can leak from one neuron to another during distillation, which is indeed what the authors hope would recover true information about individual neurons that wasn't there in the recording (the pixel denoising example). The authors acknowledge the possibility that information could leak to a neuron that didn't truly have that information and try to rule it out to some extent with some simulations and by comparing the distilled behaviorally relevant signals to the original neural signals. But ultimately, the distilled signals are different enough from the original signals to substantially improve decoding of low information neurons, and one cannot be sure if all of the information in distilled signals from any individual neuron truly belongs to that neuron. It is still quite likely that some of the improved behavior prediction of the distilled version of low-information neurons is due to leakage of behaviorally relevant information from other neurons, not the former's inherent behavioral information. This should be explicitly acknowledged in the manuscript.

      4) Given the nuances involved in appropriate comparisons across methods and since two of the datasets are public, the authors should provide their complete code (not just the dVAE method code), including the code for data loading, data preprocessing, model fitting and model evaluation for all methods and public datasets. This will alleviate concerns and allow readers to confirm conclusions (e.g., figure 2) for themselves down the line.

      5) Related to 1) above, the authors should explore the results if the affine network h(.) (from embedding to behavior) was replaced with a nonlinear ANN. Perhaps linear decoders would no longer be as close to nonlinear decoders. Regardless, the claim of linearity should be revised as described in 1) and 2) above, and all caveats should be discussed.

      6) The beginning of the section on the "smaller R2 neurons" should clearly define what R2 is being discussed. Based on the response to previous reviewers, this R2 "signifies the proportion of neuronal activity variance explained by the linear encoding model, calculated using raw signals". This should be mentioned and made clear in the main text whenever this R2 is referred to.

      7) Various terms require clear definitions. The authors sometimes use vague terminology (e.g., "useless") without a clear definition. Similarly, discussions regarding dimensionality could benefit from more precise definitions. How is neural dimensionality defined? For example, how is "neural dimensionality of specific behaviors" (line 590) defined? Related to this, I agree with Reviewer 2 that a clear definition of irrelevant should be mentioned that clarifies that relevance is roughly taken as "correlated or predictive with a fixed time lag". The analyses do not explore relevance with arbitrary time lags between neural and behavior data.

      8) CEBRA itself doesn't provide a neural reconstruction from its embeddings, but one could obtain one via a regression from extracted CEBRA embeddings to neural data. In addition to decoding results of CEBRA (figure S3), the neural reconstruction of CEBRA should be computed and CEBRA should be added to Figure 2 to see how the behaviorally relevant and irrelevant signals from CEBRA compare to other methods.

      References:

      Kobak, Dmitry, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepecs, Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens. 2016. "Demixed Principal Component Analysis of Neural Population Data." Edited by Mark CW van Rossum. eLife 5 (April): e10989. https://doi.org/10.7554/eLife.10989.

      Sani, Omid G., Hamidreza Abbaspourazad, Yan T. Wong, Bijan Pesaran, and Maryam M. Shanechi. 2021. "Modeling Behaviorally Relevant Neural Dynamics Enabled by Preferential Subspace Identification." Nature Neuroscience 24 (1): 140-49. https://doi.org/10.1038/s41593-020-00733-0.

      Zhou, Ding, and Xue-Xin Wei. 2020. "Learning Identifiable and Interpretable Latent Models of High-Dimensional Neural Activity Using Pi-VAE." In Advances in Neural Information Processing Systems, 33:7234-47. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html.

      Hurwitz, Cole, Akash Srivastava, Kai Xu, Justin Jude, Matthew Perich, Lee Miller, and Matthias Hennig. 2021. "Targeted Neural Dynamical Modeling." In Advances in Neural Information Processing Systems. Vol. 34. https://proceedings.neurips.cc/paper/2021/hash/f5cfbc876972bd0d031c8abc37344c28-Abstract.html.

      Balzani, Edoardo, Jean-Paul G. Noel, Pedro Herrero-Vidal, Dora E. Angelaki, and Cristina Savin. 2023. "A Probabilistic Framework for Task-Aligned Intra- and Inter-Area Neural Manifold Estimation." In . https://openreview.net/forum?id=kt-dcBQcSA.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Object classification serves as a vital normative principle in both the study of the primate ventral visual stream and deep learning. Different models exhibit varying classification performances and organize information differently. Consequently, a thriving research area in computational neuroscience involves identifying meaningful properties of neural representations that act as bridges connecting performance and neural implementation. In the work of Lindsey and Issa, the concept of factorization is explored, which has strong connections with emerging concepts like disentanglement [1,2,3] and abstraction [4,5]. Their primary contributions encompass two facets: (1) The proposition of a straightforward method for quantifying the degree of factorization in visual representations. (2) A comprehensive examination of this quantification through correlation analysis across deep learning models.

      To elaborate, their methodology, inspired by prior studies [6], employs visual inputs featuring a foreground object superimposed onto natural backgrounds. Four types of scene variables, such as object pose, are manipulated to induce variations. To assess the level of factorization within a model, they systematically alter one of the scene variables of interest and estimate the proportion of encoding variances attributable to the parameter under consideration.

      The central assertion of this research is that factorization represents a normative principle governing biological visual representation. The authors substantiate this claim by demonstrating an increase in factorization from macaque V4 to IT, supported by evidence from correlated analyses revealing a positive correlation between factorization and decoding performance. Furthermore, they advocate for the inclusion of factorization as part of the objective function for training artificial neural networks. To validate this proposal, the authors systematically conduct correlation analyses across a wide spectrum of deep neural networks and datasets sourced from human and monkey subjects. Specifically, their findings indicate that the degree of factorization in a deep model positively correlates with its predictability concerning neural data (i.e., goodness of fit).

      Strengths:<br /> The primary strength of this paper is the authors' efforts in systematically conducting analysis across different organisms and recording methods. Also, the definition of factorization is simple and intuitive to understand.

      Weaknesses:<br /> This work exhibits two primary weaknesses that warrant attention: (i) the definition of factorization and its comparison to previous, relevant definitions, and (ii) the chosen analysis method.

      Firstly, the definition of factorization presented in this paper is founded upon the variances of representations under different stimuli variations. However, this definition can be seen as a structural assumption rather than capturing the effective geometric properties pertinent to computation. More precisely, the definition here is primarily statistical in nature, whereas previous methodologies incorporate computational aspects such as deviation from ideal regressors [1], symmetry transformations [3], generalization [5], among others. It would greatly enhance the paper's depth and clarity if the authors devoted a section to comparing their approach with previous methodologies [1,2,3,4,5], elucidating any novel insights and advantages stemming from this new definition.

      Secondly, in order to establish a meaningful connection between factorization and computation, the authors rely on a straightforward synthetic model (Figure 1c) and employ multiple correlation analyses to investigate relationships between the degree of factorization, decoding performance, and goodness of fit. Nevertheless, the results derived from the synthetic model are limited to the low training-sample regime. It remains unclear whether the biological datasets under consideration fall within this low training-sample regime or not.

      [1] Eastwood, Cian, and Christopher KI Williams. "A framework for the quantitative evaluation of disentangled representations." International conference on learning representations. 2018.<br /> [2] Kim, Hyunjik, and Andriy Mnih. "Disentangling by factorising." International Conference on Machine Learning. PMLR, 2018.<br /> [3] Higgins, Irina, et al. "Towards a definition of disentangled representations." arXiv preprint arXiv:1812.02230 (2018).<br /> [4] Bernardi, Silvia, et al. "The geometry of abstraction in the hippocampus and prefrontal cortex." Cell 183.4 (2020): 954-967.<br /> [5] Johnston, W. Jeffrey, and Stefano Fusi. "Abstract representations emerge naturally in neural networks trained to perform multiple tasks." Nature Communications 14.1 (2023): 1040.<br /> [6] Majaj, Najib J., et al. "Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict human core object recognition performance." Journal of Neuroscience 35.39 (2015): 13402-13418.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Ai et al. studied texture, color, and disparity selectivity in the human visual cortex at the mesoscale level using high-resolution fMRI. They reproduced earlier monkey and human studies showing interdigitated color-selective and disparity-selective sub-compartments within area V2, likely corresponding to thin and thick stripes, respectively. At least with the stimuli used, no clear evidence for texture-selective mesoscale activations was observed in area V2. The most interesting and novel part of this study focused on cortical-depth-dependent connectivity analyses across areas. The data suggest feedback and feedforward functional connectivity between V1 and V3A for disparity signals and feedback from V4 to the deep layers of V2 for textures.

      Strengths:<br /> High-resolution fMRI and highly interesting layer-specific informational connectivity analyses.

      Weaknesses:<br /> The authors tend to overclaim their results.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this work, Duan and Curtis addressed an important issue related to the nature of working memory representations. This work is motivated by findings illustrating that orientation decoding performance for perceptual representations can be biased by the stimulus aperture (modulator). Here, the authors examined whether the decoding performance for working memory representations is similarly influenced by these aperture biases. The results provide convincing evidence that working memory representations have a different representational structure, as the decoding performance was not influenced by the type of stimulus aperture.

      Strengths:<br /> The strength of this work lies in the direct comparison of decoding performance for perceptual representations with working memory representations. The authors take a well-motivated approach and illustrate that perceptual and working memory representations do not share a similar representational structure. The authors test a clear question, with a rigorous approach and provide convincing evidence. First, the presented oriented stimuli are carefully manipulated to create orthogonal biases introduced by the stimulus aperture (radial or angular modulator), regardless of the stimulus carrier orientation. Second, the authors implement advanced methods to decode the orientation information present, in visual and parietal cortical regions, when directly perceiving or holding an oriented stimulus in memory. The data illustrates that working memory decoding is not influenced by the type of aperture, while this is the case in perception. In sum, the main claims are important and shed light on the nature of working memory representations.

      Weaknesses:<br /> I have a few minor concerns that, although they don't affect the main conclusion of the paper, should still be addressed.

      1. Theoretical framing in the introduction: Recent work has shown that decoding of orientation during perception does reflect orientation selectivity, and it is not only driven by the stimulus aperture (Roth, Kay & Merriam, 2022).

      2. Figure 1C illustrates the principle of how the radial and angular modulators bias the contrast energy extracted by the V1 model, which in turn would influence orientation decoding. It would be informative if the carrier orientations used in the experiment were shown in this figure, or at a minimum it would be mentioned in the legend that the experiment used 3 carrier orientations (15{degree sign}, 75{degree sign}, 135{degree sign}) clockwise from vertical. Related, when trying to find more information regarding the carrier orientation, the 'Stimuli' section of the Methods incorrectly mentions that 180 orientations are used as the carrier orientation.

      3. The description of the image computable V1 model in the Methods is incomplete, and at times inaccurate. i) The model implements 6 orientation channels, which is inaccurately referred to as a bandwidth of 60{degree sign} (should be 180/6=30). ii) The steerable pyramid combines information across phase pairs to obtain a measure of contrast energy for a given stimulus.<br /> Here, it is only mentioned that the model contains different orientation and spatial scale channels. I assume there were also 2 phase pairs, and they were combined in some manner (squared and summed to create contrast energy). Currently, it is unclear what the model output represents. iii) The spatial scale channel with the maximal response differences between the 2 modulators was chosen as the final model output. What spatial frequency does this channel refer to, and how does this spatial frequency relate to the stimulus?

      4. It is not clear from the Methods how the difficulty in the perceptual control task was controlled. How were the levels of task difficulty created?

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study conducted by Pisanski et al investigates the role of the lateral parafacial area (pFL) in controlling active expiration. Stereotactic injections of bicuculline were utilized to map various pFL sites and their impact on respiration. The results indicate that injections at more rostral pFL locations induce the most robust changes in tidal volume, minute ventilation, and combined respiratory responses. The study indicates that the rostrocaudal organization of the pFL and its influence on breathing is not simple and uniform.

      Strengths:<br /> The data provide novel insights into the importance of rostral locations in controlling active expiration. The authors use innovative analytic methods to characterize the respiratory effects of bicuculline injections into various areas of the pFL.

      Weaknesses:<br /> Bicuculline injections increase the excitability of neurons. Aside from blocking GABA receptors, bicuculline also inhibits calcium-activated potassium currents and potentiates NMDA current, thus insights into the role of GABAergic inhibition are limited.

      Increasing the excitability of neurons provides little insights into the activity pattern and function of the activated neurons. Without recording from the activated neurons, it is impossible to know whether an effect on active expiration or any other respiratory phase is caused by bicuculline acting on rhythmogenic neurons or tonic neurons that modulate respiration. While this approach is inappropriate to study the functional extent of the conditional "oscillator" for active expiration, it provides valuable insights into this region's complex role in controlling breathing.

    1. Reviewer #3 (Public Review)

      Summary<br /> This is an important study that tests the hypothesis that Cav1.4 calcium channels do more than provide a voltage-dependent influx of Ca2+ into photoreceptors. The relevant background can be divided into two tranches. First, deletion of Cav1.4 channels (Cav1.4 knock-out) disrupts rod and cone photoreceptors and their synapses in the outer plexiform layer. Second, knock-in of a non-conducting Cav1.4 channel (Cav1.4 knock-in) partially spares the organization of the outer plexiform layer and photoreceptor synapses (Maddox et al., eLife 2020), which is remarkable considering the disruption of the outer plexiform layer in the Cav1.4 knock-out. In addition, phototransduction, assessed by scotopic and phototopic electroretinography (a-wave amplitude) in the Cav1.4 knock-in retina was partially spared for rods and only slightly impaired for cones. However, the non-conducting Cav1.4 channel of the Cav1.4 knock-in failed to rescue synaptic transmission across the outer retina (electroretinography: b-wave amplitude, Maddox et al., eLife 2020). The 2020 Maddox et al. (eLife) focused more on the rod pathway, while the current work addressed the cone pathway.

      Strengths<br /> The study addresses the important question of how disruption of Cav1.4 function in both rod and cone photoreceptors leads to impairment primarily of the rod pathway for scotopic vision. This is clinically relevant as human mutations lead to stationary night blindness rather than blindness. The work relevance provides excellent single-cell electrophysiological recordings of Ca2+ currents from cones of wild-type, Cav1.4 knock-out, and Cav1.4 knock-in mice and, in addition, from ground squirrel and monkey cones. To make these recordings successfully in the various species and the compromised retinas (Cav1.4 knock-out and Cav1.4 knock-in) is very impressive. The findings clearly advance our understanding of Ca2+ channel function in cones. In addition, the study presents high-quality electron microscopy reconstructions of cones and further physiological and behavioral data related to the cone pathway.

      Weaknesses<br /> The major critiques are related to the description of the Cav1.4 knock-in mouse as "sparing" function, which can be remedied in part by a simple rewrite, and in certain places, the data may need to be examined more critically. In particular, the authors should address features in the data presented in Figures 6 and 7 that seem to indicate that the retina of the Cav1.4 knock-in is not intact, but the interpretation given by the authors as "intact" is not appropriate and made without rigorous statistical testing.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors propose to invert a mechanistic model of phototransduction in mouse and rod photoreceptors to derive stimuli that compensate for nonlinearities in these cells. They fit the model to a large set of photoreceptor recordings and show in additional data that the compensation works. This can allow the exclusion of photoreceptors as a source of nonlinear computation in the retina, as desired to pinpoint nonlinearities in retinal computation. Overall, the recordings made by the authors are impressive and I appreciate the simplicity and elegance of the idea. The data support the authors' conclusions but the presentation can be improved.

      Strengths:<br /> - The authors collected an impressive set of recordings from mouse and primate photoreceptors, which is very challenging to obtain.<br /> - The authors propose to exploit mechanistic mathematical models of well-understood phototransduction to design light stimuli that compensate for nonlinearities.<br /> - The authors demonstrate through additional experiments that their proposed approach works.

      Weaknesses:<br /> - The authors use numerical optimization for fitting the parameters of the photoreceptor model to the data. Recently, the field of simulation-based inference has developed methods to do so, including quantification of the uncertainty of the resulting estimates. Since the authors state that two different procedures were used due to the different amounts of data collected from different cells, it may be worthwhile to rather test these methods, as implemented e.g. in the SBI toolbox (https://joss.theoj.org/papers/10.21105/joss.02505). This would also allow them to directly identify dependencies between parameters, and obtain associated uncertainty estimates. This would also make the discussion of how well constrained the parameters are by the data or how much they vary more principled because the SBI uncertainty estimates could be used.

      - In several places, the authors refer the reader to look up specific values e.g. of parameters in the associated MATLAB code. I don't think this is appropriate, important values/findings/facts should be in the paper (lines 142, 114, 168). I would even find the precise values that the authors measure interesting, so I think the authors should show them in a figure/table. In general, I would like to see also the average variance explained by different models summarized in a table and precise mean/median values for all important quantities (like the response amplitude ratios in Figures 6/9).

      - If the proposed model is supposed to model photoreceptor adaptation on a longer time scale, I fail to see why this can be an invertible model. Could the authors explain this better? I suspect that the model is mainly about nonlinearities as the authors also discuss in lines 360ff.

      - The important Figures 6-8 are very hard to read, as it is not easy to see what the stimulus is, the modified stimulus, the response with and without modification, what the desired output looks like, and what is measured for part B. Reworking these figures would be highly recommended.

      - If I understand Figure 6 correctly, part B is about quantifying the relative size of the response to the little first flash to the little second flash. While clearly, the response amplitude of the second flash is only 50% for the second flash compared to the first flash in primate rod and cones in the original condition, the modified stimulus seems to overcompensate and result in 130% response for the second flash. How do the authors explain this? A similar effect occurs in Figure 9, which the authors should also discuss.

  2. Jan 2024
    1. Noise

      Noise is anything interfering with clear communication; distractions that occur during communication that resolves in misinterpretation.

      Internal noise: psychological or physical problem someone is dealing with during communication

      External noise : Environmental components that cause distraction

      Semantic noise: a disturbance in the transmission of a message; interferes with interpretation of the message due to words having more than one meaning.

      A connotation: positive or negative emotional connection to a definition. connotative semantic noise is more of an emotional issue with the intended use of words.

      Denotation: the literal meaning of a word; denotative semantic noise: when we hear or see language we cannot define therefore we cannot interpret.

    1. 1956 --- The ST scale on rules that had Decimal Trig scales were converted to an SRT scale.
    2. 1956 0 88,500 88,500

      My 4181-3 slide rule was likely manufactured in 1956 as it has the SRT scale initiated in 1955 and has a serial number 004365 which is in the series 3 segment which reset in 1956 and ran from 0 to 88,500 that year.

      https://www.mccoys-kecatalogs.com/keserialnumbers/Dating-2.htm

    1. 1955b - The scale set was changed. ST scale was changed to SRT on the 4081s only.

      My 4181-3 was likely made in 1955 or after as it has the SRT and not the ST scale. (It has a 1947 copyright mark on it.)

    2. 1955b (4081-3, 4081-5, 4181-1, 4181-1C, E4181J, 4181-3, 68 1200, 68 1205, 68 1210, 68 1215, 68 1220, 68 1251, 68 1256, 68 1261, 68 1282, & 68 1287) Scale sets: Front: LL02 LL03 DF = CF CIF CI C = D LL3 LL2 Rear: LL01 L K A = B T SRT S = D DI LL1

      These are the scale sets on my K+E 4181-3 slide Rule

    1. 4181-3 10" Log Log Duplex Decitrig Plastic 4081-3 family

      The Keuffel & Esser 4181-3 was part of the 4081-3 family and was described in their catalogs as a 10 inch Log Log Duplex Decitrig Plastic slide rule.

      via https://www.mccoys-kecatalogs.com/KEModels/kexrefmain.htm

    1. Reviewer #3 (Public Review):

      Summary:<br /> Aubert et al investigated the role of PENK in regulatory T cells. Through the mining of publicly available transcriptome data, the authors confirmed that PENK expression is selectively enriched in regulatory but not conventional T cells. Further data mining suggested that OX40, 4-1BB as well as BATF, can regulate PENK expression in Tregs. The authors generated fate-mapping mice to confirm selective PENK expression in Tregs and activated effector T cells in the colon and spleen. Interestingly, transgenic mice with conditional deletion of PENK in Tregs resulted in hypersensitivity to heat, which the authors attributed to heat hyperalgesia.

      Strengths:<br /> The generation of transgenic mice with conditional deletion of PENK in foxp3 and PENK fate-mapping is novel and can potentially yield significant findings. The identification of upstream signals that regulate PENK is interesting but unlikely to be the main reason why PENK is predominantly expressed in Tregs as both BATF and TNFR are expressed in effector T cells.

      Weaknesses:<br /> There is a lack of direct evidence and detailed analysis of Tregs in the control and transgenic mice to support the authors' hypothesis. PENK was previously reported to be expressed in skin Tregs and play a significant role in regulating skin homeostasis: this should be considered as an alternative mechanism that may explain the changed sensitivity to heat observed in the paper.

    1. Reviewer #3 (Public Review):

      The introduction/background is excellent. It reviews evidence showing that extinction of conditioned responding is regulated by noradrenaline and suggesting that the locus coeruleus (LC) may be a critical locus of this regulation. This naturally leads to the aim of the study: to determine whether the locus coeruleus is involved in extinction of an appetitive conditioned response. Overall, the study is well designed, nicely conducted and the results advance our understanding of the role of the LC in extinction of conditioned behaviour. Future studies may provide more fine-grained analyses of behavioral data to clarify the impact of the LC manipulations (stimulation and inhibition) on performance in the task.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Medina and colleagues explored transcriptional kinetics during SARS-CoV-2 between non-hospitalized and hospitalized cohorts and identified that early NK signaling may be responsible for less severe disease.

      Strengths:<br /> The paper includes extremely detailed analyses and makes an interesting attempt to link innate and adaptive responses. The analyses are appropriate for the data and described in clear language. The inclusion of late time points is interesting and potentially relevant to long COVID studies. Most findings were compatible with other detailed immune mapping during severe COVID-19.

      Weaknesses:<br /> 1. The authors claim to be looking at the earliest stages of infection but this is not true as all patients enrolled are already symptomatic. The time points selected are unlikely to be useful clinically for biomarker selection as they are too late, and are likely beyond the point when the immune responses between severe and mild infection start to diverge.<br /> 2. The comparator timepoints between mild and severe cases do not match. The most comparison would be between day 7 of mild versus day 0 of severe which is already fairly late during infection.<br /> 3. The authors mention viral clearance but I see no evidence of viral loads measured in these individuals.<br /> 4. The cohort is quite small to draw definitive conclusions.<br /> 5. It is uncertain whether the results are applicable to current conditions as most infected people are immune experienced.<br /> 6. I found the discussion to be a bit too detailed and dense. I would suggest editing to make it more streamlined.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors have initiated studies to understand the molecular mechanisms underlying the devolvement of multi-drug resistance in clinical Mtb strains. They demonstrate the association of isoniazid-resistant isolates by rifampicin treatment supporting the idea that selection of MDR is a microenvironment phenomenon and involves a group of isolates.

      Strengths:<br /> The methods used in this study are robust and the results support the authors' claims to a major extent.

      Weaknesses:<br /> The manuscript needs a thorough vetting of the language. At present, the language makes it very difficult to comprehend the methodology and results.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Chen et al. are addressing a fundamental question in mammalian gut biology, namely how the host controls a mutualistic host-microbiota symbiosis. The authors focus on a protein called Chitinase 3-like protein 1 (Ch3l1) and its interaction with the protective colonic mucus layer. The rationale for the study comes from previous work showing that microbial-associated molecular patterns (MAMPs) can induce Ch3l1 in vitro, but its biological functions in the colon are unknown. In this study, the authors provide evidence supporting the claim that the gut microbiota induces the expression of Ch3l1 in vivo, mainly in mucus-producing goblet cells. Insightfully, the authors note that Ch3l1, although it lacks enzyme (chitinase) activity, still binds Chitin, a glycan that has structural similarity to bacterial cell wall peptidoglycan. This leads the authors to hypothesize that Ch3l1 binds microbial cell walls, particularly those of peptidoglycan-rich Gram-positive probiotic bacteria within the mucus, to promote their retention in the colon. Using a combination of in vivo work with mice conditionally lacking Ch3l1 in gut epithelium (IEC Ch3l1 KO); microbiota profiling; imaging of host-microbiota interactions with labeled microbes; and fecal transplants, the authors provide compelling evidence that Ch3l1 is secreted into the gut mucus layer and that the presence of Ch3l1 is associated with increased levels of beneficial Gram+ bacteria, including Lactobacillus spp. In turn, using a well-characterized colitis model, the authors show that Ch3l1 is associated with protection from intestinal injury caused by Dextran Sodium Sulfate. While these studies are novel and informative, there are several issues that undermine the authors' conclusions.

      Strengths:<br /> The authors nicely link microbial induction of Ch3l1 to mucosal protection from intestinal injury. This is done through the use of germ-free and ex-germ-free studies and by comparing Ch3l1 expression in situ between them; microbial sequencing between Control and IEC Ch3l1 KO mice, and clinical and histological injury metrics between these strains. The authors convincingly demonstrate the presence of Ch3l1 in the gut mucus through imaging, and that the deletion of this protein in mice alters the microbiota by reducing the relative abundance of Gram-positive species.

      The study employs a technically diverse set of analyses to address their hypothesis, including fluorescent labelling of microbial species for add-back studies, fecal transplants to distinguish the role(s) of the microbiota vs. host in the IEC Ch3l1 KO phenotypes in the intestinal challenge models.

      Weaknesses:<br /> The claim that mucus-associated Ch3l1 controls colonization of beneficial Gram-positive species within the mucus is not conclusive. The study should take into account recent discoveries on the nature of mucus in the colon, namely its mobile fecal association and complex structure based on two distinct mucus barrier layers coming from proximal and distal parts of the colon (PMID: ). This impacts the interpretation of how and where Ch3l1 is expressed and gets into the mucus to promote colonization. It also impacts their conclusions because the authors compare fecal vs. tissue mucus, but most of the mucus would be attached to the feces. Of the mucus that was claimed to be isolated from the WT and IEC Ch3l1 KO, this was not biochemically verified. Such verification (e.g. through Western blot) would increase confidence in the data presented. Further, the study relies upon relative microbial profiling, which can mask absolute numbers, making the claim of reduced overall Gram-positive species in mice lacking Ch3l1 unproven. It would be beneficial to show more quantitative approaches (e.g. Quantitative Microbial Profiling, QMP) to provide more definitive conclusions on the impact of Ch3l1 loss on Gram+ microbes.

      Other weaknesses lie in the execution of the aims, leaving many claims incompletely substantiated. For example, much of the imaging data is challenging for the reader to interpret due to it being unfocused, too low of magnification, not including the correct control, and not comparing the same regions of tissues among different in vivo study groups. Statistical rigor could be better demonstrated, particularly when making claims based on imaging data. These are often presented as single images without any statistics (i.e. analysis of multiple images and biological replicates). These images include the LTA signal differences, FISH images, Enterococcus colonization, and mucus thickness.

    1. Reviewer #3 (Public Review):

      This is an interesting manuscript that addresses a longstanding debate in evolutionary biology - whether social or ecological factors are primarily responsible for the evolution of the large human brain. To address this, the authors examine the relationship between the size of two prefrontal regions involved in metacognition and working memory (DLPFC and FP) and socioecological variables across 16 primate species. I recommend major revisions to this manuscript due to: 1) a lack of clarity surrounding model construction; and 2) an inappropriate treatment of the relative importance of different predictors (due to a lack of scaling/normalization of predictor variables prior to analysis).

    1. Reviewer #3 (Public Review):

      The authors have made simultaneous recordings of the responses of large numbers of neurons from the primary visual cortex using optical two-photon imaging of calcium signals from the superficial layers of the cortex. Recordings were made to compare the responses of the cortical neurons under normal binocular viewing of a flat screen with both eyes open and monocular viewing of the same screen with one eye's view blocked by a translucent filter. The screen displayed visual stimuli comprising small contrast patches of Gabor function distributions of luminance, a stimulus that is known to excite cortical neurons.

      This is an important data set, given the large numbers of neurons recorded. The authors present a simple model to explain the binocular combination of neuronal signals from the right and left eyes.

      The limitations of the paper as written are as follows. These points can be addressed with some additional analysis and rewriting of sections of the paper. No new experimental data need to be collected.

      1) The authors should acknowledge the fact that these recordings arise from neurons in the superficial layers of the cortex. This limitation arises from the usual constraints on optical imaging in the macaque cortex. This means that the sample of neurons forming this data set is not fully representative of the population of binocular neurons within the visual cortex. This limitation is important in comparing the outcome of these experiments with the results from other studies of binocular combination, which have used single-electrode recording. Electrode recording will result in a sample of neurons that is drawn from many layers of the cortex, rather than just the superficial layers.

      2) Single-neuron recording of binocular neurons in the primary visual cortex has shown that these neurons often have some spontaneous activity. Assessment of this spontaneous level of firing is important for accurate model fitting [1]. The paper here should discuss the level of spontaneous neuronal firing and its potential significance.

      3) The arrangements for visual stimulation and comparison of binocular and monocular responses mean that the stereoscopic disparity of the binocular stimuli is always at zero or close to zero. The animal's fixation point is in the centre of a single display that is viewed binocularly. The fixation point is, by definition, at zero disparity. The other points on the flat display are also at zero disparity or very close to zero because they lie in the same depth plane. There will be some small deviations from exactly zero because the geometry of the viewing arrangements results in the extremities of the display being at a slightly different distance than the centre. Therefore, the visual stimulation used to test the binocular condition is always at zero disparity, with a slight deviation from zero at the edges of the display, and never changes. [There is a detail that can be ignored. The experimenters tested neurons with visual stimulation at different real distances from the eyes, but this is not relevant here. Provided the animals accurately converged their eyes on the provided binocular fixation point, then the disparity of the visual stimuli will always be at or close to zero, regardless of viewing distance in these circumstances.] However, we already know from earlier work that neurons in the visual cortex exhibit a range of selectivity for binocular disparity. Some neurons have their peak response at non-zero disparities, representing binocular depths nearer than the fixation depth or beyond it. The response of other neurons is maximally suppressed by disparities at the depth of the fixation point (so-called Tuned Inhibitory [TI] neurons). The simple model and analysis presented in the paper for the summation of monocular responses to predict binocular responses will perform adequately for neurons that are tuned to zero disparity, so-called tuned excitatory neurons [TE], but is necessarily compromised when applied to neurons that have other, different tuning profiles. Specifically, when neurons are stimulated binocularly with a non-preferred disparity, the binocular response may be lower than the monocular response[2, 3]. This more realistic view of binocular responses needs to be considered by the authors and integrated into their modelling.

      4) The data in the paper show some features that have been reported before but are not captured by the model. Notably for neurons with extreme values of ocular dominance, the binocular response is typically less than the larger of the two monocular responses. This is apparent in the row of plots in Figure 2D from individual animals and in the pooled data in Figure 2E. Responses of this type are characteristic of tuned inhibitory [TI] neurons[2]. It is not immediately clear why this feature of the data does not appear in the summary and analysis in Figure 3. The paper text states that the responses were "first normalized by the median of the binocular responses". This will certainly get rid of this characteristic of the data, but this step needs better justification, or an amendment to the main analysis is needed. In the present form, the model and analysis do not appear to fit the data in Figure 2 as accurately as needed. The authors should address the discrepancy between the data as presented in Figures 2D, E, and Figure 3.

      Citations<br /> 1. Prince, S.J.D., Pointon, A.D., Cumming, B.G., and Parker, A.J., (2002). Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. Journal of Neurophysiology, 87: 191-208.<br /> 2. Prince, S.J.D., Cumming, B.G., and Parker, A.J., (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology, 87: 209-221.<br /> 3. Poggio, G.F. and Fischer, B., (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40: 1392-1405 doi 10.1152/jn.1977.40.6.1392.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper presents a new formulation of a computational model of adaptive learning amid environmental volatility. Using a behavioral paradigm and data set made available by the authors of an earlier publication (Gagne et al., 2020), the new model is found to fit the data well. The model's structure consists of three weighted controllers that influence decisions on the basis of (1) expected utility, (2) potential outcome magnitude, and (3) habit. The model offers an interpretation of psychopathology-related individual differences in decision-making behavior in terms of differences in the relative weighting of the three controllers.

      Strengths:<br /> The newly proposed "mixture of strategies" (MOS) model is evaluated relative to the model presented in the original paper by Gagne et al., 2020 (here called the "flexible learning rate" or FLR model) and two other models. Appropriate and sophisticated methods are used for developing, parameterizing, fitting, and assessing the MOS model, and the MOS model performs well on multiple goodness-of-fit indices. The parameters of the model show decent recoverability and offer a novel interpretation for psychopathology-related individual differences. Most remarkably, the model seems to be able to account for apparent differences in behavioral learning rates between high-volatility and low-volatility conditions even with no true condition-dependent change in the parameters of its learning/decision processes. This finding calls into question a class of existing models that attribute behavioral adaptation to adaptive learning rates.

      Weaknesses:<br /> 1. Some aspects of the paper, especially in the methods section, lacked clarity or seemed to assume context that had not been presented. I found it necessary to set the paper down and read Gagne et al., 2020 in order to understand it properly.

      2. There is little examination of why the MOS model does so well in terms of model fit indices. What features of the data is it doing a better job of capturing? One thing that makes this puzzling is that the MOS and FLR models seem to have most of the same qualitative components: the FLR model has parameters for additive weighting of magnitude relative to probability (akin to the MOS model's magnitude-only strategy weight) and for an autocorrelative choice kernel (akin to the MOS model's habit strategy weight). So it's not self-evident where the MOS model's advantage is coming from.

      3. One of the paper's potentially most noteworthy findings (Figure 5) is that when the FLR model is fit to synthetic data generated by the expected utility (EU) controller with a fixed learning rate, it recovers a spurious difference in learning rate between the volatile and stable environments. Although this is potentially a significant finding, its interpretation seems uncertain for several reasons:

      - According to the relevant methods text, the result is based on a simulation of only 5 task blocks for each strategy. It would be better to repeat the simulation and recovery multiple times so that a confidence interval or error bar can be estimated and added to the figure.

      - It makes sense that learning rates recovered for the magnitude-oriented (MO) strategy are near zero, since behavior simulated by that strategy would have no reason to show any evidence of learning. But this makes it perplexing why the MO learning rate in the volatile condition is slightly positive and slightly greater than in the stable condition.

      - The pure-EU and pure-MO strategies are interpreted as being analogous to the healthy control group and the patient group, respectively. However, the actual difference in estimated EU/MO weighting between the two participant groups was much more moderate. It's unclear whether the same result would be obtained for a more empirically plausible difference in EU/MO weighting.

      - The fits of the FLR model to the simulated data "controlled all parameters except for the learning rate parameters across the two strategies" (line 522). If this means that no parameters except learning rate were allowed to differ between the fits to the pure-EU and pure-MO synthetic data sets, the models would have been prevented from fitting the difference in terms of the relative weighting of probability and magnitude, which better corresponds to the true difference between the two strategies. This could have interfered with the estimation of other parameters, such as learning rate.

      - If, after addressing all of the above, the FLR model really does recover a spurious difference in learning rate between stable and volatile blocks, it would be worth more examination of why this is happening. For example, is it because there are more opportunities to observe learning in those blocks?

      4. Figure 4C shows that the habit-only strategy is able to learn and adapt to changing contingencies, and some of the interpretive discussion emphasizes this. (For instance, line 651 says the habit strategy brings more rewards than the MO strategy.) However, the habit strategy doesn't seem to have any mechanism for learning from outcome feedback. It seems unlikely it would perform better than chance if it were the sole driver of behavior. Is it succeeding in this example because it is learning from previous decisions made by the EU strategy, or perhaps from decisions in the empirical data?

      5. For the model recovery analysis (line 567), the stated purpose is to rule out the possibility that the MOS model always wins (line 552), but the only result presented is one in which the MOS model wins. To assess whether the MOS and FLR models can be differentiated, it seems necessary also to show model recovery results for synthetic data generated by the FLR model.

      6. To the best of my understanding, the MOS model seems to implement valence-specific learning rates in a qualitatively different way from how they were implemented in Gagne et al., 2020, and other previous literature. Line 246 says there were separate learning rates for upward and downward updates to the outcome probability. That's different from using two learning rates for "better"- and "worse"-than-expected outcomes, which will depend on both the direction of the update and the valence of the outcome (reward or shock). Might this relate to why no evidence for valence-specific learning rates was found even though the original authors found such evidence in the same data set?

      7. The discussion (line 649) foregrounds the finding of greater "magnitude-only" weights with greater "general factor" psychopathology scores, concluding it reflects a shift toward simplifying heuristics. However, the picture might not be so straightforward because "habit" weights, which also reflect a simplifying heuristic, correlated negatively with the psychopathology scores.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript from Tariq and Maurici et al. presents important biochemical and biophysical data linking protein phosphorylation to phase separation behavior in the repressive arm of the Neurospora circadian clock. This is an important topic that contributes to what is likely a conceptual shift in the field.

