10,000 Matching Annotations
  1. Jan 2025
    1. Author response:

      The following is the authors’ response to the current reviews.

      Those comments are all valuable and very helpful for revising and improving our paper, as well as the important guiding significance to our researches. We have studied comments carefully and have made correction which we hope meet with approval.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      As in previous revisions, there remains concerning ambiguity in the methodology used for microbiota sequence analysis and it would be difficult to replicate the analysis in any meaningful way. In this revision, concerns about the rigor and reproducibility of this component of the manuscript have been increased. Readers should be cautious with interpretation of this data.

      (1) In previous versions of the manuscript it would appear the correct bioproject accession was listed but, the actual link went to an unrelated project. The updated accession link appears to contain raw data; however, the authors state they used an Illumina HiSeq 2500. This would be an unusual choice for V3-V4 as it would not have read lengths long enough to overlap. Inspection of the first sample (SRR19164796) demonstrates that this is absolutely not the raw data, as there is a ~400 nt forward read, and a 0 length reverse read. All quality scores are set to 30. There is no logical way to go from HiSeq 2500 raw data and read lengths to what was uploaded to the SRA and it was certainly not described in the manuscript.

      What we uploaded to the SRA was Contigs files for sample, we have modified the description on line 694.

      (2) No multiple testing correction was applied to the microbiome data.

      The alpha diversity indexes were tested using T-test and wilcox test, and we showed the result of T-test in FigureS1B. The p-values were corrected for multiple testing using the Benjamini-Hochberg method, we have modified the description on line 322.

      ---------

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      Ma X. et al proposed that A. muciniphila was a key strain that promotes the proliferation and differentiation of intestinal stem cells through acting on the Wnt/β-catenin signaling pathway. They used various models, such as piglet model, mouse model and intestinal organoids to address how A. muciniphila and B. fragilis offer the protection against ETEC infection. They showed that FMT with fecal samples, A. muciniphila or B. fragilis protected piglets and/or mice from ETEC infection, and this protection is manifested as reduced intestinal inflammation/bacterial colonization, increased tight junction/Muc2 proteins, as well as proper Treg/Th17 cells. Additionally, they demonstrated that A. muciniphila protected basal-out and/or apical-out intestinal organoids against ETEC infection via Wnt signaling.

      Comments on revised version:

      Please add proper references to indicate the invasion of ETEC into organoids after 1 h of infection.

      We have added references on line 211.

      References:

      Xiao K, Yang Y, Zhang Y, Lv QQ, Huang FF, Wang D, Zhao JC, Liu YL. 2022. Long-chain PUFA ameliorate enterotoxigenic Escherichia coli-induced intestinal inflammation and cell injury by modulating pyroptosis and necroptosis signaling pathways in porcine intestinal epithelial cells. Br. J. Nutr. 128(5):835-850.

      Qian MQ, Zhou XC, Xu TT, Li M, Yang ZR, Han XY. 2023. Evaluation of Potential Probiotic Properties of Limosilactobacillus fermentum Derived from Piglet Feces and Influence on the Healthy and E. coli-Challenged Porcine Intestine. Microorganisms. 11(4).

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      After an additional revision, the bioinformatics section of the methods has changed significantly from previous versions and now indicates a third sequencer was used instead: Ion S5 XL. Important parameters required to replicate analysis have still not been provided. Inspection of the SRA data indicates a mix of Illumina MiSeq and Illumina HiSeq 2500. It is now unclear which sequencing technology was used as authors have variably reported 4 different sequencers for these samples. Appropriate metadata was not provided in the SRA, although some groups may be inferred from sample names. These changing descriptions of the methodologies and ambiguity in making the data available create concerns about rigor of study and results.

      Due to confusing the sequencing method of this experiment with other experiment samples, we apologize for the multiple incorrect modifications of the method description. We have modified the method for microbiome sequencing technology on line 304. The sequencing technology is Illumina HiSeq 2500. The SRA metadata can be viewed at https://www.ncbi.nlm.nih.gov/sra/PRJNA837047. The sample names ep1-6 and ef1-6 were correspond to the EP and EF groups, respectively.

      Recommendations For the Authors:

      As in the previous revision:

      -provide important parameters required to replicate analysis

      -ensure that reporting of sequencing technology is correct as data listed on SRA appears to be derived from Illumina sequencers, and was deposited indicating as such.

      -update SRA metadata such that experimental groups are clear and match the nomenclature used in the manuscript (Particularly for samples which are labelled [A-Z][0-9]

      - The multiple testing correction wasn’t applied.

      -Due to confusing the sequencing method of this experiment with other experiment samples, we apologize for the multiple incorrect modifications of the method description. We have modified the method for microbiome sequencing technology on line 304. The sequencing technology is Illumina HiSeq 2500.

      - The SRA metadata can be viewed at https://www.ncbi.nlm.nih.gov/sra/PRJNA837047. The sample names ep1-6 and ef1-6 were correspond to the EP and EF groups, respectively.

    1. eLife Assessment

      This study tested the specific hypothesis that age-related changes to hearing involve a partial loss of synapse connections between sensory cells in the ear and the nerve fibers that carry information about sounds to the brain, and that this interferes with the ability to discriminate rapid temporal fluctuations in sounds. Physiological, behavioral, and histological analyses provide a powerful combination to test this hypothesis in gerbils. Contrary to previous suggestions, it was found that chemically-induced isolated synaptopathy (at similar levels as observed in aged gerbils) did not result in worse performance on a behavioral task measuring sensitivity to fine-structure. Further, altered neural coding of rapid fluctuations produced no perceptual deficits in either these gerbils or in aged gerbils. These findings are important for understanding age-related changes to hearing; however, the evidence provided is incomplete due to problems in interpretation and the discussion of possible confounds and/or limitations of these data that currently limits mechanistic insight.

    2. Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging. To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects. The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weaknesses:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies. If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable. Given the limited number of units per condition-sometimes as few as three for certain conditions - I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      Although ouabain effects on gerbils have been explored in previous studies, since these data already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group.

    3. Reviewer #2 (Public review):

      Summary:

      Using a gerbil model, the authors tested the hypothesis that loss of synapses between sensory hair cells and auditory nerve fibers (which may occur due to noise exposure or aging) affects behavioral discrimination of the rapid temporal fluctuations of sounds. In contrast to previous suggestions in the literature, their results do not support this hypothesis; young animals treated with a compound that reduces the number of synapses did not show impaired discrimination compared to controls. Additionally, their results from older animals showing impaired discrimination suggest that age-related changes aside from synaptopathy are responsible for the age-related decline in discrimination.

      Strengths:

      (1) The rationale and hypothesis are well-motivated and clearly presented.

      (2) The study was well conducted with strong methodology for the most part, and good experimental control. The combination of physiological and behavioral techniques is powerful and informative. Reducing synapse counts fairly directly using ouabain is a cleaner design than using noise exposure or age (as in other studies), since these latter modifiers have additional effects on auditory function.

      (3) The study may have a considerable impact on the field. The findings could have important implications for our understanding of cochlear synaptopathy, one of the most highly researched and potentially impactful developments in hearing science in the past fifteen years.

      Weaknesses:

      (1) My main concern is that the stimuli may not have been appropriate for assessing neural temporal coding behaviorally. Human studies using the same task employed a filter center frequency that was (at least) 11 times the fundamental frequency (Marmel et al., 2015; Moore and Sek, 2009). Moore and Sek wrote: "the default (recommended) value of the centre frequency is 11F0." Here, the center frequency was only 4 or 8 times the fundamental frequency (4F0 or 8F0). Hence, relative to harmonic frequency, the harmonic spacing was considerably greater in the present study. By my calculations, the masking noise used in the present study was also considerably lower in level relative to the harmonic complex than that used in the human studies. These factors may have allowed the animals to perform the task using cues based on the pattern of activity across the neural array (excitation pattern cues), rather than cues related to temporal neural coding. The authors show that mean neural driven rate did not change with frequency shift, but I don't understand the relevance of this. It is the change in response of individual fibers with characteristic frequencies near the lowest audible harmonic that is important here.

      The case against excitation pattern cues needs to be better made in the Discussion. It could be that gerbil frequency selectivity is broad enough for this not to be an issue, but more detail needs to be provided to make this argument. The authors should consider what is the lowest audible harmonic in each case for their stimuli, given the level of each harmonic and the level of the pink noise. Even for the 8F0 center frequency, the lowest audible harmonic may be as low as the 4th (possibly even the 3rd). In human, harmonics are thought to be resolvable by the cochlea up to at least the 8th.

      (2) The synapse reductions in the high ouabain and old groups were relatively small (mean of 19 synapses per hair cell compared to 23 in the young untreated group). In contrast, in some mouse models of the effects of noise exposure or age, a 50% reduction in synapses is observed, and in the human temporal bone study of Wu et al. (2021, https://doi.org/10.1523/JNEUROSCI.3238-20.2021) the age-related reduction in auditory nerve fibres was ~50% or greater for the highest age group across cochlear location. It could be simply that the synapse loss in the present study was too small to produce significant behavioral effects. Hence, although the authors provide evidence that in the gerbil model the age-related behavioral effects are not due to synaptopathy, this may not translate to other species (including human). This should be discussed in the manuscript.

      It would be informative to provide synapse counts separately for the animals who were tested behaviorally, to confirm that the pattern of loss across the group was the same as for the larger sample.

      (3) The study was not pre-registered, and there was no a priori power calculation, so there is less confidence in replicability than could have been the case. Only three old animals were used in the behavioral study, which raises concerns about the reliability of comparisons involving this group.

    4. Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age.

      In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups. However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in Figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

    5. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging. To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      We agree with the reviewer’s summary.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects. The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weaknesses:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies.

      We chose the stimuli for the AN recordings to be identical to the stimuli used in the behavioral evaluation of the perceptual sensitivity. Only with this approach can we directly compare the response of the population of AN fibres with perception measured in behaviour. We will address this more clearly in the revision.

      If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable.

      It is unclear to us what the reviewer alludes to. We ask to rephrase the question.

      Given the limited number of units per condition-sometimes as few as three for certain conditions - I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      In the discussion of a revised version of the manuscript, we will point out the pros and cons of using fixed-level stimuli that were not adjusted in frequency to the BF.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation. We do not think that it will be necessary to conduct any statistical analysis in addition to that already reported in the supplement.

      We will consider moving some supplementary information back into the main manuscript when revising.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      We will add information on the distribution when revising.

      Although ouabain effects on gerbils have been explored in previous studies, since these data already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      We do indeed have data on ABR amplitudes and the wave 1 growth functions but only in response to broadband clicks. For more frequency-specific information, mass-potential recordings are available, obtained before and after ouabain treatment. Regarding neural tuning, we did not obtain full frequency-threshold curves but do have bandwidths for response curves recorded close to threshold. We are in the process of analyzing all these data further and will consider how to best incorporate them into the manuscript, to address the reviewer’s concerns.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Our provisional response below will be integrated in similar form into the Discussion.

      Olivocochlear efferent activity is a potential modulator of OHC gain (by medial olivocochlear neurons, MOC) and afferent activity (by lateral olivocochlear neurons, LOC). Beyond this general observation it is, however, difficult to speculate about its specific role in the TFS1 test, as almost nothing is known about efferent activity under naturalistic conditions in a behaving animal (reviewed by Lauer et al., 2022). We note, however, that efferent activity is believed to be reduced under general anesthesia (reviewed by Guinan, 2011, DOI 10.1007/978-1-4419-7070-1_3) and possibly abnormal in other ways, considering the potential top-down inputs to the efferent neurons from extensive brain networks (reviewed by Schofield, 2011, DOI 10.1007/978-1-4419-7070-1_9; Romero and Trussell, 2022, DOI: 10.1016/j.heares.2022.108516). Thus, it is reasonable to assume a reduced efferent influence in our auditory-nerve data, compared to the behavioral test situation. In contrast, we assume more comparable efferent influences in young-adult and old gerbils. It was recently shown that, despite age-related losses in both MOC and LOC cochlear innervation, this basically reflected the loss of efferent target structures (OHC and type-I afferents), with the surviving cochlear circuitry remaining largely normal (Steenken et al., 2024, DOI: 10.3389/fnsyn.2024.1422330). The main difference was an increased proportion of OHC without any efferent innervation, predominantly in low-frequency cochlear regions (Steenken et al., 2024). Such OHC are thus not under efferent control, and they are more numerous (about 10 – 30%) in old gerbils.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group. For maximizing statistical power, we combined those groups in the statistical analysis. These two groups did not differ in synapse number and had quite similar ABR wave 1 growth functions.

      Reviewer #2 (Public review):

      Summary:

      Using a gerbil model, the authors tested the hypothesis that loss of synapses between sensory hair cells and auditory nerve fibers (which may occur due to noise exposure or aging) affects behavioral discrimination of the rapid temporal fluctuations of sounds. In contrast to previous suggestions in the literature, their results do not support this hypothesis; young animals treated with a compound that reduces the number of synapses did not show impaired discrimination compared to controls. Additionally, their results from older animals showing impaired discrimination suggest that age-related changes aside from synaptopathy are responsible for the age-related decline in discrimination.

      We agree with the reviewer’s summary.

      Strengths:

      (1) The rationale and hypothesis are well-motivated and clearly presented.

      (2) The study was well conducted with strong methodology for the most part, and good experimental control. The combination of physiological and behavioral techniques is powerful and informative. Reducing synapse counts fairly directly using ouabain is a cleaner design than using noise exposure or age (as in other studies), since these latter modifiers have additional effects on auditory function.

      (3) The study may have a considerable impact on the field. The findings could have important implications for our understanding of cochlear synaptopathy, one of the most highly researched and potentially impactful developments in hearing science in the past fifteen years.

      Weaknesses:

      (1) My main concern is that the stimuli may not have been appropriate for assessing neural temporal coding behaviorally. Human studies using the same task employed a filter center frequency that was (at least) 11 times the fundamental frequency (Marmel et al., 2015; Moore and Sek, 2009). Moore and Sek wrote: "the default (recommended) value of the centre frequency is 11F0." Here, the center frequency was only 4 or 8 times the fundamental frequency (4F0 or 8F0). Hence, relative to harmonic frequency, the harmonic spacing was considerably greater in the present study. By my calculations, the masking noise used in the present study was also considerably lower in level relative to the harmonic complex than that used in the human studies. These factors may have allowed the animals to perform the task using cues based on the pattern of activity across the neural array (excitation pattern cues), rather than cues related to temporal neural coding. The authors show that mean neural driven rate did not change with frequency shift, but I don't understand the relevance of this. It is the change in response of individual fibers with characteristic frequencies near the lowest audible harmonic that is important here.

      The auditory filter bandwidth of the gerbil is about double that of human subjects. Because of this, the masking noise has a larger overall level than in the human studies in the filter. This precludes that the gerbils can use excitation patterns, especially in the condition with a center frequency of 1600 Hz and a fundamental of 200 Hz and in the condition with a center frequency of 3200 Hz and a fundamental of 400 Hz.

      The case against excitation pattern cues needs to be better made in the Discussion. It could be that gerbil frequency selectivity is broad enough for this not to be an issue, but more detail needs to be provided to make this argument. The authors should consider what is the lowest audible harmonic in each case for their stimuli, given the level of each harmonic and the level of the pink noise. Even for the 8F0 center frequency, the lowest audible harmonic may be as low as the 4th (possibly even the 3rd). In human, harmonics are thought to be resolvable by the cochlea up to at least the 8th.

      Because of the gerbil’s broader auditory filters, with the exception of the condition with center frequency of 1600 Hz and fundamental of 400 Hz harmonics are are not resolved. We will expand the topic of potential excitation pattern cues in the discussion of the revised version and add results on modeled excitation patterns to the supplement.

      (2) The synapse reductions in the high ouabain and old groups were relatively small (mean of 19 synapses per hair cell compared to 23 in the young untreated group). In contrast, in some mouse models of the effects of noise exposure or age, a 50% reduction in synapses is observed, and in the human temporal bone study of Wu et al. (2021, https://doi.org/10.1523/JNEUROSCI.3238-20.2021) the age-related reduction in auditory nerve fibres was ~50% or greater for the highest age group across cochlear location. It could be simply that the synapse loss in the present study was too small to produce significant behavioral effects. Hence, although the authors provide evidence that in the gerbil model the age-related behavioral effects are not due to synaptopathy, this may not translate to other species (including human). This should be discussed in the manuscript.

      Our provisional response below will be integrated in similar form into the Discussion.

      The observed extent of age-related or noise-induced loss of type-I afferent synapses on IHC varies widely between species and studies. For example, in ageing CBA/CaJ mice, mean losses of between 20 and 50% of afferent synapses (depending on cochlear location and precise age) were reported (Sergeyenko et al., 2013, DOI: 10.1523/JNEUROSCI.1783-13.2013; Kobrina et al., 2020, DOI: 10.1016/j.neurobiolaging.2020.08.012). Humans showed more pronounced losses of peripheral axons, of 40–100%, again depending on cochlear location, precise age, and noise history (Wu et al., 2019, DOI: 10.1016/j.neuroscience.2018.07.053; 2021, DOI: 10.1523/JNEUROSCI.3238-20.2021). The age-related and induced synapse losses in our gerbils were in a more moderate range, around 20% (Steenken et al., 2021, DOI: 10.1016/j.neurobiolaging.2021.08.019; this study). Thus, it is possible that a more severe, induced synaptopathy would have resulted in behavioral deficits in young-adult gerbils. However, in the absence of additional noise or pharmacologically induced damage, our study provides strong evidence for other factors causing temporal processing problems with advancing age. Our 3-year-old gerbils are approximately comparable to a 60-year-old human (Castano-Gonzalez et al., 2024, DOI: 10.1016/j.heares.2024.108989) with beginning but not yet clinically relevant hearing loss (Hamann et al., 2002, DOI: 10.1016/S0378-5955(02)00454-9).

      It would be informative to provide synapse counts separately for the animals who were tested behaviorally, to confirm that the pattern of loss across the group was the same as for the larger sample.

      Yes, the pattern was the same for the subgroup of behaviorally tested animals. We will add this information to the revised version of the manuscript.

      (3) The study was not pre-registered, and there was no a priori power calculation, so there is less confidence in replicability than could have been the case. Only three old animals were used in the behavioral study, which raises concerns about the reliability of comparisons involving this group.

      The results for the three old subjects differed significantly from those of young subjects and young ouabain-treated subjects. This indicates a sufficient statistical power, since otherwise no significant differences would be observed.

      Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age. In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups.

      However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      We agree with the reviewer’s summary.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in Figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      As the reviewer points out, our sample from the group treated with a high concentration of ouabain showed very few low-spontaneous-rate auditory-nerve fibers, as expected from previous work. However, this was also true, e.g., for our sample from sham-operated animals, and may thus well reflect a sampling bias. We are therefore reluctant to attach much significance to these data distributions. We will consider moving some supplementary information back into the main manuscript when revising.

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      Unfortunately, we did not obtain behavioral thresholds that could be used here. The ABR thresholds, although not directly comparable to behavioral thresholds, suggest that our old animals had at most a moderate threshold increase in quiet. Furthermore, we want to point out that the TFS 1 stimuli had an overall level of 68 dB SPL, and the pink noise masker would have increased the threshold more than expected from the moderate, age-related hearing loss in quiet. Thus, the masked thresholds for all gerbil groups are likely similar and should have no effect on the behavioral results.

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      Even in the group of gerbils with the lowest sensitivity, for the condition 400/1600 the animals achieved a d’ of on average above 1. Furthermore, stimuli were well above threshold and audible, even when no discrimination could be observed. Finally, as explained in the methods, different stimulus conditions were interleaved in each session, providing stimuli that were easy to discriminate together with those being difficult to discriminate. This approach ensures that the gerbils were under stimulus control, meaning properly trained to perform the task. Thus, an inability to discriminate does not indicate a lack of proper training.

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      A similar point is made by Reviewer #1. As indicated above, we do have limited data on neural bandwidths and will explore if these are sufficient to address the reviewers’ questions about potential, age-related changes in neural tuning in our sample. Previous work found no substantial OHC losses (Tarnowski et al., 1991, DOI: 10.1016/0378-5955(91)90142-V; Adams and Schulte, 1997, DOI: 10.1016/S0378-5955(96)00184-0; Steenken et al., 2024, DOI: 10.3389/fnsyn.2024.1422330) nor any deterioration in neural frequency tuning (Heeringa et al., 2020, DOI: 10.1523/JNEUROSCI.2784-18.2019), in quiet-aged gerbils of similar age as the ones used here.

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

      This is an interesting suggestion that we will explore in the revision of the manuscript. Reaction times were recorded for responses that can be used as a proxy for listening effort.

    1. eLife Assessment

      This valuable study shows that a very slow (infraslow) oscillation occurs in voltage recordings from the dentate gyrus of the adult mouse. The authors suggest that it is related to sleep stage and serotonin acting at one type of serotonin receptor in the dentate gyrus. The ideas are potentially significant because they suggest that this oscillation affects memory through serotonin receptors in the dentate gyrus. Solid evidence is provided to broadly support the main claims, although analytical weaknesses remain that could be improved by clarification of methods, analyses, and data shown in the figures.

    2. Reviewer #1 (Public review):

      Turi, Teng and the team used state-of-the-art techniques to provide convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory. First, they showed that the glutamatergic DG cells become activated following an infraslow rhythm during NREM sleep. In addition, the infraslow oscillation in the DG is correlated with rhythmic serotonin release during sleep. Finally, they found that specific knockdown of 5-HT receptors in the DG impairs the infraslow rhythm and memory, suggesting that serotonergic signaling is crucial for regulating DG activity during sleep. Given that the functional role of infraslow rhythm still remains to be studied, their findings deepen our understanding on the role of DG cells and serotonergic signaling in regulating infraslow rhythm, sleep microarchitecture and memory.

    3. Reviewer #2 (Public review):

      Summary:

      The authors investigated DG neuronal activity at the population and single cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep. The important findings are 1) the antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and 2) the GC Htr1a-mediated GC infraslow oscillation.

      Strengths:

      (1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.<br /> (2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.

      Weaknesses:

      (1) The current data set and analysis are insufficient to interpret the observation correctly.<br /> a. In Fig 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.<br /> b. In Fig 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Fig 1E. If MAs were clustered, please describe this properly.<br /> c. In Fig 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.<br /> d. In Fig 1C, please provide line plots connecting the same session. This request applies to all related figures.<br /> e. In Fig 2C, the significant increase during REM and the same level during NREM are not convincing. In Fig 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Fig 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.<br /> f. Fig 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.<br /> g. In Fig 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.

      (2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Fig. 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.

      (3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Fig. 4), which reduces the reliability of this study.

      Comments on revisions:

      In the first revision, I pointed out the inappropriate analysis of the EEG/EMG/photometry data and gave examples. The authors responded only to the points raised and did not seem to see the need to improve the overall analysis and description. In this second revision, I would like to ask the authors to improve them. The biggest problem is that the detection criteria and the quantification of the specific event are not described at all in Methods and it is extremely difficult to follow the statement. All interpretations are made by the inappropriate data analysis; therefore, I have to say that the statement is not supported by the data.

      Please read my following concerns carefully and improve them.

      (1) The definition of the event is critical to the detection of the event and the subsequent analysis. In particular, the authors explicitly describe the definition of MA (microarousal), the trough and peak of the population level of intracellular Ca concentrations, or the onset of the decline and surge of Ca levels.

      (1-1) The authors categorized wake bouts of <15 seconds with high EMG activity as MA (in Methods). What degree of high EMG is relevant to MA and what is the lower limit of high EMG? In Fig 1E, there are some EMG spikes, but it was unclear which spike/wave (amplitude/duration) was detected as MA-relevant spike and which spike was not detected. In Fig 2E, the 3rd MA coincides with the EMG spike, but other EMG spikes have comparable amplitude to the 3rd MA-relevant EMG spike. Correct counting of MA events is critical in Fig 1F, 2F, 4C.

      (1-2) Please describe the definition of Ca trough in your experiments. In Fig 1G, the averaged trough time is clear (~2.5 s), so I can acknowledge that MA is followed by Ca trough. However, the authors state on page 4 that "30% of the calcium troughs during NREM sleep were followed by an MA epoch". This discrepancy should be corrected.

      (1-3) Relating comment 1-2, I agree that the latency is between MA and Ca through in page 4, as the authors explain in the methods, but, in Fig 1G, t (latency) is labeled at incorrect position. Please correct this.

      (1-4) The authors may want to determine the onset of the decline in population Ca activity and the latency between onset and trough (Fig 1G, latency t). If so, please describe how the onset of the decline is determined. In Fig 1G, 2G, S6, I can find the horizontal dashed line and infer that the intersection of the horizontal line and the Ca curve is considered the onset. However, I have to say that the placement of this horizontal line is super arbitrary. The results (t and Drop) are highly dependent on the position of horizontal line, so the authors need to describe how to set the horizontal line.

      (1-5) In order to follow Fig 1F correctly, the authors need to indicate the detection criteria of "Ca dip (in legend)". Please indicate "each Ca dip" in Fig 1E. As a reader, I would like to agree with the Ca dip detection of this Ca curve based on the criteria. Please also indicate "each Ca dip" in Fig 2E and 2F. In the case of the 2nd and 3rd MAs, do they follow a single Ca dip or does each MA follow each Ca dip? This chart is highly dependent on the detection criteria of Ca dip.

      As I mentioned above, most of the quantifications are not based on the clear detection criteria. The authors need to re-analyze the data and fix the quantification. Please interpret data and discuss the cellular mechanism of ISO based on the re-analyzed quantification.

    4. Reviewer #3 (Public review):

      Summary:

      The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.

      Strengths:

      There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.

      The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro arousals, and sensory sensitivity.

      Weaknesses:

      - The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine, but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:<br /> o The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.", but the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.<br /> o Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.

      - The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Fig. 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).

      - Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.

      - While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (fig. 6), how is cortical EEG affected? is ISO still seen in EEG but attenuated in DG?

      - The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B, C? it is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Fig 1 or G as well as broader sleep architecture are not affected.

      - On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA correlated activity. I would like to see the equivalent of Fig 1,2 G panels with the 5-HT1a manipulation.

    1. eLife Assessment

      This important study introduces a new cortical circuit model for predictive processing. Simulations effectively illustrate that, with appropriate synaptic plasticity, a canonical layer 2/3 cortical circuit - comprising two classes of interneurons providing subtractive and divisive inhibition - can generate uncertainty-modulated prediction errors by pyramidal neurons. The model is compelling; although it relies on many assumptions and has not yet been compared directly to data, the model does align with empirical observations and yields a range of testable predictions. The study is expected to be of great interest to those involved in cortical and predictive processing research.

    2. Reviewer #2 (Public review):

      Summary:

      This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors in an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors' theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:

      The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing. The authors have taken into account earlier review comments to revise their paper in ways that enhance its clarity.

      Weaknesses:

      One weakness could be that the proposed theory does rely on a fairly large number of assumptions. However, there is at least some biological support for these. Importantly, the authors do lay out and discuss their key assumptions in the Discussion section, so readers can assess their validity and implications for themselves.

      Comments on revisions:

      I have no further suggestions for the authors.

    3. Reviewer #4 (Public review):

      Summary:

      Wilmes and colleagues develop a model for the computation of uncertainty modulated prediction errors based on an experimentally inspired cortical circuit model for predictive processing. Predictive processing is a promising theory of cortical function. An essential aspect of the model is the idea of precision weighting of prediction errors. There is ample experimental evidence for prediction error responses in cortex. However, a central prediction of the theory is that these prediction error responses are regulated by the uncertainty of the input. Testing this idea experimentally has been difficult due to a lack of concrete models. This work provides one such model and makes experimentally testable predictions.

      Strengths:

      The model proposed is novel and well-implemented. It has sufficient biological accuracy to make useful and testable predictions.

      Weaknesses:

      One key idea the model hinges on is that stimulus uncertainty is encoded in the firing rate of parvalbumin positive interneurons. While this assumption is rather speculative, the model also here makes experimentally testable predictions.

      Comments on revisions:

      Congratulations on a very nice paper.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      Summary:

      This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors in an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors’ theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:

      The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing. The authors have taken into account earlier review comments to revise their paper in ways that enhance its clarity.

      Weaknesses:

      One weakness could be that the proposed theory does rely on a fairly large number of assumptions. However, there is at least some biological support for these. Importantly, the authors do lay out and discuss their key assumptions in the Discussion section, so readers can assess their validity and implications for themselves.

      Thank you very much, we are very satisfied with this public review.

      Reviewer #4 (Public Review):

      Summary:

      Wilmes and colleagues develop a model for the computation of uncertainty modulated prediction errors based on an experimentally inspired cortical circuit model for predictive processing. Predictive processing is a promising theory of cortical function. An essential aspect of the model is the idea of precision weighting of prediction errors. There is ample experimental evidence for prediction error responses in cortex. However, a central prediction of the theory is that these prediction error responses are regulated by the uncertainty of the input. Testing this idea experimentally has been difficult due to a lack of concrete models. This work provides one such model and makes experimentally testable predictions.

      Strengths:

      The model proposed is novel and well-implemented. It has sufficient biological accuracy to make useful and testable predictions.

      Weaknesses:

      One key idea the model hinges on is that stimulus uncertainty is encoded in the firing rate of parvalbumin positive interneurons. This assumption, however, is rather speculative and there is no direct evidence for this.

      Thank you very much for this nice description. With regard to the weakness: it is true that the key idea hinges on uncertainty being encoded in the firing of inhibitory neurons. If it turns out that these inhibitory neurons are not PV neurons, however, the theory does not break down. The suggestion of PV neurons is fueled by the observation that PV neurons implement shunting and hence divisive inhibition and by the connectivity of PVs in the circuit. We discuss this in the discussion section: "To provide experimental predictions that are immediately testable, we suggested specific roles for SSTs and PVs, as they can subtractively and divisively modulate pyramidal cell activity, respectively. In principle, our theory more generally posits that any subtractive or divisive inhibition could implement the suggested computations. With the emerging data on inhibitory cell types, subtypes of SSTs and PVs or other cell types may turn out to play the proposed role."

      Recommendations for the authors:

      Reviewer #4 (Recommendations For The Authors):

      (1) Line numbers would simplify reviewing.

      We will add line numbers to our next submission.

      (2) The existence of positive and negative PE was already suggested by Rao & Ballard.

      We added the citation to the sentence "Because baseline firing rates are low in layer 2/3 pyramidal cells () positive and negative prediction errors were suggested to be represented by distinct neuronal populations [44,66],[...]" in the section "Computation of UPEs in cortical microcircuits".

      (3) wekk should probably read well.

      Indeed, thank you. We fixed it.

      (4) Figure 4. legends A-C are mixed up. What are the two values of ¦s-u¦ in F and I - the same as in D and F.

      Thank you, we fixed this.

      (5) "representation neurons, the activity of which reflects the internal model". For consistency with the original definitions this should read "the activity of which reflects the internal representation". The internal "model" is the synaptic weights (or transformation between areas) - the activity of representation neurons (as the name implies) is the internal "representation".

      Thank you, we changed it.

      (6) "Mice trained in a predictable environment [...] [4]." This should read "reared" in an unpredictable environment, etc. Relatedly, the problem with this argument is that, the referenced paper argues that the mice never learned to predict and the reduced PE responses are a consequence of a reduction in prediction strength (these mice never - in life - had experience of visuomotor coupling). Better evidence might be the acute changes observed in normal mice (see e.g. Figure 3B in https://pubmed.ncbi.nlm.nih.gov/22681686/ However, another finding from the paper referenced is that in mice reared without visuomotor coupling, MM responses of SST interneurons are unchanged, while those in PV interneurons are completely absent. Would the authors model come to similar results if trained in an environment with (very) high uncertainty and then tested in a low uncertainty environment?

      Thank you for pointing us to Figure 3B of Keller et al. 2012. We are now citing this result as it is indeed better evidence.

      Thank you very much for your illuminating question and for pointing out that a mouse that never experienced a predictable visual flow may not have formed a model of the visual flow, and hence may not have any prediction about its visual experience. We haven’t considered this scenario in our paper before. So far, we only considered scenarios, in which it is possible to learn a prediction, i.e. to infer the mean from the sensory input. We now consider this other scenario in which the mouse that was reared in an unpredictable environment did not form a prediction and compare SST (1) and PV (2) activity in this mouse to one that learned to form a prediction, and added it to the section "Predictions for different cell types":

      "Second, prediction error activity seems to decrease in less predictable, and hence more uncertain, contexts: in mice reared in a predictable environment [where locomotion and visual flow match, 42], error neuron responses to mismatches in locomotion and visual flow decreased with each day of experiencing these unpredictable mismatches. Third, the responses of SSTs and PVs to mismatches between locomotion and visual flow [4] are in line with our model (note that in this experiment the mismatches are negative prediction errors as visual flow was halted despite ongoing locomotion): In this study, SST responses decreased during mismatch, i.e. when the visual flow was halted, and there was no difference between mice reared in a predictable or unpredictable environment. In line with these observations, the authors concluded that SST responses reflected the actual visual input. In our model negative PE circuit, SSTs also reflect the actual stimulus input, which in our case was a whisker stimulus (SST rates in Fig. 6C and I reflect the stimuli (black and grey bar) in A and G, respectively) and SST rates are the same for high and low uncertainty (corresponding to mice reared in a predictable or unpredictable environment). In the same study, PV responses were absent towards mismatches in animals reared in an unpredictable environment [4]. The authors argued that mice reared in an unpredictable environment did not learn to form a prediction. In our model, the missing prediction corresponds to missing predictive input from the auditory domain (e.g. due to undeveloped synapses from the predictive auditory input). If we removed the predictive input in our model, PVs in the negative PE circuit would also be silent as they would not receive any of the excitatory predictive inputs."

      (7) "Our model further posits the existence of two distinct subtypes of SSTs in positive and negative error circuits." There is some evidence for this: Figure 5a in https://pubmed.ncbi.nlm.nih.gov/36747710/

      Thank you, we added this citation to the corresponding section.

    1. eLife Assessment

      This valuable study reports the induction of supernumerary inner hair cells in the mouse cochlea upon reducing the expression level of a tight-junction protein (claudin-9) at developmental stages. Although these ectopic hair cells are functional and persists through adulthood, the evidence supporting some of the claims is incomplete, particularly regarding the underlying mechanisms of cell differentiation and the potential of the approach for hair-cell regeneration. The work will be of interest to scientists working in the development and regeneration of hair cells in the inner ear.

    2. Reviewer #1 (Public review):

      The focus of this manuscript was to investigate the role of Cldn9 in the development of the mammalian cochlea. The main rationale of the study is the fact that cochlear hair cells do not regenerate, so when damaged they are lost forever, causing irreparable hearing loss. The authors have attempted to address this problem by inducing the ectopic production of additional hair cells and test whether they acquire the morphological and functional characteristics of native hair cells. They show that downregulation of Cldn9 using a well-established genetic manipulation of transgenic mice led to the production of extra numerary inner hair cells, which were able to survive for several months. By performing a large battery of experiments, the authors were able to determine that the native and ectopic inner hair cells have comparable morphological and physiological characteristics. There are several conclusions highlighted by the authors in different parts of the manuscript, including the key role of Cldn9 in coordinating embryonic and postnatal development, the differentiation of supporting cells into inner hair cells, and the possible use of Cldn9 to induce inner hair cell differentiation following deafness induced by hair cell loss.

      Comments on revised version:

      The authors have addressed the following points raised during the first submission: statistical analysis and wave 1 analysis. However, very little was done to address the other key aspects of my report, which are essential for the interpretation of the results. As mentioned in my previous report, some aspects of the work are not justified by the current data and will require either a tone-down of the claims or further experiments.

      For example, one puzzling finding that is not addressed in the manuscript is the lack of functional benefit from these additional inner hair cells. In fact, it appears to be detrimental based on the increased ABR thresholds and EP. So, it is not clear to this reviewer the advantage of this approach.

      It is not clear what direct evidence there is, apart from some immunostaining, indicating that the ectopic inner hair cells derive from the supporting cells. This part would benefit from a more careful consideration and maybe an attempt at a more direct experimental approach. Alternatively, the text should be modified accordingly.

      One point that should be made clear throughout the manuscript is that the ectopic inner hair cells are generated in a cochlea that is undergoing normal maturation. Thus, there is no guarantee that modulating the expression levels of Cldn9 in a deaf mouse lacking hair cells would produce the same result as that shown in this study. This point should be at least discussed.

    3. Reviewer #3 (Public review):

      The study by Chen et al reports an interesting and previously unknown phenomenon of generation of supernumerary inner hair cells (IHCs) in response to downregulation of Cldn9 during embryonic or postnatal development. The authors developed an inducible doxycycline (dox)-tet-OFF-Cldn9 transgenic mice to regulate expression levels of Cldn9 and show that downregulation of Cldn9 resulted in additional, although incomplete row of IHCs immediately adjacent to the original IHC row. These induced extra IHCs had similar well-developed hair bundles, able to mechanotransduce and were innervated by auditory neurons, resembling wild-type IHCs. In addition, the authors knock down Cldn9 postnatally using shRNA injections in P1-7 mice with similar induction of extranumerary IHCs next to the original row of IHCs. The conclusions of this paper are mostly well supported by the data. However, some data analyses are limited, and some important controls are not shown.<br /> The data from this study are important and promising for future gene therapy applications. The generation of extra IHCs postnatally using downregulation of Cldn9 by shRNA could potentially be used as a replacement of IHCs lost after noise-induced trauma, ototoxic agents, or other environmental trauma. However, it is not clear if downregulation of CLDN9 in adult mice would lead to extranumerary IHCs. On the other hand, the replacement of lost inner hair cells due to various genetic mutations by inducing supernumerary mutant IHCs with the same abnormalities would not be reasonable.

      The authors show that postnatally generated ectopic IHCs are viable and mechanotransducive, but the hearing function of the mice with ectopic hair cells is not improved. However, the ectopic hair cells seems to be generated from supporting cell trans-differentiation, and the intricate mosaic of the organ of Corti is altered (the extra row of IHCs seems to be positioned immediately adjacent to the original IHC row), which could by itself lead to hearing issues. It is not clear if the newly formed unusual junctions between the ectopic and original IHCs are sufficiently tight to prevent leakage of the endolymph to the basolateral surface of IHCs. Also, it is not clear if the other organ of Corti tight junctions could lose their tightness due to the downregulation of Cldn9, which could over time affect the endocochlear potential and hearing abilities as shown by this study.

      Overall, the manuscript could be of interest to scientists working in the inner ear development and regeneration field, and to the hearing researchers in general and perhaps developmental biologists and cell biologists interested in tight junction proteins and their function.

      Strength

      The methodologies used are solid and convincing. There is a great potential for practical use of these valuable findings and new knowledge on IHC developmental regulation by Cldn9 expression.

      Weakness

      Some of the data in this study would benefit from showing corresponding negative controls and higher-resolution images of CLDN9 localization, which the authors chose not to show in the revised manuscript. Importantly, CLDN9 immunofluorescence staining data look different from previously published observations and show cytoplasmic staining of supporting cells only and did not show the staining of tight junctions between the OHCs and supporting cells as well as between the IHCs and supporting cells as reported previously (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). The organ of Corti schematics showing CLDN9 expression reflects the authors' immunostaining data but is unusual considering that CLDN9 localizes to the tight junctions of the reticular lamina as was shown by immuno-EM in this study and described in previous publications (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). However, the authors did not provide an explanation for these discrepancies in the Discussion of the manuscript.

      Also, more detailed investigations would in some instances clarify the data. For example, it is not clear if the downregulation of Cldn9 affects the other genes known to participate in cell fate determination, and why downregulation of Cldn9 expression resulted in production of extranumerary inner hair cells only and not the other cell types, like OHCs, for example.

    4. Reviewer #4 (Public review):

      The work by Yingying Chen, Jeong Han Lee, and co-authors summarizes the morphological and functional outcomes of Cldn9 loss in the inner ear, particularly in the organ of Corti. While the study does not provide mechanistic insights into how the developmental loss of Cldn9 leads to ectopic hair cell formation, the phenomenon itself is curious. The work primarily focuses on a detailed characterization of the ectopic hair cells, which is well done. Despite the lack of mechanistic insights, the study will be of interest to the inner ear field if several major issues with the manuscript are addressed.

      (1) The title, "Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells," is misleading. First, both manipulations (knockout and knockdown) are genetic, and no pharmacology is involved. Second, both manipulations are carried out during the embryonic and neonatal periods, and there is no evidence of mature hair cell regeneration in this study. The title should be revised to reflect this. A more accurate title could be: "Developmental loss of Cldn9 results in functional ectopic inner hair cells that persist through adulthood."<br /> (2) Contact-mediated lateral inhibition in hair cell fate determination is one of the most well-studied phenomena in the inner ear field, and numerous groups have shown that it is mediated by Notch signaling. This must be added to the introduction.<br /> (3) A large body of literature has demonstrated that Notch inhibition alone is not sufficient to regenerate hair cells in adult mice. Therefore, if the loss of claudins disrupts Notch signaling-the proposed mechanisms in the discussion - it is unlikely to be a viable therapeutic strategy for hair cell regeneration in the adult ear. Furthermore, no hair cell ablation experiments were conducted to demonstrate what could be considered true regeneration. These speculative statements should be removed or revised accordingly.<br /> (4) Cldn9 is a tight junction protein and should localize to the membrane. Yet, the data presented show what appears to be diffuse cytoplasmic staining, which is concerning.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The focus of this manuscript was to investigate the role of Cldn9 in the development of the mammalian cochlea. The main rationale of the study is the fact that cochlear hair cells do not regenerate, so when damaged they are lost forever, causing irreparable hearing loss. The authors have attempted to address this problem by inducing the ectopic production of additional hair cells and testing whether they acquire the morphological and functional characteristics of native hair cells. They show that downregulation of Cldn9 using a well-established genetic manipulation of transgenic mice led to the production of extra numerary inner hair cells, which were able to survive for several months. By performing a large battery of experiments, the authors were able to determine that the native and ectopic inner hair cells have comparable morphological and physiological characteristics. There are several conclusions highlighted by the authors in different parts of the manuscript, including the key role of Cldn9 in coordinating embryonic and postnatal development, the differentiation of supporting cells into inner hair cells, and the possible use of Cldn9 to induce inner hair cell differentiation following deafness induced by hair cell loss.

      Strengths:

      Several of the conclusions in this study are well supported by the experimental work.

      Weaknesses:

      Some aspects of the data and its interpretation needs better explanation and requires further investigation.

      (1) The Results section is the most difficult part to read and understand. It contains a very limited, and in some places confusing and repetitive, description of the data. Statistical analysis is missing for some of the key data (e.g., ABRs), and in some places the text contradicts the data presented in the figures (e.g., Figure 8). I am sure carefully revising the text would clarify some of these issues.

      We thank the reviewer for the suggestion. We revised parts of the results section and added the statistical analysis to the ABRs and DPOAE (lines 151-159; Page 29, lines 846-880). 

      (2) One puzzling finding that is not addressed in the manuscript is the lack of functional benefit from these additional inner hair cells. In fact, it appears to be detrimental based on the increased ABR thresholds. Maybe it would be useful to analyze the wave 1 characteristics.

      We thank the reviewer for the suggestion. We added the wave 1 characteristics as S8.

      (3) It is not clear what direct evidence there is, apart from some immunostaining, indicating that the ectopic inner hair cells derive from the supporting cells. This part would benefit from a more careful consideration and maybe an attempt at a more direct experimental approach.

      We thank the reviewer for the suggestion. We intend to investigate the origin of the ectopic inner hair cells using (for example, a qRT-PCR, sm FISH, etc.) in our future study.

      (4) One point that should be made clear throughout the manuscript is that the ectopic inner hair cells are generated in a cochlea that is undergoing normal maturation. Thus, there is no guarantee that modulating the expression levels of Cldn9 in a deaf mouse lacking hair cells would produce the same result as that shown in this study. My guess is that it probably won't, but I am sure this could be tested (maybe in the future) using the excellent experimental approach applied in this study.

      That is a great point. We will explore it in our future experiments.

      Reviewer #2 (Public Review):

      Summary:

      The generation of functional extranumerary inner hair cells (IHCs) in postnatal mice, particularly with virus-mediated knockdown of Cldn9 mRNA expression in the neonatal cochlear duct, is an important observation. It is significant because not many studies exist that report molecular manipulations of the neonatal organ of Corti that result in the generation of new hair cells that remain functional and appear to be intact for an extended time, here more than one year. Overall, this is a carefully conducted study; the observations are clear, and the methods are solid. Two independent methods for reducing the expression of Cldn9 mRNA were used: a conditional transgenic model and AAV-mediated knockdown with shRNA. The lack of a functional explanation of how the reduced expression of Cldn9 specifically leads to the formation of extranumerary IHCs leaves open questions. For example, it is not clear whether there is indeed a fate change happening and whether Cldn9 reduction affects developmental processes. The discussion of how Cldn9 reduction potentially affects Notch signaling, without hard evidence, is handwaving.

      Strengths:

      It is a very interesting observation and somewhat unexpected in its specificity for inner hair cells. Using two different approaches to manipulate Cldn9 expression provides a strong experimental foundation. The study is conducted quantitatively and with care.

      Weaknesses:

      The lack of mechanistic insight results in an open-ended story where at least the potential interaction of Cldn9 reduction with known and well-characterized signaling pathway components should have been investigated. This missed opportunity limits the scope of the study and should be addressed: How does Cldn9 downregulation affect the expression levels of other known genes linked to hair cell production and cell fate decisions? Quantitative RT-PCR works well for the authors, and comparing the expression of Notch or other known pathway components could provide mechanistic insight.

      We thank the reviewer for the suggestion. We did quantitative RT-PCR to compare the expression of Notch or other known pathway components in our future work. Besides, we used smFISH with ccnd1 probe and cdkn1b probe to detect cyclin D1 and cyclin-dependent kinase inhibitor 1B (p27) separately in the mouse cochlea. GAPDH was selected as a reference gene. The quantification results showed no significant difference between Cldn9<sup>+/T</sup> mice and Cldn9<sup>+/+</sup> mice at P2, P7, and P14.

      It is unclear how P21 inner hair cells were identified for the patch-clamp experiments shown in Fig 4E-H. This is a challenging endeavor without the possibility of using specific markers.

      We did not have a specific marker for IHCs. However, one with experience in hair bundle morphology and knowledge of their location in the epithelia can identify IHCs from the upright microscope.

      Please also address the numerous minor points outlined below; it will improve the paper's readability.

      Thanks. Please find the point-to-point answers below.

      Please include page numbers and line numbers in a revised manuscript.

      We include page numbers and line numbers in a revised manuscript.

      Reviewer #3 (Public Review):

      This important study by Chen et al help in advancing our knowledge about the regulation of inner hair cell (IHC) development and revealed the role of Cldn9 in IHC embryonic and postnatal induction by transdifferentiation from the supporting cells. The authors developed an inducible doxycycline (dox)-tet-OFF-Cldn9 transgenic mice to regulate expression levels of Cldn9 and show that downregulation of Cldn9 resulted in additional, although incomplete row of IHCs immediately adjacent to the original IHC row. These induced extra IHCs had similar well developed hair bundles, able to mechanotransduce and were innervated by auditory neurons resembling wild-type IHCs. In addition, the authors knock down Cldn9 postnatally using shRNA injections in P1-7 mice with similar induction of extranumerary IHC next to the original row of IHCs. The conclusions of this paper are mostly well supported by the data, but some data analysis needed to be clarified and some crucial controls should be provided to improve the confidence in the presented results. There is a great potential for practical use of these valuable findings and new knowledge on IHC developmental regulation to design Cldn9 gene therapy in the future.

      The described by Chen et al mechanisms of extra hair cell generation by suppression of the tight junction protein Cldn9 expression level are very interesting and previously unknown. In particular, the generation of extra IHCs postnatally using downregulation of Cldn9 by shRNA could potentially be very useful as a replacement of HCs lost after noise-induced trauma, ototoxic agents, or other environmental trauma. On the other hand, the replacement of lost hair cells due to various genetic mutations by inducing a supernumerary IHCs with the same abnormalities would not be reasonable.

      The authors show that postnatally generated ectopic IHCs are viable and mechanotransducive, but it would be nice to show the maturation steps of ectopic IHC during this postnatal period. For example, stereocilia bundles of the ectopic hair cells should mature later than the original IHCs. A few days after viral delivery of shRNA, you should be able to observe immature IHC bundles that unequivocally will define newly generated IHCs. Unfortunately, the authors show only examples of already mature ectopic IHCs at P21 and in 5-6 weeks old mice and at relatively low resolution. Also, during maturation, IHCs usually have transient axo-somatic synapses that are not present in mature IHCs. It would be great to see if, in 5-6 weeks old mouse, the ectopic IHCs still have axo-somatic synapses or not, and if the majority of the ectopic IHCs have innervation. Some of the data in this study would benefit from showing corresponding controls and some - from higher resolution imaging.

      We appreciate the reviewer's suggestion. The objective of the paper is to report the phenomenon and present the coarse features of the Cldn9-mediated induced ectopic hair cells. The systematic details are for future studies, which are ongoing and out of the current scope.

      In the mammalian cochlea, each HC is separated from the next by intervening supporting cells, forming an invariant and alternating mosaic along the cochlea's length. Cochlear supporting cells in some conditions can divide and trans-differentiate into HCs, serving as a potential resource for HC differentiation, using transcription and other developmental signaling factors.

      However, when ectopic hair cells are generated from supporting cell trans-differentiation, the intricate mosaic of the organ of Corti is altered, which could by itself lead to hearing issues. In case of downregulation of Cldn9, the extra row of IHCs seems to be positioned immediately adjacent to the original IHC row. It is not clear if the newly formed unusual junctions between the ectopic and original IHCs are sufficiently tight to prevent leakage of the endolymph to the basolateral surface of IHCs. Also, it is not clear if the other organ of Corti tight junctions could lose their tightness due to the downregulation of Cldn9, which could over time affect the endocochlear potential as shown by this study and hearing abilities.

      There was a slightly increased ABR threshold (5 dB -15 dB) (Fig. 4A) and a decrease in the magnitude of the EP and the rise in the K<sup>+</sup> concentration in the endolymph and perilymph of Cldn9+/T mice compared to from age-matched littermates (S10) indicated there might be a compromised epithelium tight junction. The downregulation of Cldn9 affected the endocochlear potential and hearing abilities ((Fig. 4A, S10) after 2m, suggesting an age-dependent effect. The effective downregulation of Cldn9 would require proper titration of Cldn9 levels to induce extra hair cells with intact epithelial integrity; work may require additional studies.

      Importantly, CLDN9 immunofluorescence staining data that show cytoplasmic staining of supporting cells should be revisited and the organ of Corti schematics showing CLDN9 expression should be corrected, considering that CLDN9 localizes to the tight junctions of the reticular lamina as was shown by immunoEM in this study and described in previous publications (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). While the current version of the manuscript will interest scientists working in the inner ear development and regeneration field, it could be more valuable to hearing researchers outside this immediate field and perhaps developmental biologists and cell biologists after proper revision.

      We appreciate the reviewer's comments. We were concerned about the observation, but the results were consistent. Indeed, that was the motivation for performing the immunoEM (S3). A follow-up report may address it further.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Please address the points I made about the presentation (word choice, inconsistencies in labeling, etc). It ultimately helps a reader to understand and to follow your logic. This is an important observation.

      We corrected the inconsistencies in labeling and addressed the points you suggested.

      Making the extra effort to investigate a possible interaction between Cldn9 and Notch signaling would substantially increase the significance of the work.

      Thanks for the suggestions. We will explore it in our future work.

      Minor points:

      Some sentences would benefit from revision:

      - The abstract argues that hearing loss is incurable because mammalian hair cells are terminally differentiated (3rd sentence). This is not accurate.

      Mammalian HCs are terminally differentiated by birth, making HC loss challenging to replace.

      - The second sentence of the second paragraph of the introduction, "Cochlear SCs can divide and trans-differentiate into HCs, serving as a potential resource for HC differentiation, using transcription and developmental signaling factors (White et al., 2006)," should be referenced in the context of the animal's age. This feature of supporting cells is transient and only observed in neonatal mice. The following sentences in the same paragraph would also benefit from being placed into the same context when appropriate.

      We thank the reviewer for the suggestion. These sentences have been corrected.

      - Introduction: "But functional features of the newly developed HC are circumspect." The authors probably meant "circumspect," but is this the appropriate word? Also, please use the plural of HC = HCs.

      The sentence has been corrected to “but the functional features of the newly developed HCs are circumspect”.

      - Introduction: Isn't an essential function of tight junctions in the organ of Corti the separation of fluid-filled spaces? Perhaps additional functions of tight junction proteins are unclear, but at least this one function appears clear.

      We thank the reviewer for the suggestion. We added the “additional” before the “function” in this sentence.

      - Introduction: "using shRNA injection in postnatal (P) days (P1-7) mice." This is a rather vague statement that could be better defined. Perhaps mention that the injections targeted the round window and that an AAV-based method was used. Also, it is not clear from the methods whether the injection needle pierced the round window. Please clarify. Likewise, the methods state that these experiments were conducted in P1-P15 mice, but the main text says P1-P7. Later, in the results section and in the figure legend for Fig 7, the mice are between P1-P7 and P14; the figure itself is labeled with P1 and P14. However, data is presented (Fig 6) for injections at P2, P4, P7, and P14. In the text referring to Fig 6B in the results section, it is stated, "By contrast, the P14-21 inner ear transfected with Cldn9-shRNA produced no detectable increase..." Only data for P2, P4, P7, and P14 injections are presented. These are minor issues, but please check the inconsistencies because they make it difficult to follow.

      We corrected this sentence to “Analogous additional putative IHCs differentiation was observed when Cldn9-shRNA was injected through the round window to postnatal (P) days (P2-7, and P14) mice…”.  The label in Fig 7A has been changed to P2-7, and the text referring to Fig 6B in the result section has been changed to “the P14 inner ear transfected with Cldn9-shRNA produced no detectable increase...".

      - Last statement of the Introduction: "making Cldn9 a viable target for generating transformed IHCs." It is not clear what transformed IHCs are.

      We replaced the transformed with supernumerary.

      - To understand the Southern Blot analysis in Fig 1E, the location of BstAPI and BamHI restriction sites and the probe need to be illustrated in Fig 1D.

      The restriction sites BstAPI, (Bst), and BamHI (Bam) are indicated (Fig. 1D).

      - Please define the purple arrows and arrowheads in Fig 1D. What do the different colors for the backbone mean? I see red and green, but also orange and yellow in the floxed allele. In Fig 1F, is "Knock-in" synonymous with homozygote? Would it be clearer to use the nomenclature Cldn9(T/T), Cldn9(T/+), and Cldn9(+/+), which is used later in the text?

      We have made the changes as requested.

      - Results, first paragraph: "Results of RT-PCR..." This refers to quantitative RT-PCR; please add the word "quantitative."

      Thanks. We added “quantitative” to the sentence.

      - Results and Fig S1. Is the strong upregulation of Cldn9 mRNA (S1A) also reflected in stronger Cldn9 immunoreactivity?

      Yes, the strong upregulation of Cldn9 mRNA showed higher cldn9 immunoreactivity.

      - Results, Fig 1. Please add a schematic drawing showing all elements of the inducible gene expression cassette in the final transgenic allele, and please illustrate how the system works. This helps the reader to understand the strong Cldn9 mRNA upregulation in Cldn9(T/T) mice, where expression is likely driven by the CMV promoter and reciprocally, in the presence of doxycycline, the suppression of transcription by binding of the tTA-dox protein to the TRE elements of the modified CMV promoter. Is this a correct assumption?

      Yes, this is a correct assumption

      - Results, about Fig S3. Why is it important to investigate Cldn6 and ILDR1 levels in the context of Cldn9 downregulation? Also, that is meant with "no comparative differences in others?". If a potential compensatory effect is suspected, why are the authors not systematically characterizing the expression of other tight junction proteins with quantitative RT-PCR? The results shown in S3 are anecdotal, without proper quantification, and lack context.

      The goal is to examine the potential compensatory changes in other TJ proteins. It was not to examine all possible TJ proteins localized in the inner ear.

      Results, section headed with "Downregulation of..." First sentence. Fig. 2A-C à Fig. 2A-E.

      Thanks. We corrected the sentence “5-week-old mice Cldn9<sup>+/T</sup> cochleae displayed a notable row of ectopic HCs (Fig. 2A-C).” to “5-week-old mice Cldn9<sup>+/T</sup> cochleae displayed a notable row of ectopic HCs (Fig. 2A-E).”

      The same section: "were negatively labeled with anti-prestin antibody." Consider "were not labeled with antibody to prestin." Likewise, a few sentences below, please consider rephrasing "the ectopic HCs ... reacted positively to otoferlin antibodies". Also, "...expressed multiple CtBP2 labeling..." - this reads like an incomplete sentence.

      Thanks for the suggestions. We have corrected the three sentences mentioned.

      The phrase "putative ectopic" lacks clarity because "putative" could refer to "ectopic" (like an adverb). Consider swapping the two words and writing "ectopic putative IHCs" or simply "ectopic IHCs."

      Thanks for the suggestions. We replaced the “putative ectopic IHCs” with “ectopic IHCs” in all contexts.

      Please use more precise figure labels when referring to a specific figure panel. For example, "Additionally, the ectopic HCs show IHC bundle features (Fig. 2)," - Bundles are shown in Fig 2D and Fig 2E. Please check all instances where a full figure is mentioned, but the specific reference is to a panel of the figure. Another example, "... using quantitative RT-PCR (S7)..." would be more specific if Fig S7A is referred to.

      Thanks for the suggestions. We checked all instances and corrected the labels. Thanks!

      "IHC counts at different ages (P2-P21) and the cochlear frequency segments (4-32 kHz) demonstrate..."- the figure shows data for 8 kHz and 32 kHz; please revise: "segments (8 kHz and 32 kHz) demonstrate."

      This sentence has been revised based on your suggestion. Thanks!

      Please add a legend to Fig. 3C (like the one shown in Fig. 2F).

      Thanks for the reminder. The legend for Fig. 3C was modified.

      Fig 4A and Fig 4B. It is impossible to distinguish the open/closed circles and the many lines. Please consider a different format or an extended supplemental figure. Also, drawing a line connection between the 32 kHz and click data points in 4A is inappropriate.

      Instead of the open/closed circles, the dashed line means Cldn9<sup>+/+</sup> mice, and solid lines represent Cldn9<sup>+/T</sup> mice. We added the line labels. The line connecting between 32 kHz and click data points was removed.

      Fig 4, legend. Please define BHB and BHC levels.

      BHB and BHC are defined.

      The paragraph "Synaptic features of PE IHCs match original IHCs" is confusing because it states the following: "The synapses between the IHCs and auditory neurons at the apical, middle, and basal cochlear locations from 5-week-old Cldn9+/+ and Cldn9+/T mice show substantial differences." The meaning of the heading, therefore, does not match what is ultimately shown and discussed.

      We have changed the title to “Synaptic features of ectopic IHCs and original IHCs”.

      Moreover, no actual features of synapses are investigated; CtBP2/Homer pairs were used to identify afferent synapses, which this reviewer would argue provides a reasonable estimate of the number of synapses where pre- and post-synaptic markers are detected in close vicinity. It would be helpful to describe the method for counting juxtaposed CtBP2 and Homer-labeled puncta with more detail.

      The method section now includes more information about the synapse count, which this reviewer would argue provides a reasonable estimate of the number of synapses where pre- and post-synaptic markers are detected in close proximity.

      The final concluding sentence of the section also suggests that synaptic transmission from PE IHCs might be compromised because significant differences in synapse numbers were identified. It would be important to mention this.

      Thanks for the reminder. We added this information to the final concluding sentence.

      Fig. 5C, 5D; legend. Is "co-expressed" the right word choice? Consider "colocalized" or "juxtaposed".

      The "co-expressed" has been replaced with "colocalized".

      Voltage-clamp recordings of P21 inner hair cell mechanoelectrical transduction currents. This reviewer cannot identify a previous publication describing the details of this method on P21 cochlear inner hair cells; this seems like an excellent methodological advance.

      Yes, we can record data from older mice. Thanks for pointing it out.

      "Transfection in vivo of Cldn9 shRNA," the P14-21 inner ear transfected with Cldn9-shRNA." Plus, additional use of the word "transfection." Transfection generally means the introduction of plain nucleic acid into cells. The word refers to methods that do not use viruses. In contrast, "transduction" is the term used for virus-mediated gene transfer. The authors used AAVs. Please correct for appropriate scientific terminology.

      Thanks for the clarification. This information has been corrected accordingly.

      "A slight decline in the amplitude of the EP and a substantial rise in perilymph K+ was detected in 8-month-old Cldn9+/T (S7)." Probably Fig. S8A,B is meant.

      Yes, it referred to Fig. S8 A, B. We corrected it in the result section. Thanks!

      Heading "Discussions" -> "Discussion"

      The focus of the second part of the discussion on potential interactions between Cldn9 suppression and known signaling pathways is essential. The logic that is presented with respect to Notch signaling, however, is not clear and misleading. For example, it is not obvious what is meant by "Cldn9 subserves the signaling catalyst to activate NICD cascades" and whether this statement is supported by any published data.

      The statement was a suggestion and has been qualified with a “may” clause (line 299).

      The authors might consider discussing whether the observed effect caused by Cldn9 elimination is a specific role of the Cldn9 protein itself or is an epiphenomenon resulting from cytomechanical changes in the developing and maturing organ of Corti. This would add a potential Notch-independent component for a possible interpretation of the observations.

      We state lines 302-304 “Alternatively, Cldn9 levels disruption may alter the mechanical properties of the developing and maturing organ of Corti that may trigger ectopic IHC differentiation, an epiphenomenon independent of the Notch signaling“.

      Methods:

      "Deletion of the selection marker in the tTA cassette by crossing the F1 mouse with the embryonic Cre line (B6.129S4-Meox2tm1(cre)Sor/J)." This sentence seems to be incomplete.

      Thanks for pointing it out. This sentence has been rewritten.

      "Images were captured under a confocal microscope." Consider writing "with a confocal microscope".

      This sentence has been corrected. Thanks!

      RNA extraction and... How many mice were used per experiment? 10-15 or just 10?

      The mice number for the RNA extraction is between 10 and 15. Thanks

      Reviewer #3 (Recommendations For The Authors):

      Below are my suggestions, questions, and criticisms.

      (1) The red outline on Fig1A schematic does not correspond to the previously published expression pattern of CLDN9 in the organ of Corti reticular lamina tight junctions (Kitajiri et al, 2004, Nakano et al., 2009, Ramzan et al., 2021). Also, there are no tight junctions all around the pillar cells. The tight junctions are restricted to the sites of tight attachments between two cells. The immunofluorescence staining using CLDN9 antibody looks rather cytoplasmic (Fig 1 and Fig S1) than associated with the tight junctions as it was shown by immunoEM data here and reported previously (Kitajiri et al, 2004; Nakano et al, 2009; Ramzan et al, 2021). Please correct the schematic and explain your data.

      We have redrawn the diagram (Fig. 7).

      (2) The CLDN9 staining in Figure 1, B and C, highlights the cytoplasm of the supporting cells, and hair cells devoid of the staining. From the images in Fig. S1C, it also looks like CLDN9 is present only in supporting cells and not in hair cells? How would the authors reconcile their data with Cldn9 expression data from the gEAR database and Ramzan et al.'s 2021 RNAscope data? Please provide the validation of the antibody used in this study.

      We recognize the reviewer’s concern but RNA and protein levels are not always in parallel.

