- Apr 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Naïve CD4 T cells in CD11c-Cre p28-floxed mice express highly elevated levels of proinflammatory IFNg and the transcription factor T-bet. This phenotype turned out to be imposed by thymic dendritic cells (DCs) during CD4SP T cell development in the thymus [PMID: 23175475]. The current study affirms these observations, first, by developmentally mapping the IFNg dysregulation to newly generated thymic CD4SP cells [PMID: 23175475], second, by demonstrating increased STAT1 activation being associated with increased T-bet expression in CD11c-Cre p28-floxed CD4 T cells [PMID: 36109504], and lastly, by confirming IL-27 as the key cytokine in this process [PMID: 27469302]. The authors further demonstrate that such dysregulated cytokine expression is specific to the Th1 cytokine IFNg, without affecting the expression of the Th2 cytokine IL-4, thus proposing a role for thymic DC-derived p28 in shaping the cytokine response of newly generated CD4 helper T cells. Mechanistically, CD4SP cells of CD11c-Cre p28-floxed mice were found to display epigenetic changes in the Ifng and Tbx21 gene loci that were consistent with increased transcriptional activities of IFNg and T-bet mRNA expression. Moreover, in autoimmune Aire-deficiency settings, CD11c-Cre p28-floxed CD4 T cells still expressed significantly increased amounts of IFNg, exacerbating the autoimmune response and disease severity. Based on these results, the investigators propose a model where thymic DC-derived IL-27 is necessary to suppress IFNg expression by CD4SP cells and thus would impose a Th2-skewed predisposition of newly generated CD4 T cells in the thymus, potentially relevant in autoimmunity.
Strengths:
Experiments are well-designed and executed. The conclusions are convincing and supported by the experimental results.
Weaknesses:
The premise of the current study is confusing as it tries to use the CD11c-p28 floxed mouse model to explain the Th2-prone immune profile of newly generated CD4SP thymocytes. Instead, it would be more helpful to (1) give full credit to the original study which already described the proinflammatory IFNg+ phenotype of CD4 T cells in CD11c-p28 floxed mice to be mediated by thymic dendritic cells [PMID: 23175475], and then, (2) build on that to explain that this study is aimed to understand the molecular basis of the original finding.
In its essence, this study mostly rediscovers and reaffirms previously reported findings, but with different tools. While the mapping of epigenetic changes in the IFNg and T-bet gene loci and the STAT1 gene signature in CD4SP cells are interesting, these are expected results, and they only reaffirm what would be assumed from the literature. Thus, there is only incremental gain in new insights and information on the role of DC-derived IL-27 in driving the Th1 phenotype of CD4SP cells in CD11c-p28 floxed mice.
Altogether, the major issues of this study remain unresolved:
(1) It is still unclear why the p28-deficiency in thymic dendritic cells would result in increased STAT1 activation in CD4SP cells. Based on their in vitro experiments with blocking anti-IFNg antibodies, the authors conclude that it is unlikely that the constitutive activation of STAT1 would be a secondary effect due to autocrine IFNg production by CD4SP cells. However, this possibility should be further tested with in vivo models, such as Ifng-deficient CD11c-p28 floxed mice. Alternatively, is this an indirect effect by other IFNg producers in the thymus, such as iNKT cells? It is necessary to explain what drives the STAT1 activation in CD11c-p28 floxed CD4SP cells in the first place.
(2) It is also unclear whether CD4SP cells are the direct targets of IL-27 p28. The cell-intrinsic effects of IL-27 p28 signaling in CD4SP cells should be assessed and demonstrated, ideally by CD4SP-specific deletion of IL-27Ra, or by establishing bone marrow chimeras of IL-27Ra germline KO mice.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This valuable study characterizes the requirement for individual let-7 clusters to limit the generation of IL-17 producing CD8 T cells and the severity of emphysema in mouse models. Mature let-7 family miRNAs originate from multiple loci, several of which have been reported and/or are reported here to be downregulated in emphysematous lung tissue and/or lung T cells. The results provided are convincing but incomplete, as the let-7 cluster with the most convincing effects on T cell cytokine production is not tested for effects on disease pathogenesis.
Let-7 family miRNAs are largely redundant in function and originate from multiple genomic loci ("clusters"). Erice et al demonstrate that two individual clusters (let7afd and let7bc2) in mice regulate the generation of IL-17 producing CD8 T cells in vitro and in vivo in a model of emphysema. These cells also express higher levels of the IL-17-inducing transcription factor RORgt, encoded by Rorc, which the authors demonstrate to be a direct target of let-7. Since multiple let-7 family miRNAs are downregulated in T cells and lung tissue in emphysema, these data support a model in which reduced let-7 allows increased IL-17 production by T cells, contributing to disease pathogenesis.
Strengths:
The inclusion of miRNA and pri-miRNA expression data from sorted human lung T cells as well as mouse T cells from an emphysema model is a strength.
The study includes complementary loss of function and gain of function experimental systems to test the effect of altered let-7 function, though it should be noted that these involved different let-7 family members and did not yield simple, complementary results for all experimental outcomes.
The most important finding is that deletion of just one let-7 cluster ("Let7bc2") is sufficient to exacerbate emphysema in the nCB and CS models.
Weaknesses:
The human miRNA expression data that motivate functional analyses used sorted CD4+ T cells. The authors note that prior work on let-7 showed that it regulates Th17 (CD4) responses, yet this study's functional analyses are all focused on Tc17 (CD8) T cells. Data in this paper show that Tc17 cells are far less numerous than Th17 cells in the nCB and CS models of emphysema.
Compared with Let7bc2 deletion, Let7afd deletion had a much larger effect on IL17 production by CD8 T cells in vitro, and it also had a larger effect on RORgt expression in untreated mice in vivo, especially in the lung. In the revised manuscript, the authors show that let7afdLOF mice have normal numbers of CD4 and CD8 T cells in the thymus and peripheral lymphoid organs and do not exhibit lung histopathology or inflammatory changes at baseline at least up to 6 months of age. As such, they are set up perfectly to test the requirement for Let7afd in the nCB and/or CS models. These experiments would add strength to the core novelty of this work - demonstration of the functional importance of individual let-7 clusters.
The authors could do more to explain the complexity of the let7 miRNA family and the genomic clusters examined in this study. In particular, it would help to know the relationship between mouse Let7bc2 and corresponding human Let7 clusters. It would also be very helpful to know the relative expression of each mature let-7 family member in Tc17 cells. Are mature miRNAs derived from the Let7afd cluster more or less abundant?
The provided evidence for the effect of Let7GOF has an important caveat that came to light during review. Let7g overexpression caused a marked reduction in Rorgt expression in T cells at baseline and in the setting of nCB challenge, and it reduced the frequency of IL17+ producing CD8 T cells in the lung to baseline levels. Yet there was no change in the MLI measurement of histopathology. However, the responses in the experiment shown in Fig. 6C-D are quite muted compared to those shown in Figure 2. In the response to reviewers, the authors speculate that an anti-inflammatory of doxycycline, required for induction of Let7g in this model, "could account for the differences in the magnitude of emphysemic response".
Although RORgt is a great candidate to have direct effects on IL-17 expression, the mechanistic understanding of let-7 action on T cell differentiation and cytokine production is limited to this single target. As noted in the discussion, others have identified cytokine receptor targets that may play a role, but it is also likely others among the many targets of let-7 also contribute.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The manuscript investigates the connections between the ubiquitin ligase protein deltex and the wingless pathway. Two different connections are proposed, one is function of deltex to modulate the gradient of wingless diffusion and hence modulate the spatial patter of wingless pathway targets, which regulate at different thresholds of wingless concentration. The second is a direct interaction between deltex and armadillo, a downstream component of the wingless pathway. Deltex is proposed to cause the degradation of armadillo resulting in suppression of wingless pathway activity. The results and conclusions of the manuscript are interesting and for the most part novel, although previously published work linking Notch and deltex to wingless signal regulation, and endocytosis to wingless gradient formation could be more extensively discussed. However neither of the two parts to the manuscript seem, in themselves sufficiently complete, and combining both parts together therefore seems to lack focus.
The main issue with the manuscript is that much of the conclusions are inferred from genetic interactions in vivo between loss of function mutants and overexpression. While providing useful in vivo physiological context, this type of approach struggles to be able to make definitive conclusions on whether an interaction is due to direct or indirect mechanism, as the authors themselves conclude at the end of section 2.3. The problem is confounded by the fact that there is already documented much cross talk between the Notch signaling pathway and wingless at the transcriptional level, and deltex is already a Notch modulator that can alter wingless mRNA expression (See Hori et al 2004). Deltex in addition to promoting a ligand-independent Notch signal can also induce expression of Notch ligand, allowing further non-autonomous Notch activation and subsequent cell autonomous cis-inhibition of the initial deltex-induced signal. The dynamics and outcomes of the Notch signal response to deltex in vivo is therefore already very complicated to interpret before even considering to unravel indirect (via Notch) and direct interactions with wingless, although the two possibilities are not mutually exclusive. Whilst the revised manuscript does not completely overcome these limitations, further data and quantification have improved the support for the conclusions and there is a wider discussion of the relevant literature. The conclusions are interesting and add significantly to our understanding of the intersections between Wingless, Notch and trafficking regulators in an in vivo context.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The study by Algranati et al. introduces an exciting and promising therapeutic approach for the treatment of H3-K27M pediatric gliomas, a particularly aggressive brain cancer predominantly affecting children. By exploring the dual targeting of histone deacetylases (HDACs) and MYC activation, the research presents a novel strategy that significantly reduces cell viability and tumor growth in patient-derived glioma cells and xenograft mouse models. This approach, supported by transcriptomic and epigenomic profiling, unveils the potential of combining Sulfopin and Vorinostat to downregulate oncogenic pathways, including the mTOR signaling pathway. While the study offers valuable insights, it would benefit from additional clarification on several points, such as the rationale behind the dosing decisions for the compounds tested, the specific contributions of MYC amplification and H3K27me3 alterations to the observed therapeutic effects, and the details of the treatment protocols employed in both in-vitro and in-vivo experiments.
Clarification is needed on how doses were selected for the compounds in Figure S2A and throughout the study. Understanding the basis for these choices is crucial for interpreting the results and their potential clinical relevance. IC50s are calculated for specific patient derived lines, but it is not clear how these are used for selecting the dose.
The introduction mentions MYC amplification in high-grade gliomas. It would be beneficial if the authors could delineate whether the models used exhibit varying degrees of MYC amplification and how this factor, alongside differences in H3K27me3, contributes to the observed effects of the treatment.
In Figure 2A, the authors outline an optimal treatment timing for their in vitro models, which appears to be used throughout the figure. It would be helpful to know how this treatment timing was selected and also why Sulfopin is dosed first (and twice) before the vorinostat. Was this optimized?
It should be clarified whether the dosing timeline for the combination drug experiments in Figure 3 aligns with that of Figure 2. This information is also important for interpreting the epigenetic and transcriptional profiling and the timing should be discussed if they are administered sequentially (also shown in Figure 2A).I have the same question for the mouse experiments in Figure 4.
The authors mention that the mice all had severe dehydration and deterioration after 18 days. It would be helpful to know if there were differences in the side effects for different treatment groups? I would expect the combination to be the most severe. This is important in considering the combination treatment.
Minor Points:
(1) For Figure 1F, reorganizing the bars to directly compare the K27M and KO cell lines at each dose would improve readability of this figure.
(2) In Figure 4D, it would be helpful to know how many cells were included (or a minimum included) to calculate the percentages.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this study Gray and coworkers use a transposon mutant library in order to define: (i) essential genes for K. pneumoniae growth in LB medium, (ii) genes required for growth in urine, (iii) genes required for resistance to serum and complement mediated killing. Although there are previous studies, using a similar strategy, to describe essential genes for K. pneumoniae growth and genes required for serum resistance, this is the first work to perform such a study in urine. This is important because these types of pathogens can cause urinary tract infections. Moreover, the authors performed the work using a highly saturated library of mutants, which makes the results more robust, and used a clinically relevant strain from a pathotype for which similar studies have not been performed yet. Besides applying the transposon mutant library coupled with high-throughput sequencing, the authors validate some of the most relevant genes required for each condition using targeted mutagenesis. This is an important step to confirm that the results obtained from the library are reliable. Although this was done for only a small subset of the most significant genes. In addition, in vitro experiments involving complementation of urine with iron provide additional support to the results obtained with the mutants suggesting the importance of genes required for iron acquisition in a limiting-iron environment such as urine. Overall, the study is well-designed and written, and the methodology and analysis performed are adequate. The study would have benefited from in vivo experiments, including a mouse model of bacterial sepsis or urinary tract infections which could have demonstrated the role of some of the identified genes in the infection process. Nevertheless, the results obtained are informative for the scientific community since they pinpoint genes potentially more relevant in infections caused by K. pneumoniae. The identified genes could represent future targets for developing new therapies against a type of pathogen that is acquiring resistance to all available antibiotics. Although, as mentioned above, these potential targets should be confirmed using in vivo models.
One potential weakness of the work is that the TnSeq analysis only included two replicates per condition, thus it is possible that some of the differences detected may not be reproducible in future studies, first of all those that are less significant. In this sense, hundreds of genes were detected to be theoretically relevant for bacterial resistance to complement in serum. It is possible that some of these genes represent false positives. Thus, confirmation of the relevance of these genes in resistance to complement should be performed in future studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.
Strengths:
The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.
Weaknesses:
The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith. Yet, some small concerns remain around the behavioural analysis.
In Fig. 8H and H' average sleep/day is ~100. Is this minutes of sleep? 100 min/day is far too low, is it a typo?
The numbers for sleep bouts are also too low to me e.g. in Fig 9 number of sleep bouts avg around 4.
In their response to reviewers the authors say these errors were fixed, yet the figures appear not to have been changed. Perhaps the old figures were left in inadvertently?
The circadian anticipatory activity analyses could also be improved. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). This typically computed as the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition.
In their response to reviewers, the authors have revised their anticipation analyses by quantifying the mean activity in the 6 hrs preceding light transition. However, in the method of Harrisingh et al., anticipation is the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition. Simply computing the activity in the 6hrs preceding light transition does not give a measure of anticipation, determining the ratio is key.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this study, Gularte-Merida et al investigate the occurrence of transgenerational effects of non-transmitted parental alleles outside of the well-described effect of "genetic nurture." To achieve this they employed consomic male mice to generate an N2 and N3 population, allowing for the observation of effects due to non-transmitted paternal alleles while controlling for maternal care by using isogenic B6 dams. The authors conduct RNAseq, qPCR validation, and anatomical phenotyping measures to investigate the presence of non-genetic nurture TGE. The author's findings challenge the frequency of non-genetic nurture TGE, a meaningful contribution to the field. Overall, this is an ambitious study with important negative data. The authors are to be commended on this. This greatly strengthens the negative findings within the paper.
The paper, however, is written extremely technically, with little detail, and is not currently suitable for the lay audience. The authors need to greatly increase the clarity of the writing and data presentation.
Strengths:
Elegant experimental design using consomic mouse populations.
The use of a second replication cohort using the same genetic founders as the first study.
Weaknesses:
While much of the explanation of the methods is understandable by geneticists, the paper has implications outside of the genetics field. Overall, I suggest expanding the explanation and language for non-geneticists. This will allow the paper to reach a wider audience.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The Authors identified miR-199b-5p is a potential OA target gene using serum exosomal small RNA-seq from human healthy and OA patients. Their RNA-seq results were further compared with publicly available datasets to validate their finding of miR-199b-5p. In vitro chondrocyte culture with miR-199b-5p mimic/inhibitor and in vivo animal models were used to evaluate the function of miR-199b-5p in OA. The possible genes that were potentially regulated by miR-199b-5p were also predicted (i.e., Fzd6 and Gcnt2) and then validated by using Luciferase assays.
Strengths:
(1) Strong in vivo animal models including pain tests.<br /> (2) Validate the binding of miR-199b-5p with Fzd6 and binding of miR-199b-5p with Gcnt2
The authors have addressed my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript aimed to investigate the non-genetic impact of KHDC3 mutation on the liver metabolism. To do that they analyzed the female liver transcriptome of genetically wild type mice descended from female ancestors with a mutation in the Khdc3 gene. They found that genetically wild type females descended from Khdc3 mutants have hepatic transcriptional dysregulation which persist over multiple generations in the progenies descended from female ancestors with a mutation in the Khdc3 gene. This transcriptomic deregulation was associated with dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with female mutational ancestry. Furthermore, to determine whether small non-coding RNA could be involved in the maternal non-genetic transmission of the hepatic transcriptomic deregulation, they performed small RNA-seq of oocytes from Khdc3-/- mice and genetically wild type female mice descended from female ancestors with a Khdc3 mutation and claimed that oocytes of wild type female offspring from Khdc3-null females has dysregulation of multiple small RNAs.
Finally, they claimed that their data demonstrates that ancestral mutation in Khdc3 can produce transgenerational inherited phenotypes.
However, at this stage and considering the information provided in the paper, I think that these conclusions are too preliminary. Indeed, several controls/experiments need to be added to reach those conclusions.
Additional context you think would help readers interpret or understand the significance of the work<br /> • Line 25: this first sentence is very strong and needs to be documented in the introduction.<br /> • Line 48: Reference 5 is not appropriate since the paper shows the remodeling of small RNA during post-testicular maturation of mammalian sperm and their sensibility to environment. Please, change it<br /> • Line 51: "implies" is too strong and should be replaced by « suggests »<br /> • Line 67: reference is missing<br /> Database, the accession numbers are lacking.<br /> • References showing the maternal transmission of non-genetically inherited phenotypes in mice via small RNA need to be added<br /> • Line 378: All RNA-Seq and small RNA-Seq data are available in the NCBI GEO
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public Review):
Summary:
The authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization, and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. This is based on:<br /> (1) the documented role of FMNL1 proteins in IS formation;<br /> (2) their ability to regulate F-actin dynamics;<br /> (3) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation;<br /> (4) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified.
They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.
Strengths
The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance, and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).
Weaknesses
The data on F-actin clearance in Jurkat T cells knocked down for FMNL1 and expressing wild-type FMNL1 or the non-phosphorylatable or phosphomimetic mutants thereof would need to be further strengthened, as this is a key message of the manuscript. Also, the entire work has been carried out on Jurkat cells. Although this is an excellent model easily amenable to genetic manipulation and biochemical studies, the key finding should be validated on primary T cells.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The first portion of the manuscript centered on identifying and confirming the ATHB2 microprotein (ATHB2miP), which constitutes the core message of this study. Overall, I find no issue with the selection criteria employed for identifying alternative microprotein mRNA transcripts. However, I do have some queries that I hope the authors can address for clarity.
(1) Upon reviewing the supplemental dataset where the authors listed the 377 unique novel miPs, along with those specifically in WL or shade treatments, I sought to comprehend the rationale behind focusing on ATHB2. Have the authors examined the shade response of all 377 potential microprotein candidates? Readers may be intrigued to learn how many of these candidates exhibit induction or repression under shade conditions, and whether such changes correlate positively or negatively with alterations in the full-length TSSs in response to shade. Essentially, I aim to discern the prevalence of microprotein production during shade responses and any shared characteristics among these microprotein transcripts. This inquiry also aims to uncover the existence of a common mechanism regulating microprotein transcription.
(2) To confirm that ATHB2miP stems from an independent transcription event, the authors sequenced full-length cDNAs using PacBio isoseq. However, I find the information regarding isoseq missing from the manuscript. My assumption is that the full-length cDNAs were reverse transcribed from mRNAs isolated from whole seedlings, where mature mRNAs in the cytoplasm predominate, making it challenging to evaluate whether a specific mRNA undergoes post-transcriptional processing. One approach to confirming ATHB2miP as a product of independent transcription involves examining nascent mRNA produced in the nucleus. The authors may need to isolate nascent mRNAs associated with RNA Polymerase II in the nucleus from seedlings treated with shade for 45 min, and then perform reverse transcription and PacBio isoseq.
(3) The authors noted the identification of two potential start codons, TTG and CTG, in the alternative TSS of ATHB2 using TISpredictor. Yet, it's imperative to identify the actual translation initiation site and the full-length sequence of ATHB2miP. I suggest the authors fuse an epitope tag (e.g., 3xFLAG) to the C-terminus of ATHB2 (utilizing the genomic sequence of ATHB2) and generate transgenic lines to be treated with shade to induce ATHB2miP-3xFLAG production. Affinity purification (anti-FLAG beads) and mass spectrometry can then identify the actual start site of ATHB2miP. This step is crucial, as the current ATHB2miP used may not be the exact sequence, and any observed phenotype could be artifacts arising from these lines.
(4) My confusion arose when analyzing the results in Figures 1E - G. The authors didn't specify whether these plants were subjected to shade treatment. What are the sequences within the second intron and third exon excluded from pATHB2control::GUS that promote transcription and translation? Have the authors examined the sequence features? This information is pivotal and related to the above question #1 because it may tell us whether the sequence feature is shared by other miP candidates.
The latter part of the manuscript focused on the functional characterization of ATHB2miP. The approaches adopted by the authors resemble those used in studying antimorphic (dominant negative) alleles. However, I have several concerns regarding the approaches and conclusions.
(5) Firstly, as mentioned in question #3, the authors did not map the actual translation initiation site of ATHB2miP. Therefore, all constructs involving ATHB2miP, such as eGFP-ATHB2miP, BD-ATHB2miP, and mCherry-ATHB2miP in Figure 2, and 35S::miP in Figures 3-5, may contain extra amino acids in the N-terminus, given that epitope tags were all added to the N terminus. These additional amino acids could potentially impact the behavior of ATHB2miP and lead to artifacts. Identifying the translation initiation site in ATHB2miP would facilitate the development of tools to disrupt ATHB2miP expression without affecting full-length ATHB2 expression. For instance, if the "CTG" before the leucine zipper domain is confirmed as the translation initiation site, mutating it to another Leu codon (e.g., TTA) could generate transgenic lines using the genomic sequence of ATHB2, including this mutation, to evaluate the impact of losing ATHB2miP on shade responses.
(6) Another concern pertains to the 35S::miP line utilized in Figures 3-5. The authors only presented results from one 35S::miP line, raising the possibility of T-DNA insertion disrupting an endogenous gene in the transgenic plant genome. It is essential to clarify how many individual T1 plants were generated and how many of them showed the same phenotype as the line used in the manuscript. Additionally, the use of the constitutive CaMV35S promoter could generate artifacts akin to neomorphic mutations. For example, the authors identified Cluster 1 genes that were only induced in 35S::miP, but not in t-athb2 or WT plants (Figure 3B); moreover, they found an overrepresentation of genes involved in root development in this cluster. This observation correlated well with the root phenotype of 35S::miP under the proximity shade (Figure 4D), in which the short-root phenotype was only observed in lines expressing 35S::miP. These data could be artifacts due to the constitutive expression of ATHB2miP in roots but didn't necessarily reflect the natural function of ATHB2miP.
(7) Furthermore, I seek clarification regarding the rationale behind employing different shade conditions, including deep shade, canopy shade, and proximity shade, and the significance of treating plants with these conditions. The results were challenging to interpret, and I have reservations about some statements made. The authors claimed that ATHB2 acts as a growth repressor in deep shade but a growth promoter in the canopy and proximity shade (Lines 366-368). However, it appears that regardless of the shade conditions, most mutant and transgenic lines were not significantly different from WT (Figure 4C). Additionally, the definition of proximity shade in this manuscript (R:FR = 0.06) differs from that in Roig-Villanova & Martinez-Garcia (Front. Plant Sci., 2016; R:FR, 0.5-0.3). Clarity on this disparity would be appreciated.
(8) In Figure 5, no statistical analyses were presented in Figure 5C. It remains unclear whether the differences observed are statistically significant. Moreover, the values appear quite similar among all three genotypes. Even if statistically significant, do these minor differences in Fe concentrations significantly impact plant physiology? Additionally, some statements related to Figure 5 do not align with the data presented. For instance, claims about longer hypocotyls in t-athb2, athb2∆, and atbh2∆LZ mutants compared to wild type under shade conditions on high iron media (lines 453-455) were not supported by the data in Figure 5D. Similarly, statements about the differences between mutants (lines 458-460) were not substantiated by the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors describe a "beads-on-a-string" (BOAS) immunogen, where they link, using a non-flexible glycine linker, up to eight distinct hemagglutinin (HA) head domains from circulating and non-circulating influenzas and assess their immunogenicity. They also display some of their immunogens on ferritin NP and compare the immunogenicity. They conclude that this new platform can be useful to elicit robust immune responses to multiple influenza subtypes using one immunogen and that it can also be used for other viral proteins.
Strengths:
The paper is clearly written. While the use of flexible linkers has been used many times, this particular approach (linking different HA subtypes in the same construct resembling adding beads on a string, as the authors describe their display platform) is novel and could be of interest.
Weaknesses:
The authors did not compare to individuals HA ionized as cocktails and did not compare to other mosaic NP published earlier. It is thus difficult to assess how their BOAS compare.
Other weaknesses include the rationale as to why these subtypes were chosen and also an explanation of why there are different sizes of the HA1 construct (apart from expression). Have the authors tried other lengths? Have they expressed all of them as FL HA1?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The study by Rößling et al. addresses the link between the biochemical constitution of the cell wall, in particular the methylesterification state of pectin with signalling induced by the extracellular RALF peptide. The work suggests that only in the presence of demethylesterifies pectin, RALF is able to trigger activation of its receptor FERONIA (FER).
Remarkably, the application of RALF peptides leads to rather dramatic FER-dependent changes in wall integrity and plasma membrane invaginations not observed before. Interestingly, RALF can be out-titrated from the wall by short pectin fragments. In addition, the study provides further evidence for multiple FER-dependent pathways by showing the presence of LRX proteins is not required for the pectin/RALF mediated signalling.
Strengths:
This work provides fundamental insight into a complex emerging pathway, or perhaps several pathways, linking pectin sensing, pectin structure and RALF/FER signalling. The study provides convincing evidence that pectin methylesterase activity is required for RALF sensing, indicating that the physical interaction of RALFs with the cell wall is important for signalling. Beyond that, the study documents very clearly how profoundly RALF signalling can affect cell wall integrity and membrane topology.
Weaknesses:
The genetic material used by the authors to strengthen the connection of RALF signalling and PME activity might not be as suitable as an acute inhibition of PME activity.
The PMEI3ox line generated by Peaucelle et al., 2008 is alcohol-inducible. Was expression of the PMEI induced during the experiments? As ethanol inducible systems can be rather leaky, it would not be surprising if PME activity would be reduced even without induction, but maybe this would warrant testing whether PMEI3 is actually overexpressed and/or whether PME activity is decreased. On a similar note, the PMEI5ox plants do not appear to show the typical phenotype described for this line. I personally don't think these lines are necessary to support the study. Short-term interference with PME activity (such as with EGCG) might be more meaningful than life-long PMEI overexpression, in light of the numerous feedback pathways and their associated potential secondary effects. This might also explain why EGCG leads to an increase in pH, as one would expect from decreased PME activity, while PMEI expression (caveats from above apply) apparently does not (Fig 3A-D).
At least at first sight, the observation that OGs are able to titrate RALF from pectin binding seems at odds with the idea of cooperative binding with low affinity, leading to high avidity oligomers. Perhaps the can provide a speculative conceptual model of these interactions?
I could not find a description of the OG treatment/titration experiments, but I think it would be important to understand how these were performed with respect to OG concentration, timing of the application, etc.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Zhang et al. explores the effect of autophagy regulator ATG6 on NPR1-mediated immunity. The authors propose that ATG6 directly interacts with NPR1 in the nucleus to increase its stability and promote NPR1-dependent immune gene expression and pathogen resistance. This novel role of ATG6 is proposed to be independent of its role in autophagy in the cytoplasm. The authors demonstrate through biochemical analysis that ATG6 interacts with NPR1 in yeast and very weakly in vitro. They further demonstrate using overexpression transgenic plants that in the presence of ATG6-mcherry the stability of NPR1-GFP and its nuclear pool is increased.
However, the overall conclusions of the study are not well supported experimentally. The significance of the findings is low because of their mostly correlational nature, and lack of consistency with earlier reports on the same protein.
Based on the integrity and quality of the data as well as the depth of analysis, it is not yet clear if ATG6 is a specific regulator of NPR1 or if it is affecting NPR1's stability indirectly, through inducing an elevation of SA levels in plants. As such, the current study demonstrates a correlation between overexpression of ATG6, SA accumulation, and NPR1 stability, however, whether and how these components work together is not yet demonstrated.
Based on the provided biochemical data, it is not yet clear if the ATG6 functions specifically through NPR1 or through its paralogs NPR3 and NPR4, which are negative regulators of immunity. It is quite possible that interaction with NPR1 (or any NPR) is not the major regulatory step in the activity of ATG6 in plant immunity. The effect of ATG6 on NPR1 could well be indirect, through a change in the SA level and redox environment of the cell during the immune response. Both SA level and redox state of the cell were reported to induce accumulation of NPR1 in the nucleus and increase in stability.
Another major issue is the poor quality of the subcellular analyses. In contradiction to previous studies, ATG6 in this study is not localized to autophagosome puncta, which suggests that the soluble localization pattern presented here does not reflect the true localization of ATG6. Even if the authors propose a novel, non-canonical nuclear localization for ATG6, they still should have detected the canonical autophagy-like localization of this protein.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, the authors report that both mice and human patients carrying function-disrupting mutations in the OFD1 gene exhibited ectopic brown adipose tissue formation in the malformed tongue. The OFD1 gene is located on the X-chromosome and encodes a protein product required for the formation and function of the primary cilium, which is required for cells to properly receive and activate several signaling pathways, particularly the hedgehog signaling pathway. Loss of OFD1 function causes prenatal lethality of male fetuses and mosaic disruption of tissues in females due to random inactivation of the X-chromosome carrying either the mutant or wildtype allele. Using cell type-specific gene inactivation and genetic lineage labeling, the manuscript shows that the ectopic brown adipose tissue in the mutant tongue was not derived from cranial neural crest cells (CNCCs). Additional genetic and embryological studies led to the conclusion that loss of Ofd1 function in the CNCC cells in the embryonic hypoglossal cord, via which the tongue myoblast precursor cells migrate from anterior somites to the tongue primordia, caused disruption of cell-cell interactions between the CNCCs and migrating muscle precursor cells, resulting in altered differentiation of those myoblast precursor cells into brown adipocytes. The authors provided data that disruption of Smo in a subset of CNCCs also resulted in ectopic adipose tissue formation in the tongue, indicating that this phenotype in the Ofd1 mutant mice was likely caused by disruption of hedgehog signaling in CNCCs. However, no experimental evidence is provided to support a major conclusion of the manuscript regarding altered differentiation of the tongue myoblast precursor cells into brown adipocytes in the Ofd1 mutant mice. Since it is well established that hedgehog signaling in the CNCCs is required for them to direct tongue myoblast cell migration as well as for tongue muscle differentiation/organization after the myoblasts arrived in the tongue primordia, the finding of tongue muscle defects in the Ofd1 mutant mice is not surprising. However, if proven true that disruption of Ofd1 function in CNCCs caused tongue myoblast precursor cells to alter their fate and differentiate into brown adipocytes, it would be an interesting new finding. Further identification of the signals produced by the Ofd1 mutant CNCCs for directing the cell fate switch will be a highly significant new advance in understanding the cellular and molecular mechanisms regulating tongue morphogenesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary<br /> This study by Knop, et al. defines two different developmental roles for the conserved SEL-5/AAK1 protein kinase in Caenorhabditis elegans. In other organisms, AAK1 was known to promote the recycling of the Wntless sorting receptor and endocytosis of Wnt receptors. This study establishes that SEL-5 acts in two roles in C. elegans: in Wnt-producing cells, a role that promotes migration of a neuroblast termed QL.d, and in Wnt-receiving cells, a role that promotes outgrowth of the excretory cell (EXC). Before this study, SEL-5/AAK1 was thought to regulate endocytosis through phosphorylation of AP2M1 and other endocytic adaptor proteins. This study shows convincing data that the SEL-5 makes a partial contribution to AP2M1 phosphorylation, and more surprisingly, that its roles in Wnt-producing and Wnt-receiving cells of C. elegans do not require SEL-5 catalytic activity. Human AAK1 was previously suggested to be a target of drug design efforts due to its roles in neuropathic pain, viral infection, and Alzheimer's disease. The discovery that some roles for SEL-5/AAK1 are independent of catalytic activity will be of broad interest to cell biologists and biochemists.