    1. Reviewer #3 (Public Review):

      Summary<br /> Pham, Pahuja, Hagenbeek, et al. have conducted a comprehensive range of assays to biochemically and genetically determine TEAD degradation through RNF146 ubiquitination. Additionally, they designed a PROTAC protein degrader system to regulate the Hippo pathway through TEAD degradation. Overall, the data appears robust. However, the manuscript lacks detailed methodological descriptions, which should be addressed and improved. For instance, the methods used to analyze the K48 ubiquitination site on TEAD and the gene expression analysis of Hippo Signaling are unclear. Furthermore, the multiple proteomics, RNA-seq, and ATAC-seq data must be made publicly available upon publication to ensure reproducibility. Most of the main figures are of low resolution, which needs addressing.

      Strengths:<br /> - A broad range of assays was used to robustly determine the role of RNF146 in TEAD degradation.<br /> - Development of novel PROTAC for degrading TEAD.

      Weaknesses:<br /> - An orthogonal approach is needed (e.g., PARP1 inhibitor) to demonstrate PARP1's dependency in TEAD ubiquitination.

      - The data from Table 2 is unclear in illustrating the association of identified K48 ubiquitination with TEAD4, especially since the experiments were presumably to be conducted on whole cell lysates with KGG enrichment. This raises the possibility that the K48 ubiquitination could originate from other proteins. Alternatively, if the authors performed immunoprecipitation on TEAD followed by mass spectrometry, this should be explicitly described in the text and materials and methods section.

      - Figure 2D: The methodology for measuring the Hippo signature is unclear, as is the case for Figures 7E and F regarding the analysis of Hippo target genes.

      - Figure S3F requires quantification with additional replicates for validation.

      - There is a misleading claim in the discussion stating "TEAD PARylation by PAR-family members (Figure 3)"; however, the demonstration is only for PARP1, which should be corrected.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this paper, Curran et al investigate the role of Ntn, Slit1, and Slit 2 in the axon patterning of DRG neurons. The paper uses mouse genetics to perturb each guidance molecule and its corresponding receptor. Cre-based approaches and immunostaining of DRG neurons are used to assess the phenotypes. Overall, the study uses the strength of mouse genetics and imaging to reveal new genetic modifiers of DRG axons. The conclusions of the experiments match the presented results. The paper is an important contribution to the field, as evidence that dorsal funiculus formation is impacted by Ntn and Slit signaling. However, there are some potential areas of the manuscript that should be edited to better match the results with the conclusions of the work.

      Strengths:<br /> The manuscript uses the advantage of mouse genetics to investigate the axon patterning of DRG neurons. The work does a great job of assessing individual phenotypes in single and double mutants. This reveals an intriguing cooperative and independent function of Ntn, Slit1, and Slit2 in DRG axon patterning. The sophisticated triple mutant analysis is lauded and provides important insight.

      Weaknesses:<br /> Overall, the manuscript is sound in technique and analysis. However, the majority of the manuscript is about the dorsal funiculus and not the bifurcation of the axons, as the title would make a reader believe. Further, the manuscript would provide a more scholarly discussion of the current knowledge of DRG axon patterning and how their work fits into that knowledge.

    1. Reviewer #3 (Public Review):

      In this work, the authors shed light onto the structures of Fusarium oxysporum f.sp. lycopersici proteins involved in the infection of tomato. They unravelled several new secreted effector protein structures and additionally used computational approaches to structurally classify the remaining effectors known from this pathogen. Through this they uncovered a new and unique structural class of proteins which they found to be present and widely distributed in fungal plant pathogens and plant symbiotic fungi. The authors further predicted structural models for the full SIX effector set revealing that genome-proximal effector pairs share similar structural classes. Building on their Avr1 structure, the authors also define the C-terminal domain and specific amino acid residues that are essential to Avr1 detection by its cognate immune receptor.

      A major strength of this work is a portfolio of several (Avr1, Avr3, SIX6, SIX8) new structurally resolved proteins which led to the discovery that several of them fall into the same structural class. These findings are supported by strong results.

      The experiments addressing the structure-function relationship of Avr1's avirulence activity are highly relevant to our understanding of disease resistance mechanisms against Fusarium. Additional controls would allow for better support of the conclusions to be drawn. An example is FonSIX4's cell death activity in N.benthamiana leaves and whether FonSIX4 cdll death is indeed dependent on the tomato I receptor. Complementary work in Fusarium mutants lacking Avr1 and expressing chimeric versions would document that the observations from transient expressions in Nicotiana benthamiana are relevant in the biological context of a Fusarium/tomato interaction.

      The discovered solvent-exposed residues conditioning Avr1 recognition by the I receptor seem to be positioned in an area of the protein which had previously been highlighted as being highly variable in FOLD proteins of symbiotic fungi but it is not clear from the work whether this is indeed the case or whether Avr1 differs significantly in its structure from FOLD proteins found in other fungi.<br /> It remains to be tested whether the residues conditioning avirulence activity are also crucial for virulence activity in Fusarium.

      This work uncovered a new structural class of proteins with critical roles in plant-pathogen interactions. Structure-based predictions and genome-wide comparisons have emerged as a new approach enabling the identification of similar proteins with divergent sequences. The work undertaken by the authors adds to a growing body of work in plant-microbe research, predominantly from pathogenic organisms, and more recently in symbiotic fungi.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, the authors investigated the potential of nifuroxazide to enhance responsiveness to radiotherapy, employing both an in vitro cell culture system and an in vivo syngeneic mouse tumor model.

      Strengths:<br /> The researchers conducted a series of experiments to elucidate the role of nifuroxazide in facilitating the radiotherapy-induced reduction of proliferation, migration, and invasion of HepG2 cells.

      Weaknesses:<br /> The evidence supporting the claim that nifuroxazide contributes to the degradation of radiotherapy-induced upregulation of PD-L1 via the ubiquitin-proteasome pathway is still relatively weak.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript introduces a new computational framework for choosing 'the best method' according to the case for getting the best possible structural prediction for the CDR-H3 loop. The authors show their strategy improves on average the accuracy of the predictions on datasets of increasingly difficulty in comparison to several state-of-the-art methods. They also show the benefits of improving the structural predictions of the CDR-H3 in the evaluation of different properties that may be relevant for drug discovery and therapeutics design.

      Strengths:<br /> Authors introduce a novel framework, which can be easily adapted and improved. Authors use a well defined dataset to test their new method. A modest average accuracy gain is obtained in comparison to other state-of-the art methods for the same task, while avoiding for testing different prediction approaches. Although the accuracy gain is mainly ascribed to easy cases, the accuracy and precision for moderate to challenging cases is comparable to the best PLM methods (see Fig. 4b and Extended Data Fig. 2), reflecting the present methodological limit in the field.

      Weaknesses:<br /> The proposed method lacks of a confidence score or a warning to help guiding the users in moderate to challenging cases.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study examines the impact of CTRP10/C1QL2 absence on obesity and metabolic health in mice. Female mice lacking CTRP10 tend to develop obesity, particularly on a high-fat diet. Surprisingly, they do not display the typical metabolic traits associated with obesity, like fatty liver or glucose intolerance. This indicates a disconnection between weight gain and metabolic issues in these female mice. The research underscores the need to understand sex-specific factors in how obesity influences metabolic health.

      Strengths:<br /> The study provides compelling evidence regarding Ctrp10's role in female-specific metabolic regulation in mice, shedding light on its potential significance in metabolically healthy obese (MHO) individuals.

      Weaknesses:<br /> -The analysis and description of sex-specific human data require more details to highlight the relevance of Ctrp10 mouse data and the analysis of differentially expressed genes in humans.<br /> -There's a lack of analysis regarding secreted Ctrp10 under various dietary conditions.<br /> -The study didn't assess adipose tissue function to evaluate metabolic health.

    1. Reviewer #3 (Public Review):

      Summary:

      Bartolome et al. present ProteasomeID, a novel method to identify components, interactors, and (potentially) substrates of the proteasome in cell lines and mouse models. As a major protein degradation machine that is highly conserved across eukaryotes, the proteasome has historically been assumed to be relatively homogeneous across biological scales (with few notable exceptions, e.g., immunoproteasomes and thymoproteasomes). However, a growing body of evidence suggests that there is some degree of heterogeneity in the composition of proteasomes across cell tissues, and can be highly dynamic in response to physiologic and pathologic stimuli. This work provides a methodological framework for investigating such sources of variation. The authors start by adapting the increasingly popular biotin ligation strategy for labelling proteins coming into close proximity with one of three different subunits of the proteasome, before proceeding with PSMA4 for further development and analysis based on their preliminary labelling data. In a series of well-constructed and convincing validation experiments, the authors go on to show that the tagged PSMA4 construct can be incorporated into functional proteasomes, and is able to label a broad set of known proteasome components and interacting proteins in HEK293T cells. They also attempt to identify novel proteasomal degradation substrates with ProteasomeID; while this was convincing for known substrates with particularly short half-lives (exemplified by the transcription factor c-myc), follow-up validation experiments with other substrates were less clear. One of the most compelling results was from a similar experiment to confirm proteasomal degradation induced by a BRD-targeting PROTAC, which I think is likely to be of keen interest to the targeted degradation community. Finally, the authors establish a ProteasomeID mouse model, and demonstrate its utility across several tissues.

      Strengths:

      1) ProteasomeID itself is an important step forward for researchers with an interest in protein turnover across biological scales (e.g., in sub-cellular compartments, in cells, in tissues, and whole organisms). I especially see interest from two communities: those studying fundamental proteostasis in physiological and pathologic processes (e.g., ageing; tissue-specific protein aggregation diseases), and those developing targeted protein degradation modalities (e.g., PROTACs; molecular glues). All the datasets generated and deposited here are likely to provide a rich resource to both. The HEK293T cell line data are a valuable proof-of-concept to allow expansion into more biologically-relevant cell culture settings; however, I envision the greatest innovation here to be the mouse model. For example, in the targeted protein degradation space, two major hurdles in early-stage pre-clinical development are (i) evaluation of degradation efficacy across disease-relevant tissues, and (ii) toxicity and safety implications caused by off-target degradation, e.g., of newly-identified molecular glues and/or in particularly-sensitive tissues. The ProteasomeID mouse allows early in vivo assessment of both these questions. The results of the BRD PROTAC experiment in 293T cells provides an excellent in vitro proof-of-concept for this approach.

      2) The mass spectrometry-based proteomics workflows used and presented throughout the manuscript are robust, rigorous, and convincing. For example, the algorithm the authors use for defining enrichment score cut-offs are logical and based on rational models, rather than on arbitrary cut-offs that are common for similar proteomics studies. The construction (and subsequent validation) of both BirA*- and miniTurbo- tagged PSMA4 variants also increases the utility of the method, allowing researchers to choose the variant with the labelling time-scale required for their particular research question.

      3) The optimised BioID and TurboID protocol the authors develop (summarised in Fig. S2A) and validate (Fig. S2B-D) is likely to be of broad interest to cell and molecular biologists beyond the protein degradation field, given that proximity labelling is a current gold-standard in global protein:protein interaction profiling.

      Limitations:

      I think the authors do an excellent job in highlighting the limitations of ProteasomeID throughout the Results and Discussion. I do have some specific comments that might provide additional context for the reader.

      1) The authors do a good job in showing that a substantial proportion of PSMA4-BirA* is incorporated into functional proteasome particles; however, it is not immediately clear to me how much background (false-positive IDs) might be contributed by the ~40 % of PSMA4-BirA* that is not incorporated into the mature core particle (based on the BirA* SEC-MS traces in Fig. 2b and S3b, i.e., the large peak ~ fraction 20). Are there any bands lower down in the native gel shown in Fig. 2c, i.e., corresponding to lower molecular weight complexes or monomeric PSMA4-BirA*? The enrichment of proteasome assembly factors in all the ProteasomeID experiments might suggest the presence of assembly intermediates, which might themselves become substrates for proteasomal degradation (as has been shown for other incompletely-assembled protein complexes, e.g., the ribosome, TRiC/CCT).

      2) Although the authors attempt to show that BirA* tagging of PSMA4 does not interfere with proteasome activity (Fig. 2e-f), I think the experimental evidence for this is incomplete. They show that the overall chymotrypsin-like activity (attributable to PSMB5) in cells expressing PSMA4-BirA* is not markedly reduced compared with control BirA*-expressing cells. However, they do not show that the activity of the specific proteasome sub-population that contains PSMA4-BirA* is unaffected (e.g., by purifying this sub-population via the Flag tag). The proteasome activity of the sub-population of wild-type proteasome complexes that do not contain the PSMA4-BirA* (~50%, based on the earlier immunoblots) could account for the entire chymotrypsin-like activity-especially in the context of HEK293T cells, where steady-state proteasome levels are unlikely to be limiting. It would also be useful to assess any changes in tryspin- and caspase- like activities, especially as tagging of PSMA4 could conceivably interfere with the activity of some PSMB subunits, but not others.

      3) I was left unsure of the general utility of ProteasomeID for identifying novel proteasomal substrates in homeostatic or stressed conditions. The immunoblots for the two candidates the authors follow up in Fig. 4g was not especially clear; the reduction in the bands are modest, at best. Furthermore, classifying candidates based on enrichment following proteasome inhibition with MG-132 have the potential to lead to a high number of false positives. ProteasomeID's utility in identifying potential substrates in more targeted settings (e.g., molecular glues, off-target PROTAC substrates) is far more apparent.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Zhang et al. analyzes the function of the centrosomal protein CEP44 in centriole duplication and in the formation of the mitotic spindle. The first part addresses the role of CEP44 at centrioles. Using mostly RNAi-mediated depletion in cell lines and in some cases KO cells, the authors find increased centriole numbers in depleted cells and, based on quantification of centrioles stained with various centriole markers as well as live imaging, conclude that this is due to premature centriole disengagement and overduplication. The second part, which is largely independent of the first, focuses on the role of CEP44 in the mitotic spindle. The authors find that CEP44 is phosphorylated in mitosis in an Aurora A-dependent manner and identify the phosphorylation site, which controls CEP44 spindle localization and functions in maintaining spindle integrity.

      Strength:<br /> The manuscript makes the interesting observation that reduced expression of CEP44 is observed in breast cancer and correlated with poor survival in patients.<br /> The analysis of mitotic phosphorylation including the identification of the modified site and its role in spindle recruitment is interesting and useful.

      Weakness:<br /> The authors seem to largely ignore previously published work that contrasts with the findings presented in the current study. The previous work found a role of CEP44 in centriole formation and centrosome conversion and observed reduced centriole numbers in depleted cells, whereas the current study claims the opposite, a role in centriole engagement that leads to overduplication and increased centriole number in depleted cells. However, the supporting evidence is not strong enough, especially in light of the previous work. Considering that CEP44 depletion also disrupts mitosis, which could affect centriole numbers by failed segregation/division, a more careful analysis in synchronized cultures would be needed. Also, cell cycle analysis would be required to rule out cell cycle effects in CEP44-depleted cells, which could also explain altered centriole numbers. Moreover, the quality of the imaging is often not sufficient to support the claims.<br /> The second part is largely disconnected from the first and reads as if it was a separate study. There is no attempt to integrate both parts. For example, the second part seems to largely focus on normal bipolar spindles, even though the first part reveals multipolarity as a phenotype after CEP44 knockdown. It remains unclear if the spindle defects are due to centriole defects, defective spindle microtubule stability/organization, or both, and whether the centriole-localized or spindle-localized CEP44 is involved.

      Another weak aspect is that neither for RNAi nor for KO cells the authors show that CEP44 is depleted at centrioles and to what extent. This is only shown in cell extract.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The DNA damage checkpoint (DDC) inhibits the metaphase-anaphase transition to repair various types of DNA damage, including DNA double strand breaks (DSBs). One irreparable DSB can maintain the DDC for 12-15 hours in yeast, after which the cells resume the cell cycle. If there are two DSBs, the DDC is maintained for at least 24 hours. In this study, the authors take advantage of this tighter DDC to investigate whether the best-known proteins involved in establishing the DDC are also responsible for its long-term maintenance during irreparable DSBs. They do this by cleverly degrading such proteins after DSB formation. They show that most, but not all, DDC proteins maintain the cell cycle block. Interestingly, DDC proteins become dispensable after 15 hours and the block is then maintained by spindle assembly checkpoint (SAC) proteins.

      Strengths:<br /> The authors have engineered a tight yeast system to study DDC shutdown after irreparable DSBs and used it to address whether checkpoint proteins (DDC and SAC) contribute to the long-term maintenance of DSB-mediated G2/M block. The different roles of Ddc2, Chk1, and Dun1 are interesting, while the fact that SAC overtakes DDC after 15 hours is intriguing and highlights how DSBs near and far from centromeres can have a profound impact on cell adaptation to DSBs.

      Weaknesses:<br /> Some of the results they present essentially confirm their own previous findings, albeit with a tighter strain design for long-term arrest. In addition, some conclusions about the role of specific DDC proteins in cell cycle arrest at G2/M need further experimental support. The results with Bfa1/Bub2 are surprising and somewhat unexpected. There is no clear mechanism for how depletion of Bub2, but not Bfa1, can relieve the G2/M (metaphase) block.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Prior research on SCC3, a cohesin subunit protein, in yeast and Arabidopsis has underscored its vital role in cell division. This study investigated into the specific functions of SCC3 in rice mitosis and meiosis. In a weakened SCC3 mutant, sister chromatids separating was observed in anaphase I, resulting in 24 univalents and subsequent sterility. The authors meticulously documented SCC3's loading and degradation dynamics on chromosomes, noting its impact on DNA replication. Despite the loss of homologous chromosome pairing and synapsis in the mutant, chromosomes retained double-strand breaks without fragmenting. Consequently, the authors inferred that in the scc3 mutant, DNA repair more frequently relies on sister chromatids as templates compared to the wild type.

      Strengths:<br /> The study presents exceptionally well-executed research in the field of rice cytogenetics.

      Weaknesses:<br /> While the paper's conclusions are generally well-supported, further substantiation is needed for the claim that SCC3 inhibits template choice for sister chromatids. To bolster this conclusion, I recommend that the authors perform whole-genome sequencing on parental and F1 individuals from two rice variants, subsequently calculating the allele frequencies at heterozygous sites in the F1 individuals. If SCC3 indeed inhibits inter-sister chromatid repair in the wild type, we would anticipate a higher frequency of inter-homologous chromosome repair (i.e., gene conversion). This should be manifested as a bias away from the Mendelian inheritance ratio (50:50) in the offspring of the wild type compared to the offspring of the scc3+/- mutant.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript reports the novel observation of alterations in the nuclear pore (NUP) components and the function of the nuclear envelope in knock-in models of APP and presenilin mutations. The data show that loss of NUP immunoreactivity (IR) and pore density are observed at times prior to plaque deposition in this model. The loss of NUP IR is correlated with an increase in intraneuronal Abeta IR with two monoclonal antibodies that react with the N-terminus of Abeta. Similar results are observed in cultured neurons from APP-KI and Wt mice where further results with cultured neurons indicate that Abeta "drives" this process: incubation of neurons with oligomeric, but not monomeric or fibrillar Abeta causes loss of NUP IR, incubation with conditioned media from KI cells but not wt cells also causes loss of NUP IR and treatment with the gamma secretase inhibitor, NAPT partially blocks the loss of NUP IR. Further data show that nuclear envelope function is altered in KI cells and KI cells are more sensitive to TNFalpha-induced necroptosis. This is potentially an important and significant report, but how this fits within the larger picture of what is known about amyloid aggregation and accumulation and pathogenesis in neurons needs to be clarified. The results from mouse brains are strong, while the results from cultured cells are in some instances are of a lower magnitude, less convincing, ambiguous, and sometimes over-interpreted.

      Strengths:<br /> 1. Loss of NUP expression and activity is a novel observation.<br /> 2. Its association with intraneuronal Abeta immunoreactivity suggests an association with Alzheimer's disease.<br /> 3. The experiments generally appear to be well-controlled.<br /> 4. Multiple approaches are sometimes used to increase the robustness of the data.

      Weaknesses:<br /> 1. It does not consider the relationship of the findings here to other published work on the intraneuronal perinuclear and nuclear accumulation of amyloid in other transgenic mouse models and in humans.<br /> 2. It appears to presume that soluble, secreted Abeta is responsible for the effect rather than the insoluble amyloid fibrils.<br /> 3. Most of the critical findings on the association with Abeta and the functional consequences are done in cultured neurons and not in mouse models.<br /> 4. There is no evidence from the human brain that would strengthen the significance.<br /> 5. It is not clear when the alteration in NUP expression begins in the KI mice as there is no time at which there is no difference between NUP expression in KI and Wt and the earliest time shown is 2 months. If NUP expression is decreased from the earliest times at birth, then this makes the significance of the observation of the association with amyloid pathology less clear.

    1. Reviewer #3 (Public Review):

      This study presents results arguing that the mammalian acetyltransferase Tip60/KAT5 auto-acetylates itself on one specific lysine residue before the MYST domain, which in turn favors not only nuclear localization but also condensate formation on chromatin through LLPS. The authors further argue that this modification is responsible for the bulk of Tip60 autoacetylation and acetyltransferase activity towards histone H4. Finally, they suggest that it is required for association with txn factors and in vivo function in gene regulation and DNA damage response.

      These are very wide and important claims and, while some results are interesting and intriguing, there is not really close to enough work performed/data presented to support them. In addition, some results are redundant between them, lack consistency in the mutants analyzed, and show contradiction between them. The most important shortcoming of the study is the fact that every single experiment in cells was done in over-expressed conditions, from transiently transfected cells. It is well known that these conditions can lead to non-specific mass effects, cellular localization not reflecting native conditions, and disruption of native interactome. On that topic, it is quite striking that the authors completely ignore the fact that Tip60 is exclusively found as part of a stable large multi-subunit complex in vivo, with more than 15 different proteins. Thus, arguing for a single residue acetylation regulating condensate formation and most Tip60 functions while ignoring native conditions (and the fact that Tip60 cannot function outside its native complex) does not allow me to support this study.

      Specific points:<br /> -It is known that over-expression after transient transfection can lead to non-specific acetylation of lysines on the proteins, likely in part to protect from proteasome-mediated degradation. It is not clear whether the Kac sites targeted in the experiments are based on published/public data. In that sense, it is surprising that the K327R mutant does not behave like a HAT-dead mutant (which is what exactly?) or the K187R mutant as this site needs to be auto-acetylated to free the catalytic pocket, so essential for acetyltransferase activity like in all MYST-family HATs. In addition, the effect of K187R on the total acetyl-lysine signal of Tip60 is very surprising as this site does not seem to be a dominant one in public databases.

      -As the physiological relevance of the results is not clear, the mutants need to be analyzed at the native level of expression to study real functional effects on transcription and localization (ChIP/IF). It is not clear the claim that Tip60 forms nuclear foci/punctate signals at physiological levels is based on what. This is certainly debated because in part of the poor choice of antibodies available for IF analysis. In that sense, it is not clear which Ab is used in the Westerns. Endogenous Tip60 is known to be expressed in multiple isoforms from splice variants, the most dominant one being isoform 2 (PLIP) which lacks a big part (aa96-147) of the so-called IDR domain presented in the study. Does this major isoform behave the same?

      -It is extremely strange to show that the K187R mutant fails to get in the nuclei by cell imaging but remains chromatin-bound by fractionation... If K187 is auto-acetylated and required to enter the nucleus, why would a HAT-dead mutant not behave the same?

      -If K187 acetylation is key to Tip60 function, it would be most logical (and classical) to test a K187Q acetyl-mimic substitution. In that sense, what happens with the R188Q mutant? That all goes back to the fact that this cluster of basic residues looks quite like an NLS.

      -The effect of the mutant on the TIP60 complex itself needs to be analyzed, e.g. for associated subunits like p400, ING3, TRRAP, Brd8...

      -The discussion is excessively long without addressing the obvious questions mentioned above.

    1. Reviewer #3 (Public Review):

      In this study, the authors demonstrated a new mechanism by which the protein stability of EZH2 is regulated. This mechanism is multifaceted and yet the authors provided evidence for every step of regulation. EZH2 is monomethylated at K20 by SET7, which can be removed by LSD1 and recognized by L3MBTL3. L3MBTL3 recruits the ubiquitin E3 ligase CRLDCAF5 to EZH2 via methylation of K20, which results in polyubiquitylation and proteasomal degradation of the histone methyltransferase. Additionally, they found that AKT-mediated phosphorylation of EZH2 at S21 blocks monomethylation at K20 and vice versa. Finally, they demonstrated in the K20R GEMM model that stabilization of EZH2 protein leads to reactive hyperplasia and hematopoiesis. In general, this study reveals an interesting and novel mechanism underlying the regulation of the epigenetic mark H3K27me3 and the oncogenic function of EZH2. The authors have considered every aspect of the signaling pathway that regulates the protein stability of EZH2. The data was comprehensive, rigorous, and supportive of the conclusions they made. Their results may help explain some of the conflicting results that previous studies have reported.

      However, there are still some issues with the significance of the work and the quality of the data. The major issues are:<br /> 1. The converged effect of EZH2 methylation and phosphorylation on H3K27me3 is unclear.<br /> 2. How the methylation-phosphorylation switch of EZH2 determines the biological phenotypes they observed is not addressed.<br /> 3. Some of the data in the manuscript is conflicting.

    1. Reviewer #3 (Public Review):

      In their manuscript, Pivirotto et al. make an unexpected observation that a set of candidate beneficial alleles according to the Evolutionary Probability method (EP) have estimated ages thousands of years older than control alleles of similar frequency and outside of functional segments. To explain this unexpectedly older ages, the authors propose a number of interesting evolutionary processes related to balancing selection, including staggered sweeps.

      It is important to first mention that the authors do find that as expected, deleterious alleles are younger than controls. This provides evidence that the allele age estimates used by the authors are of sufficient quality to detect age differences between groups of genes. I am also convinced by the fact that EP can be used to focus on a set of alleles substantially enriched in deleterious ones, given the very clear frequency patterns related to EP.

      I have a number of concerns about the manuscript, including one rather serious one.

      My main concern is that many of the observations made by the authors could be caused by mispolarization of alleles, where either (i) mostly low frequency derived alleles are mischaracterized as ancestral and the other, actually ancestral allele is mischaracterized as a high frequency derived allele, or (ii) mostly low frequency ancestral alleles are mischaracterized as derived. Unfortunately, the authors do not even mention the risk of mispolarization in their manuscript. This is a serious problem for this manuscript because ancestral alleles annotated as derived are by definition going to generate older age estimates than if they were truly derived. It would be very useful to be able to have a look at the full distribution of allele ages rather than just confidence intervals as in Figure 1. I happen to have experience with mispolarization of high frequency ancestral alleles as derived by a maximum likelihood method, different from the one used by the authors (Keightley et al Genetics 2018), where the mispolarization became visible as a very suspicious SFS with a visible excess of high frequency variants, especially those expected to be functional (because of the relatively larger corresponding supply of low frequency deleterious functional variants). Even if the ML method used by the authors is not the same, mispolarization is still a serious risk. Glémin et al. Genome Research 2015 also found that mispolarization is far from being a negligible issue.

      Mispolarization of low frequency alleles may be especially prominent in the case of mispolarized deleterious alleles associated with a very negative delta-EP, that then appear as alleles with a very positive delta-EP. Focusing on high delta-EP alleles may then in fact enrich the dataset in mispolarized alleles that then result in older age estimates. Looking at Figure 1B especially, I am worried by the fact that very high delta-EP values seem to go back to the frequencies observed for very negative delta-EP. This is what mispolarization of low frequency alleles might cause as a pattern, in this case especially low frequency ancestral alleles being misidentified as derived?

      The authors can address the possible issue of mispolarization in multiple ways. First, they can use simulations of sequences to estimate amounts of mispolarization based on their polarization approach, using substitutions/mutation rates as realistic as possible.<br /> Second, the authors could check if there is suspicious symmetry in the distribution of delta-EP between alleles at frequency f and alleles at frequency 1-f. This pattern could be generated by mispolarization.

      My second less serious concern has to do with the use of high delta-EP as evidence that alleles are beneficial. The validation set from the Patel & Kumar 2019 paper is arguably small with 24 known selected variants. It does not follow from the fact that a small set of known selected variants have higher delta-EP, that all variants with high delta-EP tend to be beneficial. This is especially true in the case where beneficial variants tend to be rare, and there are then far more variants expected with high delta-EP than there are beneficial variants. I am willing to change my mind on this if the overall results can be shown to be robust after accounting for allele mispolarization.

      Third, I like the idea of staggered sweeps to explain the results, but I am wondering if there is any evidence in the literature of interference between deleterious and advantageous variants that the authors could base their proposed explanation on.

      Finally, and I realize that it is a bit of a stretch, I am wondering if the authors could better justify their choices of methods to estimate the age of alleles. What about ARGweaver, Relate or tsdate? How do these methods compare with GEVA? From looking at the literature I could not find a direct comparison of the precision of GEVA compared to these other tools, but it may be worth at least discussing that the results could be further put to the test with other available ARG-based tools to estimate allele ages. Wilder Wohns et al. Science 2022 compare the performance of these different ARG methods with ancient DNA data, and in fact find that GEVA does not perform as well as for example Relate or tsdate.

    1. Reviewer #3 (Public Review):

      Summary: In this manuscript, Blaeser et al. explore the link between CSD and headache pain. How does an electrochemical wave in the brain parenchyma, which lacks nociceptors, result in pain and allodynia in the V1-3 distribution? Prior work had established that CSD increased the firing rate of trigeminal neurons, measured electrophysiologically at the level of the peripheral ganglion. Here, Blaeser et al. focus on the fine afferent processes of the trigeminal neurons, resolving Ca2+ activity of individual fibers within the meninges. To accomplish these experiments, the authors injected AAV encoding the Ca2+ sensitive fluorophore GCamp6s into the trigeminal ganglion, and 8 weeks later imaged fluorescence signals from the afferent terminals within the meninges through a closed cranial window. They captured activity patterns at rest, with locomotion, and in response to CSD. They found that mechanical forces due to meningeal deformations during locomotion (shearing, scaling, and Z-shifts) drove non-spreading Ca2+ signals throughout the imaging field, whereas CSD caused propagating Ca2+ signals in the trigeminal afferent fibers, moving at the expected speed of CSD (3.8 mm/min). Following CSD, there were variable changes in basal GCamp6s signals: these signals were unchanged in the majority of fibers, signals increased (after a ~20 min delay) in 10% of fibers, and signals decreased in 20% of fibers. Bouts of locomotion were less frequent following CSD, but when they did occur, they elicited more robust GCamp6s signals than pre-CSD. These findings advance the field, suggesting that headache pain following CSD can be explained on the basis of peripheral cranial nerve activity, without invoking central sensitization at the brain stem/thalamic level. This insight could open new pathways for targeting the parenchymal-meningeal interface to develop novel abortive or preventive migraine treatments.

      Strengths: The manuscript is well-written. The studies are broadly relevant to neuroscientists and physiologists, as well as neurologists, pain clinicians, and patients with migraine with aura and acephalgic migraine. The studies are well-conceived and appear to be technically well-executed.

      Weaknesses: In the present study, conclusions are based entirely on fluorescence signals from GCamp6s. Fluorescence experiments should be interpreted cautiously in the context of CSD. GCamp6 fluorophores are strongly pH dependent, with decreased signal at acidic pH values (at matched Ca2+ concentration). CSD induces an impressive acidosis transient in the brain parenchyma, so one wonders whether the suppression of activity reported in the wake of CSD (Figure 2) in fact reflects decreased sensitivity of the GCamp6 reporter, rather than decreased activity in the fibers. If intracellular pH in trigeminal afferent fibers acidifies in the wake of CSD, GCamp6s fluorescence may underestimate the actual neuronal activity.

    1. Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).

    2. Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors consider various statistical testing frameworks for model selection in the context of neuronal tuning. They consider cross-validation as a baseline scheme, and show various corrections and modifications to existing cross-validation schemes together with the underlying data/sign shuffling procedures for finding null distributions. Through careful simulations, they show that some of these tests are expectedly too conservative or too optimistic, and show that a log-likelihood-based test statistic with a cyclic shift permutation test for obtaining null distribution and Bonferroni correction strikes the right balance between hits and false detection. They further apply these tests to calcium imaging data from the mouse entorhinal cortex to identify grid cells (i.e., cells for which position is selected as a relevant variable).

      Strengths:<br /> The paper is very well written, easy to follow, and enjoyable to read. It addresses an important issue in modern neuroscience, which is drawing conclusions based on data with missing or (unaccounted for) auto-correlated covariates.

      Weaknesses:<br /> The paper would benefit from including more rigorous theoretical justification on why some of the procedures examined here outperform the others. This could be done in a stylized example with a Gaussian linear model, for which some of the used statistics have well-known distributions.

      Comparisons with false discovery rate (FDR) control, as a more appropriate measure of performance when dealing with many comparisons, would benefit the existing comparisons merely based on Bonferroni correction.

      Including spiking history in the generalized linear models (GLMs) used in analyzing the mouse data could be beneficial, as existing literature points to the importance of spiking history as a relevant covariate.

    1. Reviewer #3 (Public Review):

      Summary: Drosophila larvae exhibit characteristic escape behavior in response to a noxious stimulus. The underlying nociceptive circuit that regulates the temporal dynamics of escape behavior - bending, rolling, and crawling remains unclear. Using behavioral prototypes with optical stimulation and imaging, the authors show the function of descending neurons (SeIN128) in the termination of the rolling and subsequent initiation of the crawling behavior. The study further establishes the functional connectome of SeIN128, Basin-2, and A00c neurons, forming an inhibitory feedback circuit that regulates the rolling-escape sequences.

      Strength: The study provides anatomical and functional evidence for temporal dynamics of escape behaviors in Drosophila larvae. Authors convincingly show the function of bilaterally descending neurons (previously identified SeIN128 neurons) in the transition of escape sequences. Based on the previous studies and functional connectome analysis, the study shows that SeIN128 neurons form a GABAergic feedback circuit with Basin-2, a second-order interneuron, and A00c, an ascending neuron downstream of Basin-2. Activation of SeIN128 neurons terminates the rolling by suppressing Basin-2 activity, facilitating subsequent rapid escape crawling. Thus, it establishes the function of feedback inhibition in temporal dynamics of escape behavior and contributes to a mechanistic understanding of the nociceptive circuits.

      Weakness: The manuscript is written clearly; however, the presentation of the data needs to be improved for readability. The data and discussion establish the function of SeIN128 and Basin-2 in escape behavior, but the role of A00c neurons needs to be clarified.

    1. Reviewer #3 (Public Review):

      Summary<br /> In this paper, the authors model motor adaptation as a Bayesian process that combines visual uncertainty about the error feedback, uncertainty about proprioceptive sense of hand position, and uncertainty of predicted (=planned) hand movement with a learning and retention rate as used in state space models. The model is built with results from several experiments presented in the paper and is compared with the PReMo model (Tsay, Kim, et al., 2022) as well as a cue combination model (Wei & Körding, 2009). The model and experiments demonstrate the role of visual uncertainty about error feedback in implicit adaptation.

      In the introduction, the authors notice that implicit adaptation (as measured in error-clamp-based paradigms) does not saturate at larger perturbations, but decreases again (e.g. Moorehead et al., 2017 shows no adaptation at 135{degree sign} and 175{degree sign} perturbations). They hypothesized that visual uncertainty about cursor position increases with larger perturbations since the cursor is further from the fixated target. This could decrease the importance assigned to visual feedback which could explain lower asymptotes.

      The authors characterize visual uncertainty for 3 rotation sizes in the first experiment, and while this experiment could be improved, it is probably sufficient for the current purposes. Then the authors present a second experiment where adaptation to 7 clamped errors is tested in different groups of participants. The models' visual uncertainty is set using a linear fit to the results from experiment 1, and the remaining 4 parameters are then fit to this second data set. The 4 parameters are 1) proprioceptive uncertainty, 2) uncertainty about the predicted hand position, 3) a learning rate, and 4) a retention rate. The authors' Perceptual Error Adaptation model ("PEA") predicts asymptotic levels of implicit adaptation much better than both the PReMo model (Tsay, Kim et al., 2022), which predicts saturated asymptotes, or a causal inference model (Wei & Körding, 2007) which predicts no adaptation for larger rotations. In a third experiment, the authors test their model's predictions about proprioceptive recalibration, but unfortunately, compare their data with an unsuitable other data set. Finally, the authors conduct a fourth experiment where they put their model to the test. They measure implicit adaptation with increased visual uncertainty, by adding blur to the cursor, and the results are again better in line with their model (predicting overall lower adaptation) than with the PReMo model (predicting equal saturation but at larger perturbations) or a causal inference model (predicting equal peak adaptation, but shifted to larger rotations). In particular, the model fits experiment 2 and the results from experiment 4 show that the core idea of the model has merit: increased visual uncertainty about errors dampens implicit adaptation.