      (3) Figure 1D. The dash lines from the targeting vector to the wt allele seem to indicate a recombination event. Please do not show the recombination event, instead just show what part of the targeting vector was incorporated to replace wt Cldn9. There is no description in the figure 1 legend what purple arrows and arrowheads mean and what yellow and orange line segments in the floxed allele schematic indicate. Please also show where the BstAPI and BamHI restriction enzyme sites are.

      We have provided supplement Fig 1., and have noted the BstAPI and BamHI restriction enzyme sites in Fig. 1D.

      (4) What does the organ of Corti that has 40-to-55-fold increase in Cldn9 mRNA expression looks like before dox treatment? Any abnormalities at all? How is CLDN9 protein localization looks in the Cldn9+/T untreated mice? Do they have normal number of IHCs? Cldn9+/T untreated mice should be used as another control at least in Figure S1. What does the organ of Corti that has a 40-to-55-fold increase in Cldn9 mRNA expression look like before dox treatment? Are there any abnormalities at all?

      The untreated Cldn9<sup>+/T</sup> mice can grow normally but are not fertile. So, we used a very low concentration of dox water (0.1 mg/ml) instead of normal water to keep the breeding pairs. The protein level increased in the Cldn9<sup>+/T</sup> mice compared with Cldn9<sup>+/+</sup>mice. With 0.1 mg/ml dox water, they also showed ectopic IHCs.

      (5) It is interesting that decline of 0.4-0.6-fold in mRNA level leads to about 8-fold decrease in protein level based on your immunoEM data on tight junctions of IHC with supporting cells. Do you observe the same effect in OHC-SC tight junctions, or the decrease was observed selectively around IHCs?

      The reviewer is alluding to matching RNA and protein levels. It appears that for Clnd9 one cannot expect a closely matched relationship.

      (6) The quality of the immunoEM data is great, but a control of secondary antibody alone staining in wt and Cldn9+/T dox treated should be shown and compared to the Cldn9+/T treated sample.

      We thank the reviewer for raising the issue. Secondary antibodies are used as a control in all immunoEMs in the laboratory. We opted not to show negative results.

      (7) The authors observed a decrease in Cldn6 expression albeit not quantitative in response to Cldn9 downregulation. How were the immunofluorescence signals compared and evaluated? Please provide a detailed description of the method used. Did the authors used the same image acquisition parameters? Was the Cldn9 and Cldn6 immunostaining done using same protocol with the same aliquot and dilution of the secondary antibodies, etc.? The staining for CLDN6 seems to be concentrated in the cytoplasm of supporting cells, and not in the tight junctions, similar to CLDN9 immunoreactivity shown in Fig. S1C and to the ILDR1 pattern of staining in Fig. S3. How can the authors explain this? How were the antibodies validated?

      The Cldn9 and Cldn6 immunostaining were done using the same protocol with the same aliquot and dilution of the secondary antibodies.

      (8) CLDN14 is also expressed in the organ of Corti tight junctions. What happened to this TJ protein during CLDN9 downregulation?

      We detected Cldn14 with immunostaining in the Cldn9+/T mice and Cldn9+/+ mice fed with 0.25 mg/ml dox water, and the results showed increased expression of Cldn14 in Cldn9+/T mice. Detail alterations of other TJ proteins have been reserved for future studies. 

      (9) When supernumerary IHCs were observed in Cldn9+/T mice, have the authors noticed a corresponding decrease in supporting cells surrounding IHCs? Quantification of the IHCs supporting cells would be useful. Do the ectopic IHCs have apical tight junctions with original IHCs or they are surrounded by supporting cells?

      We quantified the SCs around the IHCs but did not detect significant differences among the groups.

      (10) The authors indicated that viable PE IHCs were observed in 15 months old Cldn9+/T dox treated mice. How stereocilia bundles look in these ectopic hair cells? Are they preserved similar to the original IHCs or degenerated? It is hard to see this in Fig 3, phalloidin panel. High-resolution SEM would show this better.

      For the remaining ectopic IHCs in 15 months, we did not detect apparent differences in hair bundles compared with the original IHCs.

      (11) Interestingly, the authors indicate that the highest number of the ectopic IHCs were developed in the apical turn and the higher elevation of ABR threshold was also observed at low frequencies end. This may indicate that extra IHCs do not help hearing function.

      The extra IHCs showed along the whole cochlea, even though it is more obvious in the apical turn. The declined hearing may have resulted from the leakage of the endolymph K+ to the perilymph and EP decline.

      (12) No age-matched wt control is shown for decreased expression of Cldn9 after shRNA injection at P2 (Fig. 6A).

      As indicated earlier, we opted to state but did not show negative results.

      (13) Figure 6C. The better- quality SEM images showing a longer stretch of IHCs are needed to convince readers that there are ectopic IHCs that are well preserved in 5-6 weeks old mice in all cochlear turns after GFP-Cldn9 shRNA treatment at P2-P7.

      In S4, we showed that there are ectopic IHCs along the cochlear axis.

      (14) Do scrambled shRNA control samples had some ectopic IHCs? This control is missing in Fig.6D.

      No scrambled shRNA controls did not show ectopic IHCs. We have stated it.

      (15) Figure 7B, lower schematic. There are no known continuous tight junctions and CLDN9 expression around the OHCs and IHCs. CLDN9 is known to be concentrated at the reticular lamina tight junctions which separate the endolymph from perilymph. Please, correct all schematics accordingly.

      We have made the changes as requested.

      Minor comments:

      (1) Page 1, Abstract. I would not say "making HC loss incurable" since recent gene therapy results show some advances in this direction. Please rephrase more accurately.

      We have made the changes as requested.

      (2) Page 4, Results, line 5; please rephrase "PCR of tail tissue samples performed genotyping."

      It has been corrected to “The genotyping was performed by the PCR with the tail tissue.”

      (3) Fig. 1 legend, panel B, replace "showing IHC stained myosin7a" with "showing IHC stained by myosin7a". Also, in the same sentence, "phalloidin, actin (green) antibodies," Phalloidin is not an antibody; please change this.

      Thanks. We have corrected this information.

      (4) Fig 2C, IHC label obscures the view of IHCs, please move this label out and use an arrow to point to IHCs.

      We have made the changes as requested.

      (5) Figure 4, title. Replace "currents elicited original" with "current elicited from original".

      This sentence has been corrected. Thanks.

      (6) Figure 4, panel A. It is hard to see the open symbols on the graph. Are they associated with the dash lines? Please make them more visible or indicate what dash lines are. "ABR threshold for (n=12)" should be "ABR threshold for Cldn9+/+(n=12)"?

      Yes, they are associated with the dash lines. We added the labels for the solid lines and dash lines. "ABR threshold for (n=12)" was corrected to "ABR threshold for Cldn9+/+(n=12)."

      (7) Figure 4, legend. "Within each wt and heterozygote mice, there was no significant shift...". Do you mean within each group of mice? Also "Mean DPOAE threshold for 2-8 mos (n=9) was tested,..." Do you mean (n=9) for each group or what group?

      Yes, "Within each wt and heterozygote mice, there was no significant shift..." has been revised. The number of mice in each group for the DPOAE test was clarified in the Fig. 4B legend. Thanks.

      (8) Please label the X axis in Figure 4D.

      The X-axis has been labeled (Time (s))

      (9) Figure 4 B, do the colors of the lines indicate the same age groups as in Fig 4A? Do the dash lines associate with open symbols? Please state this clearly in the figure's legend.

      Yes. We added this information in Fig. 4B legend.

      (10) Figure 4D. Please label the X axis of the fluorescence intensity graph.

      The X-axis has been labeled (Time (s))

      (11) Figure 4G, legend. Replace "(mean +std)" with "(mean +SD)" for consistency here and in Figure 5 legend.

      Thanks. We replaced "(mean +std)" with "(mean +SD) in the legend of Fig. 4G and Fig.5 and Fig.6.

      (12) Figure 5B, legend. Replace "makers" with "markers".

      Thanks. This information was corrected.

      (13) Figure 6A, legend. There is no downregulation of Cldn9 by shRNA shown in "S5". Do the authors mean Figure S7? Please, correct "S5" to "Fig. S7".

      This information was corrected. Thanks.

      (14) Figure 6A, legend. There is no reduced CLDN9 protein expression shown in Fig. 1C. Do the authors mean Fig. 6A, third panel? Please correct the phrase "reduced protein expression (Fig. 1C) is shown in the 3rd Panel (Cldn9, red)" accordingly, and do not capitalize "p" in the "3rd Panel".

      This information was corrected. Thanks (line 917-918).

      (15) Also there, replace "The right Panel shows two rows of IHCs (marked HC marker, Myo7a (cyan), and the merged photomicrograph" with "The right panel shows the merged image with two rows of IHCs stained with HC marker Myo7a (cyan) and the expression of Ad-GFP-mCldn9 shRNA (green) in the adjacent row of supporting cells". Please indicate in what cells Ad-GFP-mCldn9 shRNA (green) is expressed. It looks like only one row of supporting cells has this green signal.

      This information was corrected.

      (16) Figure 6B, legend. Replace "Examples of photomicrographs of sections of the whole-mount cochlea of P2, P4, P7, and P14 Cldn9 shRNA injected mice" with "Examples of phalloidin stained whole-mount organ of Corti samples from cochleae of the wild-type mice injected at P2, P4, P7 and P14 with Cldn9 shRNA"

      This sentence has been modified based on your suggestions. Thanks!

      (17) Replace "action labeling" with "actin labeled."

      Thanks!  The "action labeling" has been replaced with "actin labeled." Line 924

      (18) Figure 6C. Insert "C" before SEM images description in the legend. The authors stated that SEM images of "5-6-wks-old mice" are shown. Please indicate the exact age of mice shown on each image and at what age these mice received the virus injection.

      Thanks!  The “C” has been added. We have noted that the SEM images are from 5-week-old mice" in the legend, and the virus was injected at P2.

      (19) Figure 6D, legend. Last sentence: move "are significantly different" and insert this between "IHCs" and "at P2 apex".

      This information was corrected.

      (20) Figure S7, legend. Replace "(sram)" with "(scram)" as in the figure itself. Also, Indicate the age of samples at the harvesting time for imaging and the age at injection of Cldn9 shRNA.

      "(sram)" has been replaced with "(scram)". The age of samples at the harvesting time for imaging and the age at injection of Cldn9 shRNA are indicated.

      (21) Figure S8. Replace "4 mos-old" and "8 mos-old" with "4 months-old" and "8 months-old" everywhere in the legend and in the figure labels.

      We have made the changes as suggested.

      (22) Page 8, 5th lane from the bottom. Change "EP and K+ concentration endolymph" to "EP and K+ concentration of the endolymph".

      It has been corrected. Thanks.

      (23) Page 8, next to the last sentence before the Discussion. Wrong figure number, please replace "(S7)" with "Fig. S8".

      It has been corrected. Thanks.

    1. eLife Assessment

      What makes one member of the species behave differently from another? This is a core problem in behavioral neuroscience. This valuable study seeks an answer for the specific case of the fruit fly expressing preferences for one odor over another. By a combination of behavioral measurements, neurophysiology, and network modeling, the authors find solid evidence for at least one locus of individuality in the peripheral olfactory system.

    2. Joint Public Review:

      Summary:

      The authors aimed to identify the neural sources of behavioral variation in fruit flies deciding between odor and air, or between two odors.

      Strengths:

      - The question is of fundamental importance.<br /> - The behavioral studies are automated, and high-throughput.<br /> - The data analyses are sophisticated and appropriate.<br /> - The paper is clear and well-written aside from some initially strong wording.<br /> - The figures beautifully illustrate their results.<br /> - The modeling efforts mechanistically ground observed data correlations.

      Weaknesses:

      -The correlations between behavioral variations and neural activity/synapse morphology are statistically significant but relatively weak.

    3. Author response:

      The following is the authors’ response to the previous reviews.

      Joint Public Review:

      Summary:

      The authors aimed to identify the neural sources of behavioral variation in fruit flies deciding between odor and air, or between two odors.

      Strengths:

      - The question is of fundamental importance.

      - The behavioral studies are automated, and high-throughput.

      - The data analyses are sophisticated and appropriate.

      - The paper is clear and well-written aside from some initially strong wording.

      - The figures beautifully illustrate their results.

      - The modeling efforts mechanistically ground observed data correlations.

      Weaknesses:

      - The correlations between behavioral variations and neural activity/synapse morphology are relatively weak, and sometimes overstated in the wording that describes them.

      We sincerely thank the reviewers for these evaluations.

      Recommendations for the authors:

      Line 56: "We hypothesize that as sensory cues are encoded and transformed to produce motor outputs, their representation in the nervous system becomes increasingly idiosyncratic and predictive of individual behavioral responses". This seems obvious a priori. The sensory stimuli are the same, but the motor responses are different. Along the way there has to be a progression from same to different. Is there an alternative hypothesis? If so, perhaps state the alternative.

      We added text to the first paragraph of the introduction (lines 58-60) laying out an alternative hypothesis that individuality emerges through biomechanical differences and environmental interactions, and we have altered our motivating question to assess whether circuit elements in which activity is predictive of individual behavior exist, and if so, where (lines 60-62).

      Line 157: typo "remaining"

      We changed “remaining” to “remain” (line 160).

      Line 163: why report r sometimes and R^2 other times? Better to use R^2 throughout.

      We changed all instances of r to R<sup>2</sup>, notably when reporting combined train/test statistics for calcium - behavior models (line 162). We also reframed the outputs (medians + 90% confidence intervals) of the supplemental analysis inferring the strength of the latent calcium-behavior relationship to be in terms of R<sup>2</sup> (lines 166, 173-175, 241, 252; modified text in Inference of correlation between latent calcium and behavior states in Materials and Methods; adjusted figure and caption for Figure 1 – figure supplement 9).

      Line 182: "odorant". Should be "odorant receptors"?

      We respectfully disagree – our ORN and PN calcium data are responses to odorants in 5 glomerulus/odorant receptor types. When we group PCA loadings by glomerulus for both ORN and PN calcium, the consistency within groups is much stronger than when we group the loadings by odorant (Figure 1 – figure supplement 8). Additionally, “odorant receptor organization” would mean the same thing as “glomerular organization,” since all ORNs expressing the same odorant receptor project to a single glomerulus.

      Line 331: "harbor". Maybe more modestly "contribute to"?

      We changed “harbor” to “contribute to” (line 334) and added additional moderating language that the difference in DC2 and DM2 activations in PNs explains a large portion of the individuality signal (lines 337-339).

      Line 403: typo "is"

      We retained “is” as the corresponding verb for “the net effect,” but we adjusted the position of the reference to Gomez-Marin and Ghazanfar, 2019 for more clarity (lines 406-408).

    1. eLife Assessment

      The study evaluates the feasibility, safety, and tolerability of neoadjuvant radiotherapy followed by a CDK4/6 inhibitor (dalpiciclib) and hormonal therapy in treatment-naive patients with unilateral early-stage HR+/HER2- breast cancer. The findings are convincing, with a strong scientific rationale supported by integrated correlative studies. The trial is considered to be important as the outcomes could inform the design of larger, future studies. The strength of the conclusions should be tempered as the study included only a small cohort of patients (n=12) and was not adequately powered to definitively assess the efficacy or safety of this combinatorial treatment approach.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript details the results of a small pilot study of neoadjuvant radiotherapy followed by combination treatment with hormone therapy and dalpiciclib for early-stage HR+/HER2-negative breast cancer.

      Strengths:

      The strengths of the manuscript include the scientific rationale behind the approach and the inclusion of some simple translational studies.

      Weaknesses:

      The main weakness of the manuscript is that overly strong conclusions are made by the authors based on a very small study of twelve patients. A study this small is not powered to fully characterize the efficacy or safety of a treatment approach, and can, at best, demonstrate feasibility. These data need validation in a larger cohort before they can have any implications for clinical practice, and the treatment approach outlined should not yet be considered a true alternative to standard evidence-based approaches.

      I would urge the authors and readers to exercise caution when comparing results of this 12-patient pilot study to historical studies, many of which were much larger, and had different treatment protocols and baseline patient characteristics. Cross-trial comparisons like this are prone to mislead, even when comparing well powered studies. With such a small sample size, the risk of statistical error is very high, and comparisons like this have little meaning.

    3. Reviewer #2 (Public review):

      The author and his team explored a novel neoadjuvant strategy of radiotherapy followed by CDK4/6 inhibitor and exemestane for HR+/HER2- breast cancer. This strategy interestingly reached an ORR of 91.7% and RCB 0-I of 16.7%, with satisfying tolerance.

      There are several questions for your further consideration.

      Firstly, as this is a single-arm preliminary study, we are curious about the order of radiotherapy and the endocrine therapy. Besides, considering the radiotherapy, we also concern about the recovery of the wound after the surgery and whether related data were collected.

      Secondly, in the methodology, please describe the sample size estimation of this study and follow up details.

      Thirdly, in Table 1, the item HER2 expression, it's better to categorise HER2 into 0, 1+, 2+ and FISH-.

    4. Author response:

      Reviewer #1(Public review):

      Summary:

      This manuscript details the results of a small pilot study of neoadjuvant radiotherapy followed by combination treatment with hormone therapy and dalpiciclib for early-stage HR+/HER2-negative breast cancer.

      Strengths:

      The strengths of the manuscript include the scientific rationale behind the approach and the inclusion of some simple translational studies.

      Weaknesses:

      The main weakness of the manuscript is that overly strong conclusions are made by the authors based on a very small study of twelve patients. A study this small is not powered to fully characterize the efficacy or safety of a treatment approach, and can, at best, demonstrate feasibility. These data need validation in a larger cohort before they can have any implications for clinical practice, and the treatment approach outlined should not yet be considered a true alternative to standard evidence-based approaches.

      I would urge the authors and readers to exercise caution when comparing results of this 12-patient pilot study to historical studies, many of which were much larger, and had different treatment protocols and baseline patient characteristics. Cross-trial comparisons like this are prone to mislead, even when comparing well powered studies. With such a small sample size, the risk of statistical error is very high, and comparisons like this have little meaning.

      We greatly appreciate your evaluation of our study and fully agree with the limitations you have pointed out. We have clearly stated the limitations of the small sample size and emphasized the need for a larger population to validate our preliminary findings in the discussion section (Lines 311-316).

      We acknowledge that this small sample size is not powered to characterize this regimen as a promising alternative regimen in the treatment of patients with HR-positive, HER2-negative breast cancer. Therefore, we have revised the description of this regimen to serve as a feasible option for neoadjuvant therapy in HR-positive, HER2-negative breast cancers both in the discussion (Lines 317-320) and the abstract (Lines 71-72).

      We agree with you that cross-trial comparisons should be approached with caution due to differences in study designs and patient populations. In our discussion section, we acknowledge that small sample size limited the comparison of our data with historical data in the literature due to the potential bias (Lines 312-313). We clearly state that such comparisons hold limited significance (Lines 313-314) and suggest a larger population to validate our preliminary findings.

      • Why was dalpiciclib chosen, as opposed to another CDK4/6 inhibitor?

      Thank you for your comments. The rationale for selecting dalpiciclib over other CDK4/6 inhibitors in our study is primarily based on the following considerations:

      (1) Clinical Efficacy: In several clinical trials, including DAWNA-1 and DAWNA-2, the combination of dalpiciclib with endocrine therapies such as fulvestrant, letrozole, or anastrozole has been shown to significantly extend the progression-free survival (PFS) in patients with hormone receptor-positive, HER2-negative advanced breast cancer (1-2).

      (2) Tolerability and Management of Adverse Reactions: The primary adverse reactions associated with dalpiciclib are neutropenia, leukopenia, and anemia. Despite these potential side effects, the majority of patients are able to tolerate them, and with proper monitoring and management, these reactions can be effectively mitigated (1-2).

      (3) Comparable pharmacodynamic with other CDK4/6 inhibitors: The combination of CDK4/6 inhibitors, including palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors has demonstrated an enhanced ability to suppress tumor proliferation and increase the rate of clinical response in neoadjuvant therapy for HR-positive, HER2-negative breast cancer (3-5). Furthermore, preclinical studies have shown that dalpiciclib has comparable in vivo and in vitro pharmacodynamic activity to palbociclib, suggesting its potential effectiveness in similar treatment regimens (6).

      (4) Accessibility and Regulatory Approval: Dalpiciclib has gained marketing approval in China on December 31, 2021, which facilitates the accessibility of this medication, making it a more convenient option when considering treatment plans.

      References:

      (1) Zhang P, Zhang Q, Tong Z, et al. Dalpiciclib plus letrozole or anastrozole versus placebo plus letrozole or anastrozole as first-line treatment in patients with hormone receptor-positive, HER2-negative advanced breast cancer (DAWNA-2): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial(J). The Lancet Oncology, 2023, 24(6): 646-657.

      (2) Xu B, Zhang Q, Zhang P, et al. Dalpiciclib or placebo plus fulvestrant in hormone receptor-positive and HER2-negative advanced breast cancer: a randomized, phase 3 trial(J). Nature medicine, 2021, 27(11): 1904-1909.

      (3) Hurvitz S A, Martin M, Press M F, et al. Potent cell-cycle inhibition and upregulation of immune response with abemaciclib and anastrozole in neoMONARCH, phase II neoadjuvant study in HR+/HER2− breast cancer(J). Clinical Cancer Research, 2020, 26(3): 566-580.

      (4) Prat A, Saura C, Pascual T, et al. Ribociclib plus letrozole versus chemotherapy for postmenopausal women with hormone receptor-positive, HER2-negative, luminal B breast cancer (CORALLEEN): an open-label, multicentre, randomised, phase 2 trial(J). The lancet oncology, 2020, 21(1): 33-43.

      (5) Ma C X, Gao F, Luo J, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor–positive breast cancer(J). Clinical Cancer Research, 2017, 23(15): 4055-4065.

      (6) Long F, He Y, Fu H, et al. Preclinical characterization of SHR6390, a novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft models(J). Cancer science, 2019, 110(4): 1420-1430.

      • The eligibility criteria are not consistent throughout the manuscript, sometimes saying early breast cancer, other times saying stage II/III by MRI criteria.

      criteria in our manuscript. We deeply apologize for any confusion caused by these inconsistencies. We have revised the term from “early-stage HR-positive, HER2-negative breast cancer” to “early or locally advanced HR-positive, HER2-negative breast cancer” (Lines 128 and 150). The term “early or locally advanced” encompasses two different stages of breast cancer, whereas “Stage II/III by MRI criteria” refers to specific stages within the TNM staging system.

      • The authors should emphasize the 25% rate of conversion from mastectomy to breast conservation and also report the type and nature of axillary lymph node surgery performed. As the authors note in the discussion section, rates of pathologic complete response/RCB scores are less prognostic for hormone-receptor-positive breast cancer than other subtypes, so one of the main rationales for neoadjuvant medical therapy is for surgical downstaging. This is a clinically relevant outcome.

      We appreciate your constructive comments. Based on your suggestions, we have made the following revisions and additions to the article.

      The breast conservation rate serves as a secondary endpoint in our study (Line 62 and 179). We have highlighted the significant 25% conversion rate from mastectomy to breast conservation in both the results (Lines 229-230) and discussion sections (Lines 290-292).

      In our study, all patients underwent lymph node surgery, including sentinel lymph node biopsy or axillary lymph node dissection. Among them, 58.3% of patients (7/12) underwent sentinel lymph node biopsies.

      We agree with your point that the prognostic value of pathologic complete response/RCB score is lower for hormone receptor-positive breast cancer compared to other subtypes, we have revised the discussion section to clarify that one of the principal objectives for neoadjuvant therapy in this patient population is to facilitate downstaging and enhance the rate of breast conservation (Lines 289-290). And also emphasized that this neoadjuvant therapeutic regiment appeared to improve the likelihood of pathological downstaging and achieve a margin-free resection, particularly for those with locally advanced and high-risk breast cancer (Lines 293-295).

      Reviewer #2 (Public review):

      Firstly, as this is a single-arm preliminary study, we are curious about the order of radiotherapy and the endocrine therapy. Besides, considering the radiotherapy, we also concern about the recovery of the wound after the surgery and whether related data were collected.

      Thanks for the comments. The treatment sequence in this study is to first administer radiotherapy, followed by endocrine therapy. A meta-analysis has indicated that concurrent radiotherapy with endocrine therapy does not significantly impact the incidence of radiation-induced toxicity or survival rates compared to a sequential approach (1). In light of preclinical research suggesting enhanced therapeutic efficacy when radiotherapy is delivered prior to CDK4/6 inhibitors, we have opted to administer radiotherapy before the combination therapy of CDK4/6 inhibitors and hormone therapy (2).

      In our study, we collected data on surgical wound recovery. All 12 patients had Class I incisions, which healed by primary intention. The wounds exhibited no signs of redness, swelling, exudate, or fat necrosis.

      References:

      (1) Li Y F, Chang L, Li W H, et al. Radiotherapy concurrent versus sequential with endocrine therapy in breast cancer: A meta-analysis(J). The Breast, 2016, 27: 93-98.

      (2) Petroni G, Buqué A, Yamazaki T, et al. Radiotherapy delivered before CDK4/6 inhibitors mediates superior therapeutic effects in ER+ breast cancer(J). Clinical Cancer Research, 2021, 27(7): 1855-1863.

      Secondly, in the methodology, please describe the sample size estimation of this study and follow up details.

      Thanks for pointing out this crucial omission. Sample size estimation for this study and follow-up details have been added in the methodology section. The section on sample size estimation has been revised to state in Statistical analysis: “This exploratory study involves 12 patients, with the sample size determined based on clinical considerations, not statistical factors (Lines 210-211).” The section on follow up has been revised to state in Procedures section “A 5-year follow-up is conducted every 3 months during the first 2 years, and every 6 months for the subsequent 3 years. Additionally, safety data are collected within 90 days after surgery for subjects who discontinue study treatment (Lines 169-172).”

      Thirdly, in Table 1, the item HER2 expression, it's better to categorise HER2 into 0, 1+, 2+ and FISH-.

      Thank you very much for pointing out this issue. The item HER2 expression in Table 1 has been revised from “negative, 1+, 2+ and FISH-” to “0, 1+, 2+ and FISH-”.

    1. eLife Assessment

      This valuable study uses zebrafish as a model to reveal a role for the cell cycle protein kinase CDK2 as a negative regulator of type I interferon signaling. The evidence supporting the authors' claims is convincing, including both in vivo and in vitro investigative approaches that corroborate a role for CDK2 in regulating TBK1 degradation. In this latest version, the authors included data addressing concerns raised by the reviewers at the first peer review round that strengthens the conclusions. This work will interest cell biologists, immunologists, and virologists.

    2. Reviewer #1 (Public review):

      Summary:

      The authors set out to evaluate the regulation of interferon (IFN) gene expression in fish, using mainly zebrafish as a model system. Similar to more widely characterized mammalian systems, fish IFN is induced during viral infection through the action of the transcription factor IRF3 which is activated by phosphorylation by the kinase TBK1. It has been previously shown in many systems that TBK1 is subjected to both positive and negative regulation to control IFN production. In this work, the authors find that the cell cycle kinase CDK2 functions as a TBK1 inhibitor by decreasing its abundance through recruitment of the ubiquitinylation ligase, Dtx4, which has been similarly implicated in the regulation of mammalian TBK1. Experimental data are presented showing that CDK2 interacts with both TBK1 and Dtx4, leading to TBK1 K48 ubiqutinylation on K567 and its subsequent degradation by the proteasome.

      Strengths:

      The strengths of this manuscript are its novel demonstration of the involvement of CDK2 in a process in fish that is controlled by different factors in other vertebrates and its clear and supportive experimental data.

      Weaknesses:

      The weaknesses of the study include the following. 1) It remains unclear how CDK is regulated during viral infection and how it specifically recruits E3 ligase to TBK1. 2) The implications and mechanisms for a relationship between the cell cycle and IFN production will be a fascinating topic for future studies.

    3. Reviewer #1 (Public review):

      Summary:

      The authors set out to evaluate the regulation of interferon (IFN) gene expression in fish, using mainly zebrafish as a model system. Similar to more widely characterized mammalian systems, fish IFN is induced during viral infection through the action of the transcription factor IRF3 which is activated by phosphorylation by the kinase TBK1. It has been previously shown in many systems that TBK1 is subjected to both positive and negative regulation to control IFN production. In this work, the authors find that the cell cycle kinase CDK2 functions as a TBK1 inhibitor by decreasing its abundance through recruitment of the ubiquitinylation ligase, Dtx4, which has been similarly implicated in the regulation of mammalian TBK1. Experimental data are presented showing that CDK2 interacts with both TBK1 and Dtx4, leading to TBK1 K48 ubiqutinylation on K567 and its subsequent degradation by the proteasome.

      Strengths:

      The strengths of this manuscript are its novel demonstration of the involvement of CDK2 in a process in fish that is controlled by different factors in other vertebrates and its clear and supportive experimental data.

      Weaknesses:

      The weaknesses of the study include the following. 1) It remains unclear how CDK is regulated during viral infection and how it specifically recruits E3 ligase to TBK1. 2) The implications and mechanisms for a relationship between the cell cycle and IFN production will be a fascinating topic for future studies.

    1. eLife Assessment

      In this important work, Lodhiya et al. provide evidence that excessive ATP underlies the killing of the model organism Mycobacterium smegmatis by two mechanistically-distinct antibiotics. The data are generally solid as the authors deploy multiple, orthogonal readouts and methods for manipulating reactive oxygen species and ATP. The work will be of interest to those studying antibiotic mechanisms of action.

    2. Reviewer #1 (Public review):

      Summary:

      Lodhiya et al. demonstrate that antibiotics with distinct mechanisms of action, norfloxacin and streptomycin, cause similar metabolic dysfunction in the model organism Mycobacterium smegmatis. This includes enhanced flux through the TCA cycle and respiration as well as a build-up of reactive oxygen species (ROS) and ATP. Genetic and/or pharmacologic depression of ROS or ATP levels protect M. smegmatis from norfloxacin and streptomycin killing. Because ATP depression is protective, but in some cases does not depress ROS, the authors surmise that excessive ATP is the primary mechanism by which norfloxacin and streptomycin kill M. smegmatis. In general, the experiments are carefully executed; alternative hypotheses are discussed and considered; the data are contextualized within the existing literature.

      Strengths:

      The authors tackle a problem that is both biologically interesting and medically impactful, namely, the mechanism of antibiotic-induced cell death.

      Experiments are carefully executed, for example, numerous dose- and time-dependency studies; multiple, orthogonal readouts for ROS; and several methods for pharmacological and genetic depletion of ATP.

      There has been a lot of excitement and controversy in the field, and the authors do a nice job of situating their work in this larger context.

      Inherent limitations to some of their approaches are acknowledged and discussed e.g., normalizing ATP levels to viable counts of bacteria.

      Weaknesses:

      All of the experiments performed here were in the model organism M. smegmatis. As the authors point out, the extent to which these findings apply to other organisms (most notably, slow-growing pathogens like M. tuberculosis) is to be determined.

      At first glance, some of the results in the manuscript seem to conflict with what has been previously reported in the (referenced) literature. In their response to reviewers, the authors addressed these concerns. Ideally they would have addressed them in the main manuscript too.

      Figs. 9 and 10A-B and associated text make the manuscript significantly longer and more descriptive. They are more appropriate to the beginning of a new story rather than the end of the current one.

    3. Reviewer #2 (Public review):

      Summary:

      The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria

      Strengths:

      No significant strengths in the current state as it is written.

      Weaknesses:

      A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculossi which has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.

      Comments on revisions:

      The authors confirm they are using CFU counts, but then Figure 1 has 0 as the first data point on the Y-axis. This should be somewhere between 10e5 or 10e6. CFU would not start at 0, your initial inoculum has to be more than 0 to have something to challenge.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      Lodhiya et al. demonstrate that antibiotics with distinct mechanisms of action, norfloxacin and streptomycin, cause similar metabolic dysfunction in the model organism Mycobacterium smegmatis. This includes enhanced flux through the TCA cycle and respiration as well as a build-up of reactive oxygen species (ROS) and ATP. Genetic and/or pharmacologic depression of ROS or ATP levels protect M. smegmatis from norfloxacin and streptomycin killing. Because ATP depression is protective, but in some cases does not depress ROS, the authors surmise that excessive ATP is the primary mechanism by which norfloxacin and streptomycin kill M. smegmatis. In general, the experiments are carefully executed; alternative hypotheses are discussed and considered; the data are contextualized within the existing literature.

      We thank the reviewer for the very comprehensive summary of the study.

      Strengths:

      The authors tackle a problem that is both biologically interesting and medically impactful, namely, the mechanism of antibiotic-induced cell death.

      Experiments are carefully executed, for example, numerous dose- and time-dependency studies; multiple, orthogonal readouts for ROS; and several methods for pharmacological and genetic depletion of ATP.

      There has been a lot of excitement and controversy in the field, and the authors do a nice job of situating their work in this larger context.

      Inherent limitations to some of their approaches are acknowledged and discussed e.g., normalizing ATP levels to viable counts of bacteria.

      We thank the reviewer for the encouraging comments.

      Weaknesses:

      All of the experiments performed here were in the model organism M. smegmatis. As the authors point out, the extent to which these findings apply to other organisms (most notably, slow-growing pathogens like M. tuberculosis) is to be determined. To avoid the perception of overreach, I would recommend substituting "M. smegmatis" for Mycobacteria (especially in the title and abstract).

      At first glance, a few of the results in the manuscript seem to conflict with what has been previously reported in the (referenced) literature. In their response to reviewers, the authors addressed my concerns. It would also be ideal to include a few lines in the manuscript briefly addressing these points. (Other readers may have similar concerns).

      In the first round of review, I suggested that the authors consider removing Figs. 9 and 10A-B as I believe they distract from the main point of the paper and appear to be the beginning of a new story rather than the end of the current one. I still hold this opinion. However, one of the strengths of the eLife model is that we can agree to disagree.

      We acknowledge the reviewer’s concern and have changed title of the manuscript by including Mycobacterium smegmatis instead of Mycobacteria. The abstract already mentioned the same.

      In the discussion section of the revised manuscript, we have already addressed and analysed our results extensively within the context of the available literature, regardless of whether our findings aligned with or differed from previous studies. We still believe that the mentioned discussion will help suffice to explain our results to the readers.

      In this manuscript we also sought to assess the bacteria's ability to counteract drug induced stresses, contributing to our understanding of how antibiotic tolerance develop in Mycobacterium smegmatis. Results presented in Figure 9 clearly demonstrate that M.smegmatis attempt to reduce respiration by decreasing flux through the complete TCA cycle, thereby mitigating ROS and ATP production in response to antibiotics.  Additionally, the bacterial response also included increased expression of the protein Eis, which is exemplar for intrinsic drug resistance, with a concomitant increase in mutation frequency, thereby hinting at the development of antibiotic tolerance followed by resistance. We still believe that these data should be included to support our observations and they make the study more comprehensive.

      Reviewer #2 (Public review):

      Summary:

      The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria

      Strengths:

      No significant strengths in the current state as it is written.

      Weaknesses:

      A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculossi that has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.

      Comments on revisions:

      I am surprised that the authors simply did not repeat the study in figure one with CFU counts and repeated in triplicate. Since this is M. smegmatis, it would take no longer than two weeks to repeat this experiment and replace the figure. I understand that obtaining CFU counts is much more laborious than OD measurements but it is necessary. Your graph still says that there is 0 bacteria at time 0, yet in your legend it says you started with 600,000 CFU/ml. I don't understand why this experiment was not repeated with CFU counts measured throughout. This is not a big ask since this is M. smegmatis but it appears that the authors do not want to repeat this experiment. Minimally, fix the graph to represent the CFU.

      We acknowledge the reviewer’s concern and have changed title of the manuscript by specifying Mycobacterium smegmatis instead of Mycobacteria.

      It is still not clear to the authors what the reviewer mean by OD measurements. All the data presented in the entire manuscript , including in Figure 1 are solely based on CFU measurements. So, as suggested by the reviewer, all experiments are already presented in terms of CFU.

    1. eLife Assessment

      This fundamental work extends our understanding of the role of TGFβ2 as a modulator of mechanosensing in the eye and identifies the TRPV4 ion channel as a common regulator of Trabecular Meshwork (TM) contractility and pathological OHT. The data and evidence are convincing, with some minor limitations. This work will clearly be of interest to researchers investigating the role of mechanosensors in the TM and may underpin future research into treatments that aim to lower intra ocular pressure. This work will additionally be of interest to the growing field of researchers investigating the regulation of force sensing via ion channels and their roles in health and disease, in particular the ion channel TRPV4.

    2. Reviewer #1 (Public review):

      Summary:

      This comprehensive study employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure regulation in a mouse model of TGFβ2 -induced ocular hypertension. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated ocular hypertension in eyes overexpressing TGFβ2. Trpv4-/- mice resisted TGFβ2-driven increases in IOP. These data establish a fundamental role of TGFβ as a modulator of mechanosensing and identifies TRPV4 channel as a common mechanism for TM contractility and pathological ocular hypertension.

      Strengths:

      The manuscript is very well written and details the important function of TRPV4 in TM cell function. These data provide novel therapeutic targets and potential for disease-altering therapeutics.

      Weaknesses:

      The experimental rigor and design of the noctural IOP experiments was weak with low n values and differing methods of IOP measurement (conscious versus anesthetized). The same method of IOP measurement needs to be used for all measurements to make any conclusions on the circadian patterns of IOP in each condition.

    3. Reviewer #2 (Public review):

      The manuscript by Christopher N. Rudzitis et al. describes the role of TGFβ2 in the transcription and functional expression of mechanosensitive channel isoforms, alongside studies on TM contractility in biomimetic hydrogels and intraocular pressure. Overall, it is a very interesting study, nicely designed, and will contribute to the available literature on TRPV4 sensitivity to mechanical forces.

      I have the following comment for the authors to address.

      Figure 1A-C.<br /> Often there is a difference between the massage and transcript data. I recommend the authors to confirm with qPCR data with another mode of protein measurements.<br /> Does direct TRPV4 activation also induce the expression of these markers? Does inhibition of TRPV4, after TGF-β treatment, prevent the expression of these markers? Is TRPV4 acting downstream of this response?

      Figure 1D. Beta tubulin is not a membrane marker. Having staining of b tubulin in membrane fraction shows contamination from the cytoplasm.<br /> Does the overall expression also increase?

      Figure 4A: it is not very clear. I recommend including a zoom image or better resolution image.

      Figure 5B and 6B.<br /> Why there is a difference between groups in pre-injection panel. As Figure 5A, in pre-injection, there is no difference between LV-TGFβ and LV-control while in 5B there is a significant difference between these groups.<br /> Discussion section.

      Line 279, . "TRPV4 channels in cells treated with TGFβ2 are likely to be constitutively active" ... needs to be discussed further.

      Line 280: "The residual contractility in HC-06-treated cells may reflect TGFβ2-mediated contributions from Piezo1."<br /> Piezo1 has a low threshold for mechanosensitivity. How do the authors discuss the observation that, in the presence of Piezo1, TRPV4 has a more prominent mechanosensory function? Is this tied to TGFβ signalling?

    4. Author response:

      We thank the editors and reviewers for the constructive assessment. We plan to address the comments as follows:

      Reviewer #1 (Public review):

      We are generating a new cohort of Lv-TGFB2 overexpressing mice in which IOP will be compared under the anesthesia conditions that are identical for diurnal and nocturnal states. Parenthetically, we used the awake (diurnal) and isoflurane (nocturnal) anesthesia to mirror the conditions in the Patel et al (2021) PNAS study.

      Reviewer #2 (Public review):

      We are not sure what the Reviewer means by the “difference between the message and transcript data” and are not sure whether providing evidence about the TRPV4-dependence of the expression of fibrotic genes and canonical TGFb2 pathway genes fits within the scope of our study (which focuses on the TGFB2-dependence of TRPV4 expression and IOP regulation). We propose to address this by including new data about the TGFb2- and TRPV4 dependence of TRPV4 and Piezo1 expression. We could include information about the effect of TGFB2 on fibrosis-related genes from a (submitted study) in which we used RNASeq to investigate TGFB2 and TGFB2 + HC067047-dependence of gene expression in TM cells on a confidential basis but not include it in the revised manuscript.

      - Re:  b-tubulin comment  [b-tubulin associates with the plasma membrane by binding to integral membrane proteins in the plasma and organellar membranes, through palmitoylation and attachment to linker proteins and as an integral component of exocytotic vesicles (Wolff, BBA 2009; Hogerheide et al., PNAS 2017). Together with b-actin and Gapdh it is often used as a loading control to assess cellular TRPV4 protein expression (e.g., https://www.cellsignal.com/products/primary-antibodies/trpv4-antibody/65893; Grove et al., Science Signaling 2019 and Moore et al., PNAS 2013).  Our qPCR and RNASeq studies show that TGFB2 does not affect b-tubulin expression]

      - We will provide a higher resolution image for Fig. 4A

      - Will address the Fig 5A and 6A comment [We thank the Reviewer for noticing the ambiguity and revised Figure Legends to clarify that “pre-injection” in Figures 5B and 6B refers to IOP measurements before the intracameral injection of HC-06  not pre-injection of lentiviral constructs].

      -  We will address the issue of constitutive TRPV4 activity and Piezo1 involvement in the revised Discussion.

      We hope this is sufficient information at this point but would be more than happy to provide more information if needed.

      Thank you, we are very impressed by the eLife review protocols.

    1. eLife Assessment

      The findings are important and intriguing, with theoretical or practical implications beyond a single subfield. The computational methods employed are clever and sophisticated and the strength of evidence is convincing. However, all three reviewers also highlight a lack of focus and clarity, as well as missing information about model comparison, fit statistics and group comparison of parameters from different models.

    2. Reviewer #1 (Public review):

      Summary:

      The authors use a sophisticated task design and Bayesian computational modeling to test their hypothesis that information generalization (operationalized as a combination of self-insertion and social contagion) in social situations is disrupted in Borderline Personality Disorder. Their main finding relates to the observation that two different models best fit the two tested groups: While the model assuming both self-insertion and social contagion to be present when estimating others' social value preferences fit the control group best, a model assuming neither of these processes provided the best fit to BPD participants.

      Strengths:

      The strengths of the presented work lie in the sophisticated task design and the thorough investigation of their theory by use of mechanistic computational models to elucidate social decision-making and learning processes in BPD.

      Weaknesses:

      The manuscript's primary weakness relates to the number of comparisons conducted and a lack of clarity in how those comparisons relate to the authors' hypotheses. The authors specify a primary prediction about disruption to information generalization in social decision making & learning processes, and it is clear from the text how their 4 main models are supposed to test this hypothesis. With regards to any further analyses however (such as the correlations between multiple clinical scales and eight different model parameters, but also individual parameter comparisons between groups), this is less clear. I recommend the authors clearly link each test to a hypothesis by specifying, for each analysis, what their specific expectations for conducted comparisons are, so a reader can assess whether the results are/aren't in line with predictions. The number of conducted tests relating to a specific hypothesis also determines whether multiple comparison corrections are warranted or not. If comparisons are exploratory in nature, this should be explicitly stated.

      Furthermore, the authors present some measures for external validation of the models, including comparison between reaction times and belief shifts, and correlations between model predicted accuracy and behavioural accuracy/total scores. However it would be great to see some more formal external validation of how the model parameters relate to participant behaviour, e.g., the correlation between the number of pro-social choices and ß-values, or the correlation between the change in absolute number of pro-social choices and the change in ß. From comparing the behavioural and computational results it looks like they would correlate highly, but it would be nice to see this formally confirmed.

      The statement in the abstract that 'Overall, the findings provide a clear explanation of how self-other generalisation constrains and assists learning, how childhood adversity disrupts this through separation of internalised beliefs' makes an unjustified claim of causality between childhood adversity and separation of self - and other beliefs, although the authors only present correlations. I recommend this should be rephrased to reflect the correlational nature of the results.

      Currently, from the discussion the findings seem relevant in explaining certain aberrant social learning and -decision making processes in BPD. However, I would like to see a more thorough discussion about the practical relevance of their findings in light of their observation of comparable prediction accuracy between the two groups.

      Relatedly, the authors mention that a primary focus of mentalization based therapy for BPD is 'restoring a stable sense of self' and 'differentiating the self from the other'. These goals are very reminiscent of the findings of the current study that individuals with BPD show lower uncertainty over their own and relative reward preferences, and that they are less susceptible to social contagion. Could the observed group differences therefore be a result of therapy rather than adverse early life experiences?

      Regarding partner similarity: It was unclear to me why the authors chose partners that were 50% similar when it would be at least equally interesting to investigate self-insertion and social contagion with those that are more than 50% different to ourselves? Do the authors have any assumptions or even data that shows the results still hold for situations with lower than 50% similarity?

    3. Reviewer #2 (Public review):

      Summary:

      The paper investigates social-decision making, and how this changes after observing the behaviour of other people, in borderline personality disorder. The paper employs a task including three phases, the first where participants make decision on how to allocate rewards to oneself and to a virtual partner, the second where they observe the same task performed by someone else, and a third phase equivalent to phase one, but with a new partner. Using sophisticated computational modelling to analyse choice data, the study reports that borderline participants (versus controls) are more certain about their preferences in phase one, used more neutral priors and are less flexible during phase two, and are less influenced by partners in phase three.

      Strengths:

      The topic is interesting and important, and the findings are potentially intriguing. The computational methods employed is clever and sophisticated, at the cutting edge of research in the field.

      Weaknesses:

      There are two major weaknesses. First, the paper lacks focus and clarity. The introduction is rather vague and, after reading it, I remained confused about the paper's aims. Rather than relying on specific predictions, the analysis is exploratory. This implies that it is hard to keep track, and to understand the significance, of the many findings that are reported. Second, although the computational approach employed is clever and sophisticated, there is important information missing about model comparison which ultimately makes some of the results hard to assess from the perspective of the reader.

    4. Reviewer #3 (Public review):

      In this paper, the authors use a three-phase economic game to examine the tendency to engage in prosocial versus competitive exchanges with three anonymous partners. In particular, they consider individual differences in the tendency to infer about others' tendencies based on one's preferences and to update one's preferences based on observations of others' behavior. The study includes a sample of individuals diagnosed with borderline personality disorder and a matched sample of psychiatrically healthy control participants.

      On the whole, the experimental design is well-suited to the questions and the computational model analyses are thorough, including modern model-fitting procedures. I particularly appreciated the clear exposition regarding model parameterization and the descriptive Table 2 for qualitative model comparison. My broad question about the experiment (in terms of its clinical and cognitive process relevance): Does the task encourage competition or give participants a reason to take advantage of others? I don't think it does, so it would be useful to clarify the normative account for prosociality in the introduction (e.g., some of Robin Dunbar's work).

      The finding that individuals with BPD do not engage in self-other generalization on this task of social intentions is novel and potentially clinically relevant. The authors find that BPD participants' tendency to be prosocial when splitting points with a partner does not transfer into their expectations of how a partner will treat them in a task where they are the passive recipient of points chosen by the partner. In the discussion, the authors reasonably focus on model differences between groups (Bayesian model comparison), yet I thought this finding -- BPD participants not assuming prosocial tendencies in phase 2 while CON participant did -- merited greater attention. Although the BPD group was close to 0 on the \beta prior in Phase 2, their difference from CON is still in the direction of being more mistrustful (or at least not assuming prosociality). This may line up with broader clinical literature on mistrustfulness and attributions of malevolence in the BPD literature (e.g., a 1992 paper by Nigg et al. in Journal of Abnormal Psychology). My broad point is to consider further the Phase 2 findings in terms of the clinical interpretation of the shift in \beta relative to controls.

      On the conceptual level, I had two additional concerns. First, the authors note that they have "proposed a theory with testable predictions" (p. 4 but also elsewhere) but they do not state any clear predictions in the introduction, nor do they consider what sort of patterns will be observed in the BPD group in view of extant clinical and computational literature. Rather, the paper seems to be somewhat exploratory, largely looking at group differences (BPD vs. CON) on all of the shared computational parameters and additional indices such as belief updating and reaction times. Given this, I would suggest that the authors make stronger connections between extant research on intention representation in BPD and their framework (model and paradigm). In particular, the authors do not address related findings from Ereira (2020) and Story (2024) finding that in a false belief task that BPD participants *overgeneralize* from self to other. A critical comparison of this work to the present study, including an examination of the two tasks differ in the processes they measure, is important.

      In addition, perhaps it is fairer to note more explicitly the exploratory nature of this work. Although the analyses are thorough, many of them are not argued for a priori (e.g., rate of belief updating in Figure 2C) and the reader amasses many individual findings that need to by synthesized.

      Second, in the discussion, the authors are too quick to generalize to broad clinical phenomena in BPD that are not directly connected to the task at hand. For example, on p. 22: "Those with a diagnosis of BPD also show reduced permeability in generalising from other to self. While prior research has predominantly focused on how those with BPD use information to form impressions, it has not typically examined whether these impressions affect the self." Here, it's not self-representation per se (typically, identity or one's view of oneself), but instead cooperation and prosocial tendencies in an economic context. It is important to clarify what clinical phenomena may be closely related to the task and which are more distal and perhaps should not be approached here.

      On a more technical level, I had two primary concerns. First, although the authors consider alternative models within a hierarchical Bayesian framework, some challenges arise when one analyzes parameter estimates fit separately to two groups, particularly when the best-fitting model is not shared. In particular, although the authors conduct a model confusion analysis, they do not as far I could tell (and apologies if I missed it) demonstrate that the dynamics of one model are nested within the other. Given that M4 has free parameters governing the expectations on the absolute and relative reward preferences in Phase 2, is it necessarily the case that the shared parameters between M1 and M4 can be interpreted on the same scale? Relatedly, group-specific model fitting has virtues when believes there to be two distinct populations, but there is also a risk of overfitting potentially irrelevant sample characteristics when parameters are fit group by group.

      To resolve these issues, I saw one straightforward solution (though in modeling, my experience is that what seems straightforward on first glance may not be so upon further investigation). M1 assumes that participants' own preferences (posterior central tendency) in Phase 1 directly transfer to priors in Phase 2, but presumably the degree of transfer could vary somewhat without meriting an entirely new model (i.e., the authors currently place this question in terms of model selection, not within-model parameter variation). I would suggest that the authors consider a model parameterization fit to the full dataset (both groups) that contains free parameters capturing the *deviations* in the priors relative to the preceding phase's posterior. That is, the free parameters $\bar{\alpha}_{par}^m$ and $\bar{\beta}_{par}^m$ govern the central tendency of the Phase 2 prior parameter distributions directly, but could be reparametrized as deviations from Phase 1 $\theta^m_{ppt}$ parameters in an additive form. This allows for a single model to be fit all participants that encompasses the dynamics of interest such that between-group parameter comparisons are not biased by the strong assumptions imposed by M1 (that phase 1 preferences and phase 2 observations directly transfer to priors). In the case of controls, we would expect these deviation parameters to be centred on 0 insofar as the current M1 fit them best, whereas for BPD participants should have significant deviations from earlier-phase posteriors (e.g., the shift in \beta toward prior neutrality in phase 2 compared to one's own prosociality in phase 1). I think it's still valid for the authors to argue for stronger model constraints for Bayesian model comparison, as they do now, but inferences regarding parameter estimates should ideally be based on a model that can encompass the full dynamics of the entire sample, with simpler dynamics (like posterior -> prior transfer) being captured by near-zero parameter estimates.

      My second concern pertains to the psychometric individual difference analyses. These were not clearly justified in the introduction, though I agree that they could offer potentially meaningful insight into which scales may be most related to model parameters of interest. So, perhaps these should be earmarked as exploratory and/or more clearly argued for. Crucially, however, these analyses appear to have been conducted on the full sample without considering the group structure. Indeed, many of the scales on which there are sizable group differences are also those that show correlations with psychometric scales. So, in essence, it is unclear whether most of these analyses are simply recapitulating the between-group tests reported earlier in the paper or offer additional insights. I think it's hard to have one's cake and eat it, too, in this regard and would suggest the authors review Preacher et al. 2005, Psychological Methods for additional detail. One solution might be to always include group as a binary covariate in the symptom dimension-parameter analyses, essentially partialing the correlations for group status. I remain skeptical regarding whether there is additional signal in these analyses, but such controls could convince the reader. Nevertheless, without such adjustments, I would caution against any transdiagnostic interpretations such as this one in the Highlights: "Higher reported childhood trauma, paranoia, and poorer trait mentalizing all diminish other-to-self information transfer irrespective of diagnosis." Since many of these analyses relate to scales on which the groups differ, the transdiagnostic relevance remains to be demonstrated.

    1. eLife Assessment

      This valuable study tests a methodology for the discovery of new honey bee-repellent odorants via machine learning. The conclusions of the study are supported by solid evidence, with predicted compounds validated in the lab and the field. This work will be of interest to researchers in ecology, pest control and olfactory neuroscience.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript reports a very interesting, novel and important research angle to add to the now enormous interest in how pesticides can be toxic to beneficial insects like the honey bee. Many studies have reported on how pesticides in standard use formulations show both lethality as well as sublethal negative effects on behavior and reproduction. The authors propose to use machine learning algorithms to identify new volatile compounds that can be tested for repellency. They use as input chemical structures that are derived from chemicals that have known repellent effects as identified in their initial behavioral assays.

      Strengths:

      The conclusion is that such chemicals specific to repelling bees and not pest insects (using the fruit fly as a model for the latter) can be identified using the ML approach. Have a list of such chemicals that can be rotated among in any field application would be a benefit because of the honey bees' ability to learn its way around any kind of stimulus designed to keep it from nectar and pollen, even when they may be tainted by pesticide.

      Weaknesses:

      The use of machine learning seems well-executed and legitimate. But this is beyond my expertise. So other reviewers can maybe comment more on that.

      The behavioral data report on the use of a two-choice assay for bees in small Petrie plates. Bess can feed from two small wells place of filter paper impregnated with control or the control containing a chemical. The primary behavior, for ex in Fig 2C, is the first choice by one of the five bees in the plate of which well to feed from. For some chemical compound, there seems to be a 50:50 choice, indicating no repellent effects. In other cases the first bee making the choice chose the control, indicating possible repellent effects of the test chemical. Choices in this assay were validated in a free flying assay.

      Concerns with the choice assay:<br /> - 50-70 microliters amounts to what one hungry bee will drink. Did the first bee drink most of it, such that measures of bait consumed reflect a single bee or multiple bees?<br /> - How many bees were repelled to the control side? Was it just the one bee? Were other measures considered? E.g. time to first approach; the number of bees feeding at different time points; the total number of bees observed feeding per unit time.

    3. Reviewer #2 (Public review):

      Summary:

      The search for new repellent odors for honey bees has significant practical implications. The authors developed an iterative pipeline through machine learning to predict honey bee-repellent odors based on molecular structures. By screening a large number of candidate compounds, they identified a series of novel repellents. Behavioral tests were then conducted to validate the effectiveness of these repellents. Both the discovery and the methodological approach hold value for related fields.

      Strengths:

      * The study demonstrates that using molecular structures and a relatively small training dataset, the model could predict repellents with a reasonably high success rate. If the iterative approach works as described, it could benefit a wide range of olfaction-related fields.<br /> * The effectiveness of the predicted repellents was validated through both laboratory and field behavioral tests.

      Weaknesses:

      The small size of the training dataset poses a common challenge for machine learning applications. However, the authors did not clearly explain how their iterative approach addresses this limitation in this study. Quantitative evidence demonstrating improvements achieved in the second round of training would strengthen their claims. For instance, details on whether the success rate of predictions or the identification of higher-affinity components would be helpful. Furthermore, given that only 15 new components were added for the second round of training, it is surprising that such a small dataset could result in significant improvements.

    4. Reviewer #3 (Public review):

      The manuscript of Kowalewski et al. titled "Machine learning of honey bee olfactory behavior identifies repellent odorants in free flying bees in the field" did machine learning to predict potential candidates for honeybee repellents, which may keep foraging bees from pesticides. This is a pilot research with strong significance in the research of olfactory behavior and in pest control. However, some major issues need to be addressed to enhance the manuscript's clarity, strength, and overall coherence.

      (1) Drosophila melanogaster is not considered as a true agricultural pest. The manuscript would be more compelling if using true pests, for example, Drosophila suzukii or others.<br /> (2) For repellency test, the result relies on dosage. An attractant may become a repellent at high concentration. Test a range of concentrations for each chemicals and compare responses between honeybees and pests.<br /> (3) Be more clear about bee behavior data and their scores (as in Page 4 Results "184 training chemicals and later for 203 chemicals" and Page 10 Methods). I suggest that authors add a supplemental table with each chemical and its behavioral score, feature and reference - which ones were used for training, and which ones for testing. Also add your own behavioral test data (second input) to this table.<br /> (4) The AUC in the first validation was 0.88 (Page 4), and in Page 5, "As expected, the computational validation results based on the AUC values, show an improvement." However, there were no other AUC values to show improvement.<br /> (5) Show plots of ROC AUC curves from Round 1 and Round 2.<br /> (6) In the Discussion, the authors mentioned olfactory receptors in honeybees. It would be useful to provide a general review of the current understanding of these receptors and their (potential) functions.<br /> (7) I suggest combining Fig. 1 and Fig. 3A as one pipeline for this work.<br /> (8) Figure 2C, some sample sizes are very small, such as 2-piperidone: 1 first-choice control vs 0 first-choice repellent? Increase sample size and do statistical analysis.<br /> (9) In general, to assist reviewers, include line numbers to the manuscript.

    1. eLife Assessment

      This is a fundamental body of work reporting anatomical, molecular, and functional mapping of the central complex in Drosophila. The tools generated and the findings, which include characterization of neuromodulators used by different cells, will undoubtedly serve as a foundation for future studies of this brain region. Overall, the data are compelling and likely to have a major impact.

    2. Reviewer #1 (Public review):

      Summary:

      This work is meant to help create a foundation for future studies of the Central Complex, which is a critical integrative center in the fly brain. The authors present a systematic description of cellular elements, cell type classifications, behavioral evaluations and genetic resources available to the Drosophila neuroscience community.

      Strengths:

      The work contributes new, useful and systematic technical information in compelling fashion to support future studies of the fly brain. It also continues to set a high and transparent standard by which large-scale resources can be defined and shared.

      Weaknesses:

      manuscript p. 1<br /> "The central complex (CX) of the adult Drosophila melanogaster brain consists of approximately 2,800 cells that have been divided into 257 cell types based on morphology and connectivity (Scheer et al., 2020; Hulse et al. 2021; Wolff et al., 2015)."<br /> The 257 accumulated cell types have informational names (e.g., PBG2‐9.s‐FBl2.b‐NO3A.b) in addition to their associations with specific Gal4 lines and specific EM Body IDs. All this is very useful. I have one suggestion to help a reader trying to get a "bird's eye view" of such a large amount of detailed and multi-layered information. Give each of the 257 CX cell types an arbitrary number: 1 to 257. In fact, Supplemental File 2 lists ~277 cell types each with a number in sequence, so perhaps in principle, it is there. This could expedite the search function when a reader is trying to cross-reference CX cell type information from the text, to the Figures and/or to the Supplemental Figures. Also, the use of (arbitrary) cell type numbers could expedite the explanation of which cell types are included in any compilation of information (e.g., which ones were tested for specific NT expression).

      manuscript p 2<br /> "Figure 2 and Figure 2-figure supplements 1-4 show the expression of 52 new split-GAL4 lines with strong GAL4 expression that is largely limited to the cell type of interest. .... We also generated lines of lesser quality for other cell types that in total bring overall coverage to more than three quarters of CX cell types."<br /> This section describes the generation and identification of specific split Gal4 lines, and the presentation is generally excellent. It represents an outstanding compendium of information. My reading of the text suggests ~200 cell types have Gal4 lines that are of immediate use (having high specificity or v close-to-high). Use of an arbitrary number system (mentioned above) could augment that description for the reasons stated. For example, which of the 257 cell types are represented by split Gal4 lines that constitute the ~1/3 representing "high-quality lines "? A second comment relates to this study 's functional analysis of the contributions of CX cell types to sleep physiology. The recent literature contains renewed interest in the specific expression patterns of Gal4 lines that can promote sleep-like behaviors. In particular Gal4 line expression outside the brain (in the VNC and outside the CNS) have been raised as important elements that need be included for interpretation interpretation of sleep regulation. This present study offers useful information about a large number of expression patterns, as well as a basis with which to seek additional information., including mention of VNC expression in many cases However, perhaps I missed it, but I could not find a short description of the over-all strategy used to describe the expression patterns and feel that could be helpful. Were all Gal4 lines studied for expression in the VNC? and in the peripheral NS? It is probably published elsewhere, but even a short reprise would still be useful.

      manuscript p 9<br /> Neurotransmitter expression in CX cell types<br /> "To determine what neurotransmitters are used by the CX cell types, we carried out fluorescent in situ hybridization using EASI-FISH (Eddison and Irkhe, 2022; Close et al., 2024) on brains that also expressed GFP driven from a cell-type-specific split GAL4 line. In this way, we could determine what neurotransmitters were expressed in over 100 different CX cell types based on ...."<br /> Reading this description, I was uncertain whether the >100 cell types mentioned were tested with all the NT markers by EASI-FISH? Also, assigning arbitrary numbers to the cell types (same suggestion as above) could help the reader more readily ascertain which were the ~100 cell types classified in this context.

      manuscript p 10<br /> "Our full results are summarized below, together with our analysis of neuropeptide expression in the same cell types."<br /> I recommend specifying which Figures and Tables contain the "full results" indicated.

      NP expression in CX cell types<br /> Similar to the comments regarding studies of NT expression: were all ~100 cell types tested with each of the 17 selected NPs? Arbitrary numerical identifies could be useful for the reader to determine which cell types/ lines were tested and which were not yet tested

      manuscript p. 11<br /> "The neuropeptide expression patterns we observed fell into two broad categories."<br /> This section presents information that is extensive and extremely useful. It supports consideration of peptidergic cell signaling at a circuits level and in a systematic fashion that will promote future progress in this field. I have two comments. First, regarding the categorization of two NP expression patterns, discernible by differences in cell number: this idea mirrors one present in prior literature. Recently the classification of the transcription factor DIMM summarizes this same two-way categorization (e.g., doi: 10.1371/journal.pone.0001896). That included the fact that a single NP can be utilized by cell of either category.

      Second, regarding this comment:<br /> "In contrast, neuropeptides like those shown in Figure 6 appear to be expressed in dozens to hundreds of cells and appear poised to function by local volume transmission in multiple distinct circuits."<br /> Signaling by NPs in this second category (many small cells) suggests more local diffusion, a smaller geographic expanse compared to "volume" signaling by the sparser larger peptidergic cells. Given this, I suggest re-consideration in using the term "volume" in this instance, perhaps in favor of "local" or "paracrine". This is only a suggestion and in fact rests almost entirely on speculation/ interpretation, as the field lacks a strong empirical basis to say how far NPs diffuse and act. A recent study in the fly brain of peptide co-transmitters (doi: 10.1016/j.cub.2020.04.025) provides an instructive example in which differences between the spatial extents of long-range (peptide 1) versus short-range (peptide 2) NP signaling may be inferred in vivo.

      Spab was mentioned (Figure 6 legend) but discarded as a candidate NP to include based on a personal communication, as was Nplp1. The manuscript did not include reasons to do so, nor include a reference to spab peptide. I suggest including explicit reasons to discard candidate NPs.

      In Fig 9-supplement 1, neurotransmitter biosynthetic enzymes were measured by RNA-seq for given CX cell types to augment the cell type classification. The same methods could be used to support cell type classification regarding putative peptidergic character (in Figure 9 supplement 2) by measuring expression levels of critical, canonical neuropeptide biosynthetic enzymes. These include the proprotein convertase dPC2 (amon); the carboxypeptidase dCPD/E (silver); and the amidating enzymes dPHM; dPal1; dPal2. PHM is most related to DBM (dopamine beta monooxygenase), the rate limiting enzyme for DA production, and greater than 90% of Drosophila neuropeptides are amidated. If the authors are correct in surmising widespread use of NPs by CX cell types (and I expect they are), there could be diagnostic value to report expression levels of this enzyme set across many/most CX cell types.