Strengths<br /> (1) The data establishing the requirement for SEL-5 in QL.d migration and EXC outgrowth (Fig. 1 and Fig. 4) is rigorous and convincing. My assessment of the rigor is based on the following: First, the authors show that two independently derived sel-5 deletion mutations result in defects in QL.d and EXC. Second, the authors show that providing wild-type, GFP-tagged SEL-5 results in significant rescue of both phenotypes. Importantly, they use tissue-specific transgenes to show that the requirement for SEL-5 in QL.d migration is non-cell-autonomous, and the requirement for SEL-5 in EXC outgrowth is cell-autonomous (Fig. 2). For rescue experiments, they show that each tissue-specific transgene is indeed expressed strongly in the tissue of interest. This establishes the roles for SEL-5 in two different roles, in Wnt-producing and Wnt-receiving cells.
(2) The authors present three lines of convincing biochemical and genetic evidence that SEL-5 kinase catalytic activity is not important for its roles in Wnt-producing and Wnt-receiving cells.
Taking a biochemical approach, they use quantitative Westerns to assess the degree of AP2M1 phosphorylation in sel-5 mutants (Fig. 3). Their results show that AP2M1 phosphorylation is diminished, but not absent in mutants. Their results are convincing because they make use of GFP-tagged AP2M1 to probe for total and phospho-AP2M1. I note that they included uncropped Western blots in supplemental data. Furthermore, they make use of a GFP-tagged AP2M1 mutant (T160A) to confirm which residue is phosphorylated. Their results suggest that some mechanism other than AP2M1 phosphorylation may account for the sel-5 mutant phenotypes.
Taking a genetic approach, they make use of a unique allele, dpy-23(mew25), that alters the known AP2M1 phosphorylation site. They show that animals carrying this allele do not display the QL.d and EXC phenotypes (Fig. 3 and Fig. 5). Finally, in a more direct test of whether SEL-5 requires catalytic activity, they make use of GFP-tagged SEL-5 forms mutated at either the active site or the ATP-binding site of the SEL-5 kinase domain. They show that either SEL-5 mutant form successfully rescues the QL.d and EXC defects seen in sel-5 mutants (Fig. 3), suggesting that SEL-5 catalytic activity is unnecessary.
(3) The authors have produced an elegant GFP knock-in allele of the sel-5 gene, allowing analysis of expression and localization in living animals (Fig. 2).
(4) The authors make use of genetic interactions with Wnt signaling mutants to show that SEL-5 acts in a role that promotes Wnt signaling for the QL.d cell (Fig. 1) and counteracts Wnt signaling for the EXC (Fig. 5).
Weaknesses<br /> (1) Some changes to statistical analyses are needed in this study.
Fig. 1B, 1D, 2A, 3E, and 3F report the QL.d phenotype as a percentage of animals scored that were defective in migration. The methods make it clear this data is categorical rather than quantitative. Therefore, a t-test or any test designed for quantitative data is not appropriate. I suggest that the authors should investigate using a chi-squared or Fisher's exact test.
For the reasons mentioned above, the calculation of standard deviation (as shown in error bars) is also not appropriate for Fig. 1B, 1D, 2A, 3E, and 3F. Of course, it is excellent that the authors scored multiple trials. For experiments with mutants, I suggest the authors might combine these trials or show separate results of each trial. For experiments using RNAi (Fig. 1B), each trial should be plotted separately because RNAi effectiveness can vary. If there is not enough space to show multiple trials, then I would ask that a representative trial be shown in the main figure and additional trials in a supplement.
In Fig. 1, 2, 3, and 5, it is not specified whether/how p-values were adjusted for multiple tests.
(2) I felt the author's interpretation of the sel-5 mutant phenotypes in EXC, and the genetic interactions with Wnt signaling mutants, might be improved. The authors show convincing data that the sel-5 mutants display a shortened EXC outgrowth phenotype. Conversely, mutants with reduced Wnt signaling, such as the lin-17 or lin-44 mutants, displayed lengthened EXC outgrowth. The authors show that in double mutants, loss of sel-5 partially suppressed the EXC overgrowth defects of lin-17 or lin-44 mutants (Fig. 5). In my opinion, this data is consistent with a model where SEL-5 acts to inhibit Wnt signaling in EXC. An inhibitory role in a Wnt-receiving cell would be consistent with the known activity for human AAK1 in promoting negative feedback and endocytosis of LPR6. Interestingly, the authors mention in their discussion that a mutant of plr-1, which acts in the internalization of Frizzled receptors, has a shortened EXC phenotype similar to that of sel-5 mutants. These observations all seem consistent with an inhibitory role, yet the authors do not state this as their conclusion. A clarification of their interpretation is needed.
Impact/significance<br /> (1) Among researchers using C. elegans, this study provides a foundation for further investigation of the role of endocytosis, SEL-5, and the retromer, in Wnt trafficking. It is particularly useful that the authors define two different phenotypes that arise from Wnt-producing and Wnt-receiving cells.
(2) Among a broader community of cell biologists and biochemists, this study will be of interest in its finding that SEL-5/AAK1 kinase catalytic activity is unnecessary for the regulation of Wnt signaling.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Urea is widely utilized in agriculture. In this study, the authors the mechanism underlying the adverse impact of urea on seed germination and seedling growth under salt stress conditions. The results show that salt stress induces a pronounced hydrolysis of urea, resulting in an elevation of cytoplasmic pH and subsequent inhibition of seed germination. These findings challenge the previous notion that ammonium accumulation is the primary cause of salt-induced inhibition of germination, thereby offering novel insights into this process.
The authors have provided well-organized genetic or biochemical evidence to support most of their conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The manuscript entitled " Multimodal HLA-I genotypes regulation by human cytomegalovirus US10 and resulting surface patterning" by Gerke et al describes the biochemical analysis of US10-mediated down regulation of HLA-I molecules. The authors systemically examine the surface expression of different HLA-I alleles in cells expressing US10 and interactions of US10 with HLA-I and antigen presentation machinery. Further, studies examined genotypic and allotypic differences during expression of US10/US11 transcripts suggest a different allelic class I downregulation. In general, the authors have included data supporting the major claims. Yet, the conclusions and findings of the study only marginally advance the overall understanding of HCMV viral evasion and the mechanism of US10 function.
Strengths:<br /> The studies are well characterized and the studies utilize diverse HLA-I and HCMV viral molecules. The biochemistry is excellent and is of high quality. Importantly, the study describes HLA-I allelic specific HCMV down regulation at the cell surface and molecular levels.
Weaknesses:<br /> (1) The authors use over expressive language such as "strong binding" that does not have a quantitative value and it is relative to the specific assay with only small differences among the factors.<br /> (2) The US10 binding to the HLA-I did not correlate with class I surface levels suggesting that binding to the APC machinery (Figure 1); hence, why does the binding of US10 to the APC define its mechanism of action.<br /> (3) The innovative and significant aspects of the study are limited. The study does not delineate the US10 mechanism of action or show data in which US10-mediated MHC class I down regulation impacts adaptive or innate immune function.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The interplay between environmental factors and cognitive performance has been a focal point of neuroscientific research, with illuminance emerging as a significant variable of interest. The hypothalamus, a brain region integral to regulating circadian rhythms, sleep, and alertness, has been posited to mediate the effects of light exposure on cognitive functions. Previous studies have illuminated the role of the hypothalamus in orchestrating bodily responses to light, implicating specific neural pathways such as the orexin and histamine systems, which are crucial for maintaining wakefulness and processing environmental cues. Despite advancements in our understanding, the specific mechanisms through which varying levels of light exposure influence hypothalamic activity and, in turn, cognitive performance, remain inadequately explored. This gap in knowledge underscores the need for high-resolution investigations that can dissect the nuanced impacts of illuminance on different hypothalamic regions. Utilizing state-of-the-art 7 Tesla functional magnetic resonance imaging (fMRI), the present study aims to elucidate the differential effects of light on the hypothalamic dynamics and establish a link between regional hypothalamic activity and cognitive outcomes in healthy young adults. By shedding light on these complex interactions, this research endeavors to contribute to the foundational knowledge necessary for developing innovative therapeutic strategies aimed at enhancing cognitive function through environmental modulation.
Strengths:
(1) Considerable Sample Size and Detailed Analysis:<br /> The study leverages a robust sample size and conducts a thorough analysis of hypothalamic dynamics, which enhances the reliability and depth of the findings.
(2) Use of High-Resolution Imaging:<br /> Utilizing 7 Tesla fMRI to analyze brain activity during cognitive tasks offers high-resolution insights into the differential effects of illuminance on hypothalamic activity, showcasing the methodological rigor of the study.
(3) Novel Insights into Illuminance Effects:<br /> The manuscript reveals new understandings of how different regions of the hypothalamus respond to varying illuminance levels, contributing valuable knowledge to the field.
(4) Exploration of Potential Therapeutic Applications:<br /> Discussing the potential therapeutic applications of light modulation based on the findings suggests practical implications and future research directions.
Weaknesses:
(1) Foundation for Claims about Orexin and Histamine Systems:<br /> The manuscript needs to provide a clearer theoretical or empirical foundation for claims regarding the impact of light on the orexin and histamine systems in the abstract.
(2) Inclusion of Cortical Correlates:<br /> While focused on the hypothalamus, the manuscript may benefit from discussing the role of cortical activation in cognitive performance, suggesting an opportunity to expand the scope of the manuscript.
(3) Details of Light Exposure Control:<br /> More detailed information about how light exposure was controlled and standardized is needed to ensure the replicability and validity of the experimental conditions.
(4) Rationale Behind Different Exposure Protocols:<br /> To clarify methodological choices, the manuscript should include more in-depth reasoning behind using different protocols of light exposure for executive and emotional tasks.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this work, using in-depth computational analysis, Bell et al. explore the diverse repertoire of type IV McrBC modification dependent restriction systems. The prototypical two-component McrBC system has been structurally and functionally characterised and is known to act as a defence by restricting phage and foreign DNA containing methylated cytosines. Here, the authors find previously unanticipated complexity and versatility of these systems and focus on detailed analysis and classification of a distinct branch, the so-called CoCoNut, named after its composition of coiled-coil structures and tandem nucleases. These CoCoNut systems are predicted to target RNA as well as DNA and to utilise defence mechanisms with some similarity to type III CRISPR-Cas systems.
Strengths:
This work is enriched with a plethora of ideas and a myriad of compelling hypotheses that now will await experimental verification. The study comes from the group that was amongst the first to describe, characterise, and classify CRISPR-Cas systems. By analogy, the findings described here can similarly promote ingenious experimental and conceptual research that could further drive technological advances. It could also instigate vigorous scientific debates that will ultimately benefit the community.
Weaknesses:
The multi-component systems described here function in the context of large oligomeric complexes similarly to the prototypical McrBC system. While the AlphaFold2 (AF2) multimer predictions are provided in this work, these are not compared with the known McrBC structures. These comparisons could have been helpful not only for providing insights into these multimeric protein systems but also for giving more sound explanations of the differences observed amongst different McrBC types.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Key findings of this research include the sequencing of the wasp's genome, identification of venom constituents and teratocytes, and examination of Trichopria drosophilae (Td)'s ecology and parasitic strategies. It was observed that Td doesn't distinguish between hosts based on age but can recognize previously parasitized hosts. The study also explored whether multiple parasitisms by Td improved outcomes, which indeed it did, possibly by increasing venom and teratocyte levels. Utilizing Drosophila ectopic expression tools, the authors functionally characterized venom components, specifically tissue inhibitors of metalloproteinases (Timps), which were found to cause delays in host development. Additionally, experiments revealed that teratocytes produce numerous proteases, aiding in the digestion of host tissues for parasite consumption. The discussion suggests that genes involved in different aspects of parasitism may arise from gene duplication and shifts in tissue expression to venom glands or teratocytes.
Strengths:
This manuscript provides an in-depth and detailed depiction of the parasitic strategies employed by Td wasps, spanning both molecular and behavioral aspects. It consolidates a significant amount of research that, in the past, might have been distributed across multiple papers. By presenting all this data in a single manuscript, it delivers a comprehensive and engaging study that could help future developments in the field of biological control against a major insect pest.
Weaknesses:
While none of the findings are particularly groundbreaking, as similar results have been reported for other parasitoid species in prior research, the integration of these results into one comprehensive overview offers valuable biological insights into an interesting new potential biocontrol species.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Pancreatic ductal adenocarcinoma is generally considered a "cold" tumor type with little T cell infiltration. This group demonstrated previously that deletion of the PIK3CA isoform of PI3K in the orthotopic pancreatic ductal adenocarcinoma KPC mouse tumor model led to the elimination of tumors by T cells. Here they performed a genome-wide gene-deletion screen in this tumor using CRISPR to determine what was required for this T cell-mediated infiltration and tumor rejection. Deletion of Pccb in the tumors, which encodes propionyl-CoA carboxylase subunit B, allowed for the outgrowth of the PIK3CA-deleted KPC tumors. This was confirmed with the specific deletion of Pccb in the tumor cells. Demonstrating a likely role in tumor progression in human patients as well, high expression of PCCB in pancreatic ductal adenocarcinoma correlated with lower patient survival. T cells still infiltrated these tumors, but had much higher expression of exhaustion markers. Blockade of PD-1 signaling allowed for the rejection of these tumors. While these are intriguing data demonstrating that loss of PCCB by pancreatic ductal adenocarcinoma is a mechanism to escape T cell immunity, the mechanism by which this occurs is not determined. In addition, there are a few issues that suggest the conclusions of the manuscript should be tempered.
Strengths:
In vivo analysis of tumor CRISPR deletion screen.
The study describes a possible novel mechanism by which a tumor maintains a "cold" microenvironment.
Weaknesses:
(1) A major issue is that it seems these data are based on the use of a single tumor cell clone with PIK3CA deleted. Therefore, there could be other changes in this clone in addition to the deletion of PIK3CA that could contribute to the phenotype.
(2) The conclusion that the change in the PCCB-deficient tumor cell line is unrelated to mitochondrial metabolic changes may be incorrect based on the data provided. While it is true that in the experiments performed, there was no statistically significant change in the oxygen consumption rate or metabolite levels, this could be due to experimental error. There is a trend in the OCR being higher in the PCCB-deficient cells, although due to a high standard deviation, the change is not statistically significant. There is also a trend for there being more aKG in this cell line, but because there were only 3 samples per cell line, there is no statistically significant difference.
(3) More data are required to make the authors' conclusion that there are myeloid changes in the PCCB-deficient tumor cells. There is only flow data from shown from one tumor of each type.
(4) The previous published study demonstrated increased MHC and CD80 expression in the PIK3CA-deficient tumors and these differences were suggested to be the reason the tumors were rejected. However, no data concerning the levels of these proteins were provided in the current manuscript.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Reviewer #2 (Public Review):
Summary:
This study was designed to test the hypothesis that motor neurons play a causal role in circuit assembly of the vestibulo-ocular reflex circuit, which is based on the retrograde model proposed by Hans Straka. This circuit consists of peripheral sensory neurons, central projection neurons, and motor neurons. The authors hypothesize that loss of extraocular motor neurons, through CRISPR/Cas9 mutagenesis of the phox2a gene, will disrupt sensory selectivity in presynaptic projection neurons if the retrograde model is correct.
Account of the major strengths and weaknesses of the methods and results:
The work presented is impressive in both breadth and depth, including the experimental paradigms. Overall, the main results were that the loss of function paradigm to eliminate extraocular motor neurons did not 1) alter the normal functional connections between peripheral sensory neurons and central projection neurons, 2) affect the position of central projection neurons in the sensorimotor circuit, or 3) significantly alter the transcriptional profiles of central projection neurons. Together, these results strongly indicate that retrograde signals from motor neurons are not required for the development of the sensorimotor architecture of the vestibulo-ocular circuit.
Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:
The results of this study showed that extraocular motor neurons were not required for central projection neuron specification in the vestibulo-ocular circuit, which countered the prevailing retrograde hypothesis proposed for circuit assembly. A concern is that the results presented may be limited to this specific circuit and may not be generalizable to other circuit assemblies, even to other sensorimotor circuits.
Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:
As mentioned above, this study sheds valuable new insights into the developmental organization of the vestibulo-ocular circuit. However, different circuits likely utilize various mechanisms, extrinsic or intrinsic (or both), to establish proper functional connectivity. So, the results shown here, although begin to explain the developmental organization of the vestibulo-ocular circuit, are not likely to be generalizable to other circuits; though this remains to be seen. At a minimum, this study provides a starting point for the examination of patterning of connections in this and other sensorimotor circuits.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This is an interesting study of high quality with important and novel findings. Bruguera et al. report a biochemical and structural analysis of the Tspan12 co-receptor for norrin. Major findings are that Norrin directly binds Tspan12 with high affinity (this is consistent with a report on BioRxiv: Antibody Display of cell surface receptor Tetraspanin12 and SARS-CoV-2 spike protein) and a predicted structure of Tspan12 alone or in complex with Norrin. The Norrin/Tspan12 binding interface is largely verified by mutational analysis. An interaction of the Tspan12 large extracellular loop (LEL) with Fzd4 cannot be detected and interactions of full-length Tspan12 and Fzd4 cannot be tested using nano-disc based BLI, however, Fzd4/Tspan12 heterodimers can be purified and inserted into nanodiscs when aided by split GFP tags. An analysis of a potential composite binding site of a Fzd4/Tspan12 complex is somewhat inconclusive, as no major increase in affinity is detected for the complex compared to the individual components. A caveat to this data is that affinity measurements were performed for complexes with approximately 1 molecule Tspan12 and FZD4 per nanodisc, while the composite binding site could potentially be formed only in higher order complexes, e.g., 2:2 Fzd4/Tspan12 complexes. Interestingly, the authors find that the Norrin/Tspan12 binding site and the Norrin/Lrp6 binding site partially overlap and that the Lrp6 ectodomain competes with Tspan12 for Norrin binding. This result leads the authors to propose a model according to which Tspan12 captures Norrin and then has to "hand it off" to allow for Fzd4/Lrp6 formation. By increasing the local concentration of Norrin, Tspan12 would enhance the formation of the Fzd4/Lrp5 or Fzd4/Lrp6 complex.
The experiments based on membrane proteins inserted into nano-discs and the structure prediction using AlphaFold yield important new insights into a protein complex that has critical roles in normal CNS vascular biology, retinal vascular disease, and is a target for therapeutic intervention. However, it remains unclear how Norrin would be "handed off" from Tspan12 or Tspan12/Fzd4 complexes to Fzd4/Lrp6 complexes, as the relatively high affinity of Norrin to Fzd4/Tspan12 dimers likely does not favor the "handing off" to Fzd4/Lrp6 complexes.
Areas that would benefit from further experiments, or a discussion, include:
- The authors test a potential composite binding site of Fzd4/Tspan12 heterodimers for norrin using nanodiscs that contain on average about 1 molecule Fzd4 and 1 molecule Tspan12. The Fzd4/Tspan12 heterodimer is co-inserted into the nanodiscs supported by split-GFP tags on Fzd4 and Tspan12. The authors find no major increase in affinity, although they find changes to the Hill slope, reflecting better binding of norrin at low norrin concentrations. In 293F cells overexpressing Fzd4 and Tspan12 (which may result in a different stoichiometry) they find more pronounced effects of norrin binding to Fzd4/Tspan12. This raises the possibility that the formation of a composite binding requires Fzd4/Tspan12 complexes of higher order, for example, 2:2 Fzd4/Tspan12 complexes, where the composite binding site may involve residues of each Fzd4 and Tspan12 molecule in the complex. This could be tested in nanodiscs in which Fzd4 and Tspan12 are inserted at higher concentrations or using Fzd4 and Tspan12 that contain additional tags for oligomerization.
- While Tspan12 LEL does not bind to Fzd4, the successful reconstitution of GFP from Tspan12 and Fzd4 tagged with split GFP components provides evidence for Fzd4/Tspan12 complex formation. As a negative control, e.g., Fzd5, or Tspan11 with split GFP tags (Fzd5/Tspan12 or Fzd4/Tspan11) would clarify if FZD4/Tspan12 heterodimers are an artefact of the split GFP system.
- Fzd4/Tspan12 heterodimers stabilized by split GFP may be locked into an unfavorable orientation that does not allow for the formation of a composite binding site of FZD4 and Tspan12, this is another caveat for the interpretation that Fzd4/Tspan12 do not form a composite binding site. This is not discussed.
- Mutations that affect the affinity of norrin/fzd4 are not used to further test if Fzd4 and Tspan12 form a composite binding site. Norrin R41E or Fzd4 M105V were previously reported to reduce norrin/frizzled4 interactions and signaling, and both interaction and signaling were restored by Tspan12 (Lai et al. 2017). Whether a Fzd4/Tspan12 heterodimer has increased affinity for Norrin R41E was not tested. Similarly, affinity of FZD4 M105V vs a Fzd4 M105V/Tspan12 heterodimer were not tested.
- An important conclusion of the study is that Tspan12 or Lrp6 binding to Norrin is mutually exclusive. This could be corroborated by an experiment in which LRP5/6 is inserted into nanodiscs for BLI binding tests with Norrin, or Tspan12 LEL, or a combination of both. Soluble LRP6 may remove norrin from equilibrium binding/unbinding to Tspan12, therefore presenting LRP6 in a non-soluble form may yield different results.
- The authors use LRP6 instead of LRP5 for their experiments. Tspan12 is less effective in increasing the Norrin/Fzd4/Lrp6 signaling amplitude compared to Norrin/Fzd4/Lrp5 signaling, and human genetic evidence (FEVR) implicates LRP5, not LRP6, in Norrin/Frizzled4 signaling. The authors find that Norrin binding to LRP6 and Tspan12 is mutually exclusive, however this may not be the case for Lrp5.
- The biochemical data are largely not correlated with functional data. The authors suggest that the Norrin R115L FEVR mutation could be due to reduced norrin binding to tspan12, but do not test if Tspan12-mediated enhancement of the norrin signaling amplitude is reduced by the R115L mutation. Similarly, the impressive restoration of binding by charge reversal mutations in site 3 is not corroborated in signaling assays.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Karim et al investigated the regulation of ACSS2 by SIRT2. The authors identified a previously undescribed acetylation that they then show is important for the regulation and stability of ACSS2 in cells. The authors show that ACSS2 ubiquitination and degradation by the proteasome is regulated by SIRT2-mediated deacetylation of ACSS2 and that stabilizing ACSS2 by blocking SIRT2 can alter lipid accumulation in adipocytes.
Strengths:
Identification of a novel acetylation site on ACSS2 that regulates its protein stability and that has consequences on its activity in adipocytes. Multiple standard approaches were used to manipulate the expression and function of SIRT2 and ACSS2 (i.e., overexpression, knockdown, inhibitors).
Weaknesses:
The authors do not show direct deacetylation of ACSS2 by SIRT2 in an in vitro biochemical assay.
It would have been nice to have included a bona-fide SIRT2 target as a control throughout the study.
Throughout the manuscript, normalizing the data to 1 and then comparing the fold-change using a t-test is not the best statistical approach in that situation since every normalized value for control is 1 with zero standard deviation. The authors should consider an alternative statistical approach.
Though not necessary, using 13C-acetate or D3-acetate tracing would be better for understanding the impact of acetylation on the activity of ACSS2 and its impact on lipogenesis.
Did the authors also consider investigating SIRT1 in their assays? SIRT1 activates ACSS2 while SIRT2 leads to degradation of ACSS2. They should at least discuss these seemingly opposing roles of SIRT1 and SIRT2 in the regulation of ACSS2 and acetate metabolism in more depth, particularly as it concerns situations (i.e., diseases, pathologies) where either SIRT1, SIRT2, or both sirtuins, are active. This would enhance the significance of the findings to the broader research community.
In Figure 3, the authors should consider immunoblotting for endogenous ACSS2 throughout the differentiation and lipogenesis study since the total ACSS2 levels is the crucial aspect to affecting acetate-dependent promotion of lipogenesis in adipocytes, and to confirm TM-dependent stabilization of ACSS2 in that assay.
Do the authors have any data proving the K271 mutants of ACSS2 are still functional? Or that K271 ACSS2 protein is folded correctly?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this study by Bendzunas et al, the authors show that the formation of intra-molecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys at an unusual CPE motif at the end of the activation segment function as repressive regulatory mechanisms in BSK1 and 2. They observed that mutation of the CPE-Cys only, contrary to the double mutation of the pair, increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family. Understanding the molecular mechanisms underlying kinase regulation by redox-active Cys residues is fundamental as it appears to be widespread in signaling proteins and provides new opportunities to develop specific covalent compounds for the targeted modulation of protein kinases.
The authors demonstrate that intramolecular cysteine disulfide bonding between conserved cysteines can function as a repressing mechanism as indicated by the effect of DTT and the consequent increase in activity by BSK-1 and -2 (WT). The cause-effect relationship of why mutation of the CPE-Cys only increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells is not clear to me. The explanation given by the authors based on molecular modeling and molecular dynamics simulations is that oxidation of the CPE-Cys (that will favor disulfide bonding) destabilizes a conserved salt bridge network critical for allosteric activation. However, no functional evidence of the impact of the salt-bridge network is provided. If you mutated the two main Cys-pairs (aE-CHRD and A-loop T+2-CPE) you lose the effect of DTT, as the disulfide pairs cannot be formed, hence no repression mechanisms take place, however when looking at individual residues I do not understand why mutating the CPE only results in the opposite effect unless it is independent of its connection with the T+2residue on the A-loop.
Strengths:
This is an important and interesting study providing new knowledge in the protein kinase field with important therapeutic implications for the rationale design and development of next-generation inhibitors.
Comments on revised version:
I have one remark related to question number 5 (my question was not clear enough). I meant if the authors did look at the functional relevance of the residues implicated in the identified salt-bridge network/tethers. What happens to the proteins functionally when you mutate those residues? (represented on Fig. 8).
Otherwise, the authors have satisfactorily addressed my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes, and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.
Strengths:
Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.<br /> The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.<br /> The addition of a new validation cohort to evaluate the generalisability of their prognostic model in the revised manuscript is welcome.
Weaknesses:
The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis cannot be used to make causal inferences. In addition the functional annotations are limited to 'high-level' terms that fail to define the biology very precisely. As a result, the conclusions about the immunopathogenesis of TBM are not adequately substantiated.<br /> The lack of AUROC confidence intervals and direct comparison to the reference prognostic model in the validation cohort undermines confidence in their conclusion that their new prognostic model combing gene expression data and clinical variables performs better than the reference model.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public Review):
Summary:
The endocannabinoid system (ECS) regulates many critical functions, including reproductive function. Recent evidence indicates that dysregulated ECS contributes to endometriosis pathophysiology and the microenvironment. Therefore, the authors further examined the dysregulated ECS and its mechanisms in endometriosis lesion establishment and progression using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. The authors presented differential gene expressions and altered pathways, especially those related to the adaptive immune response in CNR1 and CNR2 ko lesions. Interstingly, the T-cell population was dramatically reduced in the peritoneal cavity lacking CNR2, and the loss of proliferative activity of CD4+ T helper cells. Imaging mass cytometry analysis provided spatial profiling of cell populations and potential relationships among immune cells and other cell types. This study provided fundamental knowledge of the endocannabinoid system in endometriosis pathophysiology.
Strengths:
Dysregulated ECS and its mechanisms in endometriosis pathogenesis were assessed using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. Not only endometriotic lesions, but also peritoneal exudate (and splenic) cells were analyzed to understand the specific local disease environment under the dysregulated ECS.
Providing the results of transcriptional profiles and pathways, immune cell profiles, and spatial profiles of cell populations support altered immune cell population and their disrupted functions in endometriosis pathogenesis via dysregulation of ECS.
In line 386: Role of CNR2 in T cells. The finding that nearly absent CD3+ T cells in the peritoneal cavity of CNR2 ko mice is intriguing.
The interpretation of the results is well-described in the Discussion.
Weaknesses:
The study was terminated and characterized 7 days after EM induction surgery without the details for selecting the time point to perform the experiments.
The authors also mentioned that altered eutopic endometrium contributes to the establishment and progression of endometriosis. This reviewer agrees with lines 324-325. If so, DEGs are likely identified between eutopic endometrium (with/without endometriosis lesion induction) and ectopic lesions. It would be nice to see the data (even though using publicly available data sets).
Figure 7 CDEF. The results of the statistical analyses and analyzed sample numbers should be added. Lines 444-450 cannot be reviewed without them.
This reviewer agrees with lines 498-500. In contrast, retrograded menstrual debris is not decidualized. The section could be modified to avoid misunderstanding.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.
The conclusions of this study are mostly well supported by data. However, there is a weakness in the study that needs to be clarified.
In Figure 2A, although some references supported that SKBR3 and MCF-7 possess poorly aggressive and less invasive abilities, examining only RGS10 expression in those cells, it could not be concluded that 'RGS10 acts as a tumor suppressor in breast cancer'. It would be better to introduce a horizontal comparison of the invasive ability of these 3 types of cells using an invasion assay.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Weinberg et al. show that spike LCB minibinders can be used as the extracellular domain for SynNotch, SNIPR, and CAR. They evaluated their designs against cells expressing the target proteins and live virus.
Strengths:
This is a good fundamental demonstration of alternative use of the minibinder. The results are unsurprising but robust and solid in most cases.
Weaknesses:
The manuscript would benefit from better descriptions of the study's novelty. Given that LCB previously worked in SynNotch, what unexpected finding was uncovered by this study? It is well known that the extracellular domain of CAR is amendable to different types of binding domains (e.g., scFv, nanobody, DARPin, natural ligands). So, it is not surprising that a minibinder also works with CAR. We don't know if the minibinders are more or less likely to be compatible with CAR or SNIPR.
The demonstrations are all done using just 1 minibinder. It is hard to conclude that minibinders, as a unique class of protein binders, are generalizable in different contexts. All it can conclude is that this specific Spike minibinder can be used in synNotch, SNIPR, and CAR. The LCB3 minibinder seems to be much weaker.
The sensing of live viruses is interesting, but the output is very weak. It is difficult to imagine a utility for such a weak response.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this new paper, the authors used biochemical, structural, and biophysical methods to elucidate the mechanisms by which IP4, the PIP3 headgroup, can induce an autoinhibit form of P-Rex1 and propose a model of how PIP3 can trigger long-range conformational changes of P-Rex1 to relieve this autoinhibition. The main findings of this study are that a new P-Rex1 autoinhibition is driven by an IP4-induced binding of the PH domain to the DH domain active site and that this autoinhibit form stabilized by two key interactions between DEP1 and DH and between PH and IP4P 4-helix bundle (4HB) subdomain. Moreover, they found that the binding of phospholipid PIP3 to the PH domain can disrupt these interactions to relieve P-Rex1 autoinhibition.
Strengths:
The study provides good evidence that binding of IP4 to the P-Rex1 PH domain can make the two long-range interactions between the catalytic DH domain and the first DEP domain, and between the PH domain and the C-terminal IP4P 4HB subdomain that generate a novel P-Rex1 autoinhibition mechanism. This valuable finding adds an extra layer of P-Rex1 regulation (perhaps in the cytoplasm) to the synergistic activation by phospholipid PIP3 and the heterotrimeric Gβγ subunits at the plasma membrane. Overall, this manuscript's goal sounds interesting, the experimental data were carried out carefully and reliably.
Weakness:
The set of experiments with the disulfide bond S235C/M244C caused a bit of confusion for interpretation, it should be moved into the supplement, and the text and Figure 4 were altered accordingly.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This manuscript describes an adaptive laboratory evolution (ALE) study with a previously constructed genome-reduced E. coli. The growth performance of the end-point lineages evolved in M63 medium was comparable to the full-length wild-type level at lower cell densities.
Subsequent mutation profiling and RNA-Seq analysis revealed many changes on the genome and transcriptomes of the evolved lineages. The authors did a great deal on analyzing the patterns of evolutionary changes between independent lineages, such as the chromosomal periodicity of transcriptomes, pathway enrichment analysis, weight gene co-expression analysis, and so on. They observed a striking diversity in the molecular characteristics amongst the evolved lineages, which, as they suggest, reflect divergent evolutionary strategies adopted by the genome-reduced organism.
As for the overall quality of the manuscript, I am rather torn. The manuscript leans towards elaborating observed findings, rather than explaining their biological significance. For this reason, readers are left with more questions than answers. For example, fitness assay on reconstituted (single and combinatorial) mutants was not performed, nor any supporting evidence on the proposed contributions of each mutants provided. This leaves the nature of mutations - be them beneficial, neutral or deleterious, the presence of epistatic interactions, and the magnitude of fitness contribution, largely elusive. Also, it is difficult to tell whether the RNA-Seq analysis in this study managed to draw biologically meaningful conclusions, or instill insight into the nature of genome-reduced bacteria. The analysis primarily highlighted the differences in transcriptome profiles among each lineage based on metrics such as 'DEG counts' and the 'GO enrichment'. However, I could not see any specific implications regarding the biology of the evolved minimal genome drawn. In their concluding remark, 'Multiple evolutionary paths for the reduced genome to improve growth fitness were likely all roads leading to Rome,' the authors observed the first half of the sentence, but the distinctive characteristics of 'all roads' or 'evolutionary paths', which I think should have been the key aspect in this investigation, remains elusive.