      Strengths<br /> In this study, the authors propose a Perceptual Error Adaptation model ("PEA") and the work combines various ideas from the field of cue combination, Bayesian methods, and new data sets, collected in four experiments using various techniques that test very different components of the model. The central component of visual uncertainty is assessed in the first experiment. The model uses 4 other parameters to explain implicit adaptation. These parameters are 1) learning and 2) retention rate, as used in popular state space models, and the uncertainty (variance) of 3) predicted and 4) proprioceptive hand position. In particular, the authors observe that asymptotes for implicit learning do not saturate, as claimed before, but decrease again when rotations are very large and that this may have to do with visual uncertainty (e.g. Tsay et al., 2021, J Neurophysiol 125, 12-22). The final experiment confirms predictions of the fitted model about what happens when visual uncertainty is increased (overall decrease of adaptation). By incorporating visual uncertainty depending on retinal eccentricity, the predictions of the PEA model for very large perturbations are notably different from and better than, the predictions of the two other models it is compared to. That is, the paper provides strong support for the idea that visual uncertainty of errors matters for implicit adaptation.

      Weaknesses<br /> Although the authors don't say this, the "concave" function that shows that adaptation does not saturate for larger rotations has been shown before, including in papers cited in this manuscript.

      The first experiment, measuring visual uncertainty for several rotation sizes in error-clamped paradigms has several shortcomings, but these might not be so large as to invalidate the model or the findings in the rest of the manuscript. There are two main issues we highlight here. First, the data is not presented in units that allow comparison with vision science literature. Second, the 1 second delay between the movement endpoint and the disappearance of the cursor, and the presentation of the reference marker, may have led to substantial degradation of the visual memory of the cursor endpoint. That is, the experiment could be overestimating the visual uncertainty during implicit adaptation.

      The paper's third experiment relies to a large degree on reproducing patterns found in one particular paper, where the reported hand positions - as a measure of proprioceptive sense of hand position - are given and plotted relative to an ever-present visual target, rather than relative to the actual hand position. That is, 1) since participants actively move to a visual target, the reported hand positions do not reflect proprioception, but mostly the remembered position of the target participants were trying to move to, and 2) if the reports are converted to a difference between the real and reported hand position (rather than the difference between the target and the report), those would be on the order of ~20{degree sign} which is roughly two times larger than any previously reported proprioceptive recalibration, and an order of magnitude larger than what the authors themselves find (1-2{degree sign}) and what their model predicts. Experiment 3 is perhaps not crucial to the paper, but it nicely provides support for the idea that proprioceptive recalibration can occur with error-clamped feedback.

      Perhaps the largest caveat to the study is that it assumes that people do not look at the only error feedback available to them (and can explicitly suppress learning from it). This was probably true in the experiments used in the manuscript, but unlikely to be the case in most of the cited literature. Ignoring errors and suppressing adaptation would also be a disastrous strategy to use in the real world, such that our brains may not be very good at this. So the question remains to what degree - if any - the ideas behind the model generalize to experiments without fixation control, and more importantly, to real-life situations.

      Specific comments:<br /> A small part of the manuscript relies on replicating or modeling the proprioceptive recalibration in a study we think does NOT measure proprioceptive recalibration (Tsay, Parvin & Ivry, JNP, 2020). In this study, participants reached for a visual target with a clamped cursor, and at the end of the reach were asked to indicate where they thought their hand was. The responses fell very close to the visual target both before and after the perturbation was introduced. This means that the difference between the actual hand position, and the reported/felt hand position gets very large as soon as the perturbation is introduced. That is, proprioceptive recalibration would necessarily have roughly the same magnitude as the adaptation displayed by participants. That would be several times larger than those found in studies where proprioceptive recalibration is measured without a visual anchor. The data is plotted in a way that makes it seem like the proprioceptive recalibration is very small, as they plot the responses relative to the visual target, and not the discrepancy between the actual and reported hand position. It seems to us that this study mostly measures short-term visual memory (of the target location). What is astounding about this study is that the responses change over time to begin with, even if only by a tiny amount. Perhaps this indicates some malleability of the visual system, but it is hard to say for sure.

      Regardless, the results of that study do not form a solid basis for the current work and they should be removed. We would recommend making use of the dataset from the same authors, who improved their methods for measuring proprioception shifts just a year later (Tsay, Kim, Parvin, Stover, and Ivry, JNP, 2021). Although here the proprioceptive shifts during error-clamp adaptation (Exp 2) were tiny, and not quite significant (p<0.08), the reports are relative to the actual location of the passively placed unseen hand, measured in trials separate from those with reach adaptation and therefore there is no visual target to anchor their estimates to.

      Experiment 1 measures visual uncertainty with increased rotation size. The authors cite relevant work on this topic (Levi & Klein etc) which has found a linear increase in uncertainty of the position of more and more eccentrically displayed stimuli.

      First, this is a question where the reported stimuli and effects could greatly benefit from comparisons with the literature in vision science, and the results might even inform it. In order for that to happen, the units for the reported stimuli and effects should (also) be degrees of visual angle (dva).

      As far as we know, all previous work has investigated static stimuli, where with moving stimuli, position information from several parts of the visual field are likely integrated over time in a final estimate of position at the end of the trajectory (a Kalman filter type process perhaps). As far as we know, there are no studies in vision science on the uncertainty of the endpoint of moving stimuli. So we think that the experiment is necessary for this study, but there are some areas where it could be improved.

      Then, the linear fit is done in the space of the rotation size, but not in the space of eccentricity relative to fixation, and these do not necessarily map onto each other linearly. If we assume that the eye-tracker and the screen were at the closest distance the manufacturer reports it to work accurately at (45 cm), we would get the largest distances the endpoints are away from fixation in dva. Based on that assumed distance between the participant and monitor, we converted the rotation angles to distances between fixation and the cursor endpoint in degrees visual angle: 0.88, 3.5, and 13.25 dva (ignoring screen curvature, or the absence of it). The ratio between the perturbation angle and retinal distance to the endpoint is roughly 0.221, 0.221, and 0.207 if the minimum distance is indeed used - which is probably fine in this case. But still, it would be better to do fit in the relevant perceptual coordinate system.

      The first distance (4 deg rotation; 0.88 dva offset between fixation and stimulus) is so close to fixation (even at the assumed shortest distance between eye and screen) that it can be considered foveal and falls within the range of noise of eye-trackers + that of the eye for fixating. There should be no uncertainty on or that close to the fovea. The variability in the data is likely just measurement noise. This also means that a linear fit will almost always go through this point, somewhat skewing the results toward linearity. The advantage is that the estimate of the intercept (measurement noise) is going to be very good. Unfortunately, there are only 2 other points measured, which (if used without the closest point) will always support a linear fit. Therefore, the experiment does not seem suitable to test linearity, only to characterize it, which might be sufficient for the current purposes. We'd understand if the effort to do a test of linearity using many more rotations requires too much effort. But then it should be made much clearer that the experiment assumes linearity and only serves to characterize the assumed linearity.

      Final comment after the consultation session:<br /> There were a lot of discussions about the actual interpretation of the behavioral data from this paper with regards to past papers (Tsay et al. 2020 or 2021), and how it matches the different variables of the model. The data from Tsay 2020 combined both proprioceptive information (Xp) and prediction about hand position (Xu) because it involves active movements. On the other hand, Tsay et al. 2021 is based on passive movements and could provide a better measure of Xp alone. We would encourage you to clarify how each of the variables used in the model is mapped onto the outcomes of the cited behavioral experiments.

      The reviewers discussed this point extensively during the consultation process. The results reported in the Tsay 2020 study reflect both proprioception and prediction. However, having a visual target contributes more than just prediction, it is likely an anchor in the workspace that draws the response to it. Such that the report is dominated by short-term visual memory of the target (which is not part of the model). However, in the current Exp 3, as in most other work investigating proprioception, this is calculated relative to the actual direction.

      The solution is fairly simple. In Experiment 3 in the current study, Xp is measured relative to the hand without any visual anchors drawing responses, and this is also consistent with the reference used in the Tsay et al 2021 study and from many studies in the lab of D. Henriques (none of which also have any visual reach target when measuring proprioceptive estimates). So we suggest using a different data set that also measures Xp without any other influences, such as the data from Tsay et al 2021 instead.

      These issues with the data are not superficial and can not be solved within the model. Data with correctly measured biases (relative to the hand) that are not dominated by irrelevant visual attractors would actually be informative about the validity of the PEA model. Dr. Tsay has so much other that we recommend using a more to-the-point data set that could actually validate the PEA model.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows to monitor in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration.

      Strengths:<br /> One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn`t corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.

      Weaknesses:<br /> Although this is a well-performed study, I have some comments for the authors to address:<br /> 1-A red tag version of the sensor (jAspSnFR3-mRuby3) was generated for normalization purposes, with this the authors plan to correct GFP signal from expression and movement artifacts. I naturally interpret "movement artifacts" as those generated by variations in cell volume and focal plane during time-lapse experiments. However, it was mentioned that jAspSnFR3-mRuby3 included a histidine tag that may induce a non-specific effect (responses to the treatment with some amino acids). This suggests that a version without the tag needs to be generated and that an alternative design needs to be set for normalization purposes. A nuclear-localized RFP was expressed in a second attempt to incorporate RFP as a normalization signal. Here the cell lines that express both signals (sensor and RFP) were generated by independent lentiviral transductions (insertions). Unless the number of insertions for each construct is known, this approach will not ensure an equimolar expression of both proteins (sensor and RFP). In this scenario is not clear how the nuclear expression of RFP will help the correction by expression or monitor changes in cell volume. The authors may be interested in attempting a bicistronic system to express both the sensor and RFP.<br /> 2-The authors were interested in establishing the temporal dynamics of aspartate depletion by genetics and pharmaceutical means. For the inhibition of mitochondrial complex I rotenone and metformin were used. Although the assays are clearly showing aspartate depletion the report of cell viability is missing. Considering that glutamine deprivation induces arrest in cell proliferation, I think will be important to know the conditions of the cell cultures after 60 hours of treatment with such inhibitors.<br /> 3-The pH sensitivity was checked in vitro with jAspSnFR3-mRuby3 and the sensor reported suitable for measurements at physiological pH. It would be an opportunity to revisit the analysis for pH sensitivity in cultured cells using an untagged version of jAspSnFR3 coupled, for example, to a sensor for pH.<br /> 4-While the authors take an interesting approach to measuring intracellular aspartate concentration, it will be highly desirable if a calibration protocol can be designed for this sensor. Clearly, glutamine depletion grants a minimal ("zero") aspartate concentration. However, having a more dynamic way for calibration will facilitate the introduction of this tool for metabolism studies. This may be achieved by incorporating a cultured cell that already expresses the transporter or by ectopic expression in the cells that have already been used.

    1. Reviewer #3 (Public Review):

      The first part of the review was prepared after the first submission of the paper. After this, the authors made several changes in the manuscript. These changes are assessed at the end of the review.

      First part:

      The paper by Deng, Kumar, Cavalli, Klyachko describe that, unlike in other cell types, loss of Fmr1 decreases the excitability of hippocampal mossy cells due to up-regulation of Kv7 currents. They also show evidence that while muting mossy cells appears to be a compensatory mechanism, it contribute to the higher activity of the dentate gyrus, because the removal of mossy cell output alleviate the inhibition of dentate principal cells. This may be important for the patho-mechanism in Fragile X syndrome caused by the loss of Fmr1.

      These experiments were carefully designed, and the results are presented ‎in a very logical, insightful and self-explanatory way. Therefore, this paper represents strong evidences for the claims of the authors. In the current state of the manuscript there are only a few points that need additional explanation.

      One of the results, that is shown in the supplementary dataset, does not fit to the main conclusions. Changes in the mEPSC frequency suggest that in addition to the proposed network effects, there are additional changes in the synaptic machinery or synapse number that are independent of the actual activity of the neurons. Since the differences of the mEPSC and sEPSC frequencies are similar and because only the latter can signal network effects, while the former is typically interpreted as a presynaptic change, it cannot be claimed that sEPSC frequency changes are due to the hypo-excitability of mossy cells.

      An apparent technical issue may imply a second weak point in the interpretation of the results. Because the IPSCs in the PP stimulation experiments (Fig8) start within a few milliseconds, it is unlikely that its first ‎components originate from the PP-GC-MC-IN feedforward inhibitory circuit. The involvement of this circuit and MCs in the Kv7-dependent excitability changes is the main implication of the results of this paper. But this feedforward inhibition requires three consecutive synaptic steps and EPSP-AP couplings, each of them lasting for at least 1ms + 2-5ms. Therefore, the inhibition via the PP-GC-MC-IN circuit can be only seen from 10-20ms after PP stimulation. The earlier components of the cPSCs should originate from other circuit elements that are not related to the rest of the paper. Therefore, more isolated measurements on the cPSC recordings are needed ‎which consider only the later phase of the IPSCs. This can be either a measurement on the decay phase or a pharmacological manipulation that selectively enhance/inhibit a specific component of the proposed circuit.

      I suggest refraining from the conclusions saying "‎MCs provide at least ~51% of the excitatory drive onto interneurons in WT and ~41% in KO mice", because too many factors (eg. IN celll types, slice condition, synaptic reliability) are not accounted for these actual numbers, and these values are not necessary for the general observation of the paper.

      There are additional minor issues about the presentation of the results that are explained in the private recommendation for the Authors.

      Review after the revision:

      The authors accepted my suggestions and made changes in the manuscript to address my point about the interpretation of the mEPSC changes.<br /> The second point was related to the interpretation of the stimulation evoked multisynaptic compound responses. Specifically, the IPSC components in the PP stimulation experiments start within a few milliseconds, and I pointed out that it is unlikely that its first ‎components originate from the PP-GC-MC-IN feedforward inhibitory circuit. The authors provided strong arguments for the interpretation of these compound responses in their reply and the conclusions are consistent with these complex results.

      Additional minor issues were fully addressed.

      I still think that this is a strong paper that provides new insights into the mechanisms of Fragile X syndrome at the level of single neurons and local network. The extensive series of experiments convincingly support the main findings that in addition to contributing to the underlying mechanisms of this disease also highlight how delicately neuronal activity is balanced even in constrained conditions.

    1. Reviewer #3 (Public Review):

      The goal of the current manuscript is to investigate how changes in transporter substrate specificity emerge through experimental evolution. The authors investigate the APC family of amino acid transporters, a large family with many related transporters that together cover the spectrum of amino acid uptake in yeast.

      The authors use a clever approach for their experimental evolutions. By deleting 10 amino acid uptake transporters in yeast, they develop a strain that relies on amino acid import by introducing APC transporters under nitrogen-limiting conditions. They can thus evolve transporters towards the transport of new substrates if no other nitrogen source is available. The main takeaway from the paper is that it is relatively easy for the spectrum of substrates in a particular transporter of this family to shift, as a number of single mutants are identified that modulate substrate specificity. In general, transporters evolved towards gain-of-function mutations (better or new activities) and also confer transport promiscuity, expanding the range of amino acids transported.

      The data in the paper support the conclusions, in general, and the outcomes (evolution towards promiscuity) agree with the literature available for soluble enzymes. However, it is also a possibility that the design of these experiments selects for promiscuity among amino acids. The selections were designed such that yeast had access to amino acids that were already transported, with a greater abundance of the amino acid that was the target of selection. Under these conditions, it seems probable that the fittest variants will provide the yeast access to all amino acid substrates in the media, and unlikely that a specificity swap would occur, limiting the yeast to only the new amino acid.

      The authors also examine the fitness costs of mutants, but only in the narrow context of growth on a single (original) amino acid under conditions of nitrogen limitation. Amino acid uptake is typically tightly controlled because some amino acids (or their carbon degradation products) are toxic in excess. This paper does not address or discuss whether there might be a fitness cost to promiscuous mutants in conditions where nitrogen is not limiting.

    1. Reviewer #3 (Public Review):

      Summary:

      In this study, Bomba-Warczak et al focused on reproductive aging, and they presented a map for long-lived proteins that were stable during reproductive lifespan. The authors used MIMS to examine and show distinct molecules in different cell types in the ovary and tissue regions in a 6 month mice group, and they also used proteomic analysis to present different LLPs in ovaries between these two timepoints in 6-month and 10-month mice. The authors also examined the LLPs in oocytes in the 6-months mice group and indicated that these were nuclear, cytoskeleton, and mitochondria proteins.

      Strengths:

      Overall, this study provided basic information or a 'map' of the pattern of long-lived proteins during aging, which will contribute to the understanding of the defects caused by reproductive aging.

      Weaknesses:

      The 6-month mice were used as an aged model; no validation experiments were performed with proteomics analysis only.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript authored by Lan Guan and colleagues reveals the structure of the cytosol-facing conformation of the MelB sodium/Li coupled permease using the nab-Fab approach and cryoEM for structure determination. The study reveals the conformational transitions in the melB transport cycle and allows understanding the role of sugar and ion specificities within this transporter.

      Strengths:

      The study employs a very exciting strategy of transferring the CDRS of a conformation specific nano body to the nab-fab system to determine the inward-open structure of MelB. The resolution of the structure is reasonable enough to support the major conclusions of the study. This is overall a well-executed study.

      Weaknesses:

      The authors seem to have mixed up the exothermic and endothermic aspects of ITC binding in their description. Positive heats correspond to endothermic heat changes in ITC and negative heat changes correspond to exothermic heats. The authors seem to suggest the opposite. This is consistently observed throughout the manuscript.

    1. Reviewer #3 (Public Review):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo.

      The authors were responsive to the reviewers comments in some aspects. However, the manuscript continues to suffer from significantly overstated claims that are not mitigated in the revision. While additional data has been added, it is unclear how this new data provides clarity to the overall premise of this observational study. Importantly, the authors have added a second model of hepatocellular carcinoma with findings that are consistent with the melanoma model previously reported. In addition, they make more clear that the previously published manuscript on this subject was use of older donors for BMT while now they use younger donors. This is at best incremental. It remains unclear whether Eklf exerts its effect on resistance to malignant progression / metastasis by modulating Pd1 or Pdl1 vs. increasing NK cells as the authors provide evidence of both and do not resolve which mechanism is primarily involved. Finally, there is no evidence that Eklf mutation confers "an anti-disease and anti-aging" effect as at best the data provides evidence of resistance to malignant progression / metastasis in melanoma and hepatoma models.

      The work is impactful as it provides evidence of anticancer effect of a specific hematological mutation but the mechanism by which this occurs is not completely elucidated by this work.

    1. Reviewer #3 (Public Review):

      In multiple cancers, the key roles of B cells are emerging in the tumor microenvironment (TME). The authors of this study appropriately introduce that B cells are relatively under-characterised in the TME and argue correctly that it is not known how the B cell receptor (BCR) repertoires across tumors, lymph nodes, and peripheral blood relate. The authors therefore supply a potentially useful study evaluating the tumor, lymph node, and peripheral blood BCR repertoires and site-to-site as well as intra-site relationships. The authors employ sophisticated analysis techniques, although the description of the methods is incomplete. Among other interesting observations, the authors argue that the tumor BCR repertoire is more closely related to that of draining lymph node (dLN) than the peripheral blood in terms of clonal and isotype composition. Furthermore, the author's findings suggest that tumor-infiltrating B cells (TIL-B) exhibit a less mature and less specific BCR repertoire compared with circulating B cells. Overall, this is a potentially useful work that would be of interest to both medical and computational biologists working across cancer. However, there are aspects of the work that would have benefitted from further analysis and areas of the manuscript that could be written more clearly and proofread in further detail.

      Major Strengths:

      1. The authors provide a unique analysis of BCR repertoires across tumor, dLN, and peripheral blood. The work provides useful insights into inter- and intra-site BCR repertoire heterogeneity. While patient-to-patient variation is expected, the findings with regard to intra-tumor and intra-dLN heterogeneity with the use of fragments from the same tissue are of importance, contribute to the understanding of the TME, and will inform future study design.

      2. A particular strength of the study is the detailed CDR3 physicochemical properties analysis which leads the authors to observations that suggest a less-specific BCR repertoire of TIL-B compared to circulating B cells.

      Major Weaknesses:

      1. The study would have benefitted from a deeper biological interpretation of the data. While given the low number of patients one can plausibly understand a reluctance to speculate about clinical details, there is limited discussion about what may contribute to observed heterogeneity. For example, for the analysis of three lymph nodes taken per patient which were examined for inter-LN heterogeneity, there is a lack of information regarding these lymph nodes. 'LN3' is deemed as exhibiting the most repertoire overlap with the tumor but there is no discussion as to why this may be the case.

      2. At times the manuscript is difficult to follow. In particular, the 'Intra-LN heterogeneity' section follows the 'LN-LN heterogeneity in colorectal cancer' section and compares the overlap of LN fragments (LN11, LN21, LN31) with the tumor in two separate patients (Fig 6A). In the previous section (LN-LN), LN11, LN21, LN31 are names given to separate lymph nodes from the same patient. The fragments are referred to as 'LN2' and the nodes in the previous section are referred to similarly. This conflation of naming for nodes and fragments is confusing.

      3. There is a duplicated paragraph in 'Short vs long trees' and the following section 'Productive involvement in hypermutation lineages depends on CDR3 characteristics.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript reports new molecular characterization of the Haemophilus influenza tripartite ATP-independent periplasmic (TRAP) transporter of N-acetylneuraminate (Neu5Ac). This membrane transporter is important for the virulence of the pathogen. H. influenza lacks Neu5Ac biosynthetic pathway, and utilizes the TRAP transporter to import it. Neu5Ac is used as a nutrient source but also as a protection from human immune response. The transporter is composed of two fused membrane subunits, HiSiaQM, and one soluble, periplasmic subunit HiSiaP. HiSiaP, by binding to the substrate Neu5Ac, changes its conformation, allowing its binding to HiSiaQM, followed by Neu5Ac and Na+ transport to the cytoplasm. The combination of structural, biophysical and biochemical approaches provides a solid basis for describing the functioning of the Haemophilus influenza Neu5Ac TRAP transporter, which is essential for the pathogen virulence.

      Strengths:<br /> The paper describes the electron microscopy structure of HiSiaQM, thanks to its solubilization in L-MNG followed by exchange to amphipol or nanodisc. In these conditions, HiSiaQM consists in a mixture of monomers and dimers, as characterized by analytical ultracentrifugation. The cryo-EM analysis shows two types of dimers: one in an antiparallel configuration, which is artifactual, and a parallel one, which may be physiologically relevant. Cryo-EM on the dimers allows high resolution (≈ 3 Å) structure determination. The structure is the first one of a fused SiaQM, and is the first obtained without megabody. The work highlights structural elements (fusion helix, lipids) that could modulate transport. The authors checked the functionality of the purified HiSiaQM, which, after reconstitution in liposome, displays a significantly larger Neu5Ac transport activity compared to the non-fused PpSiaQM homolog. The work identifies Na+ binding sites, and the putative Neu5Ac binding site. From analytical ultracentrifugation using fluorescently labelled HiSiaP, the authors show that HiSiaP is able to interact with HiSiaQM monomer and dimer, with a low but physiologically relevant affinity. HiSiaP interaction with HiSiaQM was modelled using AlphaFold2, and discussed in view of published activity on mutants, and new transport activity assays using SiaQM and SiaP from different organisms. In conclusion, the combination of structural, biophysical and biochemical approaches provides a solid basis for describing the functioning of this TRAP fused transporter.

      Weakness: This work evidences in vitro a HiSiaQM dimer, whose in vivo relevance is not ascertained. However, the authors are very careful, they do not to over-interpret their data, and their conclusions regarding the transporter structure and function are valid irrespective of its state of association.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors are trying to delineate the mechanism underlying the osteonecrosis of the femoral head.

      Strengths:

      The authors provided compelling in vivo and in vitro data to demonstrate Col2+ cells and Osx+ cells were differentially expressed in the<br /> the femoral head. Moreover, inducible knockout of β-catenin in Col2+ cells but not<br /> Osx+ cells lead to a GONFH-like phenotype including fat accumulation, subchondral<br /> bone destruction and femoral head collapse, indicating that imbalance of osteogenic/adipogenic differentiation of Col2+ cells play an important role in GONFH pathogenesis. Therefore, this manuscript provided the mechanistic insights of osteonecrosis as well as potential therapeutic target for disease treatment.

      Weaknesses: Additional in depth discussion regarding the phenotype observed in mice is highly encouraged.

    1. Reviewer #3 (Public Review):

      Nguyen, Zhao, et al. used bioinformatic analysis of mutational variants of SARS-CoV-2 Nucleocapsid (N) protein from the large genomic database of SARS-CoV-2 sequences to identify domains and regions of N where mutations are more highly represented and computationally determined the effects of these mutations on the physicochemical properties of the protein. They found that the intrinsically disordered regions (IDRs) of N protein are more highly mutated than structured regions and that these mutations can lead to higher variability in the physical properties of these domains. These computational predictions are compared to in vitro biophysical experiments to assess the effects of identified mutations on the thermodynamic stability, oligomeric state, particle formation, and liquid-liquid phase separation of a few exemplary mutants.

      The paper is well-written and easy to follow, and the conclusions drawn are supported by the evidence presented. The analyses and conclusions are interesting and will be of value to virologists, cell biologists, and biophysicists studying SARS-CoV-2 function and assembly. It would be nice if some further extrapolation or comments could be made regarding the effects of the observed mutations on the in vivo behavior and properties of the virus, but I appreciate that this is much higher-order than could be addressed with the approaches employed here.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors investigated the interaction between the pattern recognition receptor MDA5 and 5'ppp-RNA in a teleost fish called Miiuy croaker. They claimed that MDA5 can replace RIG-I in sensing 5'ppp-RNA of Siniperca cheats rhabdovirus (SCRV) in the absence of RIG-I in Miiuy croaker. The recognition of MDA5 to 5'ppp-RNA was also observed in the chicken (Gallus gallus), a bird species that lacks RIG-I. Additionally, they reported that the function of MDA5 can be impaired through m6A-mediated methylation and degradation of MDA5 mRNA by the METTL3/14-YTHDF2/3 regulatory network in Miiuy croaker under SCRV infection. This impairment weakens the innate antiviral immunity of fish and promotes the immune evasion of SCRV.

      Strengths:<br /> These findings provide insights into the adaptation and functional diversity of innate antiviral activity in vertebrates.

      Weaknesses:<br /> However, there are some major and minor concerns that need to be further addressed. Addressing these concerns will help the authors improve the quality of their manuscript.

      One significant issue with the manuscript is that the authors claim to be investigating the role of MDA5 as a substitute for RIG-I in recognizing 5'ppp-RNA, but their study extends beyond this specific scenario. Based on my understanding, it appears that sections 2.2, 2.3, 2.5, 2.6, and 2.7 do not strictly adhere to this particular scenario. Instead, these sections tend to investigate the functional involvement of Miiuy croaker MDA5 in the innate immune response to viral infection. Furthermore, the majority of the data is focused on Miiuy croaker MDA5, with only a limited and insufficient study on chicken MDA5. Consequently, the authors cannot make broad claims that their research represents events in all RIG-I deficient species, considering the limited scope of the species studied.

      The current title of the article does not align well with its actual content. It is recommended that the focus of the research be redirected to the recognition function and molecular mechanism of MDA5 in the absence of RIG-I concerning 5'ppp-RNA. This can be achieved through bolstering experimental analysis in the fields of biochemistry and molecular biology, as well as enhancing theoretical research on the molecular evolution of MDA5. It is advisable to decrease or eliminate content related to m6A modification.

      Additionally, the main body of the writing contains several aspects that lack rigor and tend to exaggerate, necessitating significant improvement.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study considers how to model distinct host cell states that correspond to different stages of a viral infection: from naïve and susceptible cells to infected cells and a minority of important interferon-secreting cells that are the first line of defense against viral spread. The study first considers the distinct host cell states by analyzing previously published single-cell RNAseq data. Then an agent-based model on a square lattice is used to probe the dependence of the system on various parameters. Finally, a simplified version of the model is explored, and shown to have some similarity with the more complex model, yet lacks the dependence on the interferon range. By exploring these models one gains an intuitive understanding of the system, and the model may be used to generate hypotheses that could be tested experimentally, telling us "when to be surprised" if the biological system deviates from the model predictions.

      Strengths:<br /> - Clear presentation of the experimental findings and a clear logical progression from these experimental findings to the modeling.<br /> - The modeling results are easy to understand, revealing interesting behavior and percolation-like features.<br /> - The scaling results presented span several decades and are therefore compelling.<br /> - The results presented suggest several interesting directions for theoretical follow-up work, as well as possible experiments to probe the system (e.g. by stimulating or blocking IFN secretion).

      Weaknesses:<br /> - Since the "range" of IFN is an important parameter, it makes sense to consider lattice geometries other than the square lattice, which is somewhat pathological. Perhaps a hexagonal lattice would generalize better.

      - Tissues are typically three-dimensional, not two-dimensional. (Epithelium is an exception). It would be interesting to see how the modeling translates to the three-dimensional case. Percolation transitions are known to be very sensitive to the dimensionality of the system.

      - The fixed time-step of the agent-based modeling may introduce biases. I would consider simulating the system with Gillespie dynamics where the reaction rates depend on the ambient system parameters.

      - Single-cell RNAseq data typically involves data imputation due to the high sparsity of the measured gene expression. More information could be provided on this crucial data processing step since it may significantly alter the experimental findings.

      Justification of claims and conclusions:<br /> The claims and conclusions are well justified.

    1. Reviewer #3 (Public Review):

      Summary: Bidirectional transsynaptic signaling via cell adhesion molecules and cell surface receptors contributes to the remarkable specificity of synaptic connectivity in the brain. Zaman et al., investigates how the receptor tyrosine kinase Kit and its trans-cellular kit ligand regulate molecular layer interneuron (MLI)- Purkinje cell (PC) connectivity in the cerebellum. Presynaptic Kit is specific for MLIs, and forms a trans-synaptic complex with Kit ligand in postsynaptic PC cells. The authors begin by generating Kit cKOs via an EUCOMM allele to enable cell-type specific Kit deletion. They cross this Kit cKO to the MLI-specific driver Pax2-Cre and conduct validation via Kit IHC and immunoblotting. Using this system to examine the functional consequences of presynaptic MLI Kit deletion onto postsynaptic PC cells, they record spontaneous and miniature synaptic currents from PC cells and find a selective reduction in IPSC frequency. Deletion of Kit ligand from postsynaptic PC cells also results in reduced IPSC frequency, together supporting that this trans-synaptic complex regulates GABAergic synaptic formation or maturation. The authors then show that sparse Kit ligand overexpression in PCs decreases neighboring uninfected control sIPSCs in a potential competitive manner.

      Strengths: Overall, the study addresses an important open question, the data largely supports the authors conclusions, the experiments appear well-performed, and the manuscript is well-written. I just have a few suggestions to help shore up the author's interpretations and improve the study.

      Weaknesses:

      The strong decrease in sIPSC frequency and amplitude in control uninfected cells in Figure 4 is surprising and puzzling. The competition model proposed is one possibility, and I think the authors need to do additional experiments to help support or refute this model. The authors can conduct similar synaptic staining experiments as in Fig S4 but in their sparse infection paradigm, comparing synapses on infected and uninfected cells. Additional electrophysiological parameters in the sparse injection paradigm, such as mIPSCs or evoked IPSCs, would also help support their conclusions.

      The authors should validate KL overexpression and increased cell surface levels using their virus to support their overexpression conclusions.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors found that FBXO24, a testis-enriched F-box protein, is indispensable for male fertility. Fbxo24 KO mice exhibited malformed sperm flagellar and compromised sperm motility.

      Strengths:

      The phenotype of Fbxo24 KO spermatozoa was well analyzed.

      Weaknesses:

      The authors observed numerous membraneless electron-dense granules in the Fbxo24 KO spermatozoa. They also showed abnormal accumulation of two importins, IPO5 and KPNB1, in the Fbxo24 KO spermatozoa. However, the data presented in the manuscript do not support the conclusion that FBXO24 ensures male fertility by preventing the abnormal accumulation of membraneless granules in sperm flagella, as indicated in the manuscript title.

    1. Reviewer #3 (Public Review):

      Overall, this is a strong manuscript that uses multiple current techniques to provide specific mechanistic insight into prior discoveries of the contributions of the Bcl11b transcription factor to mossy fiber synapses of dentate gyrus granule cells. The authors employ an adult deletion of Bcl11b via Tamoxifen-inducible Cre and use immunohistochemical, electron microscopy, and electrophysiological studies of synaptic plasticity, together with viral rescue of C1ql2, a direct transcriptional target of Bcl11b or Nrxn3, to construct a molecular cascade downstream of Bcl11b for DG mossy fiber synapse development. They find that C1ql2 re-expression in Bcl11b cKOs can rescue the synaptic vesicle docking phenotype and the impairments in MF-LTP of these mutants. They also show that C1ql2 knockdown in DG neurons can phenocopy the vesicle docking and plasticity phenotypes of the Bcl11b cKO. They also use artificial synapse formation assays to suggest that C1ql2 functions together with a specific Nrxn3 splice isoform in mediating MF axon development, extending these data with a C1ql2-K262E mutant that purports to specifically disrupt interactions with Nrxn3. All of the molecules involved in this cascade are disease-associated and this study provides an excellent blueprint for uncovering downstream mediators of transcription factor disruption. Together this makes this work of great interest to the field. Strengths are the sophisticated use of viral replacement and multi-level phenotypic analysis while weaknesses include the linkage of C1ql2 with a specific Nrxn3 splice variant in mediating these effects.

      Here is an appraisal of the main claims and conclusions:

      1. C1ql2 is a downstream target of Bcl11b which mediates the synaptic vesicle recruitment and synaptic plasticity phenotypes seen in these cKOs. This is supported by the clear rescue phenotypes of synapse anatomy (Fig.2) and MF synaptic plasticity (Fig.3). One weakness here is the absence of a control assessing over-expression phenotypes of C1ql2. It's clear from Fig.1D that viral rescue is often greater than WT expression (totally expected). In the case where you are trying to suppress a LoF phenotype, it is important to make sure that enhanced expression of C1ql2 in a WT background does not cause your rescue phenotype. A strong overexpression phenotype in WT would weaken the claim that C1ql2 is the main mediator of the Bcl11b phenotype for MF synapse phenotypes.

      2. Knockdown of C1ql2 via 4 shRNAs is sufficient to produce the synaptic vesicle recruitment and MF-LTP phenotypes. This is supported by clear effects in the shRNA-C1ql2 groups as compared to nonsense-EGFP controls. One concern (particularly given the use of 4 distinct shRNAs) is the potential for off-target effects, which is best controlled for by a rescue experiment with RNA-insensitive C1ql2 cDNA as opposed to nonsense sequences, which may not elicit the same off-target effects.

      3. C1ql2 interacts with Nrxn3(25b+) to facilitate MF terminal SV clustering. This claim is theoretically supported by the HEK cell artificial synapse formation assay (Fig.5), the inability of the K262-C1ql2 mutation to rescue the Bcl11b phenotype (Fig.6) and the altered localization of C1ql2 in the Nrxn1-3 deletion mice (Fig.7). Each of these lines of experimental evidence has caveats that should be acknowledged and addressed. Given the hypothesis that C1ql2 and Nrxn3b(25b) are expressed in DG neurons and work together, the heterologous co-culture experiment seems weird. Up till now, the authors are looking at pre-synaptic function of C1ql2 since they are re-expressing it in DGNs. The phenotypes they are seeing are also pre-synaptic and/or consistent with pre-synaptic dysfunction. In Fig.5, they are testing whether C1ql2 can induce pre-synaptic differentiation in trans, i.e. theoretically being released from the 293 cells "post-synaptically". But the post-synaptic ligands (Nlgn1 and and GluKs) are not present in the 293 cells, so a heterologous synapse assay doesn't really make sense here. The effect that the authors are seeing likely reflects the fact that C1ql2 and Nrxn3 do bind to each other, so C1ql2 is acting as an artificial post-synaptic ligand, in that it can cluster Nrxn3 which in turn clusters synaptic vesicles. But this does not test the model that the authors propose (i.e. C1ql2 and Nrxn3 are both expressed in MF terminals). Perhaps a heterologous assay where GluK2 is put into HEK cells and the C1ql2 and Nrxn3 are simultaneously or individually manipulated in DG neurons?

      4. K262-C1ql2 mutation blocks the normal rescue through a Nrxn3(25b) mechanism (Fig.6). The strength of this experiment rests upon the specificity of this mutation for disrupting Nrxn3b binding (presynaptic) as opposed to any of the known postsynaptic C1ql2 ligands such as GluK2. While this is not relevant for interpreting the heterologous assay (Fig.5), it is relevant for the in vivo phenotypes in Fig.6. Similar approaches as employed in this paper can test whether binding to other known postsynaptic targets is altered by this point mutation.