      Comment #6<br /> Screen of effects on Sleep behavior<br /> This work is large in scope and as suggested likely presents excellent starting points for many follow-up studies. I again suggest assigning stable number identities to the elements described. In this case, not cell types, but split Gal4 lines. This would expedite the cross-referencing of results across the four Supplemental Files 3-6. For example, line SS00273 is entry line #27 in S Files 3 and 4, but line entry #18 in S Files 5 and 6.

      manuscript p 26<br /> Clock to CX<br /> "Not surprisingly, the connectome reveals that many of the intrinsic CX cell types with sleep phenotypes are connected by wired pathways (Figure 12 and Figure 12-figure supplement 1)."<br /> Do intrinsic CX cells with sleep phenotypes also connect by wired pathways to CX cells that do not have sleep phenotypes?

      "The connectome also suggested pathways from the circadian clock to the CX. Links between clock output DN1 neurons to the ExR1 have been described in Lamaze et al. (2018) and Guo et al. (2018), and Liang et al. (2019) described a connection from the clock to ExR2 (PPM3) dopaminergic neurons."<br /> The introduction to this section indicates a focus on connectome-defined synaptic contacts. Whereas the first two studies cited featured both physiological and anatomic evidence to support connectivity from clock cells to CX, the third did not describe any anatomical connections, and that connection may in fact be due to diffuse not synaptic signaling

      I could not easily discern the difference between Figs 12 and 12-S1? These appear to be highly-related circuit models, wherein the second features more elements. Perhaps spell out the basis for the differences between the two models to avoid ambiguity.

      "...the cellular targets of Dh31 released from ER5 are unknown, however previous work (Goda et al., 2017; Mertens et al., 2005) has shown that Dh31 can activate the PDF receptor raising the possibility of autocrine signaling."<br /> Regarding pharmacological evidence for Dh31 activation of Pdfr: strong in vivo evidence was developed in doi: 10.1016/j.neuron.2008.02.018: a strong pdfr mutation greatly reduces response to synthetic dh31 in neurons that normally express Pdfr

      manuscript p 30<br /> "Unexpectedly, we found that all neuropeptide-expressing cell types also expressed a small neurotransmitter."<br /> Did this conclusion apply only to CX cell types? - or was it also true for large peptidergic neurons? Prior evidence suggests the latter may not express small transmitters (doi: 10.1016/j.cub.2009.11.065). The question pertains to the broader biology of peptidergic neurons, and is therefore outside the strict scope of the main focus area - the CX. However, the text did initially consider peptidergic neurons outside the CX, so the information may be pertinent to many readers.

    3. Reviewer #2 (Public review):

      Summary:

      In this paper, Wolff et al. describe an impressive collection of newly created split-GAL4 lines targeting specific cell types within the central complex (CX) of Drosophila. The CX is an important area in the brain that has been involved in the regulation of many behaviors including navigation and sleep/wake. The authors advocate that to fully understand how the CX functions, cell-specific driver lines need to be created. In that respect, this manuscript will be of very important value to all neuroscientists trying to elucidate complex behaviors using the fly model. In addition, and providing a further very important finding, the authors went on to assess neurotransmitter/neuropeptides and their receptors expression in different cells of the CX. These findings will also be of great interest to many and will help further studies aimed at understanding the CX circuitries. The authors then investigated how different CX cell types influence sleep and wake. While the description of the new lines and their neurochemical identity is excellent, the behavioral screen seems to be limited.

      Strengths:

      (1) The description of dozens of cell-specific split-GAL4 lines is extremely valuable to the fly community. The strength of the fly system relies on the ability to manipulate specific neurons to investigate their involvement in a specific behavior. Recently, the need to use extremely specific tools has been highlighted by the identification of sleep-promoting neurons located in the VNC of the fly as part of the expression pattern of the most widely used dorsal-Fan Shaped Body (dFB) GAL4 driver. These findings should serve as a warning to every neurobiologist, make sure that your tool is clean. In that respect, the novel lines described in this manuscript are fantastic tools that will help the fly community.<br /> (2) The description of neurotransmitter/neuropeptides expression pattern in the CX is of remarkable importance and will help design experiments aimed at understanding how the CX functions.

      Weaknesses:

      (1) I find the behavioral (sleep) screen of this manuscript to be limited. It appears to me that this part of the paper is not as developed as it could be. The authors have performed neuronal activation using thermogenetic and/or optogenetic approaches. For some cell types, only thermogenetic activation is shown. There is no silencing data and/or assessment of sleep homeostasis or arousal threshold. The authors find that many CX cell types modulate sleep and wake but it's difficult to understand how these findings fit one with the other. It seems that each CX cell type is worthy of its own independent study and paper. I am fully aware that a thorough investigation of every CX neuronal type in sleep and wake regulation is a herculean task. So, altogether I think that this manuscript will pave the way for further studies on the role of CX neurons in sleep regulation.<br /> (2) Linked to point 1, it is possible that the activation protocols used in this study are insufficient for some neuronal types. The authors have used 29{degree sign} for thermogenetic activation (instead of the most widely used 31{degree sign}) and a 2Hz optogenetic activation protocol. The authors should comment on the fact that they may have missed some phenotypes by using these mild activation protocols.<br /> (3) There are multiple spelling errors in the manuscript that need to be addressed.

    4. Reviewer #3 (Public review):

      Summary:

      The authors created and characterized genetic tools that allow for precise manipulation of individual or small subsets of central complex (CX) cell types in the Drosophila brain. They developed split-GAL4 driver lines and integrated this with a detailed survey of neurotransmitter and neuropeptide expression and receptor localization in the central brain. The manuscript also explores the functional relevance of CX cell types by evaluating their roles in sleep regulation and linking circadian clock signals to the CX. This work represents an ambitious and comprehensive effort to provide both molecular and functional insights into the CX, offering tools and data that will serve as a critical resource for researchers.

      Strengths:

      (1) The extensive collection of split-GAL4 lines targeting specific CX cell types fills a critical gap in the genetic toolkit for the Drosophila neuroscience community.<br /> (2) By combining anatomical, molecular, and functional analyses, the authors provide a holistic view of CX cell types that is both informative and immediately useful for researchers across diverse disciplines.<br /> (3) The identification of CX cell types involved in sleep regulation and their connection to circadian clock mechanisms highlights the functional importance of the CX and its integrative role in regulating behavior and physiological states.<br /> (4) The authors' decision to present this work as a single, comprehensive manuscript rather than fragmenting it into smaller publications each focusing on separate central complex components is commendable. This decision prioritizes accessibility and utility for the broader neuroscience community, which will enable researchers to approach CX-related questions with a ready-made toolkit.

      Weaknesses:

      While the manuscript is an outstanding resource, it leaves room for more detailed mechanistic exploration in some areas. Nonetheless, this does not diminish the immediate value of the tools and data provided.

      Appraisal:

      The authors have succeeded in achieving their aims of creating well-characterized genetic tools and providing a detailed survey of neurochemical and functional properties in the CX. The results strongly support their conclusions and open numerous avenues for future research. The work effectively bridges the gap between genetic manipulation, molecular characterization, and functional assessment, enabling a deeper understanding of the CX's diverse roles.

      Impact and Utility

      This manuscript will have a significant and lasting impact on the field, providing tools and data that facilitate new discoveries in the study of the CX, sleep regulation, circadian biology, and beyond. The genetic tools developed here are likely to become a standard resource for Drosophila researchers, and the comprehensive dataset on neurotransmitter and neuropeptide expression will inspire investigations into the interplay between neuromodulation and classical neurotransmission.

      Additional Context

      By delivering an integrated dataset that spans anatomy, molecular properties, and functional relevance, the authors have created a resource that will serve the neuroscience community for years to come.

    1. eLife Assessment

      This important study investigates how hummingbird hawkmoths integrate stimuli from across their visual field to guide flight behavior. Cue conflict experiments provide solid evidence for an integration hierarchy within the visual field: hawkmoths prioritize the avoidance of dorsal visual stimuli, potentially to avoid crashing into foliage, while they use ventrolateral optic flow to guide flight control. With a more systematic quantification of specific parameter combinations, this paper would be of broad interest to enthusiasts of visual neuroscience and ethology.

    2. Reviewer #1 (Public review):

      Summary:

      Recent work has demonstrated that the hummingbird hawkmoth, Macroglossum stellatarum, like many other flying insects, use ventrolateral optic flow cues for flight control. However, unlike other flying insects, the same stimulus presented in the dorsal visual field elicits a directional response. Bigge et al., use behavioral flight experiments to set these two pathways in conflict in order to understand whether these two pathways (ventrolateral and dorsal) work together to direct flight and if so, how. The authors characterize the visual environment (the amount of contrast and translational optic flow) of the hawkmoth and find that different regions of the visual field are matched to relevant visual cues in their natural environment and that the integration of the two pathways reflects a priortiziation for generating behavior that supports hawkmoth safety rather than than the prevalence for a particular visual cue that is more prevalent in the environment.

      Strengths:

      This study creatively utilizes previous findings that the hawkmoth partitions their visual field as a way to examine parallel processing. The behavioral assay is well-established and the authors take the extra steps to characterize the visual ecology of the hawkmoth habitat to draw exciting conclusions about the hierarchy of each pathway as it contributes to flight control.

      Weaknesses:

      The work would be further clarified and strengthened by additional explanation included in the main text, figure legends, and methods that would permit the reader to draw their own conclusions more feasibly. It would be helpful to have all figure panels referenced in the text and referenced in order, as they are currently not. In addition, it seems that sometimes the incorrect figure panel is referenced in the text, Figure S2 is mislabeled with D-E instead of A-C and Table S1 is not referenced in the main text at all. Table S1 is extremely important for understanding the figures in the main text and eliminating acronyms here would support reader comprehension, especially as there is no legend provided for Table S1. For example, a reader that does not specialize in vision may not know that OF stands for optic flow. Further detail in figure legends would also support the reader in drawing their own conclusions. For example, dashed red lines in Figures 3 and 4 A and B are not described and the letters representing statistical significance could be further explained either in the figure legend or materials to help the reader draw their own conclusions.

    3. Reviewer #2 (Public review):

      Summary:

      Bigge and colleagues use a sophisticated free-flight setup to study visuo-motor responses elicited in different parts of the visual field in the hummingbird hawkmoth. Hawkmoths have been previously shown to rely on translational optic flow information for flight control exclusively in the ventral and lateral parts of their visual field. Dorsally presented patterns, elicit a formerly completely unknown response - instead of using dorsal patterns to maintain straight flight paths, hawkmoths fly, more often, in a direction aligned with the main axis of the pattern presented (Bigge et al, 2021). Here, the authors go further and put ventral/lateral and dorsal visual cues into conflict. They found that the different visuomotor pathways act in parallel, and they identified a 'hierarchy': the avoidance of dorsal patterns had the strongest weight and optic flow-based speed regulation the lowest weight.

      Strengths:

      The data are very interesting, unique, and compelling. The manuscript provides a thorough analysis of free-flight behavior in a non-model organism that is extremely interesting for comparative reasons (and on its own). These data are both difficult to obtain and very valuable to the field.

      Weaknesses:

      While the present manuscript clearly goes beyond Bigge et al, 2021, the advance could have perhaps been even stronger with a more fine-grained investigation of the visual responses in the dorsal visual field. Do hawkmoths, for example, show optomotor responses to rotational optic flow in the dorsal visual field?

    4. Reviewer #3 (Public review):

      The central goal of this paper as I understand it is to extract the "integration hierarchy" of stimulus in the dorsal and ventrolateral visual fields. The segregation of these responses is different from what is thought to occur in bees and flies and was established in the authors' prior work. Showing how the stimuli combine and are prioritized goes beyond the authors' prior conclusions that separated the response into two visual regions. The data presented do indeed support the hierarchy reported in Figure 5 and that is a nice summary of the authors' work. The moths respond to combinations of dorsal and lateral cues in a mixed way but also seem to strongly prioritize avoiding dorsal optic flow which the authors interpret as a closed and potentially dangerous ecological context for these animals. The authors use clever combinations of stimuli to put cues into conflict to reveal the response hierarchy.

      My most significant concern is that this hierarchy of stimulus responses might be limited to the specific parameters chosen in this study. Presumably, there are parameters of these stimuli that modulate the response (spatial frequency, different amounts of optic flow, contrast, color, etc). While I agree that the hierarchy in Figure 5 is consistent for the particular stimuli given, this may not extend to other parameter combinations of the same cues. For example, as the contrast of the dorsal stimuli is reduced, the inequality may shift. This does not preclude the authors' conclusions but it does mean that they may not generalize, even within this species. For example, other cue conflict studies have quantified the responses to ranges of the parameters (e.g. frequency) and shown that one cue might be prioritized or up-weighted in one frequency band but not in others. I could imagine ecological signatures of dorsal clutter and translational positioning cues could depend on the dynamic range of the optic flow, or even having spatial-temporal frequency-dependent integration independent of net optic flow.

      The second part of this concern is that there seems to be a missed opportunity to quantify the integration, especially when the optic flow magnitude is already calculated. The discussion even highlights that an advantage of the conflict paradigm is that the weights of the integration hierarchy can be compared. But these weights, which I would interpret as stimulus-responses gains, are not reported. What is the ratio of moth response to optic flow in the different regions? When the moth balances responses in the dorsal and ventrolateral region, is it a simple weighted average of the two? When it prioritizes one over the other is the response gain unchanged? This plays into the first concern because such gain responses could strongly depend on the specific stimulus parameters rather than being constant.

      The authors do explain the choice of specific stimuli in the context of their very nice natural scene analysis in Fig. 1 and there is an excellent discussion of the ecological context for the behaviors. However, I struggled to directly map the results from the natural scenes to the conclusions of the paper. How do they directly inform the methods and conclusions for the laboratory experiments? Most important is the discussion in the middle paragraph of page 12, which suggests a relationship with Figure 1B, but seems provocative but lacking a quantification with respect to the laboratory stimuli.

      The central conclusion of the first section of the results is that there are likely two different pathways mediating the dorsal and the ventrolateral response. This seems reasonable given the data, however, this was also the message that I got from the authors' prior paper (ref 11). There are certainly more comparisons being done here than in that paper and it is perfectly reasonable to reinforce the conclusion from that study but I think what is new about these results needs to be highlighted in this section and differentiated from prior results. Perhaps one way to help would be to be more explicit with the open hypotheses that remain from that prior paper.

    1. eLife Assessment

      This important Research Advance presents convincing evidence on the neuroprotective effects of reserpine in a well-established model of retinitis pigmentosa (P23H-1). This study builds on previous work establishing reserpine as a neuroprotectant in models of Leber congenital amaurosis. Here authors show reserpine's disease gene-independent influence on photoreceptor survival and emphasizes the importance of considering biological sex in understanding inherited retinal degeneration and the impact of drug treatments on mutant retinas. The work will be of interest to vision researchers as well as a broad audience in translational research.

    2. Reviewer #1 (Public review):

      Summary:

      The authors investigate the neuroprotective effect of reserpine in a retinitis pigmentosa (P23H-1) model, characterized by a mutation in the rhodopsin gene. Their results reveal that female rats show better preservation of both rod and cone photoreceptors following reserpine treatment compared to males.

      Strengths:

      This study effectively highlights the neuroprotective potential of reserpine and underscores the value of drug repositioning as a strategy for accelerating the development of effective treatments. The findings are significant for their clinical implications, particularly in demonstrating sex-specific differences in therapeutic response.

      Weaknesses:

      The main limitation is the lack of precise identification of the specific pathway through which reserpine prevents photoreceptor death.

    3. Reviewer #2 (Public review):

      Summary:

      In the manuscript entitled "Sex-specific attenuation of photoreceptor degeneration by reserpine in a rhodopsin P23H rat model of autosomal dominant retinitis pigmentosa" by Beom Song et al., the authors explore the transcriptomic differences between male and female wild-type (WT) and P23H retinas, highlighting significant gene expression variations and sex-specific trends. The study emphasizes the importance of considering biological sex in understanding inherited retinal degeneration and the impact of drug treatments on mutant retinas.

      Strengths:

      (1) Relevance to Clinical Challenges: The study addresses a critical limitation in inherited retinal degeneration (IRD) therapies by exploring a gene-agnostic approach. It emphasizes sex-specific responses, which aligns with recent NIH mandates on sex as a biological variable.<br /> (2) Multi-dimensional Methodology: Combining electroretinography (ERG), optical coherence tomography (OCT), histology, and transcriptomics strengthens the study's findings.<br /> (3) Novel Insights: The transcriptomic analysis uncovers sex-specific pathways impacted by reserpine, laying the foundation for personalized approaches to retinal disease therapy.

      Weaknesses:

      Dose Optimization<br /> The study uses a fixed dose (40 µM), but no dose-response analysis is provided. Sex-specific differences in efficacy might be influenced by suboptimal dosing, particularly considering potential differences in metabolism or drug distribution.

      Statistical Analysis

      In my opinion, there is room for improvement. How were the animals injected? Was the contralateral eye used as control? (no information in the manuscript about it!, line 390 just mentions the volume and concentration of injections). If so, why not use parametric paired analysis? Why use a non-parametric test, as it is the Mann-Whitney U? The Mann-Whitney U test is usually employed for discontinuous count data; is that the case here?<br /> Therefore, please specify whether contralateral eyes or independent groups served as controls. If contralateral controls were used, paired parametric tests (e.g., paired t-tests) would be statistically appropriate. Alternatively, if independent cohorts were used, non-parametric Mann-Whitney U tests may suffice but require clear justification.

      Sex-Specific Pathways

      The authors do identify pathways enriched in female vs. male retinas but fail to explicitly connect these to the changes in phenotype analysed by ERG and OCT. The lack of mechanistic validation weakens the argument.

      The study does not explore why female rats respond better to reserpine. Potential factors such as hormonal differences, retinal size, or differential drug uptake are not discussed.<br /> It remains open, whether observed transcriptomic trends (e.g., proteostasis network genes) correlate with sex-specific functional outcomes.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment:

      This study provides valuable insights, addressing the growing threat of multi-drug-resistant (MDR) pathogens by focusing on the enhanced efficacy of colistin when combined with artesunate and EDTA against colistin-resistant Salmonella strains. The evidence is solid, supported by comprehensive microbiological assays, molecular analyses, and in vivo experiments demonstrating the effectiveness of this synergic combination. However, the discussion on the clinical application challenges of this triple combination is incomplete, and it would benefit from addressing the high risk associated with using three potential nephrotoxic agents in vivo.

      The development of novel pharmaceutical dosage forms, pharmacokinetic, pharmacodynamic and safety analysis of the triple combination will be further conducted in our next study to provide a theoretical basis for the next clinical drug use. The discussion of potential toxicity of AS, colistin, EDTA and the triple combination have been added in line 318 to 337.

      Public Reviews:

      Reviewer #1 (Public Review):

      (1) The study focuses on a limited number of Salmonella strains, and broader testing on various MDR pathogens would strengthen the findings.

      The number of COL-resistant clinical strains that actually used was larger than that mentioned in our original article, when evaluating the antimicrobial activities of AS, EDTA, COL alone or drug combinations. But, considering that there were superfluous results of mcr-1 positive Salmonella strains, we omitted these results (Table supplement 7 and 8 in revised supplement materials) to avoid redundant data presentation in the original article. Additionally, much more gram-negative and -positive MDR bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus will be selected for the next study including the development of novel pharmaceutical dosage forms, pharmacokinetic, pharmacodynamic and safety analysis et al.

      (2) While the study elucidates several mechanisms, further molecular details could provide deeper insights into the interactions between these drugs and bacterial targets.

      In our next study, further molecular details will be focused on the regulatory targets of CheA and SpvD-related pathways, as well as the precise inhibition targets of MCR protein by the triple combination, through the generation of deletion or point mutations, and analysis of intermolecular interactions.

      (3) The time-kill experiment was conducted over 12 hours instead of the recommended 24 hours. To demonstrate a synergistic effect among the drugs, a reduction of at least 2 log10 in colony count should be shown in a 24-hour experiment. Additionally, clarifying the criteria for selecting drug concentrations is important to improve the interpretation of the results.

      The time-kill experiment of 24 hours have been re-executed and could be used to replace the Figure 1 in the original paper. The New Figure 1 has been uploaded and the change do not affect our interpretation of the result.

      Although in vitro studies have determined that with increasing dose of AS and EDTA, the antibacterial synergistic activity was gradually enhanced, and meanwhie, may also resulting in more toxic side effects. Thus, in our study, the 1/8 MICs of AS and EDTA were selected to ensure excellent antibacterial activity whereas minimize the potential toxicity. The instructions on the selection of drug concentration have been added in line 323 to 326.

      (4) While the combination of EDTA, artesunate, and colistin shows promising in vitro results against Salmonella strains, the clinical application of this combination warrants careful consideration due to potential toxicity issues associated with these compounds.

      The development of novel pharmaceutical dosage forms, pharmacokinetic, pharmacodynamic and safety analysis of the triple combination will be further conducted in our next study to provide a theoretical basis for the next clinical drug use.

      Reviewer #2 (Public Review):

      (1) The study by Zhai et al describes repurposing of artesunate, to be used in combination with EDTA to resensitize Salmonella spp. to colistin. The observed effect applied both to strains with and without mobile colistin resistance determinants (MCR). It was already known that EDTA in combination with colistin has an inhibitory effect on MCR-enzymes, but at the same time, both colistin and EDTA can contribute to nephrotoxicity, something which is also true for artesunate. Thus, the triple combination of three nephrotoxic agents has significant challenges in vivo, which is not particularly discussed in this paper.

      The discussion of potential toxicity of triple combination has been added in line 318 to 337.

      (2) The selection of strains is not very clear. Nothing is known about the sequence types of the strains or how representative they are for strains circulating in general. Thus, it is difficult to generalize from this limited number of isolates, although the studies done in these isolates are comprehensive.

      The tested strains in this study were all COL-resistant clinical isolates, and the genome sequencing and comparative analysis of these strains have not been analyzed. The antibacterial activities of different antimicrobial drugs against the S16 and S30 strains have been measured and listed in the Table supplement 9 within revised supplement materials. Considering that the number of COL-resistant clinical strains that actually used was larger than that mentioned in our original article (see the NO.1 response to the Public Reviewer #1), we think that the results obtained in this study could be representative to some extent.

      (3) Nothing is known about the susceptibility of the strains to other novel antimicrobial agents. Colistin has a limited role in the treatment of gram-negative infections, and although it can be used sometimes in combination, it is not clear why it would be combined with two other nephrotoxic agents and how this could have relevance in a clinical setting.

      The antibacterial activities of different antimicrobial drugs against the S16 and S30 strains have been measured and listed in the Table supplement 9 within revised supplement materials. Additionally, the discussion of potential toxicity of triple combination has been added in line 318 to 337.

      (4) It is not clear whether their transcriptomics analysis should at least be carried out in duplicate for reasons of being able to assess reproducibility. It is also not clear why the samples were incubated for 6 hours - no discussion is presented on the selection of a time point for this.

      As it can be seen from the time kill curves that the survival number of bacteria started to decrease after 4 h incubation of drug combinations. If the incubation time is too short (for example less than 4 h), the differentially expressed genes can not be fully revealed, while too long incubation time (such as 8 h and 12 h) may lead to a significant CFU reduction of bacteria, and result in inaccurate sequencing results. Therefore, we selected the incubation time 6 h, at which point drugs exhibited  significant antibacterial effects and there were also enough survival bacteria in the sample for transcriptome analysis. Each sample had three replications to preserve the accuracy of results.

      (5) Discussion is lacking on the reproducibility and selection of details for the methodology.

      The results obtained in this paper have been repeated several times, which indicated that the detailed operation steps described in the materials and methods section were reproducibility. To avoid redundancy, we did not include too much details in the discussion section.

      Reviewer #3 (Public Review):

      (1) Number of strains tested.

      The number of COL-resistant clinical strains that actually used was larger than that mentioned in our original article (see the NO.1 response to the Public Reviewer #1)

      (2) Response to comment: Lack of data on cytotoxicity.

      The pharmacokinetic, pharmacodynamic and safety analysis of the triple combination will be further conducted in our next study to provide a theoretical basis for the next clinical drug use.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Introduction:

      The introduction should provide more context about the pathogen Salmonella, its significance in both human and veterinary medicine, and the impact of colistin resistance in these pathogens. Salmonella is a leading cause of foodborne illnesses worldwide, resulting in substantial morbidity and mortality. It can cause a range of diseases, from gastroenteritis to more severe systemic infections like typhoid fever and invasive non-typhoidal salmonellosis. In veterinary medicine, Salmonella infections can lead to significant economic losses in livestock industries due to illness and death among animals, as well as through the contamination of animal products.

      The description has been added in the introduction section in line 47 to 53.

      (2) Results and Discussion:

      (1) While the combination of EDTA, artesunate, and colistin shows promising in vitro results against Salmonella, the clinical application of this combination warrants careful consideration due to potential toxicity issues associated with these compounds. Colistin is known for nephrotoxicity and neurotoxicity, limiting its use to severe cases where the benefits outweigh the risks. EDTA, as a chelating agent, can disrupt essential metal ions in the body, posing risks of metabolic imbalances. Although it has clinical applications, primarily in cases of heavy metal poisoning, its use as an adjuvant in antibiotics may present risks. Although generally well-tolerated for malaria, interactions of artesunate with other drugs and long-term safety in combined therapies require thorough investigation.

      The discussion of potential toxicity of triple combination has been added in line 318 to 337.

      (2) Table 1: The manuscript mentions that some strains used in the study are mcr-positive and mcr-negative. It is important to indicate in Table 1, in addition to the identification of Salmonella species, which strains are mcr-positive or mcr-negative.

      The relevant information has been added in Table 1.

      (3) Figure 2: What is the authors' hypothesis regarding the growth curves labeled "a" and "e" where strains JS and S16 resume growth 12 hours after treatment with AS? In the legend of Figure 2, describe what was used as the "positive control group."

      The growth curves labeled “a” and “e” were in Figure 1. After incubated with AC for 8 h, the survival CFUs of JS and S16 strains showed a slightly reduction, but there were still living cells. Since the bactericidal activity of AC is not strong enough to exert sustained bactericidal activity, these remaining living cells will resume growth after treatment with AC for 12 h. The “positive control group” in the legend of Figure 2 has been indicated in line 724.

      (4) What is the authors' hypothesis for the differences observed in the transcriptome and metabolome?

      The changes in gene transcription level may cause corresponding changes in protein level, but these proteins are not all involved in the bacterial metabolic process. For example, MCR protein  is encoded by the COL resistance related gene mcr, which mediates the modification of lipid A, but are not involved in the cellular metabolic process. Therefore, the transcriptome change of mcr gene may affect the protein production of MCR, nor the bacterial metabolic processes, so there are differences observed in the transcriptome and metabolome.

      (5) In some parts of the text, the authors state that artesunate and EDTA potentiate the action of colistin, which is a bacteriostatic drug. However, in other parts, the authors describe the effect of the AEC combination as bacteriostatic (Abstract: line 32; Results: line 179). How do the authors explain this inconsistency?

      The artesunate and EDTA could be regarded as “adjuvants” for the bacteriostatic drug colistin. Adjuvants itself act no or weak antibacterial effect on bacteria. For antimicrobial drugs, the “adjuvants” are compounds that generally used in combination with antibacterial drugs to re-sensitizing bacteria that have developed drug resistance. Thus, in this paper the AEC combination could be regared as bacteriostatic.

      (6) According to Brennan & Kirby (2019; doi: 10.1016/j.cll.2019.04.002), to evaluate the synergism between different drug combinations, bacterial growth curves need to be assessed over 24 hours. If the colony count is {greater than or equal to} 2 log10 lower than that of the most active antimicrobial alone, the combination is considered synergistic. Based on the growth curve results shown in Figure 1, the experiment was conducted for 12 hours, and in some cases, only a small reduction in growth was observed, even at the maximum concentration of colistin. Moreover, in some cases, the curve resumes rising between 8 and 12 hours. What is the authors' hypothesis in this case? It is important to conduct the assay over 24 hours to confirm the synergism between these drugs.

      The time-kill experiment of 24 hours have been re-executed and could be used to replace the Figure 1 in the original paper. Additionally, the phenomenon that “the curve resumes rising between 8 and 12 hours” has been explained in the response to comment of “Reviewer #1 (Recommendations For The Authors), Results and Discussion, (3) Figure 2”.

      (7) To prove that CheA and SpvD play a critical role in the effect of the AEC combination, deletion of these genes should be performed, and the mutant strains should be tested.

      The deletion of cheA and spvD will be carried out in our next study.

      (8) To demonstrate that the flagellum is no longer assembled, a transmission electron microscopy image using antibodies against flagellin should be performed, along with motility tests.

      The motility assays have been performed and displayed as Figure supplement 5 in the revised supplement materials.

      (9) Figure 7: In the X-axis legend, specify what "model" refers to.

      The “model” refers to the PBS control group that mice were treated with PBS after the intraperitoneal injection of 100 µL bacterial solution (1.31 × 10<sup>5</sup> CFU).

      (10) Figure 8 Legend: In the legend of Figure 8 (line 717), are the authors referring to E. coli or Salmonella?

      It referred to Salmonella, which has already been illustrated in the headline of Figure 8 in the revised manuscript.

      (3) Materials and Methods:

      (1) Bacterial Strains and Agents: It would be beneficial to include in the table the species of the strains used in the study, as well as the concentrations of colistin, artesunate, and EDTA utilized (lines 321 - 332).

      We have ever tried to add the above information to Table 1, but the addition of this information would make the table too large and beyond the margins, which is not conducive to the layout design of the table, so we chose to display these information in the materials and methods section instead of the table.

      (2) Antibacterial Activity In Vitro: Ensure clarity and well-defined ranges for the concentrations of colistin, EDTA, and artesunate used separately and in combinations (lines 335 - 344).

      The drug concentrations have been listed in line 369 to 371.

      (3) Time-Kill Assays: Clarify the criteria for selecting concentrations, whether based on MICs or peak and trough concentrations relevant to human and animal treatments with colistin (lines 345 - 351).

      Although in vitro studies have determined that with increasing dose of AS and EDTA, the antibacterial synergistic activity was gradually enhanced, and meanwhie, may also resulting in more toxic side effects. Thus, in our study, the 1/8 MICs of AS and EDTA were selected to ensure excellent antibacterial activity whereas minimize the potential toxicity. The instructions on the selection of drug concentration have been added in line 323 to 326.

      (4) General Corrections: Throughout the manuscript, correct typographical errors and consistently include the concentration values in mg/L alongside the MIC fractions. Specify the strains used for all experiments to ensure clarity. In the manuscript, the term "medication regimens" is used to describe the experimental setups involving different combinations of drugs tested in vitro. To improve accuracy and clarity, it is recommended to use the term "drug combination" instead. This term is more appropriate for in vitro experiments and will help avoid confusion with clinical treatment protocols.

      The typographical errors have been checked and corrected throughout the manuscript, and the “medication regimens” have been replaced by “drug combinations”.

      Reviewer #2 (Recommendations For The Authors):

      Please see above for recommendations on what can be done to improve the manuscript.

      While other omics analyses have been conducted herein, the authors do not comment on the genomic analysis of their own strains. It would have been a natural step to sequence all the strains used in the experiments.

      Due to limited program funding, the genome sequencing and comparative analysis of these strains have not been analyzed. The antibacterial activities of different antimicrobial drugs against the S16 and S30 strains have been measured and listed in the Table supplement 9 within revised supplement materials.

      Some minor comments:

      (1) There are some spelling errors - e.g. "bacteria strains" instead of "bacterial strains".

      The grammar and spelling errors have been corrected throughout the manuscript.

      (2) I would avoid words like "unfortunately".

      The word “unfortunately” has been changed.

      (3) Some MIC-values in Table 1 seem incorrect - e.g. 24 mg/L. This is not a 2-log value - the value should be 32 mg/L if the dilution series has been carried out correctly.

      We are so sorry for the mistake. The data has been corrected, and we also checked other data.

      Reviewer #3 (Recommendations For The Authors):

      Below are some suggestions.

      (1) Sentences L47 & L48 "Infections with antibiotic-resistant pathogens, especially carbapenemase-producing Enterobacteriaceae, represent an impending catastrophe of a return to the pre-antibiotic era" - this is slightly exaggerated! I also wonder if we need to use Enterobacterales instead of Enterobacteriaceae.

      The sentences in L47 & L48 have been changed. We googled the “carbapenemase-producing Enterobacteriaceae” and found it is a high-frequency word in numerous reports.

      (2) L48. The drying up of the antibiotic discovery pipeline is NOT necessarily the reason to use colistin as a drug of last resort!

      The sentence has been revised.

      (3) The manuscript requires extensive English editing but has merit based on the strong compilation of data.

      We have optimized and revised the writing of the whole article.

      (4) I suggest the authors have some data on the cytotoxicity of AS alone, colistin alone, and both of them against eucaryotic cells (Caco-) and if possible determine IS (index selectivity). This additional experiment will strengthen the quality of the manuscript. The authors must also explain how to put such tri-therapy into practice.

      The development of novel pharmaceutical dosage forms, pharmacokinetic, pharmacodynamic and safety analysis of the triple combination will be further conducted in our next study to provide a theoretical basis for the next clinical drug use. The discussion of potential toxicity of AS, colistin, EDTA and the triple combination have been added in line 318 to 337.

    2. eLife Assessment

      This valuable study addresses the growing threat of multi-drug-resistant (MDR) pathogens by focusing on the enhanced efficacy of colistin when combined with artesunate and EDTA against colistin-resistant Salmonella strains. The evidence is solid, supported by comprehensive microbiological assays, molecular analyses, and in vivo experiments demonstrating the effectiveness of this synergic combination.

    3. Reviewer #1 (Public review):

      Summary:

      The study addresses the growing threat of multi-drug-resistant (MDR) pathogens, focusing on the efficacy of colistin (COL), a last-resort antibiotic, and its enhanced activity when combined with artesunate (AS) and ethylenediaminetetraacetic acid (EDTA) against colistin-resistant Salmonella strains. The researchers aim to explore whether these combinations can restore the effectiveness of colistin and understand the underlying mechanisms. The study used a combination of microbiological and molecular techniques to evaluate the antibacterial activity and mechanisms of action of COL, AS, and EDTA. Key methods included: (i) Antimicrobial Susceptibility Testing: Determining minimum inhibitory concentrations (MICs) of COL, AS, and EDTA, both alone and in combination, against various Salmonella strains; (ii) Time-Kill Assays: Measuring bacterial growth inhibition over time with different drug combinations; (iii) Fluorescent Probe-Permeability Assays: Assessing cell membrane integrity using fluorescent dyes; (iv) Proton Motive Force Assay: Evaluating the impact on the electrochemical proton gradient (PMF); (v) Reactive Oxygen Species (ROS) Measurement: Quantifying intracellular ROS levels; (vi) Scanning Electron Microscopy (SEM): Observing morphological changes in bacterial cells; and (vii) Omics Analysis: Transcriptome and metabolome profiling to identify differentially expressed genes (DEGs) and significant differential metabolites (SDMs). The combination of COL, AS, and EDTA (AEC) showed significant antibacterial activity against colistin-resistant Salmonella strains, reducing the MICs and enhancing bacterial killing compared to individual treatments. The AEC treatment caused extensive damage to both the outer and inner bacterial membranes, as evidenced by increased fluorescence of membrane-impermeant dyes and SEM images showing deformed cell membranes. AEC treatment selectively collapsed the Δψ component of PMF, indicating disruption of vital cellular processes. The combination therapy increased intracellular ROS levels, contributing to bacterial killing. Transcriptome data revealed changes in genes related to two-component systems, flagellar assembly, and ABC transporters. Metabolome analysis highlighted disruptions in pathways such as arachidonic acid metabolism. The findings suggest that AS and EDTA can potentiate the antibacterial effects of colistin by disrupting bacterial membranes, collapsing PMF, and increasing ROS levels. This combination therapy could serve as a promising approach to combat colistin-resistant Salmonella infections.

      Strengths:

      - The study employs a wide range of techniques to thoroughly investigate the antibacterial mechanisms and efficacy of the drug combinations.<br /> - The results are consistent across multiple assays and supported by both in vitro and in vivo data.<br /> - Combining AS and EDTA with COL represents a novel strategy to tackle antibiotic resistance.

      Weaknesses:

      - The methodology used for interpreting and reporting time-kill assay results.

      Comments on revised version:

      Overall, the authors have adequately addressed the suggestions provided.

    4. Reviewer #2 (Public review):

      The study by Zhai et al describes repurposing of artesunate, to be used in combination with EDTA to resensitize Salmonella spp. to colistin. The observed effect applied both to strains with and without mobile colistin resistance determinants (MCR). It is known since earlier that EDTA in combination with colistin has an inhibitory effect on MCR-enzymes, but at the same time both colistin and EDTA can contribute to nephrotoxicity, something which is also true for artesunate. Thus, the triple combination of three nephrotoxic agents has significant challenges in vivo, which is not particularly discussed in this paper.

      The study is sound from a methodological point of view and has many interesting angles to address mechanistically how the three compounds can synergize.

      Comments on revised version:

      After having read the revised version, I have the following comments:

      (1) The antimicrobials tested in Figure 9 are not really very relevant. I would want to see carbapenems and novel beta-lactam/beta-lactamase inhibitors rather than many old drugs with a debatable role in the treatment of Gram-negative infections. At least the authors should be able to test carbapenem resistance<br /> (2) The genomics analysis of the strains should be fairly quick - both in terms of characterizing the mobile resistome and the sequence types. There are publicly available databases for this purpose

      The rest of my comments have been addressed in the revised version. There are still some remaining valid points from other reviewers that could be debatable whether they should be address. The authors refer to plans of studying these aspects in subsequent studies, but it could be discussed whether some of the data could be expected already in this study.

    1. eLife Assessment

      This study provides important insights into how IL-1 cytokines protect cells against SARS-CoV-2 infection. By inducing a non-canonical RhoA/ROCK signaling pathway, IL-1beta inhibits the ability of SARS-CoV-2 infected cells to fuse with uninfected cells and produce syncytia. Convincing evidence underlies the identification of the key signaling components required for this inhibitory phenotype, and suggests that this process may also function to inhibit SARS-CoV-2 infection in vivo.

    2. Reviewer #1 (Public review):

      Summary:

      SARS-CoV-2 infection induces syncytia formation, which promotes viral transmission. In this paper, the authors aimed to understand how host-derived inflammatory cytokines IL-1α/β combat SARS-CoV-2 infection.

      Strengths:

      First, they used a cell-cell fusion assay developed previously to identify IL-1α/β as the cytokines that inhibit syncytia formation. They co-cultured cells expressing the spike protein and cells expressing ACE2 and found that IL-1β treatment decreased syncytia formation and S2 cleavage.

      Second, they investigated the IL-1 signaling pathway in detail, using knockouts or pharmacological perturbation to understand the signaling proteins responsible for blocking cell fusion. They found that IL-1 prevents cell-cell fusion through MyD88/IRAK/TRAF6 but not TAK1/IKK/NF-κB, as only knocking out MyD88/IRAK/TRAF6 eliminates the inhibitory effect on cell-cell fusion in response to IL-1β. This revealed that the inhibition of cell fusion did not require a transcriptional response and was mediated by IL-1R proximal signaling effectors.

      Third, the authors identified RhoA/ROCK activation by IL-1 as the basis for this inhibition of cell fusion. By visualizing a RhoA biosensor and actin, they found a redistribution of RhoA to the cell periphery and cell-cell junctions after IL-1 stimulation. This triggered the formation of actin bundles at cell-cell junctions, preventing fusion and syncytia formation. The authors confirmed this molecular mechanism by using constitutively active RhoA and an inhibitor of ROCK.<br /> Diverse Cell types and in vivo models were used, and consistent results were shown across diverse models. These results were convincing and well-presented.

      In summary, the authors have provided compelling evidence regarding how IL-1 signaling induces a prophylactic response to viral infection. While the mechanistic details of how IL-1R and MyD88 induce RhoA/Rock pathway to mediate actin remodeling remain unclear, this manuscript serves as the basis for future studies.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Zheng et al investigated the role of inflammatory cytokines in protecting cells against SARS-CoV-2 infection. They demonstrate that soluble factors in the supernatants of TLR stimulated THP1 cells reduce fusion events between HEK293 cells expressing SARS-CoV-2 S protein and the ACE2 receptor. Using qRT-PCR and ELISA, they demonstrate that IL-1 cytokines are (not surprisingly) upregulated by TLR treatment in THP1 cells. Further, they convincingly demonstrate that recombinant IL-1 cytokines are sufficient to reduce cell-to-cell fusion mediated by the S protein. Using chemical inhibitors and CRISPR knock-out of key IL-1 receptor signaling components in HEK293 cells, they demonstrate that components of the myddosome (MYD88, IRAK1/4, and TRAF6) are required for fusion inhibition, but that downstream canonical signaling (i.e., TAK1 and NFKB activation) is not required. Instead, they provide evidence that IL-1-dependent non-canonical activation of RhoA/Rock is important for this phenotype. Importantly, the authors demonstrate that expression of a constitutively active RhoA alone is sufficient to inhibit fusion and that chemical inhibition of Rock could reverse this inhibition. The authors followed up these in vitro experiments by examining the effects of IL-1 on SARS-COV-2 infection in vivo and they demonstrate that recombinant IL-1 can reduce viral burden and lung pathogenesis in a mouse model of infection. Use of a ROCK inhibitor in IL-1 treated mice restored the ability of SARS-CoV-2 to spread in the lung, suggesting that this inhibitory process functions in vivo.

      Strengths:

      (1) The bioluminescence cell-cell fusion assay provides a robust quantitative method to examine cytokine effects on viral glycoprotein-mediated fusion.

      (2) The study identifies a new mechanism by which IL-1 cytokines can limit virus infection.

      (3) The authors tested IL-1 mediated inhibition of fusion induced by many different coronavirus S proteins and several SARS-CoV-2 strains.

      (4) The authors demonstrate that recombinant IL-1 mediated inhibition of SARS-CoV-2 infection in mice is dependent on the RhoA/Rock pathway.

    1. eLife Assessment

      This fundamental study demonstrates the role of TRPV4 channels in mechano-transduction during carcinoma progression, showing how high cell confluence in DCIS cells activates pathways regulating calcium homeostasis, cell volume reduction, and invasiveness. The authors addressed all prior concerns, with the shRNA knockdown providing compelling evidence for TRPV4's role in metastasis.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasmamembrane localization correlates with high-grade DCIS cells in patient tissue samples. Specifically in invasive MCF10DCIS.com cells they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting the fact that there are high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility and invasiveness will have a great impact in the cancer field and potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. Authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, pharmacological and genetic means, and showed a good correlation between different phenomena.

      All of my previous concerns have been addressed. The quality of the manuscript has improved significantly.

    3. Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient's samples). Activation and inhibition of TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and proinvasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasma membrane localization correlates with highgrade DCIS cells in patient tissue samples.

      Specifically in invasive MCF10DCIS.com cells, they showed that overcrowding or overconfluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting to the fact that there are a high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PMlocalized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechanotransduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility, and invasiveness will have a great impact in the cancer field and are potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. The authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, and pharmacological means, and showed a good correlation between different phenomena.

      Weaknesses:

      A major emphasis in the study is on pharmacological means to relate TRPV4 channel function to the phenotype. I believe the use of genetic means would greatly enhance the impact and provide compelling proof for the involvement of TRPV4 channels in the associated phenotype.

      In this regard, I wonder if siRNA-mediated knockdown of TRPV4 in over-confluent cells (or knockout) would lead to an increase in cell volume and normalize the intracellular calcium levels back to normal, thus ultimately leading to a decrease in cell invasiveness.

      We greatly appreciate the positive feedback regarding the design of our study and the novelty of our findings. We also acknowledge the valuable suggestion to complement our pharmacological approaches with genetic manipulation of TRPV4.

      In response to the comment regarding siRNA-mediated knockdown or knockout of TRPV4, we fully agree that this would further substantiate our findings. In the revised manuscript, we implemented shRNA targeting TRPV4 to investigate its functional effects on intracellular calcium level changes, cell volume plasticity, and invasiveness phenotypes, assessed through singlecell motility assays under cell crowding or hyperosmotic stress. These results have been incorporated into the revised manuscript, and detailed descriptions of these findings are included below.

      Using the shRNA approach that resulted in ~50% reduction of TRPV4 expression

      (Supplementary Figure 6A and 6B show TRPV4 expression levels via IF and immunoblots, respectively), we examined the effect of reduced TRPV4 on intracellular calcium levels in MCF10DCIS.com cells under normal density (ND) and stress conditions (confluent; Con and hyperosmotic; PEG) using Fluo-4 AM imaging (Fig. 4S-X). We found that shRNA TRPV4 slightly decreased calcium levels in ND cells, likely due to fewer active calcium channels at the plasma membrane resulting from lower TRPV4 expression (as shown in the summary plot in Fig. 4W). With fewer active calcium channels, cells treated with shRNA TRPV4 exhibited less reduction in intracellular calcium levels under cell crowding conditions compared to control cells. Additionally, hyperosmotic stress using PEG 300 induced smaller calcium spikes in shRNA cells compared to the significant spike observed in control cells. This reduced calcium response to Con and hyperosmotic stress in shRNA cells was reflected in the decreased cell volume reduction by PEG 300 shown in Fig. 4Y. Consequently, shRNA-mediated TRPV4 reduction impaired cell volume plasticity in MCF10DCIS.com cells and abolished the pro-invasive mechanotransduction capability involving cell volume reduction, as evidenced by no increase in cell motility (both cell diffusivity and directionality) under hyperosmotic conditions (Fig. 5H-J). These findings demonstrate the critical role of TRPV4 in conferring pro-invasive

      mechanotransduction capability to MCF10DCIS.com cells through cell volume reduction.

      Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      Strengths:

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient samples). Activation and inhibition of the TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

      Weaknesses:

      However, I do think that there are several additional experiments that could strengthen the conclusions of this work. A critical limitation is the absence of genetic ablation of the TRPV4 gene to confirm its essential role in the response to cell crowding.

      We are deeply grateful for the positive assessment of our study and its contribution to advancing our understanding of mechanical signaling in cancer progression. We also greatly appreciate the suggestion to incorporate genetic ablation experiments to further validate the role of TRPV4 in cell crowding responses.

      As noted in our response to Reviewer #1, we employed an shRNA approach to investigate the functional effects of TRPV4 knockdown on intracellular calcium level changes, cell volume plasticity, and invasiveness phenotypes. We assessed these effects using Fluo-4 AM calcium assay, single-cell volume measurements, and single-cell motility assays under cell crowding or hyperosmotic stress. These results have been incorporated into the revised manuscript and are described in detail in our response to Reviewer #1's "weaknesses" comment.

      Reducing TRPV4 expression levels by shRNA diminished mechanosensing intracellular calcium changes under cell crowding and hyperosmotic conditions using PEG 300 treatment. Furthermore, a significantly reduced cell volume plasticity was observed under hyperosmotic conditions in shRNA treated cells compared to control cells (Fig. 4S-X). This diminished mechanosensing capability abolished the pro-invasive mechanotransduction effect, as assessed by single cell motility under hyperosmotic conditions (Fig. 5H-J). These findings demonstrate the critical role of TRPV4 in conferring pro-invasive mechanotransduction capability to MCF10DCIS.com cells through cell volume reduction.

      Reviewer #1 (Recommendations for the authors):

      The way the results or discussion section is written. It was a little confusing for me to relate to some phenomena. For example, it is not clear how TRPV4 inhibition (due to overcrowding) leads to a decrease in intercellular calcium levels, especially when TRPV4 channels were intercellular (not on the PM) to begin with (in normal density (ND) conditions). Along the same lines, how GSK219 causes a dip in calcium levels in ND cells when TRPV4 channels are primarily intercellular (Figure 4E). If most of the TRPV4 channels that are translocated to the PM in response to cell crowding are in an inactive state, how do they confer enhanced cell volume plasticity relative to non-invasive cell lines?

      Thank you very much for raising this important point. We fully agree with your concern and have significantly revised the manuscript to clarify this aspect. Specifically, we have emphasized that a modest level of TRPV4 channels are constitutively active at the plasma membrane in normal density (ND) cells. This is now discussed in detail in the context of Fig. 4:

      Page 14: “Considering these factors, we hypothesized that cell crowding might inhibit calcium-permeant ion channels that are constitutively active at the plasma membrane, including TRPV4, which would then lower intracellular calcium levels and subsequently reduce cell volume via osmotic water movement.”

      Page 16-17: “… However, the temporal profile of Fluo-4 intensity in Fig. 4E, which corresponds to the time points marked in Fig. 4D (t<sub>1</sub>: baseline and t<sub>2</sub>: dip), clearly shows the dip at t<sub>2</sub>, indicated by ΔCa (the vertical dashed line between the dip and baseline). This modest Fluo-4 dip at t<sub>2</sub> represents the inhibition of activity by GSK219 on a small population of constitutively active TRPV4 channels at the plasma membrane under ND conditions.

      In Con cells, 1 nM GSK219 caused a smaller dip in Fluo-4 intensity compared to the one observed in ND cells, with no subsequent changes. This is likely due to fewer constitutively active TRPV4 at the plasma membrane in Con cells than in ND cells. …These findings suggest that a substantial portion of TRPV4 channels relocated to the plasma membrane under cell crowding was inactive, and some constitutively active TRPV4 channels already present in the membrane became inactive as a result of cell crowding.”

      'Internalization' might be a better word than 'uptake' in the following line in the results section

      "...activating TRPV4 under cell crowding conditions triggered channel uptake, indicating that TRPV4 trafficking depended on the channel's activation status."

      Thank you very much for this suggestion. As recommended, we replaced ‘uptake’ with internalization’ on page 18: 

      “However, in Con cells, where a large number of inactive TRPV4 channels are likely located at the plasma membrane, GSK101 treatment notably reduced plasma membrane-associated TRPV4 in a dose-dependent manner through internalization (Fig. 4O, 4Q), consistent with previous findings65. These data suggest that plasma membrane TRPV4 levels were largely

      regulated by the channel activity status. Specifically, channel activation led to the internalization of TRPV4, while channel inhibition promoted the relocation of TRPV4 to the plasma membrane.”

      1. Out of curiosity:

      2. Is there any information on what the intercellular TRPV4 channels are doing in the cytosol and in the nucleus? Is there any role of intercellular calcium stores in the proposed pathway?

      We greatly appreciate this insightful question. Although we were unable to find studies specifically exploring the roles of cytosolic TRPV4, a recent study (Reference 74) identified a role for nuclear TRPV4 in regulating calcium within the nucleus. We speculate that when TRPV4 activity is severely impaired, such as with additional TRPV4 inhibition under cell crowding conditions, some TRPV4 channels may be redirected to the nucleus. This redistribution could help maintain nuclear calcium homeostasis.

      This discussion is included on page 18 of the manuscript:

      “These findings suggest that further TRPV4 inhibition under crowding conditions triggers a distinct trafficking alteration. Recent studies have implicated nuclear TRPV4 in regulating nuclear Ca2+ homeostasis and Ca2+-regulated transcription74. In light of this study and our findings, TRPV4 may relocate to the nucleus as a compensatory mechanism to maintain nuclear calcium regulation. This relocation could reflect an adaptive response to preserve calcium-dependent transcriptional programs or other nuclear processes essential for cell survival under mechanical stress.”

      One recommendation is to add some explanation or some minor details for the convenience of the reader. For example:

      At normal or lower confluence, cells show an acute large dip in intercellular calcium when an inhibitor is applied implying that there are a few TRPV4 channels on the PM and they are constitutively active.

      Thank you very much for highlighting this important point and for the helpful suggestion to improve clarity. We have significantly revised the text associated with Fig. 4 to ensure this point is clear. Specifically, we have added the following explanation on page 16:

      "This modest Fluo-4 dip at t2 represents the inhibition of activity by GSK219 on a small population of constitutively active TRPV4 channels at the plasma membrane under ND conditions."

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 1. The authors frequently change the medium to prevent acidification in overconfluent cultures. A cell viability assay should be performed to ensure that the over-confluent cells remain healthy and viable during the experiments. There are commercial kits that can be easily used to quantify the number of viable cells and the extent of cell toxicity. The number of viable cells would provide a more reliable basis for comparison between normal density and overconfluent conditions.

      Thank you very much for raising this important point. We have consistently observed that cell crowding does not induce significant cell death in MCF10DCIS.com cells. To address your recommendation, we performed a viability assay using propidium iodide (PI) to selectively stain dead cells and WGA-488 to stain all live cells. Cell death was quantified under normal density (ND) conditions and at 1, 3, 5, 7, and 10 days post-confluence.

      Our results indicate that cells remain similarly viable post-confluence, with minimal cell death

      (~1.5%) compared to ND cells (~0.75%). These findings are summarized in Supplementary Figure 2, demonstrating that over-confluent cultures remain healthy and viable during the experiments.

      (2) Figure 2. To determine whether the reduction in cell volume is reversible, over-confluent cells can be further diluted back to normal density. Additionally, the reversibility of TRPV4 channel trafficking to the plasma membrane should be assessed under these conditions in IF experiments and cell surface biotinylation.

      Thank you for this suggestion. We reseeded the previously overcrowded (OC) cells at normal density and observed that their TRPV4 distribution predominantly returned to being intracellular, with only modest plasma membrane localization, as shown by line analysis (Supplementary Figure 10A-C, page 13). Furthermore, their invasiveness decreased to levels comparable to the original normal density (ND) cells (Supplementary Figure 3C and 3E, page 6). These results demonstrate the reversibility of TRPV4 trafficking changes and the increase in invasiveness under mechanical stress.

      Page 6. "The enhanced invasiveness of MCF10DCIS.com cells under cell crowding was largely reversible. When OC cells were reseeded at normal density for invasion assays, their invasive cell fraction decreased to approximately 15%, slightly lower (p = 0.012) than the initial value of around 24% (Suppl. Fig. 3C, 3E)."

      Page 13. “We investigated whether TRPV4 relocation to the plasma membrane induced by cell crowding is reversible, as suggested by its impact on invasiveness (Suppl. Fig. 3E). To test this, previously OC MCF10DCIS.com cells were reseeded under ND conditions. We then assessed TRPV4 localization via immunofluorescence (IF) imaging to determine if most channels returned to the cytoplasm and could be relocated to the plasma membrane under mechanical stress, such as hyperosmotic conditions. Consistent with their initial ND state, reseeded ND MCF10DCIS.com cells displayed intracellular TRPV4 distribution (Suppl. Fig. 10A). Upon exposure to hyperosmotic stress (74.4 mOsm/Kg PEG300), TRPV4 was again relocated to the plasma membrane (Suppl. Fig. 10B). These findings, quantified through line analysis (Suppl. Fig. 10C), demonstrate that the mechanosensing response of MCF10DCIS.com cells is reversible.”

      (3) Figure 3B. A control using intracellular proteins such as GAPDH or Tubulin is missing. Including this control would help exclude the possibility of cell rupture or compromised cell membranes in crowded environments, which is very common in a cell crowding environment.

      Thank you very much for pointing this out. The control lanes (GAPDH) were already included in the full gel results shown in Supplementary Figure 5. For the immunoprecipitation and immunoblotting of surface-biotinylated cell lysates, we did not expect to detect GAPDH; however, some GAPDH signals were still observed. As shown for MCF10DCIS.com cells, less GAPDH was detected under OC conditions, but the immunoprecipitated samples displayed significantly higher levels of TRPV4 on the cell surface compared to ND cells (Supplementary Figure 5A). For the whole cell lysates, TRPV4 protein levels were comparable across different cell lines based on the immunoblot results, with consistent GAPDH signals serving as a loading control (Supplementary Figure 5B).

      (4) Figure 4. To convincingly demonstrate TRPV4 relocation to the plasma membrane, IF should be performed under non-permeable conditions (i.e., without detergents like saponin). This approach ensures that only plasma membrane proteins are accessible to antibodies, reducing intracellular background. The same approach should be applied to Piezo1 and TfR.

      Thank you for this suggestion. We observed that under non-permeable conditions, primary antibodies could still access intracellular proteins. To address this issue, we employed extracellular-binding TRPV4 antibodies to selectively detect TRPV4 relocation to the plasma membrane under hyperosmotic conditions (74.4 mOsm/kg PEG 300) in live MCF10DCIS.com cells, as shown in Supplementary Figure 9. These results clearly demonstrate the plasma membrane relocation of TRPV4 under hyperosmotic conditions, distinguishing it from control conditions. Unfortunately, we were unable to identify high-affinity extracellular-binding antibodies for Piezo1 and TfR. Nevertheless, our findings strongly support the mechanosensing plasma membrane relocation of TRPV4.

      Essential Weakness:

      Throughout the study, only TRPV4 inhibitors and activators were used to show that TRPV4 relocation is associated with intracellular calcium concentration and cell size changes. It is crucial to use TRPV4 KO or KD cells to confirm that the observed effects are specific to TRPV4 and not due to off-target effects on other proteins. Additionally, fusing a plasma membrane targeting sequence to TRPV4 to make a constitutive plasma membrane-localized construct could demonstrate the opposite effect.

      Thank you very much for this important comment. As noted in our response to Reviewer #1, we employed an shRNA approach to investigate the functional effects of TRPV4 knockdown on intracellular calcium level changes, cell volume plasticity, and invasiveness phenotypes. We assessed these effects using Fluo-4 AM calcium assay, single-cell volume measurements, and single-cell motility assays under cell crowding or hyperosmotic stress. These results have been incorporated into the revised manuscript and are described in detail in our response to Reviewer #1's "weaknesses" comment.

      Reducing TRPV4 expression levels by shRNA diminished mechanosensing intracellular calcium changes under cell crowding and hyperosmotic conditions using PEG 300 treatment. Furthermore, a significantly reduced cell volume plasticity was observed under hyperosmotic conditions in shRNA treated cells compared to control cells (Fig. 4S-X). This diminished mechanosensing capability abolished the pro-invasive mechanotransduction effect, as assessed by single cell motility under hyperosmotic conditions (Fig. 5H-J). These findings demonstrate the critical role of TRPV4 in conferring pro-invasive mechanotransduction capability to MCF10DCIS.com cells through cell volume reduction.

      Minor Points:

      The introduction section is poorly written; many results currently included in the introduction would be more appropriately placed in the discussion section. The long redundant introduction makes the article hard to read through.

      Thank you very much for pointing this out. In the revised introduction, we have significantly reduced references to the results, streamlining the section to make it more concise and focused. This adjustment ensures the introduction is clearer and avoids redundancy, improving the readability of the manuscript.

    1. eLife Assessment

      In an important fMRI study with an elegant experimental design and rigorous cross-decoding analyses, this work shows a convincing dissociation between two parietal regions in visually processing actions. Specifically, aIPL is found to be sensitive to the causal effects of observed actions, while SPL is sensitive to the patterns of body motion involved in those actions. The work will be of broad interest to cognitive neuroscientists, particularly vision and action researchers.

    2. Reviewer #1 (Public review):

      Summary:

      The authors report a study aimed at understanding the brain's representations of viewed actions, with a particular aim to distinguish regions that encode observed body movements, from those that encode the effects of actions on objects. They adopt a cross-decoding multivariate fMRI approach, scanning adult observers who viewed full-cue actions, pantomimes of those actions, minimal skeletal depictions of those actions, and abstract animations that captured analogous effects to those actions. Decoding across different pairs of these action conditions allowed the authors to pull out the contributions of different action features in a given region's representation. The main hypothesis, which was largely confirmed, was that the superior parietal lobe (SPL) more strongly encodes movements of the body, whereas the anterior inferior parietal lobe (aIPL) codes for action effects of outcomes. Specifically, region of interest analyses showed dissociations in the successful cross-decoding of action category across full-cue and skeletal or abstract depictions. Their analyses also highlight the importance of the lateral occipito-temporal cortex (LOTC) in coding action effects. They also find some preliminary evidence about the organisation of action kinds in the regions examined, and take some steps to distinguishing the differences and similarities of action-evoked patterns in primary visual cortex and the other examined regions.

      Strengths:

      The paper is well-written, and it addresses a topic of emerging interest where social vision and intuitive physics intersect. The use of cross-decoding to examine actions and their effects across four different stimulus formats is a strength of the study. Likewise the a priori identification of regions of interest (supplemented by additional full-brain analyses) is a strength. Finally, the authors successfully deployed a representational-similarity approach that provides more detailed evidence about the different kinds of action features that seem to be captured in each of the regions that were examined.

      Weaknesses:

      Globally, the findings provide support for the predicted anatomical distinctions, and for the distinction between body-focused representations of actions and more abstract "action effect structures". Viewed more narrowly, the picture is rather complex, and the patterns of (dis)similarity in the activity evoked by different action kinds do not always divide neatly. Probably, examining many more kinds of actions with the multi-format decoding approach developed here will be needed to more effectively disentangle the various contributions of movement, posture, low-level visual properties, and action outcomes/effects.

    1. eLife Assessment

      Wang et al. presented visual (dot) motion and/or the sound of a walking person and found solid evidence that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm, with some demonstration that the gait rhythm is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition). The valuable findings will be of wide interest to those examining biological motion perception and oscillatory processes more broadly. Some of the theoretical interpretations concerning entrainment must remain speculative when the authors cannot dissociate evoked responses from entrained oscillatory effects.

    2. Reviewer #1 (Public review):

      Summary:

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

      Strengths:

      The three experiments are well designed and the various conditions are well controlled. The rationale of the study is clear, and the manuscript is pleasant to read. The analysis choices are easy to follow, and mostly appropriate.

      Weaknesses:

      On revision, the authors are careful not to overinterpret an analysis where the statistical test is not independent from the data (channel) selection criterion.

    3. Reviewer #2 (Public review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      In the first revisions of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. In a further revision, it is clarified better how the results relate to the various competing hypotheses on how biological motion is processed.

      Weaknesses:

      Still, it is my view that the findings of the study are basic neural correlate results that offer only minimal constraint towards the question of how the brain realizes the integration of multisensory information in the service of biological motion perception, and the data do not address the causal relevance of observed neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion that offer some constraint toward mechanism, and it is possible that the effects are behaviorally relevant, but based on the current task and associated analyses this has not been shown (or could not have been, given the paradigm).

    1. eLife Assessment

      This study empirically investigates the neural noise hypothesis of developmental dyslexia using electroencephalography (EEG) during a spoken language task and 7T magnetic resonance spectroscopy (MRS). The convincing findings indicate no evidence of an imbalance between excitatory and inhibitory (E/I) brain activity in adolescents and young adults with dyslexia compared to controls, thereby challenging the neural noise hypothesis. This research is valuable for advancing our understanding of the neural mechanisms underlying dyslexia and offers broader insights into the neural processes involved in reading development.