Comments on revised version:
I appreciate the author's responses. They responded to most of the comments, but I still think that there is room for improvement. Please refer to the following comments. Quoted below are the author's responses.
"We agree that our study leaned towards elaborating observed findings rather than explaining the detailed biological mechanisms."<br /> - Comment: I doubt if there are scientific merits in merely elaborating observed findings. The conclusion of this study suggests that evolutionary paths in reduced genomes are highly diverse. But if you think about the nature of adaptive evolution, which relies upon the spontaneous mutation event followed by selection, certain degree of divergence is always expected. The problem with current experimental setting is that there are no ways to quantitively assess whether the degree of evolutionary divergence increases as the function of genome reduction, as the authors claimed. In addition, this notion is in direct contradiction to the prediction that genome reduction constraints evolution by reducing the number of solution space. It is more logical to think and predict that genome reduction would, in turn, lead to the loss of evolutionary divergence. We are also interested to know whether solution space to the optimization problem altered in response to the genome reduction. In this regard, a control ALE experiment on non-reduced wild-type seems to be a mandatory experimental control. I highly suggest that authors present a control experiment, as it was done for "JCVI syn3.0B vs non-minimal M. mycoides" (doi: 10.1038/s41586 023 06288 x) and "E. coli eMS57 vs MG1655" (doi: 10.1038/s41467 019 08888 6).<br /> "We focused on the genome wide biological features rather than the specific biological functions."<br /> - Comment: The 'biological features' delivered in current manuscript does not give insight as to which genomic changes translated into strain fitness improvement. Rather than explaining the genotype-phenotype relationships and/or the mechanistic basis of fitness improvement, authors merely elaborated on the observed phenotypes. I question the scientific merits of such 'findings'.<br /> "Although the reduced growth rate caused by genome reduction could be recovered by experimental evolution, it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome and how the genome wide changes occurred to match the growth fitness increase."<br /> - Comment: This response is very confusing to understand. "it remains unclear whether such an evolutionary improvement in growth fitness was a general feature of the reduced genome" - what aspects remain unclear?? What assumption led the authors to believe that reduced genome's fitness cannot be evolutionarily improved?<br /> - Comment: "and how the genome wide changes occurred to match the growth fitness increase" - this is exactly the aspect that authors should deliver, instead of just elaborating the observed findings. Why don't authors select one or two fastest-growing (or the fittest) lineages and specifically analyze underlying adaptive changes (i.e. genotype-phenotype relationships)?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors provide evidence that posttranslational modification of synuclein by N-acetylation increases clustering of synaptic vesicles in vitro. When using liposomes the authors found that while clustering is enhanced by the presence of either lysophosphatidylcholine (LPC) or phosphatidylcholine in the membrane, N-acetylation enhanced clustering only in the presence of LPC. Enhancement of binding was also observed when LPC micelles were used, which was corroborated by increased intra/intermolecular cross-linking of N-acetylated synuclein in the presence of LPC.
Strengths:
It is known for many years that synuclein binds to synaptic vesicles but the physiological role of this interaction is still debated. The strength of this manuscript is clearly in the structural characterization of the interaction of synuclein and lipids (involving NMR-spectroscopy) showing that the N-terminal 100 residues of synuclein are involved in LPC-interaction, and the demonstration that N-acetylation enhances the interaction between synuclein and LPC.
Weaknesses:
Lysophosphatides form detergent-like micelles that destabilize membranes, with their steady-state concentrations in native membranes being low, questioning the significance of the findings. Oddly, no difference in binding between the N-acetylated and unmodified form was observed when the acidic phospholipid phosphatidylserine was included. It remains unclear to which extent binding to LPC is physiologically relevant, particularly in the light of recent reports from other laboratories showing that synuclein may interact with liquid-liquid phases of synapsin I that were reported to cause vesicle clustering.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, Badugu et al investigate the Rev7 roles in regulating the Mre11-Rad50-Xrs2 complex and in the metabolism of G4 structures. The authors also try to make a conclusion that REV7 can regulate the DSB repair choice between homologous recombination and non-homologous end joining.
The major observations of this study are:
(1) Rev7 interacts with the individual components of the MRX complex in a two-hybrid assay and in a protein-protein interaction assay (microscale thermophoresisi) in vitro.<br /> (2) Modeling using AlphaFold-Multimier also indicated that Rev7 can interact with Mre11 and Rad50.<br /> (3) Using a two-hybrid assay, a 42 C terminal domain in Rev7 responsible for the interaction with MRX was identified.<br /> (4) Rev7 inhibits Mre11 nuclease and Rad50 ATPase activities in vitro.<br /> (5) Rev 7 promotes NHEJ in plasmid cutting/relegation assay.<br /> (6) Rev7 inhibits recombination between chromosomal ura3-1 allele and plasmid ura3 allele containing G4 structure.<br /> (7) Using an assay developed in V. Zakian's lab, it was found that rev7 mutants grow poorly when both G4 is present in the genome and yeast are treated with HU.<br /> (8) In vitro, purified Rev7 binds to G4-containing substrates.
In general, a lot of experiments have been conducted, but the major conclusion about the role of Rev7 in regulating the choice between HR and NHEJ is not justified.
(1) Two stories that do not overlap (regulation of MRX by Rev7 and Rev7's role in G4 metabolism) are brought under one umbrella in this work. There is no connection unless the authors demonstrate that Rev7 inhibits the cleavage of G4 structures by the MRX complex.
(2) The authors cannot conclude based on the recombination assay between G4-containing 2-micron plasmid and chromosomal ura3-1 that Rev7" completely abolishes DSB-induced HR". First of all, there is no evidence that DSBs are formed at G4. Why is there no induction of recombination when cells are treated with HU? Second, as the authors showed, Rev7 binds to G4, therefore it is not clear if the observed effects are the result of Rev7 interaction with G4 or its impact on HR. The established HO-based assays where the speed of resection can be monitored (e.g., Mimitou and Symington, 2010) have to be used to justify the conclusion that Rev7 inhibits MRX nuclease activity in vivo.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In their manuscript "Released Bacterial ATP Shapes Local and Systemic Inflammation during Abdominal Sepsis", Daniel Spari et al. explored the dual role of ATP in exacerbating sepsis, revealing that ATP from both host and bacteria significantly impacts immune responses and disease progression.
Strengths:<br /> The study meticulously examines the complex relationship between ATP release and bacterial growth, membrane integrity, and how bacterial ATP potentially dampens inflammatory responses, thereby impairing survival in sepsis models. Additionally, this compelling paper implies a concept that bacterial OMVs act as vehicles for the systemic distribution of ATP, influencing neutrophil activity and exacerbating sepsis severity.
Weaknesses:
(1) The researchers extracted and cultivated abdominal fluid on LB agar plates, then randomly picked 25 colonies for analysis. However, they did not conduct 16S rRNA gene amplicon sequencing on the fluid itself. It is worth noting that the bacterial species present may vary depending on the individual patients. It would be beneficial if the authors could specify whether they've verified the existence of unculturable species capable of secreting high levels of Extracellular ATP.
(2) Do mice lacking commensal bacteria show a lack of extracellular ATP following cecal ligation puncture?
(3) The authors isolated various bacteria from abdominal fluid, encompassing both Gram-negative and Gram-positive types. Nevertheless, their emphasis appeared to be primarily on the Gram-negative E. coli. It would be beneficial to ascertain whether the mechanisms of Extracellular ATP release differ between Gram-positive and Gram-negative bacteria. This is particularly relevant given that the Gram-positive bacterium E. faecalis, also isolated from the abdominal fluid, is recognized for its propensity to release substantial amounts of Extracellular ATP.
(4) The authors observed changes in the levels of LPM, SPM, and neutrophils in vivo. However, it remains uncertain whether the proliferation or migration of these cells is modulated or inhibited by ATP receptors like P2Y receptors. This aspect requires further investigation to establish a convincing connection.
(5) Additionally, is it possible that the observed in vivo changes could be triggered by bacterial components other than Extracellular ATP? In this research field, a comprehensive collection of inhibitors is available, so it is desirable to utilize them to demonstrate clearer results.
(6) Have the authors considered the role of host-derived Extracellular ATP in the context of inflammation?
(7) The authors mention that Extracellular ATP is rapidly hydrolyzed by ectonucleotases in vivo. Are the changes of immune cells within the peritoneal cavity caused by Extracellular ATP released from bacterial death or by OMVs?
(8) In the manuscript, the sample size (n) for the data consistently remains at 2. I would suggest expanding the sample size to enhance the robustness and rigor of the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This work has an important and ambitious goal: understanding the effects of drugs, in this case antimicrobial molecules, from a holistic perspective. This means that the effect of drugs on a group of genes and whole metabolic pathways is unveiled, rather than its immediate effect on a protein target only. To achieve this goal the authors successfully implement the PISA-Express method (Protein Integral Solubility Alteration), using combined transcriptomics, proteomics, and drug-induced changes in protein stability to retrieve a large number of genes and proteins affected by the used compounds. The compounds used in the study (compound IVa, IVb, IVj, and IVk) were all derived from the precursors compound IV, they are effective against Helicobacter pylori, and their mode of action on clusters of genes and proteins has been compared to the one of the known pylori drug metronidazole (MNZ). Due to this comparison, and confirmed by the diversity of responses induced by these very similar compounds, it can be understood that the approach used is reliable and very informative. Notably, although all compound IV derivatives were designed to target pylori Flavodoxin (Fld), only one showed a statistically significant shift of Fld solubility (compound IVj, FIG S11). For most other compounds, instead, the involvement of other possible targets affecting diverse metabolic pathways was also observed, notably concerning a series of genes with other important functions: CagA (virulence factor), FtsY/FtsA (cell division), AtpD (ATP-synthase complex), the essential GTPase ObgE, Tig (protein export), as well as other proteins involved in ribosomal synthesis, chemotaxis/motility and DNA replication/repairs. Finally, for all tested molecules, in vivo functional data have been collected that parallel the omics predictions, comforting them and showing that compound IV derivatives differently affect cellular generation of reactive oxygen species (ROS), oxygen consumption rates (OCR), DNA damage, and ATP synthesis.
Strengths:
The approach used is very potent in retrieving the effects of chemically active molecules (in this case antimicrobial ones) on whole cells, evidencing protein and gene networks that are involved in cell sensitivity to the studied molecules. The choice of these compounds against H. pylori is perfect, showcasing how different the real biological response is, compared to the hypothetical one. In fact, although all molecules were retrieved based on their activity on Fld, the authors unambiguously show that large unexpected gene clusters may, and in fact are, affected by these compounds, and each of them in different manners.
Impact:
The present work is the first report relying on PISA-Express performed on living bacterial cells. Because of its findings, this work will certainly have a high impact on the way we design research to develop effective drugs, allowing us to understand the fine effects of a drug on gene clusters, drive molecule design towards specific metabolic pathways, and eventually better plan the combination of multiple active molecules for drug formulation. Beyond this, however, we expect this article to impact other related and unrelated fields of research as well. The same holistic approaches might also allow gaining deep, and sometimes unexpected, insight into the cellular targets involved in drug side effects, drug resistance, toxicity, and cellular adaptation, in fields beyond the medicinal one, such as cellular biology and environmental studies on pollutants.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.
The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.
Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.
Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.
Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.
Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Casas-Tinto et al., provide new insight into glial plasticity using a crush injury paradigm in the ventral nerve cord (VNC) of adult Drosophila. The authors find that both astrocyte-like glia (ALG) and ensheating glia (EG) divide under homeostatic conditions in the adult VNC and identify ALG as the glial population that specifically ramps up proliferation in response to injury, whereas the number of EGs decreases following the insult. Using lineage-tracing tools, the authors interestingly observe the interconversion of glial subtypes, especially of EGs into ALGs, which occurs independent of injury and is dependent on the availability of the transcription factor Prospero in EGs, adding to the plasticity observed in the system. Finally, when tracing the progeny of differentiated glia, Casas-Tinto and colleagues detect cells of neuronal identity and provide evidence that such glia-derived neurogenesis is specifically favored following ventral nerve cord injury, which puts forward a remarkable way in which glia can respond to neuronal damage.
Strengths:
This study highlights a new facet of adult nervous system plasticity at the level of the ventral nerve cord, supporting the view that proliferative capacity is maintained in the mature CNS and stimulated upon injury.
The injury paradigm is well chosen, as the organization of the neuromeres allows specific targeting of one segment, compared to the remaining intact, and with the potential to later link observed plasticity to behavior such as locomotion.
Numerous experiments have been carried out in 7-day-old flies, showing that the observed plasticity is not due to residual developmental remodeling or a still immature VNC.
By elegantly combining different genetic tools, the authors show glial divisions with mitotic-dependent tracing and find that the number of generated glia is refined by apoptosis later on.
The work identifies Prospero in glia as an important coordinator of glial cell fate, from development to the adult context, which draws further attention to the upstream regulatory mechanisms.
Weaknesses:
Although the authors do use a variety of methods to show glial proliferation, the EdU data (Figure 1B) could be more informative (Figure 1B) by displaying images of non-injured animals and providing quantifications or the mention of these numbers based on results previously acquired in the system.
The experiments relying on the FUCCI cell cycle reporter suggested considerable baseline proliferation for EGs and ALGs, but when using an independent method (Twin Spot MARCM), mitotic marking was only detected for ALGs. This discrepancy could be addressed by assessing the co-localization of the different glia subsets using the identified driver lines with mitotic markers such as PH3.
The data in Figure 1C would be more convincing in combination with images of the FUCCI Reporter as it can provide further information on the location and proportion of glia that enter the cell cycle versus the fraction that remains quiescent.
The analyses of inter-glia conversion in Figure 3 are complicated by the fact that Prospero RNAi is both used to suppress EG - to ALG conversion and as a marker to establish ALG nature. Clarifications if the GFP+ cells still expressed Pros or were classified as NP-like GFP cells are required here.
The conclusion that ALG and EG glial cells can give rise to cells of neuronal lineage is based on glial lineage information (GFP+ cells from glial G-trace) and staining for the neuronal marker Elav. The use of other neuronal markers apart from Elav or morphological features would provide a more compelling case that GFP+ cells are mature neurons.
Although the text discusses in which contexts, glial plasticity is observed or increased upon injury, the figures are less clear regarding this aspect. A more systematic comparison of injured VNCs versus homeostatic conditions, combined with clear labelling of the injury area would facilitate the understanding of the panels.
Context/Discussion
The study finds that glia in the ventral cord of flies have latent neurogenic potential. Such observations have not been made regarding glia in the fly brain, where injury is reported to drive glial divisions or the proliferation of undifferentiated progenitor cells with neurogenic potential.
Discussing this different strategy for cell replacement adopted by glia in the VNC and pointing out differences to other modes seems fascinating. Highlighting differences in the<br /> the reactiveness of glia in the VNC compared to the brain also seems highly relevant as they may point to different properties to repair damage.
Based on the assays employed, the study points to a significant amount of glial "identity" changes or interconversions, which is surprising under homeostatic conditions. The significance of this "baseline" plasticity remains undiscussed, although glia unarguably show extensive adaptations during nervous system development.
It would be interesting to know if the "interconversion" of glia is determined by the needs in the tissue or would shift in the context of selective ablation/suppression of a glial type.
-
-
sul-dlss.github.io sul-dlss.github.io
-
phychoetherin
This one was wrong in the reference transcript too. It should be Phycoerythrin.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors provide strong evidence that bacteria, such as E. coli, compete with tumor cells for iron resources and consequently reduce tumor growth. When sequestration between LCN2 and bacterobactin is blocked by upregulating CDG(DGC-E. coli) or salmochelin(IroA-E.coli), E. coli increase iron uptake from the tumor microenvironment (TME) and restrict iron availability for tumor cells. Long-term remission in IroA-E.coli treated mice is associated with enhanced CD8+ T cell activity. Additionally, systemic delivery of IroA-E.coli shows a synergistic effect with chemotherapy reagent oxaliplatin to reduce tumor growth.
Strengths:
It is important to identify the iron-related crosstalk between E. coli and TME. Blocking lcn2-bacterobactin sequestration by different strategies consistently reduce tumor growth.
Weaknesses:
As engineered E.coli upregulate their function to uptake iron, they may increase the likelihood of escaping from nutritional immunity (LCN2 becomes insensitive to sequester iron from the bacteria). Would this raise the chance of developing sepsis? Do authors think that it is safe to administrate these engineered bacteria in mice or humans?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The goal of the present study is to better understand the 'control objectives' that subjects adopt in a video-game-like virtual-balancing task. In this task, the hand must move in the opposite direction from a cursor. For example, if the cursor is 2 cm to the right, the subject must move their hand 2 cm to the left to 'balance' the cursor. Any imperfection in that opposition causes the cursor to move. E.g., if the subject were to move only 1.8 cm, that would be insufficient, and the cursor would continue to move to the right. If they were to move 2.2 cm, the cursor would move back toward the center of the screen. This return to center might actually be 'good' from the subject's perspective, depending on whether their objective is to keep the cursor still or keep it near the screen's center. Both are reasonable 'objectives' because the trial fails if the cursor moves too far from the screen's center during each six-second trial.
This task was recently developed for use in monkeys (Quick et al., 2018), with the intention of being used for the study of the cortical control of movement, and also as a task that might be used to evaluate BMI control algorithms. The purpose of the present study is to better characterize how this task is performed. What sort of control policies are used. Perhaps more deeply, what kind of errors are those policies trying to minimize? To address these questions, the authors simulate control-theory style models and compare with behavior. They do in both in monkeys and in humans.
These goals make sense as a precursor to future recording or BMI experiments. The primate motor-control field has long been dominated by variants of reaching tasks, so introducing this new task will likely be beneficial. This is not the first non-reaching task, but it is an interesting one and it makes sense to expand the presently limited repertoire of tasks. The present task is very different from any prior task I know of. Thus, it makes sense to quantify behavior as thoroughly as possible in advance of recordings. Understanding how behavior is controlled is, as the authors note, likely to be critical to interpreting neural data.
From this perspective - providing a basis for interpreting future neural results - the present study is fairly successful. Monkeys seem to understand the task properly, and to use control policies that are not dissimilar from humans. Also reassuring is the fact that behavior remains sensible even when task-difficulty become high. By 'sensible' I simply mean that behavior can be understood as seeking to minimize error: position, velocity, or (possibly) both, and that this remains true across a broad range of task difficulties. The authors document why minimizing position and minimizing velocity are both reasonable objectives. Minimizing velocity is reasonable, because a near-stationary cursor can't move far in six seconds. Minimizing position error is reasonable, because the trial won't fail if the cursor doesn't stray far from the center. This is formally demonstrated by simulating control policies: both objectives lead to control policies that can perform the task and produce realistic single-trial behavior. The authors also demonstrate that, via verbal instruction, they can induce human subjects to favor one objective over the other. These all seem like things that are on the 'need to know' list, and it is commendable that this amount of care is being taken before recordings begin, as it will surely aid interpretation.
Yet as a stand-alone study, the contribution to our understanding of motor control is more limited. The task allows two different objectives (minimize velocity, minimize position) to be equally compatible with the overall goal (don't fail the trial). Or more precisely, there exists a range of objectives with those two at the extreme. So it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control, or simply that there is a natural ambiguity built into the task? If I ask you to play a game, but don't fully specify the rules, should I be surprised that different people think the rules are slightly different?
The most interesting scientific claim of this study is not the subject-to-subject variability; the task design makes that quite likely and natural. Rather, the central scientific result is the claim that individual subjects are constantly switching objectives (and thus control policies), such that the policy guiding behavior differs dramatically even on a single-trial basis. This scientific claim is supported by a technical claim: that the authors' methods can distinguish which objective is in use, even on single trials. I am uncertain of both claims.
Consider Figure 8B, which reprises a point made in Figure 1&3 and gives the best evidence for trial-to-trial variability in objective/policy. For every subject, there are two example trials. The top row of trials shows oscillations around the center, which could be consistent with position-error minimization. The bottom row shows tolerance of position errors so long as drift is slow, which could be consistent with velocity-error minimization. But is this really evidence that subjects were switching objectives (and thus control policies) from trial to trial? A simpler alternative would be a single control policy that does not switch, but still generates this range of behaviors. The authors don't really consider this possibility, and I'm not sure why. One can think of a variety of ways in which a unified policy could produce this variation, given noise and the natural instability of the system.
Indeed, I found that it was remarkably easy to produce a range of reasonably realistic behaviors, including the patterns that the authors interpret as evidence for switching objectives, based on a simple fixed controller. To run the simulations, I made the simple assumption that subjects simply attempt to match their hand position to oppose the cursor position. Because subjects cannot see their hand, I assumed modest variability in the gain, with a range from -1 to -1.05. I assumed a small amount of motor noise in the outgoing motor command. The resulting (very simple) controller naturally displayed the basic range of behaviors observed across trials (see Image 1)
Image 1.
Some trials had oscillations around the screen center (zero), which is the pattern the authors suggest reflects position control. In other trials the cursor was allowed to drift slowly away from the center, which is the pattern the authors suggest reflects velocity control. This is true even though the controller was the same on every trial. Trial-to-trial differences were driven both by motor noise and by the modest variability in gain. In an unstable system, small differences can lead to (seemingly) qualitatively different behavior on different trials.
This simple controller is also compatible with the ability of subjects to adapt their strategy when instructed. Anyone experienced with this task likely understands (or has learned) that moving the hand slightly more than 'one should' will tend to shepherd the cursor back to center, at the cost of briefly high velocity. Using this strategy more sparingly will tend to minimize velocity even if position errors persist. Thus, any subject using this control policy would be able to adapt their strategy via a modest change in gain (the gain linking visible cursor position to intended hand position).
This model is simple, and there may be reasons to dislike it. But it is presumably a reasonable model. The nature of the task is that you should move your hand opposite where the cursor is. Because you can't see your hand, you will make small mistakes. Due to the instability of the system, those small mistakes have large and variable effects. This feature is likely common to other controllers as well; many may explicitly or implicitly blend position and velocity control, with different trials appearing more dominated by one versus the other. Given this, I think the study presents only weak evidence that individual subjects are switching their objective on individual trials. Indeed, the more parsimonious explanation may be that they aren't. While the study certainly does demonstrate that the control policy can be influenced by verbal instructions, this might be a small adjustment as noted above.
I thus don't feel convinced that the authors can conclusively tell us the true control policy being used by human and monkey subjects, nor whether that policy is mostly fixed or constantly switching. The data are potentially compatible with any of these interpretations, depending on which control-style model one prefers.
I see a few paths that the authors might take if they chose.<br /> --First, my reasoning above might be faulty, or there might be additional analyses that could rule out the possibility of a unified policy underlying variable behavior. If so, the authors may be able to reject the above concerns and retain the present conclusions. The main scientifically novel conclusion of the present study is that subjects are using a highly variable control policy, and switching on individual trials. If this is indeed the case, there may be additional analyses that could reveal that.<br /> --Second, additional trial types (e.g., with various perturbations) might be used as a probe of the control policy. As noted below, there is a long history of doing this in the pursuit system. That additional data might better disambiguate control policies both in general, and across trials.<br /> --Third, the authors might find that a unified controller is actually a good (and more parsimonious) explanation. Which might actually be a good thing from the standpoint of future experiments. Interpretation of neural data is likely to be much easier if the control policy being instantiated isn't in constant flux.
In any case, I would recommend altering the strength of some conclusions, particularly the conclusion that the presented methods can reliably discriminate amongst objectives/policies on individual trials. This is mentioned as a major motivation on multiple occasions, but in most of these instances, the subsequent analysis infers the objective only across trial (e.g., one must observe a scatterplot of many trials). By Figure 7, they do introduce a method for inferring the control policy on individual trials, and while this seems to work considerably better than chance, it hardly appears reliable.
In this same vein I would suggest toning down aspects of the Introduction and Discussion. The Introduction in particular is overly long, and tries to position the present study as unique in ways that seem strained. Other studies have built links between human behavior, monkey behavior, and monkey neural data (for just one example, consider the corpus of work from the Scott lab that includes Pruszynski et al. 2008 and 2011). Other studies have used highly quantitative methods to infer the objective function used by subjects (e.g. Kording and Wolpert 2004). The very issue that is of interest in the present study - velocity-error-minimization versus position-error-minimization - has been extensively addressed in the smooth pursuit system. That field has long combined quantitative analyses of behavior in humans and monkeys, along with neural recordings. Many pursuit experiments used strategies that could be fruitfully employed to address the central questions of the present study. For example, error stabilization was important for dissecting the control policy used by the pursuit system. By artificially stabilizing the error (position or velocity) at zero, or at some other value, one can determine the system's response. The classic Rashbass step (1961) put position and velocity errors in opposition, to see which dominates the response. Step and sinusoidal perturbations were useful in distinguishing between models, as was the imposition of artificially imposed delays. The authors note the 'richness' of the behavior in the present task, and while one could say the same of pursuit, it was still the case that specific and well-thought through experimental manipulations were pretty critical. It would be better if the Introduction considered at least some of the above-mentioned work (or other work in a similar vein). While most would agree with the motivations outlined by the authors - they are logical and make sense - the present Introduction runs the risk of overselling the present conclusions while underselling prior work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary
The paper concerns the phenomenon of continuous flash suppression (CFS), relevant to questions about the extent and nature of subconscious visual processing. Whereas standard CFS studies only measure the breakthrough threshold-the contrast at which an initially suppressed target stimulus with steadily increasing contrast becomes visible-this study also measures the re-suppression threshold, the contrast at which a visible target with decreasing contrast becomes suppressed. Thus, the authors could calculate suppression depth, the ratio between the breakthrough and re-suppression thresholds. To measure both thresholds, the study introduces the tracking-CFS method, a continuous-trial design that results in faster, better controlled, and lower-variance threshold estimates compared to the discrete trials standard in the literature. The study finds that suppression depths are similar for different image categories, providing an interesting contrast to previous results that breakthrough thresholds differ for different image categories. The new finding calls for a reassessment of interpretations based solely on the breakthrough threshold that subconscious visual processing is category-specific.
Strengths
(1) The tCFS method quickly estimates breakthrough and re-suppression thresholds using continuous trials, which also better control for slowly varying factors such as adaptation and attention. Indeed, tCFS produces estimates with lower across-subject variance than the standard discrete-trial method (Fig. 2). The tCFS method is straightforward to adopt in future research on CFS and binocular rivalry.
(2) The CFS literature has lacked re-suppression threshold measurements. By measuring both breakthrough and re-suppression thresholds, this work calculated suppression depth (i.e., the difference between the two thresholds), which warrants different interpretations from the breakthrough threshold alone.
(3) The work found that different image categories show similar suppression depths, suggesting some aspects of CFS are not category-specific. This result enriches previous findings that breakthrough thresholds vary with image categories. Re-suppression thresholds vary symmetrically, such that their differences are constant.
Weakness
I do not follow the authors' reasoning as to why the suppression depth is a better (or fuller, superior, more informative) indication of subconscious visual processing than the breakthrough threshold alone. To my previous round of comments, the authors replied that 'breakthrough provides only half of the needed information.' I do not understand this. One cannot infer the suppression depth from the breakthrough threshold alone, but *one cannot obtain the breakthrough threshold from the suppression depth alone*, either. The two measures are complementary. (To be sure, given *both* the suppression depth and the re-suppression threshold, one can recover the breakthrough threshold. The discussion concerns the suppression depth *alone* and the breakthrough threshold *alone*.) I am fully open to being convinced that there is a good reason why the suppression depth may be more informative than the breakthrough threshold about a specific topic, e.g., inter-ocular suppression or subconscious visual processing. I only request that the authors make such an argument explicit. For example, in the significance statement, the authors write, 'all images show equal suppression when both thresholds are measured. We *thus* find no evidence of differential unconscious processing and *conclude* reliance on breakthrough thresholds is misleading' (emphasis added). Just what supports the 'thus' and the 'conclude'? Similarly, at the end of the introduction, the authors write, '[...] suppression depth was constant for faces, objects, gratings and visual noise. *In other words*, we find no evidence to support differential unconscious processing among these particular, diverse categories of suppressed images' (emphasis added). I am not sure the statements in the two sentences are equivalent.
The authors' reply included a discussion of neural CRFs, which may explain why the bCFS thresholds differ across image categories. A further step seems necessary to explain why CRFs do not qualify as a form of subconscious processing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study aims to address existing differences in the literature regarding the extent of reward versus aversive dopamine signaling in the prefrontal cortex. To do so, the authors chose to present mice with both a reward and an aversive stimulus during different trials each day. The authors used high spatial resolution two-photon calcium imaging of individual dopaminergic axons in the medial PFC to characterize the response of these axons to determine the selectivity of responses in unique axons. They also paired the reward (water) and an aversive stimulus (tail shock) with auditory tones and recorded across 12 days of associative learning.
The authors find that some axons respond to both reward and aversive unconditioned stimuli, but overall, there is a preference to respond to aversive stimuli consistent with expectations from prior studies that used other recording methods. The authors find that both of their two auditory stimuli initially drive responses in axons, but that with training axons develop more selective responses for the shock associated tone indicating that associative learning led to changes in these axon's responses. Finally, the authors use anticipatory behaviors during the conditioned stimuli and facial expressions to determine stimulus discrimination and relate dopamine axons signals with this behavioral evidence of discrimination. This study takes advantage of cutting-edge imaging approaches to resolve the extent to which dopamine axons in PFC respond appetitive or aversive stimuli. They conclude that there is a bias to respond to the aversive tail shock in most axons and weaker more sparse representation of water reward.
Strengths:
The strength of this study is the imaging approach that allows for investigation of the heterogeneity of response across individual dopamine axons unlike other common approaches such as fiber photometry which provide a measure of the average population activity. The use of appetitive and aversive stimuli to probe responses across individual axons is another strength as it reveals response diversity that is often overlooked in reward-only studies.
Weaknesses:
A weakness of this study is the design of the associative conditioning paradigm. The use of only a single reward and single aversive stimulus makes it difficult to know whether these results are specific to the valence of the stimuli versus the specific identity of the stimuli. Further, the reward presentations are more numerous than the aversive trials making it unclear how much novelty and habituation account for results. Moreover, the training seems somewhat limited by the low number of trials and did not result in strong associative conditioning. The lack of omission responses reported may reflect weak associative conditioning. Finally, the study provides a small advance in our understanding of dopamine signaling in the PFC and lacks evidence for if and what might be the consequence of these axonal responses on PFC dopamine concentrations and PFC neuron activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors investigate replay (defined as sequential reactivation) and clustered reactivation during retrieval of an abstract cognitive map. Replay and clustered reactivation were analysed based on MEG recordings combined with a decoding approach. While the authors state to find evidence for both, replay and clustered reactivation during retrieval, replay was exclusively present in low performers. Further, the authors show that reactivation strength declined with an increasing graph distance.
Strengths:
The paper raises interesting research questions, i.e., replay vs. clustered reactivation and how that supports retrieval of cognitive maps. The paper is well written, well structured and easy to follow. The methodological approach is convincing and definitely suited to address the proposed research questions.
The paper is a great combination between replicating previous findings (Wimmer et al. 2020) with a new experimental approach but at the same time presenting novel evidence (reactivation strength declines as a function of graph distance).
What I also want to positively highlight is their general transparency. For example, they pre-registered this study but with a focus on a different part of the data and outlined this explicitly in the paper.
The paper has very interesting findings. However, there are some shortcomings especially in the experimental design. These are shortly outlined below but are also openly and in detail discussed by the authors.
Weaknesses:
The individual findings are interesting. However, due to some shortcomings in the experimental design they cannot be profoundly related to each other. For example, the authors show that replay is present in low but not in high performers with the assumption that high performers tend to simultaneously reactivate items. But then, the authors do not investigate clustered reactivation (= simultaneous reactivation) as a function of performance due to a low number of retrieval trials and ceiling performance in most participants.<br /> As a consequence of the experimental design, some analyses are underpowered (very low number of trials, n = ~10, and for some analyses, very low number of participants, n = 14).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Jellinger, Suthard, et al. investigated the transcriptome of positive and negative valence engram cells in the ventral hippocampus, revealing anti- and pro-inflammatory signatures of these respective valences. The authors further reactivated the negative valence engram ensembles to assay the effects of chronic negative memory reactivation in young and old mice. This chronic re-activation resulted in differences in aspects of working memory, and fear memory, and caused morphological changes in glia. Such reactivation-associated changes are putatively linked to GABA changes and behavioral rumination.
Strengths:
Much of the content of this manuscript is of benefit to the community, such as the discovery of differential engram transcriptomes dependent on memory valence. The chronic activation of neurons, and the resultant effects on glial cells and behavior, also provide the community with important data. Laudable points of this manuscript include the comprehensiveness of behavioral experiments, as well as the cross-disciplinary approach.
Weaknesses:
There are several key claims made that are unsubstantiated by the data, particularly regarding the anthropomorphic framing of "rumination" on a mouse model and the role of GABA. The conclusions and inferences in these areas need to be carefully considered.
