9 Matching Annotations
  1. Aug 2024
    1. Twitter Scraper fue altamente eficaz en la recolección de datos textuales y en la identificación de patrones en los tweets. Su enfoque en el contenido textual permitió una cobertura integral de los temas discutidos, operando de manera eficiente y procesando grandes cantidades de datos textuales en un tiempo reducido.

      Decirlo de manera más clara.

    2. Su capacidad para manejar grandes volúmenes de datos permitió una recolección exhaustiva, y mostró un rendimiento eficiente en la ejecución de tareas de scraping, completando la recolección de datos en un tiempo razonable sin comprometer la calidad

      Decirlo con palabras más llanas y claras.

    3. Fue eficiente en obtener una gran cantidad de datos textuales, capturando un volumen significativo de tweets y hashtags, así como menciones y enlaces. Esta densidad de información textualmente rica facilitó la identificación de temas y sentimientos predominantes en el discurso político.

      Aclarar o quitar

    4. Nuestro objetivo es gestionar y organizar el volumen masivo de datos textuales creados en X/Twitter durante la candidatura a la alcaldía de Bogotá en X/Twitter utilizando técnicas de minería de textos. Con el uso de esta metodología innovadora, podemos examinar las ramificaciones políticas de la difusión o proliferación de información en la plataforma y producir modelos útiles que pueden aplicarse para mejorar la toma de decisiones políticas y estratégicas.

      Este ya no es nuestro objetivo. Sino el de analizar la calidad de los microdatos extraídos.