    2. Reviewer #1 (Public review):

      Summary:

      "Neural noise", here operationalized as an imbalance between excitatory and inhibitory neural activity, has been posited as a core cause of developmental dyslexia, a prevalent learning disability that impacts reading accuracy and fluency. This is study is the first to systematically evaluate the neural noise hypothesis of dyslexia. Neural noise was measured using neurophysiological (electroencephalography [EEG]) and neurochemical (magnetic resonance spectroscopy [MRS]) in adolescents and young adults with and without dyslexia. The authors did not find evidence of elevated neural noise in the dyslexia group from EEG or MRS measures, and Bayes factors generally informed against including the grouping factor in the models. Although the comparisons between groups with and without dyslexia did not support the neural noise hypothesis, a mediation model that quantified phonological processing and reading abilities continuously revealed that EEG beta power in the left superior temporal sulcus was positively associated with reading ability via phonological awareness. This finding lends support for analysis of associations between neural excitatory/inhibitory factors and reading ability along a continuum, rather than as with a case/control approach, and indicates the relevance of phonological awareness as an intermediate trait that may provide a more proximal link between neurobiology and reading ability. Further research is needed across developmental stages and over a broader set of brain regions to more comprehensively assess the neural noise hypothesis of dyslexia, and alternative neurobiological mechanisms of this disorder should be explored.

      Strengths:

      The inclusion of multiple methods of assessing neural noise (neurophysiological and neurochemical) is a major advantage of this paper. MRS at 7T confers an advantage of more accurately distinguishing and quantifying glutamate, which is a primary target of this study. In addition, the subject-specific functional localization of the MRS acquisition is an innovative approach. MRS acquisition and processing details are noted in the supplementary materials using according to the experts' consensus recommended checklist (https://doi.org/10.1002/nbm.4484). Commenting on rigor the EEG methods is beyond my expertise as a reviewer.<br /> Participants recruited for this study included those with a clinical diagnosis of dyslexia, which strengthens confidence in the accuracy of the diagnosis. The assessment of reading and language abilities during the study further confirms the persistently poorer performance of the dyslexia group compared to the control group.<br /> The correlational analysis and mediation analysis provide complementary information to the main case-control analyses, and the examination of associations between EEG and MRS measures of neural noise is novel and interesting.<br /> The authors follow good practice for open science, including data and code sharing. They also apply statistical rigor, using Bayes Factors to support conclusions of null evidence rather than relying only on non-significant findings. In the discussion, they acknowledge the limitations and generalizability of the evidence and provide directions for future research on this topic.

      Appraisal:

      The authors present a thorough evaluation of the neural noise hypothesis of developmental dyslexia in a sample of adolescents and young adults using multiple methods of measuring excitatory/inhibitory imbalances as an indicator of neural noise. The authors concluded that there was not support for the neural noise hypothesis of dyslexia in their study based on null significance and Bayes factors. This conclusion is justified, and further research is called for to more broadly evaluate the neural noise hypothesis in developmental dyslexia.

      Impact:

      This study provides an exemplar foundation for the evaluation of the neural noise hypothesis of dyslexia. Other researcher may adopt the model applied in this paper to examine neural noise in various populations with/without dyslexia, or across a continuum of reading abilities, to more thoroughly examine evidence (or lack thereof) for this hypothesis. Notably, the lack of evidence here does not rule out the possibility for a role of neural noise in dyslexia, and the authors point out that presentation with co-occurring conditions, such as ADHD, may contribute to neural noise in dyslexia. Dyslexia remains a multi-faceted and heterogenous neurodevelopmental condition, and many genetic, neurobiological and environmental factors play a role. This study demonstrates one step toward evaluating neurobiological mechanisms that may contribute to reading difficulties.

    3. Reviewer #2 (Public review):

      Summary:

      This study utilized two complimentary techniques (EEG and 7T MRI/MRS) to directly test a theory of dyslexia: the neural noise hypothesis. The authors report finding no evidence to support an excitatory/inhibitory balance, as quantified by beta in EEG and Glutamate/GABA ratio in MRS. This is important work and speaks to one potential mechanism by which increased neural noise may occur in dyslexia.

      Strengths:

      This is a well-conceived study with in depth analyses and publicly available data for independent review. The authors provide transparency with their statistics and display the raw data points along with the averages in figures for review and interpretation. The data suggest that an E/I balance issue may not underlie deficits in dyslexia and is a meaningful and needed test of a possible mechanism for increased neural noise.

      Weaknesses:

      The researchers did not include a visual print task in the EEG task, which limits analysis of reading specific regions such as the visual word form area, which is a commonly hypoactivated region in dyslexia. This region is a common one of interest in dyslexia, yet the researchers measured the I/E balance in only one region of interest, specific to the language network.

    4. Reviewer #3 (Public review):

      Summary:

      This study by Glica and colleagues utilized EEG (i.e., Beta power, Gamma power, and aperiodic activity) and 7T MRS (i.e., MRS IE ratio, IE balance) to reevaluate the neural noise hypothesis in Dyslexia. Supported by Bayesian statistics, their results show convincing evidence of no differences in EI balance between groups, challenging the neural noise hypothesis.

      Strengths:

      Combining EEG and 7T MRS, this study utilized both the indirect (i.e., Beta power, Gamma power, and aperiodic activity) and direct (i.e., MRS IE ratio, IE balance) measures to reevaluate the neural noise hypothesis in Dyslexia.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      "Neural noise", here operationalized as an imbalance between excitatory and inhibitory neural activity, has been posited as a core cause of developmental dyslexia, a prevalent learning disability that impacts reading accuracy and fluency. This is study is the first to systematically evaluate the neural noise hypothesis of dyslexia. Neural noise was measured using neurophysiological (electroencephalography [EEG]) and neurochemical (magnetic resonance spectroscopy [MRS]) in adolescents and young adults with and without dyslexia. The authors did not find evidence of elevated neural noise in the dyslexia group from EEG or MRS measures, and Bayes factors generally informed against including the grouping factor in the models. Although the comparisons between groups with and without dyslexia did not support the neural noise hypothesis, a mediation model that quantified phonological processing and reading abilities continuously revealed that EEG beta power in the left superior temporal sulcus was positively associated with reading ability via phonological awareness. This finding lends support for analysis of associations between neural excitatory/inhibitory factors and reading ability along a continuum, rather than as with a case/control approach, and indicates the relevance of phonological awareness as an intermediate trait that may provide a more proximal link between neurobiology and reading ability. Further research is needed across developmental stages and over a broader set of brain regions to more comprehensively assess the neural noise hypothesis of dyslexia, and alternative neurobiological mechanisms of this disorder should be explored.

      Strengths:

      The inclusion of multiple methods of assessing neural noise (neurophysiological and neurochemical) is a major advantage of this paper. MRS at 7T confers an advantage of more accurately distinguishing and quantifying glutamate, which is a primary target of this study. In addition, the subject-specific functional localization of the MRS acquisition is an innovative approach. MRS acquisition and processing details are noted in the supplementary materials using according to the experts' consensus recommended checklist (https://doi.org/10.1002/nbm.4484). Commenting on rigor the EEG methods is beyond my expertise as a reviewer.

      Participants recruited for this study included those with a clinical diagnosis of dyslexia, which strengthens confidence in the accuracy of the diagnosis. The assessment of reading and language abilities during the study further confirms the persistently poorer performance of the dyslexia group compared to the control group.

      The correlational analysis and mediation analysis provide complementary information to the main case-control analyses, and the examination of associations between EEG and MRS measures of neural noise is novel and interesting.

      The authors follow good practice for open science, including data and code sharing. They also apply statistical rigor, using Bayes Factors to support conclusions of null evidence rather than relying only on non-significant findings. In the discussion, they acknowledge the limitations and generalizability of the evidence and provide directions for future research on this topic.

      Weaknesses:

      Though the methods employed in the paper are generally strong, the MRS acquisition was not optimized to quantify GABA, so the findings (or lack thereof) should be interpreted with caution. Specifically, while 7T MRS affords the benefit of quantifying metabolites, such as GABA, without spectral editing, this quantification is best achieved with echo times (TE) of 68 or 80 ms in order to minimize the spectral overlap between glutamate and GABA and reduce contamination from the macromolecular signal (Finkelman et al., 2022, https://doi.org/10.1016/j.neuroimage.2021.118810). The data in the present study were acquired at TE=28 ms, and are therefore likely affected by overlapping Glu and GABA peaks at 2.3 ppm that are much more difficult to resolve at this short TE, which could directly affect the measures that are meant to characterize the Glu/GABA+ ratio/imbalance. In future research, MRS acquisition schemes should be optimized for the acquisition of Glutamate, GABA, and their relative balance.

      As the authors note in the discussion, additional factors such as MRS voxel location, participant age, and participant sex could influence associations between neural noise and reading abilities and should be considered in future studies.

      We have modified Figure 2 and revised the paragraph discussing the MRS methodological limitations in accordance with Reviewer #1's recommendations. Additionally, we have included the CRLB and linewidth thresholds in the Results section. Furthermore, a new figure showing the correlations between EEG and MRS biomarkers has been added (Figure 3).

      Appraisal:

      The authors present a thorough evaluation of the neural noise hypothesis of developmental dyslexia in a sample of adolescents and young adults using multiple methods of measuring excitatory/inhibitory imbalances as an indicator of neural noise. The authors concluded that there was not support for the neural noise hypothesis of dyslexia in their study based on null significance and Bayes factors. This conclusion is justified, and further research is called for to more broadly evaluate the neural noise hypothesis in developmental dyslexia.

      Impact:

      This study provides an exemplar foundation for the evaluation of the neural noise hypothesis of dyslexia. Other researcher may adopt the model applied in this paper to examine neural noise in various populations with/without dyslexia, or across a continuum of reading abilities, to more thoroughly examine evidence (or lack thereof) for this hypothesis. Notably, the lack of evidence here does not rule out the possibility for a role of neural noise in dyslexia, and the authors point out that presentation with co-occurring conditions, such as ADHD, may contribute to neural noise in dyslexia. Dyslexia remains a multi-faceted and heterogenous neurodevelopmental condition, and many genetic, neurobiological and environmental factors play a role. This study demonstrates one step toward evaluating neurobiological mechanisms that may contribute to reading difficulties.

      Reviewer #2 (Public review):

      Summary:

      This study utilized two complimentary techniques (EEG and 7T MRI/MRS) to directly test a theory of dyslexia: the neural noise hypothesis. The authors report finding no evidence to support an excitatory/inhibitory balance, as quantified by beta in EEG and Glutamate/GABA ratio in MRS. This is important work and speaks to one potential mechanism by which increased neural noise may occur in dyslexia.

      Strengths:

      This is a well conceived study with in depth analyses and publicly available data for independent review. The authors provide transparency with their statistics and display the raw data points along with the averages in figures for review and interpretation. The data suggest that an E/I balance issue may not underlie deficits in dyslexia and is a meaningful and needed test of a possible mechanism for increased neural noise.

      Weaknesses:

      The researchers did not include a visual print task in the EEG task, which limits analysis of reading specific regions such as the visual word form area, which is a commonly hypoactivated region in dyslexia. This region is a common one of interest in dyslexia, yet the researchers measured the I/E balance in only one region of interest, specific to the language network.

      Reviewer #3 (Public review):

      Summary:

      This study by Glica and colleagues utilized EEG (i.e., Beta power, Gamma power, and aperiodic activity) and 7T MRS (i.e., MRS IE ratio, IE balance) to reevaluating the neural noise hypothesis in Dyslexia. Supported by Bayesian statistics, their results show convincing evidence of no differences in EI balance between groups, challenging the neural noise hypothesis.

      Strengths:

      Combining EEG and 7T MRS, this study utilized both the indirect (i.e., Beta power, Gamma power, and aperiodic activity) and direct (i.e., MRS IE ratio, IE balance) measures to reevaluating the neural noise hypothesis in Dyslexia.

    1. eLife Assessment

      In this valuable study, the authors studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila, which lacks homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain. They attempt to demonstrate deacetylase activity, however, whilst the revised manuscript has been improved, significant aspects of the data are still incomplete and require further refinement. The work will be of interest to microbiologists studying metabolism and post-translational modifications.

    2. Reviewer #1 (Public review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      The problem I raised has been well resolved. I have no further questions.

    3. Reviewer #2 (Public review):

      In recent years, lots of researchers tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high resolution mass spectrometry. Here is an example for this effort. Yuqian Wang et al. studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using biochemistry method and MS identification technology to confirm it. These results extended our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find this conclusion is a little speculative, and unfortunately it also doesn't totally support the conclusion as the authors provided.

      Major concerns:

      -It is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." It should be modified to delete the "in the prokaryotes" except that the authors get new more evidence in the other prokaryotes for the existence of the AhCobQ.<br /> -I was confused about the arrangement of the supplementary results. Because there are no citations for Figures S9-S19.<br /> -Same to the above, there are no data about Tables S1-S6.<br /> -All the load control is not integrated. Please provide all of the load controls with whole PAGE gel or whole membrane western blot results. Without these whole results, it is not convincing to come the conclusion as the authors mentioned in the context.<br /> -Thoroughly review the materials & methods section. It is unclear to me what exactly the authors describe in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, and purification conditions, etc.<br /> -Include relevant information about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

    1. eLife Assessment

      This work shows that newborn Thbs4-positive astrocytes generated in the adult subventricular zone (SVZ) respond to middle carotid artery occlusion (MCAO) by secreting hyaluronan at the lesion penumbra, and that hyaluronin is a chemoattractant to SVZ astrocytes. These findings are valuable, despite being mostly descriptive, as they point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. The methods, data and analyses are convincing and broadly support the claims made by the authors with only some weaknesses.

    2. Reviewer #1 (Public review):

      Summary:

      The authiors show that SVZ derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronin is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.

      Strengths:

      The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results logical.

      Comments on revised version:

      The authors have addressed my points and the paper is much improved. Here are the salient remaining issues that I suggest be addressed.

      The authors have still not shown, using loss of function studies, that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions.

      (1) The co-expression of EGFr with Thbs4 and the literature examination is useful.

      (2) Too bad they cannot explain the lack of effect of the MCAO on type C cells. The comparison with kainate-induced epilepsy in the hippocampus may or may not be relevant.

      (3) Thanks for including the orthogonal confocal views in Fig S6D.

      (4) The statement that "BrdU+/Thbs4+ cells mostly in the dorsal area" and therefore they mostly focused on that region is strange. Figure 8 clearly shows Thbs4 staining all along the striatal SVZ. Do they mean the dorsal segment of the striatal SVZ or the subcallosal SVZ? Fig. 4b and Fig 4f clearly show the "subcallosal" area as the one analysed but other figures show the dorsal striatal region (Fig. 2a). This is important because of the well-known embryological and neurogenic differences between the regions.

      (5) It is good to know that the harsh MCAO's had already been excluded.

      (6) Sorry for the lack of clarity - in addition to Thbs4, I was referring to mouse versus rat Hyaluronan degradation genes (Hyal1, Hyal2 and Hyal3) and hyaluronan synthase genes (HAS1 and HAS2) in order to address the overall species differences in hyaluronan biology thus justifying the "shift" from mouse to rat. You examine these in the (weirdly positioned) Fig. 8h,i. Please add a few sentences on mouse vs rat Thbs4 and Hyaluronan relevant genes.

      (7) Thank you for the better justification of using the naked mole rat HA synthase.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.

      Strengths:

      The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.

      In this revised version, the points raised/weaknesses were clarified and discussed in the article.

    1. eLife Assessment

      This valuable study decoded target-associated information in prefrontal and sensory cortex during the preparatory period of a visual search task, suggesting a memory-driven attentional template. The evidence supporting this claim is convincing, based on multivariate pattern analyses of fMRI data. The results will be of interest to psychologists and cognitive neuroscientists.

    2. Reviewer #1 (Public review):

      When you search for something, you need to maintain some representation (a "template") of that target in your mind/brain. Otherwise, how would you know what you were looking for? If your phone is in a shocking pink case, you can guide your attention to pink things based on a target template that includes the attribute 'pink'. That guidance should get you to the phone pretty effectively if it is in view. Most real-world searches are more complicated. If you are looking for the toaster, you will make use of your knowledge of where toasters can be. Thus, if you are asked to find a toaster, you might first activate a template of a kitchen or a kitchen counter. You might worry about pulling up the toaster template only after you are reasonably sure you have restricted your attention to a sensible part of the scene.

      Zhou and Geng are looking for evidence of this early stage of guidance by information about the surrounding scene in a search task. They train Os to associate four faces with four places. Then, with Os in the scanner, they show one face - the target for a subsequent search. After an 8 sec delay, they show a search display where the face is placed on the associated scene 75% of the time. Thus, attending to the associated scene is a good idea. The questions of interest are "When can the experimenters decode which face Os saw from fMRI recording?" "When can the experimenters decode the associated scene?" and "Where in the brain can the experimenters see evidence of this decoding? The answer is that the face but not the scene can be read out during the face's initial presentation. The key finding is that the scene can be read out (imperfectly but above chance) during the subsequent delay when Os are looking at just a fixation point. Apparently, seeing the face conjures up the scene in the mind's eye.

      This is a solid and believable result. The only issue, for me, is whether it is telling us anything specifically about search. Suppose you trained Os on the face-scene pairing but never did anything connected to the search. If you presented the face, would you not see evidence of recall of the associated scene? Maybe you would see the activation of the scene in different areas and you could identify some areas as search specific. I don't think anything like that was discussed here.

      You might also expect this result to be asymmetric. The idea is that the big scene gives the search information about the little face. The face should activate the larger useful scene more than the scene should activate the more incidental face, if the task was reversed. That might be true if the finding is related to a search where the scene context is presumed to be the useful attention guiding stimulus. You might not expect an asymmetry if Os were just learning an association.

      It is clear in this study that the face and the scene have been associated and that this can be seen in the fMRI data. It is also clear that a valid scene background speeds the behavioral response in the search task. The linkage between these two results is not entirely clear but perhaps future research will shed more light.

      It is also possible that I missed the clear evidence of the search-specific nature of the activation by the scene during the delay period. If so, I apologize and suggest that the point be underlined for readers like me.

    3. Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports the invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.<br /> This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I don't think this is necessary for publication, but I think it would be a stronger test of the template hypothesis.<br /> Type in the abstract "curing" vs "during."<br /> It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are the explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

    4. Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA pattern analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

    5. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      When you search for something, you need to maintain some representation (a "template") of that target in your mind/brain. Otherwise, how would you know what you were looking for? If your phone is in a shocking pink case, you can guide your attention to pink things based on a target template that includes the attribute 'pink'. That guidance should get you to the phone pretty effectively if it is in view. Most real-world searches are more complicated. If you are looking for the toaster, you will make use of your knowledge of where toasters can be. Thus, if you are asked to find a toaster, you might first activate a template of a kitchen or a kitchen counter. You might worry about pulling up the toaster template only after you are reasonably sure you have restricted your attention to a sensible part of the scene.

      Zhou and Geng are looking for evidence of this early stage of guidance by information about the surrounding scene in a search task. They train Os to associate four faces with four places. Then, with Os in the scanner, they show one face - the target for a subsequent search. After an 8 sec delay, they show a search display where the face is placed on the associated scene 75% of the time. Thus, attending to the associated scene is a good idea. The questions of interest are "When can the experimenters decode which face Os saw from fMRI recording?" "When can the experimenters decode the associated scene?" and "Where in the brain can the experimenters see evidence of this decoding? The answer is that the face but not the scene can be read out during the face's initial presentation. The key finding is that the scene can be read out (imperfectly but above chance) during the subsequent delay when Os are looking at just a fixation point. Apparently, seeing the face conjures up the scene in the mind's eye.

      This is a solid and believable result. The only issue, for me, is whether it is telling us anything specifically about search. Suppose you trained Os on the face-scene pairing but never did anything connected to the search. If you presented the face, would you not see evidence of recall of the associated scene? Maybe you would see the activation of the scene in different areas and you could identify some areas as search specific. I don't think anything like that was discussed here.

      You might also expect this result to be asymmetric. The idea is that the big scene gives the search information about the little face. The face should activate the larger useful scene more than the scene should activate the more incidental face, if the task was reversed. That might be true if the finding is related to a search where the scene context is presumed to be the useful attention guiding stimulus. You might not expect an asymmetry if Os were just learning an association.

      It is clear in this study that the face and the scene have been associated and that this can be seen in the fMRI data. It is also clear that a valid scene background speeds the behavioral response in the search task. The linkage between these two results is not entirely clear but perhaps future research will shed more light.

      It is also possible that I missed the clear evidence of the search-specific nature of the activation by the scene during the delay period. If so, I apologize and suggest that the point be underlined for readers like me.

      We will respond to this question by acknowledging that the reviewer is right in that the delay period activation of the scene is not necessarily search-specific. We will then discuss how this possibility affects the interpretation of our results and what kind of studies would need to be conducted in order to fully establish a causal link between delay period activity and visual search performance. We will also discuss the literature on cued attention and situate our work within the context of these other studies that have used similar task paradigms to infer attentional processes. Finally, we will discuss the interpretation of delay period activity in PPA and IFJ.

      Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports the invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.

      This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I don't think this is necessary for publication, but I think it would be a stronger test of the template hypothesis.

      We will conduct the suggested analysis. Depending on the outcome, we will include it in supplemental materials or the main text.

      Type in the abstract "curing" vs "during."

      We will fix this.

      It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are the explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

      We will address how each of the ROIs wdas selected based on the use of a priori networks as masks with ROIs as sub-parcels. We will explain why specific ROIs were associated with the strongest hypotheses but how the entire networks are relevant and related to existing literatures on attentional control and working memory. This content will be included in the introduction and discussion sections.

      Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA pattern analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

      Thank you.

    1. eLife Assessment

      MGPfactXMBD is a novel computational method for investigating cell evolutionary trajectory for scRNA-seq samples. It is important, with several potential future applications. The authors benchmarked this method using synthetic and real-world samples and showed superior performance for some of the tasks in cell trajectory analysis compared to other methods with compelling evidence.

    2. Reviewer #1 (Public review):

      Summary:

      Ren et al developed a novel computational method to investigate cell evolutionary trajectory for scRNA-seq samples. This method, MGPfact, estimates pseudotime and potential branches in the evolutionary path through explicitly modeling the bifurcations in a Gaussian process. They benchmarked this method using synthetic as well as real world samples and showed superior performance for some of the tasks in cell trajectory analysis. They further demonstrated the utilities of MGPfact using single cell RNA-seq samples derived from microglia or T cells and showed that it can accurately identify the differentiation timepoint and uncover biologically relevant gene signatures.

      Strengths:

      Overall I think this is a useful new tool that could deliver novel insights for the large body of scRNA-seq data generated in the public domain. The manuscript is written is a logical way and most parts of the method are well described.

      Comments on revisions:

      In this revision, the authors have sufficiently addressed all of my concerns. I don't have any follow-up comments.

    3. Reviewer #2 (Public review):

      Summary of the manuscript:

      Authors present MGPfactXMBD, a novel model-based manifold-learning framework designed to address the challenges of interpreting complex cellular state spaces from single-cell RNA sequences. To overcome current limitations, MGPfactXMBD factorizes complex development trajectories into independent bifurcation processes of gene sets, enabling trajectory inference based on relevant features. As a result, it is expected that the method provides a deeper understanding of the biological processes underlying cellular trajectories and their potential determinants.

      MGPfactXMBD was tested across 239 datasets, and the method demonstrated similar to slightly superior performance in key quality-control metrics to state-of-the-art methods. When applied to case studies, MGPfactXMBD successfully identified critical pathways and cell types in microglia development, validating experimentally identified regulons and markers. Additionally, it uncovered evolutionary trajectories of tumor-associated CD8+ T cells, revealing new subtypes with gene expression signatures that predict responses to immune checkpoint inhibitors in independent cohorts.

      Overall, MGPfactXMBD represents a relevant tool in manifold-learning for scRNA-seq data, enabling feature selection for specific biological processes and enhancing our understanding of the biological determinants of cell fate.

      Summary of the outcome:

      The novel method addresses core state-of-the-art questions in biology related to trajectory identification. The design and the case studies are of relevance.

      Comments on revisions:

      The authors have addressed all my previous comments to satisfaction.

    1. eLife Assessment

      This study uses all-optical electrophysiology methods to provide a valuable insight into the organization of cortical networks and their ability to balance the activity of groups of neurons with similar functional tuning. The all-optical approach used in this study is impressive, but the claim that the effects of optical stimulation correspond to a specific homeostatic mechanism are incompletely supported by the statistical analysis of the results. The work will be of interest to neurobiologists and to developers of optical approaches for interrogating brain function.

    2. Reviewer #1 (Public review):

      Summary:

      Kang et al. provide the first experimental insights from holographic stimulation of auditory cortex. Using stimulation of functionally-defined ensembles, they test whether overactivation of a specific subpopulation biases simultaneous and subsequent sensory-evoked network activations.

      Strengths:

      The investigators use a novel technique to investigate the sensory response properties in functionally defined cell assemblies in auditory cortex. These data provide the first evidence of how acutely perturbing specific frequency-tuned neurons impacts the tuning across a broader population.

      Weaknesses:

      I have several main concerns about the interpretation of these data:<br /> (1) The premise of the paper suggests that sensory responses are noisy at the level of neurons, but that population activity is reliable and that different neurons may participate in sensory coding on different trials. However, no analysis related to single trial variance or overall stability of population coding is provided. Specifically, showing that population activity is stable across trials in terms of total activity level or in some latent low dimensional representation would be required to support the concept of "homeostatic balancing".<br /> (2) Rebalancing would predict either that the responses of stimulated neurons would remain A) elevated after stimulation due to a hebbian mechanism or B) suppressed due to high activity levels on previous trials, a homeostatic mechanism. The authors report suppression in targeted neurons after stimulation blocks, but this appears similar to all other non-stimulated neurons. How do the authors interpret the post-stimulation effect in stimulated neurons?<br /> (3) The authors suggest that ACtx is different from visual cortex in that neurons with different tuning properties are intermingled. While that is true at the level of individual neurons, there is global order, as demonstrated by the authors own widefield imaging data and others at the single cell level (e.g. Tischbirek et al. 2019). Generally, distance is dismissed as a variable in the paper, but this is not convincing. Work across multiple sensory systems, including the authors own work, has demonstrated that cortical neuron connectivity is not random but varies as a function of distance (e.g. Watkins et al. 2014). Better justification is needed for the spatial pattern of neurons that were chosen for stimulation. Further, analyses that account for center of mass of stimulation, rather than just the distance from any stimulated neuron would be important to any negative result related to distance.<br /> (4) Data curation and presentation: Broadly, the way the data were curated and plotted makes it difficult to determine how well-supported the authors claims are. In terms of curation, the removal of outliers 3 standard deviations above the mean in the analysis of stimulation effects is questionable. Given the single-cell stimulation data presented in Figure 1, the reader is led to believe that holographic stimulation is quite specific. However, the justification for removing these outliers is that there may be direct stimulation 20-30 um from the target. Without plotting and considering the outliers as well, it is difficult to understand if these outsized responses are due to strong synaptic connections with neighboring neurons or rather just direct off-target stimulation. Relatedly, data presentation is limited to the mean + SEM for almost all main effects and pre-post stimulation effects are only compared indirectly. Whether stimulation effects are driven by just a few neurons that are particularly suppressed or distinct populations which are suppressed or enhanced remains unclear.

    3. Reviewer #2 (Public review):

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTsel-tuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role.

      The conclusions of this paper are very interesting but some aspects of the study including methods for optogenetic stimulation, statistical analysis of the results and interpretation of the underlying mechanisms need to be clarified and extended.

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such an approach is complex and requires precise controls to be convincing. In the manuscript, several methodological aspects are not sufficiently described to allow a proper understanding.<br /> (i) The use of CRmine together with GCaMP8s has been reported as problematic as the 2Ph excitation of GCaMP8s also excites the opsin. Here, the authors use a red-shifted version of CRmine to prevent such cross excitation by the imaging laser. To be convincing, they should explain how they controlled for the absence of rsCRmine activation by the 940nm light. Showing the fluorescence traces immediately after the onset of the imaging session would ensure that neurons are not excited as they are imaged.<br /> (ii) Holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such an effect, one could in principle decouple the imaging and the excitation planes, and check for the absence of out-of-focus unwanted excitation.<br /> (iii) The control shown in Figure 1B is intended to demonstrate the precision of the optogenetic stimulation: when the stimulation spiral is played at a distance larger or equal to 20 µm from a cell, it does not activate it. However, in the rest of the study, the stimulation is applied with a holographic approach, targeting 5 cells simultaneously instead of just one. As the holographic pattern of light could produce out-of-focus hot spots (absent in the single cell control), we don't know what is the extent of the contamination from non-targeted cells in this case. This is important because it would determine an objective criterion to exclude non-targeted but excited cells (last paragraph of the Result section: "For the stimulation condition, we excluded non-target cells that were within 15 µm distance of the target cells...")

      (2) A strength of this study comes from the design of the experimental protocol used to compare the activity in non-target co-tuned cells when the optogenetic stimulation is paired with their preferred tone versus a non-preferred pure tone. The difficulty lies in the co-occurrence of the rebalancing process and the adaptation to repeated auditory stimuli, especially when these auditory stimuli correspond to a cell's preferred pure tones. To distinguish between the two effects, the authors use a comparison with a control condition similar to the optogenetic stimulation conditions, except that the laser power is kept at 0 mW. The observed effect is shown as an extra reduction of activity in the condition with the optogenetic paired with the preferred tone, compared to the control condition. The specificity of this extra reduction when stimulation is synchronized with the preferred tone, but not with a non-preferred tone, is a potentially powerful result, as it points to an underlying mechanism that links the assemblies of cells that share the same preferred pure tones.<br /> The evidence for this specificity is shown in Figure 3A and 3D. However, the universality of this specificity is challenged by the fact that it is observed for 16kHz preferring cells, but not so clearly for 54kHz preferring cells: these 54kHz preferring cells also significantly (p = 0.044) reduce their response to 54kHz in the optogenetic stimulation condition applied to 16kHz preferring target cells compared to the control condition. The proposed explanation for this is the presence of many cells with a broad frequency tuning, meaning that these cells could have been categorized as 54kHz preferring cells, while they also responded significantly to a 16kHz pure tone. To account for this, the authors divide each category of pure tone cells into three subgroups with low, medium and high frequency preferences. Following the previous reasoning, one would expect at least the "high" subgroups to show a strong and significant specificity for an additional reduction only if the optogenetic stimulation is targeted to a group of cells with the same preferred frequency. Figure 3D fails to show this. The extra reduction for the "high" subgroups is significant only when the condition of opto-stimulation synchronized with the preferred frequency is compared to the control condition, but not when it is compared to the condition of opto-stimulation synchronized with the non-preferred frequency.<br /> Therefore, the claim that "these results indicate that the effect of holographic optogenetic stimulation depends not on the specific tuning of cells, but on the co-tuning between stimulated and non-stimulated neurons" (end of paragraph "Optogenetic holographic stimulation decreases activity in non-target co-tuned ensembles") seems somewhat exaggerated. Perhaps increasing the number of sessions in the 54kHz target cell optogenetic stimulation condition (12 FOV) to the number of sessions in the 16kHz target cell optogenetic stimulation condition (18 FOV) could help to reach significance levels consistent with this claim.

      (3) To interpret the results of this study, the authors suggest that mechanisms based on homeostatic signaling could be important to allow the rebalancing of the activity of assemblies of co-tuned neurons. In particular, the authors try to rule out the possibility that inhibition plays a central role. Both mechanisms could produce effects on short timescales, making them potential candidates. The authors quantify the spatial distribution of the balanced non-targeted cells and show that they are not localized in the vicinity of the targeted cells. They conclude that local inhibition is unlikely to be responsible for the observed effect. This argument raises some questions. The method used to quantify spatial distribution calculates the minimum distance of a non-target cell to any target cell. If local inhibition is activated by the closest target cell, one would expect the decrease in activity to be stronger for non-target cells with a small minimum distance and to fade away for larger minimum distances. This is not what the authors observe (Figure 4B), so they reject inhibition as a plausible explanation. However, their quantification doesn't exclude the possibility that non-target cells in the minimum distance range could also be close and connected to the other 4 target cells, thus masking any inhibitory effect mediated by the closest target cell. In addition, the authors should provide a quantitative estimate of the range of local inhibition in layers 2/3 of the mouse auditory cortex to compare with the range of distances examined in this study (< 300 µm). Finally, the possibility that some target cells could be inhibitory cells themselves is considered unlikely by the authors, given the proportions of excitatory and inhibitory neurons in the upper cortical layers. On the other hand, it should be acknowledged that inhibitory cells are more electrically compact, making them easier to be activated optogenetically with low laser power.

    4. Reviewer #3 (Public review):

      Summary:

      The authors optogenetically stimulate 5 neurons all preferring the same pure tone frequency (16 or 54 kHz) in the mouse auditory cortex using a holography-based single cell resolution optogenetics during sound presentation. They demonstrate that the response boosting of target neurons leads to a broad suppression of surrounding neurons, which is significantly more pronounced in neurons that have the same pure tone tuning as the target neurons. This effect is immediate and spans several hundred micrometers. This suggests that the auditory cortical network balances its activity in response to excess spikes, a phenomenon already seen in visual cortex.

      Strengths:

      The study is based on a technologically very solid approach based on single-cell resolution two-photon optogenetics. The authors demonstrate the potency and resolution of this approach. The inhibitory effects observed upon targeted stimulation are clear and the relative specificity to co-tuned neurons is statistically clear although the effect size is moderate.

      Weaknesses:

      The evaluation of the results is brief and some aspects of the observed homeostatic are not quantified. For example, it is unclear whether stimulation produces a net increase or decrease of population activity, or if the homeostatic phenomenon fully balances activity. A comparison of population activity for all imaged neurons with and without stimulation would be instructive. The selectivity for co-tuned neurons is significant but weak. Although it is difficult to evaluate this issue, this result may be trivial, as co-tuned neurons fire more strongly. Therefore, the net activity decrease is expected to be larger, in particular, for the number of non-co-tuned neurons which actually do not fire to the target sound. The net effect for the latter neurons will be zero just because they do not respond. The authors do not make a very strong case for a specific inhibition model in comparison to a broad and non-specific inhibitory effect. Complementary modeling work would be needed to fully establish this point.

    1. eLife Assessment

      This important study enhances our understanding of Pseudomonas aeruginosa's transcriptional regulatory network by revealing its hierarchical structure through analysis of transcription factor binding patterns. The conclusions are supported by compelling evidence and will appeal to researchers investigating P. aeruginosa and the regulatory mechanisms underlying its pathogenicity. The paper would be strengthened by clarifying implications of binding and regulatory networks with virulence, and transcription factor divergence across species.

    2. Reviewer #1 (Public review):

      Summary:<br /> This work done by Huang et.al. revealed the complex regulatory functions and transcription network of 172 unknown transcription factors of Pseudomonas aeruginosa PAO1. The authors utilized ChIP-seq to profile TFs binding site information across the genome, demonstrating diverse regulatory relationships among them via hierarchical networks with three levels. They further constructed thirteen ternary regulatory motifs in small subs and co-association atlas with 7 core associated clusters. The study also uncovered 24 virulence-related master regulators. The pan-genome analysis uncovered both the conservation and evolution of TFs with P. aeruginosa complex and related species. Furthermore, they established a web-based database combining both existing and novel data from HT-SELEX and ChIP-seq to provide TF binding site information. This study offered valuable insights into studying transcription regulatory networks in P. aeruginosa and other microbes.

      Strengths:<br /> The results are presented with clarity, supported by well-organized figures and tables that not only illustrate the study's findings but also enhance the understanding of complex data patterns.

      Weaknesses:<br /> The results of this manuscript are mainly presented in systematic figures and tables. Some of the results need to be discussed as an illustration how readers can utilize these datasets.

    3. Reviewer #2 (Public review):

      In this work, the authors comprehensively describe the transcriptional regulatory network of Pseudomonas aeruginosa through the analysis of transcription factor binding characteristics. They reveal the hierarchical structure of the network through ChIP-seq, categorizing transcription factors into top-, middle-, and bottom-level, and reveal a diverse set of relationships among the transcription factors. Additionally, the authors conduct a pangenome analysis across the Pseudomonas aeruginosa species complex as well as other species to study the evolution of transcription factors. Moreover, the authors present a database with new and existing data to enable the storage and search of transcription factor binding sites. The findings of this study broaden our knowledge on the transcriptome of P. aeruginosa.

      This study sheds light on the complex interconnections between various cellular functions that contribute to the pathogenicity of P. aeruginosa, along with the associated regulatory mechanisms. Certain findings, such as the regulatory tendencies of DNA-binding domain-types, provides valuable insights on the possible functions of uncharacterized transcription factors and new functions of those that have already been characterized. The techniques used hold great potential for discovery of transcription factor functions in understudied organisms as well.

      The study would benefit from a more clear discussion on the implications of various findings, such as binding preferences, regulatory preferences, and the link between regulatory crosstalk and virulence. Additionally, the pangenome analysis would be furthered through a discussion of the divergence of the transcription factors of P. aeruginosa PAO1across species in relation to the findings on the hierarchical structure of the transcriptional regulatory network.

    1. eLife Assessment

      This important study uses machine learning-based network analysis on transcriptomic data from different tissue cell types to identify a small set of conserved (pan-tissue) genes associated with changes in cell mechanics. The new method, which provides a new type of approach for mechanobiology, is accessible, compelling, and well-validated using in silico and experimental approaches. The study provides motivation for researchers to test hypotheses concerning the identified five-gene network, and the method will be strengthened over time with expanded sets of validations, such as testing genes with hitherto unknown roles and different perturbation techniques.

    2. Reviewer #1 (Public review):

      In this work, Urbanska and colleagues use a machine-learning based crossing of mechanical characterisations of various cells in different states and their transcriptional profiles. Using this approach, they identify a core set of five genes that systematically vary together with the mechanical state of the cells, although not always in the same direction depending on the conditions. They show that the combined transcriptional changes in this gene set is strongly predictive of a change in the cell mechanical properties, in systems that were not used to identify the genes (a validation set). Finally, they experimentally after the expression level of one of these genes, CAV1, that codes for the caveolin 1 protein, and show that, in a variety of cellular systems and contexts, perturbations in the expression level of CAV1 also induce changes in cell mechanics, cells with lower CAV1 expression being generally softer.

      Overall the approach seems accessible, sound and is well described. My personal expertize is not suited to judge its validity, novelty or relevance, so I do not make comments on that. The results it provides seem to have been thoroughly tested by the authors (using different types of mechanical characterisations of the cells) and to be robust in their predictive value. The authors also show convincingly that one of the genes they identified, CAV1, is not only correlated with the mechanical properties of cells, but also that changing its expression level affects cell mechanics. At this stage, the study appears mostly focused on the description and validation of the methodological approach, and it is hard to really understand what the results obtain really mean, the importance of the biological finding - what is this set of 5 genes doing in the context of cell mechanics? Is it really central, or is it just one of the set of knobs on which the cell plays - and it is identified by this method because it is systematically modulated but maybe, for any given context, it is not the dominant player - all these fundamental questions remain unanswered at this stage. On one hand, it means that the study might have identified an important novel module of genes in cell mechanics, but on the other hand, it also reveals that it is not yet easy to interpret the results provided by this type of novel approach.

      Comments on revisions:

      In their point-by-point answer, the authors did a great effort to provide pedagogical answers that clarified most of the points I had raised. They also did more analysis, some of which are included as supplementary data, and added a few sentences to the main text and discussion. As far as I am concerned, I see no particular issue with the revised article. I think it will be interesting both as a new type of approach in mechanobiology, and also as a motivation for more experimentally oriented labs to test the hypothesis proposed in the article and the 'module' they found.

    1. eLife Assessment

      This study addresses a novel and interesting question about how the rise of the Qinghai-Tibet Plateau influenced patterns of bird migration, employing a multi-faceted approach that combines species distribution data with environmental modeling. The findings are valuable for understanding avian migration within a subfield, but the strength of evidence is incomplete due to critical methodological assumptions about historical species-environment correlations, limited tracking data, and insufficient clarity in species selection criteria. Addressing these weaknesses would significantly enhance the reliability and interpretability of the results.

    2. Reviewer #1 (Public review):

      Strengths:

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The methods are detailed and well described and written in such a fashion that they are transparent and repeatable.

      Weaknesses:

      I only have one major issue, which is possibly a product of the structure requirements of the paper/journal. This relates to the Results and Discussion, line 91 onwards. I understand the structure of the paper necessitates delving immediately into the results, but it is quite hard to follow due to a lack of background information. In comparison to the Methods, which are incredibly detailed, the Results in the main section reads as quite superficial. They provide broad overviews of broad findings but I found it very hard to actually get a picture of the main results in its current form. For example, how the different species factor in, etc.

    3. Reviewer #2 (Public review):

      Summary:

      The study tries to assess how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites. They do so by correlating the present distribution of the species with a set of environmental variables. The data on species distributions come from eBird. The main issue lies in the problematic assumption that species correlations between their current distribution and environment were about the same before the rise of the Plateau. There is no ground truthing and the study relies on Movebank data of only 7 species which are not even listed in the study. Similarly, the study does not outline the boundaries of breeding sites NE of the Plateau. Thus it is absolutely unclear potentially which breeding populations it covers.

      Strengths:

      I like the approach for how you combined various environmental datasets for the modelling part.

      Weaknesses:

      The major weakness of the study lies in the assumption that species correlations between their current distribution and environments found today are back-projected to the far past before the rise of the Q-T Plateau. This would mean that species responses to the environmental cues do not evolve which is clearly not true. Thus, your study is a very nice intellectual exercise of too many ifs.

      The second major drawback lies in the way you estimate the migratory routes of particular birds. No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites. Some might overwinter in India, some populations in Africa and you will never know the teleconnections between breeding and wintering sites of particular species. The few available tracking studies (seven!) are too coarse and with limited aspects of migratory connectivity to give answer on the target questions of your study.

      Your set of species is unclear, selection criteria for the 50 species are unknown and variability in their migratory strategies is likely to affect the direction of the effects. In addition, the position of the breeding sites relative to the Q-T plate will affect the azimuths and resulting migratory flyways. So in fact, we have no idea what your estimates mean in Figure 2.

      There is no way one can assess the performance of your statistical exercises, e.g. performances of the models.

    4. Author response:

      eLife Assessment

      This study addresses a novel and interesting question about how the rise of the Qinghai-Tibet Plateau influenced patterns of bird migration, employing a multi-faceted approach that combines species distribution data with environmental modeling. The findings are valuable for understanding avian migration within a subfield, but the strength of evidence is incomplete due to critical methodological assumptions about historical species-environment correlations, limited tracking data, and insufficient clarity in species selection criteria. Addressing these weaknesses would significantly enhance the reliability and interpretability of the results.

      We would like to thank you and two anonymous reviewers for your careful, thoughtful, and constructive feedback on our manuscript. These reviews made us revisit a lot of our assumptions and we believe the paper will be much improved as a result. In addition to minor points, we will make three main changes to our manuscript in response to the reviews. First, we will address the concerns on the assumptions of historical species-environment correlations from perspectives of both theoretical and empirical evidence. Second, we will discuss the benefits and limitations of using tracking data in our study and demonstrate how the findings of our study are consolidated with results of previous studies. Third, we will clarify our criteria for selecting species in terms of both eBird and tracking data.

      Below, we respond to each comment in turn. Once again, we thank you all for your feedback.

      Reviewer #1 (Public review):

      Strengths:

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The methods are detailed and well described and written in such a fashion that they are transparent and repeatable.

      We appreciate the reviewer’s careful reading of our manuscript, encouraging comments and constructive suggestions.

      Weaknesses:

      I only have one major issue, which is possibly a product of the structure requirements of the paper/journal. This relates to the Results and Discussion, line 91 onwards. I understand the structure of the paper necessitates delving immediately into the results, but it is quite hard to follow due to a lack of background information. In comparison to the Methods, which are incredibly detailed, the Results in the main section reads as quite superficial. They provide broad overviews of broad findings but I found it very hard to actually get a picture of the main results in its current form. For example, how the different species factor in, etc.

      Yes, it is the journal request to format in this way (Methods follows the Results and Discussion) for the article type of short reports. As suggested, in the revision we will elaborate on details of our findings, especially the species-specific responses, in terms of (i) shifts of distribution of avian breeding and wintering areas under the influence of the uplift of the Qinghai-Tibetan Plateau, and (ii) major factors that shape current migration patterns of birds in the Plateau. We will also better reference the approaches we used in the study.

      Reviewer #2 (Public review):

      Summary:

      The study tries to assess how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites. They do so by correlating the present distribution of the species with a set of environmental variables. The data on species distributions come from eBird. The main issue lies in the problematic assumption that species correlations between their current distribution and environment were about the same before the rise of the Plateau. There is no ground truthing and the study relies on Movebank data of only 7 species which are not even listed in the study. Similarly, the study does not outline the boundaries of breeding sites NE of the Plateau. Thus it is absolutely unclear potentially which breeding populations it covers.

      We are very grateful for the careful review and helpful suggestions. We will revise the manuscript carefully in response to the reviewer’s comments and believe that it will be much improved as a result. Below are our point-by-point replies to the comments.

      Strengths:

      I like the approach for how you combined various environmental datasets for the modelling part.

      We appreciate the reviewer’s encouragement.

      Weaknesses:

      The major weakness of the study lies in the assumption that species correlations between their current distribution and environments found today are back-projected to the far past before the rise of the Q-T Plateau. This would mean that species responses to the environmental cues do not evolve which is clearly not true. Thus, your study is a very nice intellectual exercise of too many ifs.

      This is a valid concern. We will address this from both the perspectives of the theoretical design of our study and empirical evidence.

      First, we agree with the reviewer that species responses to environmental cues might vary over time. Nonetheless, the simulated environments before the uplift of the plateau serve as a counterfactual state in our study. Counterfactual is an important concept to support causation claims by comparing what happened to what would have happened in a hypothetical situation: “If event X had not occurred, event Y would not have occurred” (Lewis 1973). Recent years have seen an increasing application of the counterfactual approach to detect biodiversity change, i.e., comparing diversity between the counterfactual state and real estimates to attribute the factors causing such changes (e.g., Gonzalez et al. 2023). Whilst we do not aim to provide causal inferences for avian distributional change, using the counterfactual approach, we are able to estimate the influence of the plateau uplift by detecting the changes of avian distributions, i.e., by comparing where the birds would have distributed without the plateau to where they currently distributed. We regard the counterfactual environments as a powerful tool for eliminating, to the extent possible, vagueness, as opposed to simply description of current distributions of birds. Therefore, we assume species’ responses to environments are conservative and their evolution should not discount our findings. We will clarify this in both the Introduction and Methods.

      Second, we used species distribution modelling to contrast the distributions of birds before and after the uplift of the plateau under the assumption that species tend to keep their ancestral ecological traits over time (i.e., niche conservatism). This indicates a high probability for species to distribute in similar environments wherever suitable. Particularly, considering birds are more likely to be influenced by food resources (Martins et al. 2024), and the distribution of available food before the uplift (Jia et al. 2020), we believe the findings can provide valuable insights into the influence of the plateau on avian migratory patterns. Having said that, we acknowledge other factors, e.g., carbon dioxide concentrations (Zhang et al. 2022), can influence the simulations of environments and our prediction of avian distribution. We will clarify the assumptions and evidence we have for the modelling in Methods. We will further point out the direction for future studies in the Discussion.

      The second major drawback lies in the way you estimate the migratory routes of particular birds. No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites. Some might overwinter in India, some populations in Africa and you will never know the teleconnections between breeding and wintering sites of particular species. The few available tracking studies (seven!) are too coarse and with limited aspects of migratory connectivity to give answer on the target questions of your study.

      We agree with the reviewer that establishing interconnections for birds is important for estimating the migration patterns of birds. We employed a dynamic model to assess their weekly distributions. Thus, we can track the movement of species every week, and capture the breeding and wintering areas for specific populations. That being said, we acknowledge that our approach can be subjected to the patchy sampling of eBird data. We will better demonstrate this in the main text.  

      Tracking data can provide valuable insights into the movement patterns of species but are limited to small numbers of species due to the considerable costs and time needed. We aimed to adopt the tracking data to examine the influence of focal factors on avian migration patterns, but only seven species, to the best of our ability, were acquired. Moreover, similar results were found in studies that used tracking data to estimate the distribution of breeding and wintering areas of birds in the plateau (e.g., Prosser et al. 2011, Zhang et al. 2011, Zhang et al. 2014, Liu et al. 2018, Kumar et al. 2020, Wang et al. 2020, Pu and Guo 2023, Yu et al. 2024, Zhao et al. 2024). We believe the conclusions based on seven species are rigour, but their implications could be restricted by the number of tracking species we obtained. We will demonstrate how our findings on breeding and wintering areas of birds are reinforced by other studies reporting the locations of those areas. We will also add a separate caveat section to discuss the limitations stated above.

      Your set of species is unclear, selection criteria for the 50 species are unknown and variability in their migratory strategies is likely to affect the direction of the effects.

      We will clarify the selection criteria for the 50 species). We first obtained a full list of birds in the plateau from Prins and Namgail (2017). We then extracted species identified as full migrants in Birdlife International (https://datazone.birdlife.org/species/spcdistPOS) from the full list.

      In addition, the position of the breeding sites relative to the Q-T plate will affect the azimuths and resulting migratory flyways. So in fact, we have no idea what your estimates mean in Figure 2.

      We calculated the azimuths not only by the angles between breeding sites and wintering sites but also based on the angles between the stopovers of birds. Therefore, the azimuths are influenced by the relative positions of breeding, wintering and stopover sites. We will better explain this both in the Methods and legend of Figure 2.

      There is no way one can assess the performance of your statistical exercises, e.g. performances of the models.

      As suggested, we will add the AUC values to assess the performances of the models.

      References

      Gonzalez, A., J. M. Chase, and M. I. O'Connor. 2023. A framework for the detection and attribution of biodiversity change. Philosophical Transactions of the Royal Society B: Biological Sciences 378: 20220182.

      Jia, Y., H. Wu, S. Zhu, Q. Li, C. Zhang, Y. Yu, and A. Sun. 2020. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 557:109907.

      Kumar, N., U. Gupta, Y. V. Jhala, Q. Qureshi, A. G. Gosler, and F. Sergio. 2020. GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: implications for definition of a “Central Asian Flyway”. Scientific Reports 10:15988.

      Lewis, D. 1973. Counterfactuals. Oxford: Blackwell.

      Liu, D., G. Zhang, H. Jiang, and J. Lu. 2018. Detours in long-distance migration across the Qinghai-Tibetan Plateau: individual consistency and habitat associations. PeerJ 6:e4304.

      Martins, L. P., D. B. Stouffer, P. G. Blendinger, K. Böhning-Gaese, J. M. Costa, D. M. Dehling, C. I. Donatti, C. Emer, M. Galetti, R. Heleno, Í. Menezes, J. C. Morante-Filho, M. C. Muñoz, E. L. Neuschulz, M. A. Pizo, M. Quitián, R. A. Ruggera, F. Saavedra, V. Santillán, M. Schleuning, L. P. da Silva, F. Ribeiro da Silva, J. A. Tobias, A. Traveset, M. G. R. Vollstädt, and J. M. Tylianakis. 2024. Birds optimize fruit size consumed near their geographic range limits. Science 385:331-336.

      Prins, H. H. T., and T. Namgail. 2017. Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers. Cambridge University Press, Cambridge.

      Prosser, D. J., P. Cui, J. Y. Takekawa, M. Tang, Y. Hou, B. M. Collins, B. Yan, N. J. Hill, T. Li, Y. Li, F. Lei, S. Guo, Z. Xing, Y. He, Y. Zhou, D. C. Douglas, W. M. Perry, and S. H. Newman. 2011. Wild bird migration across the Qinghai-Tibetan Plateau: a transmission route for highly pathogenic H5N1. PloS One 6:e17622.

      Pu, Z., and Y. Guo. 2023. Autumn migration of black-necked crane (Grus nigricollis) on the Qinghai-Tibetan and Yunnan-Guizhou plateaus. Ecology and Evolution 13:e10492.

      Wang, Y., C. Mi, and Y. Guo. 2020. Satellite tracking reveals a new migration route of black-necked cranes (Grus nigricollis) in Qinghai-Tibet Plateau. PeerJ 8:e9715.

      Yu, X., G. Song, H. Wang, Q. Wei, C. Jia, and F. Lei. 2024. Migratory flyways and connectivity of brown headed gulls (Chroicocephalus brunnicephalus) revealed by GPS tracking. Global Ecology and Conservation 56:e03340.

      Zhang, G.G., D.P. Liu, Y.Q. Hou, H.X. Jiang, M. Dai, F.W. Qian, J. Lu, T. Ma, L.X. Chen, and Z. Xing. 2014. Migration routes and stopover sites of Pallas’s gulls Larus ichthyaetus breeding at Qinghai Lake, China, determined by satellite tracking. Forktail 30:104-108.

      Zhang, G.G., D.P. Liu, Y.Q. Hou, H.X. Jiang, M. Dai, F.W. Qian, J. Lu, Z. Xing, and F.S. Li. 2011. Migration routes and stop-over sites determined with satellite tracking of bar-headed geese (Anser indicus) breeding at Qinghai Lake, China. Waterbirds 34:112-116, 115.

      Zhang, R., D. Jiang, C. Zhang, and Z. Zhang. 2022. Distinct effects of Tibetan Plateau growth and global cooling on the eastern and central Asian climates during the Cenozoic. Global and Planetary Change 218:103969.

      Zhao, T., W. Heim, R. Nussbaumer, M. van Toor, G. Zhang, A. Andersson, J. Bäckman, Z. Liu, G. Song, M. Hellström, J. Roved, Y. Liu, S. Bensch, B. Wertheim, F. Lei, and B. Helm. 2024. Seasonal migration patterns of Siberian Rubythroat (Calliope calliope) facing the Qinghai–Tibet Plateau. Movement Ecology 12:54.

    1. eLife Assessment

      This study presents important findings demonstrating that FZD5 and FZD8, two of the ten Frizzled proteins, undergo Wnt-mediated endocytosis. The E3 ubiquitin ligases RNF43/ZNRF3 regulate their degradation in a Wnt-dependent manner, a mechanism that was not previously recognized. The evidence supporting the claims of the authors is solid. This research will be of interest to biologists specializing in Wnt signaling, cancer, and regenerative medicine.

    2. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study are the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      Weaknesses of the work include a heavy reliance on overexpression and monitoring the effects in a single cell line, HEK293. In addition, the claim of specificity - only FZD5 and FZD8 participate in this process - is not strongly supported.

    3. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. Interestingly, DVL proteins have previously been shown to be important for RNF43/ZNRF3-dependent ubiquitination of Frizzled receptors but in this study the authors show that DVL proteins are only important for ligand and RNF43/ZNRF3-independent FZD endocytosis. Although it is well established that ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors as part of a negative regulatory loop to dampened B-catenin signaling, the dependency of Wnt stimulation for this process and the specificity of this degradation for different FZD receptors remained poorly characterized.

      In my opinion there are two significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling. Below I have suggestions to strengthen the manuscript.

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.<br /> (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4 it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.<br /> (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.<br /> (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?<br /> (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.<br /> (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.<br /> (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

    4. Author response:

      Reviewer #2 (Public review):

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.

      Thank you for your valuable suggestions and comments. We will perform cell surface biotinylation experiments.

      (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4 it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.

      Our results in Fig. 1F-G clearly show that the CRD of FZD5 specifically is both necessary and sufficient for Wnt3a/5a-induced FZD5 endocytosis, as replacing the CRD alone in FZD5 with the CRD from either FZD4 or FZD7 completely abolished Wnt-induced endocytosis, whereas replacing the CRD alone in FZD4 or FZD7 with the FZD5 CRD alone could confer Wnt-induced endocytosis.

      (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.

      Thank you for your comments and suggestions. Our finding that ZNRF3/RNF43 specifically regulates FZD5/8 degradation is consistent with recent published studies in which FZD5 is required for the survival of RNF43-mutant PDAC or colorectal cancer cells (Nature Medicine, 2017, PMID: 27869803) and FZD5 is required for the maintenance of intestinal stem cells (Developmental Cell, 2024, PMID: 39579768 and 39579769), and in both cases, FZDs other than FZD5/8 are also expressed but not sufficient to compensate for the function of FZD5. The mechanism by which Wnt3a/5a specifically induces FZD5/8 endocytosis and degradation is currently unknown and needs to be explored in the future. We speculate that Wnt binding to FZD5/8 may recruit another protein on the cell surface to specifically facilitate FZD5/8 endocytosis. On the other hand, we cannot exclude the possibility that Wnts other than Wnt3a/5a may induce the endocytosis and degradation of FZDs other than FZD5/8 since there are 19 Wnts and 10 FZDs in humans. We will perform flow cytometry experiments using FZD5/8-specific antibodies to examine whether Wnt3a/5a induces FZD5/8 endocytosis in more cell lines.

      (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?

      We are currently not sure of the mechanism underlying this result. Considering that most FZDs are expressed in 293A cells, we do not know how much of the mature form of overexpressed FZD7 was presented to the plasma membrane.

      (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.

      We will perform these experiments as you suggested.

      (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.

      We did not add Wnt CM in this experiment. RSPO1 activity, which relies on endogenous Wnt, has been well documented in previous studies.

      (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

      Thank you for your valuable suggestions. We will perform the proximity biotinylation experiment in DVL TKO cells.

    1. eLife Assessment

      This important work provides another layer of regulatory mechanism for TGF-beta signaling activity. The evidence supports the involvement of microtubules as a reservoir of Smad2/3 and additional evidence convincingly demonstrates functional involvement of Rudhira in this process. The work will be of board interest to developmental biologists in general and molecular biologists in the field of growth factor signaling.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how that Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.

      Strengths:

      The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides unappreciated additional layer of TGFβ signaling activity regulation after ligand-receptor interaction.

      Weaknesses:

      (1) It is unclear how current findings provide a better understanding of Rudhira KO mice, which the authors published some years ago.

      (2) Why do they use HEK cells instead of SVEC cells in Fig 2 and 4 experiments?

      (3) A model shown in Fig 5E needs improvement to grasp their findings easily.

      Comments on revised version:

      The authors have adequately responded to the reviewers' concerns.

    3. Reviewer #2 (Public review):

      Summary:

      It was first reported in 2000 that Smad2/3/4 are sequestered to microtubules in resting cells and TGF-β stimulation releases Smad2/3/4 from microtubules, allowing activation of the Smad signaling pathway. Although the finding was subsequently confirmed in a few papers, the underlying mechanism has not been explored. In the present study, the authors found that Rudhira/breast carcinoma amplified sequence 3 is involved in release Smad2/3 from microtubules in response to TGF-β stimulation. Rudhira is also induced by TGF-β and probably involved in stabilization of microtubules in the delayed phase after TGF-β stimulation. Therefore, Rudhira has two important functions downstream of TGF-β in the early as well as delayed phase.

      Strengths:

      This work aimed to address an unsolved question on one of the earliest events after TGF-β stimulation. Based on loss-of-function experiments, the authors identified Rudhira, as a key player that triggers Smad2/3 release from microtubules after TGF-β stimulation. This is an important first step for understanding the initial phase of Smad signaling activation.

      Weaknesses:

      Currently, the processes how Rudhira causes the release of Smad proteins from microtubules and how Rudhira is mobilized to microtubules in response to TGF-β remain unclear. The authors are expected to address these points experimentally in the future.

      This reviewer is also afraid that some of the biochemical data lack appropriate controls and are not convincing enough.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.

      Strengths

      The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides an unappreciated additional layer of TGFβ signaling activity regulation after ligand receptor interaction.

      We thank the reviewer for acknowledging the importance of our study and providing a clear summary of our findings.

      Weaknesses

      (1) It is unclear how current findings provide a beVer understanding of Rudhira KO mice, which the authors published some years ago.

      Our previous study demonstrated that Rudhira KO mice have a predominantly developmental cardiovascular phenotype that phenocopies TGFβ loss of function (Shetty, Joshi et al., 2018). Additionally, we found that at the molecular level, Rudhira regulates cytoskeletal organization (Jain et al., 2012; Joshi and Inamdar, 2019). Our current study builds upon these previous findings, showing an essential role of Rudhira in maintaining TGFβ signaling and controlling the microtubule cytoskeleton during vascular development. On one hand Rudhira regulates TGFβ signaling by promoting the release of Smads from microtubules, while on the other, Rudhira is a TGFβ target essential for stabilizing microtubules. Thus, our current study provides a molecular basis for Rudhira function in cardiovascular development.

      (2) Why do they use HEK cells instead of SVEC cells in Figure 2 and 4 experiments?

      Our earlier studies have characterized the role of Rudhira in detail using both loss and gain of function methods in multiple cell types (Jain et al., 2012; SheVy, Joshi et al., 2018; Joshi and Inamdar, 2019). As endothelial cells are particularly difficult to transfect, and because the function of Rudhira in promoting cell migration is conserved in HEK cells, it was practical and relevant to perform these experiments in HEK cells (Figures 2 and 4E).

      (3) A model shown in Figure 5E needs improvement to grasp their findings easily.

      We have modified Figure 5E for clarity.

      Reviewer #2 (Public Review):

      Summary

      It was first reported in 2000 that Smad2/3/4 are sequestered to microtubules in resting cells and TGF-β stimulation releases Smad2/3/4 from microtubules, allowing activation of the Smad signaling pathway. Although the finding was subsequently confirmed in a few papers, the underlying mechanism has not been explored. In the present study, the authors found that Rudhira/breast carcinoma amplified sequence 3 is involved in the release of Smad2/3 from microtubules in response to TGF-β stimulation. Rudhira is also induced by TGF-β and is probably involved in the stabilization of microtubules in the delayed phase after TGF-β stimulation. Therefore, Rudhira has two important functions downstream of TGF-β in the early as well as delayed phase.

      Strengths:

      This work aimed to address an unsolved question on one of the earliest events after TGF-β stimulation. Based on loss-of-function experiments, the authors identified a novel and potentially important player, Rudhira, in the signal transmission of TGF-β.

      We thank the reviewer for the critical evaluation and appreciation of our findings.

      Weaknesses:

      The authors have identified a key player that triggers Smad2/3 released from microtubules after TGF-β stimulation probably via its association with microtubules. This is an important first step for understanding the regulation of Smad signaling, but underlying mechanisms as well as upstream and downstream events largely remain to be elucidated.

      We acknowledge that the mechanisms regulating cytoskeletal control of Smad signaling are far from clear, but these are out of scope of this manuscript. This manuscript rather focuses on Rudhira/Bcas3 as a pivot to understand vascular TGFβ signaling and microtubule connections.

      (1) The process of how Rudhira causes the release of Smad proteins from microtubules remains unclear. The statement that "Rudhira-MT association is essential for the activation and release of Smad2/3 from MTs" (lines 33-34) is not directly supported by experimental data.

      We agree with the reviewer’s comment. Although we provide evidence that the loss of Rudhira (and thereby deduced loss of Rudhira-MT association) prevents release of Smad2/3 from MTs (Fig 3C), it does not confirm the requirement of Rudhira-MT association for this. In light of this, we have modified the statement to ‘Rudhira associates with MTs and is essential for the activation and release of Smad2/3 from MTs”.

      (2) The process of how Rudhira is mobilized to microtubules in response to TGF-β remains unclear.

      Our previous study showed that Rudhira associates with microtubules, and preferentially binds to stable microtubules (Jain et al., 2012; Joshi and Inamdar, 2019). Since TGFβ stimulation is known to stabilize microtubules, we hypothesize that TGFβ stimulation increases Rudhira binding to stable microtubules. We have mentioned this in our revised manuscript.

      (3) After Rudhira releases Smad proteins from microtubules, Rudhira stabilizes microtubules. The process of how cells return to a resting state and recover their responsiveness to TGF-β remains unclear.