(1) There are many issues regarding the arguments for the behavioural data's human translation as "rumination." There is no definition of rumination provided in the manuscript, nor how rumination is similar/different to intrusive thoughts (which are psychologically distinct but used relatively interchangeably in the manuscript), nor how rumination could be modelled in the rodent. The authors mention that they are attempting to model rumination behaviours by chronically reactivating the negative engram ("To understand if our experimental model of negative rumination..."), but this occurs almost at the very end of the results section, and no concrete evidence from the literature is provided to attempt to link the behavioural results (decreased working memory, increased fear extinction times) to rumination-like behaviours. The arguments in the final paragraph of the Discussion section about human rumination appear to be unrelated to the data presented in the manuscript and contain some uncited statements. Finally, the rumination claims seem to be based largely upon a single data figure that needs to be further developed (Figure 6, see also point 2 below).
(2) The staining and analysis in Figure 6 are challenging to interpret, and require more evidence to substantiate the conclusions of these results. The histological images are zoomed out, and at this resolution, it appears that only the pyramidal cell layer is being stained. A GABA stain should also label the many sparsely spaced inhibitory interneurons existing across all hippocampal layers, yet this is not apparent here. Moreover, both example images in the treatment group appear to have lower overall fluorescence intensity in both DAPI and GABA. The analysis is also unclear: the authors mention "ROIs" used to measure normalized fluorescence intensity but do not specify what the ROI encapsulates. Presumably, the authors have segmented each DAPI-positive cell body and assessed fluorescence - however, this is not explicated nor demonstrated, making the results difficult to interpret.
(3) A smaller point, but more specific detail is needed for how genes were selected for GSEA analysis. As GSEA relies on genes to be specified a priori, to avoid a circular analysis, these genes need to be selected in a blind/unbiased manner to avoid biasing downstream results and conclusions. It's likely the authors have done this, but explicitly noting how genes were selected is an important context for this analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This series of experiments studied the involvement of PVN OT neurons and their projection to the mPFC in pup-care and attack behavior in virgin male and female Mandarin voles. Using Fos visualization, optogenetics, fiber photometry, and IP injection of OT the results converge on OT regulating caregiving and attacks on pups. Some sex differences were found in the effects of the manipulations.
Strengths:
Major strengths are the modern multi-method approaches and involving both sexes of Mandarin vole in every experiment.
Weaknesses:
Weaknesses include the lack of some specific details in the methods that would help readers interpret the results. These include:
(1) No description of diffusion of centrally injected agents.
(2) Whether all central targets were consistent across animals included in the data analyses. This includes that is not stated if the medial prelimbic mPFC target was in all optogenetic study animals as shown in Figure 4 and if that is the case, there is no discussion of that subregion's function compared to other mPFC subregions.
(3) How groups of pup-care and infanticidal animals were created since there was no obvious pre-test mentioned so perhaps there was the testing of a large number of animals until getting enough subjects in each group.
(4) The apparent use of a 20-minute baseline data collection period for photometry that started right after the animals were stressed from handling and placement in the novel testing chamber.
(5) A weakness in the results reporting is that it's unclear what statistics are reported (2 x 2 ANOVA main effect of interaction results, t-test results) and that the degrees of freedom expected for the 2 X 2 ANOVAs in some cases don't appear to match the numbers of subjects shown in the graphs; including sample sizes in each group would be helpful because the graph panels are very small and data points overlap.
The additional context that could help readers of this study is that the authors overlook some important mPFC and pup caregiving and infanticide studies in the introduction which would help put this work in better context in terms of what is known about the mPFC and these behaviors. These previous studies include Febo et al., 2010; Febo 2012; Peirera and Morrell, 2011 and 2020; and a very relevant study by Alsina-Llanes and Olazábal, 2021 on mPFC lesions and infanticide in virgin male and female mice. The introduction states that nothing is known about the mPFC and infanticide. In the introduction and discussion, stating the species and sex of the animals tested in all the previous studies mentioned would be useful. The authors also discuss PVN OT cell stimulation findings seen in other rodents, so the work seems less conceptually novel. Overall, the findings add to the knowledge about OT regulation of pup-directed behavior in male and female rodents, especially the PVN-mPFC OT projection.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The paper "The Value of Livestock Abortion Surveillance in Tanzania: Identifying Disease Priorities and Informing Interventions" provides a comprehensive analysis of the importance of livestock abortion surveillance in Tanzania. The authors aim to highlight the significance of this surveillance system in identifying disease priorities and guiding interventions to mitigate the impact of livestock abortions on both animal and human health.
Summary:
The paper begins by discussing the context of livestock farming in Tanzania and the significant economic and social impact of livestock abortions. The authors then present a detailed overview of the livestock abortion surveillance system in Tanzania, including its objectives, methods, and data collection process. They analyze the data collected from this surveillance system over a specific period to identify the major causes of livestock abortions and assess their public health implications.
Evaluation:
Overall, this paper provides valuable insights into the importance of livestock abortion surveillance as a tool for disease prioritization and intervention planning in Tanzania. The authors effectively demonstrate the utility of this surveillance system in identifying emerging diseases, monitoring disease trends, and informing evidence-based interventions to control and prevent livestock abortions.
Strengths:
(1) Clear Objective: The paper clearly articulates its objective of highlighting the value of livestock abortion surveillance in Tanzania.
(2) Comprehensive Analysis: The authors provide a thorough analysis of the surveillance system, including its methodology, data collection process, and findings as seen in the supplementary files.
(3) Practical Implications: The paper discusses the practical implications of the surveillance system for disease control and public health interventions in Tanzania.
(4) Well-Structured: The paper is well-organized, with clear sections and subheadings that facilitate understanding and navigation.
Suggestions for Improvement:
(1) Data Presentation: While the analysis is comprehensive, the presentation of data could be enhanced with the use of more visual aids such as tables, graphs, or charts to illustrate key findings.
(2) Discussion Section: The paper could benefit from a more in-depth discussion of the implications of the findings for disease control strategies and policy formulation in Tanzania.
(3) Future Directions: Including recommendations for future research or areas for further investigation would add depth to the paper.
Summary:
This paper contains thorough analysis and valuable insights. Overall, it makes a significant contribution to the literature on livestock abortion surveillance and its implications for disease control in Tanzania.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
The authors have proposed a computational algorithm to identify runs of homozygosity (ROH) segments in a generally outbred population and then study the association of ROH with self-reported disorders in the UK biobank. The algorithm certainly identifies such segments. However, more work is needed to justify the importance of ROH.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Liu et al. reports a task that is designed to examine the extent to which "past" and "future" information is encoded in working memory that combines a retrocue with rules that indicate the location of an upcoming test probe. An analysis of microsaccades on a fine temporal scale shows the extent to which shifts of attention track the location of the encoded item (past) and the location of the future item (test probe). The location of the encoded grating and test probe were always on orthogonal axes (horizontal, vertical) so that biases in microsaccades could be used to track shifts of attention to one or the other axis (or mixtures of the two). The overall goal here was then to (1) create a methodology that could tease apart memory for the past and future, respectively, (2) to look at the time-course attention to past/future, and (3) to test the extent to which microsaccades might jointly encode past and future memoranda. Finally, some remarks are made about the plausibility of various accounts of working memory encoding/maintenance based on the examination of these time-courses.
Strengths:
This research has several notable strengths. It has a clear statement of its aims, is lucidly presented, and uses a clever experimental design that neatly orthogonalized "past" and "future" as operationalized by the authors. Figure 1b-d shows fairly clearly that saccade directions have an early peak (around 300ms) for the past and a "ramping" up of saccades moving in the forward direction. This seems to be a nice demonstration that the method can measure shifts of attention at a fine temporal resolution and differentiate past from future oriented saccades due to the orthogonal cue approach. The second analysis shown in Figure 2, reveals a dependency in saccade direction such that saccades toward the probe future were more likely also to be toward the encoded location than away from the encoded direction. This suggests saccades are jointly biased by both locations "in memory". The "central contribution" (as the authors characterize it) is that "the brain simultaneously retains the copy of both past and future-relevant locations in working memory, and (re)activates each during mnemonic selection", and that: "... while it is not surprising that the future location is considered, it is far less trivial that both past and future attributes would be retained and (re)activated together. This is our central contribution." The authors provide a nuanced analysis that offers persuasive evidence that past and future representations are jointly maintained in memory.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Jones et al. extend their previous work on the translation machinery in Dinoflagellate. In particular, they study the species Amphidium carterae. They characterize the type of cap structure mRNAs possess in this species, as well as the eight eIF4E family members A. carterae possesses and their affinity to the mRNA cap. They also establish the leader sequences of the transpliced mRNAs that A. carterae generates during gene expression.
Strengths:
The authors performed a solid phylogenetic and biochemical study to understand the structure of Dinoflagellate mRNAs at the 5'-UTR as well as the divergence and biochemical features of eIF4Es across Dinoflagellate. They also establish eIF4E-1a as the prototypical paralog of the eIF4E family of proteins. The scientific questions they ask are very relevant to the gene expression field across eukaryotes. The experiments and the phylogenetic analysis are performed with a very high quality. They perform a wide spectrum of experimental approaches and techniques to answer the questions.
Weaknesses:
The authors assume all eIF4E from Dinoflagellate are involved in translation, i.e., mRNA recruitment to the ribosome. Indeed, they think that the diverse biochemical features of all eIF4E in A. carterae have to do with the possible recruitment of different subsets of mRNAs to the ribosome for translation. I think that the biochemical differences among all paralogs also might be due to the involvement of some of them in different processes of RNA metabolism, other than translation. For instance, some of them could be involved only in RNA processing in the nucleus or mRNA storage in cytoplasmic foci.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The specific objective of this study was to determine the role of the large apical hook on the head of mouse sperm (Mus musculus) in sperm migration through the female reproductive tract. The authors used a custom-built two-photon microscope system to obtain digital videos of sperm moving within the female reproductive tract. They used sperm from genetically modified male mice that produce fluorescence in the sperm head and flagellar midpiece to enable visualization of sperm moving within the tract. Based on various observations, the authors concluded that the hook serves to facilitate sperm migration by hooking sperm onto the lining of the female reproductive tract, rather than by hooking sperm together to form a sperm train that would move them more quickly through the tract. The images and videos are excellent and inspirational to researchers in the field of mammalian sperm migration, but interpretations of the behaviors are highly speculative and not supported by controlled experimentation.
Strengths:
The microscope system developed by the authors could be of interest to others investigating sperm migration.
The new behaviors shown in the images and videos could be of interest to others in the field, in terms of stimulating the development of new hypotheses to investigate.
Weaknesses:
The authors stated several hypotheses about the functions of the sperm behaviors they saw, but the hypotheses were not clearly stated or tested experimentally.
The hypothesis statements were weakened by the use of hedge words, such as "may".
-
-
-
Reviewer #2 (Public Review):
Summary:
This is an interesting manuscript that describes a series of molecular dynamics studies on the peptide transporter PepT2 (SLC15A2). They examine, in particular, the effect on the transport cycle of protonation of various charged amino acids within the protein. They then validate their conclusions by mutating two of the residues that they predict to be critical for transport in cell-based transport assays. The study suggests a series of protonation steps that are necessary for transport to occur in Petp2. Comparison with bacterial proteins from the same family shows that while the overall architecture of the proteins and likely mechanism are similar, the residues involved in the mechanism may differ.
Strengths:
This is an interesting and rigorous study that uses various state-of-the-art molecular dynamics techniques to dissect the transport cycle of PepT2 with nearly 1ms of sampling. It gives insight into the transport mechanism, investigating how the protonation of selected residues can alter the energetic barriers between various states of the transport cycle. The authors have, in general, been very careful in their interpretation of the data.
Weaknesses:
Interestingly, they suggest that there is an additional protonation event that may take place as the protein goes from occluded to inward-facing but they have not identified this residue. Some things are a little unclear. For instance, where does the state that they have defined as occluded sit on the diagram in Figure 1a? - is it truly the occluded state as shown on the diagram or does it tend to inward- or outward-facing? The pKa calculations and their interpretation are a bit unclear. Firstly, it is unclear whether they are using all the data in the calculations of the histograms, or just selected data and if so on what basis was this selection done. Secondly, they dismiss the pKa calculations of E53 in the outward-facing form as not being affected by peptide binding but say that E56 is when there seems to be a similar change in profile in the histograms.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this article, Kumar et al., report on a previously unappreciated mechanism of translational regulation whereby p130Cas induces LLPS condensates that then traffic out from focal adhesion into the cytoplasm to modulate mRNA translation. Specifically, the authors employed EGFP-tagged p130Cas constructs, endogenous p130Cas, and p130Cas knockouts and mutants in cell-based systems. These experiments in conjunction with various imaging techniques revealed that p130Cas drives assembly of LLPS condensates in a manner that is largely independent of tyrosine phosphorylation. This was followed by in vitro EGFP-tagged p130Cas-dependent induction of LLPS condensates and determination of their composition by mass spectrometry, which revealed enrichment of proteins involved in RNA metabolism in the condensates. The authors excluded the plausibility that p130Cas-containing condensates co-localize with stress granules or p-bodies. Next, the authors determined mRNA compendium of p130Cas-containing condensates which revealed that they are enriched in transcripts encoding proteins implicated in cell cycle progression, survival, and cell-cell communication. These findings were followed by the authors demonstrating that p130Cas-containing condensates may be implicated in the suppression of protein synthesis using puromycylation assay. Altogether, it was found that this study significantly advances the knowledge pertinent to the understanding of molecular underpinnings of the role of p130Cas and more broadly focal adhesions on cellular function, and to this end, it is likely that this report will be of interest to a broad range of scientists from a wide spectrum of biomedical disciplines including cell, molecular, developmental and cancer biologists.
Strengths:
Altogether, this study was found to be of potentially broad interest inasmuch as it delineates a hitherto unappreciated link between p130Cas, LLPS, and regulation of mRNA translation. More broadly, this report provides unique molecular insights into the previously unappreciated mechanisms of the role of focal adhesions in regulating protein synthesis. Overall, it was thought that the provided data sufficiently supported most of the authors' conclusions. It was also thought that this study incorporates an appropriate balance of imaging, cell and molecular biology, and biochemical techniques, whereby the methodology was found to be largely appropriate.
Weaknesses:
Two major weaknesses of the study were noted. The first issue is related to the experiments establishing the role of p130Cas-driven condensates in translational suppression, whereby it remained unclear whether these effects are affecting global mRNA translation or are specific to the mRNAs contained in the condensates. Moreover, some of the results in this section (e.g., experiments using cycloheximide) may be open to alternative interpretation. The second issue is the apparent lack of functional studies, and although the authors speculate that the described mechanism is likely to mediate the effects of focal adhesions on e.g., quiescence, experimental testing of this tenet was lacking.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this study, the authors study how the deubiquitinase USP8 regulates endosome maturation in C. elegans and mammalian cells. The authors have isolated USP8 mutant alleles in C. elegans and used multiple in vivo reporter lines to demonstrate the impact of USP8 loss-of-function on endosome morphology and maturation. They show that in USP8 mutant cells, the early endosomes and MVB-like structures are enlarged while the late endosomes and lysosomal compartments are reduced. They elucidate that USP8 interacts with Rabx5, a guanine nucleotide exchange factor (GEF) for Rab5, and show that USP8 likely targets specific lysine residue of Rabx5 to dissociate it from early endosomes. They also find that the localization of USP8 to early endosomes is disrupted in Rabx5 mutant cells. They observe that in both Rabx5 and USP8 mutant cells, the Rab7 GEF SAND-1 puncta which likely represents late endosomes are diminished, although Rabex5 is accumulated in USP8 mutant cells. The authors provide evidence that USP8 regulates endosomal maturation in a similar fashion in mammalian cells. Based on their observations they propose that USP8 dissociates Rabex5 from early endosomes and enhances the recruitment of SAND-1 to promote endosome maturation.
Strengths:
The major highlights of this study include the direct visualization of endosome dynamics in a living multi-cellular organism, C. elegans. The high-quality images provide clear in vivo evidence to support the main conclusions. The authors have generated valuable resources to study mechanisms involved in endosome dynamics regulation in both the worm and mammalian cells, which would benefit many members of the cell biology community. The work identifies a fascinating link between USP8 and the Rab5 guanine nucleotide exchange factor Rabx5, which expands the targets and modes of action of USP8. The findings make a solid contribution toward the understanding of how endosomal trafficking is controlled.
Weaknesses:
- The authors utilized multiple fluorescent protein reporters, including those generated by themselves, to label endosomal vesicles. Although these are routine and powerful tools for studying endosomal trafficking, these results cannot tell whether the endogenous proteins (Rab5, Rabex5, Rab7, etc.) are affected in the same fashion.
- The authors clearly demonstrated a link between USP8 and Rabx5, and they showed that cells deficient in both factors displayed similar defects in late endosomes/lysosomes. However, the authors didn't confirm whether and/or to which extent USP8 regulates endosome maturation through Rabx5. Additional genetic and molecular evidence might be required to better support their working model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript "Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance" describes an interesting observation and provides initial steps towards understanding the underlying molecular mechanism.
The manuscript describes that the majority of non-tumorigenic mammary gland epithelial cells (MCF-10A) in suspension initiate entosis. A smaller fraction of cells form a single giant unilocular vacuole (hereafter referred to as a GUVac). GUVac appeared to be empty and did not contain invading (entotic) cells. The formation of GUVac could be promoted by disrupting actin polymerisation with LatB and CytoD. The formation of GUVacs correlated with resistance to anoikis. GUVac formation was detected in several other epithelial cells from secretory tissues.
The authors then use electron microscopy and super-resolution imaging to describe the biogenesis of GUVac. They find that GUVac formation is initiated by a micropinocytosis-like phenomenon (that is independent of actin polymerisation). This process leads to the formation of large plasma membrane invaginations, that pinch off from the PM to form larger vesicles that fuse with each other into GUVacs.
Inhibition of actin polymerisation in suspended MCF-10a leads to the recruitment of Septin 6 to the PM via its amphipathic helix. Treatment with FCF (a septin polymerisation inhibitor) blocked GUVac biogenesis, as did pharmacological inhibition of dynamin-mediated membrane fission. The fusion of these vesicles in GUVacs required (perhaps not surprisingly) PI3P.
Strengths:
The authors have made an interesting and potentially important observation. They describe the formation of an endo-lysosomal organelle (a giant unilocular vacuole - GUVac) in suspended epithelial cells and correlate the formation of GUVacs with resistance to aniokis.
Weaknesses:
My major concern is the experimental strategy that is used throughout the paper to induce and study the formation GUVac. Almost every experiment is conducted in suspended cells that were treated with actin depolymerising drugs (e.g. LatB) and thus almost all key conclusions are based on the results of these experiments. I only have a few suggestions that would improve these experiments or change their outcome and interpretation.
Yet, I believe it is essential to identify the endogenous pathway leading to the actin depolymerisation that drives the formation of GUVacs in detached epithelial cells (or alternatively to figure out how it is suppressed in most detached cells). A first step in that direction would be to investigate the polymerization status of actin in MCF-10a cells that 'spontaneously' form GUVacs and to test if these cells also become resistant to anoikis.
Also, it would be great (and I believe reasonably easy) to better characterise molecular markers of GUVacs (LAMP's, Rab's, Cathepsins, etc....) to discriminate them from other endosomal organelles
-
-
-
Reviewer #2 (Public Review):
Summary:
In the manuscript 'Structural analysis of the dynamic ribosome-translocon complex' Lewis and Hegde present a structural study of the ribosome-bound multipass translocon (MPT) based on re-analysis of cryo-EM single particle data of ribosome-MPTs processing the multipass transmembrane substrate RhoTM2 from a previous publication (Smalinskaité et al, Nature 2022) and AlphaFold2 multimer modeling. Detailed analysis of the laterally open Sec61 is obtained from PAT-less particles.
The following major claims are made:
- TMs can bind similarly to the Sec61 lateral gate as signal peptides.
- Ribosomal H59 is in immediate proximity to basic residues of TMs and signal peptides, suggesting it may contribute to the positive-inside rule.
- RAMP4/SERP1 binds to the Sec61 lateral gate and the ribosome near 28S rRNA's helices 47, 57, and 59 as well as eL19, eL22, and eL31.
- uL22 C-terminal tail binds H24/47 blocking a potential escape route for nascent peptides to the cytosol.
- TRAP and BOS compete for binding to Sec61 hinge.
- Calnexin TM binds to TRAPg.
- NOMO wedges between TRAP and MPT.
Strengths:
The manuscript contains numerous novel new structural analyses and their potential functional implications. While all findings are exciting, the highlight is the discovery of RAMP4/SERP1 near the Sec61 lateral gate. Overall, the strength is the thorough and extensive structural analysis of the different high-resolution RTC classes as well as the expert bioinformatic evolutionary analysis.
Weaknesses:
A minor downside of the manuscript is the sheer volume of analyses and mechanistic hypotheses, which makes it sometimes difficult to follow. The authors might consider offloading some analyses based on weaker evidence to the supplement to maximize impact.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This combined experimental-theoretical paper introduces a novel two-domain statistical thermodynamic model (primarily Equation 1) to study allostery in generic systems but focusing here on the tetracycline repressor (TetR) family of transcription factors. This model, building on a function-centric approach, accurately captures induction data, maps mutants with precision, and reveals insights into epistasis between mutations.
Strengths:
The study contributes innovative modeling, successful data fitting, and valuable insights into the interconnectivity of allosteric networks, establishing a flexible and detailed framework for investigating TetR allostery. The manuscript is generally well-structured and communicates key findings effectively.
Comments on revised version:
I am happy with the changes made by the authors
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Original review:<br /> Summary:<br /> In this paper, Zambo and coworkers use a powerful technique, called native holdup, to measure the affinity of the SH3 domain of BIN1 for cellular partners. Using this assay, they combine data using cellular proteins and proline-containing fragments in these proteins to identify 97 distinct direct binding partners of BIN1. They also compare the binding interactome of the BIN1 SH3 domain to the interactome of several other SH3 domains, showing varying levels of promiscuity among SH3 domains. The authors then use pathway analysis of BIN1 binding partners to show that BIN1 may be involved in mitosis. Finally, the authors examine the impact of clinically relevant mutations of the BIN1 SH3 domain on the cellular interactome. The authors were able to compare the interactome of several different SH3 domains and provide novel insight into the cellular function of BIN1. Generally, the data supports the conclusions, although the reliance on one technique and the low number of replicates in each experiment is a weakness of the study.
Strengths:<br /> The major strength of this paper is the use of holdup and native holdup assays to measure the affinity of SH3 domains to cellular partners. The use of both assays using cell-derived proteins and peptides derived from identified binding partners allows the authors to better identify direct binding partners. This assay has some complexity but does hold the possibility of being used to measure the affinity of the cellular interactome of other proteins and protein domains. Beyond the utility of the technique, this study also provides significant insight into the cellular function of BIN1. The authors have strong evidence that BIN1 might have an undiscovered function in cellular mitosis, which potentially highlights BIN1 as a drug target. Finally, the study provides outstanding data on the cellular binding properties and partners of seven distinct SH3 domains, showing surprising differences in the promiscuity of these proteins.
Weaknesses:<br /> There are three major weaknesses of the study. First, the authors rely completely on a single technique to measure the affinity of the cellular interactome. The native holdup is a relatively new technique that is powerful yet relatively unproven. However, it appears to have the capacity to measure the relative affinity of proteins. Second, the authors appear to use a relatively small number of replicates for the holdup assays. There is no information in the legends about the number of replicates but the materials and methods suggest the native holdup data is from a single experimental replicate with multiple technical replicates. Finally, the authors' data using cellular proteins and fragments show that the affinity of the whole proteins is 5-20 fold lower than individual proline-containing fragments. The authors state that this difference suggests that there is cooperativity between different proline-rich sites of the binding partners of BIN1, yet BIN1 only has one SH3 domain. It is unclear what the molecular mechanism of the cooperative interaction would be exactly since there would be only one SH3 domain to bind the partner. An alternative interpretation would be that the BIN 1 SH3 domain requires sequences outside of the short proline-rich regions for high-affinity interactions with cellular partners, a hypothesis that is supported by other studies.
Comments on revision:<br /> I thank the authors for their thoughtful response. I have additional comments.
I appreciate that this is not a techniques paper and that the authors have done more detailed work in a separate publication. It would be helpful to readers not familiar with this new method to more fully describe this technique in this manuscript.
I also thank the authors for their description of why they performed only 1 biological replicate of the experiment. However, I still believe that multiple biological replicates will provide more rigorous and reproducible data. The data the authors provide actually argues for the inclusion of more biological replicates. They state they performed 2 separate nHU replicates using different mass spectrometers. It is unclear if this data uses the same lysates and protein preparations, but by the data, the two methods detected a total of 207 distinct binding partners. Only 29 of these were significant binders in both replicates and only 90 were detected binders in both replicates. 117 binding partners were found in only one replicate suggesting a significant differences between replicates. Different batches of SH3 domains can have different activities and different replicates of cell lysates can vary, even when made from the same cell line. Thus, there can still be significant differences between replicates in this method. I appreciate the difficulty of performing and analyzing multiple biological replicates, but it is the most rigorous way to identify potential cellular partners.
I also thank the author for including the mechanistic discussion about the differences between peptides and whole proteins. There is literature showing that regions outside of the short PxxP regions drive binding to SH3 domains, especially for the GRB2 family of adaptor proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Brotherton et al. describes a structural study of connexin-26 (Cx26) gap junction channel mutant K125E, which is designed to mimic the CO2-inhibited form of the channel. In the wild-type Cx26, exposure to CO2 is presumed to close the channel through carbamylation of the redeye K125. The authors mutated K125 to a negatively charged residue to mimic this effect and observed by cryo-EM analysis of the mutated channel that the pore of the channel is constricted. The authors were able to observe conformations of the channel with resolved density for the cytoplasmic loop (in which K125 is located). Based on the observed conformations and on the position of the N-terminal helix, which is involved in channel gating and in controlling the size of the pore, the authors propose the mechanisms of Cx26 regulation.
Strengths:
This is a very interesting and timely study, and the observations provide a lot of new information on connexin channel regulation. The authors use the state of the art cryo-EM analysis and 3D classification approaches to tease out the conformations of the channel that can be interpreted as "inhibited", with important implications for our understanding of how the conformations of the connexin channels controlled.
Weaknesses:
The revised version of the manuscript is improved, and the authors have addressed the review comments/criticisms in a satisfactory manner.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This model of skeletal muscle includes springs and dampers which aim to capture the effect of crossbridge and titin stiffness during the stretch of active muscle. While both crossbridge and titin stiffness have previously been incorporated, in some form, into models, this model is the first to simultaneously include both. The authors suggest that this will allow for the prediction of muscle force in response to short-, mid- and long-range stretches. All these types of stretch are likely to be experienced by muscle during in vivo perturbations, and are known to elicit different muscle responses. Hence, it is valuable to have a single model which can predict muscle force under all these physiologically relevant conditions. In addition, this model dramatically simplifies sarcomere structure to enable this muscle model to be used in multi-muscle simulations of whole-body movement.
In order to test this model, its force predictions are compared to 3 sets of experimental data which focus on short-, mid- and long-range perturbations, and to the predictions of a Hill-type muscle model. The choice of data sets is excellent and provide a robust test of the model's ability to predict forces over a range of length perturbations. However, I find the comparison to a Hill-type muscle model to be somewhat limiting. It is well established that Hill-type models do not have any mechanism by which they can predict the effect of active muscle stretch. Hence, that the model proposed here represents an improvement over such a model is not a surprise. Many other models, some of which are also simple enough to be incorporated into whole-body simulations, have incorporated mechanistic elements which allow for the prediction of force responses to muscle stretch. And it is not clear from the results presented here that this model would outperform such models.
The paper begins by outlining the phenomenological vs mechanistic approaches taken to muscle modelling, historically. It appears, although is not directly specified, that this model combines these approaches. A somewhat mechanistic model of the response of the crossbridges and titin to active stretch is combined with a phenomenological implementation of force-length and force-velocity relationships. This combination of approaches may be useful improving the accuracy of predictions of muscle models and whole-body simulations, which is certainly a worthy goal. However, it also may limit the insight that can be gained. For example, it does not seem that this model could reflect any effect of active titin properties on muscle shortening. In addition, it is not clear to me, either physiologically or in the model, what drives the shift from the high stiffness in short-range perturbations to the somewhat lower stiffness in mid-range perturbations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors (Yang et al.) present a well-executed study of a mouse model of Bmpr1a focusing on microtia development and pathogenesis.
The authors report that the generation of the Bmpr1a in Prrx1+ cells in adult mice helps characterize the developmental progression of the external ear.
The authors explain how auricular chondrocytes differ from growth plates or other chondrocytes and BMP-Smd1/5/9 activation, which is required to maintain chondrocyte fate in the distal part of the ear. The authors explain with evidence how BMP signaling actively maintains auricle cartilage in the post-developmental stage.
Elegant immunofluorescence staining, excellent histology preparations and dissections, excellent microscopy, sufficient experimental sample size, and good statistical analyses support the results. The study is well grounded in extensively reviewed and cited existing literature. This report sets the stage for a comprehensive interrogation of Bmpr1a deficiency and ear defects.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors describe a form of synaptic plasticity at synapses from granule cells onto Purkinje cells in the mouse cerebellum, which is specific to synapses proximal to the cell body but not to distal ones. This plasticity is induced by the paired or associative stimulation of the two types of synapses because it is not observed with stimulation of one type of synapse alone. In addition, this form of plasticity is dependent on the order in which the stimuli are presented, and is dependent on NMDA receptors, metabotropic glutamate receptors and to some degree on GABAA receptors. However, under all experimental conditions described, there is a progressive weakening or run-down of synaptic strength. Therefore, plasticity is not relative to a stable baseline, but relative to a process of continuous decline that occurs whether or not there is any plasticity-inducing stimulus.
Strengths:
The focus of the authors on the properties of two different synapse-types on cerebellar Purkinje cells is interesting and relevant, given previous results that ascending and parallel fiber synapses might be functionally different and undergo different forms of plasticity. In addition, the interaction between these two synapse types during plasticity is important for understanding cerebellar function. The demonstration of timing and order-dependent potentiation of only one pathway, and not another, after associative stimulation of both pathways, changes our understanding of potential plasticity mechanisms. In addition, this observation opens up many new questions on underlying intracellular mechanisms as well as on its relevance for cerebellar learning and adaptation.
Weaknesses and suggested improvements:
A concern with this study is that all recordings demonstrate "rundown", a progressive decrease in the amplitude of the EPSC, starting during the baseline period and continuing after the plasticity-induction stimulus. In the absence of a stable baseline, it is hard to know what changes in strength actually occur at any set of synapses. Moreover, the issues that are causing rundown are not known and may or may not be related to the cellular processes involved in synaptic plasticity. This concern applies in particular to all the experiments where there is a decrease in synaptic strength.<br /> The authors should consider changes in the shape of the EPSC after plasticity induction, as in Fig 1 (orange trace) as this could change the interpretation.<br /> In addition, the inconsistency with previous results is surprising and is not explained; specifically, that no PF-LTP was induced by PF-alone repeated stimulation.<br /> The authors test the role of NMDARs, GABAARs and mGluRs in the phenotype they describe. The data suggest that the form of plasticity described here is dependent on any one of the three receptors. However, the location of these receptors varies between the Purkinje cells, granule cells and interneurons. The authors do not describe a convincing hypothetical model in which this dependence can be explained. They suggest that there is crosstalk between AA and PF synapses via endocannabinoids downstream of mGluR or NO downstream of NMDARs. However, it is not clear how this could lead to the long-term potentiation that they describe. Also, there is no long-lasting change in paired-pulse ratio, suggesting an absence of changes in presynaptic release.<br /> Is the synapse that undergoes plasticity correctly identified? In this study, since GABAergic inhibition is not blocked for most experiments, PF stimulation can result in both a direct EPSC onto the Purkinje cell and a disynaptic feedforward IPSC. The authors do address this issue with Supplementary Fig 3, where the impact of the IPSC on the EPSC within the EPSC/IPSC sequence is calculated. However, a change in waveform would complicate this analysis. An experiment with pharmacological blockade will make the interpretation more robust. The observed dependence of the plasticity on GABAA receptors is an added point in favor of the suggested additional experiments.<br /> A primary hypothesis of this study is that proximal, or AA, and distal, or PF, synapses are different and that their association is specifically what drives plasticity. The alternative hypothesis is that the two synapse-types are the same. Therefore, a good control for pairing AA with PF would be to pair AA with AA and PF with PF, thereby demonstrating that pairing with each other is different from pairing with self.<br /> It is hypothesized that the association of a PF input with an AA input is similar to the association of a PF input with a CF input. However, the two are very different in terms of cellular location, with the CF input being in a position to directly interact with PF-driven inputs. Therefore, there are two major issues with this hypothesis: 1) how can sub-threshold activity at one set of synapses affect another located hundreds of micrometers away on the same dendritic tree? 2) There is evidence that the CF encodes teaching/error or reward information, which is functionally meaningful as a driver of plasticity at PF synapses. The AA synapse on one set of Purkinje cells is carrying exactly the same information as the PF synapses on another set of Purkinje cells further up and down the parallel fiber beam. It is suggested that the two inputs carry sensory vs. motor information, which is why this form of plasticity was tested. However, the granule cells that lead to both the AA and PF synapses are receiving the same modalities of mossy fiber information. Therefore, one needs to presuppose different populations of granule cells for sensory and motor inputs or receptive field and contextual information. As a consequence, which granule cells lead to AA synapses and which to PF synapses will change depending on which Purkinje cell you're recording from. And that's inconsistent with there being a timing dependence of AA-PF pairing in only one direction. Overall, it would be helpful to discuss the functional implications of this form of plasticity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This paper presents an automated method to track individual mammalian cells as they progress through the cell cycle using the FUCCI system and applies the method to look at different tumor cell lines that grow in suspension and determine their cell cycle profile and the effect of drugs that directly affect the cell cycles, on progression through the cell cycle for a 72 hour period.