      5. Altered localization of C1ql2 in Nrxn1-3 cKOs. These data are presented to suggest that Nrx3(25b) is important for localizing C1ql2 to the SL of CA3. Weaknesses of this data include both the lack of Nrxn specificity in the triple a/b KOs as well as the profound effects of Nrxn LoF on the total levels of C1ql2 protein. Some measure that isn't biased by this large difference in C1ql2 levels should be attempted (something like in Fig.1F).

    1. Reviewer #3 (Public Review):

      Kang, Huang, and colleagues have provided new data to address concerns regarding confirmation of LRRK1 and LRRK2 deletion in their mouse model and the functional impact of the modest loss of TH+ neurons observed in the substantia nigra of their double KO mice. In the revised manuscript, the new data around the characterization of the germline-deleted LRRK1 and LRRK2 mice add confidence that LRRK1 and LRRK2 can be deleted using the genetic approach. They have also added new text to the discussion to try and address some of the comments and questions raised regarding how LRRK1/2 loss may impact cell survival and the implications of this work for PD-linked variants in LRRK2 and therapeutic approaches targeting LRRK2.

      The new data provides additional support for the author's claims. I have provided below some suggestions for clarification/additions to the text that can be addressed without additional experiments.

      1) The authors added additional text highlighting that more studies are warranted in mice where LRRK1/2 are deleted in other CNS cell types (microglia/astrocytes) to understand cell extrinsic drivers of the autophagy deficits observed in their previous work. It still remains unclear how loss of LRRK1/2 leads to increased apoptosis and gliosis in dopaminergic neurons in a cell-intrinsic manner, and, as suggested in the original review, it would be helpful to add some text to the discussion speculating on potential mechanisms by which this might occur.

      2) Revisions have been made to the discussion to clarify their rationale around how variants in LRRK2 associated with PD may be loss-of-function to support the relevance of this mouse model to phenotypes observed in PD. However, as written, the argument that PD-linked variants are loss-of-function is based on the fact that the double KO mice have a mild loss of TH+ neurons while the transgenic mice overexpressing PD-linked LRRK2 variants often do not and that early characterization of kinase activity was done in vitro are relatively weak. Given that the majority of evidence generated by many labs in the field supports a gain-of-function mechanism, the discussion should be further tempered to better highlight the uncertainty around this (rather than strongly arguing for a loss-of-function effect). This could include the mention of increased Rab phosphorylation observed in cellular and animal models and opposing consequences on lysosomal function observed in cellular studies in KO and pathogenic variant expressing cells. Further, a reference to the Whiffen et al. 2020 paper mentioned by another reviewer should be included in the discussion for completeness.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Animals can evaluate food quality in many ways. In contrast to the rapid sensory evaluation with smell and taste, the mechanism of slow nutrient sensation and its impact on food choice is unexplored. The authors utilize C. elegans larvae and their bacterial food as an elegant model to tackle this question and reveal the detailed molecular mechanism to avoid nutrient-poor foods.

      Strengths:<br /> The strength of this study is that they identified the molecular identities of the critical players in bacterial food and C. elegans using unbiased approaches, namely metabolome analysis, E. coli mutant screening, and RNA sequencing. Furthermore, they strengthen their findings by thorough experiments combining multiple methods such as genetics, fluorescent reporter analysis, and Western blot.

      Weaknesses:<br /> The major caveat of this study is the reporter genes. The transcriptional reporters were used to monitor the UPRER and immune responses in the intestine of C. elegans. However, their tissue-specific rescue experiments suggest that the genes in the UPRER and immune response function in the neurons. Thus, we should carefully interpret the results of the reporter genes.

      Overall, this work provides convincing data to support their model. In the C. elegans field, the behaviors of larvae are not well studied compared to adults. This work will pose an interesting question about the difference between larvae and adults in nutrition sensing in C. elegans and provide a framework and candidate molecules to be studied in other organisms.

    1. Reviewer #3 (Public Review):

      Summary<br /> In their manuscript, Vickers and McCormick have demonstrated the potential of leveraging mesoscale two-photon calcium imaging data to unravel complex behavioural motifs in mice. Particularly commendable is their dedication to providing detailed surgical preparations and corresponding design files, a contribution that will greatly benefit the broader neuroscience community as a whole. The quality of the data is high, but it is not clear whether this is available to the community, some datasets should be deposited. More importantly, the authors have acquired activity-clustered neural ensembles at an unprecedented spatial scale to further correlate with high-level behaviour motifs identified by B-SOiD. Such an advancement marks a significant contribution to the field. While the manuscript is comprehensive and the analytical strategy proposed is promising, some technical aspects warrant further clarification. Overall, the authors have presented an invaluable and innovative approach, effectively laying a solid foundation for future research in correlating large-scale neural ensembles with behavioural. The implementation of a custom sound insulator for the scanner is a great idea and should be something implemented by others.

      This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other. This is described in the methods, but a visual representation would greatly benefit the readers looking to implement something similar. The authors should cite sources for the claims stated in lines 449-453 and cite the claim of the mouse's hearing threshold mentioned in lines 463. No stats for the results shown in Figure 6e, it would be useful to know which of these neural densities for all areas show a clear statistical significance across all the behaviors. While I understand that this is a methods paper, it seems like the authors are aware of the literature surrounding large neuronal recordings during mouse behavior. Indeed, in lines 178-179, the authors mention how a significant portion of the variance in neural activity can be attributed to changes in "arousal or self-directed movement even during spontaneous behavior.". Why then did the authors not make an attempt at a simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc). These models are straightforward to implement, and indeed it would benefit this work if the model extracts information on par with what is known from the literature.

      Specific strengths and weaknesses with areas to improve:

      The paper should include an overall cartoon diagram that indicates how the various modules are linked together for the sampling of both behaviour and mesoscale GCAMP. This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other.

      The paper contains many important results regarding correlations between behaviour and activity motifs on both the cellular and regional scales. There is a lot of data and it is difficult to draw out new concepts. It might be useful for readers to have an overall figure discussing various results and how they are linked to pupil movement and brain activity. A simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc) may help in this regard.

      Previously, widefield imaging methods have been employed to describe regional activity motifs that correlate with known intracortical projections. Within the authors' data it would be interesting to perhaps describe how these two different methods are interrelated, they do collect both datasets. Surprisingly, such macroscale patterns are not immediately obvious from the authors' data. Some of this may be related to the scaling of correlation patterns or other factors. Perhaps there still isn't enough data to readily see these and it is too sparse.

      In lines 71-71, the authors described some disadvantages of one-photon widefield imaging including the inability to achieve single-cell resolution. However, this is not true. In recent years, the combination of better surgical preparations, camera sensors, and genetically encoded calcium indicators has enabled the acquisition of single-cell data even using one-photon widefield imaging methods. These methods include miniscopes (Cai et al., 2016), multi-camera arrays (Hope et al., 2023), and spinning disks (Xie et al., 2023).

      Cai, Denise J., et al. "A shared neural ensemble links distinct contextual memories encoded close in time." Nature 534.7605 (2016): 115-118.<br /> Hope, James, et al. "Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton." bioRxiv (2023).<br /> Xie, Hao, et al. "Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution." Nature Biomedical Engineering (2023): 1-14.

      The authors' claim of achieving optical clarity for up to 150 days post-surgery with their modified crystal skull approach is significantly longer than the 8 weeks (approximately 56 days) reported in the original study by Kim et al. (2016). Since surgical preparations are an integral part of the manuscript, it may be helpful to provide more details to address the feasibility and reliability of the preparation in chronic studies. A series of images documenting the progression optical quality of the window would offer valuable insight.

    1. Reviewer #3 (Public Review):

      Wu and colleagues are characterising the function of Styxl2 during muscle development, a pseudo-phosphatase that was already described to have some function in sarcomere morphogenesis or maintenance (Fero et al. 2014). The authors verify a role for Styxl2 in sarcomere assembly/maintenance using zebrafish embryonic muscles by morpholino knock-down and by a conditional Styxl2 allele in mice (knocked-out in satellite cells with Pax7 Cre).

      Experiments using a tamoxifen inducible Cre suggest that Styxl2 is dispensable for sarcomere maintenance and only needed for sarcomere assembly.

      BioID experiments with Styxl2 in C2C 12 myoblasts suggest binding of nonmuscle myosins (NMs) to Styxl2. Interestingly, both NMs are downregulated when muscles differentiate after birth or during regeneration in mice. This down-regulation is reduced in the Styxl2 mutant mice, demonstrating that Styxl2 is required for the degradation of these NMs.

      Impressively, reducing one NM (zMyh10) by double morpholino injection in a Styxl2 morphant zebrafish, does improve zebrafish mobility and sarcomere structure. Degradation of Mhy9 is also stimulated in cell culture if Styxl2 is co-expressed. Surprisingly, the phosphatase domain is not needed for these degradation and sarcomere structure rescue effects. Inhibitor experiments suggest that Styxl2 does promote the degradation of NMs by promoting the selective autophagy pathway.

      Strengths:<br /> A major strength of the paper is the combination of various systems, mouse and fish muscles in vivo to test Styxl2 function, and cell culture including a C2C12 muscle cell line to assay protein binding or protein degradation as well as inhibitor studies that can suggest biochemical pathways.<br /> A second strength is that this manuscript sheds new light on the still ill-characterised mechanism of sarcomere assembly in skeletal muscles.

      Weakness:<br /> The weaknesses of this manuscript have been largely eliminated during revision.

    1. Reviewer #3 (Public Review):

      Perhaps not unexpectedly, the proposed revisions consist of textual revisions only. Yewdell added a touch of levity with his H.G. Wells foundation as a source of $$ for a time machine. The paper does not establish striking new facts, in my opinion, but will stimulate discussion.

      One point to consider: the relevance of the human T cell activation experiments is now downplayed even further, by the authors themselves, no less. I would suggest leaving the actual data out altogether and conclude with a statement: "Similar experiments conducted on activated human T cells showed significantly worse activation and may therefore not allow a head-to-head comparison with the results of our experimentst performed on mouse T cells. Not only might one consider the mode of activation (PMA/ionomycin) non-physiological, the activation status achievedwas less than that seen for the OT-1 model. " or something similar to that effect. In the present weakened form, I do not believe that the human data add anything of substance to the paper and are more of a distraction. The authors would increase the impact and readability of their paper if they omitted the human data.

    1. Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P, and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission. Of note, the authors find that hyperosmotic shock increases intracellular PHS levels, suggesting a general role of PHS in vacuole fission in response to physiological vacuolar division-inducing stimuli.

      This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but inclusion of direct evidence indicating increased transport of PHS from the ER to vacuoles via NVJ in response to vacuolar division-inducing stimuli would have strengthened this study.

      There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on by biochemical experiments such as co-immunoprecipitation and pull-down.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Studying evolutionary trajectories provides important insight into the genetic architecture of adaptation and provides a potential contribution to evaluating the predictability (or unpredictability) of biological processes involving adaptation. While many papers in the field address adaptation to environmental challenges, the number of studies on how genomic contexts, such as large-scale variation, can impact evolutionary outcomes adaptation is relatively low. This research experimentally evolved a genome-reduced strain for ~1000 generations with 9 replicates and dissected their evolutionary changes. Using the fitness assay of OD measurement, the authors claimed that there is a general trend of increasing growth rate and decreasing carrying capacity, despite a positive correlation among all replicates. The authors also performed genomic and transcriptomic research at the end of experimental evolution, claiming the dissimilarity in the evolution at the molecular level.

      Strengths:<br /> The experimental evolution approach with a high number of replicates provides a good way to reveal the generality/diversity of the evolutionary routes.

      The assay of fitness, genome, and transcriptome all together allows a more thorough understanding of the evolutionary scenarios and genetic mechanisms.

      Weaknesses:<br /> My major concern is the current form of statistical analysis leads to the conclusion that the dissimilarity is not very strong. Adding some more statistical analysis should substantially improve the strength of the manuscript. As mentioned in the Discussion, I understand that there are more available methods to test for generality in experimental evolution but less for diversity. When it is improper to use a canonical statistical test, a test with some simulation and resampling can be useful. For example, I particularly appreciate the analysis done in Figure 2B. An analysis like that should be done more throughout the entire manuscript.

    1. Reviewer #3 (Public Review):

      Summary:

      SMN expression in non-neuronal cells, particularly in limb mesenchymal progenitors is essential for the proper growth of chondrocytes and the formation of adult NMJ junctions.

      Strengths:

      The authors show copy numbers of smndelta7 in MPC influence NMJ structure.

      Weaknesses:

      Functional recovery by FAP transplantation is not complete. Mesenchymal progenitors are heterogeneous, and how heterogeneity influences this study is not clear. Part of the main findings to show the importance of SMN expression in non-neuronal cells is partly published by the same group (Kim et al., JCI Insight 2022). In the study, the authors used Dpp4(+) cells. The difference between the current study and the previous study is not so clear.

    1. Reviewer #3 (Public Review):

      Summary: In this study, the authors attempt to determine what is the role (and strength) of feedback in a closed-loop (cerebellar) system.

      Strengths:

      1. By combining extensive data fitting of cerebellar experimental observations this study provides deep insights into existing questions and more broadly on the role of feedback and what are the limitations when inferring feedback in (plastic) neural circuits.

      2. Another strength of this study is the gradual build-up of evidence by using models of different complexities to help build the argument that weak feedback is sufficient to explain experimental observations.

      3. The paper is well-written and structured.

      Weaknesses:

      1. In principle feedback can (i) drive dynamics or/and (ii) drive learning directly. Throughout the paper, the authors refer to only the first case (i.e. dynamics). However, the role of feedback in learning is already implicitly assumed by the authors when jointly fitting the model before and after learning. Note that the general conclusion that feedback (in general) is weak may be to the first view (i.e. dynamics), but not the second. Given that a key conclusion of the paper is that no feedback is sufficient to explain the data, this suggests that feedback may instead be used for learning/plasticity.

      2. There are some potential limitations of the conclusions drawn due to the model inference methods used. The methods used (fmincon) can easily get stuck in local minima and more importantly they do not provide an overview of the likelihood of parameters given the data. A few studies have now shown that it is important to apply more powerful inference techniques both to infer plasticity (Bykowska et al. Frontiers 2019) and neural dynamics (Gonçalves et al. eLife 2020). As highlighted by Costa et al. Frontiers 2013 using more standard fitting methods can lead to misleading interpretations. Given the large range of experimental data used to constrain the model, this may not be an issue, but it is not explicitly shown.

      3. There is some lack of clarity on how the feedback pathways as currently presented should be interpreted in the brain.

      4. The functional benefits of having (or not) feedback could be better discussed (related to point 1 above).

      5. Some of the key conclusions of the work are not described in the abstract, namely that feedback is weak in the cerebellar system.

      Claims:

      The argument is well-built throughout the paper, but there are some potential caveats with the general interpretation (see weaknesses).

      Impact:

      This work has the potential to bring important messages on how best to interpret and infer the role of feedback in neural systems. For the field of the cerebellum, it also proposes solutions to long-standing problems.

    1. Reviewer #3 (Public Review):

      The Hippo signalling pathway has been implicated in organ growth through the regulation of cell proliferation and apoptosis. The main transcriptional effectors of this pathway, the Yap and Taz proteins, associate with members of the TEAD family of transcription factors to drive diverse transcriptional programs of proliferation, growth, and differentiation. It has previously been shown that YAP/TAZ are essentially required in Schwann cells for developmental myelination, homeostasis, and regenerative myelination in the peripheral nervous system. All four members of the TEAD family are expressed in the Schwann cell lineage, raising the possibility that different aspects of YAP/TAZ role in the Schwann cell lineage are underpinned by differential associations with TEAD transcription factors. In this study, Grove and colleagues provide convincing evidence that TEAD1 is the main transcription factor through which YAP/TAZ affects myelination in development and following nerve injury. A careful comparison between Schwann cell-specific and inducible Yap/Taz and TEAD1 knock out animals reveal unique and redundant roles for TEAD1 in myelination by regulating Schwann cell proliferation, Krox20-dependent myelin gene expression, and cholesterol biosynthesis. Interestingly, their study appears to reveal a YAP/TAZ independent role for TEAD1 in non-myelinating Schwann cell ensheathment of low calibre axons and Remak bundle formation. The conclusions of this study are based on rigorous biochemical, immune-histochemical, electron microscopic, and functional analysis of mutant and wild-type nerves at different stages of postnatal development and following crush nerve injury.

      Perhaps the most surprising finding of this study is that TEAD1 can function independently from YAP/TAZ in one branch of the Schwann cell lineage (the authors had reported earlier that non-myelinating Schwann cells do not express YAP/TAZ).<br /> How TEAD1 transcriptional activity is modulated in these Remak Schwann cells is an interesting avenue of future research.

    1. Reviewer #4 (Public Review):

      Using optogenetic stimulation, the authors presented compelling evidence that neuronal activity increases mitochondrial calcium levels, facilitated by the mitochondrial uniporter MCU-1. Through ratiometric measurements, they showed that mitochondrial ROS levels also increase due to neuronal activity via MCU-1. Subsequent FRAP studies were employed to investigate the trafficking of the AMPA receptor, GLR-1. By integrating genetic and pharmacological methodologies, the recovery rate of GLR-1 was assessed. The authors concluded that increased mitochondrial ROS due to neuronal activity reduces the trafficking and exocytosis of AMPA receptors. They proposed that mitochondrial ROS serves as a homeostatic mechanism regulating AMPA receptor trafficking and abundance, thus maintaining synaptic strength. This research is crucial as it provides a direct link between mitochondrial signaling and AMPA receptor trafficking.

      However, there are several significant concerns regarding the methodologies and quantifications employed in this manuscript. The authors utilized GLR-SEP to label surface AMPA receptors and relied on the "FRAP rate" as an indicator of the exocytosis rate. The absence of direct visualization of exocytosis using GLR-SEP, and the lack of direct measurements of exocytosis events, casts doubt on the conclusions about ROS's impact on AMPA receptor exocytosis. Furthermore, the "FRAP rate" determined in this study is a combination of recovery rates (incorporating both endosomal trafficking and diffusion) with the mobile fractions of AMPA receptors, potentially weakened interpretations of the findings. A more comprehensive discussion addressing the conflicting effects of MCU-1 and ROS on GLR-GFP FRAP recovery and dendritic trafficking would enable readers to grasp the intricate roles of mitochondrial calcium and ROS in modulating synaptic receptors.

    1. Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.<br /> The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This is my assessment of the manuscript entitled "Inter-regional delays fluctuate in the human cerebral cortex" submitted by Moon et al. to eleventh article deals with an interesting question, namely: how do different areas in the brain synchronize with each other. As the title indicates, the article shows that interregional activity can be more or less out of sync, and that the degree of synchronicity depends on the global power of low and high-frequency oscillations.

      Overall, I found the paper interesting, although, as written, it is sometimes not clear why studying these inter-regional delays is important. For a broader audience, it is necessary to better emphasize the relevance of inter-regional delays, and what we learn from studies like this beyond the mechanistic aspect of how waves spread in the human brain. Also, it is important to explain why the task (listening to audio) was chosen, and what this task offers in comparison to, for example, studying spontaneous activity. I understand that intra-cranial data from humans is precious and difficult to obtain, so I am not asking for more data, just for a clear honest explanation of why this task was chosen.

      Beyond these minor formatting issues, I have two main concerns on the data analysis and interpretation. In a nutshell, they deal with:

      - Cross-correlating alpha power with inter-electrode lags computed from raw signals where alpha itself is included. IMO this could lead to obvious high correlation values simply because low-frequency signals spread passively (with some delays) across electrodes. High-frequency signals spread less and are thus less correlated in neighboring electrodes.

      - Possible influence of the referencing scheme on the data. I could not find any information about where reference and ground electrodes were located but I fear that epochs of zero-lag coherence could be simply due to common referencing. Non-zero lag synchrony could be explained by generators becoming more or less active close to the recording electrodes. This is probably the most parsimonious explanation of the activity observed and explaining it does not require any coupled oscillators.

      Strengths:<br /> The paper relies on a strong dataset from intracranial recordings in humans. Conceptually the paper has strong value as it seeks to explore global and local activity dynamics within the human brain.

      Weaknesses:<br /> There are a number of methodological issues that need to be clarified, which could potentially influence the results obtained and their interpretation (i.e. corr-correlating alpha with itself, the influence of the referencing scheme on inter-electrode lags).

    1. Reviewer #3 (Public Review):

      While progressive and also hyperactivated motility are required for sperm to reach the site of fertilization and to penetrate the oocyte's outer vestments, during fusion with the oocyte's plasma membrane it has been observed that sperm motility ceases. Identifying the underlying molecular mechanisms would provide novel insights into a crucial but mostly overlooked physiological change during the sperm's life cycle. In this publication, the authors aim to provide evidence that the helical actin structure surrounding the sperm mitochondria in the midpiece plays a role in regulating sperm motility, specifically the motility arrest during sperm fusion but also during earlier cessation of motility in a subpopulation of sperm post acrosomal exocytosis.

      The main observation the authors make is that in a subpopulation of sperm undergoing acrosomal exocytosis and sperm that fuse with the plasma membrane of the oocyte display a decrease in midpiece parameter due to a 200 nm shift of the plasma membrane towards the actin helix. The authors show the decrease in midpiece diameter via various microscopy techniques all based on membrane dyes, bright-field images and other orthogonal approaches like electron microscopy would confirm those observations if true but are missing. The lack of additional experimental evidence and the fact that the authors simultaneously observe an increase in membrane dye fluorescence suggests that the membrane dyes instead might be internalized and are now staining intracellular membranes, creating a false-positive result. The authors also propose that the midpiece diameter decrease is driven by changes in sperm intracellular Ca2+ and structural changes of the actin helix network. Important controls and additional experiments are needed to prove that the events observed by the authors are causally dependent and not simply a result of sperm cells dying.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors report two P4 receptors, ABHD2 and mPRβ that function as co-receptors to induce PLA2 activity and thus drive meiosis. In their experimental studies, the authors knock down ABHD2 and demonstrated inhibition of oocyte maturation and inactivation of Plk1, MAPK, and MPF, which indicated that ABHD2 is required for P4-induced oocyte maturation. Next, they showed three residues (S207, D345, H376) in the lipase domain that are crucial for ABHD2 P4-mediated oocyte maturation in functional assays. They performed global lipidomics analysis on mPRβ or ABHD2 knockdown oocytes, among which the downregulation of GPL and sphingolipid species were observed, and enrichment in LPA was also detected using their metabolomics method. Furthermore, they investigated pharmacological profiles of enzymes predicted to be important for maturation based on their metabolomic analyses and ascertained the central role of PLA2 in inducing oocyte maturation downstream of P4. They showed the modulation of S1P/S1PR3 pathway on oocyte maturation and the potential role for Gαs signaling and potentially Gβγ downstream of P4.

      Strengths:

      The authors make a very interesting finding that ABHD2 has PLA2 catalytic activity but only in the presence of mPRβ and P4. Finally, they provided supporting data for a relationship between ABHD2/PLA2 activity and mPRβ endocytosis and further downstream signaling. Collectively, this research report defines early steps in nongenomic P4 signaling, which has broad physiological implications.

      Weaknesses:

      There were concerns with the pharmacological studies presented. Many of these inhibitors are used at high (double-digit micromolar) concentrations that could result in non-specific pharmacological effects and the authors have provided very little data in support of target engagement and selectivity under the multiple experimental paradigms. In addition, the use of an available ABHD2 small molecule inhibitor was lacking in these studies.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript of Zhou et al. reports a genome wide study of in vitro translation initiation using a novel version of ribosome profiling. Here they probe the role of the key RNA helicase, Ded1 in yeast translation initiation using a reconstituted biochemical system and all polyA+ mRNAs in the cell. The authors use ribosome profiling to identify mRNAs that assemble a preinitiation complex at the AUG start codon (48S PIC). They confirm that Ded1 is required for efficient initiation in highly structured RNAs, leading to an increase in PIC formation at the start codon, and nicely correlate their results with prior in vivo investigations using mutant Ded1s.

      Strengths:

      Rigorous in vitro biochemistry, careful correlation with in vivo results, genome wide analysis. Novel sequencing-based assay.

      Weaknesses:

      The slow nature of the biochemical experiments could bias results.

    1. Reviewer #4 (Public Review):

      Summary:<br /> This is a revised manuscript that describes a role for cdo-1 in regulating cellular cysteine levels. The authors show that expression of cdo-1, predicted to encode a cysteine dioxygenase, is regulated by HIF-1, the conserved hypoxia-induced transcription factor. The expression of cdo-1 is controlled by the RHY-1/CYSL-1/EGL-9/HIF-1 pathway that has been demonstrated to be involved in the response to H2S.

      Strengths:<br /> The new finding of this study is that cdo-1, predicted to encode a cysteine dioxygenase, is expressed in the hypodermis and that hypodermal expression rescues at least one phenotype of the cdo-1(mg622) mutant (ability to survive toxic sulfite accumulation in Moco-deficient conditions). Using sulfite toxicity is an interesting reporter for cellular cysteine abundance.

      Weaknesses:<br /> The authors claim more than once that the H2S/Cys responsive pathway is RHY-1 - CYSL-1 - EGL-9 - HIF-1. Their data don't seem to support this claim, as they show that Pcdo-1::GFP is induced in rhy-1 mutants incubated with cysteine. It is therefore not appropriate to claim that "HIF-1-induced cysteine catabolism requires the activity of rhy-1" that they include in the description of the model in Fig 6. There is simply no evidence at all that RHY-1 has any role in modulating the activity of CDO-1 other than through transcriptional activation via HIF-1.

      I don't find the arguments that this pathway is required for cysteine homeostasis per se (as claimed in the last sentence of the introduction). The authors expose worms to excess cysteine for 48 hours in liquid culture with bacteria. It is well known in these conditions that the bacteria will produce H2S from the cysteine in the culture. All of the cysteine exposure data shown can be explained by the effect of H2S exposure. This would explain why hif-1 and cysl-1 mutants die but cdo-1 mutants do not, for example. The authors don't provide any data to rule out the possibility that bacterial H2S production underlies these results. This explains why the pathway described in this work is the same as has been previously described. Similarly, there is no evidence at all to support their assertion that there are "other pathways" induced by HIF-1 to deal with sulfite produced by cysteine catabolism. However, if the main problem is H2S production (perhaps by bacteria) then cdo-1 would not be relevant and the mutants would be viable as observed.

      In a couple of places, the authors seem to argue that H2S-induced expression is limited to the hypodermis and hypoxia-induced gene expression is mostly in the intestine. This is consistent with the expression of cdo-1 (this work) and nhr-57 (Budde and Roth) but it is not appropriate to generalize this. Previous work from the Ruvkun lab (Ma et al) show that the CYSL-1 regulates expression of HIF-1 targets in neurons. Moreover, HIF-1 protein accumulates in the nucleus of nearly all cells, and there is no reason to believe that there are changes in the expression of other genes in different tissues.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors attempted to unravel the role of the Ca2+-binding proteins CaBP1 and CaBP2 for the hitherto enigmatic lack of Ca2+-dependent inactivation of Ca2+ currents in sensory inner hair cells (IHCs). As Ca2+ currents through Cav1.3 channels are crucial for exocytosis, the lack of inactivation of those Ca2+ currents is essential for the indefatigable sound encoding by IHCs. Using a deaf mouse model lacking both CaBP1 and CaBP2, the authors convincingly demonstrate that both CaBP1 and CaBP2 together confer a lack of inactivation, with CaBP2 being far more effective. This is surprising given the mild phenotype of the single knockouts, which has been published by the authors before. Re-admission of CaBP2 through viral gene transfer into the inner ear of double-knockout mice largely restored hearing function, normal Ca2+ current properties, and exocytosis.

      Strengths:<br /> 1. In vitro electrophysiology: perforated patch-clamp recordings of Ca2+/Ba2+ currents of inner hair cells (IHCs) from 3-4 week-old mice - very difficult recordings - necessary to not interfere with intracellular Ca2+ buffers, including CaBP1 and CaBP2.<br /> 2. Capacitance (exocytosis) recordings from IHCs in perforated patch mode.<br /> 3. The insight that a negative holding potential might underestimate the impact of lack of CaBP1/2 on the inactivation of ICa in IHCs. As the physiological holding potential is much more positive than a preferred holding potential in patch clamp experiments it has a strong impact on inactivation in the pauses between depolarization mimicking receptor potentials.<br /> This truly advances our thinking about the stimulation of IHCs and accumulating inactivation of the Cav1.3 channels.<br /> 4. Insight that the voltage sine method with usual voltage excursions (35 mV) to determine the membrane capacitance (for exocytosis measurements) also favors the inactivated state of Cav1.3 channels<br /> 5. Use of double ko mice (for both CaBP1 and CaBP2, DKO) and use of DKO with virally injected CaBP2-eGFP into the inner ear.<br /> 6. Use of DKO animals/IHCs/SGNs after virus-mediated CaBP2 gene transfer shows a great amount of rescue of the normal ICa inactivation phenotype.<br /> 7. In vivo measurements of SGN AP responses to sound, which is highly demanding.<br /> 8. In vivo measurements of hearing thresholds, DPOAE characteristics, and ABR wave I amplitudes/latencies of DKO mice and DKO+injected mice compared to WT mice.

      Very thorough analysis and presentation of the data, excellent statistical analysis.

      The authors achieved their aims. Their results fully support their conclusions. The methods used by the authors are state-of-the-art.

      The impacts on the field are the following:<br /> Regulation of inactivation of Cav1.3 currents is crucial for the persistent functioning of Cav1.3 channels in sensory transduction.<br /> The findings of the authors better explain the phenotype of the human autosomal recessive DFNB93, which is based on the malfunction of CaBP2.<br /> Future work - by the authors or others - should address the molecular mechanisms of the interaction of CaBP1 and 2 in regulating Cav1.3 inactivation.

      Weaknesses:<br /> I do not see weaknesses.<br /> What is not explained (but was not the aim of the authors) is how the CaBPs 1 and 2 interact with the Cav1.3 channels and with each other to reduce CDI. Also, why DFNB93, which is based on mutation of the CaBP2 gene, lead to a severe phenotype in humans in contrast to the phenotype of the CaBP2 ko mouse.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors continue their study of the experimental model of small cell lung cancer (SCLC) they created from human embryonic stem cells (hESCs) using a protocol for differentiating the hESCs into pulmonary lineages followed by NOTCH signaling inactivation with DAPT, and then knockdown of TP53 and RB1 (RP models) with DOX inducible shRNAs. To this published model, they now add DOX-controlled activation of expression of a MYC or T58A MYC transgenes (RPM and RPMT58A models) and study the impact of this on xenograft tumor growth and metastases. Their major findings are that the addition of MYC increased dramatically subcutaneous tumor growth and also the growth of tumors implanted into the renal capsule. In addition, they only found liver and occasional lung metastases with renal capsule implantation. Molecular studies including scRNAseq showed that tumor lines with MYC or T58A MYC led surprisingly to more neuroendocrine differentiation, and (not surprisingly) that MYC expression was most highly correlated with NEUROD1 expression. Of interest, many of the hESCs with RPM/RPMT58A expressed ASCL1. Of note, even in the renal capsule RPM/RPMT58A models only 6/12 and 4/9 mice developed metastases (mainly liver with one lung metastasis) and a few mice of each type did not even develop a renal sub capsule tumor. The authors start their Discussion by concluding: " In this report, we show that the addition of an efficiently expressed transgene encoding normal or mutant human cMYC can convert weakly tumorigenic human PNEC cells, derived from a human ESC line and depleted of tumor suppressors RB1 and TP53, into highly malignant, metastatic SCLC-like cancers after implantation into the renal capsule of immunodeficient mice.".

      Strengths:<br /> The in vivo study of a human preclinical model of SCLC demonstrates the important role of c-Myc in the development of a malignant phenotype and metastases. Also the role of c-Myc in selecting for expression of NEUROD1 lineage oncogene expression.

      Weaknesses:<br /> There are no data on results from an orthotopic (pulmonary) implantation on generation of metastases; no comparative study of other myc family members (MYCL, MYCN); no indication of analyses of other common metastatic sites found in SCLC (e.g. brain, adrenal gland, lymph nodes, bone marrow); no studies of response to standard platin-etoposide doublet chemotherapy; no data on the status of NEUROD1 and ASCL1 expression in the individual metastatic lesions they identified.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Vidal et al. investigated how TFIIIC may mediate MYCN effects on transcription. The work builds upon previous reports from the same group where they describe MYCN interactors in neuroblastoma cells (Buchel et al, 2017), which include TFIIIC, and their different roles in MYCN-dependent control of RNA polymerase II function (Herold et al, 2019) (Roeschert et al, 2021) (Papadopoulus et al, 2022). Using baculovirus expression systems, they confirm that MYCN-TFIIIC interaction is direct and likely relevant for neuroblastoma cell proliferation. However, transcriptomics analyses led them to conclude that TFIIC is largely dispensable for MYCN-dependent gene expression. Instead, they propose that TFIIC limits MYCN-mediated promoter-promoter 3D chromatin contacts, which would in turn facilitate the recruitment of the nascent RNA degradation machinery and restrict the accumulation of non-phosphorylated RNA polymerase II at promoters. How this mechanism may impact on MYCN-driven neuroblastoma cell biology remains to be elucidated.

      Strengths:<br /> This study presents a nice variety of genomic datasets addressing the specific role of TFIIIC in MYCN-dependent functions. In particular, the technically challenging HiChIP sequencing experiments performed under various conditions provide very useful information about the interplay between MYCN and TFIIIC in the regulation of 3D chromatin contacts. The authors show that MYCN and TFIIIC participate both in unique and overlapping long-range chromatin contacts and that the expression of each of these proteins limits the function of the other. Together, their results suggest a dynamic and interconnected relationship between MYCN and TFIIIC in regulating 3D chromatin contacts.

      Weaknesses:<br /> The connection between the three major findings presented in this study regarding the role of TFIIIC in the regulation of MYCN function remains unclear. Specifically, how the TFIIIC-dependent restriction of MYCN localization to promoter hubs enhances the association of factors involved in nascent RNA degradation to prevent the accumulation of inactive RNA polymerase II at promoters is not apparent. As they are currently presented, these findings appear as independent observations. Cross-comparison of the different datasets obtained may provide some insight into addressing this question.

      Another concern involves the disparities in RNA polymerase II ChIP-seq results between this study and earlier ones conducted by the same group. In Figure 2, the authors demonstrate that activation of MYCN results in a reduction of non-phosphorylated RNA polymerase II across all expressed genes. This discovery contradicts prior findings obtained using the same methodology, where it was concluded that the expression of MYCN had no significant effect on the chromatin association of hypo-phosphorylated RNA polymerase II (Buchel et al, 2017). In this regard, the choice of the 8WG16 antibody raises concern, as fluctuations in the signal may be attributed to changes in the phosphorylation levels of the C-terminal domain. It remains unclear why the authors decided against using antibodies targeting the N-terminal domain of RNA polymerase II, which are unaffected by phosphorylation and consistently demonstrated a significant signal reduction upon MYCN activation in their previous studies (Buchel et al, 2017) (Herold et al, 2019). Similarly, the authors previously proposed that depletion of TFIIIC5 abrogates the MYCN-dependent increase of Ser2-phosphorylated RNA polymerase II (Buchel et al, 2017), whereas they now show that it has no obvious impact. These aspects need clarification.

      Finally, the varied techniques employed to explore the role of TFIIIC in MYCN-dependent recruitment of nascent RNA degradation factors make it challenging to draw definitive conclusions about which factor is affected and which one is not. While conducting ChIPseq experiments for all factors may be beyond the scope of this manuscript, incorporating proximity ligation assays (PLA) or ChIP-qPCR assays with each factor would have enabled a more direct and comprehensive comparison.

    1. Reviewer #3 (Public Review):

      Summary:

      This study investigates how various behavioral features are represented in the medial prefrontal cortex (mPFC) of rats engaged in a naturalistic foraging task. The authors recorded electrophysiological responses of individual neurons as animals transitioned between navigation, reward consumption, avoidance, and escape behaviors. Employing a range of computational and statistical methods, including artificial neural networks, dimensionality reduction, hierarchical clustering, and Bayesian classifiers, the authors sought to predict from neural activity distinct task variables (such as distance from the reward zone and the success or failure of avoidance behavior). The findings suggest that mPFC neurons alternate between at least two distinct functional modes, namely spatial encoding and threat evaluation, contingent on the specific location.

      Strengths:

      This study attempts to address an important question: understanding the role of mPFC across multiple dynamic behaviors. The authors highlight the diverse roles attributed to mPFC in previous literature and seek to explain this apparent heterogeneity. They designed an ethologically relevant foraging task that facilitated the examination of complex dynamic behavior, collecting comprehensive behavioral and neural data. The analyses conducted are both sound and rigorous.