      We show that dissociation of Smads from microtubules is an early response and stabilization of microtubules is a late TGFβ response. However, we agree that the sequence of these molecular events has not been characterized in-depth in this or any other study, making it difficult to assign causal roles (eg. whether release of Smads from MTs is a pre-requisite for MT stabilization by Rudhira) or reversibility. However, the TGFβ pathway is auto regulatory, leading to increased turnover of receptors and Smads and increased expression of inhibitory Smads, which may recover responsiveness to TGFβ. Additionally, the still short turnover time of stable microtubules (several minutes to hours) may also promote quick return to resting state. We have discussed this in our revised manuscript.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for The Authors):

      (1) Overall: Duration of TGF-β stimulation in cell-based assays should be described in the legends for readers' convenience. Avoid simple bar graphs because sample numbers are only 3. A scaVer plot should be super-imposed.

      Details added, as suggested. Duration of treatment is mentioned in Materials and methods section for figures 1C-D; 2A-B; 3; 4A-C; 5A-C; S2D; S3A-C; S4C, D. Bar graphs have been replaced with a bar + scatter plot. Note that, as the Excel file for data related to fig 4A was corrupted, we repeated the experiments to generate fresh data. Hence the graph had to be replaced. However, the result holds true as before.

      (2) Figure 1A: This panel is too small. Gene names are almost invisible.

      Modified for clarity.

      (3) Figure 1B: Show TGFβRI expression by immunoblomng (re-probing) to verify that it is expressed in the rightmost lane.

      TGFβRI overexpression was confirmed by qPCR in a replicate in the same experiment (Fig S2C).

      (4) Figure 1C: Show expression of Rudhira. In addition, confirm the positions of molecular weight markers. Smad2 migrated slower than pSmad2.

      Rudhira expression is shown in Fig S1B. Molecular weight markers have been corrected.

      (5) Figure 3A: This panel shows a negative result that Smad2/3 fails to interact with Rudhira. A positive control, for example, Smad4, would make the data convincing.

      Although it would be nice to have a positive control for interaction, we do not agree that a positive control of Smad4 is essential for our conclusion from this experiment, which is that ‘we were unable to detect an interaction between Rudhira and Smad2/3’.

      (6) Fig. 3B: Show Rudhira blot. If possible, show that the Rudhira-MT association precedes Smad phosphorylation by a time course experiment. This is an important point but not experimentally demonstrated.

      The interaction between Rudhira and microtubules with or without TGFβ is demonstrated by PLA (Fig 3E). Although important, the suggested time course experiments to assess the sequence of events are beyond the scope of this manuscript. 

      (7) Figure 3E: Does the process require the type I receptor kinase activity or non-Smad signaling pathways?

      Since TGFβ pathway is complex and is regulated at multiple steps, this possibility has not been tested and is beyond the scope of current study.

      (8) Figure 4A: The authors did not examine if these elements are functional. Therefore, this panel can be presented as a supplementary figure.

      As suggested, the panel has been moved to supplementary information.

      (9) Figure 4E: The figure legend does not say that cells were TGF-β-stimulated. It remains unclear if Smad2 and Smad3 are involved in Rudhira expression as phosphorylated or non-phosphorylated forms. Therefore, the authors should show a pSmad2 blot. In the absence of TGF-β stimulation, Smad2 and Smad3 are expected to be sequestrated to microtubules and therefore not phosphorylated. In the case that cells were stimulated with TGF-β, show if Rudhira is induced by TGF-β in HEK293T cells. This is not shown in this manuscript.

      This experiment was not performed under regulated conditions with or without TGFβ, hence the sensitivity to TGFβ could not be assessed. Cells were not stimulated with exogenous TGFβ, but cultured in regular medium with serum, which can have up to ~40 ng/ml of TGFβ (latent and active). Additionally, owing to severe depletion of Smad2 or Smad3 by shRNAs we expect sufficient loss of phospho-Smads2/3. 

      (10) Figure S1A: Rudhira migrated at the position corresponding to 91 kD only in this panel.

      Corrected the position of molecular weight marker.

      (11) Line 205-206, "Since in vivo studies indicate that rudhira depletion severely affects the TGFβ pathway [11]": Refer to Reference 11. The paper does not say anything about TGFβ.

      Reference corrected to Ref #14.

      (12) Smad4 was previously reported to be sequestered to microtubules [Ref. 7]. Does Rudhira release Smad4 also?

      This is an interesting point which could be followed up on our future studies.

      (13) It would be nice if the authors examined how Rudhira causes the release of Smad2/3 from microtubules. Currently, it remains unclear whether the association of Rudhira to microtubules is required for the release of Smad2/3. Does a Rudhira mutant lacking microtubule binding fail to induce the release of Smad2/3 after TGF-β stimulation? If so, do Rudhira and Smad2/3 share the same binding site on microtubules? In that case, the mechanism can be regarded as "competitive".

      This is a thoughtful experiment much beyond the scope of current manuscript. In our previous study we were able to localize the Tubulin binding sites of Rudhira primarily to its Bcas3 domain (Joshi and Inamdar, 2019), however the equivalent sites in Tubulin were not assessed. While MH2 domains of Smad2/3 bind β-tubulin, amino acids 114-243 of β-tubulin bind to Smad2/3 (Dai et al., 2007). A systematic study of these tripartite interactions including Rudhira would be an interesting follow up for our future study.

    1. eLife Assessment

      The authors show that a middle carotid artery occlusion (MCAO) hypoxia lesion leads to hyaluronan-mediated chemoattraction to the lesion penumbra of Thbs-4-expressing astrocytes of the sub-ventricular zone (SVZ). These findings are valuable because they shed light on the function of astrocytes from the adult SVZ in pathological states like brain ischemic injury. The results are convincing, as they rely on a comprehensive analysis of experimental data.

    2. Reviewer #1 (Public review):

      Summary:

      The authiors show that SVZ derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronin is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.

      Strengths:

      The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and flow of result logical.

      Comments on revised version:

      Thanks for addressing my final points.

    3. Reviewer #2 (Public review):

      Summary:

      In their manuscript, Ardaya et al address the impact of ischemia-induced astrogliogenesis from the adult SVZ and their effect on remodeling of the extracellular matrix (ECM) in the glial scar. The authors show that the levels of Thbs4, a marker previously identified to be expressed in astrocytes and neural stem cells (NSCs) of the SVZ, strongly increase upon ischemia. While proliferation is significantly increase shortly after ischemia, Nestin and DCX (markers for NSCs and neuroblasts, respectively) decrease and Thbs4 levels suggesting that the neurogenic program is halted and astrogenesis is enhanced. By fate-mapping, the authors show that astrocytes derive from SVZ NSCs and migrate towards the lesion. These SVZ-derived astrocytes strongly express Thbs4 and populate the border of the lesion, while local astrocytes do not express Thbs4 and localize to both scar and border. Interestingly, the Thbs4-positive astrocytes appear to represent a second wave of astrocytes accumulating at the scar, following an immediate reaction of first wave reactive gliosis by local astrocytes. Mechanistically, the study presents evidence that the degradation of hyaluronan (HA), a key component of the extracellular matrix (ECM) is downregulated in the SVZ after ischemia, potentially inducing astrogliogenesis, while HA accumulation at the lesion side represents at least one signal to recruit the newly generated astrocytes. In the aim to facilitate tissue regeneration after ischemic injury, the authors propose that the Thbs4-positive astrocytes could be a promising therapeutical target to modulate the glial scar after brain ischemia.

      Strengths:

      This topic is timely and important since the focus of previous studies was almost exclusively on the role of neurogenesis. The generation of adult-born astrocytes has been proven in both neurogenic niches under physiological conditions, but the implicated function in pathology has not been sufficiently addressed yet.

      Weaknesses:

      The study presented by Ardaya et al presents good evidence that a population of astrocytes that express Thbs4 contribute to scar formation after ischemic injury. The authors demonstrate that ischemic injury increases proliferation in the SVZ, decreases neurogenesis and increases astrogenesis. However, whether astrogenesis is a result of terminal differentiation of type B cells or their proliferation remains unclear. Here, a combination of fate mapping and thymidine analogue-tracing would have been conclusively.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):  

      Summary:  

      The authors show that SVZ derived astrocytes respond to a middle carotid artery occlusion

      (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronan is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.  

      Strengths:  

      The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results logical.  

      Comments on revised version:  

      The authors have addressed my points and the paper is much improved. Here are the salient remaining issues that I suggest be addressed.  

      We appreciate the feedback by the reviewer, and we are glad that the paper is considered to be much improved. We have done our best to address the remaining issues in this 2nd revision.

      The authors have still not shown, using loss of function studies, that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions.

      This is true. Unfortunately, complete removal of hyaluronan (via Hyase) triggers epilepsy, already described in 1963 by James Young (Exp Neurol paper). Degradation by Hyase also provokes neuroinflammation (Soria et al., 2020 Nat Commun). Two alternatives could be 1) partial depletion with Has inhibitor 4MU (but it is also associated with increased inflammation) or 2) a Has-KO mouse, such as Has3-/- (Arranz et al., 2014), although, to our knowledge, this mouse line is not openly available. We have added a sentence in line 332 addressing this shortcoming: “Loss-of-function studies, using HA-depletion models or HA synthase (Has)deficient mice are still needed to corroborate this finding, although the inflammation associated with HA deficiency might confound interpretation.”

      (1) The co-expression of EGFr with Thbs4 and the literature examination is useful.  

      We thank the reviewer for the kind comment.

      (2) Too bad they cannot explain the lack of effect of the MCAO on type C cells. The comparison with kainate-induced epilepsy in the hippocampus may or may not be relevant.

      As stated in the previous response, we also found this interesting, and it does warrant further exploration by looking into possible direct NSC-astrocyte differentiation. But we believe that both this possible direct differentiation and the reactive status for these astrocytes are out of the scope of the study. We will not speculate about this in the discussion, either.

      (3) Thanks for including the orthogonal confocal views in Fig S6D.  

      (4) The statement that "BrdU+/Thbs4+ cells mostly in the dorsal area" and therefore they mostly focused on that region is strange. Figure 8 clearly shows Thbs4 staining all along the striatal SVZ. Do they mean the dorsal segment of the striatal SVZ or the subcallosal SVZ? Fig. 4b and Fig 4f clearly show the "subcallosal" area as the one analysed but other figures show the dorsal striatal region (Fig. 2a). This is important because of the well-known embryological and neurogenic differences between the regions.  

      While it is true that Thbs4 is also expressed in the other subregions of the SVZ (lateral, ventral and medial), as observed in Fig 8. we chose the dorsal area because it is the subregion where we observed the larger increase in slow proliferative NSCs (Thbs4/GFAP/BrdU-positive cells) after MCAO (Fig S3). As observed in the quantifications in Fig S3, we found Thbs4/GFAP/BrdUpositive cells increase in lateral, medial and ventral SVZ, but it is not significant. Therefore, from Fig 4 onwards, we focused on the dorsal SVZ, which the reviewer mentions as “subcallosal” area. We chose the term “dorsal” as stated in single-cell studies (Cebrian-Silla et al, 2021, eLife; Marcy et al., 2023, Sci Adv) and reviews (Sequerra 2014 Front Cell Neurosci) that investigate or mention this subregion, respectively. In the abstract, we are perfectly clear stating that newborn astrocytes migrate frm both dorsal and medial areas.  

      In Fig 2a, the immunofluorescence image shows medial and lateral SVZ, but at this point in the paper, we have not yet made specific subregional quantifications, and the Nestin, DCX and Thbs4 quantifications refer to the SVZ as a whole, both in the IF and in the WB (Fig 2e-g). We apologize for the confusion. We have clarified this in the text (line 119).  

      (5) It is good to know that the harsh MCAO's had already been excluded.  

      (6) Sorry for the lack of clarity - in addition to Thbs4, I was referring to mouse versus rat Hyaluronan degradation genes (Hyal1, Hyal2 and Hyal3) and hyaluronan synthase genes (HAS1 and HAS2) in order to address the overall species differences in hyaluronan biology thus justifying the "shift" from mouse to rat. You examine these in the (weirdly positioned) Fig. 8h,i. Please add a few sentences on mouse vs rat Thbs4 and Hyaluronan relevant genes.  

      We thank the reviewer for these remarks. We have now added a sentence pointing to the similar internalization and degradation in rat and mouse (reviewed by Sherman et al., 2015). This correction is in line 233. Hyaluronan is, in evolutionary terms, a very “old” molecule, part of the “ancient” glycan-based matrix, before the evolution of proteoglycans and fibrous proteins such as collagen, laminin etc. Hence, its machinery is highly conserved across species.

      We have also reorganized the panels in Fig 8, where 8h and 8i were indeed weirdly positioned. We hope that the new version of this figure is more easily readable.

      (7) Thank you for the better justification of using the naked mole rat HA synthase.  

      Reviewer #3 (Public review):  

      Summary:  

      The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.  

      Strengths:  

      The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.  

      In this revised version, the points raised/weaknesses were clarified and discussed in the article.  

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):  

      Minor points:  

      (1) Thanks for the clarification.  

      (2) Thanks for the clarification.  

      (3) The magnification is not apparent in Fig. 5.  

      We had removed two brain slices (from 4 to 2) in order to increase the size of the image 2-fold. We have now further increased the TTC panel, 25% from the revised version, 125% from the original.

      (4) Thanks for the clarification.  

      (5) Thanks for the clarification.  

      (6) Thanks for the clarification.  

      (7) Thanks for the clarification.  

      (8) Thanks for the clarification.

    1. eLife Assessment

      Bowler et al. present a software/hardware system for behavioral control of navigation-based virtual reality experiments, particularly suited for pairing with 2-photon imaging but applicable to a variety of techniques. This system represents a valuable contribution to the field of behavioral and systems neuroscience, as it provides a standardized, easy to implement, and flexible system that could be adopted across multiple laboratories. The authors provide compelling evidence of the functionality of their system by reporting benchmark tests and demonstrating hippocampal activity patterns consistent with standards in the field. This work will be of interest to systems neuroscientists looking to integrate flexible head-fixed behavioral control with neural data acquisition.

    2. Reviewer #1 (Public review):

      Summary:

      Bowler et al. present a thoroughly tested system for modularized behavioral control of navigation-based experiments, particularly suited for pairing with 2-photon imaging but applicable to a variety of techniques. This system, which they name behaviorMate, represents an important methodological contribution to the field of behavioral and systems neuroscience. As the authors note, behavioral control paradigms vary widely across laboratories in terms of hardware and software utilized and often require specialized technical knowledge to make changes to these systems. Having a standardized, easy to implement, and flexible system that can be used by many groups is therefore highly desirable.

      Strengths:

      The present manuscript provides compelling evidence of the functionality and applicability of behaviorMate. The authors report benchmark tests for high-fidelity, real-time update speed between the animal's movement and the behavioral control, on both the treadmill-based and virtual reality (VR) setups. The VR system relies on Unity, a common game development engine, but implements all scene generation and customizability in the authors' behaviorMate and VRMate software, which circumvents the need for users to program task logic in C# in Unity. Further, the authors nicely demonstrate and quantify reliable hippocampal place cell coding in both setups, using synchronized 2-photon imaging. This place cell characterization also provides a concrete comparison between the place cell properties observed in treadmill-based navigation vs. visual VR in a single study, which itself is a valuable contribution to the field.

      Weaknesses: None noted.

      Documentation for installing and operating behaviorMate is available via the authors' lab website and Github, linked in the manuscript.

      The authors have addressed all of my requests for clarification from the previous round of review. This work will be of great interest to systems neuroscientists looking to integrate flexible head-fixed behavioral control with neural data acquisition.

    3. Reviewer #2 (Public review):

      The authors present behaviorMate, an open-source behavior control system including a central GUI and compatible treadmill and display components. Notably, the system utilize the "Intranet of things" scheme and the components communicate through local network, making the system modular, which in turn allows user to configure the setup to suit their experimental needs. Overall, behaviorMate is a useful resource for researchers performing head-fixed VR imaging studies involving 1D navigation tasks, as the commercial alternatives are often expensive and inflexible to modify.

      One major utility of behaviorMate is an open-source alternative to commercial behavior apparatus for head-fixed imaging studies involving 1D navigation tasks. The documentation, BOM, CAD files, circuit design, source and compiled software, along with the manuscript, create an invaluable resource for neuroscience researcher looking to set up a budget-friendly VR and head-fixed imaging rig. Some features of behaviorMate, including the computer vision-based calibration of treadmill, and the decentralized, Android-based display devices, are very innovative approaches and can be quite useful in practical settings.

      behaviorMate can also be used as a set of generic schema and communication protocols that allows the users to incorporate recording and stimulation devices during a head-fixed imaging experiment. Due to the "Intranet of things" approach taken in the design, any hardware that supports UDP communication can in theory be incorporated into the system. In terms of current capability, behaviorMate supports experimental contingencies based on animal position and time and synchronization with external recording devices using a TTL start signal. Further customization involving more complicated experimental contingencies, more accurate recording synchronization (for example with ephys recording devices), incorporation of novel behavior and high-speed neural recording hardware beyond GPIO signaling would require modification of the Java source and custom hardware implementation. Modification to the Java source of behaviorMate can be performed with basic familiarity with object-oriented programming using the Java programming language, and a JavaFX-based plugin system is under development to make such customizations more approachable for users.

      In summary, the manuscript presents a well-developed and useful open-source behavior control system for head-fixed VR imaging experiments with innovative features.

    4. Reviewer #3 (Public review):

      In this work, the authors present an open-source system called behaviourMate for acquiring data related to animal behavior. The temporal alignment of recorded parameters across various devices is highlighted as crucial to avoid delays caused by electronics dependencies. This system not only addresses this issue but also offers an adaptable solution for VR setups. Given the significance of well-designed open-source platforms, this paper holds importance.

      Advantages of behaviorMate:

      The cost-effectiveness of the system provided.<br /> The reliability of PCBs compared to custom-made systems.<br /> Open-source nature for easy setup.<br /> Plug & Play feature requiring no coding experience for optimizing experiment performance (only text based Json files, 'context List' required for editing).

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      (1) As VRMate (a component of behaviorMate) is written using Unity, what is the main advantage of using behaviorMate/VRMate compared to using Unity alone paired with Arduinos (e.g. Campbell et al. 2018), or compared to using an existing toolbox to interface with Unity (e.g. Alsbury-Nealy et al. 2022, DOI: 10.3758/s13428-021-01664-9)? For instance, one disadvantage of using Unity alone is that it requires programming in C# to code the task logic. It was not entirely clear whether VRMate circumvents this disadvantage somehow -- does it allow customization of task logic and scenery in the GUI? Does VRMate add other features and/or usability compared to Unity alone? It would be helpful if the authors could expand on this topic briefly.

      We have updated the manuscript (lines 412-422) to clarify the benefits of separating the VR system as an isolated program and a UI that can be run independently. We argue that “…the recommended behaviorMate architecture has several important advantages. Firstly, by rendering each viewing angle of a scene on a dedicated device, performance is improved by splitting the computational costs across several inexpensive devices rather than requiring specialized or expensive graphics cards in order to run…, the overall system becomes more modular and easier to debug [and] implementing task logic in Unity would require understanding Object-Oriented Programming and C# … which is not always accessible to researchers that are typically more familiar with scripting in Python and Matlab.”

      VRMate receives detailed configuration info from behaviorMate at runtime as to which VR objects to display and receives position updates during experiments. Any other necessary information about triggering rewards or presenting non-VR cues is still handled by the UI so no editing of Unity is necessary. Scene configuration information is in the same JSON format as the settings files for behaviorMate, additionally there are Unity Editor scripts which are provided in the VRmate repository which permit customizing scenes through a “drag and drop” interface and then writing the scene configuration files programmatically. Users interested in these features should see our github page to find example scene.vr files and download the VRMate repository (including the editor scripts).  We provided 4 vr contexts, as well as a settings file that uses one of them which can be found on the behaviorMate github page (https://github.com/losonczylab/behaviorMate) in the “vr_contexts” and “example_settigs_files” directories. These examples are provided to assist VRMate users in getting set up and could provide a more detailed example of how VRMate and behaviorMate interact.

      (2) The section on "context lists", lines 163-186, seemed to describe an important component of the system, but this section was challenging to follow and readers may find the terminology confusing. Perhaps this section could benefit from an accompanying figure or flow chart, if these terms are important to understand.

      We maintain the use of the term context and context list in order to maintain a degree of parity with the java code. However, we have updated lines 173-175 to define the term context for the behaviorMate system: “... a context is grouping of one or more stimuli that get activated concurrently. For many experiments it is desirable to have multiple contexts that are triggered at various locations and times in order to construct distinct or novel environments.”

      a. Relatedly, "context" is used to refer to both when the animal enters a particular state in the task like a reward zone ("reward context", line 447) and also to describe a set of characteristics of an environment (Figure 3G), akin to how "context" is often used in the navigation literature. To avoid confusion, one possibility would be to use "environment" instead of "context" in Figure 3G, and/or consider using a word like "state" instead of "context" when referring to the activation of different stimuli.

      Thank you for the suggestion. We have updated Figure 3G to say “Environment” in order to avoid confusion.

      (3) Given the authors' goal of providing a system that is easily synchronizable with neural data acquisition, especially with 2-photon imaging, I wonder if they could expand on the following features:

      a. The authors mention that behaviorMate can send a TTL to trigger scanning on the 2P scope (line 202), which is a very useful feature. Can it also easily generate a TTL for each frame of the VR display and/or each sample of the animal's movement? Such TTLs can be critical for synchronizing the imaging with behavior and accounting for variability in the VR frame rate or sampling rate.

      Different experimental demands require varying levels of precision in this kind of synchronization signals. For this reason, we have opted against a “one-size fits all” for synchronization with physiology data in behaviorMate. Importantly this keeps the individual rig costs low which can be useful when constructing setups specifically for use when training animals. behaviorMate will log TTL pulses sent to GPIO pins setup as sensors, and can be configured to generate TTL pulses at regular intervals. Additionally all UDP packets received by the UI are time stamped and logged. We also include the output of the arduino millis() function in all UDP packets which can be used for further investigation of clock drift between system components. Importantly, since the system is event driven there cannot be accumulating drift across running experiments between the behaviorMate UI and networked components such as the VR system.

      For these reasons, we have not needed to implement a VR frame synchronization TTL for any of our experiments, however, one could extend VRMate to send "sync" packets back to behaviorMate to log when each frame was displayed precisely or TTL pulses (if using the same ODROID hardware we recommend in the standard setup for rendering scenes). This would be useful if it is important to account for slight changes in the frame rate at which the scenes are displayed. However, splitting rendering of large scenes between several devices results in fast update times and our testing and benchmarks indicate that display updates are smooth and continuous enough to appear coupled to movement updates from the behavioral apparatus and sufficient for engaging navigational circuits in the brain.

      b. Is there a limit to the number of I/O ports on the system? This might be worth explicitly mentioning.

      We have updated lines 219-220 in the manuscript to provide this information: Sensors and actuators can be connected to the controller using one of the 13 digital or 5 analog input/output connectors.

      c. In the VR version, if each display is run by a separate Android computer, is there any risk of clock drift between displays? Or is this circumvented by centralized control of the rendering onset via the "real-time computer"?

      This risk is mitigated by the real-time computer/UI sending position updates to the VR displays. The maximum amount scenes can be out of sync is limited because they will all recalibrate on every position update – which occurs multiple times per second as the animal is moving. Moreover, because position updates are constantly being sent by behaviorMate to VRMate and VRMate is immediately updating the scene according to this position, the most the scene can become out of sync with the mouse's position is proportional to the maximum latency multiplied by the running speed of the mouse. For experiments focusing on eliciting an experience of navigation, such a degree of asynchrony is almost always negligible. For other experimental demands it could be possible to incorporate more precise frame timing information but this was not necessary for our use case and likely for most other use cases. Additionally, refer to the response to comment 3a.

      Reviewer #2 (Public review):

      (1) The central controlling logic is coupled with GUI and an event loop, without a documented plugin system. It's not clear whether arbitrary code can be executed together with the GUI, hence it's not clear how much the functionality of the GUI can be easily extended without substantial change to the source code of the GUI. For example, if the user wants to perform custom real-time analysis on the behavior data (potentially for closed-loop stimulation), it's not clear how to easily incorporate the analysis into the main GUI/control program.

      Without any edits to the existing source code behaviorMate is highly customizable through the settings files, which allow users to combine the existing contexts and decorators in arbitrary combinations. Therefore, users have been able to perform a wide variety of 1D navigation tasks, well beyond our anticipated use cases by generating novel settings files. The typical method for providing closed-loop stimulation would be to set up a context which is triggered by animal behavior using decorators (e.g. based on position, lap number and time) and then trigger the stimulation with a TTL pulse. Rarely, if users require a behavioral condition not currently implemented or composable out of existing decorators, it would require generating custom code in Java to extend the UI. Performing such edits requires only knowledge of basic object-oriented programming in Java and generating a single subclass of either the BasicContextList or ContextListDecorator classes. In addition, the JavaFX (under development) version of behaviorMate incorporates a plugin which doesn't require recompiling the code in order to make these changes. However, since the JavaFX software is currently under development, documentation does not yet exist. All software is open-sourced and available on github.com for users interested in generating plugins or altering the source code.

      We have added the additional caveat to the manuscript in order to clarify this point (Line 197-202): “However, if the available set of decorators is not enough to implement the required task logic, some modifications to the source code may be necessary. These modifications, in most cases, would be very simple and only a basic understanding of object-oriented programming is required. A case where this might be needed would be performing novel customized real-time analysis on behavior data and activating a stimulus based on the result”

      (2) The JSON messaging protocol lacks API documentation. It's not clear what the exact syntax is, supported key/value pairs, and expected response/behavior of the JSON messages. Hence, it's not clear how to develop new hardware that can communicate with the behaviorMate system.

      The most common approach for adding novel hardware is to use TTL pulses (or accept an emitted TTL pulse to read sensor states). This type of hardware addition  is possible through the existing GPIO without the need to interact with the software or JSON API. Users looking to take advantage of the ability to set up and configure novel behavioral paradigms without the need to write any software would be limited to adding hardware which could be triggered with and report to the UI with a TTL pulse (however fairly complex actions could be triggered this way).

      For users looking to develop more customized hardware solutions that interact closely with the UI or GPIO board, additional documentation on the JSON messaging protocol has been added to the behaviormate-utils repository (https://github.com/losonczylab/behaviormate_utils). Additionally, we have added a link to this repository in the Supplemental Materials section (line 971) and referenced this in the manuscript (line 217) to make it easier for readers to find this information.

      Furthermore, developers looking to add completely novel components to the UI  can implement the interface described by Context.java in order to exchange custom messages with hardware. (described  in the JavaDoc: https://www.losonczylab.org/behaviorMate-1.0.0/)  These messages would be defined within the custom context and interact with the custom hardware (meaning the interested developer would make a novel addition to the messaging API). Additionally, it should be noted that without editing any software, any UDP packets sent to behaviorMate from an IP address specified in the settings will get time stamped and logged in the stored behavioral data file meaning that are a large variety of hardware implementation solutions using both standard UDP messaging and through TTL pulses that can work with behaviorMate with minimal effort. Finally, see response to R2.1 for a discussion of the JavaFX version of the behaviorMatee UI including plugin support.

      (3) It seems the existing control hardware and the JSON messaging only support GPIO/TTL types of input/output, which limits the applicability of the system to more complicated sensor/controller hardware. The authors mentioned that hardware like Arduino natively supports serial protocols like I2C or SPI, but it's not clear how they are handled and translated to JSON messages.

      We provide an implementation for an I2C-based capacitance lick detector which interested developers may wish to copy if support for novel I2C or SPI. Users with less development experience wishing to expand the hardware capabilities of  behaviorMatecould also develop adapters which can be triggered  on a TTL input/output. Additionally, more information about the JSON API and how messages are transmitted to the PC by the arduino is described in point (2) and the expanded online documentation.

      a. Additionally, because it's unclear how easy to incorporate arbitrary hardware with behaviorMate, the "Intranet of things" approach seems to lose attraction. Since currently, the manuscript focuses mainly on a specific set of hardware designed for a specific type of experiment, it's not clear what are the advantages of implementing communication over a local network as opposed to the typical connections using USB.

      As opposed to serial communication protocols as typical with USB, networking protocols seamlessly function based on asynchronous message passing. Messages may be routed internally (e.g. to a PCs localhost address, i.e. 0.0.0..0) or to a variety of external hardware (e.g. using IP addresses such as those in the range 192.168.1.2 - 192.168.1.254). Furthermore, network-based communication allows modules, such as VR, to be added easily. behavoirMate systems can be easily expanded using low-cost Ethernet switches and consume only a single network adapter on the PC (e.g. not limited by the number of physical USB ports). Furthermore, UDP message passing is implemented in almost all modern programming languages in a platform independent manner (meaning that the same software can run on OSX, Windows, and Linux). Lastly, as we have pointed out (Line 117) a variety of tools exist for inspecting network packets and debugging; meaning that it is possible to run behaviorMate with simulated hardware for testing and debugging.

      The IOT nature of behaviorMate means there is no requirement for novel hardware to be implemented  using an arduino,  since any system capable of  UDP communication can  be configured. For example, VRMate is usually run on Odroid C4s, however one could easily create a system using Raspberry Pis or even additional PCs. behaviorMate is agnostic to the format of the UDP messages, but packaging any data in the JSON format for consistency would be encouraged. If a new hardware is a sensor that has input requiring it to be time stamped and logged then all that is needed is to add the IP address and port information to the ‘controllers’ list in a behaviorMate settings file. If more complex interactions are needed with novel hardware than a custom implementation of ContextList.java may be required (see response to R2.2). However, the provided UdpComms.java class could be used to easily send/receive messages from custom Context.java subclasses.

      Solutions for highly customized hardware do require basic familiarity with object-oriented programming using the Java programming language. However, in our experience most behavioral experiments do not require these kinds of modifications. The majority of 1D navigation tasks, which behaviorMate is currently best suited to control, require touch/motion sensors, LEDs, speakers, or solenoid valves,  which are easily controlled by the existing GPIO implementation. It is unlikely that custom subclasses would even be needed.

      Reviewer #3 (Public review):

      (1) While using UDP for data transmission can enhance speed, it is thought that it lacks reliability. Are there error-checking mechanisms in place to ensure reliable communication, given its criticality alongside speed?

      The provided GPIO/behavior controller implementation sends acknowledgement packets in response to all incoming messages as well as start and stop messages for contexts and “valves”. In this way the UI can update to reflect both requested state changes as well as when they actually happen (although there is rarely a perceptible gap between these two states unless something is unplugged or not functioning). See Line 85 in the revised manuscript “acknowledgement packets are used to ensure reliable message delivery to and from connected hardware”.

      (2) Considering this year's price policy changes in Unity, could this impact the system's operations?

      VRMate is not affected by the recent changes in pricing structure of the Unity project.

      The existing compiled VRMate software does not need to be regenerated to update VR scenes, or implement new task logic (since this is handled by the behaviorMate GUI). Therefore, the VRMate program is robust to any future pricing changes or other restructuring of the Unity program and does not rely on continued support of Unity. Additionally, while the solution presented in VRMate has many benefits, a developer could easily adapt any open-source VR Maze project to receive the UDP-based position updates from behaviorMate or develop their own novel VR solutions.

      (3) Also, does the Arduino offer sufficient precision for ephys recording, particularly with a 10ms check?

      Electrophysiology recording hardware typically has additional I/O channels which can provide assistance with tracking behavior/synchronization at a high resolution. While behaviorMate could still be used to trigger reward valves, either the ephys hardware or some additional high-speed DAQ would be recommended to maintain accurately with high-speed physiology data. behaviorMate could still be set up as normal to provide closed and open-loop task control at behaviorally relevant timescales alongside a DAQ circuit recording events at a consistent temporal resolution. While this would increase the relative cost of the individual recording setup, identical rigs for training animals could still be configured without the DAQ circuit avoiding unnecessary cost and complexity.

      (4) Could you clarify the purpose of the Sync Pulse? In line 291, it suggests additional cues (potentially represented by the Sync Pulse) are needed to align the treadmill screens, which appear to be directed towards the Real-Time computer. Given that event alignment occurs in the GPIO, the connection of the Sync Pulse to the Real-Time Controller in Figure 1 seems confusing.

      A number of methods exist for synchronizing recording devices like microscopes or electrophysiology recordings with behaviorMate’s time-stamped logs of actuators and sensors. For example, the GPIO circuit can be configured to send sync triggers, or receive timing signals as input. Alternatively a dedicated circuit could record frame start signals and relay them to the PC to be logged independently of the GPIO (enabling a high-resolution post-hoc alignment of the time stamps). The optimal method to use varies based on the needs of the experiment. Our setups have a dedicated BNC output and specification in the settings file that sends a TTL pulse at the start of an experiment in order to trigger 2p imaging setups (see line 224, specifically that this is a detail of “our” 2p imaging setup). We provide this information as it might be useful suggesting how to have both behavior and physiology data start recording at the same time. We do not intend this to be the only solution for alignment. Figure 1 indicates an “optional” circuit for capturing a high speed sync pulse and providing time stamps back to the real time PC. This is another option that might be useful for certain setups (or especially for establishing benchmarks between behavior and physiology recordings). In our setup event alignment does not exclusively occur on the GPIO.

      a. Additionally, why is there a separate circuit for the treadmill that connects to the UI computer instead of the GPIO? It might be beneficial to elaborate on the rationale behind this decision in line 260.

      Event alignment does not occur on the GPIO, separating concerns between position tracking and more general input/output features which improves performance and simplifies debugging.  In this sense we maintain a single event loop on the Arduino, avoiding the need to either run multithreaded operations or rely extensively on interrupts which can cause unpredictable code execution (e.g. when multiple interrupts occur at the same time). Our position tracking circuit is therefore coupled to a separate,low-cost arduino mini which has the singular responsibility of position-tracking.

      b. Moreover, should scenarios involving pupil and body camera recordings connect to the Analog input in the PCB or the real-time computer for optimal data handling and processing?

      Pupil and body camera recordings would be independent data streams which can be recorded separately from behaviorMate. Aligning these forms of full motion video could require frame triggers which could be configured on the GPIO board using single TTL like outputs or by configuring a valve to be “pulsed” which is a provided type customization.

      We also note that a more advanced developer could easily leverage camera signals to provide closed loop control by writing an independent module that sends UDP packets to behavoirMate. For example a separate computer vision based position tracking module could be written in any preferred language and use UDP messaging to send body tracking updates to the UI without editing any of the behaviorMate source code (and even used for updating 1D location).

      (5) Given that all references, as far as I can see, come from the same lab, are there other labs capable of implementing this system at a similar optimal level?

      To date two additional labs have published using behaviorMate, the Soltez and Henn labs (see revised lines 341-342). Since behaviorMate has only recently been published and made available open source, only external collaborators of the Losonczy lab have had access to the software and design files needed to do this. These collaborators did, however, set up their own behavioral setups in separate locations with minimal direct support from the authors–similar to what would be available to anyone seeking to set a behaviorMate system would find online on our github page or by posting to the message board.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (4) To provide additional context for the significance of this work, additional citations would be helpful to demonstrate a ubiquitous need for a system like behaviorMate. This was most needed in the paragraph from lines 46-65, specifically for each sentence after line 55, where the authors discuss existing variants on head-fixed behavioral paradigms. For instance, for the clause "but olfactory and auditory stimuli have also been utilized at regular virtual distance intervals to enrich the experience with more salient cues", suggested citations include Radvansky & Dombeck 2018 (DOI: 10.1038/s41467-018-03262-4), Fischler-Ruiz et al. 2021 (DOI: 10.1016/j.neuron.2021.09.055).

      We thank the reviewer for the suggested missing citations and have updated the manuscript accordingly (see line 58).

      (5) In addition, it would also be helpful to clarify behaviorMate's implementation in other laboratories. On line 304 the authors mention "other labs" but the following list of citations is almost exclusively from the Losonczy lab. Perhaps the citations just need to be split across the sentence for clarity? E.g. "has been validated by our experimental paradigms" (citation set 1) "and successfully implemented in other labs as well" (citation set 2).

      We have split the citation set as suggested (see lines 338-342).

      Minor Comments:

      (6) In the paragraph starting line 153 and in Fig. 2, please clarify what is meant by "trial" vs. "experiment". In many navigational tasks, "trial" refers to an individual lap in the environment, but here "trial" seems to refer to the whole behavioral session (i.e. synonymous with "experiment"?).

      In our software implementation we had originally used “trial” to refer to an imaging session rather than experiment (and have made updates to start moving to the more conventional lexicon). To avoid confusion we have remove this use of “trial” throughout the manuscript and replaced with “experiment” whenever possible

      (7) This is very minor, but in Figure 3 and 4, I don't believe the gavage needle is actually shown in the image. This is likely to avoid clutter but might be confusing to some readers, so it may be helpful to have a small inset diagram showing how the needle would be mounted.

      We assessed the image both with and without the gavage needle and found the version in the original (without) to be easier to read and less cluttered and therefore maintained that version in the manuscript.

      (8) In Figure 5 legend, please list n for mice and cells.

      We have updated the Figure 5 legend to indicate that for panels C-G, n=6 mice (all mice were recorded in both VR and TM systems), 3253 cells in VR classified as significantly tuned place cells VR, and 6101 tuned cells in TM,

      (9) Line 414: It is not necessary to tilt the entire animal and running wheel as long as the head-bar clamp and objective can rotate to align the imaging window with the objective's plane of focus. Perhaps the authors can just clarify the availability of this option if users have a microscope with a rotatable objective/scan head.

      We have added the suggested caveat to the manuscript in order to clarify when the goniometers might be useful (see lines 281-288).

      (10) Figure S1 and S2 could be referenced explicitly in the main text with their related main figures.

      We have added explicit references to figures S1 and S2 in the relevant sections (see lines 443, 460  and 570)

      (11) On line 532-533, is there a citation for "proximal visual cues and tactile cues (which are speculated to be more salient than visual cues)"?

      We have added citations to both Knierim & Rao 2003 and Renaudineau et al. 2007 which discuss the differential impact of proximal vs distal cues during navigation as well as Sofroniew et al. 2014 which describe how mice navigate more naturally in a tactile VR setup as opposed to purely visual ones.

      (12) There is a typo at the end of the Figure 2 legend, where it should say "Arduino Mini."

      This typo has been fixed.

      Reviewer #2 (Recommendations For The Authors):

      (4) As mentioned in the public review: what is the major advantage of taking the IoT approaches as opposed to USB connections to the host computer, especially when behaviorMate relies on a central master computer regardless? The authors mentioned the readability of the JSON messages, making the system easier to debug. However, the flip side of that is the efficiency of data transmission. Although the bandwidth/latency is usually more than enough for transmitting data and commands for behavior devices, the efficiency may become a problem when neural recording devices (imaging or electrophysiology) need to be included in the system.

      behaviorMate is not intended to do everything, and is limited to mainly controlling behavior and providing some synchronizing TTL style triggers. In this way the system can easily and inexpensively be replicated across multiple recording setups; particularly this is useful for constructing additional animal training setups. The system is very much sufficient for capturing behavioral inputs at relevant timescales (see the benchmarks in Figures 3 and 4 as well as the position correlated neural activity in Figures 5 and 6 for demonstration of this). Additional hardware might be needed to align the behaviorMate output with neural data for example a high-speed DAQ or input channels on electrophysiology recording setups could be utilized (if provided). As all recording setups are different the ideal solution would depend on details which are hard to anticipate. We do not mean to convey that the full neural data would be transmitted to the behaviorMate system (especially using the JSON/UDP communications that behaviorMate relies on).

      (5) The author mentioned labView. A popular open-source alternative is bonsai (https://github.com/bonsai-rx/bonsai). Both include a graphical-based programming interface that allows the users to easily reconfigure the hardware system, which behaviorMate seems to lack. Additionally, autopilot (https://github.com/auto-pi-lot/autopilot) is a very relevant project that utilizes a local network for multiple behavior devices but focuses more on P2P communication and rigorously defines the API/schema/communication protocols for devices to be compatible. I think it's important to include a discussion on how behaviorMate compares to previous works like these, especially what new features behaviorMate introduces.

      We believe that behaviorMate provides a more opinionated and complete solution than the projects mentioned. A wide variety of 1D navigational paradigms can be constructed in behaviorMate without the need to write any novel software. For example, bonsai is a “visual programming language” and would require experimenters to construct a custom implementation of each of their experiments. We have opted to use Java for the UI with distributed computations across modules in various languages. Given the IOT methodology it would be possible to use any number of programming languages or APIs; a large number of design decisions were made  when building the project and we have opted to not include this level of detail in the manuscript in order to maintain readability. We strongly believe in using non-proprietary and open source projects, when possible, which is why the comparison with LabView based solutions was included in the introduction. Also, we have added a reference to the autopilot reference to the section of the introduction where this is discussed.

      (6) One of the reasons labView/bonsai are popular is they are inherently parallel and can simultaneously respond to events from different hardware sources. While the JSON events in behaviorMate are asynchronous in nature, the handling of those events seems to happen only in a main event loop coupled with GUI, which is sequential by nature. Is there any multi-threading/multi-processing capability of behaviorMate? If so it's an important feature to highlight. If not I think it's important to discuss the potential limitation of the current implementation.

      IOT solutions are inherently concurrent since the computation is distributed. Additional parallelism could be added by further distributing concerns between additional independent modules running on independent hardware. The UI has an eventloop which aggregates inputs and then updates contexts based on the current state of those inputs sequentially. This sort of a “snapshot” of the current state is necessary to reason about when the start certain contexts based on their settings and applied decorators. While the behaviorMate UI uses multithreading libraries in Java to be more performant in certain cases, the degree to which this represents true vs “virtual” concurrency would depend on the individual PC architecture it is run on and how the operating system allocates resources. For this reason, we have argued in the manuscript that behaviorMate is sufficient for controlling experiments at behaviorally relevant timescales, and have presented both benchmarks and discussed different synchronization approaches and permit users to determine if this is sufficient for their needs.

      (7) The context list is an interesting and innovative approach to abstract behavior contingencies into a data structure, but it's not currently discussed in depth. I think it's worth highlighting how the context list can be used to cover a wide range of common behavior experimental contingencies with detailed examples (line 185 might be a good example to give). It's also important to discuss the limitation, as currently the context lists seem to only support contingencies based purely on space and time, without support for more complicated behavior metrics (e.g. deliver reward only after X% correct).

      To access more complex behavior metrics during runtime, custom context list decorators would need to be implemented. While this is less common in the sort of 1D navigational behaviors the project was originally designed to control, adding novel decorators is a simple process that only requires basic object oriented programming knowledge. As discussed we are also implementing a plugin-architecture in the JavaFX update to streamline these types of additions.

      Minor Comments:

      (8) In line 202, the author suggests that a single TTL pulse is sent to mark the start of a recording session, and this is used to synchronize behavior data with imaging data later. In other words, there are no synchronization signals for every single sample/frame. This approach either assumes the behavior recording and imaging are running on the same clock or assumes evenly distributed recording samples over the whole recording period. Is this the case? If so, please include a discussion on limitations and alternative approaches supported by behaviorMate. If not, please clarify how exactly synchronization is done with one TTL pulse.

      While the TTL pulse triggers the start of neural data in our setups, various options exist for controlling for the described clock drift across experiments and the appropriate one depends on the type of recordings made, frame rate duration of recording etc. Therefore behaviorMate leaves open many options for synchronization at different time scales (e.g. the adding a frame-sync circuit as shown in Figure 1 or sending TTL pulses to the same DAQ recording electrophysiology data).  Expanded consideration of different synchronization methods has been included in the manuscript (see lines 224-238).

      (9) Is the computer vision-based calibration included as part of the GUI functionality? Please clarify. If it is part of the GUI, it's worth highlighting as a very useful feature.

      The computer vision-based benchmarking is not included in the GUI. It is in the form of a script made specifically for this paper. However for treadmill-based experiments behaviorMate has other calibration tools built into it (see line 301-303).

      (10) I went through the source code of the Arduino firmware, and it seems most "open X for Y duration" functions are implemented using the delay function. If this is indeed the case, it's generally a bad idea since delay completely pauses the execution and any events happening during the delay period may be missed. As an alternative, please consider approaches comparing timestamps or using interrupts.

      We have avoided the use of interrupts on the GPIO due to the potential for unpredictable code execution. There is a delay which is only just executed if the duration is 10 ms or less as we cannot guarantee precision of the arduino eventloop cycling faster than this. Durations longer than 10 ms would be time stamped and non-blocking. We have adjusted this MAX_WAIT to be specified as a macro so it can be more easily adjusted (or set to 0).

      (11) Figure 3 B, C, D, and Figure 4 D, E suffer from noticeable low resolution.

      We have converted Figure 3B, C, D and 4C, D, E to vector graphics in order to improve the resolution.

      (12) Figure 4C is missing, which is an important figure.

      This figure appeared when we rendered and submitted the manuscript. We apologize if the figure was generated such that it did not load properly in all pdf viewers. The panel appears correctly in the online eLife version of the manuscript. Additionally, we have checked the revision in Preview on Mac OS as well as Adobe Acrobat and the built-in viewer in Chrome and all figure panels appear in each so we hope this issue has been resolved.

      (13) There are thin white grid lines on all heatmaps. I don't think they are necessary.

      The grid lines have been removed from the heatmaps  as suggested.

      (14) Line 562 "sometimes devices directly communicate with each other for performance reasons", I didn't find any elaboration on the P2P communication in the main text. This is potentially worth highlighting as it's one of the advantages of taking the IoT approaches.

      In our implementation it was not necessary to rely on P2P communication beyond what is indicated in Figure 1. The direct communication referred to in line 562 is meant only to refer to the examples expanded on in the rest of the paragraph i.e. the behavior controller may signal the microscope directly using a TTL signal without looping back to the UI. As necessary users could implement UDP message passing between devices, but this is outside the scope of what we present in the manuscript.

      (15) Line 147 "Notably, due to the systems modular architecture, different UIs could be implemented in any programming language and swapped in without impacting the rest of the system.", this claim feels unsupported without a detailed discussion of how new code can be incorporated in the GUI (plugin system).

      This comment refers to the idea of implementing “different UIs”. This would entail users desiring to take advantage of the JSON messaging API and the proposed electronics while fully implementing their own interface. In order to facilitate this option we have improved documentation of the messaging API posted in the README file accompanying the arduino source code. We have added reference to the supplemental materials where readers can find a link to the JSON API implementation to clarify this point.

      Additionally, while a plugin system is available in the JavaFX version of behaviorMate, this project is currently under development and will update the online documentation as this project matures, but is unrelated to the intended claim about completely swapping out the UI.

      Reviewer #3 (Recommendations For The Authors):

      (6) Figure 1 - the terminology for each item is slightly different in the text and the figure. I think making the exact match can make it easier for the reader.

      - Real-time computer (figure) vs real-time controller (ln88).

      The manuscript was adjusted to match figure terminology.

      - The position controller (ln565) - position tracking (Figure).

      We have updated Figure 1 to highlight that the position controller does the position tracking.

      - Maybe add a Behavior Controller next to the GPIO box in Figure 1.

      We updated Figure 1 to highlight that the Behavior Controller performs the GPIO responsibility such that "Behavior Controller" and "GPIO circuit" may be used interchangeably.

      - Position tracking (fig) and position controller (subtitle - ln209).

      We updated Figure 1 to highlight that the position controller does the position tracking.

      - Sync Pulse is not explained in the text.

      The caption for Figure 1 has been updated to better explain the Sync pulse and additional systems boxes

      (7) For Figure 3B/C: What is the number of data points? It would be nice to see the real population, possibly using a swarm plot instead of box plots. How likely are these outliers to occur?

      In order to better characterize the distributions presented in our benchmarking data we have added mean and standard deviation information the plots 3 and 4. For Figure 3B: 0.0025 +/- 0.1128, Figure 3C: 12.9749 +/- 7.6581, Figure 4C: 66.0500 +/- 15.6994, Figure 4E: 4.1258 +/- 3.2558.

    1. eLife Assessment

      Periods in which experience regulates early plasticity in sensory circuits are well established, but the mechanisms that control these critical periods are poorly understood. In this important study, the authors examine early-life critical periods that regulate the Drosophila antennal lobe and show that constant odor exposure markedly reduces the volume, synapse number, and function of a specific glomerulus. The authors offer compelling evidence that these changes are mediated by the invasion of ensheathing glia into the glomerulus where they phagocytose connections via a mechanism involving the engulfment receptor Draper.

    2. Reviewer #1 (Public review):

      Time periods in which experience regulates early plasticity in sensory circuits are well established, but the mechanisms that control these critical periods are poorly understood. In this manuscript, Leier and Foden and colleagues examine early-life critical periods that regulate the Drosophila antennal lobe, a model sensory circuit for understanding synaptic organization. Using early-life (0-2 days old) exposure to distinct odorants, they show that constant odor exposure markedly reduces the volume, synapse number, and function of the VM7 glomerulus. The authors offer evidence that these changes are mediated by invasion of ensheathing glia into the glomerulus where they phagocytose connections via a mechanism involving the engulfment receptor Draper.

      This manuscript is a striking example of a study where the questions are interesting, the authors spent a considerable amount of time to clearly think out the best experiments to ask their questions in the most straightforward way, and expressed the results in a careful, cogent, and well-written fashion. It was a genuine delight to read this paper. Overall, this is an incredibly important finding, a careful analysis, and an excellent mechanistic advance in understanding sensory critical period biology.

      Comments on latest version:

      In the revision, the authors have clearly thought deeply and added provocative new data. They have addressed my concerns and I laud them on an excellent study.

    3. Reviewer #2 (Public review):

      Sensory experiences during developmental critical periods have long-lasting impacts on neural circuit function and behavior. However, the underlying molecular and cellular mechanisms that drive these enduring changes are not fully understood. In Drosophila, the antennal lobe is composed of synapses between olfactory sensory neurons (OSNs) and projection neurons (PNs), arranged into distinct glomeruli. Many of these glomeruli show structural plasticity in response to early-life odor exposure, reflecting the sensitivity of the olfactory circuitry to early sensory experiences.<br /> In their study, the authors explored the role of glia in the development of the antennal lobe in young adult flies, proposing that glial cells might also play a role in experience-dependent plasticity. They identified a critical period during which both structural and functional plasticity of OSN-PN synapses occur within the ethyl butyrate (EB)-responsive VM7 glomerulus. When flies were exposed to EB within the first two days post-eclosion, significant reductions in glomerular volume, presynaptic terminal numbers, and postsynaptic activity were observed. The study further highlights the importance of the highly conserved engulfment receptor Draper in facilitating this critical period plasticity. The authors demonstrated that, in response to EB exposure during this developmental window, ensheathing glia increase Draper expression, infiltrate the VM7 glomerulus, and actively phagocytose OSN presynaptic terminals. This synapse pruning has lasting effects on circuit function, leading to persistent decreases in both OSN-PN synapse numbers and spontaneous PN activity as analyzed by perforated patch-clamp electrophysiology to record spontaneous activity from PNs postsynaptic to Or42a OSNs .

      In my view, this is an intriguing and potentially valuable set of data.

      Comments on latest version:

      After carefully reviewing the revised manuscript, I am satisfied with the authors' responses to my initial suggestions, particularly regarding the synaptic readouts used in their analyses. The authors have clarified their approach with appropriate changes in wording, which enhance the manuscript's clarity and address my previous concerns. Although I believe it could have been beneficial to incorporate postsynaptic markers to further substantiate the findings, I understand this may not have been feasible within the scope of the current study.

      Overall, I find that the major claims of the manuscript are now sufficiently supported by the presented data. The revisions have improved the manuscript, and I am confident it meets the standards for publication. I therefore recommend the manuscript for publication in its current form.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Time periods in which experience regulates early plasticity in sensory circuits are well established, but the mechanisms that control these critical periods are poorly understood. In this manuscript, Leier and Foden and colleagues examine early-life critical periods that regulate the Drosophila antennal lobe, a model sensory circuit for understanding synaptic organization. Using early-life (0-2 days old) exposure to distinct odorants, they show that constant odor exposure markedly reduces the volume, synapse number, and function of the VM7 glomerulus. The authors offer evidence that these changes are mediated by invasion of ensheathing glia into the glomerulus where they phagocytose connections via a mechanism involving the engulfment receptor Draper.

      This manuscript is a striking example of a study where the questions are interesting, the authors spent a considerable amount of time to clearly think out the best experiments to ask their questions in the most straightforward way, and expressed the results in a careful, cogent, and well-written fashion. It was a genuine delight to read this paper. I have two experimental suggestions that would really round out existing work to better support the existing conclusions and some instances where additional data or tempered language in describing results would better support their conclusions. Overall, though, this is an incredibly important finding, a careful analysis, and an excellent mechanistic advance in understanding sensory critical period biology.

      We thank the reviewer for their thoughtful and constructive comments on our manuscript. In response to their critiques, we conducted several new experiments as well as additional analysis and making changes to the text. As requested, we carried out an electrophysiological analysis of VM7 PN firing in draper knockdown animals with and without odor exposure. To our surprise, loss of glial Draper fully suppresses the dramatic reduction in spontaneous PN activity observed following critical period ethyl butyrate exposure, arguing that the functional response is restored alongside OSN morphology. It also suggests that the OR42a OSN terminals are intact and functional until they are phagocytosed by ensheathing glia. In other words, glia are not merely clearing axon terminals that have already degenerated. This evidence provides additional support to the claim that the VM7 glomerulus will be an outstanding model for defining mechanism of experience-dependent glial pruning. Detailed responses to the reviewers’ comments follow below. 

      Regarding the apparent disconnect between the near complete silencing of PNs versus the 50% reduction in OR42a OSN infiltration volume, we agree with the reviewer that this tracks with previous data in the field. While our Imaris pipeline is relatively sensitive, it may not pick up modest changes to terminal arbor architecture. Indeed, as described in Jindal et al. (2023) and in the Methods in this manuscript, we chose conservative software settings that, if anything, would undercount the percent change in infiltration volume. We also note that increased inhibitory LN inputs onto PNs could contribute to dramatic PN silencing we observe. While fascinating, we view LN plasticity beyond the scope of the current manuscript. We removed any mention of ‘silent synapses’ and now speculate about increased inhibition. 

      Reviewer #1 (Recommendations For The Authors):

      Major Elements:

      (1) The authors demonstrate that loss of draper in glia can suppress many of the pruning related phenotypes associated with EB exposure. However, they do not assess electrophysiological output in these experiments, only morphology. It would be great to see recordings from those animals to see if the functional response is also restored.

      We performed the experiment the reviewer requested (see Figure 4F-J). We are pleased to report that our recordings from VM7 PNs match our morphology measurements: in repo-GAL4>UAS-draper RNAi flies, there was no difference in the innervation of VM7 PNs between animals exposed to mineral oil or 15% EB from 0-2 DPE. This result is in sharp contrast to the near-total loss of OSN-PN innervation in flies with intact glial Draper signaling, and strongly validates the role we propose for Draper in the Or42a OSN critical period.

      (2) There is a disconnect between physiology and morphology with a near complete loss of activity from VM7 PNs but a less severe loss of ORN synapses. While not completely incongruent (previous work in the AL showed a complete loss of attractive behavior though synapse number was only reduced 40% - Mosca et al. 2017, eLife), it is curious. Can the authors comment further? Ideally, some of these synapses could be visualized by EM to determine if the remaining synapses are indeed of correct morphology. If not, this could support their assertion of silent inputs from page 7. Further, what happens to the remaining synapses? VM7 PNs should be receiving some activity from other local interneurons as well as neighboring PNs.

      We agree that on the surface, our electrophysiology results are more striking than one might expect solely from our measurements of VM7 morphology and presynaptic content. As the reviewer points out, previous studies of fly olfaction have consistently found that relatively modest shifts in glomerular volume in response to prolonged earlylife odorant exposure can be accompanied by drastic changes in physiology and behavior (in addition, we would add Devaud et al., 2003; Devaud et al., 2001; Acebes et al., 2012; and Chodankar et al., 2020, as foundational examples of this phenomenon). 

      A major driver of these changes appears to be remodeling of antennal lobe inhibitory LNs (see Das et al., 2011; Wilson and Laurent, 2005; Chodankar et al., 2020), especially GABAergic inhibitory interneurons. Perhaps increased LN inhibition of chronically activated PNs, on top of the reduced excitatory inputs resulting from ensheathing glial pruning of the Or42a OSN terminal arbor, would explain the near-total loss of VM7 PN activity we observe after critical period EB exposure. However, given that the scope of our study is limited to critical-period glial biology and does not address the complex topics of LN rewiring or synapse morphology, we have removed the sentence in which we raise the possibility of “silent synapses” in order to avoid confusion. The reviewer is also correct that VM7 PNs have inputs from non-ORN presynaptic partners, including LNs and PNs. So again, perhaps increased inhibitory inputs contributes to the near-complete silencing of the PNs. Given the heterogeneity of LN populations, we view this area as fertile ground for future research. 

      Language / Data Considerations:

      (1) Or42a OSNs have other inputs, namely, from LNs. What are they doing here? Are they also affected?

      As discussed above, the question of how LN innervation of Or42a OSNs is altered by critical-period EB exposure is an intriguing one that fully deserves its own follow-up study, and we have tried to avoid speculation about the role of LNs when discussing our pruning phenotype. We note at multiple points throughout the text the importance of LNs and refer to previous studies of LN plasticity in response to chronic odorant exposure. 

      (2) In all of the measurements, what happens to synaptic density? Is it maintained? Does it scale precisely? This would be helpful to know.

      We have performed the analysis as requested, which is now included in a supplement to Figure 5. We found that synaptic density shows no trend in variation across conditions and glial driver genotypes.

      (3) In Figure 5, the controls for the alrm-GAL4 experiments show a much more drastic phenotype than controls in previous figures? Does this background influence how we can interpret the results? Could the response have instead hit a floor effect and it's just not possible to recover?

      The reviewer is correct that following EB exposure, astrocyte vs. ensheathing glial driver backgrounds displayed modest differences in the extent of pruning by volume (0.27 for astros, 0.36 for EG). We note that the two drpr RNAi lines that we used had non-significant (but opposite) effects on the estimated size of OSN42a OSN volume in combination with the astrocyte driver, arguing against a floor effect. In addition, a recent publication by Nelson et al. (2024) replicated our findings with a different astrocyte GAL4 driver and draper RNAi line. Thus, we are confident that this result is biologically meaningful and not an artifact of genetic background. 

      (4) The estimation of infiltration measurement in Figure 6 is tricky to interpret. It implies that the projections occupy the same space, which cannot be possible. I'd advocate a tempering of some of this language and consider an intensity measurement in addition to their current volume measurements (or perhaps an "occupied space" measurement) to more accurately assess the level of resolution that can be obtained via these methods.

      We completely agree that our language in describing EG infiltration could have been more precise, and we modified our language as suggested. The combination of the Or42a-mCD8::GFP label we and others use, our use of confocal microscopy, and our Surface pipeline in Imaris combine to create a glomerular mask that traces the outline of the OSN terminal arbor, but is nonetheless not 100% “filled” by neuronal membrane and/or glial processes. 

      (5) Do the authors have the kind of resolution needed to tell whether there is indeed Or42a-positive axon fragmentation (as asserted on p16 and from their data in figures 4, 5, 7). If the authors want to say this, I would advocate for a measurement of fragmentation / total volume to prove it - if not, I would advocate tempering of the current language.

      The reviewer brings up a fair criticism: while our assertion about axon fragmentation was based on our visual observations of hundreds of EB-exposed brains, the resolution limits of confocal microscopy do not allow us to rigorously rule out fragmentation within a bundle of OSN axons. Instead, our most compelling evidence for the lack of EB-induced Or42a OSN fragmentation in the absence of glial Draper comes from our new electrophysiology data (Figure 4F-J) in repo-GAL4>UAS-draper RNAi animals. We found no difference in spontaneous release from Or42a terminals in flies exposed to mineral oil or 15% EB from 0-2 DPE, which would not be the case if there was Draper-independent fragmentation along the axons or terminal arbors upon EB exposure. We have updated our discussion of fragmentation so that our statements are based on this new evidence, and not confocal microscopy. 

      (6) There is an interesting Discussion opportunity missed here. Some experiments would, ostensibly, require pupae to detect odorants within the casing via structures consistently in place for olfaction during pupation. It would be useful for the authors to discuss a little more deeply when this critical period may arise and why the experiment where pupae are exposed to EB two days before eclosion and there is no response, occurs as it does. I agree that it's clearly a time when they are not sensitive to the odorant, but that could just be because there's no ability to detect odorants at that time. Is it a question of non-sensitivity to EB or just non-sensitivity to everything?

      We share the reviewer’s interest in the plasticity of the olfactory circuit during pupariation, although, as they correctly point out, it is difficult to conceive of an odorant-exposure experiment that could disentangle the barrier effects of puparium from the sensitivity of the circuit itself, and our pre-eclosion data in Figure 3A, D, G does not distinguish between the two. While an investigation into mechanism by which the critical period for ethyl butyrate exposure opens and closes is outside the scope of the present study, we would consider the physical barrier of the puparium to be a satisfactory explanation for why eclosion marks the functional opening of experiencedependent plasticity. As the reviewer suggests, we have added this important nuance to our discussion of the opening of the critical period in the corresponding paragraph of the Results, as well as to the Discussion section “Glomeruli exhibit dichotomous responses to critical period odor exposure.” 

      Minor Elements:

      (1) Page 6 bottom: "Or4a-mCD8::GFP" should be "Or42a-mCD8::GFP"

      (2) Page 15, end of last full paragraph. Remove the "e"

      Thank you for pointing out these typos. They have been corrected. 

      Reviewer #2 (Public Review):

      Sensory experiences during developmental critical periods have long-lasting impacts on neural circuit function and behavior. However, the underlying molecular and cellular mechanisms that drive these enduring changes are not fully understood. In Drosophila, the antennal lobe is composed of synapses between olfactory sensory neurons (OSNs) and projection neurons (PNs), arranged into distinct glomeruli. Many of these glomeruli show structural plasticity in response to early-life odor exposure, reflecting the sensitivity of the olfactory circuitry to early sensory experiences.

      In their study, the authors explored the role of glia in the development of the antennal lobe in young adult flies, proposing that glial cells might also play a role in experiencedependent plasticity. They identified a critical period during which both structural and functional plasticity of OSN-PN synapses occur within the ethyl butyrate (EB)responsive VM7 glomerulus. When flies were exposed to EB within the first two days post-eclosion, significant reductions in glomerular volume, presynaptic terminal numbers, and postsynaptic activity were observed. The study further highlights the importance of the highly conserved engulfment receptor Draper in facilitating this critical period plasticity. The authors demonstrated that, in response to EB exposure during this developmental window, ensheathing glia increase Draper expression, infiltrate the VM7 glomerulus, and actively phagocytose OSN presynaptic terminals. This synapse pruning has lasting effects on circuit function, leading to persistent decreases in both OSN-PN synapse numbers and spontaneous PN activity as analyzed by perforated patch-clamp electrophysiology to record spontaneous activity from PNs postsynaptic to Or42a OSNs.

      In my view, this is an intriguing and potentially valuable set of data. However, since I am not an expert in critical periods or habituation, I do not feel entirely qualified to assess the full significance or the novelty of their findings, particularly in relation to existing research.

      We thank the reviewer for their insightful critique of our work. In response to their comments, we added additional physiological analysis and tempered our language around possible explanations for the apparent disconnect between the physiological and morphological critical period odor exposure. These changes are explained in more detail in the response to the public review by Reviewer 1 and also in our responses outlined below. 

      Reviewer #2 (Recommendations For The Authors):

      I though do have specific comments and questions concerning the presynaptic phenotype they deduce from confocal BRP stainings and electrophysiology.

      Concerning the number of active zones: this can hardly be deduced from standardresolution confocal images and, maybe more importantly, lacking postsynaptic markers. This particularly also in the light of them speculating about "silent synapses". There are now tools existing concerning labeled, cell type specific expression of acetylcholine-receptor expression and cholinergic postsynaptic density markers (importantly Drep2). Such markers should be entailed in their analysis. They should refer to previous concerning "brp-short" concerning its original invention and prior usage.