Strengths:
This is a METHODS paper. The one potentially novel finding is that they can identify cells that are at the G1-S transition by the change in color as one protein starts to go up and the other one goes down, similar to the change seen as cells enter G2/M.
Weaknesses:
They did not clearly indicate whether the G1/S cells are identified automatically or need to be identified by the person reviewing the data. In Figures 1 and S1, the movie shows cells with no color at a time corresponding to what is about the G1/S transition. Their assigned cell cycle phase is shown in Figure 1 but not in Figure S1. None of these pictures show the G1/S cells that they talk about being able to detect with a different color.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, Wang et al., report the significance of XAP5L and XAP5 in spermatogenesis, involved in transcriptional regulation of the ciliary gene in testes. In previous studies, the authors demonstrate that XAP5 is a transcription factor required for flagellar assembly in Chlamydomonas. Continuing from their previous study, the authors examine the conserved role of the XAP5 and XAP5L, which are the orthologue pair in mammals.
XAP5 and XAP5L express ubiquitously and testis specifically, respectively, and their absence in the testes causes male infertility with defective spermatogenesis. Interestingly, XAP5 deficiency arrests germ cell development at the pachytene stage, whereas XAP5L absence causes impaired flagellar formation. RNA-seq analyses demonstrated that XAP5 deficiency suppresses ciliary gene expression including Foxj1 and Rfx family genes in early testis. By contrast, XAP5L deficiency abnormally remains Foxj1 and Rfx genes in mature sperm. From the results, the authors conclude that XAP5 and XAP5L are the antagonistic transcription factors that function upstream of Foxj1 and Rfx family genes.
This reviewer thinks the overall experiments are performed well and that the manuscript is clear. However, the current results do not directly support the authors' conclusion. For example, the transcriptional function of XAP5 and XAP5L requires more evidence. In addition, this reviewer wonders about the conserved XAP5 function of ciliary/flagellar gene transcription in mammals - the gene is ubiquitously expressed despite its functional importance in flagellar assembly in Chlamydomonas. Thus, this reviewer thinks authors are required to show more direct evidence to clearly support their conclusion with more descriptions of its role in ciliary/flagellar assembly.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This work follows previous work from the group where they have demonstrated the role of TASK1 in the regulation of glucose stimulated insulin secretion. Moreover, a recent study links a mutation in KCNK16, the gene encoding TALK-1 channels to MODY. Here the authors have constructed a mouse model with the specific mutation (TALK-1 L114P mutation) and investigated the phenotype. They have to perform a couple of breeding tricks to find a model that is lethal in adult which might complicate the conclusions, however, the phenotype of the heterozygote model used have a MODY-like phenotype. The study is convincing and solid.
Strengths:
(1) The work is a natural follow-up from previous studies from the groups.<br /> (2) The authors present convincing and solid data that in the long perspective will help patients with this mutations.<br /> (3) Both in vivo and in vitro data are presented to give the full picture of the phenotype.<br /> (4) Data from both female and male mice are presented.
Weaknesses:
The authors have answered all my comments in the revised version and I find no more weaknesses. Some questions still remain but have been clearly discussed in the new version of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The paper aims to investigate the relationship between anti-S protein antibody titers with the phenotypes & clonotypes of S-protein-specific T cells in people who receive SARS-CoV2 mRNA vaccines. The paper recruited a cohort of COVID-19 naive individuals who received the SARS-CoV2 mRNA vaccines and collected sera and PBMCs samples on different time points. Then, three sets of data were generated: 1). Anti-S protein antibody titers on all time points. 2) Single-cell RNAseq/TCRseq analysis for divided T cells after in vitro stimulation by S-protein. 3) Peptide epitopes for each expanded TCR clone. Based on these, the paper reports two major findings: A) Individuals having more sustained anti-S protein antibody response also have more Tfh-featured S-specific cells in their blood after 2nd-dose vaccination. B). S-specific cross-reactive T cells exist in COVID-19 naive individuals, but most of these T cell clones are not expanded after SARS-CoV-2 vaccination.
The paper's strength is that it uses a very systemic strategy trying to dissect the relationship between antibody titers, T cell phenotypes, TCR clonotypes and corresponding epitopes. The conclusion is solid in general. However, the weaknesses include the relatively small sample size (4 sustainers vs. 4 decliners) and the use of in vitro stimulated cells for analysis, which may 'blur' the classification of T cell subsets. Nevertheless, it may have great impact on future vaccine design because it demonstrated that promoting Tfh differentiation is crucial for the longevity of antibody response. Additionally, this paper nicely showed that most cross-reactive clones that are specific to environmental/symbiotic microbes did not expand post- vaccination, providing important fundamental insights into the establishment of T-cell responses after SARS-CoV-2 vaccination.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
A deletion analysis of the MSL1 gene to assess how different parts of the protein product interact with the MSL2 protein and roX RNA to affect the association of the MSL complex with the male X chromosome of Drosophila was performed.
Strengths:
The deletion analysis of the MSL1 protein and the tests of interaction with MSL2 are adequate.
Weaknesses:
This reviewer does not adhere to the basic premise of the authors that the MSL complex is the primary mediator of dosage compensation of the X chromosome of Drosophila. Several lines of evidence from various laboratories indicate that it is involved in sequestering the MOF histone acetyltransferase to the X chromosome but there is a constraint on its action there. When the MSL complex is disrupted, there is no overall loss of compensation but there is an increase in autosomal expression. Sun et al (2013, PNAS 110: E808-817) showed that ectopic expression of MSL2 does not increase expression of the X and indeed inhibits the effect of acetylation of H4Lys16 on gene expression. Aleman et al (2021, Cell Reports 35: 109236) showed that dosage compensation of the X chromosome can be robust in the absence of the MSL complex. Together, these results indicate that the MSL complex is not the primary mediator of X chromosome dosage compensation. The authors use sex-specific lethality as a measure of disruption of dosage compensation, but other modulations of gene expression are the likely cause of these viability effects.
A detailed explanation was provided by Birchler and Veitia (2021, One Hundred Years of Gene Balance: How stoichiometric issues affect gene expression, genome evolution, and quantitative traits. Cytogenetics and Genome Research 161: 529-550). The relevant portions of that article that pertain to Drosophila are quoted below. The cited references can be found in that publication.
"In Drosophila, the sex chromosomes consist of an X and a Y. The Y in this species contains only a few genes required for male fertility (Zhang et al., 2020). The X consists of approximately 20% of the genome. Thus, females have two X chromosomes and males have one. Muller (1932) found that the expression of genes between the two sexes was similar but when individual genes on the X were varied in dosage they exhibited a proportional dosage effect. Each copy in a male was expressed at about twice the level as each copy in a female. Females with three X chromosomes are highly inviable but when they do survive to the adult stage, Stern (1960) found that they too exhibited dosage compensation in that the expression in the triple X genotype was similar to normal females and males. Studies in triploid flies found that dosage compensation also occurred among X; AAA, XX; AAA, and XXX; AAA genotypes via upregulation of the Xs, where X indicates the dosage of the X and A indicates the triploid nature of the autosomes (see Birchler, 2016 for further discussion). Diploid and triploid females have a similar per-gene expression but the other five genotypes each must modulate gene expression by different amounts equivalent to an inverse relationship between the X versus autosomal dosage to achieve a balanced expression between the X and the A (Birchler, 1996).
Some years ago, mutations were sought in Drosophila that were lethal to males but viable in females. A number of such mutations were found and termed Male Specific Lethal (MSL) loci (Belote and Lucchesi, 1980). Once the products of these genes were identified, they were found to be at high concentrations on the male X chromosome (Kuroda et al., 1991). One of these genes encodes a histone acetyltransferase that acetylates Lysine16 of Histone H4 (Bone et al., 1994; Hilfiker et al., 1997). The recognition of the MSL complex and its association with the male X was an important set of contributions to an understanding of sex chromosome evolution in Drosophila (Kuroda et al., 2016). Thus, the hypothesis arose that the MSL complex accumulated this chromatin modifier on the male X to activate the expression about two-fold to bring about dosage compensation. Other data that contributed to this hypothesis were that when autoradiography of nascent transcription on salivary gland polytene chromosomes was examined in the MSL maleless mutation, the ratio of the number of grains over the X versus an autosomal region was reduced compared to the normal ratio (Belote and Lucchesi, 1980).
It has been pointed out (Hiebert and Birchler, 1994; Bhadra et al., 1999; Pal Bhadra et al., 2005; Sun et al., 2013a; Birchler, 2016), however, that the grain counts over the X and the autosomes when considered in absolute terms rather than as a ratio show that the X more or less retained dosage compensation and the autosomal numbers are about doubled, i.e. exhibit an inverse dosage effect. The same situation occurs with the msl3 mutation (Okuno et al., 1984), another MSL gene, in that the autoradiographic grain numbers as an absolute measure show retention of X dosage compensation and an autosomal increase. The data treatment to produce an X to A ratio seemed reasonable in the context of the time when all regulation in eukaryotes was considered positive. However, when studies were conducted in such a manner as to assay the absolute effect on gene expression in the maleless mutation, in adults (Hiebert and Birchler, 1994), larvae (Hiebert and Birchler, 1994; Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005), and embryos (Pal Bhadra et al., 2005), the trend was for retention of dosage compensation of X linked genes and an increase in expression of autosomal genes.
In global studies, if the X to autosomal expression does not change between mutant and normal, one can conclude that dosage compensation is operating. However, a lower X to A ratio could be a loss of compensation or an increased transcriptome size from the increase of the autosomes, as suggested by the absolute data of Belote and Lucchesi (1980) and Okuno et al (1984) and was visualized directly in embryos (Pal Bhadra et al., 2005). The transcriptome size in aneuploids can change, which cannot be detected in RNA-seq analyses alone (Yang et al., 2021), so it is an important consideration for studies of dosage compensation. It was recently acknowledged that in MSL2 knockdowns the relative X expression is decreased and a moderate autosomal increase is found (Valsecchi et al., 2021b). A similar trend is evident in the microarray data on MSL2 knockdown in SL2 tissue culture cells (Hamada et al., 2005) and in the roX RNA (noncoding RNAs essential for MSL localization on the male X) mutants (Deng and Meller, 2006). This trend is in fact consistent with the absolute data that suggest an increase in the transcriptome size (Figure 7). A global change in transcriptome size can cause a generalized dosage compensation of a single chromosome to appear as a proportional dosage effect (loss of compensation) to some degree (Figure 7).
Examination of expression in triple X metafemales, where there is no MSL complex, found that X-linked genes generally show dosage compensation but there is a generalized inverse effect on the autosomes, which could account for the detrimental effects of metafemales (Birchler et al., 1989; Sun et al., 2013b). An examination in metafemales of alleles of the white eye color gene that do or do not exhibit dosage compensation in males, showed the same response, namely, increased expression if there was no dosage compensation in males and no difference from normal females for the male dosage-compensated alleles (Birchler, 1992). This experiment demonstrated a relationship between the mechanism of dosage compensation in males and metafemales and implicated the inverse dosage effect in both. An involvement of the inverse effect in Drosophila dosage compensation provides an explanation for how the five levels of gene expression can be explained (Birchler, 1996), whereas an all-or-none presence of a complex on the X does not. The stoichiometric relationship of regulatory gene products provides a means to read the relative dosage at multiple doses to produce the appropriate inverse level.
What then is the function of the MSL complex? It was discovered that the MSL complex will actually constrain the effect of H4 lysine16 acetylation to prevent it from causing overexpression of genes (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler 2009; Sun et al., 2013a). Indeed, in the chromatin remodeling Imitation Switch (ISWI) mutants, the male X chromosome was specifically overexpressed suggesting that its normal function is needed for the constraint to occur (Pal Bhadra et al., 2005). Independently, the Mtor nuclear pore component shows a similar specific male X upregulation when Mtor is knocked down and this effect was shown to operate on the transcriptional level (Aleman et al., 2021). Interestingly, the increased expression of the X in the Mtor knockdown is accompanied by an inverse modulation of a substantial subset of autosomal genes, illustrating why the constraining process evolved to counteract male X overexpression. The constraining effect might involve a number of gene products (Birchler, 2016) and is an interesting direction for further study.
Furthermore, when the H4Lys16 acetylase was individually targeted to reporter genes, there was an increase in expression (Sun et al., 2013a). However, when other members of the MSL complex were present in normal males or ectopically expressed, this increase did not occur (Sun et al., 2013a). It thus appears that the function of the MSL complex is to sequester the acetylase from the autosomes and constrain it on the X (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler, 2009; Sun et al., 2013a). Indeed, in the Mtor knockdowns, the X-linked genes with the greatest upregulation were those with the greatest association with the acetylase and the H4K16ac histone mark (Aleman et al 2021), supporting the idea of a constraining activity that becomes released in the Mtor knockdown. When the MSL complex is disrupted, there is an inverse effect on the autosomes that occurs but in normal circumstances the sequestration mutes this effect. The MSL complex disruption releases the acetylase to be uniformly distributed across all chromosomes as determined cytologically (Bhadra et al., 1999) or via ChIPseq for H4Lys16ac (Valsecchi et al., 2021a). Indeed, the quantity of the H4Lys16ac mark only has a proportional effect on gene expression when the constraining activity is disrupted (Aleman et al., 2021) or when the MSL complex is not present (Sun et al., 2013a). Thus, in normal flies, there is a more or less equalized expression of the X and autosomes despite the monosomy for 20% of the genome.
The component of the complex that is expressed in males and thought to organize the complex to the male X, MSL2, was recently found to also be associated with autosomal dosage-sensitive regulatory genes (Valsecchi et al., 2018). MSL2 was found to modulate these autosomal dosage-sensitive genes in various directions, which illustrates that MSL2 has a role in dosage balance that goes beyond the X chromosome. This finding is consistent with the evolutionary scenario that the initial attraction of the complex to the X chromosome was to upregulate dosage-sensitive genes in hemizygous regions as the progenitor Y became deleted for them, with the constraining activity evolving to prevent an overexpression as the amount of acetylase on the male X increased with time (Birchler, 2016).
The MSL hypothesis takes an X-centric view that does not accommodate what is now known about dosage effects across the whole genome. The idea that dissolution of the MSL complex would cause a reduction in expression of the male X-linked genes without any consequences for the autosomes is not consistent with current knowledge of gene regulatory networks and their dosage sensitivity. Indeed, the finding of dosage compensation in large autosomal aneuploids that operates on the transcriptional level (Devlin et al., 1982; 1984; Birchler et al., 1990; Sun et al., 2013c), as well as a predominant inverse effect by the same (Devlin, et al., 1988; Birchler et al., 1990), argues that one must consider the inverse effect for an understanding of the evolution of dosage compensation in Drosophila (and other species). Further discussion of models of Drosophila compensation has been published (Birchler, 2016).
What is likely to be the most critical issue with sex chromosome evolution is the consequences for dosage-sensitive regulatory genes. This fact is nicely illustrated by the retention of these types of genes in different independent vertebrate sex chromosome evolutions (Bellott and Page, 2021). In Drosophila, by contrast, dosage compensation is more of a blanket effect on most but not all X-linked genes despite the fact that many genes on the X are unlikely to have dosage detrimental effects, although dosage-sensitive genes might have played a role as noted above. The particularly large size of the X in Drosophila compared to the whole genome is potentially a contributing factor because such a large genomic imbalance is likely to modulate most genes across the genome. Also, there is no evidence of a WGD in Drosophila as there is in other species for which the inverse effect has been documented (maize, Arabidopsis, yeast, mice, human). These other species have various numbers of retained duplicate dosage-sensitive regulatory genes from WGDs. Thus, the relative change of regulatory genes in aneuploids in these species will not be as great compared to some of their interactors in the remainder of the genome, which could result in lesser magnitudes of some trans-acting effects, similar to how aneuploids in ascending ploidies have fewer effects as described above. The absence of duplicate regulatory genes in Drosophila would predict a stronger inverse effect in general and that could have been capitalized upon to produce dosage compensation of most genes on the X chromosome despite many of them not being dosage critical. While sex chromosome evolution must accommodate dosage-sensitive genes for proper development and viability, it could also be capitalized upon to evolve sexual dimorphisms in expression (Sun et al., 2013c)."
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In the manuscript, Zhao et al. have carried out a thorough examination of the effects of targeted ablation of resident astrocytes on behavior, cellular responses, and gene expression after spinal cord injury. Employing transgenic mice models alongside pharmacogenetic techniques, the authors have successfully achieved the selective removal of these resident astrocytes. This intervention led to a notable reduction in neuropathic pain and induced a shift in microglial cell reactivation states within the spinal cord, significantly altering transcriptome profiles predominantly associated with interferon (IFN) signaling pathways.
Strengths:
The findings presented add considerable value to the current understanding of the role of astrocyte elimination in neuropathic pain, offering convincing evidence that supports existing hypotheses and valuable insights into the interactions between astrocytes and microglial cells, likely through IFN-mediated mechanisms. This contribution is highly relevant and suggests that further exploration in this direction could yield meaningful results.
Weaknesses:
The methodology and evidence underpinning the study are solid, yet some areas would benefit from further clarification, particularly concerning methodological details and the choice of statistical analyses. Additionally, the manuscript's organization and clarity could be improved, as certain figures and schematics appear inconsistent or misleading.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study used a novel diffusion-weighted pseudo-continuous arterial spin labelling (pCASL) technique to simultaneously explore age- and sex-related differences in brain tissue perfusion (i.e., cerebral blood flow (CBF) & arterial transit time (ATT) - a measure of CBF delivery to brain tissue) and blood-brain barrier (BBB) function, measured as the water exchange (kw) across the BBB. While age- and sex-related effects on CBF are well known, this study provides new insights to support the growing evidence of these important factors in cerebrovascular health, particularly in BBB function. Across the brain, the decline in CBF and BBB function (kw) and elevation in ATT were reported in older adults, after the age of 60, and more so in males compared to females. This was also evident in key cognitive regions including the insular, prefrontal, and medial temporal regions, stressing the consideration of age and sex in these brain physiological assessments.
Strengths:
Simultaneous assessment of CBF with BBB along with transit time and at the voxel-level helped elucidate the brain's vulnerability to age and sex-effects. It is apparent that the investigators carefully designed this study to assess regional associations of age and sex with attention to exploring potential non-linear effects.
Weaknesses:
It appears that no brain region showed concurrent CBF and BBB dysfunction (kw), based on the results reported in the main manuscript and supplemental information. Was an association analysis between CBF and kw performed? There is a potential effect of the level of formal education on CBF (PMID: 12633147; 15534055), which could have been considered and accounted for as well, especially for a cohort with stated diversity (age, race, sex).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
This manuscript characterizes a chemoattractant response to human serum by pathogenic bacteria, focusing on pathogenic stratins of Salmonella enterica Se. The researchers conduct the chemotaxis assays using a micropipette injection method that allows real-time tracking of bacterial population densities. They found that clinical isolates of several Se strains present a chemoattractant response to human serum. The specific chemoattractant within the serum is identified as L-serine, a highly characterized and ubiquitous chemoattractant, that is sensed by the Tsr receptor. They further show that chemoattraction to serum is impaired with a mutant strain devoid of Tsr. X-ray crystallography is then used to determine the structure of L-serine in the Se Tsr ligand binding domain, which differs slightly from a previously determine structure of a homologous domain. They went on to identify other pathogens that have a Tsr domain through a bioinformatics approach and show that these identified species also present a chemoattractant response to serum.
Strengths and Weaknesses:
This study is well executed and the experiments are clearly presented. These novel chemotaxis assays provide advantages in terms of temporal resolution and ability to detect responses from small concentrations. That said, it is perhaps not surprising these bacteria respond to serum as it is known to contain high levels of known chemoattractants, serine certainly, but also aspartate. In fact, the bacteria are shown to respond to aspartate and the tsr mutant is still chemotactic. The authors do not adequately support their decision to focus exclusively on the Tsr receptor. Tsr is one of the chemoreceptors responsible for observed attraction to serum, but perhaps, not the receptor. Furthermore, the verification of chemotaxis to serum is a useful finding, but the work does not establish the physiological relevance of the behavior or associate it with any type of disease progression. I would expect that a majority of chemotactic bacteria would be attracted to it under some conditions. Hence the impact of this finding on the chemotaxis or medical fields is uncertain.
The authors also state that "Our inability to substantiate a structure-function relationship for NE/DHMA signaling indicates these neurotransmitters are not ligands of Tsr." Both norepinephrine (NE) and DHMA have been shown previously by other groups to be strong chemoattractants for E. coli (Ec), and that this behavior was mediated by Tsr (e.g. single residue changes in the Tsr binding pocket block the response). Given the 82% sequence identity between the Se and Ec Tsr, this finding is unexpected (and potentially quite interesting). To validate this contradictory result the authors should test E. coli chemotaxis to DHMA in their assay. It may be possible that Ec responds to NE and DHMA and Se doesn't. However, currently the data is not strong enough to rule out Tsr as a receptor to these ligands in all cases. At the very least the supporting data for Tsr being a receptor for NE/DHMA needs to be discussed.
The authors also determine a crystal structure of the SeTsr periplasmic ligand binding domain bound to L-Ser and note that the orientation of the ligand is different than that modeled in a previously determined structure of lower resolution. I agree that the SeTsr ligand binding mode in the new structure is well-defined and unambiguous, but I think it is too strong to imply that the pose of the ligand in the previous structure is wrong. The two conformations are in fact quite similar to one another and the resolution of the older structure, is, in my view, insufficient to distinguish them. It is possible that there are real differences between the two structures. The domains do have different sequences and, moreover, the crystal forms, and cryo-cooling conditions are different in each case. It's become increasingly apparent that temperature, as manifested in differential cooling conditions here, can affect ligand binding modes. It's also notable that full-length MCPs show negative cooperativity in binding ligands, which is typically lost in the isolated periplasmic domains. Hence ligand binding is sensitive to the environment of a given domain. In short, the current data is not convincing enough to say that a previous "misconception" is being corrected.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors generate an optimized small molecule inhibitor of SMARCA2/4 and test it in a panel of cell lines. All uveal melanoma (UM) cell lines in the panel are growth-inhibited by the inhibitor making the focus of the paper. This inhibition is correlated with the loss of promoter occupancy of key melanocyte transcription factors e.g. SOX10. SOX10 overexpression and a point mutation in SMARCA4 can rescue growth inhibition exerted by the SMARCA2/4 inhibitor. Treatment of a UM xenograft model results in growth inhibition and regression which correlates with reduced expression of SOX10 but not discernible toxicity in the mice. Collectively the data suggest a novel treatment of uveal melanoma.
Strengths:
There are many strengths of the study including the strong challenge of the on-target effect, the assays used, and the mechanistic data. The results are compelling as are the effects of the inhibitor. The in vivo data is dose-dependent and doses are low enough to be meaningful and associated with evidence of target engagement.
Weaknesses:
The authors introduce the field stating that SMARCA4 inhibitors are more effective in SMARCA2 deficient cancers and the converse. Since the desirable outcome of cancer therapy would be synthetic lethality it is not clear why a dual inhibitor is desirable. Wouldn't this be associated with more side effects? It is not known how the inhibitor developed here impacts normal cells, in particular T cells which are essential for any durable response to cancer therapies in patients. Another weakness is that the UM cell lines used do not molecularly resemble metastatic UM. These UM most frequently have mutations in the BAP1 tumor suppressor gene. It is not clear if the described SMARCA2/4 inhibitor is efficacious in BAP1 mutant UM cell lines in vitro or BAP1 mutant patient-derived xenografts in vivo.
-
-
doi.org doi.org
-
Reviewer #2 (Public Review):
Summary:
The authors investigated systemic inflammation induced by LPS in various tissues and also examined immune cells of the mice using tight junction protein-based PDZ peptide. They explored the mechanism of anti-systemic inflammatory action of PDZ peptides, which enhanced M1/M2 polarization and induced the proliferation of M2 macrophages. Additionally, they insisted on the physiological mechanism that inhibited the production of ROS in mitochondria, thereby preventing systemic inflammation.
Strengths:<br /> In the absence of specific treatments for septic shock or sepsis, the study demonstrating that tight junction-based PDZ peptides inhibit systemic inflammation caused by LPS is highly commendable. Whereas previous research focused on antibiotics, this study proves that modifying parts of intracellular proteins can significantly suppress symptoms caused by septic shock. The authors expanded the study of localized inflammation caused by LPS or PM2.5 in the respiratory tract, to systemic inflammation, presenting promising results. They not only elucidated the physiological mechanism by identifying the transcriptome through RNA sequencing but also demonstrated that PDZ peptides inhibit the production of ROS in mitochondria and prevent mitochondrial fission. This research is highly regarded as an excellent study with potential as a treatment for septic shock or sepsis.
Weaknesses<br /> (1) The authors focused intensively on acute inflammation for a short duration instead of chronic inflammation.<br /> (2) LPS was used to induce septic shock, but administrating actual microbes such as E.coli would yield more accurate results.<br /> (3) The authors used pegylated peptides, but future research should utilize the optimized peptides to derive the optimal peptide, and further, PK/PD studies are also necessary.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This work proposes a synaptic plasticity rule that explains the generation of learned stochastic dynamics during spontaneous activity. The proposed plasticity rule assumes that excitatory synapses seek to minimize the difference between the internal predicted activity and stimulus-evoked activity, and inhibitory synapses try to maintain the E-I balance by matching the excitatory activity. By implementing this plasticity rule in a spiking recurrent neural network, the authors show that the state-transition statistics of spontaneous excitatory activity agree with that of the learned stimulus patterns, which are reflected in the learned excitatory synaptic weights. The authors further demonstrate that inhibitory connections contribute to well-defined state transitions matching the transition patterns evoked by the stimulus. Finally, they show that this mechanism can be expanded to more complex state-transition structures including songbird neural data.
Strengths:
This study makes an important contribution to computational neuroscience, by proposing a possible synaptic plasticity mechanism underlying spontaneous generations of learned stochastic state-switching dynamics that are experimentally observed in the visual cortex and hippocampus. This work is also very clearly presented and well-written, and the authors conducted comprehensive simulations testing multiple hypotheses. Overall, I believe this is a well-conducted study providing interesting and novel aspects of the capacity of recurrent spiking neural networks with local synaptic plasticity.
Weaknesses:
This study is very well-thought-out and theoretically valuable to the neuroscience community, and I think the main weaknesses are in regard to how much biological realism is taken into account. For example, the proposed model assumes that only synapses targeting excitatory neurons are plastic, and uses an equal number of excitatory and inhibitory neurons.
The model also assumes Markovian state dynamics while biological systems can depend more on history. This limitation, however, is acknowledged in the Discussion.<br /> Finally, to simulate spontaneous activity, the authors use a constant input of 0.3 throughout the study. Different amplitudes of constant input may correspond to different internal states, so it will be more convincing if the authors test the model with varying amplitudes of constant inputs.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public Review):
Summary:
Cell intrinsic signaling pathways controlling the function of macrophages in inflammatory processes, including in response to infection, injury or in the resolution of inflammation are incompletely understood. In this study, Rosell et al. investigate the contribution of RAS-p110α signaling to macrophage activity. p110α is a ubiquitously expressed catalytic subunit of PI3K with previously described roles in multiple biological processes including in epithelial cell growth and survival, and carcinogenesis. While previous studies have already suggested a role for RAS-p110α signaling in macrophages function, the cell intrinsic impact of disrupting the interaction between RAS and p110α in this central myeloid cell subset is not known.
Strengths:
Exploiting a sound previously described genetically mouse model that allows tamoxifen-inducible disruption of the RAS-p110α pathway and using different readouts of macrophage activity in vitro and in vivo, the authors provide data consistent with their conclusion that alteration in RAS-p110α signaling impairs the function of macrophages in a cell intrinsic manner. The study is well designed, clearly written with overall high-quality figures.
Weaknesses:
My main concern is that for many of the readouts, the difference between wild-type and mutant macrophages in vitro or between wild-type and Pik3caRBD mice in vivo is rather modest, even if statistically significant (e.g. Figure 1A, 1C, 2A, 2F, 3B, 4B, 4C). In other cases, such as for the analysis of the H&E images (Figure 1D-E, S1E), the images are not quantified, and it is hard to appreciate what the phenotype in samples from Pik3caRBD mice is or whether this is consistently observed across different animals. Also, the authors claim there is a 'notable decrease' in Akt activation but 'no discernible chance' in ERK activation based on the western blot data presented in Figure 1A. I do not think the data shown supports this conclusion.
To further substantiate the extent of macrophage function alteration upon disruption of RAS-p110α signaling, the manuscript would benefit from testing macrophage activity in vitro and in vivo across other key macrophage activities such as bacteria phagocytosis, cytokine/chemokine production in response to titrating amounts of different PAMPs, inflammasome function, etc. This would be generally important overall but also useful to determine whether the defects in monocyte motility or macrophage lysosomal function are selectively controlled downstream of RAS-p110α signaling.
Furthermore, given the key role of other myeloid cells besides macrophages in inflammation and immunity it remains unclear whether the phenotype observed in vivo can be attributed to impaired macrophage function. Is the function of neutrophils, dendritic cells or other key innate immune cells not affected?
Compelling proof of concept data that targeting RAS-p110α signalling constitutes indeed a putative approach for modulation of chronic inflammation is lacking. Addressing this further would increase the conceptual advance of the manuscript and provide extra support to the authors' suggestion that p110α inhibition or activation constitute promising approaches to manage inflammation.
Finally, the analysis by FACS should also include information about the total number of cells, not just the percentage, which is affected by the relative change in other populations. On this point, Figure S2B shows a substantial, albeit not significant (with less number of mice analysed), increase in the percentage of CD3+ cells. Is there an increase in the absolute number of T cells or does this apparent relative increase reflect a reduction in myeloid cells?
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This paper introduces a novel approach for improving personalized cancer immunotherapy by integrating TCR profiling with traditional pHLA binding predictions, addressing the need for more precise neoantigen CRC patients. By analyzing TCR repertoires from tumor-infiltrating lymphocytes and applying machine learning algorithms, the authors developed a predictive model that outperforms conventional methods in specificity and sensitivity. The validation of the model through ELISpot assays confirmed its potential in identifying more effective neoantigens, highlighting the significance of combining TCR and pHLA data for advancing personalized immunotherapy strategies.
Strengths:
(1) Comprehensive Patient Data Collection: The study meticulously collected and analyzed clinical data from 27 CRC patients, ensuring a robust foundation for research findings. The detailed documentation of patient demographics, cancer stages, and pathology information enhances the study's credibility and potential applicability to broader patient populations.
(2) The use of machine learning classifiers (RF, LR, XGB) and the combination of pHLA and pHLA-TCR binding predictions significantly enhance the model's accuracy in identifying immunogenic neoantigens, as evidenced by the high AUC values and improved sensitivity, NPV, and PPV.
(3) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses. The calculation of ranking coverage scores and the comparative analysis between the combined model and the conventional NetMHCpan method demonstrate the superior performance of the combined approach in accurately ranking immunogenic neoantigens.
(4) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses.
Weaknesses:
(1) While multiple advanced tools and algorithms are used, the study could benefit from a more detailed explanation of the rationale behind algorithm choice and parameter settings, ensuring reproducibility and transparency.
(2) While pHLA-TCR binding displayed higher specificity, its lower sensitivity compared to pHLA binding suggests a trade-off between the two measures. Optimizing the balance between sensitivity and specificity could be crucial for the practical application of these predictions in clinical settings.