      Weaknesses:

      The primary concern with this study is the absence of direct evidence regarding the role of the mPFC in the foraging behavior of the rats. The ability to predict heterogeneous variables from the population activity of a specific brain area does not necessarily imply that this brain area is computing or using this information. In light of recent reports revealing the distributed nature of neural coding, conducting direct causal experiments would be essential to draw conclusions about the role of the mPFC in spatial encoding and/or threat evaluation. Alternatively, a comparison with the activity from a different brain region could provide valuable insights (or at the very least, a comparison between PL and IL within the mPFC). Moreover, given that high-dimensional movement has been shown to be reflected in the neural activity across the entire dorsal cortex, more thorough comparisons between the neural encoding of task variables and movement would help rule out the possibility that the heterogeneous encoding observed in the mPFC is merely a reflection of the rats' movements in different behavioral modes. Lastly, the main claim of the paper is that the mPFC population switches between different functional modes depending on the context. However, no dynamic analysis or switching model has been employed to directly support this hypothesis.

      Conclusion:

      To strengthen the argument and offer novel insights into the functions of the mPFC, it would be important to conduct a more comprehensive analysis if additional data cannot be provided.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Raudales et al. aimed at providing an insight into the brain-wide distribution and synaptic connectivity of bona fide GABAergic inhibitory interneuron subtypes focusing on the axo-axonic cell (AAC), one of the most distinctive interneuron subtypes, which innervates the axon initial segments of glutamatergic projection neurons. They establish intersectional genetic strategies that enable them to specifically and comprehensively capture AACs based on their lineage (Nkx2.1) and marker expression (Unc5b, Pthlh). They find that AACs are deployed across essentially all the pallium-derived brain structures as well as the anterior olfactory nucleus, taenia tecta, and lateral septum. They show that AACs in distinct areas and layers of the neocortex as well as different subregions of the hippocampal formation display unique soma and synaptic density and morphological variations. Rabies virus-based retrograde monosynaptic input tracing reveals that AACs in the neocortex, the hippocampus, and the basolateral amygdala receive synaptic inputs from common as well as specific brain regions and supports the utility of this novel genetic approach. This study elucidates brain-wide neuroanatomical features and morphological variations of AACs with solid techniques and analysis. Their novel AAC-targeting strategies will facilitate the study of their development and function in different brain regions. The conclusions in this paper are well supported by the data. However, there are a few comments to strengthen this study.

      1) The definition of putative AAC (pAAC) is unclear and Table 1 may not be accurate. Although the authors find synaptic cartridges of RFP-labeled cells in the claustro-insular complex and the dorsal endopiriform nuclei, they still consider these cells as pAACs (not validated). The authors claim that without examining the presence of synaptic cartridges, RFP-labeled cells in the hypothalamus and the bed nuclei of the stria terminalis (BNST) are pAACs while those in the L4 of the somatosensory cortex in Pthlh;Nkx2.1;Ai65 mice are non-AACs. In Table 1, the BNST is supposed to contain AACs (validated), but in the text, the authors claim that RFP-labeled cells in the BNST are pAACs. Could the authors clarify how AACs, pAACs, and non-AACs are defined?

      2) The intersectional strategies presented in this study could also specifically capture developing AACs. If so, how early are AACs labeled in the brain? It would also be nice if the authors could add a simple schematic like Fig. 1a showing the time course of Pthlh expression.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Zhao et al. address the question of whether intermediate states of the epithelial-to-mesenchymal transition (EMT) exist in a natural developmental context as well as in cancer cells. This is important not only for our understanding of these developmental systems but also for their development as resources for new anti-cancer approaches. Guided by single-cell RNA sequencing analysis of delaminating mouse cranial neural crest cells, they identify two distinct populations with transcriptional signatures intermediate between neuroepithelial progenitors and migrating crest. Both clusters are intermediate spatially and actively cycling, with one in S-phase and one in G2/M. They show that blocking progression through S phase prior to the onset of delamination and knockdown of intermediate state marker Dlc1 both reduce the number of migratory cells that have completed EMT. Overall, the work provides a modern take and new insights into the classical developmental process of neural crest delamination.

      Strengths:<br /> • Deep analysis of the scRNAseq dataset revealed previously unappreciated cell populations intermediate between premigratory and migratory crest.<br /> • The observation that delaminating/intermediate neural crest cells appear to be in S or G2/M phase is interesting and worth reporting, though the ultimate significance remains unclear, given that they do not make distinct derivatives depending on their cycle state.<br /> • The authors employ new methods for multiplex spatial imaging to more accurately define their populations of interest and their relative positions.<br /> • The authors present evidence that intermediate state gene Dlc1 (a Rho GAP) is not just a marker but functionally required for neural crest delamination in mice, as previously shown in chicken.

      Weaknesses:<br /> • Similar experiments involving blockade of cell cycle progression and Dlc1 dose manipulation were previously performed in chick models, as noted in the discussion. The newly-defined intermediate states give added context to the results, but they are not entirely novel.<br /> • The putative intermediate cells differentially express mRNAs for genes involved in cell adhesion, polarity, and protrusion relative to bona fide premigratory cells (Fig. 2E). This is persuasive evidence, but only differentially expressed genes are shown. Discussing those markers that have not yet changed, e.g. Cdh1 or Zo1 (?), would be instructive and help to clarify the order of events.<br /> • It is unclear whether the two putative intermediate state clusters differ other than their stage of the cell cycle. Based on the trajectory analysis in Fig. 3C-D, the authors state that these two populations form simultaneously and independently but then merge into a single population. However, without further differential expression, it seems more plausible that they represent a single population that is temporarily bifurcated due to cell cycle asynchrony.<br /> • The authors do not present an in-depth comparison of these neural crest intermediate states to previously reported cancer intermediate states. This analysis would reveal how similar the signatures are and thus how extrapolatable these and future findings in delaminating neural crest are to different types of cancer.<br /> • Lines 265-289 (Fig. 4): The aphidicolin treatments appear to have been started before NC delamination begins in earnest, so the fact that there are any migratory SOX10+ neural crest in the treated embryos at all indicates that progression through S-phase is not explicitly required for delamination. The authors surmise that the successfully delaminated cells may instead have been in G2/M phase (perhaps representing cluster 10') already at the start of treatment and thus able to progress through EMT, while S phase intermediate and true premigratory cells were not. This is plausible. However, the reduction in SOX10+ cells may be in part or wholly attributable to inhibition of proliferation AFTER delamination. Showing that there are premigratory NCCs in G2/M at ~E8.0 would bolster the argument that this population is present from the earliest stages.

    1. Reviewer #3 (Public Review):

      Seba et al. investigate whether chromosomal recruitment of the E. coli SMC complex MukBEF is initiated at a single site, how MukBEF activity is excluded from the replication terminus region, and whether its recruitment and activity depend on DNA replication. Upon induction of MukBEF, the authors find that chromosomal long-range contacts increase globally rather than from a single site. Using large-scale chromosome rearrangements, they show that matS sites can insulate separate areas of high MukBEF activity from each other. This suggests that MukBEF loads at multiple sites in the genome. Finally, the authors propose that MukBEF associates preferentially with newly replicated DNA, based on ChIP-seq experiments after DNA replication arrest.

      The conclusions of the paper are well supported by the data. The ratiometric contact analyses and range-of-contact analyses are compelling and nicely show the interplay between MukBEF and its proposed unloader MatP/matS. I particularly enjoyed the chromosome re-arrangement experiments, which lend strong support to the idea that MukBEF activity is independent of a centralized loading site.<br /> The enrichment of MukBEF in newly replicated regions is convincing, despite somewhat small effect sizes. The suggestion that matS density controls MukBEF activity is appealing, but will need additional support from more systematic studies. It is based on a comparison of only two strains (looking at different combinations of three matS sites), and the effect size is small. As it is, differences in matS sequence composition and genomic context cannot be factored out.

      Overall, the work is an important advance in our understanding of bacterial chromosome organization. It will be of broad interest to chromosome biologists and bacterial cell biologists.

    1. Reviewer #3 (Public Review):

      In this study, Sun et al examine the role of the splicing factor SRSF1 in spermatogenesis in mice. Alternative splicing is important for spermatogenic development, but its regulation and major developmental roles during spermatogenesis are not well understood. The authors set out to better define both SRSF1 function in testes and the contribution of alternative splicing. They generate several large 'omics datasets to define SRSF1 targets in testis, including RNA interactions by CLIP-seq in whole testis, protein interactions by IP-mass spec in whole testis, and RNA sequencing to detect expression levels and splice variants. They also examine the phenotype of germline conditional knockouts (cKO) for Srsf1, using the early-acting Vasa-Cre, and find a severe depletion of germ cells starting at 7 days post partum (dpp) and culminating with a lack of germ cells (Sertoli Cell Only Syndrome) by adulthood. They detect differences in gene expression as well as differences in splicing between control and knockout, including 9 genes that are downregulated, experience alternative splicing, and whose transcripts are also bound by SRSF1, and identify the Tial1/Tiar transcript as one of these targets. They conclude that SRSF1 is required for homing and self-renewal of precursor spermatogonial stem cells, and suggest that this role may be mediated in part though its regulation of Tial1/Tiar splicing.

      Strengths of the paper include detailed phenotyping of the Srsf1 cKO, which convincingly supports the Sertoli Cell Only phenotype, establishes the timing of the first appearance of the spermatogonial defect, and provides new insight into the role of splicing factors and SRSF1 specifically in spermatogenesis. Another strength is the generation of CLIP-seq, IP-MS, and RNA-seq datasets which will be a useful resource for the field of germ cell development. Overall, the results support the claims made. While the study does not provide a full mechanistic understanding of how alternative splicing mediated by SRSF1 affects SSC precursors, the contributions are novel and useful, and will be of interest to the fields of alternative splicing and male reproductive biology.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors have undertaken a study to rigorously characterize the possible role of eIF2A in regulating translation in yeast. The authors test for a role of eIF2A in the absence or presence of cellular stress and conclude that eIF2A does not play any significant role in regulating translation initiation in yeast.

      The authors have used rigorous experimental approaches, including genome wide ribosome profiling analysis in the absence or presence of stress, to show that eIF2A does not function in translation initiation on most mRNAs in yeast. Interestingly, the authors do identify a small number of mRNAs that possess some eIF2A dependency, so they constructed reporters to rigorously test them. One mRNA, HKR1, appears to possess a degree of eIF2A-dependent translation regulation.

      No role of eIF2A in translation initiation is apparent and one limitation of the study is that the authors do not determine what function eIF2A plays in yeast.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The work in this manuscript builds on prior efforts by this team to understand how sterols are biosynthesized and utilized in bacteria. The study reports a new function for three genes encoded near sterol biosynthesis enzymes, suggesting the resulting proteins function as a sterol transport system. Biochemical and structural characterization of the two soluble components of the pathway establishes that both proteins can bind sterols, with a preference for 4-methylated derivatives. High-resolution x-ray structures of the apoproteins reveal hydrophobic cavities of the appropriate size to accommodate these substrates. Docking and molecular dynamics simulations confirm this observation and provide specific insights into residues involved in substrate binding.

      Strengths:<br /> The manuscript is comprehensive and well-written. The annotation of a new function in a set of proteins related to bacterial sterol usage is exciting and likely to enable further study of this phenomenon - which is currently not well understood. The work also has implications for improving our understanding of lipid usage in general among bacterial organisms.

    1. Reviewer #3 (Public Review):

      Summary: The study conducted by Ouasti et al. is an elegant investigation of fission yeast CAF-1, employing a diverse array of technologies and genetic alterations to dissect its functions and their interdependence. These functions play a critical role in specifying interactions vital for DNA replication, heterochromatin maintenance, and DNA damage repair, and their dynamics involve multiple interactions. The authors have extensively utilized various in vitro and in vivo tools to validate their model and emphasize the dynamic nature of this complex.

      Strengths: Their work is supported by robust experimental data from multiple techniques, including NMR and SAXS, which validate their molecular model. They conducted in vitro interactions using EMSA and isothermal microcalorimetry, in vitro histone deposition using Xenopus high-speed egg extract, and systematically generated and tested various genetic mutants for functionality in in vivo assays. They successfully delineated domain-specific functions using in vitro assays and could validate their roles to large extent using genetic mutants. One significant revelation from this study is the unfolded nature of the acidic domain, observed to fold when binding to histones. Additionally, the authors also elucidated the role of the long KER helix in mediating DNA binding and enhancing the association of CAF-1 with PCNA. The paper effectively addresses its primary objective.

      Weaknesses: A few relatively minor unresolved aspects persist, which, if clarified or experimentally addressed by the authors, could further bolster the study.<br /> 1. The precise function of the WHD domain remains elusive. Its deletion does not result in DNA damage accumulation or defects in heterochromatin maintenance. This raises questions about the biological significance of this domain and whether it is dispensable. While in vitro assays revealed defects in chromatin assembly using this mutant (Figure 5), confirming these phenotypes through in vivo assays would provide additional assurance that the lack of function is not simply due to the in vitro system lacking PTMs or other regulatory factors.<br /> 2. The observation of increased Pcf2-gfp foci in pcf1-ED* cells, particularly in mono-nucleated (G2-phase) and bi-nucleated cells with septum marks (S-phase), might suggest the presence of replication stress. This could imply incomplete replication in specific regions, leading to the persistence of Caf1-ED*-PCNA factories throughout the cell cycle. To further confirm this, detecting accumulated single-stranded DNA (ssDNA) regions outside of S-phase using RPA as an ssDNA marker could be informative.<br /> 3. Moreover, considering the authors' strong assertion of histone binding defects in ED* through in vitro assays (Figure 2d and S2a), these claims could be further substantiated, especially considering that some degree of histone deposition might still persist in vivo in the ED* mutant (Figure 7d, viable though growth defective double ED*+hip1D mutants). For example, the approach, akin to the one employed in Fig. 6a (FLAG-IPs of various Pcf1-FLAG-tagged mutants), could also enable a comparison of the association of different mutants with histones and PCNA, providing a more thorough validation of their findings.<br /> 4. It would be valuable for the authors to speculate on the necessity of having disordered regions in CAF1. Specifically, exploring the overall distribution of these domains within disordered/unfolded structures could provide insightful perspectives. Additionally, it's intriguing to note that the significant disparities observed among mutants (ED*, PIP*, and KER*) in in vitro assays seem to become more generic in vivo, except for the indispensability of the WHD-domain. Could these disordered regions potentially play a crucial role in the phase separation of replication factories? Considering these questions could offer valuable insights into the underlying mechanisms at play.

    1. Reviewer #3 (Public Review):

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al. ), who showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent. The authors observed that most stumpy forms infections with teneral and adult flies were successful while only 1 out of 24 slender form infections were successful.

      In this revised version of the manuscript, the authors made some text changes and included statistical testing as a new section of the Materials and Methods. It seems the comparison of midgut infection in adult vs teneral flies was significant in most of the conditions. However, the critical comparison is still missing: within each type of fly (adult or teneral), was the MG infection significantly different between slender and stumpy forms?

      Given no additional experiments were performed, it remains unknown why this work and Schuster et al. reached different conclusions. As a result it remains unclear in which conditions slender forms could be important for transmission. Several variables could explain differences between the two groups: the strain used, the presence or absence of N-acetylglucosamine and/or glutathione, how Tsetse colonies were maintained, thorough molecular and cellular characterisation of slender and stumpy forms (to avoid using intermediate forms as slender forms), comparison to recent field parasite strains.

    1. Reviewer #3 (Public Review):

      Summary<br /> The authors of this work aim to address the challenge of accurately and efficiently identifying protein binding sites from sequences. They recognize that the limitations of current methods, including reliance on multiple sequence alignments or experimental protein structure, and the under-explored geometry of the structure, which limit the performance and genome-scale applications. The authors have developed a multi-task network called GPSite that predicts binding residues for a range of biologically relevant molecules, including DNA, RNA, peptides, proteins, ATP, HEM, and metal ions, using a combination of sequence embeddings from protein language models and ESMFold-predicted structures. Their approach attempts to extract residual and relational geometric contexts in an end-to-end manner, surpassing current sequence-based and structure-based methods.

      Strengths<br /> 1. The GPSite model's ability to predict binding sites for a wide variety of molecules, including DNA, RNA, peptides, and various metal ions.<br /> 2. Based on the presented results, GPSite outperforms state-of-the-art methods in several benchmark datasets.<br /> 3. GPSite adopts predicted structures instead of native structures as input, enabling the model to be applied to a wider range of scenarios where native structures are rare.<br /> 4. The authors emphasize the low computational cost of GPSite, which enables rapid genome-scale binding residue annotations, indicating the model's potential for large-scale applications.

      Weaknesses<br /> 1. One major advantage of GPSite, as claimed by the authors, is its efficiency. Although the manuscript mentioned that the inference takes about 5 hours for all datasets, it remains unclear how much improvement GPSite can offer compared with existing methods. A more detailed benchmark comparison of running time against other methods is recommended (including the running time of different components, since some methods like GPSite use predicted structures while some use native structures).<br /> 2. Since the model uses predicted protein structure, the authors have conducted some studies on the effect of the predicted structure's quality. However, only the 0.7 threshold was used. A more comprehensive analysis with several different thresholds is recommended.<br /> 3. To demonstrate the robustness of GPSite, the authors performed a case study on human GR containing two zinc fingers, where the predicted structure is not perfect. The analysis could benefit from more a detailed explanation of why the model can still infer the binding site correctly even though the input structural information is slightly off.<br /> 4. To analyze the relatively low AUC value for protein-protein interactions, the authors claimed that it is "due to the fact that protein-protein interactions are ubiquitous in living organisms while the Swiss-Prot function annotations are incomplete", which is unjustified. It is highly recommended to support this claim by showing at least one example where GPSite's prediction is a valid binding site that is not present in the current Swiss-Prot database or via other approaches.<br /> 5. The authors reported that many GPSite-predicted binding sites are associated with known biological functions. Notably, for RNA-binding sites, there is a significantly higher proportion of translation-related binding sites. The analysis could benefit from a further investigation into this observation, such as the analyzing the percentage of such interactions in the training site. In addition, if there is sufficient data, it would also be interesting to see the cross-interaction-type performance of the proposed model, e.g., train the model on a dataset excluding specific binding sites and test its performance on that class of interactions.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The primary aim of this manuscript was to investigate how context, defined from visual object information in multimodal movies, impacts the neural representation of concrete and abstract conceptual knowledge. The authors first conduct a series of analyses to identify context-independent regional responses to concrete and abstract concepts in order to compare these results with the networks observed in prior research using non-naturalistic paradigms. The authors then conduct analyses to investigate whether the regional response to abstract and concrete concepts changes when the concepts are either contextually situated or displaced. A concept is considered displaced if the visual information immediately preceding the word is weakly associated with the word whereas a concept is situated if the association is high. The results suggest that, when ignoring context, abstract and concrete concepts engage different brain regions with overlap in core language areas. When context is accounted for, however, similar brain regions are activated for processing concrete and situated abstract concepts and for processing abstract and displaced concrete concepts. The authors suggest that contextual information dynamically changes the brain regions that support the representation of abstract and concrete conceptual knowledge.

      Strengths:<br /> There is significant interest in understanding both the acquisition and neural representation of abstract and concrete concepts, and most of the work in this area has used highly constrained, decontextualized experimental stimuli and paradigms to do so. This manuscript addresses this limitation by using multimodal narratives which allows for an investigation of how context-sensitive the regional response to abstract and concrete concepts is. The authors characterize the regional response in a comprehensive way.

      Weaknesses:<br /> The context measure is interesting, but I'm not convinced that it's capturing what the authors intended. In analysing the neural response to a single word, the authors are presuming that they have isolated the window in which that concept is processed and the observed activation corresponds to the neural representation of that word given the prior context. I question to what extent this assumption holds true in a narrative when co-articulation blurs the boundaries between words and when rapid context integration is occurring. Further, the authors define context based on the preceding visual information. I'm not sure that this is a strong manipulation of the narrative context, although I agree that it captures some of the local context. It is maybe not surprising that if a word, abstract or concrete, has a strong association with the preceding visual information then activation in the occipital cortex is observed. I also wonder if the effects being captured have less to do with concrete and abstract concepts and more to do with the specific context the displaced condition captures during a multimodal viewing paradigm. If the visual information is less related to the verbal content, the viewer might process those narrative moments differently regardless of whether the subsequent word is concrete or abstract. I think the claims could be tailored to focus less generally on context and more specifically on how visually presented objects, which contribute to the ongoing context of a multimodal narrative, influence the subsequent processing of abstract and concrete concepts.

    1. Reviewer #3 (Public Review):

      Yuan et al., set out to examine the role of functional and structural interaction between Slack and NaVs on the Slack sensitivity to quinidine. Through pharmacological and genetic means they identify NaV1.6 as the privileged NaV isoform in sensitizing Slack to quinidine. Through biochemical assays, they then determine that the C-terminus of Slack physically interacts with the N- and C-termini of NaV1.6. Using the information gleaned from the in vitro experiments the authors then show that virally-mediated transduction of Slack's C-terminus lessens the extent of SlackG269S-induced seizures. These data uncover a previously unrecognized interaction between a sodium and a potassium channel, which contributes to the latter's sensitivity to quinidine.

    1. Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      The authors did a nice job of addressing my comments which mainly centered around the presentation of data, specificity, and wording.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors report a scene-selective area in the posterior intraparietal gyrus (PIGS). This area lies outside the classical three scene-selective regions (PPA/TPA, RSC/MPA, TOS/OPA), and is selective for ego-motion.

      Strengths:<br /> The authors firmly establish the location and selectivity of the new area through a series of well-crafted controlled experiments. They show that the area can be missed with too much smoothing, thus providing a case for why it has not been previously described. They show that it appears in much the same location in different subjects, with different magnetic field strengths, and with different stimulus sets. Finally, they show that it is selective for ego-motion - defined as a series of sequential photographs of an egocentric trajectory along a path. They further clarify that the area is not generically motion-selective by showing that it does not respond to biological motion without an ego-motion component to it. All statistics are standard and sound; the evidence presented is strong.

      Weaknesses:<br /> There are few weaknesses in this work. If pressed, I might say that the stimuli depicting ego-motion do not, strictly speaking, depict motion, but only apparent motion between 2m apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego-motion' and a control condition, which is a useful and valid approach to the problem. Some choices for visualization of the results might be made differently; for example, outlines of the regions might be shown in more plots for easier comparison of activation locations, but this is a minor issue.

      This is a very strong paper.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study aimed to investigate whether the differences observed in the organization of visual brain networks between blind and sighted adults result from a reorganization of an early functional architecture due to blindness, or whether the early architecture is immature at birth and requires visual experience to develop functional connections. This question was investigated through the comparison of 3 groups of subjects with resting-state functional MRI (rs-fMRI). Based on convincing analyses, the study suggests that: 1) secondary visual cortices showed higher connectivity to prefrontal cortical regions (PFC) than to non-visual sensory areas (S1/M1 and A1) in sighted infants like in blind adults, in contrast to sighted adults; 2) the V1 connectivity pattern of sighted infants lies between that of sighted adults (stronger functional connectivity with non-visual sensory areas than with PFC) and that of blind adults (stronger functional connectivity with PFC than with non-visual sensory areas); 3) the laterality of the connectivity patterns of sighted infants resembled those of sighted adults more than those of blind adults, but sighted infants showed a less differentiated fronto-occipital connectivity pattern than adults.

      Strengths:<br /> - The question investigated in this article is important for understanding the mechanisms of plasticity during typical and impaired development, and the approach considered, which compares different groups of subjects including, neonates/infants and blind adults, is highly original.

      - Overall, the analyses considered are solid and well-detailed. The results are quite convincing, even if the interpretation might need to be revised downwards, as factors other than visual experience may play a role in the development of functional connections with the visual system.

      Weaknesses:<br /> - While it is informative to compare the "initial" state (close to birth) and the "final" states in blind and sighted adults to study the impact of post-natal and visual experience, this study does not analyze the chronology of this development and when the specialization of functional connections is completed. This would require investigating when experience-dependent mechanisms are important for the setting- establishment of multiple functional connections within the visual system. This could be achieved by analyzing different developmental periods in the same way, using open databases such as the Baby Connectome Project. Given the early, "condensed" maturation of the visual system after birth, we might expect sighted infants to show connectivity patterns similar to those of adults a few months after birth.

      - The rationale for mixing full-term neonates and preterm infants (scanned at term-equivalent age) from the dHCP 3rd release is not understandable since preterms might have a very different development related to prematurity and to post-natal (including visual) experience. Although the authors show that the difference between the connectivity of visual and other sensory regions, and the one of visual and PFC regions, do not depend on age at birth, they do not show that each connectivity pattern is not influenced by prematurity. Simply not considering the preterm infants would have made the analysis much more robust, and the full-term group in itself is already quite large compared with the two adult groups. The current study setting and the analyses performed do not seem to be an adequate and sufficient model to ascertain that "a few weeks of vision after birth is ... insufficient to influence connectivity".

      In a similar way, excluding the few infants with detected brain anomalies (radiological scores higher or equal to 4) would strengthen the group homogeneity by focusing on infants supposed to have a rather typical neurodevelopment. The authors quote all infants as "sighted" but this is not guaranteed as no follow-up is provided.

      The post-menstrual age (PMA) at scan of the infants is also not described. The methods indicate that all were scanned at "term-equivalent age" but does this mean that there is some PMA variability between 37 and 41 weeks? Connectivity measures might be influenced by such inter-individual variability in PMA, and this could be evaluated.

      - The rationale for presenting results on the connectivity of secondary visual cortices before one of the primary cortices (V1) was not clear to understand. Also, it might be relevant to better justify why only the connectivity of visual regions to non-visual sensory regions (S1-M1, A1) and prefrontal cortex (PFC) was considered in the analyses, and not the ones to other brain regions.

      - In relation to the question explored, it might be informative to reposition the study in relation to what others have shown about the developmental chronology of structural and functional long-distance and short-distance connections during pregnancy and the first postnatal months.

      - The authors acknowledge the methodological difficulties in defining regions of interest (ROIs) in infants in a similar way as adults. The reliability and the comparability of the ROIs positioning in infants is definitely an issue. Given that brain development is not homogeneous and synchronous across brain regions (in particular with the frontal and parietal lobes showing delayed growth), the newborn brain is not homothetic to the adult brain, which poses major problems for registration. The functional specialization of cortical regions is incomplete at birth. This raises the question of whether the findings of this study would be stable/robust if slightly larger or displaced regions had been considered, to cover with greater certainty the same areas as those considered in adults. And have other cortical parcellation approaches been considered to assess the ROIs robustness (e.g. MCRIB-S for full-terms)?

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper presents evidence from three behavioral experiments that causal impressions of "launching events", in which one object is perceived to cause another object to move, depending on motion direction-selective processing. Specifically, the work uses an adaptation paradigm (Rolfs et al., 2013), presenting repetitive patterns of events matching certain features to a single retinal location, then measuring subsequent perceptual reports of a test display in which the degree of overlap between two discs was varied, and participants could respond "launch" or "pass". The three experiments report results of adapting to motion direction, motion speed, and "object identity", and examine how the psychometric curves for causal reports shift in these conditions depending on the similarity of the adapter and test. While causality reports in the test display were selective for motion direction (Experiment 1), they were not selective for adapter-test speed differences (Experiment 2) nor for changes in object identity induced via color swap (Experiment 3). These results support the notion that causal perception is computed (in part) at relatively early stages of sensory processing, possibly even independently of or prior to computations of object identity.

      Strengths:<br /> The setup of the research question and hypotheses is exceptional. The experiments are carefully performed (appropriate equipment, and careful control of eye movements). The slip adaptor is a really nice control condition and effectively mitigates the need to control motion direction with a drifting grating or similar. Participants were measured with sufficient precision, and a power curve analysis was conducted to determine the sample size. Data analysis and statistical quantification are appropriate. Data and analysis code are shared on publication, in keeping with open science principles. The paper is concise and well-written.

      Weaknesses:<br /> The biggest uncertainty I have in interpreting the results is the relationship between the task and the assumption that the results tell us about causality impressions. The experimental logic assumes that "pass" reports are always non-causal impressions and "launch" reports are always causal impressions. This logic is inherited from Rolfs et al (2013) and Kominsky & Scholl (2020), who assert rather than measure this. However, other evidence suggests that this assumption might not be solid (Bechlivanidis et al., 2019). Specifically, "[our experiments] reveal strong causal impressions upon first encounter with collision-like sequences that the literature typically labels "non-causal"" (Bechlivanidis et al., 2019) -- including a condition that is similar to the current "pass". It is therefore possible that participants' "pass" reports could also involve causal experiences.

      Furthermore, since the only report options are "launch" or "pass", it is also possible that "launch" reports are not indications of "I experienced a causal event" but rather "I did not experience a pass event". It seems possible to me that different adaptation transfer effects (e.g. selectivity to motion direction, speed, or color-swapping) change the way that participants interpret the task, or the uncertainty of their impression. For example, it could be that adaptation increases the likelihood of experiencing a "pass" event in a direction-selective manner, without changing causal impressions. Increases of "pass" impressions (or at least, uncertainty around what was experienced) would produce a leftward shift in the PSE as reported in Experiment 1, but this does not necessarily mean that experiences of causal events changed. Thus, changes in the PSEs between the conditions in the different experiments may not directly reflect changes in causal impressions. I would like the authors to clarify the extent to which these concerns call their conclusions into question.

      Leaving these concerns aside, I am also left wondering about the functional significance of these specialised mechanisms. Why would direction matter but speed and object identity not? Surely object identity, in particular, should be relevant to real-world interpretations and inputs of these visual routines? Is color simply too weak an identity?

      References:

      Bechlivanidis, C., Schlottmann, A., & Lagnado, D. A. (2019). Causation without realism. Journal of Experimental Psychology: General, 148(5), 785-804. https://doi.org/10.1037/xge0000602

      Kominsky, J. F., & Scholl, B. J. (2020). Retinotopic adaptation reveals distinct categories of causal perception. Cognition, 203, 104339.

      Rolfs, M., Dambacher, M., & Cavanagh, P. (2013). Visual Adaptation of the Perception of Causality. Current Biology, 23(3), 250-254. https://doi.org/10.1016/j.cub.2012.12.017

    1. Reviewer #3 (Public Review):

      Summary:<br /> In their study, Zhao et al. investigated the population activity of mirror neurons (MNs) in the premotor cortex of monkeys either executing or observing a task consisting of reaching to, grasping, and manipulating various objects. The authors proposed an innovative method for analyzing the population activity of MNs during both execution and observation trials. This method enabled to isolate the condition-dependent variance in neural data and to study its temporal evolution over the course of single trials. The method proposed by the authors consists of building a time series of "instantaneous" subspaces with single time step resolution, rather than a single subspace spanning the entire task duration. As these subspaces are computed on an instant time basis, projecting neural activity from a given task time into them results in latent trajectories that capture condition-dependent variance while minimizing the condition-independent one. The authors then analyzed the time evolution of these instantaneous subspaces and revealed that a progressive shift is present in subspaces of both execution and observation trials, with slower shifts during the grasping and manipulating phases compared to the initial preparation phase. Finally, they compared the instantaneous subspaces between execution and observation trials and observed that neural population activity did not traverse the same subspaces in these two conditions. However, they showed that these distinct neural representations can be aligned with Canonical Correlation Analysis, indicating dynamic similarities of neural data when executing and observing the task. The authors speculated that such similarities might facilitate the nervous system's ability to recognize actions performed by oneself or another individual.

      Strengths:<br /> Unlike other areas of the brain, the analysis of neural population dynamics of premotor cortex MNs is not well established. Furthermore, analyzing population activity recorded during non-trivial motor actions, distinct from the commonly used reaching tasks, serves as a valuable contribution to computational neuroscience. This study holds particular significance as it bridges both domains, shedding light on the temporal evolution of the shift in neural states when executing and observing actions. The results are moderately robust, and the proposed analytical method could potentially be used in other neuroscience contexts.

      Weaknesses:<br /> While the overall clarity is satisfactory, the paper falls short in providing a clear description of the mathematical formulas for the different methods used in the study. Moreover, it was not immediately clear why the authors did not consider a (relatively) straightforward metric to quantity the progressive shift of the instantaneous subspaces, such as computing the angle between consecutive subspaces, rather than choosing a (in my opinion) more cumbersome metric based on classification of trajectory segments representing different movements.

      Specific comments:<br /> In the methods, it is stated that instantaneous subspaces are found with 3 PCs. Why does it say 2 here? Another doubt on how instantaneous subspaces are computed: in the methods you state that you apply PCA on trial-averaged activity at each 50ms time step. From the next sentence, I gather that you apply PCA on an Nx4 data matrix (N being the number of neurons, and 4 being the trial-averaged activity of the four objects) every 50 ms. Is this right? It would help to explicitly specify the dimensions of the data matrix that goes into PCA computation.

      It would help to include some equations in the methods section related to the LSTM decoding. Just to make sure I understood correctly: after having identified the instantaneous subspaces (every 50 ms), you projected the Instruction, Go, Movement, and Holding segments from individual trials (each containing 100 samples, since they are sampled from a 100ms window) onto each instantaneous subspace. So you have four trajectories for each subspace. In the methods, it is stated that a single LSTM classifier is trained for each subspace. Do you also have a separate classifier for each trajectory segment? What is used as input to the classifier? Each trajectory segment should be a 100x3 matrix once projected in an instantaneous subspace. Is that what (each of) the LSTMs take as input? And lastly, what is the LSTM trained to predict exactly? Just a label indicating the type of object that was manipulated in that trial? I apologize if I overlooked any detail, but I believe a clearer explanation of the LSTM, preferably with mathematical formulas, would greatly help readers understand this section.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper by Martin et al. describes the contribution of a Kv channel subunit (Kv1.8, KCNA10) to voltage-dependent K+ conductances and membrane properties of type I and type II hair cells of the mouse utricle. Previous work has documented striking differences in K+ conductances between vestibular hair cell types. In particular amniote type I hair cells are known to express a non-typical low-voltage-activated K+ conductance (GK,L) whose molecular identity has been elusive. K+ conductances in hair cells from 3 different mouse genotypes (wildtype, Kv1.8 homozygous knockouts, and heterozygotes) are examined here and whole-cell patch-clamp recordings indicate a prominent role for Kv1.8 subunits in generating GK,L. Results also interestingly support a role for Kv1.8 subunits in type II hair cell K+ conductances; inactivating conductances in null mice are reduced in type II hair cells from striola and extrastriola regions of the utricle. Kv1.8 is therefore proposed to contribute as a pore-forming subunit for 3 different K+ conductances in vestibular hair cells. The impact of these conductances on membrane responses to current steps is studied in the current clamp. Pharmacological experiments use XE991 to block some residual Kv7-mediated current in both hair cell types, but no other pharmacological blockers are used. In addition, immunostaining data are presented and raise some questions about Kv7 and Kv1.8 channel localization. Overall, the data present compelling evidence that the removal of Kv1.8 produces profound changes in hair cell membrane conductances and sensory capabilities. These changes at hair cell level suggest vestibular function would be compromised and further assessment in terms of balance behavior in the different mice would be interesting.

      Strengths:

      This study provides strong evidence that Kv1.8 subunits are major contributors to the unusual K+ conductance in type I hair cells of the utricle. It also indicates that Kv1.8 subunits are important for type II hair cell K+ conductances because Kv1.8-/- mice lacked an inactivating A conductance and had reduced delayed rectifier conductance compared to controls. A comprehensive and careful analysis of biophysical profiles is presented of expressed K+ conductances in 3 different mouse genotypes. Voltage-dependent K+ currents are rigorously characterized at a range of different ages and their impact on membrane voltage responses to current input is studied. Some pharmacological experiments are performed in addition to immunostaining to bolster the conclusions from the biophysical studies. The paper has a significant impact in showing the role of Kv1.8 in determining utricular hair cell electrophysiological phenotypes.

      Weaknesses:

      1. From previous work it is known that GK,L in type I hair cells have unusual ion permeation and pharmacological properties that differ greatly from type II hair cell conductances. Notably GK,L is highly permeable to Cs+ as well as K+ ions and is slightly permeable to Na+. It is blocked by 4-aminopyridine and divalent cations (Ba2+, Ca2+, Ni2+), enhanced by external K+, and modulated by cyclic GMP. The question arises, if Kv1.8 is a major player and pore-forming subunit in type I and type II cells (and cochlear inner hair cells as shown by Dierich et al. 2020) how are subunits modified to produce channels with very different properties? A role for Kv1.4 channels (gA) is proposed in type II hair cells based on previous findings in bird hair cells and immunostaining for Kv1.4 channels in rat utricle presented here in Fig. 6. However, hair cell-specific partner interactions with Kv1.8 that result in GK,L in type I hair cells and Cs+ impermeable, inactivating currents in type II hair cells remain for the most part unexplored.