      We thank the reviewer for their thoughtful approach to our methodology and claims. While the use of confocal microscopy of Bruchpilot puncta to estimate numbers of presynapses is standard practice (see Furusawa et al., 2023; Aimino et al., 2022; Urwyler et al., 2019; Ackerman et al., 2021), the reviewer is correct that a punctum does not an active zone make. Bruchpilot staining and quantification is a well-validated tool for approximating the number of presynaptic active zones, not a substitute for super-resolution microscopy. We made changes to our language about active zones to make this distinction clearer. We have also removed the sentence where we discuss the possibility of “silent synapses,” which both reviewers felt was too speculative for our existing data. Finally, we are highly interested in characterizing the response of PNs and higher-order processing centers to critical-period odorant exposure as a future direction for our research. However, given the complexity of the subject, we chose to limit the scope of this study to the interactions between OSNs and glia. 

      Regarding their electrophysiological analysis and the plausibility of their findings: I am uncertain whether the moderate reduction in BRP puncta at the relevant OSN::PN synapse can fully account for the significantly reduced spontaneous PN activity they report. This seems particularly doubtful in the absence of any direct evidence for postsynaptically silent synapses. Perhaps this is my own naivety, but I wonder why they did not use antennal nerve stimulation in their experiments?

      We refer to previous studies of the AL indicating that moderate changes in glomerular volume and presynaptic content can translate to far more striking alterations in electrophysiology and behavior (Devaud et al., 2003; Devaud et al., 2001; Acebes et al., 2012; and Chodankar et al., 2020, Mosca et al., 2017). This literature has demonstrated that chronic odorant exposure can result in remodeling of inhibitory local interneurons to suppress over-active inputs from OSNs. While we do not address the complex subject of interneuron remodeling in the present study, we find it highly likely that there would be significant changes in interneuron innervation of PNs, independent of glial phagocytosis of OSN excitatory inputs, resulting in additional inhibition. Moving forward, we are very interested in expanding these studies to include odor-evoked changes in PN activity.  

      Additional minor point: The phrase "Soon after its molecular biology was described (et al., 1999), the Drosophila melanogaster" seems somewhat misleading. Isn't the field still actively describing the molecular biology of the fly olfactory system?

      We completely agree and have removed this sentence entirely.  

      Reviewing Editor's Note: to enhance the evidence from mostly compelling in most facets to solid would be to add physiology to the Draper analysis.

      These experiments have been completed and are presented in Figure 4F-J. 

      References

      Acebes A, Devaud J-M, Arnés M, Ferrús A. 2012. Central Adaptation to Odorants Depends on PI3K Levels in Local Interneurons of the Antennal Lobe. J Neurosci 32:417–422. doi:10.1523/jneurosci.2921-11.2012

      Ackerman SD, Perez-Catalan NA, Freeman MR, Doe CQ. 2021. Astrocytes close a motor circuit critical period. Nature592:414–420. doi:10.1038/s41586-021-03441-2

      Aimino MA, DePew AT, Restrepo L, Mosca TJ. 2022. Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 43:28–55. doi:10.1523/jneurosci.0884-22.2022

      Chodankar A, Sadanandappa MK, VijayRaghavan K, Ramaswami M. 2020. Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the Drosophila Antennal Lobe. J Neurosci 40:5549–5560. doi:10.1523/jneurosci.2192-19.2020

      Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA, Sudhakaran IP, Priya R, Heidari R, Holohan EE, Pimentel A, Gandhi A, Ito K, Sanyal S, Wang JW, Rodrigues V, Ramaswami M. 2011. Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci 108:E646–E654. doi:10.1073/pnas.1106411108 Devaud J, Acebes A, Ramaswami M, Ferrús A. 2003. Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age. J Neurobiol 56:13–23. doi:10.1002/neu.10215

      Devaud J-M, Acebes A, Ferrus A. 2001. Odor Exposure Causes Central Adaptation and ́Morphological Changes in Selected Olfactory Glomeruli in Drosophila. J Neurosci 21:6274–6282. doi:10.1523/jneurosci.21-16-06274.2001

      Furusawa K, Ishii K, Tsuji M, Tokumitsu N, Hasegawa E, Emoto K. 2023. Presynaptic Ube3a E3 ligase promotes synapse elimination through down-regulation of BMP signaling. Science 381:1197–1205. doi:10.1126/science.ade8978

      Mosca TJ, Luginbuhl DJ, Wang IE, Luo L. 2017. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 6:e27347. doi:10.7554/elife.27347

      Nelson N, Vita DJ, Broadie K. 2024. Experience-dependent glial pruning of synaptic glomeruli during the critical period. Sci Rep 14:9110. doi:10.1038/s41598-024-59942-3

      Urwyler O, Izadifar A, Vandenbogaerde S, Sachse S, Misbaer A, Schmucker D. 2019. Branch-restricted localization of phosphatase Prl-1 specifies axonal synaptogenesis domains. Science 364. doi:10.1126/science.aau9952

      Wilson RI, Laurent G. 2005. Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe. J Neurosci 25:9069–9079.

      doi:10.1523/jneurosci.2070-05.2005

    1. eLife Assessment

      With the goal of investigating the assembly and fragmentation of cellular aggregates, this work investigates cyanobacterial aggregates in a laboratory setting. Investigating the conditions and mechanisms behind aggregation is an important contribution as it yields basic understanding of natural processes and offers potential strategies for control. The combination of computational and experimental investigations in this manuscript provides solid support for the proposed processes for aggregation and fragmentation, with some concerns about the strength of evidence for a subset of claims.

    2. Reviewer #1 (Public review):

      This work has significant relevance to the field, both practically and naturally. Combatting or preventing toxic cyanobacterial blooms is an active area of environmental research that offers a practical backbone for this manuscript's ideas. Additionally, the formation and behavior of cellular aggregates, in general, is of widespread interest in many fields, including marine and freshwater ecology, healthcare and antibiotic resistance research, biophysics, and microbial evolution. In this field, there are still outstanding questions regarding how microbial aggregates form into communities, including if and how they come together from separate places. Therefore, I believe that researchers from many distinct fields would find interest in the topic of this paper, particularly Figure 5, in which a phase space that is meant to represent the different modes of aggregate formation and destruction is suggested, dependent on properties of the fluid flow and particle concentration.

      Altogether, the authors were mostly successful in their investigation, and I find most of their claims to be justified. In particular, the authors achieve strong results from their experiments regarding aggregate fragmentation. However, readers could benefit from some clarification in a couple of key areas. Additionally, I found that some of the authors' claims were based on weak or nonexistent data. Below, I outline the key claims of the paper and indicate the level to which they were supported by their data.

      - Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.<br /> - The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.<br /> - Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by and large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested.<br /> - The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.

      Other items that could use more clarity:<br /> - The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.<br /> - Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8).

    3. Reviewer #2 (Public review):

      Summary:

      In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.

      Strengths:

      -This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.<br /> -A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.

      Weaknesses:

      -Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.<br /> -The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.<br /> -The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

    4. Author response:

      We thank the reviewers and the editor for the detailed and constructive feedback provided. We look forward to submitting a revised version of the manuscript that addresses their comments. We acknowledge that further clarification is needed about the novelty brought by our experimental setup and model in comparison to previous studies using different methodologies. We also acknowledge that more details can be included about the calibration steps and sensitivity of the model parameters. Below we detail the planned changes for the revised version regarding the points raised by the reviewers.

      Reviewer #1 (Public review):

      - The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.

      The two idealized models of fragment distribution, namely erosion and binary fission, lead to distinguishable final size distributions. We believe that our experiments support the hypothesis of the erosion mechanism. Please note that Figure 2 is concerned with the fragmentation of large colonies, whereas Figure 3 and associated Figure S6 are concerned with very small colonies of a few cells formed by aggregation of single-cell suspension. Indeed, for very small colonies of a few cells, our experimental results cannot distinguish between a binary fission model and an erosion model (Figure S6).

      The situation is very different for large colonies. To address the reviewer’s concern, we will add a new figure in the Supplementary Information (SI), similar to our Figure 2C, where we will compare the erosion model with a binary fission model for large colonies fragmented under ε = 5.8 m<sup>2</sup>/s<sup>3</sup>. We already did this exercise. The results in this new supplementary figure will show that the idealized binary fission model (i.e., where every fracture event produces exactly two fragments) does not capture the experimental fragmentation behaviour of large colonies. In contrast, the idealized erosion model provides a much better prediction of the experimental results, within the experimental uncertainty and variability in colony strength, and has the notable advantage of a straightforward computational implementation.

      - The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.

      We agree with the reviewer that Zone (II) of Figure 5 is of great importance to dense bloom formation under wind mixing and that this parameter range was not covered by our experiments using a cone-and-plate shear flow. The measuring range of our device was motivated by engineering applications such artificial mixing of eutrophic lakes using bubble plumes, as well as preliminary experiments which demonstrated that high levels of dissipation rate were required to achieve fragmentation. The dissipation rates of our cone-and-plate experiments capture Zones (III) and (IV) and the higher end of Zone (I). However, the cone-and-plate experiments are less suitable for the lower dissipation rates of Zone (II), as indicated by the red bars in Figure 5, due to the accumulation of colonies in stagnation points.

      Instead, in our revision we will more extensively discuss recent results published in the literature for evidence of aggregation-dominance at Zone (II). The experimental studies of Wu et al. (2019) and Wu et al. (2024) (full citation below) investigated the formation of Microcystis surface scum layers at high colony concentrations (high biovolume fraction) in wind-mixed mesocosms. These studies identified aggregation of colonies at rates faster than cell division, while the stable colony size decreased with mixing rate.  The parameter range of these studies fall within Zone II, and their experimental results agree with our model predictions. We will include in the reviewed version these references and a detailed discussion elucidating the parameter range covered in our experiments and the findings of other studies.

      Wu, X., Noss, C., Liu, L., & Lorke, A. (2019). Effects of small-scale turbulence at the air-water interface on Microcystis surface scum formation. Water Research, 167, 115091.

      Wu, H., Wu, X., Rovelli, L., & Lorke, A. (2024). Dynamics of Microcystis surface scum formation under different wind conditions: the role of hydrodynamic processes at the air-water interface. Frontiers in Plant Science, 15, 1370874.

      Other items that could use more clarity:

      - The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.

      We agree with the reviewer that more details of the calibration processes should be included. We will include in the revised version of the SI more details of the calibration steps and direct comparison of raw and corrected histograms of the size distribution and its associated uncertainty.

      - Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8)

      We agree with the reviewer that more details on the estimation of fractal dimension are needed. The revised version of the SI will include the estimation procedure, the number of colonies analysed, and the associated uncertainty.

      Reviewer #2 (Public review)

      - Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.

      As we explain in the Introduction, it is a major open question whether cyanobacterial colonies are formed mainly by cell division (after which the dividing cells remain attached to each other by the EPS layer) or mainly by the aggregation of independent cells & colonies. See for example the highly cited review of Xiao & Reynolds 2018 (our ref 17), and references therein. This question has not been resolved and is investigated in our study. We would like to emphasize several key findings that our study reveals about the mechanical behaviour of cyanobacterial colonies under flow:

      (i) Quantification of mechanical strength in cyanobacterial colonies: Our results demonstrate the high mechanical strength of cyanobacterial colonies (much higher than previously thought in references 32 and 39 of the manuscript), as evidenced by the requirement of very high shear rates to achieve fragmentation. To this end, our study highlights their resilience against naturally occurring flows and bridges the gap between theoretical assumptions about colony strength and experimentally measured mechanical properties.

      (ii) Validation of a hypothesis regarding colony formation: Using a fluid-mechanical approach, we confirm the findings of recent genetic studies (references 25 and 64 of the manuscript) which indicated that colony formation of cyanobacteria under natural conditions occurs predominantly via cell division rather than via the aggregation of individual cells. Only in very dense blooms and surface scums, colony formation by the aggregation of smaller colonies likely plays a role.

      (iii) Practical guidelines for cyanobacterial bloom control: Our findings provide valuable insights into the design of artificial mixing systems that are used to suppress surface blooms of buoyant cyanobacteria in lakes. In these lake applications, in which we have been involved, the aim of the mixing is to disperse the colonies over the water column so that they cannot form a surface layer (i.e., the mixing intensity should overcome the flotation velocity of the colonies), which takes away the competitive advantage of buoyant cyanobacteria over nonbuoyant phytoplankton species. However, it has always been an open question whether the high shear of artificial mixing would cause colony fragmentation. An understanding of changes in colony size is relevant for the design of artificial mixing, because smaller colonies have a lower flotation velocity. Our results show that the dissipation rates that are generated by artificial mixing are sufficient to prevent aggregation of large colonies, but not high enough to induce fragmentation of division-formed colonies.

      In the revised version of the manuscript, we will improve the writing to better clarify these three novel insights obtained from our study.

      - The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.

      The influence of the fit parameters (namely the stickiness α1 and the pairs of colony strength parameters S1,q1,S2,q2) is discussed in the sections “DYNAMICAL CHANGES IN COLONY SIZE MODELED BY A TWO-CATEGORY DISTRIBUTION” and “MATERIALS AND METHODS.” We kept the discussion concise to maintain readability. However, we agree with the reviewer that additional details about the importance of the fit parameters and the sensitivity of the results to these parameters could be beneficial. In the revised version of the SI, we will include a more detailed discussion of the fit parameters.

      - The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

      We apologize for the limited readability of the description of the experimental setup and model used. In the revised version of the manuscript, we aim to expand the description of the new methods presented here for a broader audience of biology.

    1. eLife Assessment

      This report details convincing evidence that experience with multilingualism in general, and with larger phonological inventories specifically, is related to differences in the structure of the transverse temporal gyri. The project is notable for using a relatively large sample, and confirming the primary finding in a second sample. The important findings strongly point to experience-dependent plasticity related to language experience as a driver of neuroanatomy of the auditory cortex.

    2. Reviewer #1 (Public review):

      Summary:

      The goal of this project is to test the hypothesis that individual differences in experience with multiple languages relate to differences in brain structure, specifically in the transverse temporal gyrus. The approach used here is to focus specifically on the phonological inventories of these languages, looking at the overall size of the phonological inventory as well as the acoustic and articulatory diversity of the cumulative phonological inventory in people who speak one or more languages. The authors find that the thickness of the transverse temporal gyrus (either the primary TTG, in those with one TTG, or in the second TTG, in people with multiple gyri) was related to language experience, and that accounting for the phonological diversity of those languages improved the model fit. Taken together, the evidence suggests that learning more phonemes (which is more likely if one speaks more than one language) leads to experience-related plasticity brain regions implicated in early auditory processing.

      Strengths:

      This project is rigorous in its approach--not only using a large sample but replicating the primary finding in a smaller, independent sample. Language diversity is difficult to quantify, and likely to be qualitatively and quantitatively distinct across different populations, and the authors use a custom measure of multilingualism (accounting for both number of languages as well as age of acquisition) and three measures of phonological diversity. The team has been careful in discussion of these findings, and while it is possible that pre-existing differences in brain structure could lead to an aptitude difference which could drive one to learn more than one language, the fine-grained relationships with phonological diversity seem less likely to emerge from aptitude rather than experience.

      The authors have satisfied my curiosity regarding other potential confounds in the data, including measurements of lexical distance as well as phonological typology.

    3. Reviewer #2 (Public review):

      This work investigates the possible association between language experience and morphology of the superior temporal cortex, a part of the brain responsible for the processing of auditory stimuli. Previous studies have found associations between language and music proficiency as well as language learning aptitude and cortical morphometric measures in regions in the primary and associated auditory cortex. These studies have most often, however, focused on finding neuroanatomical effects of difference between features in a few (often two) languages or from learning single phonetic/phonological features and have often been limited in terms of N. On this background, the authors use more sophisticated measures of language experience that take into account the age of onset and the differences in phonology between languages the subjects have been exposed as well as a larger number of subjects (N = 146 + 69) to relate language experience to the shape and structure of the superior temporal cortex, measured from T1-weighted MRI data. It shows solid evidence for there being a negative relationship between language experience and the right 2nd transverse temporal gyrus as well as some evidence for the relationship representing phoneme-level cross-linguistic information.

      Strengths

      The use of entropy measures to quantify language experience and include typological distance measures allows for a more general interpretation of the results and is an important step toward respecting and making use of linguistic diversity in neurolinguistic experiments.

      A relatively large group of subjects with a range of linguistic backgrounds.

      The full analysis of the structure of the superior temporal cortex including cortical volume, area, as well as the shape of the transverse gyrus/gyri. There is a growing literature on the meaning of the shape and number of the transverse gyri in relation to language proficiency and the authors explore all measures given the available data.

      The authors chose to use a replication data set to verify their data, which is applaudable. However, see the relevant point under "Weaknesses".

      Weaknesses

      Even if the language experience and typological distance measures are a step in the right direction for correctly associating language exposure with cortical plasticity, it still is a measure that is insensitive to the intensity of the exposure.

      Only the result from the multiple transverse temporal gyri (2nd TTG) is analyzed in the replicated dataset. Only the association in the right hemisphere 2nd TTG is replicated but this is not reflected in the discussion or the conclusions. The positive correlation in the right TTG is thus not attempted to be replicated.

      The replication dataset differed in more ways than the more frequent combination of English and German experience, as mentioned in the discussion. Specifically, the fraction of monolinguals was higher in the replication dataset and the samples came from different scanners. It would be better if the primary and replication datasets were more equally matched.

    4. Reviewer #3 (Public review):

      Summary:

      The study uses structural MRI to identify how the number, degree of experience, and phonemic diversity of language(s) that a speaker knows can influence the thickness of different sub-segments of auditory cortex. In both a primary and replication sample of adult speakers, the authors find key differences in cortical thickness within specific subregions of cortex due to either the age at which languages are acquired (degree of experience) or the diversity of the phoneme inventories carried by that/those language(s) (breadth of experience).

      Strengths:

      The results are first and foremost quite fascinating and I do think they make a compelling case for the different ways in which linguistic experience shapes auditory cortex.

      The study uses a number of different measures to quantify linguistic experience, related to how many languages a person knows (taking into account the age at which each was learned) as well as the diversity of the phoneme inventories contained within those languages. The primary sample is moderately large for a study that focuses on brain-behaviour relationships; a somewhat smaller replication sample is also deployed in order to test the generality of the effects.

      Analytic approaches benefit from the careful use of brain segmentation techniques that nicely capture key landmarks and account for vagaries in the structure of STG that can vary across individuals (e.g., the number of transverse temporal gyri varies from 1-4 across individuals).

      Weaknesses:

      The specificity of these effects is interesting; some effects really do appear to be localized to left hemisphere and specific subregions of auditory cortex e.g., TTG. There is an ancillary analysis that examines regions outside auditory cortex to examine whether these are the only brain regions for which such effects occur. Expanding the search space to a whole-brain analysis, and a more lenient statistical threshold, does reveal only small patches of the brain outside auditory cortex show similar effects. Notably, these could be due to inflated type-1 error, but overall we would need a much larger sample to be certain.

      Discussion of potential genetic differences underlying the findings is interesting. It does represent one alternative account that does not have to do with plasticity/experience, as the authors acknowledge.

      The replication sample is useful and a great idea. It does however feature roughly half the number of participants. As the authors are careful to point out, that statistical power is weaker and given small effects in some cases we should not be surprised that the results only partially replicated in that sample.

    1. eLife Assessment

      This is an important study providing compelling evidence that the Mediator kinase module mediates an elevated inflammatory response, manifested by heightened cytokine levels, associated with Downs syndrome (DS) via transcriptional changes impacting cell signaling and metabolism that involve mobilization of nuclear receptors by altered lipid metabolites, which has significance for the treatment of DS and other chronic inflammatory conditions. Particular strengths of the study include the combined experimental approaches of transcriptomics, untargeted metabolomics and cytokine screens and the use of sibling matched cell lines (trisomy 21 vs disomy 21) from various donors. Evidence is also provided implicating the Mediator kinase module in controlling mRNA splicing and mitochondrial function that should stimulate new research to elucidate the mechanistic bases for these novel functions.

    2. Reviewer #1 (Public review):

      Summary:

      The main conclusion of this manuscript, that the mediator kinases supporting the IFN response in Downs syndrome cell lines, represents an important addition to understanding the pathology of this affliction.

      Strengths:

      Mediator kinase stimulates cytokine production. Both RNAseq and metabolomics clearly demonstrate a stimulatory role for CDK8/CDK19 in the IFN response. The nature of this role, direct vs. indirect, is inferred by previous studies demonstrating that inflammatory transcription factors are Cdk8/19 substrates. The cytokine and metabolic changes are clear cut and provide a potential avenue to mitigate these associated pathologies.

      Weaknesses:

      Seahorse analysis is normally calculated with specific units for oxygen consumption, ATP production, etc. It would be of interest to see the actual values of OCR (e.g., pmol/O2 consumption/number of cells) between the D21 and T21 cell lines rather than standardizing the results. Previous studies reported reduced mitochondrial function with DS cell lines and model systems (e.g., see [10.1016/j.bbadis.2022.166388] and aberrant mitochondrial morphology/oxidative stress [10.1016/j.cmet.2012.12.005] [10.1016/j.neuroscience.2022.12.003]. This report observes elevated mitochondrial function in the T21 cells vs. the D21 control. There are several potential reasons for these differences but it is not up to the authors to rectify their results with others. However, it would be of interest to the general reader that they be mentioned in the discussion.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Cozzolino et al. demonstrate that inhibition of the Mediator kinase CDK8 and its paralog CDK19 suppresses hyperactive interferon (IFN) signaling in Down syndrome (DS), which results from trisomy of chromosome 21 (T21). Numerous pathologies associated with DS are considered direct consequences of chronic IFN pathway activation, and thus hyperactive IFN signaling lies at the heart of pathophysiology. The collective interrogation of transcriptomics, metabolomics, and cytokine screens in sibling-matched cell lines (T21 vs D21) allows the authors to conclude that Mediator kinase inhibition could mitigate chronic, hyperactive IFN signaling in T21. To probe the functional outcomes of Mediator kinase inhibition, the authors performed cytokine screens, transcriptomic, and untargeted metabolomics. This collective approach revealed that Mediator kinases establish IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Mediator kinase inhibition suppresses cell responses during hyperactive IFN signaling through inhibition of pro-inflammatory transcription factor activity (anti-inflammatory effect) and alteration of core metabolic pathways, including upregulation of anti-inflammatory lipid mediators, which served as ligands for specific nuclear receptors and downstream phenotypic outcomes (e.g., oxygen consumption). These data provided a mechanistic link between Mediator kinase activity and nuclear receptor function. Finally, the authors also disclosed that Mediator kinase inhibition alters splicing outcomes.

      Overall, this study reveals a mechanism by which Mediator kinases regulate gene expression and establish that its inhibition antagonizes chronic IFN signaling through collective transcriptional, metabolic, and cytokine responses. The data have implications for DS and other chronic inflammatory conditions, as Mediator kinase inhibition could potentially mitigate pathological immune system hyperactivation.

      Comments on revisions:

      In the record of version, the authors have improved readability and also incorporated experiments that provide compelling support to the main discovery of the story. Below I summarize the previous strengths and how they improved noted weaknesses.

      (1) One major strength of this study is the mechanistic evidence linking Mediator kinases to hyperactive IFN signaling through transcriptional changes impacting cell signaling and metabolism.<br /> (2) Another major strength of this study is the use of sibling matched cell lines (T21 vs D21) from various donors (not just one sibling pair), and further cross-referencing with data from large cohorts, suggesting that part of the data and conclusions are generalizable.<br /> (3) Another major strength of this study is the combined experimental approach including transcriptomics, untargeted metabolomics and cytokine screens to define the mechanisms underlying suppression of hyperactive interferon signaling in DS upon Mediator kinase inhibition.<br /> (4) Another major strength of this study is the significance of the work to DS and its potential impact to other chronic inflammatory conditions.<br /> (5) The previously noted weakness regarding the roles of nuclear receptors to activation of an anti-inflammatory program upon Mediator kinase inhibition was not directly experimentally addressed because existing data from other studies (referenced in this version) have linked specific nuclear receptors to lipid biosynthesis and anti-inflammatory cascades. This is considered acceptable.<br /> (6) The presentation of the splicing data analysis is not better integrated in the overall story.<br /> (7) The authors improved the readability of the manuscript by providing specific details throughout.<br /> (8) Figures were improved and simplified when possible to facilitate readability.<br /> (9) The authors now clarified the PRO-Seq (TFEA analysis) explaining that their data is consistent with the general observation that stimulus-responsive genes is controlled by enhancer-bound TFs.

    1. eLife Assessment

      This study presents a new quantitative method, CROWN-seq, to map the cap-adjacent RNA modification N6,2'-O-dimethyladenosine (m6Am) with single nucleotide resolution. Using thoughtful controls and well-validated reagents, the authors provide compelling evidence that the method is reliable and reproducible. Additionally, the study provides important evidence that m6Am may increase transcription in modified mRNAs. However, the data only demonstrates a correlation between m6Am and transcriptional regulation rather than causality. Overall, this study is poised to advance m6Am research, being of broad interest to the RNA biology and gene regulation fields.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Liu et al. present CROWN-seq, a technique that simultaneously identifies transcription-start nucleotides and quantifies N6,2'-O-dimethyladenosine (m6Am) stoichiometry. This method is derived from ReCappable-seq and GLORI, a chemical deamination approach that differentiates A and N6-methylated A. Using ReCappable-seq and CROWN-seq, the authors found that genes frequently utilize multiple transcription start sites, and isoforms beginning with an Am are almost always N6-methylated. These findings are consistently observed across nine cell lines. Unlike prior reports that associated m6Am with mRNA stability and expression, the authors suggest here that m6Am may increase transcription when combined with specific promoter sequences and initiation mechanisms. Additionally, they report intriguing insights on m6Am in snRNA and snoRNA and its regulation by FTO. Overall, the manuscript presents a strong body of work that will significantly advance m6Am research.

      Strengths:

      The technology development part of the work is exceptionally strong, with thoughtful controls and well-supported conclusions.

      Weaknesses:

      Given the high stoichiometry of m6Am, further association with upstream and downstream sequences (or promoter sequences) does not appear to yield strong signals. As such, transcription initiation regulation by m6Am, suggested by the current work, warrants further investigation.

    3. Reviewer #2 (Public review):

      Summary:

      In the manuscript "Decoding m6Am by simultaneous transcription-start mapping and methylation quantification" Liu and co-workers describe the development and application of CROWN-Seq, a new specialized library preparation and sequencing technique designed to detect the presence of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) with single nucleotide resolution. Such a technique was a key need in the field since prior attempts to get accurate positional or quantitative measurements of m6Am positioning yielded starkly different results and failed to generate a consistent set of targets. As noted in the strengths section below the authors have developed a robust assay that moves the field forward.

      Furthermore, their results show that most mRNAs whose transcription start nucleotide (TSN) is an 'A' are in fact m6Am (85%+ for most cell lines). They also show that snRNAs and snoRNAs have a substantially lower prevalence of m6Am TSNs.

      Strengths:

      Critically, the authors spent substantial time and effort to validate and benchmark the new technique with spike-in standards during development, cross-comparison with prior techniques, and validation of the technique's performance using a genetic PCIF1 knockout. Finally, they assayed nine different cell lines to cross-validate their results. The outcome of their work (a reliable and accurate method to catalog cap-adjacent m6Am) is a particularly notable achievement and is a needed advance for the field.

      Weaknesses:

      No major concerns were identified by this reviewer.

      Mid-level Concerns: All previous concerns were addressed in the revised version

    4. Reviewer #3 (Public review):

      Summary:

      m6Am is an abundant mRNA modification present on the TSN. Unlike the structurally similar and abundant internal mRNA modification m6A, m6Am's function has been controversial. One way to resolve controversies surrounding mRNA modification functions has been to develop new ways to better profile said mRNA modification. Here, Liu et al. developed a new method (based on GLORI-seq for m6A-sequencing), for antibody-independent sequencing of m6Am (CROWN-seq). Using appropriate spike-in controls and knockout cell lines, Liu et al. clearly demonstrated CROWN-seq's precision and quantitative accuracy for profiling transcriptome-wide m6Am. Subsequently, the authors used CROWN-seq to greatly expand the number of known m6Am sites in various cell lines and also determine m6Am stoichiometry to generally be high for most genes. CROWN-seq identified gene promoter motifs that correlate best with high stoichiometry m6Am sites, thereby identifying new determinants of m6Am stoichiometry. CROWN-seq also helped reveal that m6Am does not regulate mRNA stability or translation (as opposed to past reported functions). Rather, m6Am stoichiometry correlates well with transcription levels. Finally, Liu et al. reaffirmed that FTO mainly demethylates m6Am, not of mRNA but of snRNAs and snoRNAs.

      Strengths:

      This is a well-written manuscript that describes and validates a new m6Am-sequencing method: CROWN-seq as the first m6Am-sequencing method that can both quantify m6Am stoichiometry and profile m6Am at single-base resolution. These advantages facilitated Liu et al. to uncover new potential findings related to m6Am regulation and function. I am confident that CROWN-seq will likely be the gold standard for m6Am-sequencing henceforth.

      Weaknesses:

      Though the authors have uncovered a potentially new function for m6Am, they need to be clear that without identifying a mechanism, their data might only be demonstrating a correlation between the presence of m6Am and transcriptional regulation rather than causality.

    1. eLife Assessment

      In this article, Cheng et al present an important finding that advances the understanding of mitochondrial stress response(s). The authors employed mass spectrometry-based methods in conjunction with standard molecular and cellular biology techniques to provide compelling evidence that phosphatidylethanolamine-binding protein 1 (PEBP1) acts as a pivotal regulator of the mitochondrial component of integrated stress response. Notwithstanding that this discovery is likely to be of significant interest to researchers across a broad spectrum of disciplines ranging from cell biology to neuroscience, it was thought that further mechanistic dissection of the role of PEBP1 in modulating integrated stress response may further strengthen this study.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors use thermal proteome profiling to capture changes in protein stability following a brief (30 min) treatment of cells with various mitochondrial stressors. This approach identified PEBP1 as a potentiator of Integrated Stress Response (ISR) induction by various mitochondrial stressors, although the specific dynamics vary by stressor. PEBP1 deletion attenuates DELE1-HRI-mediated activation of the ISR, independent of its known role in the RAF/MEK/ERK pathway. These effects can be bypassed by HRI overexpression and do not affect DELE1 processing. Interestingly, in cells, PEBP1 physically interacts with eIF2alpha, but not its phosphorylated form (eIF2alpha-P), leading the authors to suggest that PEBP1 functions as a scaffold to promote eIF2alpha phosphorylation by HRI.

      Strengths:

      The authors present a clear and well-structured study, beginning with an original and unbiased approach that effectively addresses a novel question. The investigation of PEBP1 as a specific regulator of the DELE1-HRI signaling axis is particularly compelling, supported by extensive data from both genetic and pharmacological manipulations. Including careful titrations, time-course experiments, and orthogonal approaches strengthens the robustness of their findings and bolsters their central claims.

      Moreover, the authors skillfully integrate publicly available datasets with their original experiments, reinforcing their conclusions' generality and broader relevance. This comprehensive combination of methodologies underscores the reliability and significance of the study's contributions to our understanding of stress signaling.

      Weaknesses:

      While the study presents exciting findings, there are a few areas that could benefit from further exploration. The HRI-DELE1 pathway was only recently discovered, leaving many unanswered questions. The observation that PEBP1 interacts with eIF2alpha, but not with its phosphorylated form, suggests a novel mechanism for regulating the Integrated Stress Response (ISR). However, as they note themselves, the authors do not delve into the biochemical or molecular mechanisms through which PEBP1 promotes HRI signaling. Given the availability of antibodies against phosphorylated HRI, it would have been interesting to explore whether PEBP1 influences HRI phosphorylation. Furthermore, since the authors already have recombinant PEBP1 protein (as shown in Figure 1D), additional in vitro experiments such as in vitro immunoprecipitation, FRET, or surface plasmon resonance (SPR) could have confirmed the interaction with eIF2alpha. Future studies might investigate whether PEBP1 directly interacts with HRI, stimulates its auto-phosphorylation or kinase activity, or serves as a template for oligomerization, potentially supported by structural characterization of the complex and mutational validation.

      Another point of weakness is the unclear significance of the 1.5-2x enhanced interaction with eIF2alpha upon PEBP1 phosphorylation, as there is little evidence to show that this increase has any downstream effects. The ATF4-luciferase reporter experiments, comparing WT and S153D overexpression, may have reached saturation with WT, making it difficult to detect further stimulation by S153D. Additionally, expression levels for WT and mutant forms are not provided, making it challenging to interpret the results. It would also be interesting to explore whether combined mitochondrial stress and PMA treatment further enhance the ISR.

      Lastly, while the authors claim that oligomycin does not significantly alter the melting temperature of recombinant PEBP1 in vitro, the data in Figure S1D suggest a small shift. Without variance measures across replicates or background subtraction, this claim is less convincing. The inclusion of statistical analyses would strengthen the interpretation of these results.

      Impact on the field:

      The study's relevance is underscored by the fact that overactive ISR is linked to a broad range of neurodegenerative diseases and cognitive disorders, a field actively being explored for therapeutic interventions, with several drugs currently in clinical trials. Similarly, mitochondrial dysfunction plays a well-established role in brain health and other diseases. Identifying new targets within these pathways, like PEBP1, could provide alternative therapeutic strategies for treating such conditions. Therefore, gaining a deeper understanding of the mechanisms through which PEBP1 influences ISR regulation is highly pertinent and could have far-reaching implications for the development of future therapies.

    3. Reviewer #2 (Public review):

      Summary:

      In this work, Cheng et al use the TPP/MS-CETSA strategy to discover new components for the mitochondria arm of the Integrated Stress Response. By using short exposures of several drugs that potentially induce mitochondrial stress, they find significant CETSA shifts for the scaffold protein PEBP1 both for antimycinA and oligomycin, making PEBP1 a candidate for mitochondrial-induced ISR signaling. After extensive follow-up work, they provide good support that PEBP1 is likely involved in ISR, and possibly act through an interaction with the key ISR effector node EIF2a.

      Strengths:

      The work adds an important understanding of ISR signaling where PEBP1 might also constitute a druggable node to attenuate cellular stress. Although CETSA has great potential for dissecting cellular pathways, there are few studies where this has been explored, particularly with such an extensive follow-up, also giving the work methodological implications. Together I therefore think this study could have a significant impact.

      Weaknesses:

      The TPP/MS-CETSA experiment is quite briefly described and might have a too relaxed cut-off. The assays confirming interactions between PEBP1 and EIF2a might not be fully conclusive.

    4. Reviewer #3 (Public review):

      Summary:

      In this paper, Chang and Meliala et al. demonstrate that PEBP1 is a modulator of the ISR, specifically through the induction of mitochondrial stress. The authors utilize thermal proteome profiling (TPP) by which they identify PEPB1 as a thermally stabilized protein upon oligomycin treatment, indicating its role in mitochondrial stress. Moreover, RNA-sequencing analysis indicated that PEBP1 may be specifically modulating the mitochondrial stress-induced ISR, as PEBP1 knock-out reduces phosphorylation of eIF2α. They also show that PEBP1 function is independent of ER stress specifically tunicamycin treatment and loss of PEBP1 does affect mitochondrial ISR but in an OMA1, DELE1 independent manner. Thus, the authors hypothesized that PEBP1 interacts directly with eIF2α, functioning as a scaffolding protein. However, direct co-immunoprecipitation failed to demonstrate PEBP1 and eIF2α potential interaction. The authors then used a NanoBiT luminescence complementation assay to show the PEBP1-eIF2a interaction and its disruption by S51 phosphorylation.

      Strengths:

      Taken together, this work is novel, and the data presented suggests PEBP1 has a role as a modulator of the mitochondrial ISR, enhancing the signal to elicit the necessary response.

      Weaknesses:

      The one major issue of this work is the lack of a mechanism showing precisely how PEBP1 amplifies the mitochondrial integrated stress response. The work, as it is described, presents data suggesting PEBP1's role in the ISR but fails to present a more conclusive mechanism.

    5. Author response:

      We thank all the reviewers for their insightful comments on this work.

      Response to Reviewer #1:

      We greatly appreciate your comments on the general reliability and significance of our work. We fully agree that it would have been ideal to have additional evidence related to the role of PEBP1 in HRI activation. Unfortunately, we have not been able to find phospho-HRI antibodies that work reliably. The literature seems to agree with this as a band shift using total-HRI antibodies is usually used to study HRI activation. However, with the cell lines showing the most robust effect with PEBP1 knockout or knockdown, we are yet to convince ourselves with the band shifts we see. This could be addressed by optimizing phos-tag gels although these gels can be a bit tricky with complex samples such as cell lysates which contain many phosphoproteins.

      To address the interaction between PEBP1 and eIF2alpha more rigorously we were inspired by the insights you and reviewer #2 provided. While we are unable to do further experiments, we now think it would indeed be possible to do this with either using the purified proteins and/or CETSA WB. These experiments could also provide further evidence for the role of PEBP1 phosphorylation. Although phosphorylation of PEBP1 at S153 has been implicated as being important for other functions of PEBP1, we are not sure about its role here. It may indeed have little relevance for ISR signalling.

      For the in vitro thermal shift assay, we have performed two independent experiments. While it appears that there is a slight destabilization of PEBP1 by oligomycin, the ultimate conclusion of this experiment remains incomplete as there could be alternative explanations despite the apparent simplicity of the assay due the fluorescence background by oligomycin only. We now provide a lysate based CETSA analysis which does not display the same PEBP1 stabilization as the intact cell experiment. As for the signal saturation in ATF4-luciferase reporter assay, this is a valid point.

      Response to Reviewer #2:

      We strongly agree that CETSA has a lot of potential to inform us about cellular state changes and this was indeed the starting point for this project. We apologize for being (too) brief with the explanations of the TPP/MS-CETSA approach and we have now added a bit more detail. With regard to the cut-offs used for the mass spectrometry analysis, you are absolutely right that we did not establish a stringent cut-off that would show the specificity of each drug treatment. Our take on the data was that using the p values (and ignoring the fold-changes) of individual protein changes as in Fig 1D, we can see that mitochondrial perturbations display a coordinated response. We now realize that the downside of this representation is that it obscures the largest and specific drug effects. As mentioned in the response to Reviewer #1, we now also think that it would be possible to obtain more evidence for the potential interaction between PEBP1 and eIF2alpha using CETSA-based assays.

      Response to Reviewer #3:

      Thank you for your assessment, we agree that this manuscript would have been made much stronger by having clearer mechanistic insights. As mentioned in the responses to other reviewers above, we aim to address this limitation in part by looking at the putative interaction between PEBP1 and eIF2alpha with orthogonal approaches. However, we do realize that analysis of protein-protein interactions can be notoriously challenging due to false negative and false positive findings. As with any scientific endeavor, we will keep in mind alternative explanations to the observations, which could eventually provide that cohesive model explaining how precisely PEBP1, directly or indirectly, influences ISR signalling.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      The data overall are very solid, and I would only recommend the following minor changes: 

      (1) Line 187 and line 268: there is perhaps a trend towards slightly increased ATF4-luc reporter with PEBP1-S153D, but it is not statistically significant, so I would tone down the wording here. 

      We now modified this part to "This data is consistent with the modest increase…" .

      (2) The recently discovered SIFI complex (Haakonsen 2024, https://doi.org/10.1038/s41586023-06985-7) regulates both HRI and DELE1 through bifunctional localization/degron motifs. It seems like PEBP1 also contains such a motif, which suggests a potential mechanism for enrichment near mitochondria, perhaps even in response to stress. Maybe the authors could further speculate on this in the discussion. 

      While working on the manuscript, we considered the possibility that PEBP1 function could be related to SIFI complex and concluded that here is a critical difference: while  SIFI specifically acts to turn off stress response signalling, loss of PEBP1 prevents eIF2alpha phosphorylation. We did not however consider that PEBP1 could have a localization/degron motif. Motif analysis by deepmito (busca.biocomp.unibo.it) and similar tools did not identify any conventional mitochondrial targeting signal although we acknowledge that PEBP1 has a terminal alpha-helix which was identified for SIFI complex recognition. We are not sure why you think PEBP1 contains such a motif and therefore are hesitant to speculate on this further in the manuscript.

      (3) Line 358: references 50 and 45 are identical. 

      Thank you for spotting this. Corrected now. 

      (4) Figure S1D: it looks like Oligomycin has a significant background fluorescence, which makes interpretation of these graphs difficult - do you have measurements of the compound alone that can be used to subtract this background from the data? Based on the Tm I would say it does stabilize recombinant PEBP1, and there is no quantification of the variance across the 3 replicates to say there is no difference. 

      You are right, this assay is problematic due to the background fluorescence. The measurements with oligomycin only and subtracting this background results in slightly negative values and nonsensical thermal shift curves. We now additionally show quantification from two different experiments (unfortunately we ran out of reagents for further experiments), and this quantification shows that if anything, oligomycin causes mild destabilization of recombinant PEBP1. We also used lysate CETSA assay which does not show thermal stabilization of PEBP1 by oligomycin, ruling out a direct effect. We attempted to use ferrostatin1 as a positive control as it may bind PEBP1-ALOX protein complex, and it appeared to show marginal stabilization of PEBP1. 

      Reviewer #2 (Recommendations for the authors): 

      I have a few comments for the authors to address: 

      (1) The MS-CETSA experiment is quite briefly described and this could be expanded somewhat. Not clear if multiple biological replicates are used. Is there any cutoff in data analysis based on fold change size (which correlated to the significance of cellular effects), etc? As expected from only one early timepoint (see eg PMID: 38328090), there appear to be a limited number of significant shifts over the background (as judged from Figure S1A). In the Excel result file, however (if I read it right) there are large numbers of proteins that are assigned as stabilized or destabilized. This might be to mark the direction of potential shifts, but considering that most of these are likely not hits, this labeling could give a false impression. Could be good to revisit this and have a column for what could be considered significant hits, where a fold change cutoff could help in selecting the most biologically relevant hits. This would allow Figure 1D to be made crisper when it likely dramatically overestimates the overlap between significant CETSA shifts for these drugs.  

      Fair point, while we focused more on PEBP1, it is important to have sufficient description of the methods. We used duplicate samples for the MS, which is probably the most important point which was absent from the original submission as is now added to the methods. We also added slightly more description on the data analysis. While the AID method does not explicitly use log2 fold changes, it does consider the relative abundance of proteins under different temperature fractions. Since the Tm (melting temperature) for each protein can be at any temperature, we felt that if would be complicated to compare fractions where the protein stability is changed the most and even more so if we consider both significance and log2FC. Therefore, we used this multivariate approach which indicates the proteins with most likely changes across the range of temperatures. To acknowledge that most of the statistically significant changes are not the much over the background as you correctly pointed out, we now add to the main text that “However, most of these changes are relatively small. To focus our analysis on the most significant and biologically relevant changes…” We also agree that it may be confusing that the AID output reports de/stabilization direction for all proteins. In general, we are not big fans of cutoffs as these are always arbitrary, but with multivariate p value of 0.1 it becomes clear that there are only a relatively small number of hits with larger changes. We have now added to the guide in the data sheet that "Primarily, use the adjusted p value of the log10 Multivariate normal pvalue for selecting the overall statistically significant hits (p<0.05 equals  -1.30 or smaller; p<0.01 equals  -2 or smaller)". We have also added to the guide part of the table that “Note that this prediction does not consider whether the change is significant or not, it only shows the direction of change”

      (2) On page 4 the authors state "We reasoned that thermal stability of proteins might be particularly interesting in the context of mitochondrial metabolism as temperature-sensitive fluorescent probes suggest that mitochondrial temperature in metabolically active cells is close to 50{degree sign}C". I don't see the relevance of this statement as an argument for using TPP/CETSA. When this is also not further addressed in the work, it could be deleted.

      Deleted. We agree, while this is an interesting point, it is not that relevant in this paper. 

      (3) To exclude direct drug binding to PEBP1, a thermofluor experiment is performed (Fig S1D). However, the experiment gives a high background at the lower temperatures and it could be argued that this is due to the flouroprobe binding to a hydrophobic pocket of the protein, and that oligomycin at higher concentrations competes with this binding, attenuating fluorescence. These are complex experiments and there could be other explanations, but the authors should address this. An alternative means to provide support for non-binding would be a lysate CETSA experiment, with very short (1-3 minutes) drug exposure before heating. This would typically give a shift when the protein is indicated to be CETSA responsive as in this case. 

      Agree. However, we don't have good means to perform the thermofluor experiments to rule out alternative explanations. What we can say is (as discussed above for reviewer #1, point 4) that quantification from two different experiments shows that oligomycin is does not thermally stabilizing recombinant PEBP1. To complement this conclusion, we used lysate CETSA assay which does not show thermal stabilization of PEBP1 by oligomycin. In this assay we attempted to use ferrostatin1 as a positive control as it may bind PEBP1-ALOX protein complex, and it appeared to show marginal stabilization of PEBP1. But since we lack a robust positive control for these assays, some doubt will inevitably remain.

      (4) The authors appear to have missed that there is already a MS-CETSA study in the literature on oligomycin, from Sun et al (PMID: 30925293). Although this data is from a different cell line and at a slightly longer drug treatment and is primarily used to access intracellular effects of decreased ATP levels induced by oligomycin, the authors should refer to this data and maybe address similarities if any.  

      Apologies for the oversight, the oligomycin data from this paper eluded us at it was mainly presented in the supplementary data. We compared the two datasets and find found some overlap despite the differences in the experimental details. Both datasets share translational components (e.g. EIF6 and ribosomal proteins), but most notably our other top hit BANF1 which we mentioned in the main text was also identified by Sun et al. We have updated the manuscript text as "Other proteins affected by oligomycin included BANF1, which binds DNA in an ATP dependent manner [16], and has also identified as an oligomycin stabilized protein in a previous MS-CETA experiment [23]", citing the Sun et al paper.   

      (5) The confirmation of protein-protein interaction is notoriously prone to false positives. The authors need to use overexpression and a sensitive reporter to get positive data but collect additional data using mutants which provide further support. Typically, this would be enough to confirm an interaction in the literature, although some doubt easily lingers. When the authors already have a stringent in-cell interaction assay for PEBP1 in the CETSA thermal shift, it would be very elegant to also apply the CETSA WB assay to the overexpressed constructs and demonstrate differences in the response of oligomycin, including the mutants. I am not sure this is feasible but it should be straightforward to test. 

      This is a very good suggestion. Unfortunately, due to the time constraints of the graduate students (who must write up their thesis very soon), we are not able to perform and repeat such experiments to the level of confidence that we would like.

      (6) At places the story could be hard to follow, partly due to the frequent introduction of new compounds, with not always well-stated rationale. It could be useful to have a table also in the main manuscript with all the compounds used, with the rationale for their use stated. Although some of the cellular pathways addressed are shown in miniatures in figures, it could be useful to have an introduction figure for the known ISR pathways, at least in the supplement. There are also a number of typos to correct. 

      We agree that there are many compounds used. We have attempted to clarify their use by adding this information into the table of used compounds in the methods and adding an overall schematic to Fig S1G and a note on line 132 "(see Figure 1-figure supplement 1G for summary of drugs used to target PEBP1 and ISR in this manuscript). We have also attempted to remove typos as far as possible.

      (7) EIF2a phosphorylation in S1E does not appear to be more significant for Sodium Arsenite argued to be a positive control, than CCCP, which is argued to be negative. Maybe enough with one positive control in this figure? 

      This experiment was used as a justification for our 30 min time point for the proteomics. By showing the 30 min and 4 h time points as Fig 1G and Figure 1-figure supplement 1F, our point was to demonstrate that the kinetics of phosphorylation and dephosphorylation are relevant. As you correctly pointed out, the stress response induced by sodium arsenite, but also tunicamycin is already attenuated at the 4h time point. We prefer to keep all samples to facilitate comparisons.

      (8) Page 7 reference to Figure S2H, which doesn't exist. Should be S3H.  

      Apologies for the mistake, now corrected to Figure 2-figure supplement 1B.

      (9) Finally, although the TPP labeling of the method is used widely in the literature this is CETSA with MS detection and MS-CETSA is a better term. This is about thermal shifts of individual proteins which is a very well-established biophysical concept. In contrast, the term Thermal Proteome Profiling does not relate to any biophysical concept, or real cell biology concept, as far as I can see, and is a partly misguided term. 

      We changed the term TPP into MS-CETSA, but also include the term TPP in the introduction to facilitate finding this paper by people using the TPP term.

      Reviewer #3 (Recommendations for the authors): 

      Major Issues 

      (1) The one major issue of this work is the lack of a mechanism showing precisely how PEBP1 amplifies the mitochondrial integrated stress response. The work, as it is described, presents data suggesting PEBP1's role in the ISR but fails to present a more conclusive mechanism. The idea of mitochondrial stress causing PEBP1 to bind to eIF2a, amplifying ISR is somewhat vague. Thus, the lack of a more defined model considerably weakens the argument, as the data is largely corollary, showing KO and modulation of PEBP1 definitely has a unique effect on the ISR, however, it is not conclusive proof of what the authors claim. While KO of PEBP1 diminishes the phosphorylation of eIF2a, taken together with the binding to eIF2a, different pathways could be simultaneously activated, and it seems premature to surmise that PEBP1 is specific to mitochondrial stress. Could PEBP1 be reacting to decreased ATP? Release of a protein from the mitochondria in response to stress? Is PEBP1's primary role as a modulator of the ISR, or does it have a role in non-stress-related translation? A cohesive model would tie together these separate indirect findings and constitute a considerable discovery for the ISR field, and the mitochondrial stress field.  

      Thank you for your assessment, we agree that this manuscript would have been much stronger by having clearer mechanistic insights. As with any scientific endeavor, we will keep in mind alternative explanations to the observations, which could eventually provide that cohesive model explaining how precisely PEBP1, directly or indirectly, influences ISR signalling.

      (2) The data relies on the initial identification of PEBP1 thermal stabilization concomitant with mitochondrial ISR induction post-treatment of several small molecules. However, the experiment was performed using a single timepoint of 30 minutes. There was no specific rationale for the choice of this time point for the thermal proteome profiling. 

      The reasoning for this was explicitly stated:  "We reasoned that treating intact cells with the drugs for only 30 min would allow us to observe rapid and direct effects related to metabolic flux and/or signaling related to mitochondrial dysfunction in the absence of major changes in protein expression levels.”

      Minor Issues 

      (1) In Lines 163-166 the authors state "The cells from Pebp1 KO animals displayed reduced expression of common ISR genes (Figure 2F), despite upregulation of unfolded protein response genes Ern1 (Ire1α) and Atf6 genes. This gene expression data therefore suggests that Pebp1 knockout in vivo suppresses induction of the ISR". This statement should be reassessed. While an arm of the UPR does stimulate ISR, this arm is controlled by PERK, and canonically IRE1 and ATF6 do not typically activate the ISR, thus their upregulation is likely unrelated to ISR activation and does not contribute the evidence necessary for this statement. 

      Apologies for the confusion, we aimed to highlight that as there is an increase in the two UPR arms, it is more likely that ISR instead of UPR is reduced. We have now changed the statement to the following:

      "The cells from Pebp1 PEBP1 KO animals displayed reduced expression of common ISR genes (Figure 2F), while there was mild upregulation of the unfolded protein response genes Ern1 (Ire1α) and Atf6 genes. This gene expression data therefore suggests that the reduced expression of common ISR genes is less likely to be mediated by changes in PERK, the third UPR arm, and more likely due to suppression of ISR by Pebp1 knockout in vivo."

      (2) In Lines 169 and 170 the authors state "Western blotting indicated reduced phosphorylation of eIF2α in RPE1 cells lacking PEBP1, suggesting that PEBP1 is involved in regulating ISR signaling between mitochondria and eIF2α". This conclusion is not supported by evidence. A number of pathways could be activated in these knockout cells, and simply observing an increase in p-eIF2α after knocking out PEBP1 does not constitute an interaction, as correlation doesn't mean causation. This KO could indirectly affect the ISR, with PEBP1 having no role in the ISR. While taken together there is enough circumstantial evidence in the manuscript to suggest a role for PEBP1 in the ISR, statements such as these have to be revised so as not to overreach the conclusions that can be achieved from the data, especially with no discernible mechanism.  

      We have now revised this statement by removing the conclusion and stating only the observation:  "Western blotting indicated reduced phosphorylation of eIF2α in RPE1 cells lacking PEBP1 (Fig. 3A)."

    1. eLife Assessment

      This manuscript provides fundamental studies to gain insight into the mutations in the presenilin-1 (PSEN1) gene on proteolytic processing of the amyloid precursor protein (APP). The authors provide compelling evidence using mutations in PSEN to understand what drives alternative substrate turnover with convincing data and rigorous analysis. This deep mechanistic study provides a framework towards the development of small molecule inhibitors to treat AD.

    2. Reviewer #1 (Public review):

      Summary:

      Arafi et al. present results of studies designed to better understand the effects of mutations in the presenilin-1 (PSEN1) gene on proteolytic processing of the amyloid precursor protein (APP). This is important because APP processing can result in the production of the amyloid β-protein (Aβ), a key pathologic protein in Alzheimer's disease (AD). Aβ exists in various forms that differ in amino acid sequence and assembly state. The predominant forms of Aβ are Aβ40 and Aβ42, which are 40 and 42 amino acids in length, respectively. Shorter and longer forms derive from processive proteolysis of the Aβ region of APP by the heterotetramer β-secretase, within which presenilin 1 possesses the active site of the enzyme. Each form may become toxic if it assembles into non-natively folded, oligomeric, or fibrillar structures. A deep mechanistic understanding of enzyme-substrate interactions is a first step toward the design and successful use of small-molecule therapeutics for AD.

      The key finding of Arafi et al. is that PSEN1 amino acid sequence is a major determinant of enzyme turnover number and the diversity of products. For the biochemist, this may not be surprising, but in the context of understanding and treating AD, it is immense because it shifts the paradigm from targeting the results of γ-secretase action, viz., Aβ oligomers and fibrils, to targeting initial Aβ production at the molecular level. It is the equivalent of taking cancer treatment from simple removal of tumorous tissue to the prevention of tumor formation and growth. Arafi et al. have provided us with a blueprint for the design of small-molecule inhibitors of γ-secretase. The significance of this achievement cannot be overstated.

      Strengths and weaknesses:

      The comprehensiveness and rigor of the study are notable. Rarely have I reviewed a manuscript reporting results of so many orthogonal experiments, all of which support the authors' hypotheses, and of so many excellent controls. In addition, as found in clinical trial reports, the limitations of the study were discussed explicitly. None of these significantly affected the conclusions of the study.

      Some minor concerns were expressed during the review process. The authors have revised the manuscript, and in doing so, dealt appropriately with the concerns and strengthened the manuscript.

    3. Reviewer #2 (Public review):

      Summary:

      The work by Arafi et al. show the effect of Familial Alzheimer's Disease presenilin-1 mutants on endoproteinase and carboxylase activity. They have elegantly demonstrated how some of mutants alter each step of processing. Together with FLIM experiments, this study provides additional evidence to support their 'stalled complex hypotheses'.

      Strengths:

      This is a beautiful biochemical work. The approach is comprehensive.

      Weaknesses:

      However, the novelty of this manuscript is questionable since this group has published similar work with different mutants (Ref 11) .

    4. Author response:

      The following is the authors’ response to the original reviews.

      comprehensiveness and rigor of the study are notable. Rarely have I reviewed a manuscript reporting the results of so many orthogonal experiments, all of which support the authors' hypotheses, and of so many excellent controls.” Reviewer 2 commented: “They have elegantly demonstrated how some mutants alter each step of processing. Together with FLIM experiments, this study provides additional evidence to support their 'stalled complex hypotheses'….This is a beautiful biochemical work. The approach is comprehensive.”

      Below we respond to the relatively minor concerns of Reviewer 2, which may be included with the first version of the Reviewed Preprint.

      Reviewer 2:

      (1) It appears that the purified γ-secretase complex generates the same amount of Aβ40 and Aβ42, which is quite different in cellular and biochemical studies. Is there any explanation for this?  

      Roughly equal production of Aβ40 and Aβ42 is a phenomenon seen with purified enzyme assays, and the reason for this has not been identified. However, we suggest that what is meaningful in our studies is the relative difference between the effects of FAD-mutant vs. WT PSEN1 on each proteolytic processing step. All FAD mutations are deficient in multiple cleavage steps in γsecretase processing of APP substrate, and these deficiencies correlate with stabilization of E-S complexes.

      (2) It has been reported the Aβ production lines from Aβ49 and Aβ48 can be crossed with various combinations (PMID: 23291095 and PMID: 38843321). How does the production line crossing impact the interpretation of this work?  

      In the cited reports, such crossover was observed when using synthetic Aβ intermediates as substrate. In PMID 2391095 (Okochi M et al, Cell Rep, 2013), Aβ43 is primarily converted to Aβ40, but also to some extent to Aβ38. In PMID: 38843321 (Guo X et al, Science, 2024), Aβ48 is ultimately converted to Aβ42, but also to a minor degree to Aβ40. We have likewise reported such product line “crossover” with synthetic Aβ intermediates (PMID: 25239621; Fernandez MA et al, JBC, 2014). However, when using APP C99-based substrate, we did not detect any noncanonical tri- and tetrapeptide co-products of Aβ trimming events in the LC-MS/MS analyses (PMID: 33450230; Devkota S et al, JBC, 2021). In the original report on identification of the small peptide coproducts for C99 processing by γ-secretase using LC-MS/MS (PMID: 19828817; Takami M et al, J Neurosci, 2009), only very low levels of noncanonical peptides were observed. In the present study, we did not search for such noncanonical trimming coproducts, so we cannot rule out some degree of product line crossover.

      (3) In Figure 5, did the authors look at the protein levels of PS1 mutations and C99-720, as well as secreted Aβ species? Do the different amounts of PS1 full-length and PS1-NTF/CTF influence FILM results?  

      FLIM results depend on the degree that C99 and long Aβ intermediates are bound to γ-secretase compared to unbound C99 and Aβ. The 6E10-Alexa 488 lifetime is significantly decreased by FAD mutations compared to WT PSEN1 (Fig. 5). However, the observed decrease in lifetime with the PSEN1 FAD mutants might also be due to lower levels of C99-720 expression or higher levels of PSEN1 CTF (i.e., mature γ-secretase complexes). We checked the C99-720 fluorescence intensities in the FLIM experiments and found that C99-720 intensities are not significantly different between cells transfected with WT and those with FAD PSEN1. Furthermore, Western blot analysis shows that levels of C99-720 are not significantly low and those of PSEN1 CTF are not high in FAD PSEN1 compared to WT PSEN1 expressing cells. Although PSEN1 CTF levels trend low for PSEN1 F386S, this mutant resulted in decreased FLIM only in Aβ-rich regions. Thus, the reduced FLIM apparently reflects effects of FAD mutation on E-S complex stability. Levels of full-length PSEN1 were also determined and found not to correlated with FLIM effects, although full-length PSEN1 represents protein not incorporated into full active γ-secretase complexes and therefore does not interact with C99-720.

      (4) It is interesting that both Aβ40 and Aβ42 Elisa kits detect Aβ43. Have the authors tested other kits in the market? It might change the interpretation of some published work.  

      We have not tested other ELISA kits. Considering our findings, it would be a good idea for other investigators to test whatever ELISAs they use for specificity vis-à-vis Aβ43.

    1. eLife assessment

      The identification of NCS1 as a distal appendage protein that captures preciliary vesicles has important implications for understanding the early steps of ciliary assembly. Furthermore, the work has important implications for the broader understanding of NCS1, which prior to this work was focused on roles in neurotransmission, but now must be considered in a broader context. The investigators used a variety of state-of-the-art methodologies, and the conclusions are convincingly supported by the experimental data. This work will be of interest to cell biologists studying ciliary assembly, human geneticists exploring the pathology of cilia as well as neurobiologists studying NCS1.

    2. Reviewer #1 (Public Review):

      In this work, Kanie and colleagues explored the role of NCS1 in capturing the ciliary vesicle. The microscopy was well executed and appropriately quantified. The authors convincingly show that while NCS1 is important for capturing the ciliary vesicle, another unknown distal appendage component is partially redundant in that ciliary vesicle capture and ciliary assembly are not fully dependent on NCS1. Overall, I am convinced by the data, and my only concern is that the discussion of the mouse phenotypes does not do a good job of putting this gene into the greater context of the complexity of mouse mutations.

      Interestingly NCS1 has been previously studied in the context of neurotransmission and the new findings raise questions about whether prior findings are actually due to neuronal cilia defects.

    3. Reviewer #2 (Public Review):

      Kanie et al have recently characterized DAP protein CEP89 as important for the recruitment of the ciliary vesicle. Here, they describe a novel interacting partner for CEP89 that can bind membranes and therefore mediates its role in ciliary vesicle recruitment. An initial LAP tag pull-down and mass spectrometry experiment finds NCS-1 and C3ORF14 as CEP89 interactors. This interaction is mapped in the context of the ciliary vesicle formation. From the data presented, it is clear that, upon knockout, the function of these proteins might be compensated by others, as the phenotype can eventually recover over time.

      In terms of the biological significance of this interaction, it would be good to examine (via co-immunoprecipitation) whether the CEP89/NCS-1/C3ORF14 interaction takes place upon serum starvation. Does the complex change?

      Also, for the subdistal appendage localization of NCS-1 and C3ORF14, would this also change upon serum starvation?

      For the ciliation results and the recruitment of IFT88 in CEP89 knockout cell lines, this contradicts previous work from Tanos et al (PMID: 23348840), as well as Hou et al (PMID: 36669498). A parallel comparison using siRNA, a transient knockout system, or a degron system would help understand this. A similar point goes for Figure 4, where the effect on ciliogenesis is minimal in knockout cells, but acute siRNA has been shown to have a stronger phenotype.

      An elegant phenotype rescue is shown in Figure 5. An interesting question would be, how does this mutant and/or the myristoylation affect the recruitment of C3ORF14?

      For the EF-hand mutants, it would be good to use control mutants, from known Ca2+ binding proteins as a control for the experiment shown.

    4. Reviewer #3 (Public Review):

      This work addresses an important question aimed at understanding how membrane docking to the distal appendages is regulated during ciliogenesis. In this study, Tomoharu and colleagues identified interactions between CEP89 (important for RAB34-positive membrane localization to the mother centriole) and NCS1 and C3ORF14. Both these CEP89 interacting proteins were characterized as distal appendage localized proteins between CEP89 and RAB34 based on super-resolution microscopy. Ciliogenesis investigations using knockout cells indicated that NCS1 and CEP89 have similar impaired ciliation due to disruption in vesicle recruitment/RAB34 to the mother centriole, while C3ORF14 had less effect on ciliogenesis. The authors refer to the ciliogenesis requirement for CEP89/NCS1 as ciliary vesicles, which has been previously referred to as preciliary vesicle or distal appendage vesicles. NCS1 distal appendage localization was dependent on CEP89 and TTBK2, but it is not clear how TTBK2 affects NCS1. The authors subsequently performed double knockouts with NCS1 and other distal appendage proteins and showed stronger effects on mother centriole RAB34 levels, suggesting efficient membrane docking during ciliogenesis requires several distal appendage proteins. This is consistent with NCS1 knockout mice which do not display typical ciliopathy phenotypes. These mice do display obesity, which is associated with cilia dysfunction, and show reduced ciliary protein levels. As noted by the authors, the in vivo results for NCS1 knockouts could be affected by the mouse background which was not evaluated. The authors demonstrate the NCS1 myristoylation motif is required for RAB34 localization to the mother centrioles, providing a mechanistic explanation for how distal appendage proteins could interact with membranes during ciliogenesis. Overall the authors' findings support an important role for NCS1 in regulating ciliogenesis via myristoylation-dependent interaction with RAB34-positive membranes docked at the mother centriole.