(3) The experimental validation was performed on a limited number of patients (four), which might affect the generalizability of the findings. Increasing the number of patients for validation could provide a more comprehensive assessment of the model's performance
-
-
-
Reviewer #2 (Public Review):
Mismatches occur as a result of DNA polymerase errors, chemical modification of nucleotides, during homologous recombination between near-identical partners, as well as during gene editing on chromosomal DNA. Under some circumstances, such mismatches may be incorporated into nucleosomes but their impact on nucleosome structure and stability is not known. The authors use the well-defined 601 nucleosome positioning sequence to assemble nucleosomes with histones on perfectly matched dsDNA as well as on ds DNA with defined mismatches at three nucleosomal positions. They use the R18, R39, and R56 positions situated in the middle of the outer turn, at the junction between the outer turn and inner turn, and in the middle of the inner turn, respectively. Most experiments are carried out with CC mismatches and Xenopus histones. Unwrapping of the outer DNA turn is monitored by single-molecule FRET in which the Cy3 donor is incorporated on the 68th nucleotide from the 5'-end of the top strand and the Cy5 acceptor is attached to the 7th nucleotide from the 5' end of the bottom strand. Force is applied to the nucleosomal DNA as FRET is monitored to assess nucleosome unwrapping. The results show that a CC mismatch enhances nucleosome mechanical stability. Interestingly, yeast and Xenopus histones show different behaviors in this assay. The authors use FRET to measure the cyclization of the dsDNA substrates to test the hypothesis that mismatches enhance the flexibility of the 601 dsDNA fragment and find that CC, CA, CT, TT, and AA mismatches decrease looping time, whereas GA, GG, and GT mismatches had little to no effect. These effects correlate with the results from DNA buckling assays reported by Euler's group (NAR 41, 2013) using the same mismatches as an orthogonal way to measure DNA kinking. The authors discuss that substitution rates are higher towards the middle of the nucleosome, suggesting that mismatches/DNA damage at this position are less accessible for repair, consistent with the nucleosome stability results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Interest in using nanobodies for therapeutic interventions in infectious diseases is growing due to their ability to bind hidden or cryptic epitopes that are inaccessible to conventional immunoglobulins. In the presented study, authors posed to characterize nanobodies derived the library produced earlier with Wuhan strain of SARS-CoV-2, map their epitopes on SARS-CoV-2 spike protein and demonstrate that some nanobodies retain binding and even neutralization against antigenically distant, newly emerging Variants of Concern (VOCs).
Strengths:
Authors demonstrate that some nanobodies despite being obtained against ancestral virus strain retain high affinity binding to antigenically distant SARS-CoV-2 strains despite majority of the repertoire loses binding. Despite being limited to only two nanobody combinations, demonstration of synergy in virus neutralization between nanobodies targeting different epitopes is compelling. The ability of nanobodies to bind emerging virus strains has been demonstrated and the possible effect of mutations within epitopes has been thoroughly discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary
The manuscript by Galicia et al describes the structure of the bacterial GTPyS-bound CtRoco protein in the presence of nanobodies. The major relevance of this study is in the fact that the CtRoco protein is a homolog of the human LRRK2 protein with mutations that are associated with Parkinson's disease. The structure and activation mechanisms of these proteins are very complex and not well understood. Especially lacking is a structure of the protein in the GTP-bound state. Previously the authors have shown that two conformational nanobodies can be used to bring/stabilize the protein in a monomer-GTPyS-bound state. In this manuscript, the authors use these nanobodies to obtain the GTPyS-bound structure and importantly discuss their results in the context of the mammalian LRRK2 activation mechanism and mutations leading to Parkinson's disease. The work is well performed and clearly described. In general, the conclusions on the structure are reasonable and well-discussed in the context of the LRRK2 activation mechanism.
Strengths:
The strong points are the innovative use of nanobodies to stabilize the otherwise flexible protein and the new GTPyS-bound structure that helps enormously in understanding the activation cycle of these proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors characterized the contribution of BMP9/BMp10 expression/secretion from all different hepatic cell types and analysed their impact on the other cell types. They are able to show that HSC derived BMP9/BMP10 controls Kupffer cell and EC differentiation and functions.
Strengths:
This is the first study to my knowledge to comprehensively analyze the contribution of BMP9/BMP10 expression in such systematic fashion in vivo. This study therefore is a significant contribution to the field and further supports previous studies that have already implied BMP9 and BMP10 in Kupffer cell and EC functions but did not unravel the intercellular cross talk in such detailed fashion.
Weaknesses:
Several findings such as the impact of BMP9/10 on Kupffer cells and EC were already known. So these findings are not innovative, however I still believe that the elucidation of the cellular crosstalk makes this publication highly interesting to a broad scientific community.
Overall the authors achieved their aims and the results are well supporting the conclusions and discussion.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Strengths<br /> (1) The study benefits from a Large sample size, encompassing serial assessments of 4000-9000 adults over an extended period. This large cohort enhances the reliability and generalizability of the findings.<br /> (2) The study employs a rigorous methodology, including serial assessments, self-collected dried blood spots, and highly sensitive antibody assays. The use of multiple measures ensures a robust evaluation of hybrid immunity and SARS-CoV-2 incidence within the Canadian population.<br /> (3) The manuscript provides detailed analyses of antibody levels, vaccination history, infection rates, and demographic factors. The inclusion of stratified analyses by age, sex, and ethnicity enhances the understanding of population-level immunity dynamics.<br /> (4) The study's findings contribute valuable insights into the dynamics of hybrid immunity and SARS-CoV-2 incidence, particularly during the emergence of the Omicron variant. The observed decline in COVID-19 death rates amidst rising infection rates underscores the potential protective role of hybrid immunity against severe outcomes.
Weaknesses<br /> (1) Sampling Limitations: While the study claims to be representative of the Canadian population, there are potential limitations in sampling methods, particularly reliance on an online polling platform. This approach may introduce selection bias and limit the generalizability of findings to certain demographic groups.<br /> (2) Assay Limitations: The study acknowledges limitations associated with antibody assays and the potential for assay saturation, the reliance on self-reported vaccination history and infection status may introduce recall bias and affect the accuracy of estimates.<br /> (3) Data Interpretation: While the study presents compelling data on hybrid immunity and SARS-CoV-2 incidence, some interpretations may be speculative. The assertion of a causal relationship between hybrid immunity and reduced COVID-19 mortality warrants cautious interpretation, given the complexity of factors influencing disease outcomes.<br /> (4) Lack of inclusion and exclusion criteria: The manuscript does not have specific inclusion and exclusion criteria for participants and the methods used for data analysis.<br /> (5) The protocol does not include disaggregated data, this is only available on page 25 as an annex.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, Guo et al., screened a few homeobox transcription factors and identified that Obox4 can induce the 2-cell like state in mouse embryonic stem cells (mESCs) (Fig. 1 and 2). The authors also compared in detail how Obox4 vs. Dux in activating 2C repeats and genes in mESCs (Fig. 3). Compared to Dux, Obox4 activates fewer 2C genes (Fig. 2). In addition, although both Obox4 and Dux bind to MERVL elements, Obox4 additionally binds to ERVK (Fig. 3). The authors then used three different approaches (i.e., SCNT-mediated KO, ASO-mediated KD, and genetic KO) to study how Obox4 and Dux regulates zygotic genome activation in embryos. Although there are some inconsistencies among different approaches, the authors were able to show that loss of both Obox4 and Dux causes more severe consequences than loss of single protein in embryonic development and zygotic genome activation (Fig. 4 and 5).
Overall, this is a comprehensive study that addresses an important question that puzzles the community. However, some comparisons to the recent work by Ji et al (PMID: 37459895) are highly recommended. Ji et al knocked out the entire Obox cluster (including Obox4) in mice and found that Obox cluster KO causes 2-4 cell arrest without affecting Dux. That said, Obox proteins seem more critical than Dux in regulating ZGA, and Obox cluster KO cannot be compensated by Dux. Ji et al., also reported that maternal (Obox1, 2, 5, 7) and zygotic (Obox3, 4) Obox proteins redundantly regulate embryogenesis because loss of either is compatible to development. Consistent with Ji's work, Obox4 KO embryos generated in this study can develop to adulthood and are fertile. Since these two studies are highly relevant, some comparisons of Obox4 KO and Obox4/Dux DKO with the previous Obox cluster KO will greatly benefit the community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In the manuscript "Representational drift as a result of implicit regularization" the authors study the phenomenon of representational drift (RD) in the context of an artificial network which is trained in a predictive coding framework. When trained on a task for spatial navigation on a linear track, they found that a stochastic gradient descent algorithm led to a fast initial convergence to spatially tuned units, but then to a second very slow, yet directed drift which sparsified the representation while increasing the spatial information. They finally show that this separation of time-scales is a robust phenomenon and occurs for a number of distinct learning rules.
This is a very clearly written and insightful paper, and I think people in the community will benefit from understanding how RD can emerge in such artificial networks. The mechanism underlying RD in these models is clearly laid out and the explanation given is convincing.
It still remains unclear how this mechanism may account for the learning of multiple environments, although this is perhaps a topic for future study. The non-stationarity of the drift in this framework would seem, at first blush, to contrast with what one sees experimentally, but the authors provide compelling evidence that there are continuous changes in network properties during learning and that stationarity may be the hallmark of overfamiliarized environments. Future experimental work may further shed light on differences in RD between novel and familiar environments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This significant research explored how the PHOX2B transcription factor functions within neurons located in the retrotrapezoid nucleus (RTN), a crucial brainstem chemosensory area, to sustain appropriate CO2 chemoreflex reactions related to breathing in adult rats when observed in a living state. By applying a viral shRNA technique to selectively suppress PHOX2B in RTN neurons, the authors present compelling evidence of deteriorating ventilatory reactions to increased CO2 levels. This impairment progresses over a four-week period in vivo, hinting at disruptions in RTN neuron transcriptional processes and a consequent dulling of CO2-induced breathing responses. The data on RTN neuronal mRNA expression indicates that the weakened hypercapnic ventilatory response may stem from reduced levels of crucial proton sensors within the RTN. This research holds relevance for neuroscientists focused on the neurobiology of respiration and the neurodevelopmental regulation of motor functions.
Strengths:
The authors employed a shRNA viral strategy to systematically reduce PHOX2B protein levels, targeting RTN neurons specifically, to assess the importance of PHOX2B for the survival and chemosensory capabilities of adult RTN neurons in a living organism. The findings of this research underscore that beyond its developmental role, PHOX2B remains essential for sustaining accurate CO2 chemoreflex reactions in the adult brain. Furthermore, its diminished presence in Congenital Central Hypoventilation Syndrome (CCHS) could be a factor in the respiratory deficiencies observed in the condition. This study highlights the critical ongoing function of PHOX2B in adult physiology and its potential impact on respiratory health, offering valuable insights for the scientific and medical communities involved in treating and understanding respiratory disorders.
Weaknesses:
N/A
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this study, Mu Qiao employs a bilinear modelling approach, commonly utilised in the recommendation systems, to explore the intricate neural connections between different pre- and post-synaptic neuronal types. This approach involves projecting single-cell Transcriptomic datasets of pre- and post-synaptic neuronal types into a latent space through transformation matrices. Subsequently, the cross-correlation between these projected latent spaces is employed to estimate neuronal connectivity. To facilitate the model training, Connectomic data is used to estimate the ground-truth connectivity map. This work introduces a promising model for the exploration of neuronal connectivity and its associated molecular determinants. In the revised version of the manuscript, the author has applied and validated the model in both C. elegans gap junction connectivity and the retina neuron connectivity conditions.
Strengths:
This study introduces a succinct yet promising computational model for investigating connections between neuronal types. The model, while straightforward, effectively integrates single-cell transcriptomic and connectomic data to produce a reasonably accurate connectivity map, particularly within the context of retinal connectivity. Furthermore, it successfully recapitulates connectivity patterns and helps uncover the genetic factors that underlie these connections.
Weaknesses:
(1) When compared with the previous method - SCM, the new model shows a similar performance level. This may be due to the limitation of the dataset itself, as it only has the innexin expression data. Is it possible to apply the SCM model to the more complete retina dataset and compare the performance with the proposed bilinear modelling approach?
Minor Weakness:
(1) The study lacks experimental validation of the model's prediction results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Replacing linezolid (L) with the preclinical development candidate spectinamide 1599, administered by inhalation, in the BPaL standard of care regimen achieves similar efficacy, and reduces hematological changes and pro-inflammatory responses.
Strengths:
The authors not only measure efficacy but also quantify histological changes, hematological responses, and immune responses, to provide a comprehensive picture of treatment response and the benefits of the L to S substitution.
The authors generate all data in two mouse models of TB infection, each reproducing different aspects of human histopathology.
Extensive supplementary figures ensure transparency.
Weaknesses:
The articulation of objectives and hypotheses could be improved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The paper by Pal et al. examines the role of Nrp1 in organ-specific permeability response to VEGF. The subject is certainly interesting, but there are a number of significant methodological problems that make data evaluation rather problematic. In particular, lung endothelial cells are used to assess the effectiveness of Nrp1 knockout when experiments focus on different organs; small number of data points (as small as 2 or 3) are used to claim statistically significant differences; obvious data scatter is not commented on and seems ignored; key reagents (anti-Nrp1 Ab) are not well characterized, a proposed model is not verified in vitro, etc. Some of these issues are outlined in detail below, but the list of problems is much longer than this.
(1) Intradermal injection of anti-Nrp1 Ab: I am puzzled by this experiment: Will Ab presence be limited locally or is there a systemic distribution? This needs to be verified.
(2) What does anti-Nrp1 Ab actually do? Does it block VEGF binding? Induces Nrp1 and VEGFR2 endocytosis?
(3) How does i.v. injection of anti-Nrp1 Ab affect permeability in different organs?
(4) Effect of endothelial Nrp1KO: Since the authors examine organ-specific effects of Nrp1, it seems illogical to assess its expression in the lung as a measure of KO as KO efficiency may differ organ by organ. Immunocytochemistry is not particularly quantitative and prone to selection bias. I'd suggest using EC bulk RNAseq from different organs to confirm the magnitude of the knockout in different beds.
(5) Figures 1B and 2B show profoundly different levels of Nrp1 KO in lung ECs. Were different mouse strains used in Figure 1 and Figure 2 experiments? This may well explain the differences the authors have observed.
(6) Supplementary Figure 2: why is there no leakage of 10kD dextran in the heart in response to VEGF when there is an increase in the 70kD dextran leakage? That does not seem possible. Further, the authors observed no significant increase in 70kD dextran leakage after VEGF in the skeletal muscle. That also seems very unlikely and flies against experience of many labs in the field.
(7) Since the authors think that peri-vascular cell Nrp1 expression accounts for organ-specific Nrp1 effects, this should be studied and examined in an in vitro co-culture model.
(8) Quantification: a lot of quantifications- of Nrp1 expression level, VE-cadherin Y685 phosphorylation, etc. are done on the basis of immunocytochemistry. This really is not a quantitative technique and is prone to numerous artifacts. The data should be at least confirmed by whole-tissue Westerns. I am also puzzled by small numbers of samples. If each dot on a graph represents an individual data point, how do authors get a p<0.5 value with an N of 3? (for example Figure 5B, but there are other examples). Also, in Figure 4F data scatter is quite enormous. This is either an experimental problem or, more likely, there is a biological message here - the tissue is not uniform. In any case, I do not see how one gets a significant result here. Figures 5B and 5C have a similar problem while Figure 5D seems to be based on only two data points?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this paper, the authors seek to identify strategies that can be used to generate robust one-dimensional large-scale patterns through the sequential application of only local, unchanging, space-independent rules. This is an important general question in developmental biology.
Strengths:
The authors do a nice job of laying out the problem, which they explore through cellular automaton (CA) modeling. The modeling framework is well described, as are the methods used for computational identification of effective (most "fit") strategies. As many biologists are unfamiliar with CA models, the clarity of description offered by these authors is especially important, as is the attention that was paid to useful visualization of results.
Ultimately, the authors use their approach to converge on certain generic strategies for achieving robust patterns. In the case when there are only three states (no hidden or transient states) available to cells, they rationalize the consensus strategy that emerges to involve a combination of "sorting" and "bulldozer" modules, which are relatively easy to rationalize. In cases involving a fourth state, a more complicated set of strategies arise and are considered.
As a pure modeling paper, I find the work to be very well done, and the conclusions are well supported by the data and analyses. In terms of the long-term importance of this approach to biologists studying pattern formation, I see this paper as primarily laying a foundation for taking the next step, which is moving into two (or three dimensions). Clearly, the complexity of rules becomes much greater, but one may expect some big qualitative differences to show up in higher dimensions, where simple strategies like sorting and bulldozing cannot work quite as simply. It will be interesting to see where this leads.
Weaknesses:
Ultimately, the relevance of this work to biology rests with its ability to provide insight into important biological problems. In terms of explaining the challenging nature of generating long-range patterns using short-range rules, I think the authors do a good job. However, they could do a better job of relating the results of the work back to biology. For example, are there examples of "sorting module" and "bulldozer module" behavior in biology? Could they be involved in explaining actual biological patterns?
It also would have been helpful for the authors to generalize more about the way in which their CA rules achieve global patterns with other patterning mechanisms. For example, in a Wolpert positional information model, patterning information is distributed over space in a steady-state gradient. In the CA model, no information spreads more than one cell at any one time point, but over time information still spreads, so in a sense a stationary spatial gradient has been traded for a moving spatial discontinuity. Because the discontinuity moves without decrement, any stationary state ends up being determined by the boundaries of the system, which goes a long way to explaining the robustness they observe, as well as why the result is quite sensitive to growth (which keeps changing the boundary).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors characterized the antigenicity of N2 protein of 43 selected A(H3N2) influenza A viruses isolated from 2009-2017 using ferret and mice immune sera. Four antigenic groups were identified, which the authors claimed to be correlated with their respective phylogenic/ genetic groups. Among 102 amino acids differed by the 44 selected N2 proteins, the authors identified residues that differentiate the antigenicity of the four groups and constructed a machine-learning model that provides antigenic distance estimation. Three recent A(H3N2) vaccine strains were tested in the model but there was no experimental data to confirm the model prediction results.
Strengths:
This study used N2 protein of 44 selected A(H3N2) influenza A viruses isolated from 2009-2017 and generated corresponding panels of ferret and mouse sera to react with the selected strains. The amount of experimental data for N2 antigenicity characterization is large enough for model building.
Weaknesses:
One weakness is the use of double-immune ferret sera (post-infection plus immunization with recombinant NA protein) or mouse sera (immunized twice with recombinant NA protein) to characterize the antigenicity of the selected A(H3N2) viruses. Conventionally, NA antigenicity is characterized using ferret sera after a single infection. Repeated influenza exposure in ferrets has been shown to enhance antibody binding affinity and may affect the cross-reactivity to heterologous strains (PMID: 29672713). The increased cross-reactivity is supported by the NAI titers shown in Table S3, as many of the double immune ferret sera showed the highest reactivity not against its own homologous virus but to heterologous strains. In response to the reviewer's comment, the authors agreed the use of double-immune ferret sera may be a limitation of the study.
Another weakness is that the authors used the newly constructed a model to predict antigenic distance of three recent A(H3N2) viruses but there is no experimental data to validate their prediction (eg. if these viruses are indeed antigenically deviating from group 2 strains as concluded by the authors). Leaving out data from some strains for testing is a useful check, but due to phylogenetic correlations in the data the generalizability of the machine learning is not guaranteed.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #3 (Public Review):
This manuscript reports a novel pedigree with four intact copies of RHO on a single chromosome which appears to lead to overexpression of rhodopsin and a corresponding autosomal dominant form of RP. The authors generate retinal organoids from patient- and control-derived cells, characterize the phenotypes of the organoids, and then attempt to 'treat' aberrant rhodopsin expression/mislocalization in the patient organoids using a small molecule called photoregulin 3 (PR3). While this novel genetic mechanism for adRP is interesting, the organoid work is not compelling. There are multiple problems related to the technical approaches, the presentation of the results, and the interpretations of the data. I will present my concerns roughly in the order in which they appear in the manuscript and will separate them into 'major' and 'minor' categories:
Major concerns:<br /> (1) Individual human retinal organoids in culture can show a wide range of differentiation phenotypes with respect to the expression of specific markers, percentages of given cell types, etc. For this reason, it can be very difficult to make rigorous, quantitative comparisons between 'wild-type' and 'mutant' organoids. Despite this difficulty, the author of the present manuscript frequently present results in an impressionistic manner without quantitation. Furthermore, there is no indication that the investigator who performed the phenotypic analyses was blind with respect to the genotype. In my opinion, such blinding is essential for the analysis of phenotypes in retinal organoids.
To give an example, in lines 193-194 the authors write "we observed that while the patient organoids developing connecting cilium and the inner segments similar to control organoids, they failed to extend outer segments". Outer segments almost never form normally in human retinal organoids, even when derived from 'wild-type' cells. Thus, I consider it wholly inadequate to simply state that outer segment formation 'failed' without a rigorous, quantitative, and blinded comparison of patient and control organoids.
(2) The presentation of qPCR results in Fig. 3A in very confusing. First, the authors normalize expression to that of CRX, but they don't really explain why. In lines 210-211 they write "CRX, a ubiquitously expressing photoreceptor gene maintained from development to adulthood." Several parts of this sentence are misleading or incomplete. First, CRX is not 'ubiquitously expressed' (which usually means 'in all cell types') nor is it photoreceptor-specific: CRX is expressed in rods, cones, and bipolar cells. Furthermore, CRX expression levels are not constant in photoreceptors throughout development/adulthood. So, for these reasons alone, CRX is a poor choice for normalization of photoreceptor gene expression.
Second, the authors' interpretation of the qPCR results (lines 216-218) is very confusing. The authors appear to be saying that there is a statistically significant increase in RHO levels between D120 and D300. However, the same change is observed in both control and patient organoids and is not unexpected, since the organoids are more mature at D300. The key comparison is between control and patient organoids at D300. At this time point, there appears to be no difference control and patient. The authors don't even point this out in the main text.
Third, the variability in number of photoreceptor cells in individual organoids makes a whole-organoid comparison by qPCR fraught with difficulty. It seems to me that what is needed here is a comparison of RHO transcript levels in isolated rod photoreceptors.
(3) I cannot understand what the authors are comparing in the bulk RNA-seq analysis presented in the paragraph starting with line 222 and in the paragraph starting with line 306. They write "we performed bulk-RNA sequencing on 300-days-old retinal organoids (n=3 independent biological replicates). Patient retinal organoids demonstrated upregulated transcriptomic levels of RHO... comparable to the qRT-PCR data." From the wording, it suggests that they are comparing bulk RNA-seq of patient and control organoids at D300. However, this is not stated anywhere in the main text, the figure legend, or the Methods. Yet, the subsequent line "comparable to the qRT-PCR data" makes no sense, because the qPCR comparison was between patient samples at two different time points, D120 and D300, not between patient and control. Thus, the reader is left with no clear idea of what is even being compared by RNA-seq analysis.
Remarkably, the exact same lack of clarity as to what is being compared plagues the second RNA-seq analysis presented in the paragraph starting with line 306. Here the authors write "We further carried out bulk RNA-sequencing analysis to comprehensively characterize three different groups of organoids, 0.25 μM PR3-treated and vehicle-treated patient organoids and control (RC) organoids from three independent differentiation experiments. Consistent with the qRT-PCR gene expression analysis, the results showed a significant downregulation in RHO and other rod phototransduction genes." Here, the authors make it clear that they have performed RNA-seq on three types of sample: PR3-treated patient organoids, vehicle-treated patient organoids, and control organoids (presumably not treated). Yet, in the next sentence they state "the results showed a significant downregulation in RHO", but they don't state what two of the three conditions are being compared! Although I can assume that the comparison presented in Fig. 6A is between patient vehicle-treated and PR3-treated organoids, this is nowhere explicitly stated in the manuscript.
(4) There are multiple flaws in the analysis and interpretation of the PR3 treatment results. The authors wrote (lines 289-2945) "We treated long-term cultured 300-days-old, RHO-CNV patient retinal organoids with varying concentrations of PR3 (0.1, 0.25 and 0.5 μM) for one week and assessed the effects on RHO mRNA expression and protein localization. Immunofluorescence staining of PR3-treated organoids displayed a partial rescue of RHO localization with optimal trafficking observed in the 0.25 μM PR3-treated organoids (Figure 5B). None of the organoids showed any evidence of toxicity post-treatment."
There are multiple problems. First, the results are impressionistic and not quantitative. Second, it's not clear that the investigator was blinded with respect to treatment condition. Third, in the sections presented, the organoids look much more disorganized in the PR3-treated conditions than in the control. In particular, the ONL looks much more poorly formed. Overall, I'd say the organoids looked considerably worse in the 0.25 and 0.5 microM conditions than in the control, but I don't know whether or not the images are representative. Without rigorously quantitative and blinded analysis, it is impossible to draw solid conclusions here. Lastly, the authors state that "none of the organoids showed any evidence of toxicity post-treatment," but do not explain what criteria were used to determine that there was no toxicity.
(5) qPCR-based quantitation of rod gene expression changes in response to PR3 treatment is not well-designed. In lines 294-297 the authors wrote "PR3 drove a significant downregulation of RHO in a dose-dependent manner. Following qRT-PCR analysis, we observed a 2-to-5 log2FC decrease in RHO expression, along with smaller decreases in other rod-specific genes including NR2E3, GNAT1 and PDE6B." I assume these analyses were performed on cDNA derived from whole organoids. There are two problems with this analysis/interpretation. First, a decrease in rod gene expression can be caused by a decrease in the number of rods in the treated organoids (e.g., by cell death) or by a decrease in the expression of rod genes within individual rods. The authors do not distinguish between these two possibilities. Second, as stated above, the percentage of cells that are rods in a given organoid can vary from organoid to organoid. So, to determine whether there is downregulation of rod gene expression, one should ideally perform the qPCR analysis on purified rods.
(6) In Fig. 4B 'RM' panels, the authors show RHO staining around the somata of 'rods' but the inset images suggest that several of these cells lack both NRL and OTX2 staining in their nuclei. All rods should be positive for NRL. Conversely, the same image shows a layer of cells sclerad to the cells with putative RHO somal staining which do not show somal staining, and yet they do appear to be positive for NRL and OTX2. What is going on here? The authors need to provide interpretations for these findings.
Minor concerns:
(1) The writing is poor in many places. Problems include: poor word choice (e.g., 'semi-occasional' is used three times where 'occasional' or 'infrequent' would be better); superfluous use of the definite article in many places (e.g., lines 189-190 "by the light microscopy" should be "by light microscopy"); awkward sentence structures (e.g., lines 208-209: "To equilibrate the data to equivalent the number of photoreceptors in organoids"), opaque expressions (e.g., line 217 "there was a significant ~3 log2 fold change (log2FC)"; why not just say "an ~8-fold change"?); poor proof-reading (Abstract says that 40% of adRP cases are due to mutation in RHO, then the Introduction says the figure is 25%) etc.
(2) The figures are not numbered, which makes it painful for the reviewer to correlate main text call-outs, figure legends, and actual figures. I had to repeatedly count down the list of figures to determine which figure I should be looking at.
(3) In the abstract, the authors suggest that the patient's disease "develops from a dominant negative gain of function" mechanism. I don't agree with this interpretation. Typically 'dominant-negative' refers to an aberrant protein which directly interferes with the function of the normal protein, for example by forming non-functional heterodimers. In the present patient, the disease can be explained by a simple overexpression mechanism, as it has been previously demonstrated in mice that even minimal overexpression of rhodopsin (e.g., ~25% more than normal levels) can led to progressive rod degeneration: PMID: 11222515.
(4) In line 85 the word 'Morphologically' is superfluous and can be deleted.
(5) In the Introduction the authors should more clearly articulate the rationale for using PR3 to treat this patient: because it leads to downregulation of multiple rod genes including RHO. This isn't clearly explained until the Discussion.
(6) The authors mention in several places that PR3 may act via inhibition of NR2E3. Although this was the conclusion of the original publication, the evidence that PR3 acts via Nr2e3 in mice is not solid. The original study (PMID: 29148976) showed that the main effect of PR3 application on mouse retinas is downregulation of numerous rod genes. However, knockout of Nr2e3 in mouse has been shown to have very little effect on rod gene expression, and Nr2e3 mutant rods have largely preserved rod function as demonstrated by scotopic ERGs PMIDs: 15634773, 16110338, 15689355). The primary gene expression defect in Nr2e3 mutant mouse rods is upregulation of a subset of cone genes, a change not observed upon application of PR3 to mouse retinas. For these reasons, I am skeptical that PR3 acts via inhibition of Nr2e3 activity, and I would suggest that the present authors qualify that interpretation.
(7) This mechanistic speculation presented in lines 274-278 is not warranted. Ectopic localization of opsin to the cytoplasmic membrane occurs in a wide range of genetic forms of rod degeneration.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Neuroscientists often state that we have no theory of the brain. The example of theoretical physics is often cited, where numerous and quite complex phenomena are explained by a compact mathematical description. Lagrangian and Hamiltonian pictures provide such powerful 'single equation'. These frameworks are referred to as 'energy', an elegant way to turn numerous differential equations into a single compact relationship between observable quantities (state variables like position and speed) and scaling constants (like the gravity constant or the Planck constant). Such energy pictures have been used in theoretical neuroscience since the 1980s.
The manuscript "neuronal least-action principle for real-time learning in cortical circuits" by Walter Senn and collaborators describes a theoretical framework to link predictive coding, error-based learning, and neuronal dynamics. The central concept is that an energy function combining self-supervised and supervised objectives is optimized by realistic neuronal dynamics and learning rules when considering the state of a neuron as a mixture of the current membrane potential and its rate of change. As compared with previous energy functions in theoretical neuroscience, this theory captures a more extensive range of observations while satisfying normative constraints. Particularly, no theory had to my knowledge related adaptive dynamics widely observed in the brain (referred to as prospective coding in the text, but is sometimes referred to as adaptive coding or redundancy reduction) with the dynamics of learning rules.
The manuscript first exposes the theory of two previously published papers by the same group on somato-dendritic error with apical and basal dendrites. These dynamics are then related to an energy function, whose optimum recovers the dynamics. The rest of the manuscript illustrates how features of this model fits either normative or observational constraints. Learning follows a combination of self-supervised learning (learning to predict the next step) and supervised learning (learning to predict an external signal). The credit assignment problem is solved by an apical-compartment projecting set of interneurons with learning rules whose role is to align many weight matrices to avoid having to do multiplexing. An extensive method section and supplementary material expand on mathematical proofs and make more explicit the mathematical relationship between different frameworks.
Experts would say that much of the article agglomerates previous theoretical papers by the same authors that have been published recently either in archival servers or in conference proceedings. A number of adaptations to previous theoretical results were necessary, so the present article is not easily reduced to a compendium of previous pre-prints. However, the manuscript is by no means easy to read. Also, there remain a few thorny assumptions (unobserved details of the learning rules or soma-dendrites interactions), but the theory is likely going to be regarded as an important step towards a comprehensive theory of the brain.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This manuscript by Nagel et al provides a comprehensive examination of the chemical composition of mouse urine (an important source of semiochemicals) across strain and sex, and correlates these differences with functional responses of vomeronasal sensory neurons (an important sensory population for detecting chemical social cues). The strength of the work lies in the careful and comprehensive imaging and chemical analyses, the rigor of quantification of functional responses, and the insight into the relevance of olfactory work on lab-derived vs wild-derived mice.
With regards to the chemical analysis, the reader should keep in mind (and the authors acknowledge) that a difference in the concentration of a chemical across strain or sex does not necessarily mean that that chemical is used for chemical communication. In the most extreme case, the animals may be completely insensitive to the chemical. Thus, the fact that the repertoire of proteins and volatiles could potentially allow sex and/or strain discrimination, it is unclear to what degree both are used in different situations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This is a binocular rivalry study that uses electrocardiogram events to modulate visual stimuli in real-time, relative to participants' heartbeats. The main finding is that modulations during the period around when the heart has contracted (systole) increase rivalry dominance durations. This is a really neat result, that demonstrates the link between interoception and vision. I thought the Bayesian mixture modelling was a really smart way to identify cardiac non-perceivers, and the finding that the main result is preserved in this group is compelling. Overall, the study has been conducted to a high standard, is appropriately powered, and reported clearly. I have one suggestion about interpretation, which concerns the explanation of increased dominance durations with reference to contemporary models of binocular rivalry, and a few minor queries. However, I think this paper is a worthwhile addition to the literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The paper investigates the role of astrocyte-specific aquaporin-4 (AQP4) water channel in mediating water transport within the mouse brain and the impact of the channel on astrocyte and neuron signaling. Throughout various experiments including epifluorescence and light sheet microscopy in mouse brain slices, and fiber photometry or diffusion-weighted MRI in vivo, the researchers observe that acute inhibition of AQP4 leads to intracellular water accumulation and swelling in astrocytes. This swelling alters astrocyte calcium signaling and affects neighboring neuron populations. Furthermore, the study demonstrates that AQP4 regulates astrocyte volume, influencing mainly the dynamics of water efflux in response to osmotic challenges or associated with cortical spreading depolarization. The findings suggest that AQP4-mediated water efflux plays a crucial role in maintaining brain homeostasis, and indicates the main role of AQP4 in this mechanism. However authors highlight that the report sheds light on the mechanisms by which astrocyte aquaporin contributes to the water environment in the brain parenchyma, the mechanism underlying these effects remains unclear and not investigated. The manuscript requires revision.