      2. Data from patch-clamp and immunocytochemistry experiments are not in close alignment. XE991 (Kv7 channel blocker) decreases remaining K+ conductance in type I and type II hair cells from null mice supporting the presence of Kv7 channels in hair cells (Fig. 7). Also, Holt et al. (2007) previously showed inhibition of GK,L in type I hair cells (but not delayed rectifier conductance in type II hair cells) using a dominant negative construct of Kv7.4 channels. However, immunolabelling indicates Kv7.4 channels on the inner face of calyx terminals adjacent to hair cells (Fig. 5). Some reconciliation of these findings is needed.

      3. Strong immunosignal appears in the cuticle plates of hair cells in addition to signal in basal regions of hair cells and supporting cells. Please provide a possible explanation for this.

      4. A previous paper reported that a vestibular evoked potential was abnormal in Kv1.8-/- mice (Lee et al. 2013) as briefly mentioned (lines 94-95). It would be very interesting to know if any vestibular-associated behaviors and/or hearing loss were observed in the mice populations. If responses are compromised at the sensory hair cell level across different zones, degradation of balance function would be anticipated and should be elucidated.

    1. Reviewer #4 (Public Review):

      The manuscript brings convincing results regarding genes involved in the radio-resistance of tardigrades. It is nicely written and the authors used different techniques to study these genes. There are sometimes problems with the structure of the manuscript but these could be easily solved. According to me, there are also some points which should be clarified in the result sections. The discussion section is clear but could be more detailed, although some results were actually discussed in the results section. I wish that the authors would go deeper in the comparison with other IR-resistant eucaryotes. Overall, this is a very nice study and of interest to researchers studying molecular mechanisms of ionizing radiation resistance.

      I have two small suggestions regarding the content of the study itself.

      1) I think the study would benefit from the analyses of a gene tree (if feasible) in order to verify if TDR1 is indeed tardigrade-specific.<br /> 2) It would be appreciated to indicate the expression level of the different genes discussed in the study, using, for example, transcript per millions (TPMs).

    1. Reviewer #3 (Public Review):

      Cells can oxidize diverse substrates in the mitochondria to sustain cellular energy metabolism. However, all of these substrates require covalent thioester linkage to coenzyme A (CoA). Thus, multiple energy metabolism substrates could potentially compete for a limited pool of mitochondrial CoA. Cells encode a set of mitochondrial acyl-CoA thioesterases (ACOTs) that free CoA up by removing attached substrates. The authors hypothesized that ACOT2, a mitochondrial ACOT with a preference for long-chain acyl-CoA substrates that arise during the oxidation of lipids as a fuel source, could regulate the balance of substrates used in the mitochondria by reducing the oxidation of lipids by removing them from CoA and freeing the mitochondrial pool of CoA for use by other substrates.

      To test this hypothesis, the authors generated mice with loss of ACOT2 in the skeletal muscle, where this is most expressed, and assayed the CoA composition of muscle and their glucose/fatty acid catabolism in mice that were challenged with different diets, fasting or exercise to expose the muscle to different substrates conditions. These experiments were complemented with biochemical analysis of mitochondria isolated from the muscle of control and ACOT2 animals exposed to a variety of substrates and challenged with different simulated energy demands.

      On the basis of these convincing experiments, the authors argue that loss of ACOT2 both in vivo and in vitro interestingly increases glucose oxidation, while not increasing oxidation of lipids. This is particularly surprising as the CoA competition model would predict that ACOT2 loss would increase lipid oxidation while hindering glucose oxidation. The authors argue that ACOT2 facilitates lipid oxidation due to ACOT2 reversal of lipid ligation to CoA preventing feedback inhibition of the lipid oxidation pathway that occurs when lipid supply outstrips the ability of the lipid oxidation pathway to metabolize the lipids. These findings will be valuable for the field of metabolism providing insight into how ACOTs regulate substrate catabolism in cells and tissues.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors aimed to investigate how genetic and environmental factors influence the muscle insulin signaling network and its impact on metabolism. They utilized mass spectrometry-based phosphoproteomics to quantify phosphosites in skeletal muscle of genetically distinct mouse strains in different dietary environments, with and without insulin stimulation. The results showed that genetic background and diet both affected insulin signaling, with almost half of the insulin-regulated phosphoproteome being modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affecting insulin signaling in a strain-dependent manner.

      Strengths:<br /> Study uses state-of-the-art phosphoproteomics workflow allowing quantification of a large number of phosphosites in skeletal muscle, providing a comprehensive view of the muscle insulin signaling network. The study examined five genetically distinct mouse strains in two dietary environments, allowing for the investigation of the impact of genetic and environmental factors on insulin signaling. The identification of coregulated subnetworks within the insulin signaling pathway expanded our understanding of its organization and provided insights into potential regulatory mechanisms. The study associated diverse signaling responses with insulin-stimulated glucose uptake, uncovering regulators of muscle insulin responsiveness.

      Weaknesses:<br /> The limitations acknowledged by the authors, such as the need for larger cohorts and the inclusion of female mice. Moreover as acknowledged by authors, they are unable to dissect to what extent the obesity and different life span cycle for different strain affects insulin signaling. This suggest that further research is needed to validate and expand upon the findings.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors use docking and molecular dynamics (MD) simulations to investigate transient conformations that are otherwise difficult to resolve experimentally. The docking and simulations suggest an interesting series of events whereby agonists initially bind to the low-affinity site and then flip 180 degrees as the site contracts to its high-affinity conformation. This work will be of interest to the ion channel community and to biophysical studies of pentameric ligand-gated channels.

      Strengths:<br /> I find the premise for the simulations to be good, starting with an antagonist-bound structure as an estimate of the low affinity binding site conformation, then docking agonists into the site and using MD to allow the site to relax to a higher affinity conformation that is similar to structures in complex with agonists. I cannot speak to the details of the simulation methods, but the predictions are interesting and provide a view into what a transient conformation that is difficult to observe experimentally might be like.

      Weaknesses:<br /> Although the match in simulated vs experimental energies for two ligands was very good, the calculated energies for two other ligands were significantly different than the experiment. It is unclear to what extent the choice of method for the energy calculations influenced the results.

      A control simulation, such as for an apo site, is lacking.

    1. Reviewer #3 (Public Review):

      In this article by Bastidas et al. the authors examine the functions of the Chlamydia deubiquitinating enzyme 1 (Cdu1) during infections of human cells. First, a mutant lacking Cdu1 but not Cdu2 was constructed using targetron and quantitative proteomics was used to identify differences in ubiquitinated proteins (both host and bacterial) during infection. While they found minimal changes in host protein ubiquitination, they identified three Chlamydia effector proteins, IpaM, InaC and CTL0480 were all ubiquitinated in the absence of Cdu1. Microscopy and immunoprecipitations found Cdu1 directly interacts with these Chlamydia effectors and confirmed that Cdu1 mediates the stabilization of these effectors at the inclusion membrane during late infection time points. Surprisingly rather than deubiquitination driving this stabilization, the acetylation function of Cdu1 was required, and acetylation on lysine residues prevented degradative ubiquitination of Cdu1, IpaM, InaC and CTL0480. In line with this observation the authors show that loss of Cdu1 phenocopies the loss of single effector mutants of InaC, IpaM and CTL0480, including golgi stack formation and the recruitment of MYPT1 to the inclusion. The aggregation of changes to the Chlamydia inclusion does not alter growth but controls extrusion of chlamydia from cells with reduced extrusion in Cdu1 mutant Chlamydia infections. The strengths of the manuscript are the range of assays used to convincingly examine the biochemical and cellular biology underlying Cdu1 functions. The finding that acetylation of lysine residues is a mechanisms for bacterial effectors to block degradative ubiqutination is impactful and will open new investigations into this mechanism for many intracellular pathogens. The authors revisions to the manuscript have addressed my primary concerns and the authors present compelling arguments for remaining questions that are outside the scope of this study. Altogether this is an important series of findings that help to understand the mechanisms underpinning Chlamydia pathogenesis using orthologous methods and is an impactful study.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Navratna et al. have solved the first structure of a transmembrane N-acetyltransferase (TNAT), resolving the architecture of human heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) in the acetyl-CoA bound state using single particle cryo-electron microscopy (cryoEM). They show that the protein is a dimer, and define the architecture of the alpha- and beta- GSNAT fragments, as well as convincingly characterizing the binding site of acetyl-CoA.

      Strengths:<br /> This is the first structure of any member of the transmembrane acyl transferase superfamily, and as such it provides important insights into the architecture and acetyl-CoA binding site of this class of enzymes.

      The structural data is of a high quality, with an isotropic cryoEM density map at 3.3Å facilitating the building of a high-confidence atomic model. Importantly, the density of the acetyl-CoA ligand is particularly well-defined, as are the contacting residues within the transmembrane domain.

      The open-to-lumen structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional characterization of the reaction cycle of this class of enzymes.

      Weaknesses:<br /> While the structural data for the open-to-lumen state presented in this work is very convincing, and clearly defines the binding site of acetyl-CoA, to get a complete picture of the enzymatic mechanism of this family, additional structures of other states will be required.

      A potentially significant weakness of the study is the lack of functional validation. The enzymatic activity of the enzyme characterized was not measured, and the enzyme lacks native proteolytic processing, so it is a little unclear whether the structure represents an active enzyme.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study attempts to shed light on the mechanisms underlying information-seeking in infants by investigating whether infants distinguish between informative and uninformative stimuli to resourcefully allocate their attention. The authors show that 8-month-old infants can learn whether a visual stimulus is informative or uninformative about the location of a later appearing rewarding stimulus by employing statistical regularities from the input. Specifically, infants showed decreased pupil dilation for informative over uninformative cues, which developed over the course of trials as more and more information was gathered from the input. The pattern of learning was in line with a reinforcement learning model which employed a steep learning curve in the beginning followed by a more shallow but steady learning growth over trials. After 17 trials, the authors presented novel cues that shared certain visual features with the previous stimuli and showed that pupil dilation was reduced for novel cues that shared features with the previous informative stimuli, suggesting that infants were able to generalize their acquired knowledge about the informativeness of certain features to novel stimuli. The present study adds to the existing literature about the underlying mechanisms of learning by showing that infants cannot only predict an upcoming stimulus based on statistical regularities of a preceding cue but also the informativeness of the cue itself.

      Strengths:<br /> The authors use a suitable method to test the highly relevant question of whether and how infants infer the informativeness of stimuli from experience and whether they can generalize this knowledge to new stimuli. Their experiment is carefully designed and well controlled with conditions closely matched (e.g., the shape and color of objects and the structure of each trial). Their measure of interest (i.e., pupil dilation) is also examined at a time point in each trial when the conditions are the most similar, which further points to a thought-through and careful design. This empirical data is backed up with a computational approach (using a Bayesian model and training a reinforcement learning algorithm) to elucidate the learning mechanisms at play. This approach is explained concisely to readers not familiar with the models.

      The results are convincing showing a clear difference between informative and uninformative condition and development over trials. Specifically, this difference is not apparent in the first trial (Fig. 2c) but develops over time which supports a learning trajectory. The data support the authors' conclusion that infants learn about the informativeness of the object cue from the input, and the employed learning algorithms give further insights into the learning trajectory of the infants. Overall, the statistical analyses seem solid and the priors for the Bayesian models are well reported.

      Data and scripts are openly available fostering transparency.

      Overall, the manuscript is very well and concisely written.

      Weaknesses:<br /> The authors' conclusion that infants can generalize the acquired knowledge to similar but novel stimuli is weakened by methodological concerns regarding the analysis. It is not fully clear which trials the authors excluded and analyzed as they do not consistently report the trials in the manuscript (e.g., it is stated that after trial 17 the first generalization trial started, but also that trial 17 was excluded as the first trial of the generalization phase). As there are only a few novel trials and novel and familiar trials alternated, the inclusion or exclusion of trial analyses might have a significant impact on the results. Thus, this needs further clarification. The authors also mentioned that the novel stimuli shared relevant as well as irrelevant features, but it was not clear to me whether the authors could establish that only the relevant features contributed to the observed generalization effect.

      Some methodological decisions were not explained and need justification, in particular, as the study is not preregistered. This includes, for example, the exclusion criteria and the choice not to analyze all generalization trials. Further, the authors did not perform model comparison (e.g., their model against a null model) and therefore do not report the strength of evidence for a difference in conditions.

      Another weakness is that the sample sizes of 30 infants for the initial part and 19 infants for the generalization part of the experiment are rather small (especially with regard to the chosen weakly informative priors).

    1. Reviewer #3 (Public Review):

      Summary:<br /> The publication presents unique in-vivo images of the upper layer of the epidermis of the glabrous skin when a flat object compresses or slides on the fingertip. The images are captured using OCT, and are the process of recovering the strain that fingerprints experience during the mechanical stimulation.

      The most important finding is, in my opinion, that fingerprints undergo pure compression/tension without horizontal shear, hinting at the fact that the shear stress caused by the tangential load is transferred to the deeper tissues and ultimately to the mechanoreceptors (SA-I / RA-I).

      Strengths:<br /> - Fascinating new insights into the mechanics of glabrous skin. To the best of my knowledge, this is the first experimental evidence of the mechanical deformation of fingerprints when subjected to dynamic mechanical stimulation. The OCT measurement allows an unprecedented measurement of the depth of the skin whereas previous works were limited to tracking the surface deformation.<br /> - The robust data analysis reveals the continuum mechanics underlying the deformation of the fingerprint ridges.

      Weaknesses:<br /> I do not see any major weaknesses. The work is mainly experimental and is rigorously executed. Two points pique my curiosity, however:

      1. How do the results presented in this study compare with previous finite element analysis? I am curious to know if the claim that the horizontal shear strain is transferred to the previous layer is also captured by these models. The reason is that the FEA models typically use homogeneous materials and whether or not the behavior in-silico and in-vivo matches would offer an idea of the nature of the stratum corneum.<br /> 2. Was there a specific reason why the authors chose to track only one fingerprint? From the method section, it seems that nothing would have prevented tracking a denser point cloud and reconstructing the stain on a section of the skin rather than just one ridge. With such data, the author could extend their analysis to multiple ridges interaction and get a better sense of the behavior of the entire strip of skin.

    1. Reviewer #3 (Public Review):

      Rovira, et al., aim to characterize immune cells in the brain parenchyma and identify a novel macrophage population referred to as "dendritic-like cells". They use a combination of single-cell transcriptomics, immunohistochemistry, and genetic mutants to conclude the presence of this "dendritic-like cell" population in the brain. The strength of this manuscript is the identification of dendritic cells in the brain, which are typically found in the meningeal layers and choroid plexus. A weakness is the lack of specific reporters or labeling of this dendritic cell population using specific genes found in their single-cell dataset. Additionally, it is difficult to remove the meningeal layers from the brain samples and thus can lead to confounding conclusions. Overall, I believe this study should be accepted contingent on sufficient labeling of this population and addressing comments.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The present manuscript by Shore et al. entitled Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy" describes in vitro and in silico results obtained in cortical neurons from mice carrying the KCNT1-Y777H gain-of-function (GOF) variant in the KCNT1 gene encoding for a subunit of the Na+-activated K+ (KNa) channel. This variant corresponds to the human Y796H variant found in a family with Autosomal Dominant Nocturnal Frontal lobe epilepsy. The occurrence of GOF variants in potassium channel encoding genes is well known, and among potential pathophysiological mechanisms, impaired inhibition has been documented as responsible for KCNT1-related DEEs. Therefore, building on a previous study by the same group performed in homozygous KI animals, and considering that the largest majority of pathogenic KCNT1 variants in humans occur in heterozygosis, the Authors have investigated the effects of heterozygous Kcnt1-Y777H expression on KNa currents and neuronal physiology among cortical glutamatergic and the 3 main classes of GABAergic neurons, namely those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), crossing KCNT1-Y777H mice with PV-, SST- and PV-cre mouse lines, and recording from GABAergic neurons identified by their expression of mCherry (but negative for GFP used to mark excitatory neurons).

      The results obtained revealed heterogeneous effects of the variant on KNa and action potential firing rates in distinct neuronal subpopulations, ranging from no change (glutamatergic and VIP GABAergic) to decreased excitability (SST GABAergic) to increased excitability (PV GABAergic). In particular, modelling and in vitro data revealed that an increase in persistent Na current occurring in PV neurons was sufficient to overcome the effects of KCNT1 GOF and cause an overall increase in AP generation.

      Strengths:<br /> The paper is very well written, the results clearly presented and interpreted, and the discussion focuses on the most relevant points.

      The recordings performed in distinct neuronal subpopulations are a clear strength of the paper. The finding that the same variant can cause opposite effects and trigger specific homeostatic mechanisms in distinct neuronal populations is very relevant for the field, as it narrows the existing gap between experimental models and clinical evidence.

      Weaknesses:<br /> My main concern is in the epileptic phenotype of the heterozygous mice investigated. In fact, in their previous paper the Authors state that "...Kcnt1-Y777H heterozygous mice did not exhibit any detectable epileptiform activity" (first sentence on page 4). However, in the present manuscript, they indicate twice in the discussion section that these mice exhibit "infrequent seizures". This relevant difference needs to be clarified to correctly attribute to the novel pathophysiological mechanism a role in seizure occurrence. Were such infrequent seizures clearly identified on the EEG, or were behavioral seizures? Could the authors quantify this "infrequent" value? This is crucial also to place in the proper perspective the Discussion statement regarding "... the increased INaP contribution to ... network hyperexcitability and seizures".

      Also, some statistical analysis seems to be missing. For example, I could not find any for the data shown in Fig. 6. Thus, the following statement: "the model PV neurons responded to KCNT1 GOF with decreased AP firing and an increased rheobase" requires proper statistical evaluation.

    1. Reviewer #3 (Public Review):

      Summary:

      The fruit fly visual system has provided a powerful context in which to investigate fundamental questions in neural development, phototransduction, and systems neuroscience. Of recent interest is motion processing, particularly how visual motion cues are estimated locally, and then pooled to derive behaviorally meaningful signals. Many of these pooling operations have been shown to take place in the wide-field neurons in the lobula plate, cell types that have been explored using electrophysiological recordings for more than 50 years in a variety of Diptera. However, our understanding of the diversity and connectivity of these cells remains incompletely understood, and is of interest to many.

      In this context, Reiser and colleagues describe the anatomy and connectivity of the complete set of Lobula Plate Tangential neurons in Drosophila, using a careful and systematic reconstruction of the FAFB dataset. Leveraging a previous study of retinal geometry, combined with their characterization of the anatomical inputs to the elementary motion detectors, T4 and T5, they then predict the motion sensitivities of each cell, their neurotransmitter identities, and map the connections of many of these cells into the central brain and contralateral optic lobe.

      Strengths:

      The quality of the connectomic analysis is exceptional, and the quantitative analysis that links connectivity to function is rigorous and impressive. This paper will be an important resource for the community.

      Weaknesses:

      Some of the findings could be better linked to previously published work in this field, and there may be a minor limitation to the predicted optimal motion axes, given one of the simplifying assumptions made.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The work by Masala and colleagues highlights a striking artifact that can result from a particular viral method for expressing genetically encoded calcium indicators (GECIs) in neurons. In a cross-institutional collaboration, the authors find that viral transduction of GECIs in the hippocampus can result in aberrant slow-traveling calcium (Ca2+) micro-waves. These Ca2+ micro-waves are distinct from previously described ictal activity but nevertheless are likely a pathological consequence of overexpression of virally transduced proteins. Ca2+ micro-waves will most likely obscure the physiology that most researchers are interested in studying with GECIs, and their presence indicates that the neural circuit is in an unintended pathological state. Interestingly this pathology was not observed using the same viral transduction methods in the visual cortex. The authors recommend several approaches that may help other experimenters avoid this confound in their own data such as reducing the titer of viral injections or using recombinase-dependent expression. The intent of this manuscript is to raise awareness of the potential unintended consequences of viral overexpression, particularly for GECIs. A rigorous investigation into the exact causes of Ca2+ micro-waves or the mech

      Strengths:

      The authors clearly demonstrate that Ca2+ micro-waves occur in the CA1 and CA3 regions of the hippocampus following large volume, high titer injections of adeno-associated viruses (AAV1 and AAV9) encoding GECIs. The supplementary videos provide undeniable proof of their existence.

      By forming an inter-institutional collaboration, the authors demonstrate that this phenomenon is robust to changes in surgical techniques or imaging conditions.

      Weaknesses:

      I believe that the weaknesses of the manuscript are appropriately highlighted by the authors themselves in the discussion. I would, however, like to emphasize several additional points.

      As the authors state, the exact conditions that lead to Ca2+ micro-waves are unclear from this manuscript. It is also unclear if Ca2+ micro-waves are specific to GECI expression or if high-titer viral transduction of other proteins such as genetically encoded voltage indicators, static fluorescent proteins, recombinases, etc could also cause Ca2+ micro-waves.

      The authors almost exclusively tested high titer (>5x10^12 vg/mL) large volume (500-1000 nL) injections using the synapsin promoter and AAV1 serotypes. It is possible that Ca2+ micro-waves are dramatically less frequent when titers are lowered further but still kept high enough to be useful for in vivo imaging (e.g. 1x10^12 vg/mL) or smaller injection volumes are used. It is also possible that Ca2+ micro-waves occur with high titer injections using other viral promoter sequences such as EF1α or CaMKIIα. There may additionally be effects of viral serotype on micro-wave occurrence.

      The number of animals in any particular condition are fairly low (Table 1) with the exception of V1 imaging and thy1-GCaMP6 imaging. This prohibits rigorous comparison of the frequency of pathological calcium activity across conditions.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors explore the roles of dact1 and dact2 during zebrafish gastrulation and craniofacial development. Previous studies used morpholino (MO) knockdowns to show that these scaffolding proteins, which interact with disheveled (Dsh), are expressed during zebrafish gastrulation and suggested that dact1 promotes canonical Wnt/B-catenin signaling, while dact2 promotes non-canonical Wnt/PCP-dependent convergent-extension (Waxman et al 2004). This study goes beyond this work by creating loss-of-function mutant alleles for each gene and unlike the MO studies finds little (dact2) to no (dact1) phenotypic defects in the homozygous mutants. Interestingly, dact1/2 double mutants have a more severe phenotype, which resembles those reported with MOs as well as homozygous wnt11/silberblick (wnt11/slb) mutants that disrupt non-canonical Wnt signaling (Heisenberg et al., 1997; 2000). Further analyses in this paper try to connect gastrulation and craniofacial defects in dact1/2 mutants with wnt11/slb and other wnt-pathway mutants. scRNAseq conducted in mutants identifies calpain 8 as a potential new target of dact1/2 and Wnt signaling.

      Strengths:<br /> When considered separately the new mutants are an improvement over the MOs and the paper contains a lot of new data.

      Weaknesses:<br /> The hypotheses are very poorly defined and misinterpret key previous findings surrounding the roles of wnt11 and gpc4, which results in a very confusing manuscript. Many of the results are not novel and focus on secondary defects. The most novel result of overexpressing calpain8 in dact1/2 mutants is preliminary and not convincing.

      Major Comments:<br /> 1) One major problem throughout the paper is that the authors misrepresent the fact that wnt11f2 and gpc4 act in different cell populations at different times. Gastrulation defects in these mutants are not similar: wnt11 is required for anterior mesoderm CE during gastrulation but not during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and later craniofacial cartilage morphogenesis (LeClair et al., 2009). Overall, the non-overlapping functions of wnt11 and gpc4, both temporally and spatially, suggest that they are not part of the same pathway.

      2) There are also serious problems surrounding attempts to relate single-cell data with the other data in the manuscript and many claims that lack validation. For example, in Fig 1 it is entirely unclear how the Daniocell scRNA-seq data have been used to compare dact1/2 with wnt11f2 or gpc4. With no labeling in panel 1E of this figure these comparisons are impossible to follow. Similarly, the comparisons between dact1/2 and gpc4 in scRNA-seq data in Fig. 6 as well as the choices of DEGs in dact1/2 or gpc4 mutants in Fig. 7 seem arbitrary and do not make a convincing case for any specific developmental hypothesis. Are dact1 and gpc4 or dact2 and wnt11 co-expressed in individual cells? Eyeballing similarity is not acceptable.

      3) Many of the results in the paper are not novel and either confirm previous findings, particularly Waxman et al (2004), or even contradict them without good evidence. The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription or vice versa. Testing genetic interactions, including investigating the expression of wnt11f2 in dact1/2 mutants, dact1/2 expression in wnt11f2 mutants, or the ability of dact1/2 to rescue wnt11f2 loss of function would give this work a more novel, mechanistic angle.

      4) The identification of calpain 8 overexpression in Dact1/2 mutants is interesting, but getting 1/142 phenotypes from mRNA injections does not meet reproducibility standards.

    1. Reviewer #3 (Public Review):

      Summary:

      This is a really interesting study, looking at the efficacy of AAV-mediated delivery of wt HSPE2 gene into mouse mutants with the goal of rescuing lower urinary tract defects.

      Strengths: Nice analysis of muscle physiology ex vivo, interesting approach.

      Weaknesses: lack of rigor (see below). This is an awesome opportunity to learn much more about the disease, its affects on neurons, muscle, etc.

      * Single-cell analysis of mutants versus control bladder, urethra including sphincter. This would be great also for the community.

      * Detailed tables showing data from each mouse examined.

      * Survival curves.

      * Use of measurements that are done in vivo (spot assay for example). This sounds relatively simple.

      * Assessment of viral integration in tissues besides the liver (could be done by QPCR).

      * Discuss subtypes of neurons that are present and targeted in the context of mutants and controls.

    1. Reviewer #3 (Public Review):

      Summary of the findings:

      The authors explore an important question concerning the underlying mechanism of representational drift, which despite intense recent interest remains obscure. The paper explores the intriguing hypothesis that drift may reflect changes in the intrinsic excitability of neurons. The authors set out to provide theoretical insight into this potential mechanism.

      They construct a rate model with all-to-all recurrent connectivity, in which recurrent synapses are governed by a standard Hebbian plasticity rule. This network receives a global input, constant across all neurons, which can be varied with time. Each neuron also is driven by an "intrinsic excitability" bias term, which does vary across cells. The authors study how activity in the network evolves as this intrinsic excitability term is changed.

      They find that after initial stimulation of the network, those neurons where the excitability term is set high become more strongly connected and are in turn more responsive to the input. Each day the subset of neurons with high intrinsic excitability is changed, and the network's recurrent synaptic connectivity and responsiveness gradually shift, such that the new high intrinsic excitability subset becomes both more strongly activated by the global input and also more strongly recurrently connected. These changes result in drift, reflected by a gradual decrease across time in the correlation of the neuronal population vector response to the stimulus.

      The authors are able to build a classifier that decodes the "day" (i.e. which subset of neurons had high intrinsic excitability) with perfect accuracy. This is despite the fact that the excitability bias during decoding is set to 0 for all neurons, and so the decoder is really detecting those neurons with strong recurrent connectivity, and in turn strong responses to the input. The authors show that it is also possible to decode the order in which different subsets of neurons were given high intrinsic excitability on previous "days". This second result depends on the extent by which intrinsic excitability was increased: if the increase in intrinsic excitability was either too high or too low, it was not possible to read out any information about the past ordering of excitability changes.

      Finally, using another Hebbian learning rule, the authors show that an output neuron, whose activity is a weighted sum of the activity of all neurons in the network, is able to read out the activity of the network. What this means specifically, is that although the set of neurons most active in the network changes, the output neuron always maintains a higher firing rate than a neuron with randomly shuffled synaptic weights, because the output neuron continuously updates its weights to sample from the highly active population at any given moment. Thus, the output neuron can read out a stable memory despite drift.

      Strengths:

      The authors are clear in their description of the network they construct and in their results. They convincingly show that when they change their "intrinsic excitability term", upon stimulation, the Hebbian synapses in their network gradually evolve, and the combined synaptic connectivity and altered excitability result in drifting patterns of activity in response to an unchanging input (Fig. 1, Fig. 2a). Furthermore, their classification analyses (Fig. 2) show that information is preserved in the network, and their readout neuron successfully tracks the active cells (Fig. 3). Finally, the observation that only a specific range of excitability bias values permits decoding of the temporal structure of the history of intrinsic excitability (Fig. 2f and Figure S1) is interesting, and as the authors point out, not trivial.

      Weaknesses:

      1) The way the network is constructed, there is no formal difference between what the authors call "input", Δ(t), and what they call "intrinsic excitability" Ɛ_i(t) (see Equation 3). These are two separate terms that are summed (Eq. 3) to define the rate dynamics of the network. The authors could have switched the names of these terms: Δ(t) could have been considered a global "intrinsic excitability term" that varied with time and Ɛ_i(t) could have been the external input received by each neuron in the network. In that case, the paper would have considered the consequence of "slow fluctuations of external input" rather than "slow fluctuations of intrinsic excitability", but the results would have been the same. The difference is therefore semantic. The consequence is that this paper is not necessarily about "intrinsic excitability", rather it considers how a Hebbian network responds to changes in excitatory drive, regardless of whether those drives are labeled "input" or "intrinsic excitability".

      A revised version of the manuscript models "slope-based" excitability changes in addition to "threshold-based" changes. This serves to address the above concern that as constructed here changes in excitability threshold are not distinguishable from changes in input. However, it remains unclear what the model would do should only a subset of neurons receive a given, fixed input. In that case, are excitability changes sufficient to induce drift? This remains an important question that is not addressed by the paper in its current form.

      2) Given how the learning rule that defines the input to the readout neuron is constructed, it is trivial that this unit responds to the most active neurons in the network, more so than a neuron assigned random weights. What would happen if the network included more than one "memory"? Would it be possible to construct a readout neuron that could classify two distinct patterns? Along these lines, what if there were multiple, distinct stimuli used to drive this network, rather than the global input the authors employ here? Does the system, as constructed, have the capacity to provide two distinct patterns of activity in response to two distinct inputs?

      A revised version of the manuscript addresses this question, demonstrating that the network is capable of maintaining two distinct memories.

      Impact:

      Defining the potential role of changes in intrinsic excitability in drift is fundamental. Thus, this paper represents an important contribution. What we see here is that changes in intrinsic excitability are sufficient to induce drift. This raises the question for future work of the specific contributions of changing excitability from changing input to representational drift.

    1. Reviewer #3 (Public Review):

      This manuscript investigates the roles of faculty hiring and attrition in influencing gender representation in US academia. It uses a comprehensive dataset covering tenured and tenure-track faculty across various fields from 2011 to 2020. The study employs a counterfactual model to assess the impact of hypothetical gender-neutral attrition and projects future gender representation under different policy scenarios. The analysis reveals that hiring has a more significant impact on women's representation than attrition in most fields and highlights the need for sustained changes in hiring practices to achieve gender parity.

      Strengths:<br /> Overall, the manuscript offers significant contributions to understanding gender diversity in academia through its rigorous data analysis and innovative methodology.

      The methodology is robust, employing extensive data covering a wide range of academic fields and institutions.

      Weaknesses:<br /> The primary weakness of the study lies in its focus on US academia, which may limit the generalizability of its findings to other cultural and academic contexts. Additionally, the counterfactual model's reliance on specific assumptions about gender-neutral attrition could affect the accuracy of its projections.

      Additionally, the study assumes that whoever disappeared from the dataset is attrition in academia. While in reality, those attritions could be researchers who moved to another country or another institution that is not included in the AARC (Academic Analytics Research Centre) dataset.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper focuses on the roles of a toxoplasma protein (SPARKEL) with homology to an elongin C and the kinase SPARK that it interacts with. They demonstrate that the two proteins regulate the abundance of PKA and PKG, and that depletion of SPARKEL reduces invasion and egress (previously shown with SPARK), and that their loss also triggers spontaneous bradyzoite differentiation. The data are overall very convincing and will be of high interest to those who study Toxoplasma and related apicomplexan parasites.

      Strengths:<br /> The study is very well executed with appropriate controls. The manuscript is also very well and clearly written. Overall, the work clearly demonstrates that SPARK/SPARKEL regulate invasion and egress and that their loss triggers differentiation.

      Weaknesses:<br /> 1. The authors fail to discriminate between SPARK/SPARKEL acting as negative regulators of differentiation as a result of an active role in regulating stage-specific transcription/translation or as a consequence of a stress response activated when either is depleted.

      2. The function of SPARKEL has not been addressed. In mammalian cells, Elongin C is part of an E3 ubiquitin ligase complex that regulates transcription and other processes. From what I can tell from the proteomic data, homologs of the Elongin B/C complex were not identified. This is an important issue as the authors find that PKG and PKA protein levels are reduced in the knockdown strains

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors conducted a comprehensive study of the X-linked miR-506 family miRNAs in mice on its origin, evolution, expression, and function. They demonstrate that the X-linked miR-506 family, predominantly expressed in the testis, may be derived from MER91C DNA transposons and further expanded by retrotransposition. By genetic deletion of different combinations of 5 major clusters of this miRNA family in mice, they found these miRNAs are not required for spermatogenesis. However, by further examination, the mutant mice show mild fertility problem and inferior sperm competitiveness. The authors conclude that the X-linked miR-506 miRNAs finetune spermatogenesis to enhance sperm competition.

      Strengths:

      This is a comprehensive study with extensive computational and genetic dissection of the X-linked miR-506 family providing a holistic view of its evolution and function in mice. The finding that this family miRNAs could enhance sperm competition is interesting and could explain their roles in finetuning germ cell gene expression to regulate reproductive fitness.

      Weaknesses:

      The authors specifically addressed the function of 5 clusters of X-link miR-506 family containing 19 miRNAs. There is another small cluster containing 3 miRNAs close to the Fmr1 locus. Would this small cluster act in concert with the 5 clusters to regulate spermatogenesis? In addition, any autosomal miR-506 like miRNAs may compensate for the loss of X-linked miR-506 family. These possibilities should be discussed.

      Direct molecular link to sperm competitiveness defect remains unclear but is difficult to address.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Zhou and colleagues describes the potential of a two-compound combination (2C), CHIR99021 and A-485, which can generate regenerative cardiac cells (RCCs) from human embryonic stem cell-derived TNNT2+ cardiomyocytes. The authors have also demonstrated this phenomenon in neonatal rats CMs in vitro. Further, the administration of 2C can generate RCCs in adult mouse hearts and significantly improve survival and cardiac function in mice subjected to myocardial infarction. Interestingly, 2C treatment induces global changes in transcription and epigenetic modifications.

      Strengths of the study:

      1. This study describes the potential of 2C in improving the regeneration of the heart post-MI. The findings may have a translation potential. The idea of promoting the regenerative capacity of the heart by reprogramming CMs into RCCs is interesting.

      2. The authors have validated the effect of 2C independently in hESCs, rat CMs, and a model of MI.

      3. The authors explored the mechanism by Single-cell RNA-seq and Chip-Seq, which points to the transcriptional and epigenetic activation of genes essential for RCC.

      Weaknesses of the study:

      1. The mechanism involved in the 2C-mediated generation of RCCs is still unclear. The leads found in the RNA-seq and ChIP-seq were not validated experimentally.

      2. Considering the very low number of RCCs (0.6%-1.5% of cells) generated, I cannot comprehend how the heart is protected from MI. Did the author believe 2C would affect the survival or metabolism of existing CM under hypoxia? What percentage of cells were regenerated by 2C treatment post-MI?

      3. I would like to know about administering 2C in mice, which could have generated RCCs- dedifferentiated CMs in the heart. Does 2C affect the cardiac functions in mice under basal conditions? Also, does 2C administration affect any physiology in mice? The cardiac structural and functional parameters are required post-2C administration.

      4. It is also not tested whether 2C would affect other cell types of the heart, including fibroblasts and endothelial cells, in vitro and in vivo. Assuming the level of protection by 2C in mice, it would affect other cell types.

      5. It is still being determined how the authors chose the dose of 2C for in vivo and in vitro studies, although the concentration used for screening is different. Assessing the effect of 2C in a dose-dependent manner is essential.

      6. A-485 affects H3K27Ac but not H3K9Ac. However, data show that both H3K27Ac and H3K9Ac are affected. An explanation is required.

      7. The authors use "regeneration" even at the screening stage. I am wondering if regeneration could be assessed by the experimental approach they adopted.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Günther and colleagues leverage ancient DNA data to track the genomic history of one of the most important farm animals (cattle) in Iberia, a region showing peculiarities both in terms of cultural practices as well as a climatic refugium during the LGM, the latter of which could have allowed the survival of endemic lineages. They document interesting trends of hybridisation with wild aurochs over the last 8-9 millennia, including a stabilisation of auroch ancestry ~4000 years ago, at ~20%, a time coincidental with the arrival of domestic horses from the Pontic steppe. Modern breeds such as the iconic Lidia used in bullfighting or bull running retain a comparable level of auroch ancestry.