    5. Author response:

      Reviewer #2 (Public Review): 

      Comment 1: In terms of the biological significance of this interaction, it would be good to examine (via co-immunoprecipitation) whether the CEP89/NCS-1/C3ORF14 interaction takes place upon serum starvation. Does the complex change? 

      NCS1 centriolar localization requires CEP89 as no NCS1 localization was observed in CEP89 knockout cells (Figure 2L; Figure 2-figure supplement 2B). Both CEP89 and NCS1 centriolar localization were observed (Figure 2C; Figure 1D of the PMID: 36711481) in cells grown in serum containing media, although their localization was further enhanced in serum starved cells. From these results, we predict that CEP89 and NCS1 can interact and colocalize in both serum-fed and serum-depleted condition. We think it may not be easy to assess the change in interaction with the co-immunoprecipitation assay, as interactions occur in a test tube, which may not reflect the binding condition inside the cells.

      Comment 2: Also, for the subdistal appendage localization of NCS-1 and C3ORF14, would this also change upon serum starvation? 

      We agree that it would be interesting to see whether the subdistal appendage localization changes upon serum starvation, as NCS1 may capture the ciliary vesicle at the subdistal appendages as we discussed. However, the loss of the subdistal appendage protein, CEP128, blocks subdistal appendage localization of CEP89 [PMID: 32242819] without affecting cilium formation [PMID: 27818179]. This suggests that the subdistal appendage localization of NCS1 or C3ORF14 is likely dispensable for cilium formation.

      Comment 3: For the ciliation results and the recruitment of IFT88 in CEP89 knockout cell lines, this contradicts previous work from Tanos et al (PMID: 23348840), as well as Hou et al (PMID: 36669498). A parallel comparison using siRNA, a transient knockout system, or a degron system would help understand this. A similar point goes for Figure 4, where the effect on ciliogenesis is minimal in knockout cells, but acute siRNA has been shown to have a stronger phenotype. 

      Hou et al. [PMID: 36669498] investigated the role of distal appendage proteins, CEP164, CEP89, and FBF1 in the ciliated chordotonal organ of Drosophila melanogaster by generating knockout Drosophila strains. The results were markedly different from what was observed in mammalian cells. Notably, CEP164 is not required for cilium formation, and CEP89 is required for FBF1 localization in the animal. CEP89 was required for cilium formation in the cells in the ciliated chordotonal organ, of which cilium formation is dependent on IFT machinery. They did not show if IFT centriolar recruitment is affected in the CEP89 mutant cells. These differences likely reflect the divergence of the organization of distal appendage during evolution.

      The ciliation phenotype of our CEP89 knockout cells are milder than what was shown in Tanos et al [PMID: 23348840], but largely consistent with the results from Bornens group, which used siRNA to deplete CEP89 [PMID: 23789104]. Besides, NCS1 knockout cells showed very similar phenotype to the CEP89 knockout cells, and relatively acute deletion of NCS1 (14 days after infection of the lenti-virus containing sgNCS1 without single-cell cloning) displayed an almost identical ciliation defect (Figure 4B-C). Thus, we believe CEP89 is only partially required for cilium formation in RPE-hTERT cells and that the differences are more technical than definitive.

      Comment 4: An elegant phenotype rescue is shown in Figure 5. An interesting question would be, how does this mutant and/or the myristoylation affect the recruitment of C3ORF14? 

      NCS1 is not required for the localization of C3ORF14 (Figure 2M; Figure 2- figure supplement 2C), so we can assume that the myristoylation defective mutant does not affect C3ORF14 recruitment.

      Comment 5: For the EF-hand mutants, it would be good to use control mutants, from known Ca2+ binding proteins as a control for the experiment shown. 

      In the Figure 5-figure supplement 1A-C, we generated a series of EF-hand mutant of NCS1 to see if the calcium binding affects the CEP89 interaction, NCS1 localization, and cilium formation. NCS1 is only protein among the calcium binding NCS family proteins that was found as a positive hit in the mass spec data of CEP89 tandem affinity purification. Therefore, we cannot use other NCS1 family proteins as a control for CEP89 binding, NCS1 localization, and cilium formation.

    1. eLife Assessment

      This fundamental work substantially advances our understanding of how the glycocalyx of cells provide a non-specific barrier for the interaction of viruses with cell-surface receptors. Using both in vitro experiments and in vivo manipulations they provide solid evidence for the properties of the glycocalyx to serve as an energy barrier as a main attribute of its mode of action. The work will be of broad interest to virologists and the cell biology community that studies host-pathogen interactions.

    2. Joint Public Review:

      This manuscript tests the notion that bulky membrane glycoproteins suppress viral infection through non-specific interactions. Using a suite of biochemical, biophysical, and computational methods in multiple contexts (ex vivo, in vitro, and in silico), the authors collect evidence supporting the notion that (1) a wide range of surface glycoproteins erect an energy barrier for the virus to form stable adhesive interface needed for fusion and uptake and (2) the total amount of glycan, independent of their molecular identity, additively enhanced the suppression.

      As a functional assay the authors focus on viral infection starting from the assumption that a physical boundary modulated by overexpressing a protein-of-interest could prevent viral entry and subsequent infection. Here they find that glycan content (measured using the PNA lectin) of the overexpressed protein and total molecular weight, that includes amino acid weight and the glycan weight, is negatively correlated with viral infection. They continue to demonstrate that it is in effect the total glycan content, using a variety of lectin labelling, that is responsible for reduced infection in cells. Because the authors do not find a loss in virus binding this allows them to hypothesize that the glycan content presents a barrier for the stable membrane-membrane contact between virus and cell. They subsequently set out to determine the effective radius of the proteins at the membrane and demonstrate that on a supported lipid bilayer the glycosylated proteins do not transition from the mushroom to the brush regime at the densities used. Finally, using Super Resolution microscopy they find that above an effective radius of 5 nm proteins are excluded from the virus-cell interface.

      The experimental design does not present major concerns and the results provide insight on a biophysical mechanism according to which, repulsion forces between branched glycan chains of highly glycosylated proteins exert a kinetic energy barrier that limits the formation of a membrane/viral interface required for infection.

      However several general and specific concerns remain that the author is recommended to address before their claims as above are compelling.

      GENERAL QUESTIONS:

      (1) For many enveloped viruses, the attachment factors - paradoxically - are also surface glycoproteins, often complexed with a distinct fusion protein. The authors note here that the glycoportiens do not inhibit the initial binding, but only limit the stability of the adhesive interface needed for subsequent membrane fusion and viral uptake. How these antagonistic tendencies might play out should be discussed.

      (2) Unlike polymers tethered to solid surface undergoing mushroom-to-brush transition in density-dependent manner, the glycoproteins at the cell surface are of course mobile (presumably in a density-dependent manner). They can thus redistribute in spatial patterns, which serve to minimize the free energy. I suggest the authors explicitly address how these considerations influence the in vitro reconstitution assays seeking to assess the glycosylation-dependent protein packing.

      (3) The discussion of the role of excluded volume in steric repulsion between glycoprotein needs clarification. As presented, it's unclear what the role of "excluded volume" effects is in driving steric repulsion? Do the authors imply depletion forces? Or the volume unavailable due to stochastic configurations of gaussian chains? How does the formalism apply to branched membrane glycoproteins is not immediately obvious.

      (4) The authors showed that glycoprotein expression inversely correlated with viral infection and link viral entry inhibition to steric hindrance caused by the glycoprotein. Alternative explanations would be that the glycoprotein expression (a) reroutes endocytosed viral particles or (b) lowers cellular endocytic rates and via either mechanism reduce viral infection. The authors should provide evidence that these alternatives are not occurring in their system. They could for example experimentally test whether non-specific endocytosis is still operational at similar levels, measured with fluid-phase markers such as 10kDa dextrans.

      (5) The authors approach their system with the goal of generalizing the cell membrane (the cumulative effect of all cell membrane molecules on viral entry), but what about the inverse? How does the nature of the molecule seeking entry affect the interface? For example, a lipid nanoparticle vs a virus with a short virus-cell distance vs a virus with a large virus-cell distance?

      SPECIFIC QUESTIONS:

      (1) The proposed mechanism indicates that glycosylation status does not produce an effect in the "trapping" of virus, but in later stages of the formation of the virus/membrane interface due to the high energetic costs of displacing highly glycosylated molecules at the vicinity of the virus/membrane interface. It is suggested to present a correlation between the levels of glycans in the Calu-3 cell monolayers and the number of viral particles bound to cell surface at different pulse times. Results may be quantified following the same method as shown in Figure 2 for the correlation between glycosylation levels and viral infection (in this case the resulting output could be number of viral particles bound as a function of glycan content).

      (2) The use of the purified glycosylated and non-glycosylated ectodomains of MUC1 and CD-43 to establish a relationship between glycosylation and protein density into lipid bilayers on silica beads is an elegant approach. An assessment of the impact of glycosylation in the structural conformation of both proteins, for instance determining the Flory radius of the glycosylated and non-glycosylated ectodomains by the FRET-FLIM approach used in Figure 4 would serve to further support the hypothesis of the article.

      (3) The MUC1 glycoprotein is reported to have a dramatic effect in reducing viral infection shown in Fig 1F. On the contrary, in a different experiment shown in Fig2D and Fig2H MUC1 has almost no effect in reducing viral infection. It is not clear how these two findings can be compatible.

      (4) Why is there a shift in the use of the glycan marker? How does this affect the conclusions? For the infection correlation relating protein expression with glycan content the PNA-lectin was used together with flow cytometry. For imaging the infection and correlating with glycan content the SSA-lectin is used.

      (5) The authors in several instances comment on the relevance and importance of the total glycan content. Nevertheless, these conclusions are often drawn when using only one glycan-binding lectin. In fact, the anti-correlation with viral infection is distinct for the various lectins (Fig 2D and Fig 2H). Would it make more sense to use a combination of lectins to get a full glycan spectrum?

      (6) Fig 3A shows virus binding to HEK cells upon MUC1 expression. Please provide the surface expression of the MUC1 so that the data can be compared to Fig 1F. Nevertheless, it is not clear why the authors used MUC expression as a parameter to assess virus binding. Alternatively, more conclusive data supporting the hypothesis would be the absence of a correlation between total glycan content and virus binding capacity.

      (7) While the use of the Flory model could provide a simplification for a (disordered) flexible structure such as MUC1, where the number of amino acids equals N in the Flory model, this generalisation will not hold for all the proteins. Because folding will dramatically change the effective polypeptide chain-length and reduce available positioning of the amino acids, something the authors clearly measured (Fig 4G), this generalisation is not correct. In fact, the generalisation does not seem to be required because the authors provide an estimation for the effective Flory radius using their FRET approach

    1. eLife Assessment

      This manuscript reports valuable findings on the role of the Srs2 protein in turning off the DNA damage signaling response initiated by Mec1 (human ATR) kinase. The data provide solid evidence that Srs2 interaction with PCNA and ensuing SUMO modification is required for checkpoint downregulation. However, while the model that Srs2 acts at gaps after camptothecin-induced DNA damage is reasonable, direct experimental evidence for this is currently lacking. The work will be of interest to cell biologists studying genome integrity.

    2. Reviewer #1 (Public review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Comments on revisions:

      I am satisfied with the revisions made by the authors, which helped clarify some points that were confusing in the initial submission.

    3. Reviewer #2 (Public review):

      This revised manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2.

      Many of the conclusions are based on reasonable assumptions about the consequences of various mutations, but direct evidence of changes in Srs2 association with PNCA or other interactors is still missing. There is an assumption that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects, which may not be the case. How SLX4 might interact with Srs2 is unclear to me, again assuming that the SLX4 defect is "surgical" - removing only one of its many interactions.

      One point of concern is the use of t-tests without some sort of correction for multiple comparisons - in several figures. I'm quite sceptical about some of the p < 0.05 calls surviving a Bonferroni correction. Also in 4B, which comparison is **? Also, admittedly by eye, the changes in "active" Rad53 seem much greater than 5x. (also in Fig. 3, normalizing to a non-WT sample seems odd).

      What is the WT doubling time for this strain? From the FACS it seems as if in 2 h the cells have completed more than 1 complete cell cycle. Also in 5D. Seems fast...

      I have one over-arching confusion. Srs2 was shown initially to remove Rad51 from ssDNA and the suppression of some of srs2's defects by deleting rad51 made a nice, compact story, though exactly how srs2's "suppression of rad6" fit in isn't so clear (since Rad6 ties into Rad18 and into PCNA ubiquitylation and into PCNA SUMOylation). Now Srs2 is invoked to remove RPA. It seems to me that any model needs to explain how Srs2 can be doing both. I assume that if RPA and Rad51 are both removed from the same ssDNA, the ssDNA will be "trashed" as suggested by Symington's RPA depletion experiments. So building a model that accounts for selective Srs2 action at only some ssDNA regions might be enhanced by also explaining how Rad51 fits into this scheme.

      As a previous reviewer has pointed out, CPT creates multiple forms of damage. Foiani showed that 4NQO would activate the Mec1/Rad53 checkpoint in G1- arrested cells, presumably because there would be single-strand gaps but no DSBs. Whether this would be a way to look specifically at one type of damage is worth considering; but UV might be a simpler way to look.

      As also noted, the effects on the checkpoint and on viability are quite modest. Because it isn't clear (at least to me) why rfa1 mutants are so sensitive to CPT, it's hard for me to understand how srs2-zm2 has a modest suppressive effect: is it by changing the checkpoint response or facilitating repair or both? Or how srs2-3KR or srs2-dPIM differ from Rfa1-zm2 in this respect. The authors seem to lump all these small suppressions under the rubric of "proper levels of RPA-ssDNA" but there are no assays that directly get at this. This is the biggest limitation.

      Srs2 has also been implicated as a helicase in dissolving "toxic joint molecules" (Elango et al. 2017). Whether this activity is changed by any of the mutants (or by mutations in Rfa1) is unclear. In their paper, Elango writes: "Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules" Given the involvement of SLX4, perhaps the authors should examine the roles of structure-specific nucleases in CPT survival?

      Experiments that might clarify some of these ambiguities are proposed to be done in the future. For now, we have a number of very interesting interactions that may be understood in terms of a model that supposes discriminating among gaps and ssDNA extensions by the presence of PCNA, perhaps modified by SUMO. As noted above, it would be useful to think about the relation to Rad6.

    4. Reviewer #3 (Public review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2-SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths<br /> (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.<br /> (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

      Weaknesses<br /> (1) Additional mutants of interest could have been tested, such as the recently reported Pin mutant, srs2-Y775A (PMID: 38065943), and the Rad51 interaction point mutant, srs2-F891A (PMID: 31142613).<br /> (2) The use of deletion mutants for PCNA and RAD51 interaction is inferior to using specific point mutants, as done for the SUMO interaction and the sites for post-translational modifications.<br /> (3) Figure 4D and Figure 5A report data with standard deviations, which is unusual for n=2. Maybe the individual data points could be plotted with a color for each independent experiment to allow the reader to evaluate the reproducibility of the results.

      Comments on revisions:

      In this revision, the authors adequately addressed my concerns. The only issue I see remaining is the site of Srs2 action. The authors argue in favor of gaps and against R-loops and ssDNA resulting from excessive supercoiling. The authors do not discuss ssDNA resulting from processing of one-sided DSBs, which are expected to result from replication run-off after CPT damage but are not expected to provide the 3'-junction for preferred PCNA loading. Can the authors exclude PCNA at the 5'-junction at a resected DSB?

    1. eLife Assessment

      This study provides useful in vitro evidence to support a mechanism whereby dyslipidemia could accelerate renal functional decline through the activation of the AT1R/LOX1 complex by oxLDL and AngII. As such, it improves the knowledge regarding the complex interplay between dyslipidemia and renal disease and provides a solid basis for the discovery of novel therapeutic strategies for patients with lipid disorders. The methods, data, and analyses partly support the presented findings, although the observed variability and need for further in vivo validation require additional research in this key area.

    2. Reviewer #1 (Public review):

      Summary:

      In the present study, Dr. Ihara demonstrated a key role of oxLDL in enhancing Ang II-induced Gq signaling by promoting the AT1/LOX1 receptor complex formation.

      Strengths:

      This study is very exciting and the work is also very detailed, especially regarding the mechanism of LOX1-AT1 receptor interaction and its impact on oxidative stress, fibrosis and inflammation.

      Weaknesses:

      The direct evidence for the interaction between AT1 and LOX1 receptors in cell membrane localization is relatively weak.

    3. Reviewer #2 (Public review):

      While the findings might be valid, there is enough uncertainty that these results should not be considered anything other than preliminary, warranting a more thorough and rigorous investigation.

      Comments on revisions:

      As the author mentioned that due to the receptor internalisation of AT1 and/or LOX1 induced by AngII or Ox-LDL makes it difficult to detect receptor interaction at the membrane by Co-IP. If so, the GPCR internalisation related pathway should be activated, such as GRKs, arrestin2 could be activated and enhanced during this process, whether they could further provide the evidence for these changes in different groups by Western blot or IF images.

      If the authors don't know why the results across experiments can vary so greatly nor control them, how do we know that their interpretation of the very modest intra-experimental variability they observe is correct? They explain away the difference in biosensor activity response to the likely respective insertion sites that were used. While this can be true, and even might be true, it is important to note that the publication they cite shows that the sensors in the third loop and the C-terminus respond very similarly. In fact, the authors concluded: "Our results also suggest that positioning conformational biosensors into ICL3 and the C-tail effectively reports canonical G protein-mediated signaling downstream of the AT1R." Moreover, it is unclear why the less sensitive biosensor (as least as measured by degree of DBRET) is the one that appears to show enhancement. I suppose one could argue that the activity is maximal using the C-tail and one must use a less responsive reporter to detect the effect, but this is a rationalization for an unexplained result rather than a validated mechanistic explanation. If the other results were more compelling, perhaps this would be less of an issue. Finally, they did not explain why a control, non-specific antibody wasn't used for the studies presented in panel 2d. This would have been an easy study to have done in the interim. It also would have been important to test the effect of the LOX1-ab on the effects of AngII treatment alone.

      In their response to the gene expression studies, the authors attribute the lack of a robust response for some genes to the low dose of oxLDL that was used but give no justification for their choice for this low dose. More importantly, they present the data for a number of hand-picked genes rather than a global assessment of response. Their justification---cost constraints---isn't sufficient to justify this incomplete analysis. Their selective rt-PCR results are a pilot study.

      There is no direct evidence in this study that shows that "partial" EMT is occurring in vivo. The rt-PCR studies presented in Fig 8 are not sufficient. Even if one accepts their incomplete analysis of transcriptomic studies using RT-PCR rather than a complete transcriptomic assessment, the study was done on bulk RNA from the entire kidney. The source material includes all cell types, not just epithelial cells, so there is no way to be sure that EMT is occurring. As noted elsewhere, they found no histologic evidence for injury and had no immunostaining results demonstrating "partial EMT" of damaged renal epithelial cells.

      All of the evidence described is indirect, and the responses, while plausible, are generally excuses for lack of truly unequivocally positive results. The authors acknowledge the potential confounders of lower BP response in the Lox1-KO, unexpected weight loss in response to high fat diet, the lack of meaningful histologic evidence of injury, and they also acknowledge the absence of increased Gq signaling in the kidney, which is central to their model, but defend the entire model based on some minor changes in urinary 8-OHdG and albumin levels and a curated set of transcriptional changes. Their data could support their model---loss of Lox1 seems to reduce the levels somewhat, but the data are preliminary.

      There remain serious reservations about the immunostaining results, with explanations and new data not reassuring. The authors report that they are unable to co-stain for Lox1 and AT1R because both were generated in rabbit, but this reviewer didn't ask for co-staining of the two markers. Rather, it was co-staining showing that Lox1 and ATR1 in fact stain in a specific manner to the same nephron segments. The authors have added a supplementary figure showing co-staining for LOX1/AT1R with megalin, a marker for proximal tubules. However, several aspects of this are problematic:

      i. The pattern in the new Supp Fig 10 does not look like that in Fig 9. In the latter, staining is virtually everywhere, all nephron segments, and predominantly basolateral. In Supp Fig 10, they note that the pattern is primarily in the microvilli of the proximal tubule, where megalin is present. The new studies also seem to be a bit more specific, ie there are some tubules that appear to not stain with the markers.

      ii. It is difficult to be certain that the megalin staining isn't simply "bleed-through" of the signal from the other antibody. The paper doesn't describe the secondary antibody used for megalin to be sure that the emission spectra completely non-overlapping and it isn't clear that the microscope that was used offers necessary precision.

      iii. Their explanation for the pattern of AT1R staining is unconvincing. AT1R immunolocalization is known to be challenging, prompting Schrankl et al to do a definitive study using RNAscope to localize its expression in mice, rats and humans (Am J Physiol Renal Physiol 320: F644-F653, 2021). It argues against the pattern seen in Figure 9 (diffuse tubular expression), though it does suggest it is present in proximal tubules in mice. But perhaps more problematic for their model is that AT1R is not expressed in human tubules (or at least the RNA is undetectable).

      Why isn't there more colocalization apparent for the AT1R and LOX1 if they form a co-receptor complex? They say that the complexes may be very dynamic, yet their movie in Suppl Fig 1 does not really support that. Not only are there few overlapping puncta in the static image, there is very little change over the duration of the movie. We don't see complexes form and then disappear and we see few new complexes form.

      The explanation for why the number of replicates is variable is not reassuring. The authors note that it was because of the higher variability of the results, necessitating a higher "N" to achieve significance, but this has the appearance of P-chasing.

    1. eLife assessment

      This fundamental work describes for the first time the combined gene expression and chromatin structure at the genome level in isolated chondrocytes and classical (cranial) and non-classical (notochordal) osteoblasts. In a compelling analysis of RNA-Seq and ATAC data, the authors characterize the two osteoblast populations relative to their associated chondrocyte cells and further proceed with a convincing analysis of the crucial entpd5a gene regulatory elements by investigating their respective transcriptional activity and specificity in developing zebrafish.

    2. Reviewer #1 (Public Review):

      Summary:

      This work uses transgenic reporter lines to isolate entpd5a+ cells representing classical osteoblasts in the head and non-classical (osterix-) notochordal sheath cells. The authors also include entpd5a- cells, col2a1a+ cells to represent the closely associated cartilage cells. In a combination of ATAC and RNA-Seq analysis, the genome-wide transcriptomic and chromatin status of each cell population is characterized, validating their methodology and providing fundamental insights into the nature of each cell type, especially the less well-studied notochordal sheath cells. Using these data, the authors then turn to a thorough and convincing analysis of the regulatory regions that control the expression of the entpd5a gene in each cell population. Determination of transcriptional activities in developing zebrafish, again combined with ATAC data and expression data of putative regulators, results in a compelling and detailed picture of the regulatory mechanisms governing the expression of this crucial gene.

      Strengths:

      The major strength of this paper is the clever combination of RNA-Seq and ATAC analysis, further combined with functional transcriptional analysis of the regulatory elements of one crucial gene. This results in a very compelling story.

      Weaknesses:

      No major weaknesses were identified, except for all the follow-up experiments that one can think of, but that would be outside of the scope of this paper.

    3. Reviewer #2 (Public Review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and to serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts has been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific details of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show the utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing a foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing the biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that were not critical weaknesses but areas for extending the description of methods and integration into the existing data on the role of non-classical osteoblasts and establishment/canalization of this lineage of skeletal cells.

      (1) In reading the text it was unclear how specific the authors' experimental dissection of the head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however, analysis of contaminating cells/lineages in each population would be useful - e.g. using specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific - e.g. not seen in one or other dataset - or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage-specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - are there obvious cis-regulatory changes that correlate with the co-option of this gene in the early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of the differential between different osteoblasts lineages in the paper.

    4. Reviewer #3 (Public Review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts, Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers, they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrating the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    1. eLife Assessment

      Graca et al. reports a fundamental missing link in the ethanol metabolism of mycobacteria and illuminates the role of a flavoprotein dehydrogenase that acts as an electron shuttle between an uncommon redox cofactor and the electron transport chain. Overall, the data presented are compelling, supported by a range of well designed and meticulous experiments. The findings will be of broad interest to researchers investigating bacterial metabolism.

    2. Reviewer #1 (Public review):

      Using genetically engineered Mycolicibacterium smegmatis strains, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and wild type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism.

      The link between mycofactocin oxidation and respiration is shown by whole-cell and membrane respiration measurements. I look forward to seeing what the electron acceptor/s are for MftG. Overall, the data and conclusions support the role of MftG in ethanol metabolism as a mycofactocin redox enzyme.

    3. Reviewer #3 (Public review):

      Summary:

      The work by Graca et al. describes a GMC flavoprotein dehydrogenase (MftG) in the ethanol metabolism of mycobacteria and provides evidence that it shuttles electrons from the mycofactocin redox cofactor to the electron transport chain.

      Strengths:

      Overall, this study is compelling, exceptionally well-designed and thoroughly conducted. An impressively diverse set of different experimental approaches is combined to pin down the role of this enzyme and scrutinize the effects of its presence or absence in mycobacteria cells growing on ethanol and other substrates. Other strengths of this work are the clear writing style and stellar data presentation in the figures, which makes it easy also for non-experts to follow the logic of the paper. Overall, this work therefore closes an important gap in our understanding of ethanol oxidation in mycobacteria, with possible implications for the future treatment of bacterial infections.

      Weaknesses:

      I see no major weaknesses in this work, which in my opinion leaves no doubt about the role of MftG.

    4. Reviewer #4 (Public review):

      Summary:

      The manuscript by Graça et al. explores the role of MftG in the ethanol metabolism of mycobacteria. The authors hypothesise that MftG functions as a mycofactocin dehydrogenase, regenerating mycofactocin by shuttling electrons to the respiratory chain of mycobacteria. Although the study primarily uses M. smegmatis as a model microorganism, the findings have more general implications for understanding mycobacterial metabolism. Identifying the specific partner to which MftG transfers its electrons within the respiratory chain of mycobacteria would be an important next step, as pointed out by the authors.

      Strengths

      The authors have used a wide range of tools to support their hypothesis, including co-occurrence analyses, gene knockout and complementation experiments, as well as biochemical assays and transcriptomics studies.<br /> An interesting observation that the mftG deletion mutant grown on ethanol as the sole carbon source exhibited a growth defect resembling a starvation phenotype.<br /> MftG was shown to catalyse the electron transfer from mycofactocinol to components of the respiratory chain, highlighting the flexibility and complexity of mycobacterial redox metabolism.

      The authors have taken on the majority of recommendations by the reviewers and made changes in the manuscript accordingly. I don't have any further suggestions.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Using a knock-out mutant strain, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and would type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism, and may be beneficial if described prior to respiratory activity data.

      The data and conclusions support the role of MftG in ethanol metabolism.

      We thank the reviewer for the positive evaluation of our manuscript.

      Reviewer #3 (Public review):

      Summary:

      The work by Graca et al. describes a GMC flavoprotein dehydrogenase (MftG) in the ethanol metabolism of mycobacteria and provides evidence that it shuttles electrons from the mycofactocin redox cofactor to the electron transport chain.

      Strengths:

      Overall, this study is compelling, exceptionally well designed and thoroughly conducted. An impressively diverse set of different experimental approaches is combined to pin down the role of this enzyme and scrutinize the effects of its presence or absence in mycobacteria cells growing on ethanol and other substrates. Other strengths of this work are the clear writing style and stellar data presentation in the figures, which makes it easy also for non-experts to follow the logic of the paper. Overall, this work therefore closes an important gap in our understanding of ethanol oxidation in mycobacteria, with possible implications for the future treatment of bacterial infections.

      Weaknesses:

      I see no major weaknesses of this work, which in my opinion leaves no doubt about the role of MftG.

      We thank the reviewer for the positive evaluation of our manuscript.

      Reviewer #4 (Public review):

      Summary:

      The manuscript by Graça et al. explores the role of MftG in the ethanol metabolism of mycobacteria. The authors hypothesise that MftG functions as a mycofactocin dehydrogenase, regenerating mycofactocin by shuttling electrons to the respiratory chain of mycobacteria. Although the study primarily uses M. smegmatis as a model microorganism, the findings have more general implications for understanding mycobacterial metabolism. Identifying the specific partner to which MftG transfers its electrons within the respiratory chain of mycobacteria would be an important next step, as pointed out by the authors.

      Strengths:

      The authors have used a wide range of tools to support their hypothesis, including co-occurrence analyses, gene knockout and complementation experiments, as well as biochemical assays and transcriptomics studies.

      An interesting observation that the mftG deletion mutant grown on ethanol as the sole carbon source exhibited a growth defect resembling a starvation phenotype.

      MftG was shown to catalyse the electron transfer from mycofactocinol to components of the respiratory chain, highlighting the flexibility and complexity of mycobacterial redox metabolism.

      Weaknesses:

      Could the authors elaborate more on the differences between the WT strains in Fig. 3C and 3E? in Fig. 3C, the ethanol concentration for the WT strain is similar to that of WT-mftG and ∆mftG-mftG, whereas the acetate concentration in thw WT strain differs significantly from the other two strains. How this observation relates to ethanol oxidation, as indicated on page 12.

      This is a good question, and we agree with the reviewer that the sum of processes leading to the experimental observations shown in Figure 3 are not completely understood. For instance, when looking at ethanol concentrations, evaporation is a dominating effect and the situation is furthermore confounded by the fact that the rate of ethanol evaporation appears to be inversely correlated to the optical density of the samples (see Figure 3E and compare media control as well as the samples of DmftG and DmftG at OD<sub>600</sub> = 1). Additionally, the growth rate and thus the OD<sub>600</sub> of all strains monitored are different at each time point, thus further complicating the analysis. This is why we assume that the rate of ethanol oxidation is mirrored more clearly by acetate formation, at least in the early phase before 48 h (Figure 3E),i.e., before acetate consumption becomes dominant in DmftG-mftG and WT-mftG. Here, we see that the rate of acetate formation is zero for media controls, low for DmftG, but high for WT as well as DmftG-mftG and WT-mftG. The latter two strains also showed an earlier starting point of growth as well as acetate formation and the following phase of acetate depletion.

      All of these observations are in line with our general statement, i.d., “Parallel to the accelerated and enhanced growth described above (Figure 3A), the overexpression strains displayed higher rates of ethanol consumption as well as an earlier onset of acetate overflow metabolism and acetate consumption (Figure 3D).” We are still convinced that this summary describes the findings well and avoids unnecessary speculation.

      The authors conclude from their functional assays that MftG catalyses single-turnover reactions, likely using FAD present in the active site as an electron acceptor. While this is plausible, the current experimental set up doesn't fully support this conclusions, and the language around this claim should be softened.

      This is a fair point. We revised our claim accordingly. In particular, we changed:

      Page 28: we added “possibly”

      Page 28 we changed “single-turnover reactions” to “reactions reminiscent of a single-turnover process”.

      The authors suggest in the manuscript that the quinone pool (page 24) may act as the electron acceptor from mycofactocinol, but later in the discussion section (page 30) they propose cytochromes as the potential recipients. If the authors consider both possibilities valid, I suggest discussing both options in the manuscript.

      This is true. However, no change to the manuscript is necessary, since both options were discussed on page 30.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The authors addressing some of the original recommendations is appreciated e.g. title change. Other recommendations that were not adequately addressed would mostly improve the clarity and help comprehension for the reader, but they are at the author's discretion.

      Reviewer #3 (Recommendations for the authors):

      Abstract: "Here, we show that MftG enzymes strictly require mft biosynthetic genes and are found in 75% of organisms harboring these genes". I read this sentence several times and I am still somewhat confused and not sure what exactly is meant here. I suggest to rephrase, e.g., to "Here, we show that in 75% of all organisms that harbour the mft biosynthetic genes, MftG enzymes are also encoded and functionally associated with these genes" (if that was meant; also the abbreviation mft should be introduced in the abstract or otherwise the full name be used).

      We thank the reviewer for the good hint. We changed the sentence to “Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes”.

      p.3, 2nd paragraph: "Although the role of MFT in alcohol metabolism is well established, further biological roles of mycofactocin appear to exist." Mycofactocin is once written as MFN and once in full length, which is slightly confusing. Consider rephrasing, e.g., to "...further biological roles of this cofactor appear to exist".

      Thank you, we adopted the suggested change.

      Fig. 1: Consider adding MftG in brackets after "mycofactocin dehydrogenase" in panel B.

      Good suggestion. We added (MftG) to the figure.

      Fig. 3: Legend should be corrected. The color of the signs should be teal diamond for "M. smegmatis double presence of the mftG gene" and orange upward facing triangle for "Medium with 10 g L-1 of ethanol without bacterial inoculation". Aside from the coloration, the order should ideally also be identical to the one shown in the upper right part.

      Thank you for the valuable hint! We corrected the legend and unified the legends in the figure caption and figure.

      p.20 : It is not exactly clear to me why "semipurified cell-free extracts from M. smegmatis ∆mftG-mftGHis6 " were used here rather than the purified enzyme. Was the purification by HisTrap columns not feasible or was the protein unstable when fully purified? In any case, it would help the reader to quickly state the reason in this section.

      Indeed, the problem with M. smegmatis as an expression host was a combination of low protein yield and poor binding to Ni-NTA columns. In E. coli, poor expression, low solubility or poor binding was the issue. Unfortunately, the usage of other affinity tags resulted in either poor expression or inactive protein. We have shortly mentioned the major issues on page 21 and prefer not to focus on failed attempts too much.

      p. 21: "We, therefore, concluded that MftG can indeed interact with mycofactocins as electron donors but might require complex electron acceptors, for instance, proteins present in the respiratory chain." I agree. For the future it might be worthwhile to determine the redox potential of MftG, which could provide hints on the natural electron acceptor.

      Thank you for the suggestion. We will consider this question in our future work.

      p. 23: "In M. smegmatis, cyanide is a known inhibitor of the cytochrome bc/aa3 but not of cytochrome bd (34), therefore, the decrease of oxygen consumption when MFTs were added to the membrane fractions in combination with KCN (Figure 7), revealed that MFT-induced oxygen consumption is indeed linked to mycobacterial respiration." It might be a good idea to quickly recapitulate the functions of these cytochromes here. Also, I think it should read "bc1aa3" (also correct in legend of Fig. 8 that says "bcc-aa3").

      Thank you for the good observation. We changed all instances to the correct designation (bc1-aa3).

      Reviewer #4 (Recommendations for the authors):

      Abstract: revise the wording "MftG enzymes strictly require mft biosynthetic genes". It should be either mftG gene with the mft biosynthetic genes or MftG enzyme with the Mft biosynthetic proteins. I also suggest replacing "require" with a more appropriate term.

      This was taken care of. See above.

      Page 3, end of the first paragraph; does the alcohol dehydrogenase refer to Mno/Mdo?

      Partially, yes, but also to other alcohol dehydrogenases.

      Page 4, radical SAM; define upon first use

      Good, point, we changed “radical SAM” to radical S-adenosyl methionine (rSAM)

      Page 6; Rossman fold refers to the fold and not only the FAD binding pocket.

      Good point. We deleted “(Rossman fold)”

      Page 11; not exactly sure what this means "the growth curve of the complemented strain, which could be dysregulated in mftG expression"

      By “dysregulated” expression, we mean that the expression of mftG could be higher or lower than in the WT and could follow different regulatory signals than in the wild type. Since this phenomenon is not well understood, we would like to avoid speculative discussions.

      Page 11; Figures 2E and 2C should be 3E and 3C. Likewise on page 12 Figure 2D.

      Thank you very much for the valuable hint. We corrected the figure numbers as suggested.

      Page 12; the last Figure 3D in the page should be 3E?

      Yes, good catch, we corrected the Figure number.

      Page 17, KO; define upon first use.

      Good suggestion, we changed both instances of “KO” to “knockout”

      Page 24; revise: "for instance. For example"

      We deleted “for instance”.

      Page 26; change 6.506 to 6,506

      Corrected.

      Page 23; "In M. smegmatis, cyanide is a known inhibitor ..." is too long and not easy to understand/follow.

      Good suggestion. We simplified the sentence to “Therefore, the decrease of oxygen consumption in the presence of KCN (Figure 7) revealed…”

      Page 29; "single-turnover reactions could be observed". There are no experiments to support this statement, except the results shown in Figure 7F. I suggest softening the language, as it has been done on page 21. To claim single-turnover, a proper kinetic analysis would be necessary, which is not included in the current manuscript.

      This is true and has been taken care of. See above.

      Figure 1; Indicate mycofactocin dehydrogenase as MftG

      Done.

      Figure 5A; what is the significance of comparing ∆mftG glucose with WT ethanol?

      We agree, that, although the difference of the two columns is significant, this does not have any relevant meaning. Therefore, we removed the bracket with p-value in Panel A.

      Make HdB-Tyl/HdB-tyloxapol usage consistent throughout the document. Likewise, re the usage of mycobacteria/Mycobacteria/Mycobacteria

      Thank you for the valuable hint, we unified the usage throughout the document

    1. eLife Assessment

      In this valuable study, Roiuk et al employed a combination of ribosome profiling and reporter assays to provide convincing evidence that eIF2A is not involved in translational regulation in cultured human cells. In conjunction with several recent publications (spanning yeast to mammalian systems), these findings disaffirm the previously proposed role of eIF2A in directing protein synthesis, including its implication in translational reprogramming under stress. Whilst clearly delinating something eIF2A does not do, identifying cellular role(s) for eIF2A could further strengthen this article.

    2. Reviewer #1 (Public review):

      Summary:

      Beyond what is stated in the title of this paper, not much needs to be summarized. eIF2A in HeLa cells promotes translation initiation of neither the main ORFs nor short uORFs under any of the conditions tested.

      Strengths:

      Very comprehensive, in fact, given the huge amount of purely negative data, an admirably comprehensive and well-executed analysis of the factor of interest.

      Weaknesses:

      The study is limited to the HeLa cell line, focusing primarily on KO of eIF2A and neglecting the opposite scenario, higher eIF2A expression which could potentially result in an increase in non-canonical initiation events.

    3. Reviewer #2 (Public review):

      Summary

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant.

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.

      Strengths

      The experimental investigation described in this manuscript is thorough, appropriate and convincing.

      Weaknesses

      However, we are not entirely satisfied with the presentation of this work which we think should be improved.

    4. Reviewer #3 (Public review):

      Summary:

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knock-out cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells.

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells.

      Strengths:

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2.

      Weaknesses:

      There is some question about whether their induction of eIF2 phosphorylation using tunicamycin was extensive enough to state forcefully that eIF2A has little or no role in the translatome when eIF2 function is strongly impaired. Also, similar conclusions regarding the minimal role of eIF2A were reached previously for a different human cell line from a study that also enlisted ribosome profiling under conditions of extensive eIF2 phosphorylation; although that study lacked the extensive use of reporters to confirm or refute the identification by ribosome profiling of a small group of mRNAs regulated by eIF2A during stress.

    5. Author response:

      Reviewer #1:

      Summary:

      Beyond what is stated in the title of this paper, not much needs to be summarized. eIF2A in HeLa cells promotes translation initiation of neither the main ORFs nor short uORFs under any of the conditions tested.

      Strengths:

      Very comprehensive, in fact, given the huge amount of purely negative data, an admirably comprehensive and well-executed analysis of the factor of interest.

      Weaknesses:

      The study is limited to the HeLa cell line, focusing primarily on KO of eIF2A and neglecting the opposite scenario, higher eIF2A expression which could potentially result in an increase in non-canonical initiation events.

      We thank the reviewer for the positive evaluation. As suggested by the reviewer in the detailed recommendations, we will clarify in the title, abstract and text that our conclusions are limited to HeLa cells. Furthermore, as suggested we will test the effect of eIF2A overexpression on the luciferase reporter constructs, and will upload a revised manuscript.

      Reviewer #2:

      Summary

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant.

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.

      Strengths

      The experimental investigation described in this manuscript is thorough, appropriate and convincing.

      Weaknesses

      However, we are not entirely satisfied with the presentation of this work which we think should be improved.

      We thank the reviewer for the positive evaluation. We will revise the manuscript according to the reviewer's suggestions made in the detailed recommendations.

      Reviewer #3:

      Summary:

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knock-out cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells.

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells.

      Strengths:

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2.

      Weaknesses:

      There is some question about whether their induction of eIF2 phosphorylation using tunicamycin was extensive enough to state forcefully that eIF2A has little or no role in the translatome when eIF2 function is strongly impaired. Also, similar conclusions regarding the minimal role of eIF2A were reached previously for a different human cell line from a study that also enlisted ribosome profiling under conditions of extensive eIF2 phosphorylation; although that study lacked the extensive use of reporters to confirm or refute the identification by ribosome profiling of a small group of mRNAs regulated by eIF2A during stress.

      We thank the reviewer for the positive evaluation. We will revise the manuscript according to the recommendations made in the detailed recommendations. Regarding the two points mentioned here:

      (1) the reason eIF2alpha phosphorylation does not increase appreciably is because unfortunately the antibody is very poor. The fact that the Integrated Stress Response (ISR) is induced by our treatment can be seen, for instance, by the fact that ATF4 protein levels increase strongly (in the very same samples where eIF2alpha phosphorylation does not increase much, in Suppl. Fig. 5E). We will strengthen the conclusion that the ISR is indeed activated with additional experiments/data as suggested by the reviewer.

      (2) We agree that our results are in line with results from the previous study mentioned by the reviewer, so we will revise the manuscript to mention this other study more extensively in the discussion.

    1. eLife Assessment

      Notch1 is expressed uniformly throughout the mouse endocardium during the initial stages of heart valve formation, yet it remains unclear how Notch signaling is activated specifically in the AVC region to induce valve formation. To answer this question, the authors used a combination of in vivo and ex vivo experiments in mice to demonstrate ligand-independent activation of Notch1 by circulation induced-mechanical stress and provide evidence for stimulation of a novel mechanotransduction pathway involving post-translational modification of mTORC2 and Protein Kinase C (PKC) upstream of Notch1. These findings represent an important advance in our understanding of valve formation and the conclusions are supported by convincing data.

    2. Reviewer #2 (Public review):

      Summary:

      In mice, Notch1 is expressed uniformly throughout the endocardium during the initial stages of heart valve formation. How, then, is Notch activated specifically in the valve forming regions? To answer this question, the authors use a combination of in vivo and ex vivo experiments to demonstrate the critical role of hemodynamic forces on Notch1 activation and provide strong evidence for a novel mechanotransduction pathway involving PKC and mTORC2.

      Strengths:

      (1) Novel insights into the role of PKC and mTOR were obtained using a combination of mutant studies and pharmacological studies.<br /> (2) Novel insights on the role of mechanical forces on caveolin-1 localisation.<br /> (3) Mechanical forces were manipulated using the class III antiarrhythmic drug dofetilide, which transiently blocks heartbeat. Care was taken to minimise the confounding effects of hypoxia.

      Weaknesses:

      The authors suggest that shear stress activates the mTORC2-PKC-Notch signalling pathway by altering the membrane lipid microstructure. Although this is a fascinating hypothesis, more evidence will be needed to prove this. In particular, it is not clear how the general addition of cholesterol in dofetilide-treated hearts would result in a rescue of regionalized membrane distribution within the AVC and in high-shear stress areas.

    3. Reviewer #3 (Public review):

      Summary:

      The overall goal of this manuscript is to understand how Notch signaling is activated in specific regions of the endocardium, including the OFT and AVC, that undergo EMT to form the endocardial cushions. Using dofetilide to transiently block circulation in E9.5 mice, the authors show that Notch receptor cleavage still occurs in the valve-forming regions due to mechanical sheer stress as Notch ligand expression and oxygen levels are unaffected. The authors go on to show that changes in lipid membrane structure activate mTOR signaling, which causes phosphorylation of PKC and Notch receptor cleavage. The data are largely convincing and support their hypothesis. The conclusions are also novel and significantly add to the field of endocardial cushion biology.

      The strengths of the manuscript include the dual pharmacological and genetic approaches to block blood flow in the mouse, the inclusion of many controls including those for hypoxia, the quality of the imaging, and the clarity of the text. In the revision, the authors put forth a good faith effort to address experimentally or textually the concerns of the reviewers. Most weaknesses that were identified in the first submission were addressed and the main claims are convincing. In general, the authors achieved their aims and the results support their conclusions.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Review:

      The overall goal of this manuscript is to understand how Notch signaling is activated in specific regions of the endocardium, including the OFT and AVC, that undergo EMT to form the endocardial cushions. Using dofetilide to transiently block circulation in E9.5 mice, the authors show that Notch receptor cleavage still occurs in the valve-forming regions due to mechanical sheer stress as Notch ligand expression and oxygen levels are unaffected. The authors go on to show that changes in lipid membrane structure activate mTOR signaling, which causes phosphorylation of PKC and Notch receptor cleavage.

      The strengths of the manuscript include the dual pharmacological and genetic approaches to block blood flow in the mouse, the inclusion of many controls including those for hypoxia, the quality of the imaging, and the clarity of the text. However, several weaknesses were noted surrounding the main claims where the supporting data are incomplete.

      PKC - Notch1 activation:

      (1) Does deletion of Prkce and Prkch affect blood flow, and if so, might that be suppressing Notch1 activation indirectly?

      To address this concern, we performed echocardiography of Prkce<sup>+/-</sup>;Prkch<sup>+/-</sup>, Prkce<sup>-/-</sup>;Prkch<sup>+/-</sup>, and Prkce<sup>+/-</sup>;Prkch<sup>-/-</sup> mouse hearts (Figure 3-supplement figure 2D), showing no significant effect in heartbeat and blood flow. (Line 308)

      (2) It would be helpful to visualize the expression of prkce and prkch by in situ hybridization in E9.5 embryos.

      We now added immunofluorescence staining results for both PKCE and PKCH as shown in Figure 3-supplement figure 2B. In E9.5 embryonic heart, PKCH is mainly expressed in the endocardium overlying AV canal and the base of trabeculae, overlapping with the expression pattern of NICD and pPKC<sup>Ser660</sup>. PKCE is expressed in both endocardium and myocardium. In the endocardium, PKCE is mainly expressed in the endocardium overlying AV canal (Line312-314)

      (2) PMA experiments: Line 223-224: A major concern is related to the conclusion that "blood flow activates Notch in the cushion endocardium via the mTORC2-PKC signaling pathway". To make that claim, the authors show that a pharmacological activation with a potent PKC activator, PMA, rescues NICD levels in the AVC in dofetilide-treated embryos. This claim would also need proof that a lack of blood flow alters the activity of mTORC2 to phosphorylate the targets of PKC phosphorylation. Also, this observation does not explain the link between PKC activity and Notch activation.

      Both AKT Ser473 and PKC Ser660 are well characterized phosphorylation sites regulated by mTORC2 (Baffi TR et. al, mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal. 2021;14.). pAKT<sup>Ser473</sup> is widely used as an indicator of mTORC2 activity. Therefore, the reduced staining intensity of pAKT<sup>Ser473</sup> and pPKC<sup>Ser660</sup> observed in the dofetilide treated embryos should reflect the reduced activity of their common upstream activator mTORC2. This information is provided in Line 317-321.

      As PMA is a well-characterized specific activator of PKC, we believe the rescue of NICD by PMA could explain the link between PKC activity and Notch activation.

      (3) In addition, the authors hypothesise that shear stress lies upstream of PKC and Notch activation, and that because shear stress is highest at the valve-forming regions, PKC and Notch activity is localised to the valve-forming regions. Since PMA treatment affects the entire endocardium which expresses Notch1, NICD should be seen in areas outside of the AVC in the PMA+dofetilide condition. Please clarify.

      As shown in Figure 3C and Figure 3-supplement figure 2B, pPKC, PKCH and PKCE expression are all confined in the AVC region. This explains PMA activates NICD specifically in the valve-forming region. This information is added in Line 312-314.

      Lipid Membrane:

      (1) It is not clear how the authors think that the addition of cholesterol changes the lipid membrane structure or alters Cav-1 distribution. Can this be addressed? Does adding cholesterol make the membrane more stiff? Does increased stiffness result from higher shear stress?

      We do not know how exactly addition of cholesterol alters membrane structure and influence mTORC2-PKC-Notch signaling. As cholesterol is an important component of lipid raft and caveolae, it is possible that enrichment of cholesterol might alter the membrane structure to make the lipid raft structure less dependent on sheer stress. This hypothesis need to be tested in further in vitro studies. This information is added to Line 433-436.

      (2) The loss of blood flow apparently affects Cav1 membrane localization and causes a redistribution from the luminal compartment to lateral cell adhesion sites. Cholesterol treatment of dofetilide-treated hearts (lacking blood flow) rescued Cav1 localization to luminal membrane microdomains and rescued NICD expression. It remains unclear how the general addition of cholesterol would result in a rescue of regionalized membrane distribution within the AVC and in high-shear stress areas.

      We do not know the exact mechanism. As replied in the previous question, future cell-based work is needed to address these important questions. (Line 433-436)

      (3) The authors do not show the entire heart in that rescue treatment condition (cholesterol in dofetilide-treated hearts). Also, there is no quantification of that rescue in Figure 4B. Currently, only overview images of the heart are shown but high-resolution images on a subcellular scale (such as electron microscopy) are needed to resolve and show membrane microdomains of caveolae with Cav1 distribution. This is important because Cav-1could have functions independent of caveolae.

      In Figure 4C, most panels display the large part of the heart including AVC, atrium and ventricle. The images in the third column appear to be more restricted to AVC. We have now replaced these images to reveal AVC and part of the atrium and ventricle. 

      The quantification has also been provided in Figure 4C. We also added a new panel of scanning EM of AVC endocardium, showing numerous membrane invaginations on the luminal surface of the endocardial cells. The size of the invaginations ranges from 50 to 100 nm, consistent with the reported size of caveolae. Dofetilide significantly reduced the number of membrane invaginations, which recovered after restore of blood flow at 5 hours post dofetilide treatment. The reduction of membrane invaginations could also be rescued by ex vivo cholesterol treatment. This information is added to Line 342-349.

      Figure Legends, missing data, and clarity:

      (1) The number of embryos used in each experiment is not clear in the text or figure legends. In general, figure legends are incomplete (for instance in Figure 1).

      Thanks for reminding. we have now added numbers of embryos in the figure legends.

      (2) Line 204: The authors refer to unpublished endocardial RNAseq data from E9.5 embryos. These data must be provided with this manuscript if it is referred to in any way in the text.

      The RNAseq data of PKC isoforms is now provided in Figure3-Figure supplement 2A, Line 301-302.

      (3) Figure 1 shows Dll4 transcript levels, which do not necessarily correlate with protein levels. It would be important to show quantifications of these patterns as Notch/Dll4 levels are cycling and may vary with time and between different hearts.

      The Dll4 immuno-staining in Figure 1B,C is indeed Dll4 protein, not transcript. The quantification is added in Figure 1—Figure supplement 1C. Line 215.

      (4) Line 212-214: The authors describe cardiac cushion defects due to the loss of blood flow and refer to some quantifications that are not completely shown in Figure 3. For instance, quantifications for cushion cellularity and cardiac defects at three hours (after the start of treatment?) are missing.

      The formation of the defects is a developmental process and time dependent. To address this concern, we quantified the cushion cellularity at 5 hours post dofetilide treatment and showed that cell density significantly decreased in the dofetilide treated embryos, albeit less pronounced than the difference at E10.5. (Line 256-257)

      (5) Related to Figure 5. The work would be strengthened by quantification of the effects of dofetilide and verapamil on heartbeat at the doses applied. Is the verapamil dosage used here similar to the dose used in the clinic?

      We are grateful to this suggestion. The effect of dofetilide on heartbeat has already been shown in Figure 2A. We have now additionally measured the heartbeat rate of verapamil treated embryos, and provided the results in Figure 5E. For verapamil injection in mice, a single i.p. dose of 15 mg/kg was used, which is equivalent to 53 mg/m<sup>2</sup> body surface. Verapamil is used in the clinic at dosage ranging from 200 to 480 mg/day, equivalent to 3.33 - 8 mg/kg or 117 - 282 mg/m<sup>2</sup> body surface. Therefore, the dosage used in the mouse is not excessively high compared to the clinic uses. (Line 361-365) 

      Overstated Claims:

      (1) The authors claim that the lipid microstructure/mTORC2/PKC/Notch pathway is responsive to shear stress, rather than other mechanical forces or myocardial function. Their conclusions seem to be extrapolated from various in vitro studies using non-endocardial cells. To solidify this claim, the authors would need additional biomechanical data, which could be obtained via theoretical modelling or using mouse heart valve explants. This issue could also be addressed by the authors simply softening their conclusions.

      We aggrege with the reviewer’s comment. We have now revised the statement as “Our data support a model that membrane lipid microdomain acts as a shear stress sensor and transduces the mechanical cue to activate intracellular mTORC2-PKC-Notch signaling pathway in the developing endocardium. (line 416-418) It is noteworthy that the methodology used to alter blood flow in this study inevitably affects myocardial contraction. Additional work to uncouple sheer stress with other changes of mechanical properties of the myocardium with the aid of theoretical modelling or using mouse heart valve explants is needed to fully characterize the effect of sheer stress on mouse endocardial development.” (Line 436-440)

      (2) Line 263-264: In the discussion, the authors conclude that "Strong fluid shear stress in the AVC and OFT promotes the formation of caveolae on the luminal surface of the endocardial cells, which enhances PKCε phosphorylation by mTORC2." This link was shown rather indirectly, rather than by direct evidence, and therefore the conclusion should be softened. For example, the authors could state that their data are consistent with this model.

      We have revised the statement as “Strong fluid shear stress in the AVC and OFT enhances PKC phosphorylation by mTORC2 possibly by maintaining a particular membrane microstructure.” (Line 372-374)

      (3) In the Discussion, it says: "Mammalian embryonic endocardium undergoes extensive EMT to form valve primordia while zebrafish valves are primarily the product of endocardial infolding (Duchemin et al., 2019)." In the paper cited, Duchemin and colleagues described the formation of the zebrafish outflow tract valve. The zebrafish atrioventricular valve primordia is formed via partial EMT through Dll-Notch signaling (Paolini et al. Cell Reports 2021) and the collective cell migration of endocardial cells into the cardiac jelly. Then, a small subset of cells that have migrated into the cardiac jelly give rise to the valve interstitial cells, while the remainder undergo mesenchymal-to-endothelial transition and become endothelial cells that line the sinus of the atrioventricular valve (Chow et al., doi: 10.1371/journal.pbio.3001505). The authors should modify this part of the Discussion and cite the relevant zebrafish literature.

      Thanks for valuable comments. We have now revised the statement as “Mammalian embryonic endocardium undergoes extensive EMT to form valve primordia while zebrafish atrioventricular valve primordia is formed via partial EMT and the collective cell migration of endocardial cells into the cardiac jelly followed by tissue sheet delamination.” with relevant references added. (Line 411-414)

      Recommendations to the Authors:

      (1) One issue that the authors could address is the organization of figures. There are several cases where positive data that are central to the conclusions are placed in the supplement and should be moved to the main figures. Places where this occurred are listed below:

      - The Tie2 conditional deletion of Dll4 showing retention of NICD in the OFT and AVC regions is highly supportive of the model. The authors should consider moving these data to main Figure 1.

      Thanks for the suggestion. We have reorganized the figure as requested.

      - The ligand expression data in Figure 2- Supplement Figure 1 A is VERY important to the conclusions drawn from the dofetilide treatment. The authors should move these data to main Figure 2.

      The ligand expression data in Figure 2- Supplement Figure 1A are now moved to Figure 2B.

      - In Figure 3A - the area in the field of view should be stated in the Figure (is it the AVC?) Figure 3 - Supplement 1 proximal OFT data should be moved to main Figure 3 as it is central to the conclusions. Negative DA data can be left in the supplement. Again, for Figure 3 - Supplement 1 Stauroporine treatment data should be moved to the main figure as it is positive data that are central to the conclusions.

      Thanks for the suggestion. We have reorganized the figure as requested.

      (2) Antibody used for Twist1 detection is not listed in the resource table.

      Twist1 is purchased from abcam, the detailed information is now available in the resource table.

      (3) Missing arrowhead in Figure 4A, last row.

      Sorry for the negligence. Arrowhead is now added.

      (4) Line 286. "OFT" pasted on the word "endothelium".

      “OFT” is now removed.

      (5) Related to Figure 2C. The fast response of NICD to flow cessation was used as an argument to support post-translational modification. It is not clear why Sox9 and Twist1 expression also responds so quickly.

      Sox9 and Twist1 expression does seem to respond very quickly. Whether there exists additional regulatory pathways such as Wnt, Vegf signaling that also respond to sheer stress needs to be investigated in the future.

      (6) Line 200: The sentence should end with a period.

      Sorry for the oversight. It is now corrected.

      (7) Lines 34 to 35: the authors phrase that Notch is "allowed" to be specifically activated in the AVC and outflow tract by shear stress.

      We have rephrased the statement with “enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress.” Line 27

      (8) Lines 96-100: At the end of the introduction, the text is copied from the abstract. New text should be written or summarized in a different way.

      The last sentence of introduction is now changed to “The results uncovered a new mechanism whereby mechanical force serves as a primary cue for endocardial patterning in mammalian embryonic heart.” (Line 93-95)

      (9) Line 125: The term "agreed with the Dll4 transcript.."should be replaced with a better term like "overlapped" or "was identical with".

      The word “agreed” is now “overlapped”. (Line 219)

      (10) Line 291: "Thus, through these sophisticated mechanisms, the developing mouse hearts may achieve three purposes:"- The English should be adjusted here since it sounds like hearts are aiming to achieve a purpose, which is unlikely what was meant by the authors.

      This sentence is rephrased to “Thus, in the developing mouse hearts: (1) VEGF signaling is reduced to permit endocardial EMT; (2) Dll4 expression is reduced to prevent widespread endocardial Notch activation and make endocardium sensitive to flow; (3) a proper cushion size and shape is maintained by limiting the flanking endocardium to undergo EMT despite physically close to the field of BMP2 derived from of AVC myocardium (Figure 6).” (Line 402-406)

    1. eLife Assessment

      This manuscript reports useful data suggesting a critical role of two cyclin-dependent kinases, CDK8 and CDK19, in spermatogenesis. However, the data supporting the conclusion remains incomplete. This work may be of interest to reproductive biologists and physicians working on male fertility.

    2. Reviewer #1 (Public review):

      Summary:

      In this paper, Bruter and colleagues report effects of inducible deletion of the genes encoding the two paralogous kinases of the Mediator complex in adult mice. The physiological roles of these two kinases, CDK8 and CDK19, are currently rather poorly understood; although conserved in all eukaryotes, and among the most highly conserved kinases in vertebrates, individual knockouts of genes encoding CDK8 homologues in different species have revealed generally rather mild and specific effects, in contrast to Mediator itself. Here, the authors provide evidence that neither CDK8 nor CDK19 are required for adult homeostasis but they are functionally redundant for maintenance of reproductive tissue morphology and fertility in males.

      Strengths:

      The morphological data on the atrophy of the male reproductive system and the arrest of spermatocyte meiosis are solid and are reinforced by single cell transcriptomics data, which is a challenging technique to implement in vivo. The main findings are important and will be of interest to scientists in the fields of transcription and developmental biology.

      Weaknesses:

      There are several major weaknesses.

      The first is that data on general health of mice with single and double knockouts is not shown, nor are there any data on effects in any other tissues. This gives the impression that the only phenotype is in the male reproductive system, which would be misleading if there were phenotypes in other tissues that are not reported. Furthermore, given that the new data show differing expression of CDK8 and CDK19 between cell types in the testis, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in figure 1E, ploidy and cell number in figure 3B and C, plasma testosterone and luteinizing hormone levels in figure 6C and 6D and morphology of testis and prostate tissue for single Cdk8 knockout in supplementary figure 1C (although in this case the images do not appear very comparable between control and CDK8 KO, thus perhaps wider fields should be shown), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. This might have provided insight into the sterility of induced CDK8 knockout.

      The second major weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is portrayed as a likely causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence shown that CDK8 and/or CDK19 are directly responsible for transcription of the genes concerned.

      Finally, the authors propose that the phenotypes are independent of the kinase activity of CDK8 or CDK19 because treatment of mice for a month with an inhibitor does not recapitulate the effects of the knockout, and nor does expression of two steroidogenic genes change in cultured Leydig cells upon treatment with an inhibitor. However, there are no controls for effective target inhibition shown.

      Comments on revisions:

      This manuscript is in some ways improved - mainly by toning down the conclusions - but a few major weaknesses have not been addressed. I do not agree that it is not justified to perform experiments to investigate the sterility of single CDK8 knockout mice since this could be important and given that the new data show that while there is some overlap in expression of the two prologues, there are also significant differences in the testis. At the least, it would have been interesting and easy to do to show the expression of CDK8 and CDK19 in the single cell transcriptomics, since this might help to identify the different populations.

      The only definitive way of concluding a kinase-independent phenotype is to rescue with a kinase dead mutant. While I agree that the inhibitors have been well validated, since they did not have any effects, it is hard to be sure that they actually reached their targets in the tissue concerned. This could have been done by cell thermal shift assay. In the absence of any data on this, the conclusion of a kinase-independent effect is weak.

      Figure 2 legend includes (G) between (B) and (C), and appears to, in fact, refer to Fig 1E, for which the legend is missing the description.

      Finally, Figure S1C appears wrong. Goblet cells are not in the crypt but on the villi (so the graph axis label is wrong), and there are normally between 5 and 15 per villus, so the iDKO figure is normal, but there are a surprisingly high number of goblet cells in the controls. And normally there are 10-15 Paneth cells/crypt, so it looks like these have been underestimated everywhere. I wonder how the counting was done - if it is from images such as those shown here then I am not surprised as the quality is insufficient for quantification. How many crypts and villi were counted? Given the difficulty in counting and the variability per crypt/villus, with quantitative differences like this it is important to do quantifications blind. I personally wouldn't conclude anything from this data and I would recommend to either improve it or not include it. If these data are shown, then data showing efficient double knockout in this tissue should also accompany it, by IF, Western or PCR. Otherwise, given a potentially strong phenotype, repopulation of the intestine by unrecombined crypts might have occurred - this is quite common (see Ganuza et al, EMBO J. 2012).

    3. Reviewer #2 (Public review):

      Summary:

      The authors tried to test the hypothesis that Cdk8 and Cdk19 stabilize the cytoplasmic CcNC protein, the partner protein of Mediator complex including CDK8/19 and Mediator protein via a kinase-independent function by generating induced double knockout of Cdk8/19. However the evidence presented suffer from a lack of focus and rigor and does not support their claims.

      Strengths:

      This is the first comprehensive report on the effect of a double knockout of CDK8 and CDK19 in mice on male fertility, hormones and single cell testicular cellular expression. The inducible knockout mice led to male sterility with severe spermatogenic defects, and the authors attempted to use this animal model to test the kinase-independent function of CDK8/19, previously reported for human. Single cell RNA-seq of knockout testis presented a high resolution of molecular defects of all the major cell types in the testes of the inducible double knockout mice. The authors also have several interesting findings such as reentry into cell cycles by Sertoli cells, loss of Testosterone in induced dko that could be investigated further.

      Weaknesses:

      The claim of reproductive defects in the induced double knockout of CDK8/19 resulted from the loss of CCNC via a kinase-independent mechanism is interesting but was not supported by the data presented. While the construction and analysis of the systemic induced knockout model of Cdk8 in Cdk19KO mice is not trivial, the analysis and data is weakened by systemic effect of Cdk8 loss, making it difficult to separate the systemic effect from the local testis effect.