Strengths:
The paper elucidates the role of the astrocytic aquaporin-4 (AQP4) channel in brain water transport, its impact on water homeostasis, and signaling in the brain parenchyma. In its idea, the paper follows a set of complimentary experiments combining various ex vivo and in vivo techniques from microscopy to magnetic resonance imaging. The research is valuable, confirms previous findings, and provides novel insights into the effect of acute blockage of the AQP4 channel using TGN-020.
Weaknesses:
Despite the employed interdisciplinary approach, the quality of the manuscript provides doubts regarding the significance of the findings and hinders the novelty claimed by the authors. The paper lacks a comprehensive exploration or mention of the underlying molecular mechanisms driving the observed effects of astrocytic aquaporin-4 (AQP4) channel inhibition on brain water transport and brain signaling dynamics. The scientific background is not very well prepared in the introduction and discussion sections. The important or latest reports from the field are missing or incompletely cited and missconcluded. There are several citations to original works missing, which would clarify certain conclusions. This especially refers to the basis of the glymphatic system concept and recently published reports of similar content. The usage of TGN-020, instead of i.e. available AER-270(271) AQP4 blocker, is not explained. While employing various experimental techniques adds depth to the findings, some reasoning behind the employed techniques - especially regarding MRI - is not clear or seemingly inaccurate. Most of the time the number of subjects examined is lacking or mentioned only roughly within the figure captions, and there are lacking or wrongly applied statistical tests, that limit assessment and reproducibility of the results. In some cases, it seems that two different statistical tests were used for the same or linked type of data, so the results are contradictory even though appear as not likely - based on the figures. Addressing these limitations could strengthen the paper's impact and utility within the field of neuroscience, however, it also seems that supplementary experiments are required to improve the report.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The work by Yun et al. explores an important question related to post-copulatory sexual selection and sperm competition: Can females actively influence the outcome of insemination by a particular male by modulating the storage and ejection of transferred sperm in response to contextual sensory stimuli? The present work is exemplary for how the Drosophila model can give detailed insight into the basic mechanism of sexual plasticity, addressing the underlying neuronal circuits on a genetic, molecular, and cellular level.
Using the Drosophila model, the authors show that the presence of other males or mated females after mating shortens the ejaculate-holding period (EHP) of a female, i.e. the time she takes until she ejects the mating plug and unstored sperm. Through a series of thorough and systematic experiments involving the manipulation of olfactory and chemo-gustatory neurons and genes in combination with exposure to defined pheromones, they uncover two pheromones and their sensory cells for this behavior. Exposure to the male-specific pheromone 2MC shortens EHP via female Or47b olfactory neurons, and the contact pheromone 7-T, present in males and on mated females, does so via ppk23 expressing gustatory foreleg neurons. Both compounds increase cAMP levels in a specific subset of central brain receptivity circuit neurons, the pC1b,c neurons. By employing an optogenetically controlled adenyl cyclase, the authors show that increased cAMP levels in pC1b and c neurons increase their excitability upon male pheromone exposure, decrease female EHP, and increase the remating rate. This provides convincing evidence for the role of pC1b,c neurons in integrating information about the social environment and mediating not only virgin but also mated female post-copulatory mate choice.
Understanding context and state-dependent sexual behavior is of fundamental interest. Mate behavior is highly context-dependent. In animals subjected to sperm competition, the complexities of optimal mate choice have attracted a long history of sophisticated modelling in the framework of game theory. These models are in stark contrast to how little we understand so far about the biological and neurophysiological mechanisms of how females implement post-copulatory or so-called "cryptic" mate choice and bias sperm usage when mating multiple times.
The strength of the paper is decrypting "cryptic" mate choice, i.e. the clear identification of physiological mechanisms and proximal causes for female post-copulatory mate choice. The discovery of peripheral chemosensory nodes and neurophysiological mechanisms in central circuit nodes will provide a fruitful starting point to fully map the circuits for female receptivity and mate choice during the whole gamut of female life history.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In their paper entitled "In mice, discrete odors can selectively promote the neurogenesis of sensory neuron subtypes that they stimulate" Hossain et al. address lifelong neurogenesis in the mouse main olfactory epithelium. The authors hypothesize that specific odorants act as neurogenic stimuli that selectively promote biased OR gene choice (and thus olfactory sensory neuron (OSN) identity). Hossain et al. employ RNA-seq and scRNA-seq analyses for subtype-specific OSN birthdating. The authors find that exposure to male and musk odors accelerates the birthrates of the respective responsive OSNs. Therefore, Hossain et al. suggest that odor experience promotes selective neurogenesis and, accordingly, OSN neurogenesis may act as a mechanism for long-term olfactory adaptation.
The authors follow a clear experimental logic, based on sensory deprivation by unilateral naris occlusion, EdU labeling of newborn neurons, and histological analysis via OR-specific RNA-FISH. The results reveal robust effects of deprivation on newborn OSN identity. However, the major weakness of the approach is that the results could, in (possibly large) parts, depend on "downregulation" of OR subtype-specific neurogenesis, rather than (only) "upregulation" based on odor exposure. While, in Figure 6, the authors show that the observed effects are, in part, mediated by odor stimulation, it remains unclear whether deprivation plays an "active" role as well. Moreover, as shown in Figure 1C, unilateral naris occlusion has both positive and negative effects in a random subtype sample.
Another weakness is that the authors build their model (Figure 8), specifically the concept of selectivity, on a receptor-ligand pair (Olfr912 that has been shown to respond, among other odors, to the male-specific non-musk odors 2-sec-butyl-4,5-dihydrothiazole (SBT)) that would require at least some independent experimental corroboration. At least, a control experiment that uses SBT instead of muscone exposure should be performed. In this context, it is somewhat concerning that some results, which appear counterintuitive (e.g., lower representation and/or transcript levels of Olfr912 and Olfr1295 in mice exposed to male odors) are brushed off as "reflecting reduced survival due to overstimulation." The notion of "reduced survival" could be tested by, for example, a caspase3 assay.<br /> Important analyses that need to be done to better be able to interpret the findings are to present (i) the OR+/EdU+ population of olfactory sensory neurons not just as a count per hemisection, but rather as the ratio of OR+/EdU+ cells among all EdU+ cells; and (ii) to the ratio of EdU+ cells among all nuclei (UNO versus open naris). This way, data would be normalized to (i) the overall rate of neurogenesis and (ii) any broad deprivation-dependent epithelial degeneration.
Finally, the paper will benefit from improved data presentation and adequate statistical testing. Images in Figures 2 - 7, showing both EdU labeling of newborn neurons and OR-specific RNA-FISH, are hard to interpret. Moreover, t-tests should not be employed when data is not normally distributed (as is the case for most of their samples).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors tried to characterize the function of the SWI/SNF remodeler family, BAF, in spermatogenesis. The authors focused on ARID1A, a BAF-specific putative DNA binding subunit, based on gene expression profiles.
The authors disagreed with my previous assessments. I disagree with their response.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The study by Diffendall et al. set out to establish a link between the activity of RNA polymerase III (Pol III) and its inhibitor Maf1 and the virulence of Plasmodium falciparum in vivo. Having previously found that knockdown of the ncRNA ruf6 gene family reduces var gene expression in vitro, they now present experimental evidence for the regulation of ruf6 and subsequently, var gene expression by Pol III using a commercially available inhibitor. They confirm their findings with samples from a previously published Gambian cohort study using asymptomatic dry season and mildly symptomatic wet season samples, showing that higher levels of Pol III-dependent transcripts and var transcripts as well as lower MgCl2 plasma concentrations are present in wet season samples. From this, they hypothesize that the external stimuli heat, reduced glucose and essential amino acid supply, and increased MgCl2 levels are sensed by the parasite through the only known Pol III inhibitor Maf1 and result in lower Pol III activity and fewer ruf6 transcripts, which in turn reduces var gene expression, leading to reduced cytoadherence and virulence of P. falciparum. In their in vitro experiments they focus on investigating higher MgCl2 levels and their impact on Pol III and Maf1 activity as well as var gene expression and parasites adherence to purified CD36, thereby successfully confirming their hypothesis for MgCl2. Nicely, MgCl2-induced down-regulation of Pol III activity was shown to be dependent on Maf1 using a knock-down cell line. Additionally, they show that the Maf1-KD cell line displays a slower growth rate with fewer merozoites per schizonts and Maf1 interacts with RNA pol III subunits and some kinases/phosphatases.
Comments on latest version:
It is understandable that the RNA samples from the Gambian cohort were limited, but for all in vitro analyses a larger panel of qPCR primers or RNAseq would have been feasible. I also understand the rationale for using the general var primer pair (DBLa) for field isolates, but since the authors were working with a clonal parasite line (3D7) in vitro, qPCR with specific 3D7/NF54 primer pairs or RNAseq, which would also allow inferences about ruf6 regulation of specific (neighboring?) var genes and other Pol III-regulated genes, would have been a far better option.
As far as I could see from the resubmitted manuscript, the authors did not correct the statistical analyses. For example, they continue to apply a t-test to fold-change values (which must be transformed to log2), many t-test based analyses rely on only 2-3 replicates (a non-parametric test would be more appropriate), they have not corrected for multiple testing, and it is unclear how the authors handle technical and biological replicates in their plots. Therefore, I still suspect that more appropriate statistical analyses might have an impact on the significance of their results.
I agree that CD36 binding is associated with mild malaria, but since the authors only make a link between Pol III and CD36 binding in vitro, I think it is an overstatement to claim something like "Our study reveals a regulatory mechanism in P. falciparum involving RNA Polymerase III, which plays a pivotal role in the parasite's virulence."
Finally, if the authors have checked all the relevant literature on MgCl2, it should be easy for them to give a brief explanation why they included only one study and ignored all the other contradictory results.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Bian et al. calculated Phenotypic Age Acceleration (PhenoAgeAccel) via a linear model regressing Phenotypic Age on chronological age. They examined the associations between PhenoAgeAccel and cancer incidence using 374,463 individuals from the UK Biobank and found that older PhenoAge was consistently related to an increased risk of incident cancer, even among each risk group defined by genetics.
The study is well-designed, and uses a large sample size from the UK biobank.
Comments on revised version:
The authors have addressed all my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In the present manuscript, Huang et.al. revealed the significant roles of the DNA methylome in regulating virulence and metabolism within Pseudomonas syringae, with a particular focus on the HsdMSR system in this model strain. The authors used SMRT-seq to profile the DNA methylation patterns (6mA, 5mC, and 4mC) in three P. syringae strains (Psph, Pss, and Psa) and displayed the conservation among them. They further identified the type I restriction-modification system (HsdMSR) in P. syringae, including its specific motif sequence. The HsdMAR participated in the process of metabolism and virulence (T3SS & Biofilm formation), as demonstrated through RNA-seq analyses. Additionally, the authors revealed the mechanisms of the transcriptional regulation by 6mA. Strictly from the point of view of the interest of the question and the work carried out, this is a worthy and timely study that uses third-generation sequencing technology to characterize the DNA methylation in P. syringae. The experimental approaches were solid, and the results obtained were interesting and provided new information on how epigenetics influences the transcription in P. syringae. The conclusions of this paper are mostly well supported by data, but some aspects of data analysis and discussion need to be clarified and extended.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
Although an oversimplification of the biological complexities, this modeling work does add, in a limited way, to the current knowledge on the theoretical difficulties of detecting mosaicism in human blastocysts from a single trophectoderm biopsy in PGT. However, many of the premises that the modeling was built on are theoretical and based on unproven biological and clinical assumptions that could yet lead to be untrue. Therefore, the work should be considered only as a simplified model that could assist in further understanding of the complexities of preimplantation embryo mosaicism, but assumptions of real-world application are, at this stage, premature and should not be considered as evidence in favour of any clinical strategies.
Strengths:
The work has presented an intriguing theoretical model for elaborating on the interpretation of complex and still unclear biological phenomena such as chromosomal mosaicism in preimplantation embryos.
Weaknesses:
Lines 134-138: The spatial modeling of mitotic errors in the embryo was oversimplified in this manuscript. There is only limited (and non-comprehensive) evidence that meiotic errors leading to chromosome mosaicism arise from chromosome loss or gain only (e.g. anaphase lag). This work did not take into account the (more recognised) possibility of mitotic nondisjunction where following the event there would be clones of cells with either one more or one less of the same chromosome. Although addressed in the discussion (lines 572-574), not including this in the most basic of modeling is a significant oversight that, based on the simple likelihood, could significantly affect results.
General comment: the premise of the manuscript is that an embryologist (embryology laboratory) is aware of and can accurately quantify the number of cells in a blastocyst or TE biopsy. The reality is that it is not possible to accurately do this without the destruction of the sample which is obviously not clinically applicable. Based on many assumptions the findings show that taking small biopsies poorly classifies mosaic embryos, which is not disputed. However, extrapolating this to the clinic and making suggestions to biopsy a certain amount of cells (lines 539-540) is careless and potentially harmful by suggesting the introduction of potential change in clinical practice without validation. Additionally, no embryologist in the field can tell how many cells are present in a clinical TE biopsy, making this suggestion even more impractical.
On a more general clinical consideration, the authors should acknowledge that when reporting findings of unproven clinical utility and unknown predictive values this inevitably results in negative consequences for infertile couples undergoing IVF. It is proven and established that when couples face the decision on how to manage a putative mosaicism finding, the vast majority decide on embryo disposal. It was recently reported in an ESHRE survey that about 75% of practitioners in the field consider discarding or donating to research embryos with reported mosaicism. A prospective clinical trial showed that about 30% live birth rate reduction can be expected if mosaic embryos are not considered (Capalbo et al., AJHG 2021). The real-world experience is that when mosaicism is reported, embryos with almost normal reproductive potential are discarded. The authors should be more careful with the clinical interpretation and translation of these theoretical findings.
There is a robust consensus within the field of clinical genetics and genomics regarding the necessity to exclusively report findings that possess well-established clinical validity and utility. This consensus is grounded in the imperative to mitigate misinterpretation and ineffective actions in patient care. However, the clinical framework delineated in this manuscript diverges from the prevailing consensus in clinical genetics. Clinical genetics and genomics prioritize the dissemination of findings that have undergone rigorous validation processes and have demonstrated clear clinical relevance and utility. This emphasis is crucial for ensuring accurate diagnosis, prognosis, and therapeutic decision-making in patient care. By adhering to established standards of evidence and clinical utility, healthcare providers can minimize the potential for misinterpretation and inappropriate interventions. The framework proposed in this manuscript appears to deviate from the established principles guiding clinical genetics practice. It is imperative for clinical frameworks to align closely with the consensus guidelines and recommendations set forth by professional organizations and regulatory bodies in the field. This alignment not only upholds the integrity and reliability of genetic testing and interpretation but also safeguards patient well-being and clinical outcomes.
References:<br /> ACMG Board of Directors. (2015). Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, 17(6), 505-507. https://doi.org/10.1038/gim.2014.194.<br /> Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., ... ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Line 61: "Self correction" - This terminology is unfortunately indiscriminately used in the field for PGT when referring to mosaicism and implies that the embryo can actively correct itself from a state of inherent abnormality. Apart from there being no evidence to suggest that there is an active process by which the embryo itself can correct chromosomal errors, most presumed euploid/aneuploid mosaic embryos will have been euploid zygotes and therefore "self-harm" may be a better explanation. True self-correction in the form of meiotic trisomy/monosomy rescue is of course theoretically possible but not at all clinically significant. The concept being conveyed in this part of the manuscript is not disputed but it is strongly suggested that the term "self correction" is not used in this context, nor in the rest of the manuscript, to prevent the perpetuation of misinformation in the field and instead use a better description.
Lines 69-73: The ability to quantify aneuploidy in known admixtures of aneuploid cells is indeed well established. However, the authors claim that the translation of this to embryo biopsy samples is inferred with some confidence and that if a biopsy shows an intermediate chromosome copy number (ICN), that the biopsy and the embryo are mosaic. There are no references provided here and indeed the only evidence in the literature relating to this is to the contrary. Multifocal biopsy studies have shown that an ICN result in a single biopsy is often not seen in other biopsies from the same embryo (Capalbo et al 2021; Kim et al., 2022; Girardi et al., 2023; Marin, Xu, and Treff 2021). Multifocal biopsies showing reciprocal gain and loss which would provide stronger validation for the presence of true mosaicism are also rare. In this work, the entire manuscript is based on the accuracy of ICN in a biopsy being reflective of mosaicism in the embryo. The evidence however points to a large proportion of ICN detected in embryo biopsy potentially being technical artifacts (misdiagnosing both constitutionally normal and abnormal (meiotic aneuploid) embryos as mosaic. Therefore, although results from the modelling provide insight into theoretical results, these can not be used to inform clinical decision-making at all.
Lines 87-89: The authors make the claim that emerging evidence is suggestive that the majority of embryos are mosaic to some degree. If in fact, mosaicism is the norm, the clinical importance may be limited.
Line 102-103: The statement that data shows that the live birth rate per ET is generally lower in mosaic embryos than euploid embryos is from retrospective cohort studies that suffer from significant selection bias. The authors have ignored non-selection study results (Capalbo et al, ajhg 2021) that suggest that putative mosaicism has limited predictive value when assessed prospectively and blinded.
Lines 94-98: The authors have misrepresented the works they have presented as evidence for biopsy result accuracy (Kim et al., 2023; Victor et al 2019; Capalbo et al., 2021; Girardi et al., 2023, and any others). These studies show that a mosaic biopsy is not representative of the whole embryo and can actually be from embryos where the remainder of the embryo shows no evidence of mosaicism. There is also a missing key reference of Capalbo et al, AJHG 2021, and Girardi et al., HR 2023 where multifocal biopsies were taken.
Lines 371-372: "Selecting the embryo with the lowest number of aneuploid cells in the biopsy for transfer is still the most sensible decision". Where is the evidence for this other than the modeling which is affected by oversimplification and unproven assumptions? Although the statement seems logical at face value, there is no concrete evidence that the proportion of aneuploid cells within a biopsy is valuable for clinical outcomes, especially when co-evaluated with other more relevant clinical information.
Lines 431-463: In this section, the authors discuss clinical outcome data from the transfer of putative mosaic embryos and make conclusions about the relationship between ICN level in biopsy and successful pregnancy outcomes. The retrospective and selective nature of the data used in forming the results has the potential to lead to incorrect conclusions when applied to prospective unselected data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study argues it has found that it has stratified viral kinetics for saliva specimens into three groups by the duration of "viral shedding"; the authors could not identify clinical data or microRNAs that correlate with these three groups.
Strengths:
The question of whether there is a stratification of viral kinetics is interesting.
Weaknesses:
The data underlying this work are not treated rigorously. The work in this manuscript is based on PCR data from two studies, with most of the data coming from a trial of nelfinavir (NFV) that showed no effect on the duration of SARS-CoV-2 PCR positivity. This study had no PCR data before symptom onset, and thus exclusively evaluated viral kinetics at or after peak viral loads. The second study is from the University of Illinois; this data set had sampling prior to infection, so has some ability to report the rate of "upswing." Problems in the analysis here include:
-- The PCR Ct data from each study is treated as equivalent and referred to as viral load, without any reports of calibration of platforms or across platforms. Can the authors provide calibration data and justify the direct comparison as well as the use of "viral load" rather than "Ct value"? Can the authors also explain on what basis they treat Ct values in the two studies as identical?
-- The limit of detection for the NFV PCR data was unclear, so the authors assumed it was the same as the University of Illinois study. This seems a big assumption, as PCR platforms can differ substantially. Could the authors do sensitivity analyses around this assumption?
-- The authors refer to PCR positivity as viral shedding, but it is viral RNA detection (very different from shedding live/culturable virus, as shown in the Ke et al. paper). I suggest updating the language throughout the manuscript to be precise on this point.
-- Eyeballing extended data in Figure 1, a number of the putative long-duration infections appear to be likely cases of viral RNA rebound (for examples, see S01-16 and S01-27). What happens if all the samples that look like rebound are reanalyzed to exclude the late PCR detectable time points that appear after negative PCRs?
-- There's no report of uncertainty in the model fits. Given the paucity of data for the upslope, there must be large uncertainty in the up-slope and likely in the peak, too, for the NFV data. This uncertainty is ignored in the subsequent analyses. This calls into question the efforts to stratify by the components of the viral kinetics. Could the authors please include analyses of uncertainty in their model fits and propagate this uncertainty through their analyses?
-- The clinical data are reported as a mean across the course of an infection; presumably vital signs and blood test results vary substantially, too, over this duration, so taking a mean without considering the timing of the tests or the dynamics of their results is perplexing. I'm not sure what to recommend here, as the timing and variation in the acquisition of these clinical data are not clear, and I do not have a strong understanding of the basis for the hypothesis the authors are testing.
It's unclear why microRNAs matter. It would be helpful if the authors could provide more support for their claims that (1) microRNAs play such a substantial role in determining the kinetics of other viruses and (2) they play such an important role in modulating COVID-19 that it's worth exploring the impact of microRNAs on SARS-CoV-2 kinetics. A link to a single review paper seems insufficient justification. What strong experimental evidence is there to support this line of research?
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
This work identifies two variants in CAPSL in two-generation familial exudative vitreoretinopathy (FEVR) pedigrees, and using a knockout mouse model, they link CAPSL to retinal vascular development and endothelial proliferation. Together, these findings suggest that the identified variants may be causative and that CAPSL is a new FEVR-associated gene.
Strengths:
The authors' data provides compelling evidence that loss of the poorly understood protein CAPSL can lead to reduced endothelial proliferation in mouse retina and suppression of MYC signaling in vitro, consistent with the disease seen in FEVR patients. The study is important, providing new potential targets and mechanisms for this poorly understood disease. The paper is clearly written, and the data generally support the author's hypotheses.
Weaknesses:
(1) Both pedigrees described appear to suggest that heterozygosity is sufficient to cause disease, but authors have not explored the phenotype of Capsl heterozygous mice. Do these animals have reduced angiogenesis similar to KOs? Furthermore, while the p.R30X variant protein does not appear to be expressed in vitro, a substantial amount of p.L83F was detectable by western blot and appeared to be at the normal molecular weight. Given that the full knockout mouse phenotype is comparatively mild, it is unclear whether this modest reduction in protein expression would be sufficient to cause FEVR - especially as the affected individuals still have one healthy copy of the gene. Additional studies are needed to determine if these variants alter protein trafficking or localization in addition to expression, and if they can act in a dominant negative fashion.
(2) The manuscript nicely shows that loss of CAPSL leads to suppressed MYC signaling in vitro. However, given that endothelial MYC is regulated by numerous pathways and proteins, including FOXO1, VEGFR2, ERK, and Notch, and reduced MYC signaling is generally associated with reduced endothelial proliferation, this finding provides little insight into the mechanism of CAPSL in regulating endothelial proliferation. It would be helpful to explore the status of these other pathways in knockdown cells but as the authors provide only GSEA results and not the underlying data behind their RNA seq results, it is difficult for the reader to understand the full phenotype. Volcano plots or similar representations of the underlying expression data in Figures 6 and 7 as well as supplemental datasets showing the differentially regulated genes should be included. In addition, while the paper beautifully characterizes the delayed retinal angiogenesis phenotype in CAPSL knockout mice, the authors do not return to that model to confirm their in vitro findings.
(3) In Figure S2D, the result of this vascular leak experiment is unconvincing as no dye can be seen in the vessels. What are the kinetics for biocytin tracers to enter the bloodstream after IP injection? Why did the authors choose the IP instead of the IV route for this experiment? Differences in the uptake of the eye after IP injection could confound the results, especially in the context of a model with vascular dysfunction as here.
(4) In Figure 5, it is unclear how filipodia and tip cells were identified and selected for quantification. The panels do not include nuclear or tip cell-specific markers that would allow quantification of individual tip cells, and in Figure 5C it appears that some filipodia are not highlighted in the mutant panel.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:<br /> In this report the authors used solution-based single-molecule FRET and low resolution cryo-EM to investigate the interactions between the substrate-binding domains of the ABC-importer OpuA from Lactococcus lactis. Based on their results, the authors suggest that the SBDs interact in an ionic strength-dependent manner.
Strengths:<br /> The strength of this manuscript is the uniqueness and importance of the scientific question, the adequacy of the experimental system (OpuA), and the combination of two very powerful and demanding experimental approaches.
Weaknesses:<br /> A demonstration that the SBDs physically interact with one another, and that this interaction is important for the transport mechanism will greatly strengthen the claims of the authors. The relation to cooperativity is also unclear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Howard et al reports the development of high affinity WDR5-interaction site inhibitors (WINi) that engage the protein to block the arginine-dependent engagement with its partners. Treatment of MLL-rearranged leukemia cells with high-affinity WINi (C16) decreases the expression of genes encoding most ribosomal proteins and other proteins required for translation. Notably, although these targets are enriched for WDR5-ChIP-seq peaks, such peaks are not universally present in the target genes. High concordance was founded between the alterations in gene expression due to C16 treatment and the changes resulting from treatment with an earlier, lower affinity WINi (C6). Besides protein synthesis, genes involved in DNA replication or MYC responses are downregulated, while p53 targets and apoptosis genes are upregulated. Ribosome profiling reveals a global decrease in translational efficiency due to WINi with overall ribosome occupancies of mRNAs ~50% of control samples. The magnitude in the decrements of translation for most individual mRNAs exceeds the respective changes in mRNA levels genome-wide. From these results and other considerations, the authors hypothesize that WINi results in ribosome depletion. Quantitative mass spec documents the decrement in ribosomal proteins following WINi treatment along with increases in p53 targets and proteins involved in apoptosis occurring over 3 days. Notably RPL22L1 is essentially completely lost upon WINi treatment. The investigators next conduct a CRISPR screen to find moderators and cooperators with WINi. They identify components of p53 and DNA repair pathways as mediators of WINi inflicted cell death (so gRNAs against these genes permit cell survival). Next, WINi are tested in combination with a variety of other agents to explore synergistic killing to improve their expected therapeutic efficacy. The authors document loss of the p53 antagonist MDM4 (in combination with splicing alterations of RPL22L1), an observation that supports the notion that WINi killing is p53-mediated.
This is a scientifically very strong and well-written manuscript that applies a variety of state-of-the art molecular approaches to interrogate the role of the WDR5 interaction site and WINi. They reveal that the effects of WINi seem to be focused on the overall synthesis of protein components of the translation apparatus, especially ribosomal proteins-even those that do not bind WDR5 by ChIP (a question left unanswered is how such the WDR5-less genes are nevertheless WINi targeted). They convincingly show that disruption of the synthesis of these proteins occurs upon activation of p53 dependent apoptosis, likely driven by unbalanced ribosomal protein synthesis leading to MDM2 inhibition. This apoptosis is subsequently followed, as expected by ɣH2AX-activation. Pathways of possible WINi resistance and synergies with other anti-neoplastic approaches are explored. These experiments are all well-executed and strongly invite more extensive pre-clinical and translational studies of WINi in animal studies. The studies also may anticipate the use of WINi as probes of nucleolar function and ribosome synthesis though this was not really explored in the current manuscript. The current version of the manuscript documents ribosomal stress revealed by leakage of NPM1 into the nucleoplasm while nucleolar integrity is preserved. A progressive loss of rRNA synthesis occurs upon drug treatment that is presumably secondary to the decrement in ribosomal protein production.
Comments on revised version:
(1) The authors to my mind, have quite nicely and professionally addressed the comments of the reviewers and are to be congratulated on an important contribution to the elucidation of WDR5 biology and pathology.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
HCN-4 isoform is found primarily in sino-atrial node where it contributes to the pacemaking activity. LRMP is an accessory subunit which prevents cAMP-dependent potentiation of HCN4 isoform but does not have any effect on HCN2 regulation. In this study, the authors combine electrophysiology, FRET with standard molecular genetics to determine the molecular mechanism of LRMP action on HCN4 activity. Their study shows parts of N- and C-termini along with specific residues in C-linker and S5 of HCN4 are crucial for mediating LRMP action on these channels. Furthermore, they show that the initial 224 residues of LRMP are sufficient to account for most of the activity. In my view, the highlight of this study is Fig. 7 which recapitulates LRMP modulation on HCN2-HCN4 chimera. Overall, this study is an excellent example of using time-tested methods to probe the molecular mechanisms of regulation of channel function by an accessory subunit.
The authors adequately addressed my earlier concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This manuscript examined the underlying mechanisms between senescent osteoclasts (SnOCs) and lumbar spine instability (LSI) or aging. They first showed that greater numbers of SnOCs are observed in mouse models of LSI or aging, and these SnOCs are associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. Then, the deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. Finally, they also found that there is greater SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. The study is well conducted and data strongly support the idea.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This paper investigates a rare and severe brain disease called Hereditary Diffuse Leukoencephalopathy with Axonal Spheroids (HDLS). The authors aimed to understand how mutations in the gene CSF-1R affect microglia, the resident immune cells in the brain, and which alterations and factors lead to the specific pathophysiology. To model the human brain with the pathophysiology of HDLS, they used the human-specific model system of induced pluripotent stem cell (iPSC)-derived forebrain organoids with integrated iPSC-derived microglia (iMicro) from patients with the HDLS-causing mutation and an isogenic cell line with the corrected genome. They found that iPSC-derived macrophages (iMac) with HDLS mutations showed changes in their response, including increased inflammation and altered metabolism. Additionally, they studied these iMacs in forebrain organoids, where they differentiate into iMicro, and showed transcriptional differences in isolated iMicro when carrying the HDLS mutation. In addition, the authors described the influence of the mutation within iMicro on the transcriptional level of neurons and neural progenitor cells (NPCs) in the organoid. They observed that the one mutation showed implications for impaired development of neurons, possibly contributing to the progression of the disease.
Overall, this study provides valuable insights into the mechanisms underlying HDLS and emphasizes the importance of studying diseases like these with a suitable model system. These findings, while promising, represent only an initial step towards understanding HDLS and similar neurodegenerative diseases, and thus, their direct translation into new treatment options remains uncertain.
Strengths:
The strength of the work lies in the successful reprogramming of two HDLS patient-derived induced pluripotent stem cells (iPSCs) with different mutations, which is crucial for the study of HDLS using human forebrain organoid models. The use of corrected isogenic iPSC lines as controls increases the validity of the mutation-specific observations. In addition, the model effectively mimics HDLS, particularly concerning deficits in the frontal lobe, mirroring observations in the human brain. Obtaining iPSCs from patients with different CSF1R mutations is particularly valuable given the limitations of rodent and zebrafish models when studying adult-onset neurodegenerative diseases. The study also highlights significant metabolic changes associated with the CSF1R mutation, particularly in the HD2 mutant line, which is confirmed by the HD1 line. In addition, the work shows transcriptional upregulation of the proinflammatory cytokine IL-1beta in cells carrying the mutation, particularly when they phagocytose apoptotic cells, providing further insight into disease mechanisms.
Weaknesses:
The authors have not elucidated the significance of the increased CSF1 dosage in Figure 2F, aside from its effect on cell viability, lacking a thorough discussion of this result. Additionally, while transcriptomic and metabolic alterations related to the mutation were demonstrated in iMac models, similar investigations in iMicros are absent, necessitating further experiments to validate the findings across cell models. The conclusion drawn regarding cytokine levels lacks robust support from the data, particularly considering the varied responses observed in different mutant lines. Further analysis of the secretome (e.g. via ELISA) could provide additional insights. Moreover, the characterization of iMicros is incomplete, with limited protein-level analysis (e.g. validate RNA-seq via flow cytometry). Additionally, the claim of microglial-like morphology lacks adequate evidence, as the provided image is insufficient for such an assessment. RNA-seq experiments should be represented better, it is not possible to read the legends or gene names in the figures. Maybe the data sets can be combined into PCAone and one overall analysis, e.g. via WGCNA-like analyses? This would make it easier for the reader to compare the two cell lines side by side. Furthermore, inaccuracies and omissions in the figure legends compromise the clarity of data representation. Statistical test information is missing. Finally, inconsistent terminology usage throughout the paper may confuse readers (iMac versus iMicros).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
Sperm-egg fusion is a critical step in successful fertilization. Although several proteins have been identified in mammals that are required for sperm-egg adhesion and fusion, it is still unclear whether there are other proteins involved in this process and how the reported proteins complex co-operate to complete the fusion process. In this study, the authors first identified TMEM81 as a structural homologue of IZUMO1 and SPACA6, and predicted the interactions with a pool of human proteins associated with gamete fusion, using AlphaFold-Multimer, a recent advance in protein complex structure prediction. The prediction is compelling and well discussed, and the experimental evidence to verify this interaction is lacking in this study but supported by a complementary and independent study by another group.