      Strengths:<br /> The generation of ancient DNA data has been proven crucial to unravel the domestication history of traditional livestock, and this is challenging due to the environmental conditions of the Iberian peninsula, less favourable to DNA preservation. The authors leverage samples unearthed from key archaeological sites in Spain, including the karstic system of Atapuerca. Their results provide fresher insights into past management practices, and permit characterisation of significant shifts in hybridization with wild aurochs.

      Weaknesses:<br /> - Treatment of post-mortem damage: the base quality of nucleotide transitions was recalibrated down to a quality score of 2, but for 5bp from the read termini only. In some specimens (e.g. moo022), the damage seems to extend further. Why not use dedicated tools (e.g. mapDamage), or check the robustness by conditioning on nucleotide transversions?

      - Their more solid analyses are based on qpAdm, but rely on two single-sample donor populations. As the authors openly discuss, it is unclear whether CPC98 is a good proxy for Iberian aurochs despite possibly forming a monophyletic clade (the number of analysed sites is simply too low to assess this monophyly; Supplementary Table S2). Additionally, it is also unclear whether Sub1 was a fully unadmixed domestic specimen, depleted of auroch ancestry. The authors seem to suggest themselves that sex-biased introgression may have already taken place in Anatolia ("suggesting that sex-biased processes already took place prior to the arrival of cattle to Iberia").

      Alternatively, I recommend using Struct-f4 as it can model the ancestry of all individuals together based on their f4 permutations, including outgroups and modern data, and without the need to define pure "right" and "left" populations such as CPC98 and Sub1. It should work with low-coverage data, and allows us to do f4-based MDS plots as well as to estimate ancestry proportions (including from ghost populations).

      - In the admixture graph analyses (supplementary results), the authors use population groups based on a single sample. If these samples are pseudohaploidised (or if coverage is insufficient to estimate heterozygosity - and it is at least for moo004 and moo014), f3 values are biased, implying that the fitted graph may be wrong. The graph shown in Fig S7 is in fact hard to interpret. For example, the auroch Gyu2 from Anatolia but not the auroch CPC98 also from Anatolia received 62% of ancestry from North Africa? The Neolithic samples moo004 and moo014 also show the same shocking disparity. I would consider re-doing this analysis with more than a sample per population group.

    1. Reviewer #3 (Public Review):

      Summary:

      The researchers aim add to the literature on faculty career pathways with particular attention to how gender disparities persist in the career and funding opportunities of researchers. The researchers also examine aspects of institutional prestige that can further amplify funding and career disparities. While some factors about individuals' pathways to faculty lines are known, including the prospects of certain K award recipients, the current study provides the only known examination of the K99/R00 awardees and their pathways.

      Strengths:

      The authors establish a clear overview of the institutional locations of K99 and R00 awardees and the pathways for K99-to-R00 researchers and the gendered and institutional patterns of such pathways. For example, there's a clear institutional hierarchy of hiring for K99/R00 researchers that echo previous research on the rigid faculty hiring networks across fields, and a pivotal difference in the time between awards that can impact faculty careers. Moreover, there's regional clusters of hiring in certain parts of the US where multiple research universities are located. Moreover, documenting the pathways of HBCU faculty is an important extension of the study by Wapman et al. (2022: https://www.nature.com/articles/s41586-022-05222-x), and provides a more nuanced look at the pathways of faculty beyond the oft-discussed high status institutions. (However, there is a need for more refinement in this segment of the analyses). Also, the authors provide important caveats throughout the manuscript about the study's findings that show careful attention to the complexity of these patterns and attempting to limit misinterpretations of readers.

      Weaknesses:

      The authors have addressed my recommendations in the previous review round in a satisfactory way.

    1. Reviewer #3 (Public Review):

      Summary<br /> CLC-2 channels play an important role in cellular homeostasis and electrical excitability, and dysfunctions are associated with aldosteronism and leukodystrophy. Structural insights into the functioning of CLC-2 are just emerging. CLC-2 channels are distinct among the members of the CLC family in that they are activated by hyperpolarization. Earlier studies have implicated channel regulation by a "ball-and-chain" type of channel block mechanism which underlies its strong rectification and use-dependent "run-up" properties. Structural insights into these mechanisms are currently lacking. In this manuscript, Xu et al present CryoEM structures of CLC-2 in the apo and inhibitor-bound conformations in the 2.5-2.7 A resolution range. Several novel structural features are presented that lend support to the "ball-and chain" model, identify an interesting role for the c-terminal domain in gating, and establish the interaction pocket for AK-42. Electrophysiology and simulations nicely support the structural work. Overall, an elegant study, with high-quality data, and a well-presented manuscript.

      Strengths<br /> 1. The cryoEM data presented reveals that the channel is in a closed conformation at depolarizing potential (0 mv). Structures for the closed state of CLCs were not previously available. A strong density for Glu205, which constitutes the Egate, allows for an unambiguous assignment of its position at the Scen Cl-binding site, thereby establishing the basis for the block in the closed channel.<br /> 2. The apo state particles were sorted into two classes that differ in the conformation of the CTD. A previously unobserved rearrangement of the CBS region in the CTD is reported wherein the CTD is positioned closer to the TM region in one of the subunits, breaking the C2 symmetry. The data implicates a role for the conformational flexibility of CTD in gating.<br /> 3. The most interesting finding of this work, is perhaps, the presence of an additional density, corresponding to a hairpin-like structure, that is seen only at the subunit where the CTD is positioned away from the TMD. The authors propose that the additional density corresponds to a 13 aa stretch in the N-terminal region. The position of the hairpin at the intracellular mouth of the CL-permeation pathway is likely to impede ion conduction, by a mechanism analogous to the "ball-and-chain" proposed in other voltage-gated channels.<br /> 4. The structure of CLC-2 in complex with a selective inhibitor AK-42 is in a conformation very similar to that of the apo state, with a clear additional density for the AK-42 molecule. Binding site interaction provides insights into AK-42 selectivity for CLC-2 vs CLC-1.

    1. Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is loaded, and where DNA replication actually begins (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC and Mcm2-7 do not necessarily overlap, nor do they always overlap with origins. This is likely due to Mcm2-7 possessing linear mobility on DNA (i.e., it can slide) such that other chromatin-contextualized processes can displace it from the site in which it was originally loaded. Additionally, Mcm2-7 is loaded in excess and thus only a fraction of Mcm2-7 would be predicted to coincide with replication start sites. This study reaches a very similar conclusion of these previous studies: they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations. It also is an important cautionary tale to not confuse replication factor binding sites with the genomic loci where replication actually begins, although this point is already widely appreciated in the field.

      Weaknesses: The major weakness of this paper is the lack of novel biological insight and that the comprehensive approach taken failed to provide any additional mechanistic insight regarding how and why ORC, Mcm2-7, and origin sites are selected or why they may not coincide.

    1. Reviewer #3 (Public Review):

      Sasani et al. develop and implement a new method for mutator allele discovery in the BXD mouse population. This new method, termed "aggregate mutation spectrum distance" or AMSD, carries several notable strengths, including the ability to aggregate de novo mutations across individuals to reduce data sparsity and to combine mutation rate frequencies across multiple nucleotide contexts into a single estimate. As demonstrated by simulations, this method is better suited to mutator discovery under certain scenarios, as compared to conventional QTL or association mapping. Overall, the theoretical premise of the AMSD method is judged to be both strong and innovative, and the methodology could be extended to other species and populations to enable discovery of additional mutator alleles.

      The authors then apply their method to the BXD mouse recombinant inbred mapping population. As proof-of-principle, they first successfully re-identify a known mutator locus in this population on chr4. Next, to assess possible genetic interactions involving this known mutator, Sasani et al. condition on the chr4 mutator genotype and reimplement the AMSD scan. This strategy led them to identify a second locus on chr6 that interacts epistatically with the chr4 locus; mice with "D" alleles at both loci exhibit a significantly increased burden of C>A de novo mutations, even though mice with the D allele at the chr6 locus alone show no appreciable increase in the C>A mutation fraction. This exciting discovery not only adds to the catalog of known mutator alleles, but also reveals key aspects of mutator biology and reinforces the hypothesis that segregating variants in genes associated with DNA repair influence germline mutation spectra.

      Despite a high level of overall enthusiasm for this work, there are some limitations to the AMSD method. However, it is my judgement that the authors present a balanced summary of the strengths and weaknesses of their method in the revised manuscript. I also think that the authors' conclusions may actually somewhat undersell the scientific impact of their findings. As the authors note, few mutation rate modifiers have been identified in mammals. This is potentially because large- and moderate-effect modifiers are rapidly selected against due to their deleterious effects, but could also be due to pervasive epistasis wherein modifiers are only expressed on certain "permissive" genetic backgrounds, such as the chr6 locus the authors discover in this paper. The potential background dependence of mutator expression could partially shelter it from the action of selection, allowing the allele persist in populations. This discovery has significant implications for our understanding of mutation rate evolution, but only earns a cursory mention in the paper.

    1. Reviewer #3 (Public Review):

      Summary:

      In the submitted manuscript by Go et al, the authors evaluated the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) and made a number of interesting observations, including the following: 1) CCL5 expression within the tumor microenvironment negatively correlated with clinical outcomes in human patients with PDAC; 2) there were both positive and negative correlations between CCL5 expression and the expression of specific genes (e.g. those encoding CD56 and CD16, respectively) included among gene signature lists for Treg, MDSC, TAM, and NK cells; 3) CCR5 inhibition with the inhibitor, maraviroc, reduced Treg infiltration but not that of other immune cell types in an orthotopic murine model of PDAC; 4) CCR5 inhibition augmented anti-PD1 immunotherapy when combined with ionizing radiation (IR) therapy in the murine model; 5) the above therapy resulted in increased infiltration of CD8+ cytotoxic T cells as well as of a subset of NKG2D-negative, tissue-residency (tr) marker expressing NK cells (deemed Cluster 1 NK in their data sets) that inversely correlated with the number of E-cadherin+ cells (i.e. tumor cells) and showed predicted interactions with cDC1 dendritic cells (including XCL1/XCL2 expressed by the NK and XCR1 expressed by the cDC1); 6) the authors identified a number of putative signals stemming from the trNK (e.g. IL-16, TNFSF14, FASLG, CSF, MIF) as well as incoming from cDC1s to NK (e.g. BAG6-NKp30); 7) these trNK cells positively correlated with good outcomes and with CD8+ T cell infiltrations in human PDAC as well as in many other solid tumor types; and 8) importantly, the benefit of IR therapy was specific to the subset of PDAC patients (represented in the TCGA dataset) that were predicted to have low amounts of trNK cells. The authors used murine experimental models, multiplexed imaging analyses, and a number of publicly available sequencing data sets from human tumor samples to perform their investigations. Based on their findings, the authors proposed that combining IR with CCR5 inhibition and anti-PD1 immunotherapy is a promising strategy to treat solid cancers.

      Strengths:

      Overall, the collective analyses and conclusions appear to be novel and could be of high and rapid impact on the field, particularly in terms of directing clinical trials to incorporate IR with CCR5 inhibition and immunotherapy. The manuscript is well written; the figures are for the most part clear; and the Discussion is very thoughtful.

      Weaknesses:

      There were a number of minor typographical errors, missing references, or minor issues with the figures. In general, while many of the observations provided strong suggestive evidence of relationships, phenotypes, and functions, the authors often used language to indicate that such things were confirmed, validated, or proven. In fact, there was a paucity of such functional/confirmatory experiments. This does not necessarily detract from the overall significance, excitement for, and potential impact of the study; but the language could likely be adjusted to be more in keeping with the true nature of the findings. The main title and running title are a bit different; consider making them more similar.

    1. Reviewer #3 (Public Review):

      This work by Fleck et al. and colleagues documented the auxin feeding-induced effects in adult flies, since auxin could be used in temporally control gene expression using a modified Gal4/Gal80 system. Overall, the experiments were well designed and carefully executed. The results were quantified with appropriate statistical analyses. The paper was also well written and the results were presented logically. Their findings demonstrate that auxin-fed flies have significantly lower triglyceride levels than the control flies using Ultra High-pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS)-based metabolomics assays. Further transcriptome analyses using the whole flies show changes of genes involved in fatty acid metabolism. However, female oogenesis and fecundity do not seem to be affected, at least using the current assays. These results indicate that auxin may not be used in experiments involving lipid-related metabolism, but could be appropriate to be applied for other biological processes. Researchers need to be careful when applying this strategy in their own experimental design and should perform proper controls.

    1. Reviewer #3 (Public Review):

      Summary of Work<br /> This paper conducts the largest GWAS study of A. thaliana in response to a viral infection. The paper identifies a 1.5 MB region in the chromosome associated with disease, including SNPs, structural variation, and transposon insertions. Studies further validate the association experimentally with a separate experimental infection procedure with several lines and specific T-DNA mutants. Finally, the paper presents a geographic analysis of the minor disease allele and the major association. The major take-home message of the paper is that structural variants and not only SNPs are important changes associated with disease susceptibility. The manuscript also makes a strong case for negative frequency-dependent selection maintaining a disease susceptibility locus at low frequency.

      Strengths and Weaknesses<br /> A major strength of this manuscript is the large sample sizes, careful experimental design, and rigor in the follow-up experiments. For instance, mentioning non-infected controls and using methods to determine if geographic locus associations were due to chance. The strong result of a GWAS-detected locus is impressive given the complex interaction between plant genotypes and strains noted in the results. In addition to the follow-up experiments, the geographic analysis added important context and broadened the scope of the study beyond typical lab-based GWAS studies. I find very few weaknesses in this manuscript.

      Support of Conclusions<br /> The support for the conclusions is exceptional. This is due to the massive amount of evidence for each statement and also due to the careful consideration of alternative explanations for the data.

      Significance of Work<br /> This manuscript will be of great significance in plant disease research, both for its findings and its experimental approach. The study has very important implications for genetic associations with disease beyond plants.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this interesting study, the authors characterize the mechanisms whereby a C. elegans TGF-beta DAF-7 responds to various forms of food cues to regulate foraging.<br /> Building on their previous findings that characterized the functional role of daf-7 in the ASJ sensory neurons in response to a bacterial pathogen and in regulating searching behaviors, the authors of this manuscript show that ingestion of E. coli OP50, a common laboratory food for the worms, suppresses ASJ expression of daf-7 and secreted water-soluble cues of OP50 increase it. They further show that the level of daf-7 expression in ASJ is positively associated with a higher level of roaming/exploration. The authors identify that the function of a C. elegans ortholog of Anaplastic Lymphoma Kinase in the interneurons AIA regulates ASJ expression of daf-7 in response to food information and the related searching behavior.

      Strengths:<br /> The study addresses an important question that appeals to a wide readership. The findings are demonstrated by strong results produced from well designed experiments.

    1. Reviewer #3 (Public Review):

      This study is well designed and executed and provides new and important insights into the role of two TFs during the maturation of female gametocytes and fertilization in the mosquito midgut. However, it but would benefit from a more thorough characterization of the phenotype to understand at which step of development these factors are required.

      Overall the authors have shown only limited willingness to comprehensively address reviewer concerns and incorporate their suggestions.

    1. Reviewer #3 (Public Review):

      Summary & Strengths:

      This study is useful in revealing the neural correlates of goal-directed navigation in the rodent parahippocampal regions, including the medial entorhinal cortex, presubiculum, and parasubiculum. It shows that task-relevant information represented by the parahippocampus is strongly related to task performance. It also reports the relationships of navigational factors (e.g., head direction signal) recorded during foraging in an open field with task variables.

      Gonzalez and Giocomo investigated the neural activities in the parahippocampal cortex modulated by visual cues and error signals while the animal performed a goal-directed navigation task on the tree maze. They confirmed that the firing rates and spatial firing patterns in the parahippocampus were significantly correlated with the animal's task performance and the general navigational coding in the open field arena. The authors have concluded that the parahippocampal neurons encode mismatch-like signals, suggesting the functional role of the parahippocampus as a feedback system in a goal-directed task. However, a few major concerns should be addressed more closely to support the conclusion.

      1) Due to the limitations of histological verification, the neural responses in the medial entorhinal cortex, presubiculum, and parasubiculum are analyzed together, and this limits the study from understanding the differential information processing across these regions. Because the medial entorhinal cortex and the pre/parasubiculum are believed to be located in very different positions in the information flow within the rodent medial temporal lobe with different anatomical connections, it would have been more convincing if the distinctive functions between the regions could be identified.

      2) The authors should carefully differentiate rate remapping and global remapping in their analysis. Rate remapping generally indicates firing rate modulation with little or no shift of spatial firing fields (Leutgeb et al., 2005; Colgin et al., 2008). Therefore, the neurons exhibiting global remapping should not be included in the analysis suited for rate remapping (e.g., the encoding model that considers the cue-dependent rate-remapping effect).

      3) One of the major findings in this study is that the parahippocampal neural responses to a visual cue or reward were correlated with task performance. One can expect that cue representation before the decision point is likely to have a greater impact on task performance. Although the Uz score between the left cue and right cue seemed not significantly different from zero on the stem, it would be beneficial if the authors verify whether the remapping score based on the firing rate maps will still be correlated with the task performance when examined only before the decision point, not for the entire maze.

      4) There is a need to set the analytic epoch in more detail. The boundary between outbound and inbound journeys was set as 'last goal well visit.' However, even in a correct trial, if the reward was not received in the first goal well, an error signal could occur before the animal triggered the second goal well which was rewarding. This might have caused the rate remapping between two cue conditions, specifically on the arms. To eliminate this possibility, it is recommended to set the outbound journey from the home well trigger to the first goal well approach or to select only trials where the animal received rewards from the first goal well triggering.

      Weaknesses:

      Incomplete results could limit support for the arguments of the study and may require more rigorous analytical methods.

    1. Reviewer #3 (Public Review):

      The paper by Li et al. describes the role of the TOR pathway in Aspergillus flavus. The authors tested the effect of rapamycin in WT and different deletion strains. This paper is based on a lot of experiments and work but remains rather descriptive and confirms the results obtained in other fungi. It shows that the TOR pathway is involved in conidiation, aflatoxin production, pathogenicity, and hyphal growth. This is inferred from rapamycin treatment and TOR1/2 deletions. Rapamycin treatment also causes lipid accumulation in hyphae. The phenotypes are not surprising as they have been shown already for several fungi. In addition, one caveat is in my opinion that the strains grow very slowly and this could cause many downstream effects. Several kinases and phosphatases are involved in the TOR pathway. They were known from S. cerevisiae or filamentous fungi. The authors characterized them as well with knock-out approaches.

    1. Reviewer #3 (Public Review):

      In this manuscript, the authors explored the transcriptional heterogeneity of the periosteum with single nuclei RNA sequencing. Without prior enrichment of specific populations, this dataset serves as an unbiased representation of the cellular components potentially relevant to bone regeneration. By describing single-cell cluster profiles, the authors characterized over 10 different populations in combined steady state and post-fracture periosteum, including stem cells (SSPC), fibroblast, osteoblast, chondrocyte, immune cells, and so on. Specifically, a developmental trajectory was computationally inferred using the continuum of gene expression to connect SSPC, injury-induced fibrogenic cells (IIFC), chondrocyte, and osteoblast, showcasing the bipotentials of periosteal SSPCs during injury repair. Additional computational pipelines were performed to describe the possible gene regulatory network and the expected pathways involved in bone regeneration. Overall, the authors provided valuable insights into the cell state transitions during bone repair and proposed sets of genes with possible involvements in injury response.

      While the highlights of the manuscript are the unbiased characterization of periosteal composition, and the trajectory of SSPC response in bone fracture response, many of the conclusions can be more strongly supported with additional clarifications or extensions of the analysis.

      1. As described in the method section, both the steady-state data and full dataset underwent integration before dimensional reduction and clustering. It would be appreciated if the authors could compare the post-integration landscapes of uninjured cells between steady state and full dataset analysis. Specifically, fibroblasts were shown in Figure 1C and 1E, and such annotations did not exist in Figure 2B. Will it be possible that the original 'fibroblasts' were part of the IIFC population?

      2. According to Figure 2, immune cells were taking a significant abundance within the dataset, specifically during days 3 & 5 post-fracture. It will be interesting to see the potential roles that immune cells play during bone repair. For example, what are the biological annotations of the immune clusters (B, T, NK, myeloid cells)? Are there any inflammatory genes or related signals unregulated in these immune cells? Do they interact with SSPC or IIFC during the transition?

      3. The conclusion of Notch and Wnt signaling in IIFC transition was not sufficiently supported by the analysis presented in the manuscript, which was based on computational inferences. It will be great to add in references supporting these claims or provide experimental validations examining selected members of these pathways.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Canelo et al. used a combination of mathematical modeling and behavioral experiments to ask whether flies use an all-or-none EC model or a graded EC model (in which the turn amplitude is modulated by wide-field optic flow). Particularly, the authors focus on the bar-ground discrimination problem, which has received significant attention in flies over the last 50-60 years. First, they use a model by Poggio and Reichardt to model flight response to moving small-field bars and spots and wide-field gratings. They then simulate this model and compare simulation results to flight responses in a yaw-free tether and find generally good agreement. They then ask how flies may do bar-background discrimination (i.e. complex visual environment) and invoke different EC models and an additive model (balancing torque production due to background and bar movement). Using behavioral experiments and simulation supports the notion that flies use an all-or-none EC since flight turns are not influenced by the background optic flow. While the study is interesting, there are major issues with the conceptual framework.

      Strengths:<br /> - They ask a significant question related to efference copies during volitional movement.<br /> - The methods are well detailed and the data (and statistics) are presented clearly.<br /> - The integration of behavioral experiments and mathematical modeling of flight behavior.<br /> - The figures are overall very clear and salient.

      Weaknesses:<br /> - Omission of saccades: While the authors ask a significant question related to the mechanism of bar-ground discrimination, they fail to integrate an essential component of the Drosophila visuomotor responses: saccades. Indeed, the Poggio and Reichardt model, which was developed almost 50 years ago, while appropriate to study body-fixed flight, has a severe limitation: it does not consider saccades. The authors identify this major issue in the Discussion by citing a recent switched, integrate-and-fire model (Mongeau & Frye, 2017). The authors admit that they "approximated" this model as a smooth pursuit movement. However, I disagree that it is an approximation; rather it is an omission of a motor program that is critical for volitional visuomotor behavior. Indeed, saccades are the main strategy by which Drosophila turn in free flight and prior to landing on an object (i.e. akin to a bar), as reported by the Dickinson group (Censi et al., van Breugel & Dickinson [not cited]). Flies appear to solve the bar-ground discrimination problem by switching between smooth movement and saccades (Mongeau & Frye, 2017; Mongeau et al., 2019 [not cited]). Thus, ignoring saccades is a major issue with the current study as it makes their model disconnected from flight behavior, which has been studied in a more natural context since the work of Poggio.

      Critically, recent work showed that a group of columnar neurons (T3) appear specialized for saccadic bar tracking through integrate-and-fire computations, supporting the notion of parallel visual circuits for saccades and smooth movement (Frighetto & Frye, 2023 [not cited]).

      A major theme of this work is bar fixation, yet recent work showed that in the presence of proprioceptive feedback, flies do not actually center a bar (Rimniceanu & Frye, 2023). Furthermore, the same study found that yaw-free flies do not smoothly track bars but instead generate saccades. Thus prior work is in direct conflict with the work here. This is a major issue that requires more engagement by the authors.

      - Relevance of the EC model: EC-related studies by the authors linked cancellation signals to saccades (Kim et al, 2014 & 2017). Puzzlingly, the authors applied an EC model to smooth movement, when the authors' own work showed that smooth course stabilizing flight turns do not receive cancellation signals (Fenk et al., 2021). Thus, in Fig. 4C, based on the state of the field, the efference copy signal should originate from the torque commands to initiate saccades, and not from torque to generate smooth movement. As this group previously showed, cancellation signals are quantitatively tuned to that of the expected visual input during saccades. Importantly, this tuning would be to the anticipated saccadic turn optic flow. Thus the authors' results supporting an all-or-none model appear in direct conflict with the author's previous work. Further, the addition-only model is not particularly helpful as it has been already refuted by behavioral experiments (Rimneceanu & Frye, Mongeau & Frye).

      - Behavioral evidence for all-or-none EC model: The authors state "unless the stability reflex is suppressed during the flies' object evoked turns, the turns should slow down more strongly with the dense background than the sparse one". This hypothesis is based on the fact that the optomotor response magnitude is larger with a denser background, as would be predicted by an EMD model (because there are more pixels projected onto the eye). However, based on the authors' previous work, the EC should be tuned to optic flow and thus the turning velocity (or amplitude). Thus the EC need not be directly tied to the background statistics, as they claim. For instance, I think it would be important to distinguish whether a mismatch in reafferent velocity (optic flow) links to distinct turn velocities (and thus position). This would require moving the background at different velocities (co- and anti-directionally) at the onset of bar motion. Overall, there are alternative hypotheses here that need to be discussed and more fully explored (as presented by Bender & Dickinson and in work by the Maimon group).

    1. Reviewer #3 (Public Review):

      In this study, the authors developed and tested a novel framework for extracting muscle synergies. The approach aims at removing some limitations and constrains typical of previous approaches used in the field. In particular, the authors propose a mathematical formulation that removes constrains of linearity and couple the synergies to their motor outcome, supporting the concept of functional synergies and distinguishing the task-related performance related to each synergy. While some concepts behind this work were already introduced in recent work in the field, the methodology provided here encapsulates all these features in an original formulation providing a step forward with respect to the currently available algorithms. The authors also successfully demonstrated the applicability of their method to previously available datasets of multi-joint movements.

      Preliminary results positively support the scientific soundness of the presented approach and its potential. The added values of the method should be documented more in future work to understand how the presented formulation relates to previous approaches and what novel insights can be achieved in practical scenarios and confirm/exploit the potential of the theoretical findings.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The mechanism underlying the well-documented CO2-regulated activity of connexin 26 (Cx26) remains poorly understood. This is largely due to the labile nature of CO2-mediated carbamylation, making it challenging to visualize the effects of this reversible posttranslational modification. This paper by Brotherton et al. aims to address this gap by providing structural insights through cryo-EM structures of a carbamylation-mimetic mutant of the gap junction protein.

      Strengths:<br /> The combination of the mutation, elevated PCO2, and the use of LMNG detergent resulted in high-resolution maps that revealed, for the first time, the structure of the cytoplasmic loop between transmembrane helix (TM) 2 and 3.

      Weaknesses:<br /> The presented maps merely reinforce their previous findings, wherein wildtype Cx26 favored a closed conformation in the presence of high PCO2. While the structure of the TM2-TM3 loop may suggest a mechanism for stabilizing the closed conformation, no experimental data was provided to support this mechanism. Additionally, the cryo-EM maps were not effectively presented, making it difficult for readers to grasp the message.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Unlike most eukaryotes, Blastocystis has a branched glycolysis pathway, which is split between the cytoplasm and the mitochondrial matrix. An outstanding question was how the glycolytic intermediates generated in the 'preparatory' phase' are transported into the mitochondrial matrix for the 'pay off' phase. Here, the authors use bioinformatic analysis to identify two candidate solute carrier genes, bGIC-1, and bGIC-2, and use biochemical and biophysical methods to characterise their substrate specificity and transport properties. The authors demonstrate that bGIC-2 can transport dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, and phosphoenolpyruvate, establishing this protein as the 'missing link' connecting the two split branches of glycolysis in this branch of single-celled eukaryotes. The authors also present their data on bGIC-1, which suggests a role in anion transport and bOGC, which is a close functional homologue of the human oxoglutarate carrier (hOGC, SLC25A11) and human dicarboxylate carrier (hDIC, SLC25A10).

      Strengths:<br /> The results are presented in a clear and logical arrangement, which nicely leads the reader through the process of gene identification and subsequent ligand screening and functional reconstitution. The results are compelling and well supported - the thermal stabilisation data is supported by the exchange studies. Caveats, where apparent, are discussed and rational explanations are given.

      Weaknesses:<br /> The study does not contain any significant weaknesses in my view. I would like to see the authors include the initial rate plots used in the main figures (possibly as insets), so we can observe the data points used for these calculations. It would also have been interesting to include the AlphaFold models for bGIC-1 and bGIC-2 and a discussion/rationalisation for the substrate specificity discussed in the study.

    1. Reviewer #3 (Public Review):

      The authors describe the role, location, and function of the MTA and MTB mating type genes in the multi-mating-type species T. thermophila. The ciliate is an important group of organisms to study the evolution of mating types, as it is one of the few groups in which more than two mating types evolved independently. In the study, the authors use deletion strains of the species to show that both mating types genes located in each allele are required in both mating individuals for successful matings to occur. They show that the proteins are localized in the cell membrane, not the cilia, and that they interact in a complex (MTRC) with a set of 6 associated (non-mating type-allelic) genes. This complex is furthermore likely to interact with a cyclin-dependent kinase complex. It is intriguing that T. thermophila has two genes that are allelic and that are both required for successful mating. This coevolved double recognition has to my knowledge not been described for any other mating-type recognition system. I am not familiar with experimental research on ciliates, but as far as I can judge, the experiments appear well performed and mostly support the interpretation of the authors with appropriate controls and statistical analyses.

      The results show clearly that the mating type genes regulate non-self-recognition, however, I am not convinced that self-recognition occurs leading to the suppression of mating. An alternative explanation could be that the MTA and MTB proteins form a complex and that the two extracellular regions together interact with the MTA+MTB proteins from different mating types. This alternative hypothesis fits with the coevolution of MTA and MTB genes observed in the phylogenetic subgroups as described by Yan et al. (2021 iScience). Adding MTAxc and/or MTBxc to the cells can lead to the occupation of the external parts of the full proteins thereby inhibiting the formation of the complex, which in turn reduces non-self interactions. Self-recognition as explained in Figure 2S1 suggests an active response, which should be measurable in expression data for example. This is in my opinion not essential, but a claim of self-recognition through the MTA and MTB should not be made.

      The authors discuss that T. thermophila has special mating-type proteins that are large, while those of other groups are generally small (lines 157-160 and discussion). The complex formed is very large and in the discussion, they argue that this might be due to the "highly complex process, given that there are seven mating types in all". There is no argument given why large is more complex, if this is complex, and whether more mating types require more complexity. In basidiomycete fungi, many more mating types than 7 exist, and the homeodomain genes involved in mating types are relatively small but highly diverse (Luo et al. 1994 PMID: 7914671). The mating types associated with GPCR receptors in fungi are arguably larger, but again their function is not that complex, and mating-type specific variations appear to evolve easily (Fowler et al 2004 PMID: 14643262; Seike et al. 2015 PMID: 25831518). The large protein complex formed is reminiscent of the fusion patches that develop in budding or fission yeasts. In these species, the mating type receptors are activated by ligand pheromones from the opposite mating type that induce polarity patch formation (see Sieber et al. 2023 PMID: 35148940 for a recent review). At these patches, growth (shmooing) and fusion occur, which is reminiscent (in a different order) of the tip transformation in T. thermophilia. The fusion of two cells is in all taxa a dangerous and complex event that requires the evolution of very strict regulation and the existence of a system like the MTRC and cyclin-dependent complex to regulate this process is therefore not unexpected. The existence of multiple mating types should not greatly complicate the process, as most of the machinery (except for the MTA and MTB) is identical among all mating types.

      The Tetrahymena/ciliate genetics and lifecycle could be better explained. For a general audience, the system is not easy to follow. For example, the ploidy of the somatic nucleus with regards to the mating type is not clear to me. The MAC is generally considered "polyploid", but how does this work for the mating type? I assume only a single copy of the mating type locus is available in the MAC to avoid self-recognition in the cells. Is it known how the diploid origin reduces to a single mating type? This does not become apparent from Cervantes et al. 2013. Also, the explanation of co-stimulation is not completely clear (lines 49-60). Initially, direct cell-cell contact is mentioned, but later it is mentioned that "all cells become fully stimulated", even when unequal ratios are used. Is physical contact necessary? Or is this due to the "secrete mating-essential factors" (line 601)? These details are essential, for interpretation of the results and need to be explained better.

      Abstract and introduction: Sexes are not mating types. In general, mating types refer to systems in which there is no obvious asymmetry between the gametes, beyond the compatibility system. When there is a physiological difference such as size or motility, sexes are used. This distinction is of importance because in many species mating types and sexes can occur together, with each sex being able to have either (when two) or multiple mating types. An example are SI in angiosperms as used as an example by the authors or mating types in filamentous fungi. See Billiard et al. 2011 [PMID: 21489122] for a good explanation and argumentation for the importance of making this distinction.

    1. Reviewer #3 (Public Review):

      Summary: The authors investigate the effect of the lipid aldehyde trans-2-hexadecenal (t-2-hex) in yeast using multiple omic analyses that show that a large range of cellular functions across all compartments are affected, e.g. transcriptomic changes affect 1/3 of all genes. The authors provide additional analyses, from which they built a model that mitochondrial protein import caused by modification of Tom40 is blocked.

      Strengths: Global analyses (transcriptomic and functional genomics approach) to obtain an unbiased overview of changes upon t-2-hex treatment.

      Weaknesses: It is not clear why the authors decided to focus on mitochondria, as only 30 genes assigned to the GO term "mitochondria" are increasing, and also the follow-up analyses using SATAY is not showing a predominance for mitochondrial proteins (only 4 genes are identified as hits). The provided additional experimental data do not support the main claims as neither protein import is investigated nor is there experimental evidence that lipidation of Tom40 occurs in vivo and impacts on protein translocation.

    1. Reviewer #3 (Public Review):

      This is interesting biology. Vitamin B6 deficiency has been linked to cognitive impairment. It is not clear whether supplements are effective in restoring functional B6 levels. Vitamin B6 is composed of pyridoxal compounds and their phosphorylated forms, with pyridoxal 5-phosphate (PLP) being of particular importance. The levels of PLP are determined by the balance between pyridoxal kinase and phosphatase activities. The authors are testing the hypothesis that inhibition of pyridoxal phosphatase (PDXP) would arrest the age-dependent decline in PLP, offering an alternative therapeutic strategy to supplements. Published data illustrating that ablation of the Pdxp gene in mice led to increases in PLP levels and improvement in learning and memory trials are consistent with this hypothesis.

      In this report, the authors conduct a screen of a library of ~40k small molecules and identify 7,8-dihydroxyflavone (DHF) as a candidate PDXP inhibitor. They present an initial characterization of this micromolar inhibitor, including a co-crystal structure of PDXP and 7,8-DHF. In addition, they demonstrate that treatment of cells with 7,8 DHP increases PLP levels. Overall, this study provides further validation of PDXP as a therapeutic target for the treatment of disorders associated with vitamin B6 deficiency and provides proof-of-concept for inhibition of the target with small-molecule drug candidates.

      Strengths include the biological context, the focus on an interesting and under-studied class of protein phosphatases that includes several potential therapeutic targets, and the identification of a small molecule inhibitor that provides proof-of-concept for a new therapeutic strategy. Overall, the study has the potential to be an important development for the phosphatase field in general.

      Weaknesses include the fact that the compound is very much an early-stage screening hit. It is an inhibitor with micromolar potency for which mechanisms of action other than inhibition of PDXP have been reported. Extensive further development will be required to demonstrate convincingly the extent to which its effects in cells are due to on-target inhibition of PDXP.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors set out to determine the extent to which the cation channel TRPV4 is expressed in secretory cells of sweat glands and the effect of blocking TRPV4 activity on sweat production, mediated via effects on the chloride channel anoctamin 1.

      Strengths:

      The study makes use of a diverse array of techniques, including super-resolution microscopy, live-cell calcium imaging, behavioral tests, and immunohistochemistry of human tissues in support of the claim that functional TRPV4 expression is detectable in sweat glands, and that TRPV4-deficient mice do not show respond to stimulation of sweat production (acetylcholine).

      Weaknesses:

      Figure 2: The calcium imaging-based approach shows average traces from 6 cells per genotype, but it was unclear if all acinar cells tested with this technique demonstrated TRPV4-mediated calcium influx, or if only a subset was presented.

      Figure 4: The climbing behavioral test shows a significant reduction in climbing success rate in TRPV4-deficient mice. The authors ascribe this to a lack of hind paw 'traction' due to deficiencies in hind paw perspiration, but important controls and evidence that could rule out other potential confounds were not provided or cited.

      In general, the results support the authors' claims that TRPV4 activity is a necessary component of sweat gland secretion, which may have important implications for controlling perspiration as well as secretion from other glands where TRPV4 may be expressed.

    1. Reviewer #3 (Public Review):

      Summary:

      Sperm-egg fusion is a critical step in successful fertilization. Although several proteins have been identified in mammals that are required for sperm-egg adhesion and fusion, it is still unclear whether there are other proteins involved in this process and how the reported proteins complex and/or cooperate to complete the fusion process. In this study, the authors first identified TMEM81 as a structural homologue of IZUMO1 and SPACA6, and using AlphaFold-Multimer, a recent advance in protein complex structure prediction, predicted the interactions between human proteins associated with gamete fusion. While the prediction is compelling and well discussed, the experimental evidence to verify this interaction is lacking, so the prediction remains a hypothesis.