      The analysis of male sterile phenotype is also inadequate with poor image quality, especially testis HE sections. Male reproductive tract picture is also small and difficult to evaluate. The mice crossing scheme is unusual as you have three mice to cross to produce genotypes, while we could understand that it is possible to produce pups of desired genotypes with different mating schemes, such vague crossing scheme is not desirable and of poor genetics practice. Also using TAM treated wild type as control is ok, but a better control will be TAM treated ERT2-cre; CDK8f/f or TAM treated ERT2 Cre CDK19/19 KO, so as to minimize the impact from well-recognized effect of TAM.

      While the authors proposed that the inducible loss of CDK8 in the CDK19 knockout background is responsible for spermatogenic defects, it was not clear in which cells CDK8/19 genes are interested and which cell types might have a major role in spermatogenesis. The authors also put forward the evidence that reduction/loss of Testosterone might be the main cause of spermatogenic defects, which is consistent with the expression change in genes involved in steroigenesis pathway in Leydig cells of inducible double knockout. But it is not clear how the loss of Testosterone contributed to the loss of CcnC protein.

      The authors should clarify or present the data on where CDK8 and CDK19 as well as CcnC are expressed so as to help the readers to understand which tissues that both CDK might be functioning and cause the loss of CcnC. It should be easier to test the hypothesis of CDK8/19 stabilize CcnC protein using double knock out primary cells, instead of the whole testis.

      Since CDK8KO and CDK19KO both have significantly reduced fertility in comparison with wildtype, it might be important to measure the sperm quantity and motility among CDK8 KO, CDK19KO and induced DKO to evaluate spermatogenesis based on their sperm production.

      Some data for the inducible knockout efficiency of Cdk8 were presented in Supplemental figure 1, but there is no legend for the supplemental figures, it was not clear which band represented deletion band, which tissues were examined? Tail or testis? It seems that two months after the injection of Tam, all the Cdk8 were completely deleted, indicating extremely efficient deletion of Tam induction by two-month post administration. Were the complete deletion of Cdk8 happening even earlier ? an examination of timepoints of induced loss would be useful and instructional as to when is the best time to examine phenotypes.

      The authors found that Sertoli cells re-entered cell cycle in the inducible double knockout but stop short of careful characterization other than increased expression of cell cycle genes.

      Overall this work suffered from a lack of focus and rigor in the analysis and lack of sufficient evidence to support their main conclusions.

      Comments on revisions:

      This reviewer appreciated the authors' effort in improving the quality of this manuscript during their revision. While some concerns remain, the revision is a much improved work and the authors addressed most of my major concerns.<br /> Figure 2E CDK8 and CDK19 immunofluorescent staining images seem to show CDK8 and CDK19 location are completely distinct and in different cells, the authors need to elaborate on this results and discuss what such a distinct location means in line of their double knockout data.

      Minor comments:

      Supplemental figure 1(C) legend typo : (C) Periodic acid-Schiff stained sections of ilea of tamoxifen treated R26/Cre/ERI2 and DKO mice.

      While the effort to identify and generate new antibodies is appreciated, the specificity of the antibodies used should be examined and presented if available.

    4. Author response:

      The following is the authors’ response to the original reviews.

      The mice crossing scheme is unusual as you have three mice to cross to produce genotypes, while we could understand that it is possible to produce pups of desired genotypes with different mating schemes, such a vague crossing scheme is not desirable and of poor genetics practice.

      We thank the reviewer for this suggestion. Indeed, our scheme is not a representation of the actual breeding scheme but just a brief explanation of lineages used for the acquisition of the triple transgenic mice. We will include the full crossing scheme into the revision.

      We added to the text the explanation that all used genotypes were maintained as homozygotes and put a full breeding scheme in the supplementary figure S1A

      It is worth mentioning that single knockouts seem to show a corresponding upregulation of the level of the paralogue kinase, indicating that any lack of phenotypes might be due to feedback compensation, which would be an interesting finding if confirmed; this has not been mentioned.

      We thank the reviewer for raising an important point about the paralog upregulation. Indeed, our data on primary cells (supplementary 1B) suggests the upregulation of CDK19 in CDK8KO and vice versa. We will point this out in discussion. We plan to examine the data for the testis as soon as more tissues are available.

      We addressed this question by performing additional western blot (added to the paper fig. 2D) and found no paralogue upregulation in testes. To do that we also manufactured novel rabbit anti-mouse CDK19 antibodies described in Materials and Methods.

      The authors should clarify or present the data on where CDK8 and CDK19  as well as CcnC are expressed so as to help the readers understand which tissues both CDK might be functioning in and cause the loss of CcnC.

      Due to a limited sensitivity of single cell sequencing (only ~5,000 transcripts are sequenced from total of average 500,000 transcripts per cell, so the low expressed transcripts are not sequenced in all cells) it is challenging to firmly establish CDK8/19 positive and -negative tissues from single cell data because both transcripts are minor. This image will be included in the next version.

      In this version we have added staining by CDK8 and CDK19 antibodies on paraffin sections, showing expression in variety of cells. Additionally, we have analyzed Cdk8/CcnC presence in different testicular cell types by flow cytometry. Both methods show that not only spermatogonial stem cells express Cdk8 as was shown in McCleland et al. 2005, but also some 1n cells, 4n cells and a significant part of cKit<sup>- </sup>2n cells. We added a corresponding paragraph and figures (2E-K) to the paper. We consider this a more definitive answer to the question than RNA data.

      Furthermore, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in Figure 1H, ploidy, and cell number in Figures 2B and C, plasma testosterone and luteinizing hormone levels in Figures 5C and 5D, and morphology of testis and prostate tissue for single Cdk8 knockout in Supplementary Figure 1C (although in this case the images do not appear very comparable between control and CDK8 KO, thus perhaps wider fields should be shown), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. It is worth mentioning that single knockouts seem to show a corresponding upregulation of the level of the paralogue kinase, indicating that any lack of phenotypes might be due to feedback compensation, which would be an interesting finding if confirmed; this has not been mentioned.

      We agree that a description of the single KO could be beneficial, but we expect no big differences with the WT or Cre-Ert. We found neither histological differences nor changes in cell counts or ratios of cell types. Our ethical committee also has concerns about sacrificing mice without major phenotypic changes, without a well formulated hypothesis about the observed effects. We plan to add histological pictures to the next version of the article.

      We have updated histological figures with new figures for iDKO and Cre+Tam mice with additional fields of view and better quality staining (2A-B).

      The second major weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is portrayed as a causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence showing that CDK8 and/or CDK19 are directly responsible for the transcription of the genes concerned.

      We agree with the reviewer that the effects on CDK8/CDK19/CCNC could lead to the observed transcriptional changes in multiple indirect steps. There are, however, major technical challenges in examining the binding of transcription factors in the tissue, especially in Leydig cells which are a relatively minor population.  We will clarify it in the revision and strengthen this point in the discussion.

      We have added corresponding explanation in the Discussion: “We hypothesize that all these changes are caused by disruption of testosterone synthesis in Leydig cells, although, at this point, we cannot definitively prove that the affected genes are regulated by CDK8/19 directly.”

      The claim of reproductive defects in the induced double knockout of CDK8/19 resulted from the loss of CCNC via a kinase-independent mechanism is interesting but was not supported by the data presented. While the construction and analysis of the systemic induced knockout model of Cdk8 in Cdk19KO mice is not trivial, the analysis and data are weakened by the systemic effect of Cdk8 loss, making it difficult to separate the systemic effect from the local testis effect.

      We agree with the reviewer that the effects on the testes could be due to the systemic loss of CDK8 rather than specifically in the testis, and we will clarify it in the revision. We will also clarify that although our results are suggestive that the effects of CDK8/19 knockout are kinase-independent, and that the loss of Cyclin C is a likely explanation for the kinase independence, but we do not claim that it is *the* mechanism.

      In this version we added several caveats indicating that the proposed mechanism is likely, but not the only one possible.

      Also using TAM-treated wild type as control is ok, but a better control will be TAM-treated ERT2-cre; CDK8f/f or TAM-treated ERT2 Cre CDK19/19 KO, so as to minimize the impact from the well-recognized effect of TAM.  

      We used TAM-treated ERT2-cre for most of the experiments, and did not observe any major histological or physiological differences with the WT+TAM. We will make sure to present them in the revision.

      The authors found that Sertoli cells re-entered the cell cycle in the inducible double knockout but stopped short of careful characterization other than increased expression of cell cycle genes.

      Unfortunately, we were not able to perform satisfactory Ki67 staining to address this point.

      Dko should be appropriately named iDKO (induced dKO). We will make the corresponding change.

      We performed necropsy ? not the right wording here.

      Colchicine-like apoptotic bodies ? what does this mean? Not clear.

      We made appropriate changes - all DKO were renamed iDKO, necropsy changed to autopsy and cells designated as “apoptotic”.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Given the proprietary claims of the authors ("We have for the first time generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout"), it does not appear acceptable and indeed might be misleading, to not describe the overall phenotypes of the mice. Are mice normal size/weight? Does an autopsy reveal anything other than atrophied genital tissue in males? Do the authors find a phenotype in the intestinal epithelium, as previously reported? (N.B. this could potentially clarify a discrepancy in the literature since the loss of the secretory lineages in double knockouts reported by the Firestein lab was not reproduced by intestinal organoid double knockout in the paper by the Fisher lab).

      We have removed the statement “for the first time”, although to the best of our knowledge this is the fact. We did not attempt to describe all the phenotypic effects of the Cdk8/19 knockout in this paper, since some of the phenotypic observations related to mouse weight and behavior varied between different laboratories involved and require additional analysis. The effect on the urogenital system was by far the most striking histological feature observed and it was carefully addressed in this paper. Other findings require additional experiments and are out of the scope of this paper and we plan to focus on them later. As per suggestion of the reviewer we performed histological analysis of DKO intestines and found the same decrease in the Paneth and goblet cells numbers as described by Dannappel et al. We added corresponding figures (Supplemental fig. 1C) to the paper.

      If the authors wish to reinforce their claims about causality of steroidogenic gene expression and phenotype, they could try rescuing the phenotype by treating mice with testosterone.

      As stated in Discussion, we hypothesized that injection of testosterone would not rescue the phenotype, as the androgen receptor signaling is also affected. However we would like to perform such an experiment, but we were not able to procure testosterone pellets at this time.

      If they wish to claim a direct effect of CDK8/19 on the expression of steroidogenic genes, they could also assess CDK8/19 binding to promoters of the genes analysed by ChIP.

      There are big technical challenges in examining the binding of transcription factors in the primary tissue, especially in Leydig cells, a minor population, so we cannot perform such an experiment.

      In order to conclude that their CDK8/19 inhibitor treatment worked, they could show target engagement by cell thermal shift assay, loss of CDK8/19 kinase-dependent gene expression, or loss of CDK8/19 substrate phosphorylation (eg interferon-induced STAT1 S727 phosphorylation) under the conditions used. Alternatively, they could show rescue with a kinase-dead allele.

      As noted in public comments - we thank the reviewer for raising this concern. The target selectivity and target engagement by the inhibitors used in this study (Senexin B and SNX631-6) have been described in other models and published. CDK8/19 engagement and target selectivity of Senexin B, used in our vitro studies, have been extensively characterized in cell-based assays (Chen et al., Cells 2019, 8(11), 1413; Zhang et al., J Med Chem. 2022 Feb 24;65(4):3420-3433.) Similar characterization has been published for SNX631-6 and its equipotent analog SNX631, which showed drastic antitumor activity when  used in vivo at the same dosing regimen as in this paper (Li et al., J Clin Invest. 2024;134(10):e176709). The comparison of the pharmacokinetics data obtained in the present study and in vitro activity of SNX631-6 in a cell-based assay suggests that the tissue concentrations of this drug should have provided substantial inhibition of Cdk8/19. Unfortunately, there are no known phosphorylation substrates specific for Cdk8/19 that can be used as pharmacodynamic markers. The widely used STAT1 phosphorylation at S727 is exerted not only by CDK8/19 but also by other kinases and shows variable response to CDK8/19 inhibition (Chen et al., Cells 2019, 8(11), 1413). In the revised MS, we have added a Western blot with pSTAT1 S727 staining of WT, 8KO, 19KO and iDKO testes. Cdk8/19 knockout did not decrease and apparently even increased the level of pSTAT1 S727, which demonstrates that this marker of CDK8/19 activity it is not suitable for our tissue type. While the evidence that Cdk8/19 kinase inhibition in the testes after in vivo drug treatment does not match the phenotype of iDKO is admittedly indirect, the same result has been obtained in the cell culture studies with Sertoli cells, where the inhibitor concentration (1 µM Senexin B) was much higher than needed for the maximal Cdk8/19 inhibition.

      Finally, I did not find any legends to supplementary figures anywhere.

      We apologize for not including legends for supplementary figures, and will correct that in the next version of the manuscript.

      Additionally, we addressed the question about the sufficiency of the lipid supply for steroidogenesis in testes. There was a possibility that steroidogenesis is impossible due to the lack of cholesterol input, but OilRed staining revealed that the situation is the opposite: lipid content in iDKO testes is significantly higher than in WT testes. We added corresponding text to the article and the supplementary Fig. S6.

    1. eLife Assessment

      Data presented in this useful report suggest a potentially new model for chemotaxis regulation in the gram-negative bacterium P. putida. Data supporting interactions between CheA and the copper-binding protein CsoR, reveal potential mechanisms for coordinating chemotaxis and copper resistance. There was, however, concern about the large number of CheA interactors identified in the initial screen and it was felt that the study was incomplete without a substantial number of additional experiments to test the model and bolster the authors' conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript focuses on the apparent involvement of a proposed copper-responsive regulator in the chemotactic response of Pseudomonas putida to Cu(II), a chemorepellent. Broadly, this area is of interest because it could provide insight into how soil microbes mitigate metal stress. Additionally, copper has some historical agricultural use as an antimicrobial, thus can accumulate in soil. The manuscript bases its conclusions on an in vitro screen to identify interacting partners of CheA, an essential kinase in the P. putida chemotaxis-signaling pathway. Much of the subsequent analysis focuses on a regulator of the CsoR/RcnR family (PP_2969).

      Weaknesses:

      The data presented in this work does not support the model (Figure 8). In particular, PP_2969 is linked to Ni/Co resistance not Cu resistance. Further, it is not clear how the putative new interactions with CheA would be integrated into diverse responses to various chemoattract/repellents. These two comments are justified below.

      PP_2969

      • The authors present a sequence alignment (Figure S5) that is the sole based for their initial assignment of this ORF as a CsoR protein. There is conservation of the primary coordinating ligands (highlighted with asterisks) known to be involved in Cu(I) binding to CsoR (ref 31). There are some key differences, though, in residues immediately adjacent to the conserved Cys (the preceding Ala, which is Tyr in the other sequences). The effect of these change may be significant in a physiological context.

      • The gene immediately downstream of PP_2969 is homologous to E. coli RcnA, a demonstrated Ni/Co efflux protein, suggesting that P2969 may be Ni or Co responsive. Indeed PP_2970 has previously been reported as Ni/Co responsive (J. Bact 2009 doi:10.1128/JB.00465-09). The host cytosol plays a critical role in determining metal-response, in addition to the protein, which can explain the divergence from the metal response expected from the alignment.

      • The previous JBact study also explains the lack of an effect (Figure 5b) of deleting PP_2969 on copper-efflux gene expression (copA-I, copA-II, and copB-II) as these are regulated by CueR not PP_2969 consistent with the previous report. Deletion of CsoR/RcnR family regulator will result in constitutive expression of the relevant efflux/detoxification gene, at a level generally equivalent to the de-repression observed in the presence of the signal.

      • Further, CsoR proteins are Cu(I) responsive so measuring Cu(II) binding affinity is not physiologically relevant (Figures 5a and S5b). The affinities of demonstrated CsoR proteins are 10-18 M and these values are determined by competition assay. The MTS assay and resulting affinities are not physiologically relevant.

      • The DNA-binding assays are carried out at protein concentrations well above physiological ranges (Figs 5c and d, and S5c, d). The weak binding will in part result from using DNA-sequences upstream of the copA genes and not from from PP_2970.

      CheA interactions

      There is no consideration given to the likely physiological relevance of the new interacting partners for CheA.

      • How much CheA is present in the cell (copies) and how many copies of other proteins are present? How would specific responses involving individual interacting partners be possible with such a heterogenous pool of putative CheA-complexes in a cell. For PP_2969, the affinity reported (Figure 5A) may lay at the upper end of the CsoR concentration range (for example, CueR in Salmonella is present at ~40 nM).

      • The two-hybrid system experiment uses a long growth time (60 h) before analysis. Even low LacZ activity levels will generate a blue colour, depending upon growth medium (see doi: 10.1016/0076-6879(91)04011-c). It is also not clear how Miller units can be accurately or precisely determined from a solid plate assay (the reference cited describes a protocol for liquid culture).

      Comments on revised version:

      The authors have replied in detail to the various comments about the original manuscripts. However, the responses are generally lengthy rationalisations of the original interpretation of the data and do not fundamentally address critical concerns raised about the physiological relevance of the results. The response appears to rest on the assumption that the numerous interacting partners obtained from the initial screen are all true positives and that all subsequent experimental results are interpreted to justify that assumption. In the case of CsoR, the experimental results and interpretation are inconsistent with previously published studies of the metal and DNA-binding properties of CsoR proteins. The following points reiterate comments from the previous review, in the hopes that the authors will, at the very least, consider the likelihood that the "CsoR" protein they have identified is in fact responsive to a different metal. Further, that the authors consider multiple possible interpretations of the data, particularly those that are inconsistent with the model/hypothesis (and take this into account in their experimental design.

      • (Figure 4) Almost all purified proteins will bind Cu(II) most tightly in vitro, followed by Zn(II) and Ni(II). This behaviour is a consequence of the Irving-Williams affinity series (doi.org/10.1038/162746a0 and doi.org/10.1039/JR9530003192, especially Figure 4) and is not considered an indicator of physiological metal preference. Biomolecules will exhibit the same behaviour as small organic ligands towards first row transition ions because of the flexibility of their structures. Thus, the results obtained are unsurprising and, because of the method used, have no physiological relevance.

      • The authors cite other in vivo work as evidence for varied metal-response by regulator proteins. However, experiments in these citations are of limited relevance because some focus on other structural classes of metalloregulator proteins (so not relevant here) while others focus on changes in metal accumulation by overexpression of the regulator protein, with no examination of the metal-specificity of the efflux protein (the key determinant of the physiological response of the regulator protein - why turn on expression of an efflux protein that can't pump out a particular metal? Finally, adding equivalent concentrations of metals to growing cells is not a good comparison as metals are toxic at different concentrations. The regulators will only have evolved to be just good enough, not perfect, with respect to selectivity. Laboratory experimental conditions often explore non-physiological conditions.

      • It is also important to re-emphasise the authors' own statements on lines 90-93 that P. putida has a CueR protein. This is consistent with the phylogenetic distribution of CueR proteins in gram-negative bacteria. The CsoR proteins, in contrast, are found only in gram-positive bacteria. This inconsistency is ignored by the authors.

      • The implications of the Irving-Williams series on metal-specific responses of bacterial metalloregulator proteins are described in the following references: 10.1016/j.cbpa.2021.102095, 10.1074/jbc.R114.588145, and 10.1038/s41589-018-0211-4). The last reference of this set provides an experimental basis for why metalloregulator affinities for Cu (and Zn and Ni) are so tight (and why the values obtained in Figure 4 in this manuscript are not relevant).

      • Similarly, the previous experimental studies of CsoR proteins not cited by the authors (10.1021/ja908372b 10.1021/bi900115w) provide rigourous experimental approaches for measuring metal and DNA-binding affinities and further highlight the weakness of the experimental design in this manuscript.

      • The DNA-binding assays are not physiologically relevant because they do not use DNA from the operator regulated by the candidate protein (why this was not explored in the revision is difficult to understand). The mobility shift observed at these high protein concentrations will result from non-specific binding. It is unsurprising that Cu(II) has an effect on DNA binding as it is added at such high concentrations relative to both protein and DNA so as to compete for DNA-binding with the protein (which binds weakly because there is no specific recognition site). The 10:1 ratio of Cu:CsoR is 10-times higher than needed as this class of proteins will show decreases in DNA-affinity in the presence of the correct metal at 1:1 stoichiometry. As indicated above, the authors need to consider alternative interpretations for their results rather than try to rationalise the results to fit the model.

      The points raised above readily address the authors' own comments in the response as to their surprise at some of the results and their inconsistency with the model.

      Even if the authors were to identify the correct metal to which the protein responds, there are still fundamental issues with experimental design and interpretation that would need to be addressed to indicate any link between the protein and chemotaxis.

    1. eLife Assessment

      This important study identifies a new class of small molecules that activate the integrated stress response (ISR) via the kinase HRI. Convincing evidence, including the image analysis pipeline, indicates that two of these compounds promote mitochondrial elongation and protect against mitochondrial fragmentation caused by chemical stress conditions or by genetic alterations. These findings open an avenue for new strategies for mitochondrial dysfunction targeting linked to ISR alterations.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript (Baron, Oviedo et al., 2024) builds on a previous study from the Wiseman lab (Perea, Baron et al., 2023) and describes the identification of novel nucleoside mimetics that activate the HRI branch of the ISR and drive mitochondrial elongation. The authors develop an image processing and analysis pipeline to quantify the effects of these compounds on mitochondrial networks and show that these HRI activators mitigate ionomycin driven mitochondrial fragmentation. They then show that these compounds rescue mitochondrial morphology defects in patient-derived MFN2 mutant cell lines.

      Strengths:

      The identification of new ISR modulators opens new avenues for biological discovery surrounding the interplay between mitochondrial form/function and the ISR, a topic that is of broad interest. Conceptually, this work suggests that such compounds might represent new potential therapeutics for certain mitochondrial disorders. Additionally, the development of a quantitative image analysis pipeline is valuable and has the potential to extract subtle effects of various treatments on mitochondrial morphology.

      Weaknesses:

      While the ISR modulators described here correct the morphology of mitochondria in MFN2.D414V mutant cells, the impact of these compounds on the function of mitochondria in the mutant cells remains unaddressed. Sharma et al., 2022 provide data for a deficit in mitochondrial OCR in MFN2.D414V cells which, if rescued by these compounds, would strengthen the argument that pharmacological ISR kinase activation is a strategy for targeting the functional consequences of the dysregulation of mitochondrial form.

    3. Reviewer #2 (Public review):

      Summary.

      Mitochondrial dysfunction is associated with a wide spectrum of genetic and age-related diseases. Healthy mitochondria form a dynamic reticular network and constantly fuse, divide, and move. In contrast, dysfunctional mitochondria have altered dynamic properties resulting in fragmentation of the network and more static mitochondria. It has recently been reported that different types of mitochondrial stress or dysfunction activate kinases that control the integrated stress response, including HRI, PERK and GCN2. Kinase activity results in decreased global translation and increased transcription of stress response genes via ATF4, including genes that encode mitochondrial protein chaperones and proteases (HSP70 and LON). In addition, the ISR kinases regulate other mitochondrial functions including mitochondrial morphology, phospholipid composition, inner membrane organization, and respiratory chain activity. Increased mitochondrial connectivity may be a protective mechanism that could be initiated by pharmacological activation of ISR kinases, as was recently demonstrated for GCN2.

      A small molecule screening platform was used to identify nucleoside mimetic compounds that activate HRI. These compounds promote mitochondrial elongation and protect against acute mitochondrial fragmentation induced by a calcium ionophore. Mitochondrial connectivity is also increased in patient cells with a dominant mutation in MFN2 by treatment with the compounds.

      Strengths:

      (1) The screen leverages a well-characterized reporter of the ISR: translation of ATF4-FLuc is activated in response to ER stress or mitochondrial stress. Nucleoside mimetic compounds were screened for activation of the reporter, which resulted in the identification of nine hits. The two most efficacious in dose response tests were chosen for further analysis (0357 and 3610). The authors clearly state that the compounds have low potency. These compounds were specific to the ISR and did not activate the unfolded protein response or the heat shock response. Kinases activated in the ISR were systematically depleted by CRISPRi revealing that the compounds activate HRI.<br /> (2) The status of the mitochondrial network was assessed with an Imaris analysis pipeline and attributes such as length, sphericity, and ellipsoid principal axis length were quantified. The characteristics of the mitochondrial network in cells treated with the compounds were consistent with increased connectivity. Rigorous controls were included. These changes were attenuated with pharmacological inhibition of the ISR.<br /> (3) Treatment of cells with the calcium ionophore results in rapid mitochondrial fragmentation. This was diminished by pre-treatment with 0357 or 3610 and control treatment with thapsigargin and halofuginone.<br /> (4) Pathogenic mutations in MFN2 result in the neurodegenerative disease Charcot-Marie-Tooth Syndrome Type 2A (CMT2A). Patient cells that express Mfn2-D414V possess fragmented mitochondrial networks and treatment with 0357 or 3610 increased mitochondrial connectivity in these cells.

      Weaknesses:

      The weakness is the limited analysis of cellular changes following treatment with the compounds.<br /> (1) Unclear how 0357 or 3610 alter other aspects of cellular physiology. While this would be satisfying to know, it may be that the authors determined that broad, unbiased experiments such as RNAseq or proteomic analysis are not justified due to the limited translational potential of these specific compounds.<br /> (2) There are many changes in Mfn2-D414V patient cells including reduced respiratory capacity, reduced mtDNA copy number, and fewer mitochondrial-ER contact sites. These experiments are relatively narrow in scope and quantifying more than mitochondrial structure would reveal if the compounds improve mitochondrial function, as is predicted by their model.

      Comments on revisions:

      Many reviewer concerns have been addressed or will be addressed in forthcoming manuscripts.

    4. Reviewer #3 (Public review):

      Summary:

      Mitochondrial injury activates eiF2α kinases-PERK, GCN2, HRI and PKR-which collectively regulate the Integrated Stress Response (ISR) to preserve mitochondrial function and integrity. Previous work has demonstrated that stress-induced and pharmacologic stress-independent ISR activation promotes adaptive mitochondrial elongation via the PERK and GCN2 kinases, respectively. Here, the authors demonstrate that pharmacologic ISR inducers of HRI and GCN2 enhance mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the therapeutic potential of pharmacologic ISR activators. Specifically, the authors first used an innovative ISR translational reporter to screen for nucleoside mimetic compounds that induce ISR signaling, and identified two compounds, 0357 and 3610, that preferentially activate HRI. Using a mitochondrial-targeted GFP MEF cell line, the authors next determined that these compounds (as well as the GCN2 activator, halofuginone) enhance mitochondrial elongation in an ISR-dependent manner. Moreover, pretreatment of MEFs with these ISR kinase activators suppressed pathological mitochondrial fragmentation caused by a calcium ionophore. Finally, pharmacologic HRI and GCN2 activation was found to preserve mitochondrial morphology in human fibroblasts expressing a pathologic variant in MFN2, a defect that leads to mitochondrial fragmentation and is a cause of Charcot Marie Tooth Type 2A disease.

      Strengths:

      This well-written manuscript has several notable strengths, including the demonstration of the potential therapeutic benefit of ISR modulation. New chemical entities with which to further interrogate this stress response pathway are also reported. In addition, the authors used an elegant screen to isolate compounds that selectively activate the ISR and identify which of the four kinases was responsible for activation. Special attention was also paid to a thorough evaluation of the effect of their compounds on other stress response pathways (i.e. the UPR, and heat and oxidative stress responses), thereby minimizing the potential for off-target effects. The implementation of automated image analysis rather than manual scoring to quantify mitochondrial elongation is not only practical but also adds to the scientific rigor, as does the complementary use of both the calcium ionophore and MFN2 models to enhance confidence and the broad therapeutic potential for pharmacology ISR manipulation.

      Weaknesses:

      The only minor concerns are with regard to effects on cell health and the timing of pharmacological administration.

      Comments on revisions:

      In this revised manuscript the authors demonstrate that pharmacological activation of the eiF2α kinases, HRI and GCN2, induce adaptive mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the translational potential of pharmacological ISR modulation.

      In revising their manuscript the authors adequately addressed the concerns. In response to comments about the potential toxicity of their compounds, 0357 and 3610, the authors furnish evidence that neither compound significantly reduced viability of HEK293 cells (Figure S1G). Understandably, the authors focused the present work on the acute effects of their compounds. Several other attributes are noteworthy: First, that injury attributable to chronic ISR activation in cell culture may ultimately be circumvented by altering the in vivo pharmacodynamic and pharmacodynamic properties of the compounds, thereby preserving the translation potential for these (and related) compounds. Second, the authors also reasonably explain that the rapidity of ionomycin-induced injury, necessitating that the inducers are administered prior to treatment. Their assessment of the effects of the compounds on mitochondrial fragmentation in MFN2 mutant fibroblasts-in combination with the preserved viability of HEK293 cells-is sufficient to demonstrate the practical pharmacological potential for these (or related) agents.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary: 

      This manuscript (Baron, Oviedo et al., 2024) builds on a previous study from the Wiseman lab (Perea, Baron et al., 2023) and describes the identification of novel nucleoside mimetics that activate the HRI branch of the ISR and drive mitochondrial elongation. The authors develop an image processing and analysis pipeline to quantify the effects of these compounds on mitochondrial networks and show that these HRI activators mitigate ionomycin-driven mitochondrial fragmentation. They then show that these compounds rescue mitochondrial morphology defects in patient-derived MFN2 mutant cell lines. 

      Strengths: 

      The identification of new ISR modulators opens new avenues for biological discovery surrounding the interplay between mitochondrial form/function and the ISR, a topic that is of broad interest. It also reinforces the possibility that such compounds might represent new potential therapeutics for certain mitochondrial disorders. The development of a quantitative image analysis pipeline is valuable and has the potential to extract the subtle effects of various treatments on mitochondrial morphology. 

      We thank the reviewer for the positive feedback on our manuscript. We address all of the reviewer’s valuable concerns in the revised submission, as highlighted below. 

      Weaknesses: 

      I have three main concerns.

      First, support for the selectivity of compounds 0357 and 3610 acting downstream of HRI comes from using knockdown ISR kinase cell lines and measuring the fluorescence of ATF4-mApple (Figure 1G and 1H). However, the selectivity of these compounds acting through HRI is not shown for mitochondrial morphology. Is mitochondrial elongation blocked in HRI knockdown cells treated with the compounds? While the ISRIB treatment does block mitochondrial elongation, ISRIB acts downstream of all ISR kinases and doesn't necessarily define selectivity for the HRI branch of the ISR. Additionally, are the effects of these compounds on ATF4 production and mitochondrial elongation blocked in a non-phosphorylatable eIF2alpha mutant? 

      We thank the reviewer for highlighting this point. As indicated by the reviewer, we show that compounddependent increases in mitochondrial elongation are blocked by co-treatment with ISRIB, indicating that this effect can be attributed to ISR activation. We prefer the use of this highly selective pharmacologic approach to block ISR activation, as opposed to the MEF<sup>A/A</sup> cells, as the use of pharmacologic approaches provide more temporal control over ISR inhibition and can prevent the type of chronic disruption to mitochondria associated with these types of genetic perturbations. However, the reviewer is correct that ISRIB blocks downstream of all ISR kinases, meaning that we cannot explicitly demonstrate that 0357 and 3610 induce mitochondrial elongation downstream of HRI-dependent ISR activation using this tool. Thus, to address this point, we have clarified the discussion of these results to make it clear that our results show that our compounds induce mitochondrial elongation downstream of the ISR, omitting the direct implications of HRI in this phenotype. 

      This point of selectivity/specificity of the compounds gets at a semantic stumbling block I encountered in the text where it was often stated "stress-independent activation" of ISR kinases. Nucleoside mimetics are likely a very biologically active class of molecules and are likely driving some level of cell stress independent of a classical ISR, UPR, heat-shock response, or oxidative stress response. 

      A major challenge in defining stress-independent activation of stress-responsive signaling pathways is the fact that the activation of these pathways is often used as a primary marker of cellular stress. While this can be overcome by transcriptome-wide profiling (e.g., RNAseq), the reviewer is correct that our focused profiling of select stress-responsive signaling pathways is insufficient to claim the stress-independent activation of the ISR by our prioritized compounds. To address this, we removed this terminology from the revised submission.  

      Second, it is difficult for me to interpret the data for the quantification of mitochondrial morphology. In the legend for Figure 2, it is stated that "The number of individual measurements for each condition are shown above." Are the individual measurements the number of total cells quantified? If not, how many total cells were analyzed? If the individual measurements are distinct mitochondrial structures that could be quantified why are the n's for each parameter (bounding box, ellipsoid principal axis, and sphericity) so different? Does this mean that for some mitochondria certain parameters were not included in the analysis? For me, it seems more intuitive that each mitochondrial unit should have all three parameters associated with it, but if this isn't the case it needs to be more carefully described why. 

      The number of individual measurements refers to the number of 3D segmentations generated using the “surfaces’ module in Imaris. As the reviewer noted, we expect each surface segmentation to represent a single “mitochondrial unit.” We have now further clarified this in the figure legend. 

      Regarding differences in sample size for each group, we used an outlier test (i.e., ROUT outlier test in PRISM 10) to remove apparent outliers in our data. Often, these outliers result from errors in the automatic quantification that inaccurately merge two mitochondria into one large segmentation. This explains the discrepancy in the number of measurements made for each experimental group. We have made this point more clear in the Materials and Methods section of the revised manuscript.  

      Third, the impact of these compounds on the physiological function of mitochondria in the MFN2.D414V mutants needs to be measured. Sharma et al., 2021 showed a clear deficit in mitochondrial OCR in MFN2.D414V cells which, if rescued by these compounds, would strengthen the argument that pharmacological ISR kinase activation is a strategy for targeting the functional consequences of the dysregulation of mitochondrial form.

      In this manuscript, we demonstrate that pharmacologic activation of the ISR using 0357 and 3610 rescue mitochondrial morphology in patient fibroblasts expressing the disease-associated MFN2<sup>D414V</sup> mutant. The reviewer is correct that there are other mitochondrial phenotypes linked to the expression of this mutant. We are currently pursuing this question with more potent ISR activating compounds developed in our laboratory identified using the HTS screening platform described in this manuscript. However, this work, which builds on the studies described herein, uses other ISR activating compounds, which we feel would be best described in subsequent manuscripts that can fully define the activity of these new compounds.  

      Reviewer #2 (Public review): 

      Summary. 

      Mitochondrial dysfunction is associated with a wide spectrum of genetic and age-related diseases. Healthy mitochondria form a dynamic reticular network and constantly fuse, divide, and move. In contrast, dysfunctional mitochondria have altered dynamic properties resulting in fragmentation of the network and more static mitochondria. It has recently been reported that different types of mitochondrial stress or dysfunction activate kinases that control the integrated stress response, including HRI, PERK, and GCN2. Kinase activity results in decreased global translation and increased transcription of stress response genes via ATF4, including genes that encode mitochondrial protein chaperones and proteases (HSP70 and LON). In addition, the ISR kinases regulate other mitochondrial functions including mitochondrial morphology, phospholipid composition, inner membrane organization, and respiratory chain activity. Increased mitochondrial connectivity may be a protective mechanism that could be initiated by pharmacological activation of ISR kinases, as was recently demonstrated for GCN2. 

      A small molecule screening platform was used to identify nucleoside mimetic compounds that activate HRI. These compounds promote mitochondrial elongation and protect against acute mitochondrial fragmentation induced by a calcium ionophore. Mitochondrial connectivity is also increased in patient cells with a dominant mutation in MFN2 by treatment with the compounds.

      Strengths: 

      (1) The screen leverages a well-characterized reporter of the ISR: translation of ATF4-FLuc is activated in response to ER stress or mitochondrial stress. Nucleoside mimetic compounds were screened for activation of the reporter, which resulted in the identification of nine hits. The two most efficacious dose-response tests were chosen for further analysis (0357 and 3610). The authors clearly state that the compounds have low potency. These compounds were specific to the ISR and did not activate the unfolded protein response or the heat shock response. Kinases activated in the ISR were systematically depleted by CRISPRi revealing that the compounds activate HRI.

      (2) The status of the mitochondrial network was assessed with an Imaris analysis pipeline and attributes such as length, sphericity, and ellipsoid principal axis length were quantified. The characteristics of the mitochondrial network in cells treated with the compounds were consistent with increased connectivity. Rigorous controls were included. These changes were attenuated with pharmacological inhibition of the ISR. 

      (3) Treatment of cells with the calcium ionophore results in rapid mitochondrial fragmentation. This was diminished by pre-treatment with 0357 or 3610 and control treatment with thapsigargin and halofuginone 

      (4) Pathogenic mutations in MFN2 result in the neurodegenerative disease Charcot-Marie-Tooth Syndrome Type 2A (CMT2A). Patient cells that express Mfn2-D414V possess fragmented mitochondrial networks and treatment with 0357 or 3610 increased mitochondrial connectivity in these cells.

      We appreciate the reviewer’s positive response to these aspects of our manuscript. We address the reviewer’s valuable comments in the revised submission as highlighted below. 

      Weaknesses: 

      The weakness is the limited analysis of cellular changes following treatment with the compounds. 

      (1) Unclear how 0357 or 3610 alter other aspects of cellular physiology. While this would be satisfying to know, it may be that the authors determined that broad, unbiased experiments such as RNAseq or proteomic analysis are not justified due to the limited translational potential of these specific compounds.

      The reviewer is correct. The low potency of 0357 and 3610 limit the translational potential for these compounds. However, building on the work described herein, we recently identified more potent HRI activating compounds with higher translational potential. Using RNAseq profiling, we found that these compounds show transcriptomewide selectivity for the ISR and can promote adaptive remodeling of mitochondrial morphology and function in cellular models of multiple other diseases. These compounds will be further described in subsequent studies that expand on the efforts outlined here demonstrating the potential for pharmacologic HRI activators to promote adaptive mitochondrial remodeling.   

      (2) There are many changes in Mfn2-D414V patient cells including reduced respiratory capacity, reduced mtDNA copy number, and fewer mitochondrial-ER contact sites. These experiments are relatively narrow in scope and quantifying more than mitochondrial structure would reveal if the compounds improve mitochondrial function, as is predicted by their model.

      In this manuscript, we demonstrate that pharmacologic activation of the ISR using 0357 and 3610 rescue mitochondrial morphology in patient fibroblasts expressing the disease-associated MFN2<sup>D414V</sup> mutant. The reviewer is correct that there are other mitochondrial phenotypes linked to the expression of this mutant. We are currently pursuing this question with more potent ISR activating compounds developed in our laboratory using the HTS screening platform described in this manuscript. However, this work, which builds on the studies described herein, uses other ISR activating compounds, which we feel would be best described in subsequent manuscripts that can fully define the activity of these new compounds.  

      Reviewer #3 (Public review):

      Summary: 

      Mitochondrial injury activates eiF2α kinases - PERK, GCN2, HRI, and PKR - which collectively regulate the Integrated Stress Response (ISR) to preserve mitochondrial function and integrity. Previous work has demonstrated that stress-induced and pharmacologic stress-independent ISR activation promotes adaptive mitochondrial elongation via the PERK and GCN2 kinases, respectively. Here, the authors demonstrate that pharmacologic ISR inducers of HRI and GCN2 enhance mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the therapeutic potential of pharmacologic ISR activators. Specifically, the authors first used an innovative ISR translational reporter to screen for nucleoside mimetic compounds that induce ISR signaling and identified two compounds, 0357 and 3610, that preferentially activate HRI. Using a mitochondrial-targeted GFP MEF cell line, the authors next determined that these compounds (as well as the GCN2 activator, halofuginone) enhance mitochondrial elongation in an ISR-dependent manner. Moreover, pretreatment of MEFs with these ISR kinase activators suppressed pathological mitochondrial fragmentation caused by a calcium ionophore. Finally, pharmacologic HRI and GCN2 activation were found to preserve mitochondrial morphology in human fibroblasts expressing a pathologic variant in MFN2, a defect that leads to mitochondrial fragmentation and is a cause of Charcot Marie Tooth Type 2A disease. 

      Strengths: 

      This well-written manuscript has several notable strengths, including the demonstration of the potential therapeutic benefit of ISR modulation. New chemical entities with which to further interrogate this stress response pathway are also reported. In addition, the authors used an elegant screen to isolate compounds that selectively activate the ISR and identify which of the four kinases was responsible for activation. Special attention was also paid to a thorough evaluation of the effect of their compounds on other stress response pathways (i.e. the UPR, and heat and oxidative stress responses), thereby minimizing the potential for off-target effects. The implementation of automated image analysis rather than manual scoring to quantify mitochondrial elongation is not only practical but also adds to the scientific rigor, as does the complementary use of both the calcium ionophore and MFN2 models to enhance confidence and the broad therapeutic potential for pharmacology ISR manipulation. 

      We thank the reviewer for their positive response to our manuscript. We address the reviewer’s remaining concerns as outlined below. 

      Weaknesses: 

      The only minor concerns are with regard to effects on cell health and the timing of pharmacological administration. 

      The two compounds described in this manuscript were found to not induce any overt toxicity over a 24 h period in cell culture models. In the revised manuscript, we show data showing that treatment with increasing doses of either 0357 or 3610 do not significantly reduce cellular viability in HEK293 cells (Fig. S1G). 

      With regards to treatments, we include all of the relevant information for the timing and dosage of compound treatment in the revised manuscript. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for Authors)

      (1) Figure S1 "B. ATF4-Gluc activity" -> Fluc, The number of replicates is not consistently stated for each experiment. p-values are not given for D and F. 

      We have changed the legend for Fig. S1B to ATF4-FLuc. We show individual replicates for all experiments for all panels described in this figure, except panels C and G, in the revised Figure S1. We explicitly state the number of replicates in panel C and G in the accompanying figure legend. We have repeated the qPCR described in panels C,F and statistics are included in the revised manuscript.

      (2) Figure 2 - no p-values for BtdCPU.

      Yes. We found that BtdCPU-dependent increases in mitochondrial fragmentation (described in Fig. 2A-D) were not significant when analyzing all the data included in these figures by Brown-Forsythe and Welch ANOVA test. However, the DMSO and BtdCPU conditions were significantly different when directly compared using a Welch’s t-test (p<0.005). Since the statistics in this manuscript are being analyzed by ANOVA, we decided not to include a significance marker for BtdCPU, as it was not observed in this more stringent test and is not the main focus of this manuscript.  

      (3) Figure S4 (Supplement to Figure 5) -> Supplement to Figure 4. 

      We have corrected this error in the revised manuscript. 

      (4) Error in references - duplicated 24 and 46, duplicated 10 and 11.

      This is now corrected in the revised submission.

      Reviewer #2 (Recommendations for the authors): 

      I would love to see an assessment of mitochondrial function and mtDNA in the D414 cells following treatment. 

      As indicated above, we are continuing to probe the impact of more potent HRI activating compounds in patientderived cell models expressing disease-relevant MFN2 mutants. Initial experiments suggest that this approach can mitigate additional pathologies beyond deficient elongation in these cells, although we are continuing to pursue these results with our improved HRI activating compounds. We are excited by these results, but feel that they are best suited for a follow-up manuscript describing these new HRI activators.   

      Reviewer #3 (Recommendations for the authors):

      The only suggestion to broaden the manuscript's impact might be to perform a basic assessment of the impact of pharmaceutical ISR activation on cell viability. Though mitochondrial elongation is often considered a surrogate for mitochondrial health, whether mitochondrial elongation improves cell viability (or not) would be informative. Similarly, the authors did not address the time-dependent effects of the ISR modulators, choosing to focus on the acute rather more chronic outcomes. Finally, does simultaneous (rather than pre-) treatment with an activator and the ionomycin produce similar effects on mitochondrial morphology, especially since therapeutics are typically administered post-injury?

      We now include cell viability experiments showing that the two HRI activators discussed in this manuscript, 0357 and 3610, do not significantly reduce viability in HEK293 cells. This work is included in the revised manuscript (see Fig. S1G). 

      With respect to acute vs chronic outcomes of ISR activation. As highlighted by the reviewer, we primarily focus this work on defining the impact of acute ISR treatment on mitochondrial morphology. As discussed above, we now show that our prioritized ISR activating compounds 0357 and 3610 do not significantly impact cellular viability over a 24 h timecourse. However, as suggested by the reviewer, additional studies on the potential implications of chronic pharmacologic ISR activation on mitochondrial biology remains to be further explored.

      We are continuing to address this in subsequent studies using more potent ISR kinase activating compounds established in our lab. However, we would like to highlight that detrimental phenotypes linked to chronic ISR kinase activation in cell culture does not preclude the translational potential for this approach, as in vivo PK/PD of these compounds can be controlled to prevent complications arising from chronic pathway activity. We previously demonstrated the potential for controlling compound activity through its PK/PD in our establishment of highly selective activators of other stress-responsive signaling pathways such as the IRE1/XBP1s arm of the UPR (e.g., Madhavan et al (2022) Nat Comm).   

      We appreciate the reviewer’s comments regarding the timing of compound treatment in them ionomycin experiment. Ionomycin works extremely quick to induce fragmentation (minutes), which would be prior to activation of the ISR induced by these compounds (hours). Thus, co-treatment would lead to fragmentation. It is an interesting question to ask if co-treatment with ISR activators could rescue this fragmentation as the pathway is activated, but we did not explicitly address this question in this manuscript. However, we do show that pharmacologic GCN2 or HRI activators can rescue mitochondrial morphology in patient fibroblasts expressing a MFN2 mutant, where mitochondria are fragmented, indicating that our approach can restore mitochondrial morphology in this context. We feel that these results, in combination with others described in our manuscript, demonstrate the potential for this approach to mitigate pathologic mitochondrial fragmentation associated with different conditions.

    1. eLife Assessment

      This fundamental work describes for the first time the combined gene expression and chromatin structure at the genome level in isolated chondrocytes and classical (cranial) and non-classical (notochordal) osteoblasts. In a compelling analysis of RNA-Seq and ATAC data, the authors characterize the two osteoblast populations relative to their associated chondrocyte cells and further proceed with a convincing analysis of the crucial entpd5a gene regulatory elements by investigating their respective transcriptional activity and specificity in developing zebrafish.

    2. Reviewer #1 (Public review):

      Summary:

      This work uses transgenic reporter lines to isolate entpd5a+ cells representing classical osteoblasts in the head and non-classical (osterix-) notochordal sheath cells. The authors also include entpd5a- cells, col2a1a+ cells to represent the closely associated cartilage cells. In a combination of ATAC and RNA-Seq analysis, the genome-wide transcriptomic and chromatin status of each cell population is characterized, validating their methodology and providing fundamental insights into the nature of each cell type, especially the less well-studied notochordal sheath cells. Using these data, the authors then turn to a thorough, and convincing analysis of the regulatory regions that control the expression of the entpd5a gene in each cell population. Determination of transcriptional activities in developing zebrafish, again combined with ATAC data and expression data of putative regulators results in a compelling, and detailed picture of the regulatory mechanisms governing expression of this crucial gene.

      Strengths:

      The major strength of this paper is the clever combination of RNA-Seq and ATAC analysis, further combined with functional transcriptional analysis of the regulatory elements of one crucial gene. This results in a very compelling story.

      Weaknesses:

      No major weakness, except for all the follow-up experiments that one can think of, but that would be outside of the scope of this paper.

      Comments on revisions:

      The description of Supplementary Figure 1 is still confusing: in the results section, it says "We photo converted and directly imaged entpd5a:Kaede positive embryos starting from the 15 somite- stage (s), when we could first detect the fluorophore along the newly-formed notochord progenitor cells (Suppl. Fig. 1E). We repeated photoconversion and imaging at 18, 21 and 24s (Suppl. Fig. 1F-H). ...(Suppl. Fig 1E)"<br /> In the response, the authors say "we could see new Kaede expression under the control of the entpd5a promoter region within 1.5 hours of photoconversion, as shown in Suppl. Figure 1E-H."<br /> In the legend to Suppl. Fig. 1, it says "Using the entpd5a:Kaede photoconversion line we first detect entpd5a expression at the 15 somite-stage (E). Following the same embryo, active expression of the gene continues until prior to 24 hpf (F-H)."<br /> So my questions are: -was there a delay between photoconversion and imaging - was the same delay used for all pictures - was there indeed additional photoconversion for Fig.1 F-H before imaging?<br /> This could be stated in Materials and Methods, and maybe in the legend to Suppl. Fig. 1

      All other issues have been addressed.

    3. Reviewer #2 (Public review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts have been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression delineated in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific detail of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing the foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that proposed areas for extending the description to integrate the data into the existing data on role of non-classical osteobasts and establishment/canalization of this lineage of skeletal cells.

      (1) It was unclear how specific the authors' experimental dissection of head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however an analysis of contaminating cells/lineages in each population would be useful - e.g. maybe use specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific e.g. not seen in one or other dataset, or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - is there obvious cis-regulatory changes that correlate with the co-option of this gene in early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of a differential between different osteoblasts lineages in the paper.

      Comments on revisions: All issues have been addressed.

    4. Reviewer #3 (Public review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrate the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This work uses transgenic reporter lines to isolate entpd5a+ cells representing classical osteoblasts in the head and non-classical (osterix-) notochordal sheath cells. The authors also include entpd5a- cells, col2a1a+ cells to represent the closely associated cartilage cells. In a combination of ATAC and RNA-Seq analysis, the genome-wide transcriptomic and chromatin status of each cell population is characterized, validating their methodology and providing fundamental insights into the nature of each cell type, especially the less well-studied notochordal sheath cells. Using these data, the authors then turn to a thorough and convincing analysis of the regulatory regions that control the expression of the entpd5a gene in each cell population. Determination of transcriptional activities in developing zebrafish, again combined with ATAC data and expression data of putative regulators, results in a compelling and detailed picture of the regulatory mechanisms governing the expression of this crucial gene.

      Strengths:

      The major strength of this paper is the clever combination of RNA-Seq and ATAC analysis, further combined with functional transcriptional analysis of the regulatory elements of one crucial gene. This results in a very compelling story.

      Weaknesses:

      No major weaknesses were identified, except for all the follow-up experiments that one can think of, but that would be outside of the scope of this paper.

      Reviewer #2 (Public Review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and to serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts has been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific details of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show the utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing a foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing the biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that were not critical weaknesses but areas for extending the description of methods and integration into the existing data on the role of non-classical osteoblasts and establishment/canalization of this lineage of skeletal cells.

      (1) In reading the text it was unclear how specific the authors' experimental dissection of the head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however, analysis of contaminating cells/lineages in each population would be useful - e.g. using specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific - e.g. not seen in one or other dataset - or is there some experimental variation in this?

      We thank the reviewer for pointing this out. Given that the separation from head and trunk is done manually, there will be some experimental variability. We have used anatomical hallmarks (cleithrum and swim bladder), and therefore would expect the variability to be small. Regarding classical osteoblasts contaminating trunk tissue, head removal was consistently performed using the aforementioned anatomical hallmarks in a manner that ensures that the cleithrum does not remain in the trunk tissue.  In order to alleviate concerns regarding trunk cell populations contaminating cranial populations, and to further clarify our strategy, we add the following statement to the Materials and Methods section: “The procedure does not allow for a complete separation of notochordal non-classical osteoblasts from cranial classical osteoblasts, as the notochord extends into the cranium. However, the amount of sheath cells in that portion of the notochord is negligible, compared both to the number of classical (cranial) osteoblasts in head samples, and to notochord cells isolated in trunk samples.”

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage-specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - are there obvious cis-regulatory changes that correlate with the co-option of this gene in the early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of the differential between different osteoblasts lineages in the paper.

      This is an interesting concept and idea, that we will consider in a possible revision or, if requiring substantial additional efforts, in a possible new research line. An excellent starting point for further studies using our datasets.

      Reviewer #3 (Public Review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts, Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers, they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrating the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor issues that may need to be addressed or detailed:

      Supplementary Figures 1I-J, text page 4, line 24: "photoconversion and imaging": this needs some more detailed description: green fluorescent cells should be actively expressing Kaede, but only if there is a delay between photoconversion and imaging. What is the reason that Supplementary Figure 1F shows mainly green fluorescent cells, contrary to 1G-J?

      In our experiments, we could see new Kaede expression under the control of the entpd5a promoter region within 1.5 hours of photoconversion, as shown in Suppl. Figure 1E-H, suggesting that this time window was sufficient for protein generation. The reason for Suppl. Fig 1F showing more green fluorescence we believe relates to the high rate of transcriptional activity at that stage, in the entirety of the notochord progenitor cells. In addition, this is an effect which we attribute to the relatively small number of cells producing red fluorescence at that stage, due to photoconversion of only a few Kaede+ cells at the 15 somites stage (Suppl. Fig. 1E). Therefore, the masking effect of the green fluorescence by the red is not as significant as in G and H, where the red fluorescence resulting from photoconversion right after imaging at 18s and 21s, respectively, significantly overlaps with new green fluorescence. This can be seen in the image as the presence of orange fluorescence in G and H, instead of the clear red shown in E, I and J.

      In addition to this, we would like to point out that in Suppl. Fig. 1I, J the reason that green fluorescence is only detected in the ventral region of the notochord, is because the promoter of entpd5a only remains active in the ventral-most sheath cells at that stage. This is stated in the results section of the main text, first subsection, paragraph 3. The reason for this very interesting, strictly localised expression pattern remains unclear.

      Somewhat intriguing: green fluorescence in Figure 1B, C (osx:GAL4FF) and Supplementary Figure 1C (entpd5a:GAL4FF) in the CNS? Would that be an artefact of the GAL4FF/UAS:GFP system?

      We are confident that the fluorescence pointed out by the reviewer is not an artefact of the GAL4FF/UAS system, for a few reasons. Firstly, osx (Sp7) has been shown to be expressed and to function in the nervous system in mice (Park et al, BBRC, 2011; Elbaz et al, Neuron, 2023). Secondly, not only osx, but also entpd5a can be readily detected in a subset of cranial and spinal neurons in early development using the entpd5a:GAL4FF; UAS:GFP transgenic line (Suppl. Fig 1C). Finally, when establishing transgenic lines with the entpd5a(1.1):GFP construct, expression was almost invariably present in diverse elements of the nervous system, but not in bone (data not shown). This led us to hypothesise that the minimal promoter of entpd5a (and possibly also that of osx) is activated by transcription factors active in the nervous system, and this effect is likely controlled by the surrounding enhancers, but also the genome location. It is unclear at present what the endogenous neural expression of the two genes is like, and we did not further investigate this in this study, as the focus was on the skeleton.

      Figure 2: What exactly is "Corrected Total Cell Fluorescence"? Is it green + red fluorescence?

      We thank the reviewer for pointing out the absence of more information on this. Corrected total cell fluorescence does not correspond to green+ red fluorescence, rather it is calculated as follows for a single channel:

      CTCF = Integrated Density – (Area of selected cell X Mean fluorescence of background readings)

      More details can be found in the following website: https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html

      We have edited the Materials and Methods section under “Imaging and image analysis” to include the aforementioned information.

      Page 11, line 34: The authors may have missed the recently published "Raman et al., Biomolecules 2024 Vol. 14; doi:10.3390/biom14020139" describing RNA-Seq in 4 dpf osterix+ osteoblasts.

      We thank the reviewer for drawing our attention to the Raman et al publication. The reference has now been added in the manuscript.

      Figure 5A and B: use a higher resolution version to make the numbers and gene names more readable. Figures 5C and 6A could also use a larger font for the text and numbers.

      High resolution files are now included with the revised manuscript, which should significantly help in making figures more easily readable. Although we agree with the reviewer that larger fonts would improve readability, due to the nature of the graphs (very small spaces in some cases, where the numbers would have to fit) this would not be easy to achieve. However, we believe that this issue will be resolved with the availability of higher resolution files. If readability remains a concern, we would be happy to attempt re-organising the graphs to allow for larger fonts.

      Reviewer #2 (Recommendations For The Authors):

      I suggest no further experiments, but do suggest that a few points be clarified.

      In the Discussion, the text "the less evolved osteoblasts of fish and amphibians..." is not accurate. These cells are not less evolved as they represent an independent lineage to tetrapods that have evolved with different stresses for a similar time. However, as teleost fishes and amphibians share characteristics and all share a common ancestor, these signatures represent a putative ancestral state of skeletal differentiation not seen in amniotes, including humans.

      We thank the reviewer for pointing out the unfortunate phrasing. The text has now been modified as follows: “Specifically, the osteoblasts of teleost fish and amphibians, whose characteristics are putatively closer to a more ancestral state of skeletal differentiation compared to amniotes, appear to share gene expression with chondrocytes”.

      The title could potentially be shortened to reach a broader audience by removing the initial clause of 'integration of ATAC and RNA seq' as this is a commonly performed analysis - "Chromatin and transcriptomic signature in classical and non-classical zebrafish osteoblasts indicate mechanisms of ancestral skeletal differentiation" is more descriptive of the findings and not focused on the method.

      We have discussed this internally, but would prefer to retain the current title. The reason is (1) because we would like to see our methodology and datasets be used as platform for further studies, and the current title, in our opinion, facilitates this. In regards to replacing “mechanisms of entpd5a regulation” with “mechanisms of ancestral skeletal differentiation”, we think this does not give an accurate description of our work, which is primarily focused on elucidating entpd5a promoter dynamics.

      All datasets should be made available as soon as possible for use in the field.

      The datasets (raw and processed) are available on the GEO database. The corresponding accession numbers can be found in our data availability statement.

      Minor comments:

      (1) Figure 1A. The labels are missing for grey and light blue structures.

      These structures are together making up the “notochord sheath”, which is comprised of the basal lamina (grey), the medial layer of fibrillar collagen (light blue) and the outer layer of loosely arranged matrix (lighter blue). We modified the figure legend to indicate that the three layers all correspond to the notochord sheath.

      (2) Figure 2A. The constructs in the lower part of the panel are not discussed in the legend and seem out of place in terms of data type and analysis.

      We would argue that indicating which non-coding regions and which ATAC peaks were responsible for driving GFP expression in each construct aids in a better understanding of our results. We thank the reviewer for pointing out the lack of mention of these constructs in the figure legend. This issue has now been resolved.

      (3) Be wary of red/green color combinations, especially in the figures where these are juxtaposed with each other.

      We apologise for the use of red/green colour. Although it is not possible for this manuscript to change the colour patterns, we will make sure to avoid the use of these colours in conjunction in the future.

      (4) The use of fish as a term should be classified as teleost fish, as authors are not addressing non-teleost basal ray-finned fishes or the fact that tetrapods are within bony fishes overall.

      This is well spotted, we have now remedied this by editing the manuscript. Where the term “fish” was used, we now state “teleost fish”.

      (5) Age information is missing in several Figures (e.g. 1D and 2C).

      In some of the figures space constrains did not allow for including the stage on the figure itself. However, we have made sure that in those cases the stage is incorporated in the figure legend.

      (6) The resolution of several Figures (e.g. Figure 5 and Supplementary Figure 3) is low.

      We address this issue by providing high resolution figures with the revised manuscript.

      (7) In the sentence (top page before Discussion) "The same conclusion was reached upon isolation from these three..", it was unclear what 'upon isolation' referred to.

      We agree with the reviewer that this phrasing is unclear. To enhance clarity, the manuscript now reads as follows: “The same conclusion was reached upon isolation of the DEGs highlighted by our RNA-seq results, from the three aforementioned groups of genes associated with ATAC peaks for each cell population.”

    1. eLife Assessment

      In this potentially important study, the authors report results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The results point to the mechanistic proposal that the transition state ensemble is broader in the most efficient form of the enzyme (i.e., in the presence of Mg2+ in the active site) and thus a different activation entropy. With a broad set of computations and experimental analyses, the level of evidence is considered solid by some reviewers. On the other hand, there remain limitations in the computational analyses, especially regarding free energy profiles using different methodologies (shape of free energy profiles with DFTB vs. PBE QM/MM, and barriers with steered MD and umbrella sampling) and the activation entropy, leading some reviewers to the evaluation that the level of evidence is incomplete.

    2. Reviewer #1 (Public Review):

      Summary:

      This study investigated the phosphoryl transfer mechanism of the enzyme adenylate kinase, using SCC-DFTB quantum mechanical/molecular mechanical (QM/MM) simulations, along with kinetic studies exploring the temperature and pH dependence of the enzyme's activity, as well as the effects of various active site mutants. Based on a broad free energy landscape near the transition state, the authors proposed the existence of wide transition states (TS), characterized by the transferring phosphoryl group adopting a meta-phosphate-like geometry with asymmetric bond distances to the nucleophilic and leaving oxygens. In support of this finding, kinetic experiments were conducted with Ca2+ ions at different temperatures and pH, which revealed a reduced entropy of activation and unique pH-dependence of the catalyzed reaction.

      Strengths:

      A combined application of simulation and experiments is a strength.

      Weaknesses:

      The conclusion that the enzyme-catalyzed reaction involves a wide transition state is not sufficiently clarified with some concerns about the determined free energy profiles compared to the experimental estimate. (See Recommendations for the authors.)

      Comments on revisions:

      While the authors have made some improvements in clarifying the manuscript, questions still remain about their conclusion regarding the wide-TS, which appears this may be a misinterpretation of the simulation results. Also, they should clearly point out the large discrepancies between DFTB QM/MM and PBE QM/MM results (shape of free energy files) and also between steered MD and umbrella sampling results (barriers). Another question is the large change in activation entropy (between the reaction with and without divalent cations). This difference may be difficult to attribute sorely to the difference in the reaction geometries near TS.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors report results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The main assertion of the paper is that a wide transition state ensemble is a key concept in enzyme catalysis as a strategy to circumvent entropic barriers. This assertion is based on observation of a "structurally wide" set of energetically equivalent configurations that lie along the reaction coordinate in QM/MM simulations, together with kinetic measurements that suggest a decrease of the entropy of activation.

      Strengths:

      The study combines theoretical calculations and supporting experiments.

      Weaknesses:

      The current paper hypothesizes a "wide" transition state ensemble as a catalytic strategy and key concept in enzyme catalysis. Overall, it is not clear the degree to which this hypothesis is fully supported by the data. The reasons are as follows:

      (1) Enzyme catalysis reflects a rate enhancement with respect to a baseline reaction in solution. In order to assert that something is part of a catalytic strategy of an enzyme, it would be necessary to demonstrate from simulations that the activation entropy for the baseline reaction is indeed greater and the transition state ensemble less "wide". Alternatively stated, when indicating there is a "wide transition state ensemble" for the enzyme system - one needs to indicate that is with respect to the non-enzymatic reaction. However, these simulations were not performed and the comparisons not demonstrated. The authors state "This chemical step would take about 7000 years without the enzyme" making it impossible to measure; nonetheless, the simulations of the nonenzymatic reaction would be fairly straightforward to perform in order to demonstrate this key concept that is central to the paper. Rather, the authors examine the reaction in the absence of a catalytically important Mg ion.

      (2) The observation of a "wide conformational ensemble" is not a quantitative measure of entropy. In order to make a meaningful computational prediction of the entropic contribution to the activation free energy, one would need to perform free energy simulations over a range of temperatures (for the enzymatic and non-enzymatic systems). Such simulations were not performed, and the entropy of activation was thus not quantified by the computational predictions. The authors instead use a wider TS ensemble as a proxy for larger entropy, and miss an opportunity to compare directly to the experimental measurements.

      Comments on revisions:

      Overall, I do not think the authors have been able to quantitatively support their conclusion, and the qualitative support is somewhat weak. This makes the interpretation of the computational results somewhat speculative. Nonetheless, comparison was made for models with and without divalent ions, and the experimental data is valuable.