      Strengths:

      The authors present a pentameric complex formation of four previously reported proteins involved in egg/sperm interaction together with TMEM181 using a deep learning tool, AlphaFold-Multimer.

      Weaknesses:

      While it is intriguing to see that some of the proteins involved in sperm-egg interaction are successfully predicted to be assembled into a single multimeric structure by AlphaFold-Multimer, it is necessary to experimentally validate the interactions. As there are more candidate proteins in the process, it will be necessary to test other possible protein interactions to prove the adequacy of the candidates chosen by the authors, as similar analysis with some other proteins will provide more rationale for further 3D multi-protein modeling. In addition, the lack of biochemical data to support the predicted bindings between proteins limits the proposed complex to remain mainly hypothetical.

    1. Reviewer #3 (Public Review):

      Using theory, the authors study mechanisms for establishing planar cell polarity (PCP) through local and global modules. These modules refer to the interaction between neighbouring cells and tissue-wide gradients, respectively. Whereas local interactions alone can lead to tissue-wide alignment PCP, a global gradient can set the direction of PCP and maintain the pattern in presence of noise. In contrast, the authors argue that a global gradient can only generate PCP to an extent that is proportional to the gradient magnitude.

      The authors formulate a discrete model in one and two spatial dimensions that describe the assembly dynamics of PCP proteins on membranes. The number of proteins per cell remains constant. Additive noise is introduced to account for stochasticity in the attachment/detachment kinetics of proteins. Furthermore, 'quenched' noise is introduced to account for variations of protein numbers between cells. The authors perform simulations of the stochastic discrete model in various situations. In addition, they derive a continuum description to perform some analytical computations.

      The strength of this analysis relies clearly on showing that simple dynamics can lead to tissue-wide PCP even in absence of a gradient in protein expression. A number of phenomena observed in tissues are qualitatively reproduced. In two spatial dimensions, they find swirling patterns that resemble patterns found in tissues when a global gradient is absent. The model also captures qualitative effects due to the down-regulation of one of the PCP proteins in a certain region of the tissue.

      The main weak point is that, from a physical point of view, the findings are not particularly surprising. Furthermore, some assumptions underlying the model, need some more justification. This holds notably for the question, of why additive noise is appropriate to account for the effect of stochasticity in the attachment-detachment dynamics of the proteins. Finally, the authors consider a situation that they consider to be one of the most interesting features of PCP, namely, the formation of PCP in presence of a region with a down-regulated PCP protein and in presence of a gradient. Unfortunately, the effect is not very clear and the data provided remains limited.

    1. Reviewer #3 (Public Review):

      This study aims to discover ethologically relevant feature selectivity of mouse retinal ganglion cells. The authors took an innovative approach that uses large-scale calcium imaging data from retinal ganglion cells stimulated with both artificial and natural visual stimuli to train a convolutional neural network (CNN) model. The resulting CNN model is able to predict stimuli that maximally excite individual ganglion cell types. The authors discovered that modeling suggests that the "transient suppressed-by-contrast" ganglion cells are selectively responsive to Green-Off, UV-On contrasts, a feature that signals the transition from the ground to the sky when the animal explores the visual environment. They tested this hypothesis by measuring the responses of these suppressed-by-contrast cells to natural movies, and showed that these cells are preferentially activated by frames containing ground-to-sky transitions and exhibit the highest selectivity of this feature among all ganglion cell types. They further verified this novel feature selectivity by single-cell patch clamp recording.

      This work is of high impact because it establishes a new paradigm for studying feature selectivity in visual neurons. The data and analysis are of high quality and rigor, and the results are convincing. Overall, this is a timely study that leverages rapidly developing AI tools to tackle the complexity of both natural stimuli and neuronal responses and provides new insights into sensory processing.

    1. Reviewer #3 (Public Review):

      This manuscript uses ASO to inhibit the self-cleaving ribozyme within CPEB intron 3 and test its effect on CPEB3 expression and memory consolidation. The authors conclude that the intronic ribozyme negatively affects CPEB3 mRNA splicing and expression, and suggests its implications for experience-induced gene expression underlying learning and memory.<br /> The strength of the manuscript is in its exploration of a potentially novel mechanism of regulating CPEB3 expression in learning and memory, a combination of both biochemical and behavioral approaches to gain a wide perspective of this regulatory mechanism, and the application of ASO in this context. The introduction is sufficiently detailed. Statistics are thorough and appropriate. If the results could be more robust, the mechanism would provide a novel target and venue to modify learning and memory paradigm.<br /> The weakness of the manuscript is that the magnitude of the activity-dependent regulation of ribozyme, the effects of ASOs on CPEB3 expression (mRNA and protein) and downstream target gene expression, in vitro and in vivo, are generally weak, raising concerns about the robustness of the result. This may have caused some of the inconsistencies between the data presentation (see below). Also unclear is whether the ribozyme activity is physiologically regulated by experience without ASO interference.<br /> While the statistics tests support corresponding figure panels and their conclusions. The manuscript can be significantly strengthened by additional evidence, clarification of some methodologies, and reconciling some inconsistent results.<br /> The premise of a comparable timescale between transcription and ribozyme activity as the foundation of the whole thesis was based on in vitro measurement of self-scission half-life and a broadly generalized transcription rate (which actually varies significantly between genes). This premise is weak and needs direct experimental support.<br /> The physiological relevance of the proposed mechanism has yet to be demonstrated without ASO interference.<br /> Fig2b: how were total and uncleaved Ribozymes measured by qRT-PCR? Where are the primers' locations? If the two products were amplified using different primers, their subtraction to derive % cleavage would not be appropriate.<br /> Line 400-403: shouldn't ribozyme-blocking ASO prevent ribozyme self-cleavage, and as a result should further increase ribozyme levels? This would contradict the result in fig3a.

  3. Dec 2023
    1. Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).

    1. Reviewer #3 (Public Review):

      This important study by Chen et al help in advancing our knowledge about the regulation of inner hair cell (IHC) development and revealed the role of Cldn9 in IHC embryonic and postnatal induction by transdifferentiation from the supporting cells. The authors developed an inducible doxycycline (dox)-tet-OFF-Cldn9 transgenic mice to regulate expression levels of Cldn9 and show that downregulation of Cldn9 resulted in additional, although incomplete row of IHCs immediately adjacent to the original IHC row. These induced extra IHCs had similar well developed hair bundles, able to mechanotransduce and were innervated by auditory neurons resembling wild-type IHCs. In addition, the authors knock down Cldn9 postnatally using shRNA injections in P1-7 mice with similar induction of extranumerary IHC next to the original row of IHCs. The conclusions of this paper are mostly well supported by the data, but some data analysis needed to be clarified and some crucial controls should be provided to improve the confidence in the presented results. There is a great potential for practical use of these valuable findings and new knowledge on IHC developmental regulation to design Cldn9 gene therapy in the future.<br /> The described by Chen et al mechanisms of extra hair cell generation by suppression of the tight junction protein Cldn9 expression level are very interesting and previously unknown. In particular, the generation of extra IHCs postnatally using downregulation of Cldn9 by shRNA could potentially be very useful as a replacement of HCs lost after noise-induced trauma, ototoxic agents, or other environmental trauma. On the other hand, the replacement of lost hair cells due to various genetic mutations by inducing a supernumerary IHCs with the same abnormalities would not be reasonable.<br /> The authors show that postnatally generated ectopic IHCs are viable and mechanotransducive, but it would be nice to show the maturation steps of ectopic IHC during this postnatal period. For example, stereocilia bundles of the ectopic hair cells should mature later than the original IHCs. A few days after viral delivery of shRNA, you should be able to observe immature IHC bundles that unequivocally will define newly generated IHCs. Unfortunately, the authors show only examples of already mature ectopic IHCs at P21 and in 5-6 weeks old mice and at relatively low resolution. Also, during maturation, IHCs usually have transient axo-somatic synapses that are not present in mature IHCs. It would be great to see if, in 5-6 weeks old mouse, the ectopic IHCs still have axo-somatic synapses or not, and if the majority of the ectopic IHCs have innervation. Some of the data in this study would benefit from showing corresponding controls and some - from higher resolution imaging.<br /> In the mammalian cochlea, each HC is separated from the next by intervening supporting cells, forming an invariant and alternating mosaic along the cochlea's length. Cochlear supporting cells in some conditions can divide and trans-differentiate into HCs, serving as a potential resource for HC differentiation, using transcription and other developmental signaling factors.<br /> However, when ectopic hair cells are generated from supporting cell trans-differentiation, the intricate mosaic of the organ of Corti is altered, which could by itself lead to hearing issues. In case of downregulation of Cldn9, the extra row of IHCs seems to be positioned immediately adjacent to the original IHC row. It is not clear if the newly formed unusual junctions between the ectopic and original IHCs are sufficiently tight to prevent leakage of the endolymph to the basolateral surface of IHCs. Also, it is not clear if the other organ of Corti tight junctions could lose their tightness due to the downregulation of Cldn9, which could over time affect the endocochlear potential as shown by this study and hearing abilities.<br /> Importantly, CLDN9 immunofluorescence staining data that show cytoplasmic staining of supporting cells should be revisited and the organ of Corti schematics showing CLDN9 expression should be corrected, considering that CLDN9 localizes to the tight junctions of the reticular lamina as was shown by immunoEM in this study and described in previous publications (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021).<br /> While the current version of the manuscript will be of interest to scientists working in the inner ear development and regeneration field, it could be more valuable to the hearing researchers outside this immediate field and perhaps developmental biologists and cell biologists after proper revision.

    1. Reviewer #3 (Public Review):

      In this study, the authors were assessing the role of double global knockout of substance P and CGPRα on the transmission of acute and chronic pain. The authors first generated the double knockout (DKO) mice and validated their animal model. This is then followed by a series of acute and chronic pain assessments to evaluate if the global DKO of these neuropeptides are important in modulating acute and chronic pain behaviors. Authors found that these DKO mice Substance P and CGRPα are not required for the transmission of acute and chronic pain although both neuropeptides are strongly implicated in chronic pain. This study does provide more insight into the role of these neuropeptides on chronic pain processing, however, more work still needs to be done. (see the comments below).

      1. In assessing the double KO (result #1), why are different regions of the brains shown for substance P and CGRPα (for example, midbrain for substance P and amygdala for CGRPα)? Since the authors mentioned that these peptides co-expressed in the brain (as in the introduction), shouldn't the same brain regions be shown for both IHC? It would be ideal if the authors could show both regions (midbrain and amygdala) in addition to the DRG and spinal cord for both peptides in their findings.<br /> In addition, since this is double KO, the authors should show more representative IHC-stained brain regions (spanning from the anterior to posterior).<br /> 2. It is also unclear as to why the authors only assessed the loss of substance P signaling in the double KO mice. Shouldn't the same be done for CGRPα signaling? Either the authors assess this, or the authors have to provide clear explanations as to why only substance P signaling was assessed.<br /> 3. Has these animal's naturalistic behavior been assessed after the double KO (food intake, sleep, locomotion for example)? I think this is important as changes to these naturalistic behaviors can affect pain processes or outcomes.<br /> 4. Figure 2H: The authors acknowledge that there is a trend to decrease with capsaicin-evoked coping-like responses. However, a close look at the graph suggests that the lack of significance could be driven by 1 mouse. Have the authors run an outlier test? Alternatively, the authors should consider adding more n to these experiments to verify their conclusions.<br /> 5. Similarly, the values for WT in the evoked cFos activity (Figure 2- Suppl Figure 1) are pretty variable. Considering that the n number is low (n = 5), authors should consider adding more n.<br /> Also, since the n number is low in this experiment (eg. 5 vs 4), does this pass the normality test to run a parametric unpaired t-test? Either the authors increase their n numbers or run the appropriate statistical test.<br /> 6. In most of the results, authors ran a parametric test despite the low n number. Authors have to ensure that they are carrying out the appropriate statistical test for their dataset and n number.<br /> 7. Along the same line of comment with the previous, authors should increase the n number for DKO for staining (Figure 4) as n number is only 3 and there is variability in the cFos quantification in the ipsilateral side.<br /> 8. Authors should provide references for statement made in Line 319-321 as authors mentioned that there are accumulating evidence indicating that secretion of these neuropeptides from nociceptor peripheral terminals modulates immune cells and the vasculature in diverse tissues.<br /> 9. Authors state that the sample size used was similar to those from previous studies, but no references were provided. Also, even though the sample sizes used were similar, I believe that the right statistic test should be used to analyze the data.<br /> 10. In the discussion, the authors noted that knocking out of a gene remains the strongest test of whether the molecule is essential for a biological phenomenon. At the same time, it was acknowledged that Substance P infusion into the spinal cord elicits pain, but it is analgesic in the brain. The authors might want to expand more on this discussion, including how we can selectively assess the role of these neuropeptides in areas of interest. For example, knocking out both Substance P and CGRPα in selected areas instead of the global KO since there are reported compensatory effects.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Pesnot Lerousseau and Summerfield aimed to explore how humans generalize abstract patterns of sensory data (concepts), focusing on whether and how spatial representations may facilitate the generalization of abstract concepts (rotational invariance). Specifically, the authors investigated whether people can recognize rotated sequences of stimuli in both spatial and nonspatial domains and whether spatial pre-training and multi-modal mapping aid in this process.

      Strengths:<br /> The study innovatively examines a relatively underexplored but interesting area of cognitive science, the potential role of spatial scaffolding in generalizing sequences. The experimental design is clever and covers different modalities (auditory, visual, spatial), utilizing a two-dimensional feature manifold. The findings are backed by strong empirical data, good data analysis, and excellent transparency (including preregistration) adding weight to the proposition that spatial cognition can aid abstract concept generalization.

      Weaknesses:<br /> The examples used to motivate the study (such as "tree" = oak tree, family tree, taxonomic tree) may not effectively represent the phenomena being studied, possibly confusing linguistic labels with abstract concepts. This potential confusion may also extend to doubts about the real-life applicability of the generalizations observed in the study and raises questions about the nature of the underlying mechanism being proposed.

      Next, the study does not explore whether scaffolding effects could be observed with other well-learned domains, leaving open the question of whether spatial representations are uniquely effective or simply one instance of a familiar 2D space, again questioning the underlying mechanism.

      Further doubt on the underlying mechanism is cast by the possibility that the observed correlation between mapping task performance and the adoption of a 2D strategy may reflect general cognitive engagement rather than the spatial nature of the task. Similarly, the surprising finding that a significant number of participants benefited from spatial scaffolding without seeing spatial modalities may further raise questions about the interpretation of the scaffolding effect, pointing towards potential alternative interpretations, such as shifts in attention during learning induced by pre-training without changing underlying abstract conceptual representations.

      Conclusions:<br /> The authors successfully demonstrate that spatial training can enhance the ability to generalize in nonspatial domains, particularly in recognizing rotated sequences. The results for the most part support their conclusions, showing that spatial representations can act as a scaffold for learning more abstract conceptual invariances. However, the study leaves room for further investigation into whether the observed effects are unique to spatial cognition or could be replicated with other forms of well-established knowledge, as well as further clarifications of the underlying mechanisms.

      Impact:<br /> The study's findings are likely to have a valuable impact on cognitive science, particularly in understanding how abstract concepts are learned and generalized. The methods and data can be useful for further research, especially in exploring the relationship between spatial cognition and abstract conceptualization. The insights could also be valuable for AI research, particularly in improving models that involve abstract pattern recognition and conceptual generalization.

      In summary, the paper contributes valuable insights into the role of spatial cognition in learning abstract concepts, though it invites further research to explore the boundaries and specifics of this scaffolding effect.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Anderson at al utilize an array of orthogonal techniques to highlight the important of protein dynamics for the function and inhibition of the kinase ERK2. ERK2 is important for a large variety of biological functions.

      Strengths:<br /> This is a thorough and detailed study that uses a variety of techniques to identify critical molecular/chemical parameters that drive ERK2 in specific states.

      Weaknesses:<br /> No details rules were identified so that novel inhibitors could be designed. Nevertheless, the mode of action of these existing inhibitors are much better defined.

    1. Reviewer #3 (Public Review):

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark-stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein.

    1. Reviewer #3 (Public Review):

      Summary and Strength:

      The manuscript by Amir et al. describes that Sertoli-specific inactivation of the mTORC1 and mTORC2 complex by KO of either Raptor or Rictor, respectively, resulted in progressive changes in blood-testis-barrier (BTB) function, testis weight, and sperm parameters, including counts, morphology, mtDNA content and sperm DNA methylation.

      The described studies are based on the hypothesis that a decline of BTB function with increasing chronological age of a male contributes to the DNA methylation changes that are known to occur in sperm DNA of old males when compared to sperm DNA from isogenic young males. In order to demonstrate the relevance of a functioning BTB for the maintenance of sperm methylation patterns, the authors generated mice with genetically disrupted mTORC2 complex or mTORC1 complex in Sertoli cells and determined sperm methylation patterns in comparison to isogenic wild-type males. In line with previously published scientific literature (e.g. Mok et al., 2013; Dong et al, 2015; and others), the manuscript corroborates that a Sertoli-cell specific deletion of mTORC2 caused a loss of BTB function and a progressive spermatogenic defect. The authors further show that sperm DNA is differentially methylated (DMRs) as a consequence of either a mTORC2 disruption (associated with a loss of BTB function) or following a mTORC1 disruption (BTB function either increased or not leaky) when compared to their isogenic age-matched wt controls. Those DMRs overlap partially with changes in sperm DNA methylation that were found when comparing sperm from 8-week males with sperm isolated from 22-week-old male mice.

      The authors interpret the observed changes as representative of the sperm DNA methylation changes that occur during normal chronological aging of the male. For an aged control group, the authors use sperm DNA of 22-week-old wild-type mates from the mTORC2 and mTORC2 KO breeding and compare the sperm methylation patterns found in sperm from those 22-week males to 8-week young males, that are intended to represent an old and a young cohort, respectively. DNA methylation analysis indicates that a disruption of mTORC2 (& decrease of BTB function) results in increased DNA methylation of sperm DNA, while a disruption of mTORC1 (and proposed increase of BTB tightness, not shown in the manuscript, though) resulted in increased hypomethylation.

      Weaknesses:

      While the hypothesis and experimental system are interesting and the data demonstrating the relevance of the mTORC2 complex for BTB function is convincing, several open questions limit the evidence that supports the hypothesis that the sperm DNA methylation changes seen in old males are caused by BTB failure following an imbalance of mTOR signaling complexes. The major critique points are the lack of a chronologically old group and the choice of 8 weeks & 22 weeks age of age:

      - Data illustrating the degree of BTB decline and sperm DNA methylation changes from chronologically "old" male mice is missing. 22-week-old mice are not considered old but are of good and mature breeding age, equivalent to humans in their mid-late twenties. (In the manuscript, the 22-week-old wildtype mice show no evidence of BTB breakdown (Figure 3), so why are their sperm used to represent "aged" sperm?

      - Adding a group of "old" wild-type mice of 12-14 months of age, which is closer to the end of effective reproduction in mice, more equivalent to 45-59 year-old humans) could be used to illustrate that (a) aging causes a marked decrease in BTB function at this time in mouse life, and that this BTB breakdown chronologically aligns with the age-associated DNA hypermethylation seen in old sperm. Age-matched "old" mTORC1 KO, with a (supposedly) tighter BTB barrier, could then be expected to have a sperm DMA methylation profile closer to that of younger wild-type animals. Such data are currently missing. While the progressive testicular decline observed in the mTORC1 KO (Fig.5) could make it difficult to obtain the appropriately aged mTORC1 KO tissues, it is completely feasible to obtain data from chronologically old wild-type males. (The progressive testicular decline further raises the question of what additional defects the KO causes, and how such additional defects would influence the sperm DNA methylation profile.) The addition of data from an old group to the currently included groups could strengthen the interpretation that the observations in the BTB-defective mTORC2 KO mice are modelling an age-related testicular decline, provided that the DMRs seen in the chronologically old group significantly overlap with the BTB-defective changes.

      - In the current form, the described differences in sperm DNA methylation are based on comparisons between pubertal mice (8 weeks) and mature but not old adult males (22 weeks), while a chronologically "old" group is missing from the data sets and comparisons. Thus, it appears that the described sperm methylation changes reflect developmental changes associated with normal maturation and not necessarily declining sperm quality due to aging. (Sperm obtained from 8-week-old mice likely were generated, at least in part, during the 1st wave of spermatogenesis, which is known to differ from the continuously proceeding spermatogenesis during the remained of the mature life. During the 1st wave of spermatogenesis, Sertoli cells are known to undergo gene expression changes which could contribute to varying degrees of BTB function, and thus have effects on the sperm DNA methylation profiles of such 1st wave sperm.)

      - It is unclear why the aging-related DMRs between the 8 and 22-week-old wild-type mice vary so dramatically between the two wild-type groups derived from the mTORC1 and the mTORC2 breeding (Fig. S4). If the main difference was due to mTORC1 or mTORC2 activity, both wildtype groups should behave very similarly. Changes seen in a truly "old" mouse (e.g. 20 weeks to 56 weeks), changes in "young mTORC1" and in "old mTORC2" are missing. How do those numbers and profiles compare to the shown samples?

      Some general comments regarding the chosen age of animals:

      - As mentioned, sperm from 8-week-old mice represent many sperm that were produced in the 1st wave of spermatogenesis; 22-week-old mice are not considered chronologically old mice, but mature and "relatively" young animals. 18-24 month-old mice are considered to be equivalent to 56-69 year-old humans, and might be more suitable to detect aging effects. "Old mice" for study purposes should be at least 12-14 months of age, ideally >18 months of age. 22 weeks (5 months of age) are mice at good breeding age, but still considered mature adults, not old males, and therefore are not expected to show typical aging health problems (like declining fertility).

      Even the cited reference (Flurkey et al. 2007) defines that "... mice used a reference group for "young mice" should be at least 3 months of age (~ 13 weeks), i.e. fully sexually mature. The authors specifically state: " The young adult group should be at least 3 months old because, although mice are sexually mature by 35 days, relatively rapid maturational growth continues for most biologic processes and structures until about 3 months. The upper age range for the young adult group is typically about 6 months. ... For the middle-aged group, 10 months is typically the lower limit.... The upper age limit for the middle-aged group is typically 14-15 months, because at this age, most biomarkers still have not changed to their full extent, and some have not yet started changing. For the old group, the lower age limit is 18 months because age-related change for almost all biomarkers of aging can be detected by then. The upper limit is 22-26 months, depending on the genotype." According to this reference, mice up to 6 months of age are generally considered "mature adults" (equivalent to humans 20-30 yrs), mice of 10-14 month are "middle-aged adults" (equivalent to ~38-47 human years) and 18-24 month mice are "old" (equivalent to human of 56-69 yrs.).

      Going on these commonly used age ranges, it is unclear why the authors used 8-week-old mice (generally considered pubertal to late adolescent age) as young mice and 5-month-old mice as "old mice".

      Differences seen between these cohorts most likely do not reflect aging, but more likely reflect changes associated with normal developmental maturation, since testis and epididymides continue to grow until about 10-11 weeks of age.

      - The DMRs identified between 8 and 22-week-old animals could represent DMRs that are dependent on developmental maturation more than being changed in an "age-dependent" manner (in the sense of increased chronological age). This interpretation is congruent with the fact that those DMRs are enriched for developmental categories.

    1. Ron White recommends taking notes on 3 x 5 inch index cards. One should place the Dewey Decimal or Library of Congress catalog number in the upper left of their bibliography card and in the upper right corner one should number their cards consecutively (1, 2, 3, etc.). White indicates the importance of these numbers is primarily that they are unique, presumably so one can refer to them or reorder them if they are put out of order. (p46-7)

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:<br /> The strengths of this manuscript include the use of multiple model systems and follow-up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:<br /> The major weakness is that, as presented, the manuscript is quite difficult to follow, even for someone familiar with the field. The lack of detail in figure legends, organization of the text, and frequent use of non-intuitive abbreviated group names without a clear key (ex. EP/EF, or C E A B) make comprehension challenging. The results section is perhaps too succinct and does not provide sufficient information to understand experimental design and interpretation without reading the methods section first or skipping to the discussion (as an example: WNT-c59 treatment). Extensive revisions could be encouraged to aid in communicating the potentially exciting findings.

      The bioinformatics section of the methods requires revision and may indicate issues in the pipeline. Merging the forward and reverse reads may represent a problem for denoising. Also since these were sequenced on a NovaSeq, the error learning would have to be modified or the diversity estimates would be inappropriately multiplied. "Alpha diversity and beta diversity were calculated by normalized to the same sequence randomly." Not sure what this means, does this mean subsampled? "Blast was used for sequence alignment", does this mean the taxonomic alignment? This would need to be elaborated on and database versions should be included. The methods, including if any form of multiple testing was included, for LEFSE was also not included.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript coins a term "the census population size" which they define from the diversity of malaria parasites observed in the human community. They use it to explore changes in parasite diversity in more than 2000 people in Ghana following different control interventions.

      Strengths:<br /> This is a good demonstration of how genetic information can be used to augment routinely recorded epidemiological and entomological data to understand the dynamics of malaria and how it is controlled. The genetic information does add to our understanding, though by how much is currently unclear (in this setting it says the same thing as age-stratified parasite prevalence), and its relevance moving forward will depend on the practicalities and cost of the data collection and analysis. Nevertheless, this is a great dataset with good analysis and a good attempt to understand more about what is going on in the parasite population.

      Weaknesses:<br /> Overall the manuscript is well-written and generally comprehensively explained. Some terms could be clarified to help the reader and I had some issues with a section of the methods and some of the more definitive statements given the evidence supporting them.

    1. Reviewer #3 (Public Review):

      We commend the authors on addressing our points and do believe that the manuscript is much improved. Even with the added in vitro data (Figure 8, Supplementary Figure 6), however, a clear mechanistic explanation for how MCT1 is modulating/inhibiting fibrosis in hepatic stellate cells is lacking and this represents a key area for future exploration. The authors provide interesting follow up experiments that suggest lactate can potentiate TGF-β1 signaling, a phenomenon that has previously been described in pulmonary fibrosis. Additionally, MCT1 depletion decreased the pSMAD3/SMAD ratio, but this was overcome with higher doses of TGB- β1 ligand. It remains unclear how intracellular versus extracellular lactate is signaling to exert the observed effects, and how the altered metabolism/metabolic flux in NAFLD is contributing to organ level metabolic dysregulation. These will be keys questions to answer going forward potentially using the novel in vivo models that the authors have contributed here.

      A major finding of this work is that loss of monocarboxylate transporter 1 (MCT1), specifically in stellate cells, can decrease fibrosis in the liver. However, the underlying mechanism whereby MCT1 influences stellate cells is not addressed. It is unclear if upstream/downstream metabolic flux within different cell types leads to fibrotic outcomes. Ultimately, the paper opens more questions than it answers: why does decreasing MCT1 expression in hepatocytes exacerbate disease, while silencing MCT1 in fibroblasts seems to alleviate collagen deposition? Mechanistic studies in isolated hepatocytes and stellate cells could enhance the work further to show the disparate pathways that mediate these opposing effects. The work highlights the complexity of cellular behavior and metabolism within a disease environment but does little to mechanistically explain it.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, McAllester and Pool develop a new simulation model to explain the maintenance of balanced inversion polymorphism, based on (sexually) antagonistic alleles and a trade-off between male reproduction and survival (in females or both sexes). In support of the plausibility of this model, the authors use laboratory experiments on four naturally occurring inversion polymorphisms in Drosophila melanogaster, finding evidence for the existence of the above-mentioned trade-off in two out of the four cases.

      Strengths:<br /> 1. The study develops and analyzes a new (Drosophila melanogaster-inspired) model for the maintenance of balanced inversion polymorphism, combining elements of (sexually) antagonistically (pleiotropic) alleles, negative frequency-dependent selection, and synergistic epistasis. To this end, the authors developed and used a new simulator (although it was not 100% clear as to why SLiM could not have been used as SLiM has been used to study inversions).

      2. The above-mentioned model assumes, as a specific example, a trade-off between male reproductive display and survival; in the second part of their study, the authors perform laboratory experiments on four common D. melanogaster inversions to study whether these polymorphisms may be subject to such a trade-off. The authors find that two of the four inversions show suggestive evidence that is consistent with a trade-off between male reproduction and survival. The new amplicon sequencing approach to track inversion frequencies used by the authors seems promising in terms of studying fitness effects/trade-offs associated with polymorphic inversions and how such effects play out dynamically.

      Weaknesses:<br /> 1. Mechanisms of balancing selection maintaining balanced inversion polymorphism. In Section 1.1 a better and more accurate overview of the different selective mechanisms that might contribute to the maintenance of balanced inversion polymorphisms should be given (for a recent review see Berdan et al. 2023). For example, negative frequency-dependent selection (NFDS), spatially and temporally varying selection are not mentioned here and are brought up only later, which is not really ideal. While I agree that in most cases our understanding of balanced inversion polymorphism is very limited, there are many empirical examples of these and other mechanisms of balancing selection being at play (e.g., NFDS: Wright & Dobzhansky 1946; Nassar et al. 1973; Álvarez-Castro and Álvarez 2005; Jay et al. 2021; and many examples of evidence for other mechanisms as well). Thus, while the prevalence of inversion polymorphisms is indeed in many cases "enigmatic", the reader should not be given the impression that we do not have yet any empirical evidence for specific mechanisms in particular cases. Similarly, the authors mention the classical (essentially Dobzhansky's) scenario of epistatically interacting loci only in passing, even though this coadaptation scenario may be simpler than the local adaptation mechanism of Kirkpatrick & Barton (2016): in its simplest form, epistatic coadaptation does not require any migration load or locally adaptive alleles à la Kirkpatrick & Barton, but just the capture of 2 overdominant loci, with inversion protecting this fittest double heterozygote from recombination load (Charlesworth 1974; also see Charlesworth & Charlesworth 1974; Charlesworth & Flatt 2021; also see discussion in Charlesworth and Barton 2018). On the other hand, the plausibility of the mutational load/associative overdominance (AOD) mechanism (Sturtevant & Mather 1938; Nei et al. 1967; Ohta 1971) seems to be given too much weight: new work by Charlesworth (2023; https://www.biorxiv.org/content/10.1101/2023.10.16.562579v1) suggests that load likely contributes only very modestly to heterokaryotypic advantage of inversions at intermediate frequencies, and that is very unlikely to provide a sufficient selective (heterotic) advantage to new autosomal inversions in order to explain their establishment (also see Nei et al. 1967; Connallon and Olito 2021; Jay et al. 2022).

      2. The general reduction principle and inversion polymorphism. In Section 1.2., the authors state that "there has not been a proposed mechanism whereby alleles at multiple linked loci would directly benefit from linkage and thereby maintain an associated inversion polymorphism under indirect selection." Perhaps I am misunderstanding something, but in my reading, this statement is factually incorrect. In fact, the simplest version of Dobzhansky's epistatic coadaptation model (see Charlesworth 1974; also see Charlesworth and Charlesworth 1973 and discussion in Charlesworth & Flatt 2021; Berdan et al. 2023) seems to be an example of exactly what the authors seem to have in mind here: two loci experiencing overdominance, with the double heterozygote possessing the highest fitness (i.,e., 2 loci under epistatic selection, inducing some degree of LD between these loci), with subsequent capture by an inversion; in such a situation, a new inversion might capture a haplotype that is present in excess of random expectation (and which is thus fitter than average). The selective benefits of recombination suppression in the inversion heterokaryotype will then confer a heterozygote advantage to the inversion and prevent it from going to fixation (see Charlesworth 1974). This is probably the simplest (or one of the simplest) models of multilocus balancing selection that can act on inversions. Incidentally, this model represents a prime example of the "reduction principle", which the authors mention on two occasions in their paper: generally, any multi-locus polymorphism held at equilibrium by any type of balancing selection involving fitness epistasis will cause selection for reduced recombination (e.g., Feldman & Liberman, 1986; Zhivotovsky et al., 1994); notably, the example of inversion polymorphism is explicitly discussed in Altenberg's and Feldman's (1987) paper on the reduction principle. It is also noteworthy in this context that the 2-locus epistatic model of Charlesworth (1974) assumes constant fitness values/selection coefficients but actually leads to what one could call "apparent" frequency-dependent selection with different equilibria.

      3. Trade-offs and antagonistic pleiotropy involved in maintaining inversions. Throughout the manuscript, previous work implicating trade-offs and/or antagonistic pleiotropy (AP) in the maintenance of inversion polymorphisms should be more adequately acknowledged and discussed - from the text as it currently stands one gains the impression that barely anything is known about the connection between inversions and pleiotropy/AP/trade-offs (e.g., Betrán et al. 1998; Mérot et al. 2020, which is cited but not really in the context of AP/trade-offs; Pei et al. 2023, etc.). The paper by Pei and colleagues is particularly relevant in the context of the present study: the authors find that the inverted allele has beneficial effects on male siring success and female fecundity but negative effects on survival. Generally, numerous studies have found that inversion polymorphisms have "pleiotropic" (albeit not always antagonistically pleiotropic) effects upon multiple fitness components (e.g., Etges 1989; Betrán et al. 1998; Küpper et al. 2016; Durmaz et al. 2018; Mérot et al. 2020). More broadly, the general role of AP in maintaining (life-history) polymorphisms should be mentioned by referring to previous theories (e.g., Rose 1982, 1985; Curtsinger et al. 1994; Charlesworth & Hughes 2000 chapter in Lewontin Festschrift; Conallon & Chenoweth 2019 - this latter paper is particularly relevant in terms of AP effects in the context of sexual antagonism).

      4. Sexually antagonistic selection and inversion polymorphism. The authors' model of sexual antagonism being involved in maintaining an inversion polymorphism is novel and interesting, but again I felt that the authors' ideas could be better connected to what has been done before. First, several papers have made connections between sexual antagonism and inversion polymorphisms: for example, an important study that deserves discussion in this context is the paper by Natri and colleagues (2019) where the authors study sexual antagonism as a source of balancing selection that maintains an inversion polymorphism in the ruff. Similarly, another relevant study in this context is Hearn et al. 2022 on Littorina saxatilis snails. Also see Giraldo-Deck et al. (2022). A very interesting paper that may be worth discussing is Connallon & Chenoweth (2019) about dominance reversals of antagonistically selected alleles (even though C&C do not discuss inversions): AP alleles (with dominance reversals) affecting two or more life-history traits provide one example of such antagonistically selected alleles (also see Rose 1982, 1985; Curtsinger et al. 1994) and sexually antagonistically selected alleles provide another. The two are of course not necessarily mutually exclusive, thus making a conceptual connection to what the authors model here.

      5. The model. In general, the description of the model and of the simulation results was somewhat hard to follow and vague. There are several aspects that could be improved: (1) it would help the reader if the terminology and distinction of inverted vs. standard arrangements and of the three karyotypes would be used throughout, wherever appropriate. (2) The mention of haploid populations/situations and haploid loci (e.g., legend to Figure 1) is somewhat confusing: the mechanism modelled here, of course, requires suppressed recombination in the inversion/standard heterokaryotype; and thus, while it may make sense to speak of haplotypes, we're dealing with an inherently diploid situation. (3) The authors have a situation in mind where the 2 karyotypes (INV vs. STD) in the heterokaryotype carry distinct sets of loci in LD with each other, with one karyotype/haplotype carrying antagonistic variants favoring high male display success and with the other karyotype/haplotype carrying non-antagonistic alternative alleles at these loci and which favor survival. Thus, at each of the linked loci, we have antagonistic alleles and non-antagonistic alleles - however, the authors don't mention or discuss the degree of dominance of these alleles. The degree of dominance of the alleles could be an important consideration, and I found it curious that this was not mentioned (or, for that matter, examined). (4) In many cases, the authors do not provide sufficient detail (in the main text and the main figures) about which parameter values they used for simulations; the same is true for the Materials & Methods section that describes the simulations. Conversely, when the text does mention specific values (e.g., 20N generations, 0.22-0.25M, etc.), little or no clear context or justification is being provided. (5) The authors sometimes refer to "inversion mutation(s)" - the meaning of this terminology is rather ambiguous.

      6. Throughout the manuscript, especially in the description and the discussion of the model and simulations, a clearer conceptual distinction between initial "capture" and subsequent accumulation / "gain" of variants by an inversion should be made. This distinction is important in terms of understanding the initial establishment of an inversion polymorphism and its subsequent short- as well as long-term fate. For example, it is clear from the model/simulations that an inversion accumulates (sexually) antagonistic variants over time - but barely anything is said about the initial capture of such loci by a new inversion.