Strengths:
The authors present a pentameric complex formation of four previously reported proteins involved in egg/sperm interaction together with TMEM181 using a deep learning tool, AlphaFold-Multimer.
Weaknesses:
It is intriguing to see that some of the proteins involved in sperm-egg interaction are successfully predicted to be assembled into a single multimeric structure by AlphaFold-Multimer. The experimental validation of the interactions is not directly supported in this study. As there are more candidate proteins in the process, testing other possible protein interactions more comprehensively will provide more rationale for the current 3D multi-protein modeling.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, Cai et al use a combination of mouse transgenic lines to re-examine the question of the embryonic origin of telencephalic oligodendrocytes (OLs). Their tools include a novel Flp mouse for labelling mature oligodendrocytes and a number of pre-existing lines (some previously generated by the last author in Josh Huang's lab) that allowed combinatorial or subtractive labelling of oligodendrocytes with different origins. The conclusion is that cortically-derived OLs are the predominant OL population in the motor and somatosensory cortex and underlying corpus callosum, while the LGE/CGE generates OLs for the piriform cortex and anterior commissure rather than the cerebral cortex. Small numbers of MGE-derived OLs persist long-term in the motor, somatosensory and piriform cortex.
Strengths:
The strength and novelty of the manuscript lies in the elegant tools generated and used and which have the potential to elegantly and accurately resolve the issue of the contribution of different progenitor zones to telencephalic regions.
Weaknesses:
(1) Throughout the manuscript (with one exception, lines 76-78), the authors quantified OL densities instead of contributions to the total OL population (as a % of ASPA for example). This means that the reader is left with only a rough estimation of the different contributions.
(2) All images and quantifications have been confined to one level of the cortex and the potential of the MGE and the LGE/CGE to produce oligodendrocytes for more anterior and more posterior cortical regions remains unexplored.
(3) Hence, the statement that "In summary, our findings significantly revised the canonical model of forebrain OL origins (Figure 4A) and provided a new and more comprehensive view (Figure 4B )." (lines 111, 112) is not really accurate as the findings are neither new nor comprehensive. Published manuscripts have already shown that (a) cortical OLs are mostly generated from the cortex [Tripathi et al 2011 (https://doi.org/10.1523/JNEUROSCI.6474-10.2011), Winker et al 2018 (https://doi.org/10.1523/JNEUROSCI.3392-17.2018) and Li et al (https://doi.org/10.1101/2023.12.01.569674)] and (b) MGE-derived OLs persist in the cortex [Orduz et al 2019 (https://doi.org/10.1038/s41467-019-11904-4) and Li et al 2024 (https://doi.org/10.1101/2023.12.01.569674)]. Extending the current study to different rostro-caudal regions of the cortex would greatly improve the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Latham A.P. et al. apply simulations and FLIM to analyse several di-block elastin-like polypetides and connect their sequence to the micro-structure of coacervates resulting from their phase-separation.
Strengths:
Understanding the molecular grammar of phase separating proteins and the connection with mesoscale properties of the coacervates is highly relevant. This work provides insights into micro-structures of coacervates resulting from di-block polypetides.
Weaknesses:
The results apply to a very specific architecture (di-block polypetides) with specific sequences.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript "A multi-hierarchical approach reveals D-1 serine as a hidden substrate of sodium-coupled monocarboxylate transporters" by Wiriyasermkul et al. is a resubmission of a manuscript, which focused first on the proteomic analysis of apical membrane isolated from mouse kidney with early ischemia- reperfusion injury (IRI), a well-known acute kidney injury (AKI) model. In a second part, the transport of D-serine by Asct2, Smct1, and Smct2 has been characterized in detail in different model systems, such as transfected cells and proteoliposomes.
Strengths:
A major problem with the first submission was the explanation of the link between the two parts of the manuscript: it was not very clear why the focus on Asct2, Smct1 and Smct2 was a consequence of the proteomic analysis. In the present version of the manuscript, the authors have focused on the expression of membrane transporters in the proteome analysis, thus making the reason for studying Asct2, Smct1 and Smct2 transporters more clear. In addition, the authors used 2D-HPLC to measure plasma and urinary enantiomers of 20 amino acids in plasma and urine samples from sham and ischaemia-reperfusion injury (IRI) mice. The results of this analysis demonstrated the value of D-serine as a potential marker of renal injury. These changes have greatly improved the manuscript and made it more convincing.
Weaknesses:
More than weakness I would speak of discussion points: I have a few suggestions that may help to make the paper more accessible to a general audience.<br /> (1) In the Introduction, when the authors introduce the term "micromolecules", it would be beneficial to provide a precise definition or clarification of what they mean by this term. Adding a brief explanation may help the reader to better understand the context.<br /> (2) In line 91, I suggest specifying that this is a renal IRI model.<br /> (3) Lines 167-168 state that Asct2 is localised to the apical side of the renal proximal tubules. Is there any expression of Asct2 in other nephron segments?<br /> (4) Lines 225-226: Have the authors expressed the candidate genes in HEK293 cells with ASCT2 knockdown?<br /> (5) lines 254-255: why was D-serine transport enhanced by ASCT2 knockdown in FlpInTR-SMCT1 or 2 cells?<br /> (6) line 265: The low affinity of SMCT1 for D-serine alone makes it an unlikely transporter for urinary D-serine.<br /> (7) line 316: The authors state that there is a high tubular D-serine reabsorption in IRI and in line 424 that there is an inactivation of DAAO during the pathology. This suggests that there is a reabsorption of D-serine mediated by a transport system in the basolateral membrane domain of proximal tubular cells. Do the authors have any information about this transporter?<br /> (8) in lines 462-463, the authors state: "It is suggested that PAT1 is less active at the apical membrane where the luminal pH is neutral". However, the pH of urine in the proximal tubules is normally acidic due to the high activity of NH3. I suggest rewording this sentence.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Taken as a whole, the data in the manuscript show that BDNF can regulate PD-associated kinase LRRK2 and that LRRK2 modifies the BDNF response. The chief strength is that the data provide a potential focal point for multiple observations across many labs. Since LRRK2 has emerged as a protein that is likely to be part of the pathology in both sporadic and LRRK2 PD, the findings will be of broad interest. At the same time, the data used to imply a causal throughline from BDNF to LRRK2 to synaptic function and actin cytoskeleton (as in the title) are mostly correlative and the presentation often extends beyond the data. This introduces unnecessary confusion. There are also many methodological details that are lacking or difficult to find. These issues can be addressed.
(1) The writing/interpretation gets ahead of the data in places and this was confusing. For example, the abstract highlights prior work showing that Ser935 LRRK2 phosphorylation changes LRRK2 localization, and Figure 1 shows that BDNF rapidly increases LRRK2 phosphorylation at this site. Subsequent figures highlight effects at synapses or with synaptic proteins. So is the assumption that LRRK2 is recruited to (or away from) synapses in response to BDNF? Figure 2H shows that LRRK2-drebrin interactions are enhanced in response to BDNF in retinoic acid-treated SH-SY5Y cells, but are synapses generated in these preps? How similar are these preps to the mouse and human cortical or mouse striatal neurons discussed in other parts of the paper (would it be anticipated that BDNF act similarly?) and how valid are SH-SY5Y cells as a model for identifying synaptic proteins? Is drebrin localization to synapses (or its presence in synaptosomes) modified by BDNF treatment +/- LRRK2? Or do LRRK2 levels in synaptosomes change in response to BDNF? The presentation requires re-writing to stay within the constraints of the data or additional data should be added to more completely back up the logic.
(2) The experiments make use of multiple different kinds of preps. This makes it difficult at times to follow and interpret some of the experiments, and it would be of great benefit to more assertively insert "mouse" or "human" and cell type (cortical, glutamatergic, striatal, gabaergic) etc.
(3) Although BDNF induces quantitatively lower levels of ERK or Akt phosphorylation in LRRK2KO preps based on the graphs (Figure 4B, D), the western blot data in Figure 4C make clear that BDNF does not need LRRK2 to mediate either ERK or Akt activation in mouse cortical neurons and in 4A, ERK in SH-SY5Y cells. The presentation of the data in the results (and echoed in the discussion) writes of a "remarkably weaker response". The data in the blots demand more nuance. It seems that LRRK2 may potentiate a response to BDNF that in neurons is independent of LRRK2 kinase activity (as noted). This is more of a point of interpretation, but the words do not match the images.
(4) Figure 4F/G shows an increase in PSD95 puncta per unit length in response to BDNF in mouse cortical neurons. The data do not show spine induction/dendritic spine density/or spine morphogenesis as suggested in the accompanying text (page 8). Since the neurons are filled/express gfp, spine density could be added or spines having PSD95 puncta. However, the data as reported would be expected to reflect spine and shaft PSDs and could also include some nonsynaptic sites.
(5) Experimental details are missing that are needed to fully interpret the data. There are no electron microscopy methods outside of the figure legend. And for this and most other microscopy-based data, there are few to no descriptions of what cells/sites were sampled, how many sites were sampled, and how regions/cells were chosen. For some experiments (like Figure 5D), some detail is provided in the legend (20 segments from each mouse), but it is not clear how many neurons this represents, where in the striatum these neurons reside, etc. For confocal z-stacks, how thick are the optical sections and how thick is the stack? The methods suggest that data were analyzed as collapsed projections, but they cite Imaris, which usually uses volumes, so this is confusing. The guide (sgRNA) sequences that were used should be included. There is no mention of sex as a biological variable.
(6) For Figures 1F, G, and E, how many experimental replicates are represented by blots that are shown? Graphs/statistics could be added to the supplement. For 1C and 1I, the ANOVA p-value should be added in the legend (in addition to the post hoc value provided).
(7) Why choose 15 minutes of BDNF exposure for the mass spec experiments when the kinetics in Figure 1 show a peak at 5 mins?
(8) The schematic in Figure 6A suggests that iPSCs were plated, differentiated, and cultured until about day 70 when they were used for recordings. But the methods suggest they were differentiated and then cryopreserved at day 30, and then replated and cultured for 40 more days. Please clarify if day 70 reflects time after re-plating (30+70) or total time in culture (70). If the latter, please add some notes about re-differentiation, etc.
(9) When Figures 6B and 6C are compared it appears that mEPSC frequency may increase earlier in the LRRK2KO preps than in the WT preps since the values appear to be similar to WT + BDNF. In this light, BDNF treatment may have reached a ceiling in the LRRK2KO neurons.
(10) Schematic data in Figures 5A and C and Figures 5B and E are too small to read/see the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this study, Amason et al employ spatial transcriptomics and intervention studies to probe the spatial and temporal dynamics of chemokines and their receptors and their influence on cellular dynamics in C. violaceum granulomas. As a result of their spatial transcriptomic analysis, the authors narrow in on the contribution of neutrophil- and monocyte-recruiting pathways to host response. This results in the observation that monocyte recruitment is critical for granuloma formation and infection control, while neutrophil recruitment via CXCR2 may be dispensable.
Strengths:
Since C. violaceum is a self-limiting granulomatous infection, it makes an excellent case study for 'successful' granulomatous inflammation. This stands in contrast to chronic, unproductive granulomas that can occur during M. tuberculosis infection, sarcoidosis, and other granulomatous conditions, infectious or otherwise. Given the short duration of C. violaceum infection, this study specifically highlights the importance of innate immune responses in granulomas.
Another strength of this study is the temporal analysis. This proves to be important when considering the spatial distribution and timing of cellular recruitment. For example, the authors observe that the intensity and distribution of neutrophil- and monocyte-recruiting chemokines vary substantially across infection time and correlate well with their previous study of cellular dynamics in C. violaceum granulomas.
The intervention studies done in the last part of the paper bolster the relevance of the authors' focus on chemokines. The authors provide important negative data demonstrating the null effect of CXCR1/2 inhibition on neutrophil recruitment during C. violaceum infection. That said, the authors' difficulty with solubilizing reparixin in PBS is an important technical consideration given the negative result. On the other hand, monocyte recruitment via CCR2 proves to be indispensable for granuloma formation and infection control. I would hesitate to agree with the authors' interpretation that their data proves macrophages are serving as a physical barrier from the uninvolved liver. It is possible and likely that they are contributing to bacterial control through direct immunological activity and not simply as a structural barrier.
Weaknesses:
There are several shortcomings that limit the impact of this study. The first is that the cohort size is very limited. While the transcriptomic data is rich, the authors analyze just one tissue from one animal per time point. This assumes that the selected individual will have a representative lesion and prevents any analysis of inter-individual variability. Granulomas in other infectious diseases, such as schistosomiasis and tuberculosis, are very heterogeneous, both between and within individuals. It will be difficult to assert how broadly generalizable the transcriptomic features are to other C. violaceum granulomas. Furthermore, this undermines any opportunity for statistical testing of features between time points, limiting the potential value of the temporal data.
Another caveat to these data is the limited or incompletely informative data analysis. The authors use Visium in a more targeted manner to interrogate certain chemokines and cytokines. While this is a great biological avenue, it would be beneficial to see more general analyses considering Visum captures the entire transcriptome. Some important questions that are left unanswered from this study are:
What major genes defined each spatial cluster?
What were the top differentially expressed genes across time points of infection?
Did the authors choose to focus on chemokines/receptors purely from a hypothesis perspective or did chemokines represent a major signature in the transcriptomic differences across time points?
In addition to the absence of deep characterization of the spatial transcriptomic data, the study lacks sufficient quantitative analysis to back up the authors' qualitative assessments. Furthermore, the authors are underutilizing the spatial information provided by Visium with no spatial analysis conducted to quantify the patterning of expression patterns or spatial correlation between factors.
Impact:
The author's analysis helps highlight the chemokine profiles of protective, yet host protective granulomas. As the authors comment on in their discussion, these findings have important similarities and differences with other notable granulomatous conditions, such as tuberculosis. Beyond the relevance to C. violaceum infection, these data can help inform studies of other types of granulomas and hone candidate strategies for host-directed therapy strategies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This article takes an expansive look at the potential role of DUX4 in cancer treatment and prognosis, including its correlation with other key biomarkers, the potential for cancer to be resistant to treatment, and risk prediction.
Strengths:
The primary strength of this work is the breadth of the analyses. The authors have linked DUX4 to not just one but multiple points in the trajectory of cancer, which increases the face validity of their conclusion that DUX4 is meaningfully related to the course of a cancer as well as the prognosis for a patient.
Statistically, the authors have taken care to properly validate their findings using appropriate bootstrapping and testing strategies.
Weaknesses:
Several weaknesses are noted. First, there is little-to-no description of the underlying sample population. It is only stated that "several large cohorts of patients with different metastatic cancers" were analyzed, and that a cohort of patients with advanced urothelial cancer was used for estimating associations with clinical outcomes. Lacking is information on the sampling mechanism, inclusion/exclusion criteria, treatment modalities, the definition of 'time = 0', the number of events observed, or even the sample size. Knowledge about the underlying study design would help explain some counterintuitive results, e.g. that the hazard of death among patients with Stage IV cancer is half that of those with Stage I cancer (Table 1); presumably this is not because Stage IV is actually protective but rather an artifact of the sampling scheme for these data. Second, the definition of negative versus positive DUX4 expression varies throughout the paper. In Figure 2B, Figure 3A, and Figure 3C, it is defined as >1 TPM vs. <= 1 TPM; in Figure 4A and Figure 5A, it is defined as >1 TPM vs. < 0.25 TPM; in Figure S1C it is partitioned into four groups, with boundaries defined at 0.25 TPM, 1 TPM, and 5 TPM. If categorization is needed, a rationale should be provided (ideally prospectively and not based upon the observed data, so as to avoid the perception of forking paths analyses), and it should be consistently applied. Third and finally, data seem to be occasionally excluded without rationale. For example, as mentioned above, the Cox model presented in Figure 4A seems to exclude all patients with DUX4 TPM between 0.25 and 1. Figure 3C excludes patients with TMB in the lowest quartile (although the decision was ostensibly to control for TMB confounding, there are more appropriate ways to do so that don't result in loss of data, e.g. a stratified KM plot). Excluding patients based upon a particular region of the covariate space makes interpreting the resulting model awkward.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
During C. elegans development, embryos undergo elongation of their body axis in absence of cell proliferation or growth. This process relies in an essential way on periodic contractions of two pairs muscles that extend along the embryo's main axis. How contraction can lead to extension along the same direction is unknown.
To address this question, the authors use a continuum description of a multicomponent elastic solid. The various components are the interior of the animal, the muscles, and the epidermis. The different components form separate compartments and are described as hyperelastic solids with different shear moduli. For simplicity, a cylindrical geometry is adopted. The authors consider first the early elongation phase, which is driven by contraction of the epidermis, and then late elongation, where contraction of the muscles injects elastic energy into the system, which is then transferred into elongation. The authors get elongation that can be successfully fitted to the elongation dynamics of wild type worms and two mutant strains.
Strengths:
The work proposes a physical mechanism underlying a puzzling biological phenomenon. The framework developed by the authors could be used to explain phenomena in other organisms and could be exploited in the design of soft robots.
Weaknesses:
(1) The manuscript is hard to read without being very familiar with continuum descriptions of elastic media. This might make the work difficult to access for biologists. This is a real pity because the findings are potentially of great interest to developmental biologists and engineers alike.
(2) The discussion of the worm's mechanical properties could go deeper. The authors hardly justify their assumptions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
As discussed in the original review, this manuscript is an important contribution to a mechanistic understanding of LRRK2 kinase. Kinetic parameters for the GTPase activity of the ROC domain have been determined in the absence/presence of kinase activity. A feedback mechanism from the kinase domain to GTP/GDP hydrolysis by the ROC domain is convincingly demonstrated through these kinetic analyses. However, a regulatory mechanism directly linking the T1343 phospho-site and a monomer/dimer equilibrium is not fully supported. The T1343A mutant has reduced catalytic activity and can form similar levels of dimer as WT. The revised manuscript does point out that other regulatory mechanisms can also play a role in kinase activity and GTP/GDP hydrolysis (Discussion section). The environmental context in cells cannot be captured from the kinetic assays performed in this manuscript, and the introduction contains some citations regarding these regulatory factors. This is not a criticism, the detailed kinetics here are rigorous, but it is simply a limitation of the approach. Caveats concerning effects of membrane localization, Rab/14-3-3 proteins, WD40 domain oligomers, etc... should be given more prominence than a brief (and vague) allusion to 'allosteric targeting' near the end of the Discussion.
Specific comments
(1) The revised version is better organized with respect to the significance of monomer/dimer equilibrium and the relevance of the GTP-binding region of ROC domain that encompasses the T1343 phospho-site. The relevance of monomers/dimers of LRRK2 from previous studies is better articulated and readers are able to follow the reasoning for the various mutations.
(2) As a suggestion I would change the following on page 6 to clarify for readers:<br /> "...would show no change in kcat and KM values upon in vitro ATP treatment" to:<br /> "...would show no change in kcat and KM values for GTP hydrolysis upon in vitro ATP treatment"
(3) The levels of dimer in WT (+ATP) and T1343A (+/- ATP) are the same, about 40-45%. These data are cited when the authors state that ATP-induced monomerization is 'abolished' (page 6). My suggestion is to re-phrase this conclusion for consistency with data (Fig 5). For example, one can state that 'ATP incubation does not affect the percentage of dimer for the T1343A variant of LRRK2'. This would be similar to the authors' description of these data on page 8 - 'no difference in dimer formation upon ATP treatment'.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Zhao et al., focus on mechanisms through which cells convert from epithelium to mesenchyme and become migratory. This phenomenon of epithelial-to-mesenchymal transition (EMT) occurs during both embryonic development and cancer progression. During cancer progression, EMT seemingly includes cells at intermediate states as defined by the combinatorial expression of epithelial and mesenchymal markers. But the importance of these markers and the role of these intermediate states remains unclear. Moreover, whether EMT during development also involves equivalent intermediate cell states is not known. To address this gap in knowledge, the authors devise a strategy to identify and characterize changes that an embryonic population of cells called the cranial neural crest undergo as they delaminate from the neuroepithelium and become a highly migratory population of mesenchymal cells that ultimately give rise to a broad range of derivatives.
To isolate and study the neural crest, the authors use embryos collected at E8.5 from two transgenic mouse lines. Wnt1-Cre;RosaeYFP labels Wnt1-positive neuroepithelial cells in the dorsolateral neural plate, which includes pre-migratory neural crest that reside in the dorsal neuroectoderm and neural plate border before induction (as well as some other lineages). Mef2c-F10N-LacZ leverages a neural crest cell-specific enhancer of Mef2c to control LacZ expression in predominantly migratory neural crest. This dual genetic approach that allows the authors to distinguish and compare pre-migratory and migratory neural crest cells is a strength of the work.
To assay for the differential expression of genes involved in the EMT and migration of cranial neural crest, the authors perform single cell RNA sequencing (scRNA-seq) using current methods. A strength is a large sample size per mouse line, and relatively high numbers of single cells analyzed. The authors identify six major cell/tissue types present in mouse E8.5 cranial tissues using known markers, which they then segregate into a cranial neural crest cluster using a well-reasoned bioinformatic strategy. The cranial neural crest cluster contains pre-migratory and migratory cells that they partition further into five subclusters and then characterize using the differential expression and combinatorial patterns of neural crest specifier genes, markers of pre-migratory neural crest, markers of early versus late migratory neural crest, markers of undifferentiated versus differentiated neural crest, tissue-specific markers, and region-specific markers. One weakness is that there is little attempt to map potential novel genes and/or pathways that also distinguish these clusters.
The authors then go on to subdivide the five cranial neural crest subclusters into almost two dozen smaller subclusters, again using the combinatorial expression of known markers (e.g., neural crest genes, cell junction genes, and cell cycle genes). A weakness is that the marker analysis and accompanying interpretation of the results relies heavily on the purported roles of different genes as described in the published work of others, which potentially introduces some untested assumptions and a bit of hand-waving into the study. Moreover, the limited correlation between mRNA and protein abundance for cell cycle markers is well documented in the literature but the authors rely heavily on gene expression to determine cell cycle status. Even though the authors add a compelling Edu/pHH3 double-labeling experiment and cell cycle inhibition studies, the work would be strengthened by including some analysis of protein expression to see if the cell cycle correlations hold up. Nonetheless, the subcluster and cell cycle analyses lead the authors to conclude that there are a series of intermediate cell states between neural crest EMT and delamination, and that cell cycle regulation is a defining feature and necessary component of those states. These novel findings are generally well supported by the data.
To test if there are spatiotemporal differences in the localization of neural crest cells during EMT in vivo, the authors apply a cutting-edge technique called signal amplification by exchange reaction for multiplexed fluorescent in situ hybridization (SABER-FISH), which they validate using standard in situ hybridization. The authors select specific marker genes that seem justified based on their scRNA-seq dataset, and they generate a series of convincing images and quantitative data that add valuable depth to the story.
As a functional test of their hypothesis that one of the genes indicative of an EMT intermediate stage (i.e., Dlc1) is essential for neural crest migration, the authors use a lentivirus-mediated knockdown strategy. A strength is that the authors include appropriate scramble and cell death controls as part of their experimental design.
The authors use Sox10 as a marker to count neural crest cells, but Sox10 may only label a subset of neural crest cells and thus some unaffected lineages may not have been counted. Although the data are persuasive, a second marker for counting neural crest cells following knockdown would make the analysis more robust.
Overall, this is a first-rate study with many more strengths than weaknesses. The authors generate high quality data, and their interpretations are reasonable and balanced. Another strength is the writing, which is clear and well organized, and the figures (including supplemental), which are excellent and provide unambiguous visualization of some very complex data sets. The methods are state-of the art and are effectively executed, and they will be useful to the broader cell and developmental biology community. The work contains well-substantiated findings and supports the conclusion that EMT is a highly dynamic, multi-step process, which was previously thought to be more-or-less binary. Such findings will alter the way the field thinks about EMT in neural crest and the work will likely serve as an important example alongside cancer metastasis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Syntaxin17 (STX17) is a SNARE protein that is recruited to mature (i.e., closed) autophagosomes, but not to immature (i.e., unclosed) ones, and mediates the autophagosome-lysosome fusion. How STX17 recognizes the mature autophagosome is an unresolved interesting question in the autophagy field. Shinoda and colleagues set out to answer this question by focusing on the C-terminal domain of STX17 and found that PI4P is a strong candidate that causes the STX17 recruitment to the autophagosome.
Strengths:
The main findings are: 1) Rich positive charges in the C-terminal domain of STX17 are sufficient for the recruitment to the mature autophagosome; 2) Fluorescence charge sensors of different strengths suggest that autophagic membranes have negative charges and the charge increases as they mature; 3) Among a battery of fluorescence biosensors, only PI4P-binding biosensors distribute to the mature autophagosome; 4) STX17 bound to isolated autophagosomes is released by treatment with Sac1 phosphatase; 5) By dynamic molecular simulation, STX17 TM is shown to be inserted to a membrane containing PI4P but not to a membrane without it. These results indicate that PI4P is a strong candidate that STX17 binds to in the autophagosome.
Weaknesses:
• It was not answered whether PI4P is crucial for the STX17 recruitment in cells because manipulation of the PI4P content in autophagic membranes was not successful for unknown reasons.<br /> • The question that the authors posed in the beginning, i.e., why is STX17 recruited to the mature (closed) autophagosome but not to immature autophagic membranes, was not answered. The authors speculate that the seemingly gradual increase of negative charges in autophagic membranes is caused by an increase in PI4P. However, this was not supported by the PI4P fluorescence biosensor experiment that showed their distribution to the mature autophagosome only. Here, there are at least two possibilities: 1) The increase of negative charges in immature autophagic membranes is derived from PI4P. However the fluorescence biosensors do not bind there for some reason; for example, they are not sensitive enough to recognize PI4P until it reaches a certain level, or simply, their binding does not occur in a quantitative manner. 2) The negative charge in immature membranes is not derived from PI4P, and PI4P is generated abundantly only after autophagosomes are closed. In either case, it is not easy to explain why STX17 is recruited to the mature autophagosome only. For the first scenario, it is not clear how the PI4P synthesis is regulated so that it reaches a sufficient level only after the membrane closure. In the second case, the mechanism that produces PI4P only after the autophagosome closure needs to be elucidated (so, in this case, the question of the temporal regulation issue remains the same).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this study, authors used the Drosophila model to characterize molecular details underlying traumatic brain injury (TBI). Authors used the transcriptomic analysis of astrocytes collected by FACS sorting of cells derived from Drosophila heads following brain injury and identified upregulation of multiple genes, such as Pvr receptor, Jun, Fos, and MMP1. Additional studies identified that Pvr positively activates AP-1 transciption factor (TF) complex consisting of Jun and Fos, of which activation leads to the induction of MMP1. Finally, authors found that disruption of endocytosis and endocytotic trafficking facilitates Pvr signaling and subsequently leads to induction of AP-1 and MMP1.
Overall, this study provides important clues to understanding molecular mechanisms underlying TBI. The identified molecules linked to TBI in astrocytes could be potential targets for developing effective therapeutics. The obtained data from transcriptional profiling of astrocytes will be useful for future follow-up studies. The manuscript is well-organized and easy to read.
However, the connection suggested by the authors between Pvr and AP-1, potentially mediated through the JNK pathway, lacks strong experimental support in my view. It's important to recognize that AP-1 activity is influenced by multiple upstream signaling pathways, not just the JNK pathway, which is the most well-characterized among them. Therefore, assuming that AP-1 transcriptional activity solely reflects the activity of the JNK pathway without additional direct evidence is unwarranted. To strengthen their argument, the study could benefit from direct evidence implicating the JNK pathway in linking Pvr to AP-1. This could be achieved through genetic studies involving mutants or transgenes targeting key components of the JNK pathway, such as Bsk and Hep, the Drosophila homologues of JNK and JNKK, respectively. Alternatively, employing p-JNK antibody-based techniques like Western blotting, while considering the potential challenges associated with p-JNK immunohistochemistry, could provide further validation. This important criticism regarding the molecular link between Pvr and AP-1 has been overlooked.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this work, Dasgupta et al. investigates the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals. I think some results are overinterpreted though. The authors state: "Our findings demonstrate that Sema7A functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development." However, they have not actually demonstrated which isoform functions in HCs (also see comments below). In addition, they have to be careful in interpreting their topology analysis, as they cannot separate individual axons. Thus, such analysis can generate artifacts. They can perform additional experiments to address these issues or adjust their interpretations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Hwang, Ran-Der et al utilized a CRISPR-Cas9 knockout in human retinal pigment epithelium (RPE1) cells to evaluate for suppressors of toxicity by the proteasome inhibitor MG132 and identified that knockout of dihydrolipoamide branched chain transacylase E2 (DBT) suppressed cell death. They show that DBT knockout in RPE1 cells does not alter proteasome or autophagy function at baseline. However, with MG132 treatment, they show a reduction in ubiquitinated proteins but with no change in proteasome function. Instead, they show that DBT knockout cells treated with MG132 have improved autophagy flux compared to wildtype cells treated with MG132. They show that MG132 treatment decreases ATP/ADP ratios to a greater extent in DBT knockout cells, and in accordance causes activation of AMPK. They then show downstream altered autophagy signaling in DBT knockout cells treated with MG132 compared to wild-type cells treated with MG132. Then they express the ALS mutant TDP43 M337 or expanded polyglutamine repeats to model Huntington's disease and show that knockdown of DBT improves cell survival in RPE1 cells with improved autophagic flux. They also utilize a Drosophila models and show that utilizing either a RNAi or CRISPR-Cas9 knockout of DBT improves eye pigment in TDP43M337V and polyglutamine repeat-expressing transgenic flies. Finally, they show evidence for increased DBT in postmortem spinal cord tissue from patients with ALS via both immunoblotting and immunofluorescence.
Strengths:
This is a mechanistic and well-designed paper that identifies DBT as a novel regulator of proteotoxicity via activating autophagy in the setting of proteasome inhibition. Major strengths include careful delineation of a mechanistic pathway to define how DBT is protective. These conclusions are well-justified.
Weaknesses:
None
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The application of rabies virus (RabV)-mediated transsynaptic tracing has been widely utilized for mapping cell-type-specific neural connectivities and examining potential modifications in response to biological phenomena or pharmacological interventions. Despite the predominant focus of studies on quantifying and analyzing labeling patterns within individual brain regions based on labeling abundance, such an approach may inadvertently overlook systemic alterations. There exists a considerable opportunity to integrate RabV tracing data with the global connectivity patterns and the transcriptomic signatures of labeled brain regions. In the present study, the authors take an important step towards achieving these objectives.
Specifically, the authors conducted an intensive reanalysis of a previously generated large dataset of RabV tracing to the ventral tegmental area (VTA) using dimension reduction methods such as PCA and UMPA. This reaffirmed the authors's earlier conclusion that different cell types in the VTA, namely dopamine neurons (DA) and GABAergic neurons, exhibit quantitatively distinct input patterns, and a single dose of addictive drugs, such as cocaine and morphine, induced altered labeling patterns. Additionally, the authors illustrate that distinct axes of PCA can discriminate experimental variations, such as minor differences in the injection site of viral tracers, from bona fide alternations in labeling patterns caused by drugs of abuse. While the specific mechanisms underlying altered labeling in most brain regions remain unclear, whether involving synaptic strength, synaptic numbers, pre-synaptic activities, or other factors, the present study underscores the efficacy of an informatics approach in extracting more comprehensive information from the RabV-based circuit mapping data.
Moreover, the authors showcased the utility of their previously devised bulk gene expression patterns inferred by the Allen Gene Expression Atlas (AGEA) and "projection portrait" derived from bulk axon mapping data sourced from the Allen Mouse Brain Connectivity Atlas. The utilization of such bulk data rests upon several limitations. For instance, the collection of axon mapping data involves an arbitrary selection of both cell type-specific and non-specific data, which might overlook crucial presynaptic partners, and often includes contamination from neighboring undesired brain regions. Concerns arise regarding the quantitativeness of AGEA, which may also include the potential oversight of key presynaptic partners. Nevertheless, the authors conscientiously acknowledged these potential limitations associated with the dataset.
Notably, building on the observation of a positive correlation between the basal expression levels of Ca2+ channels and the extent of drug-induced changes in RabV labeling patterns, the authors conducted a CRISPRi-based knockdown of a single Ca2+ channel gene. This intervention resulted in a reduction of RabV labeling, supporting that the observed gene expression patterns have causality in RabV labeling efficiency. While a more nuanced discussion is necessary for interpreting this result (see below), overall I commend the authors for their efforts to leverage the existing dataset in a more meaningful way. This endeavor has the potential to contribute significantly to our understanding of the mechanisms underlying alterations in RabV labeling induced by drugs of abuse.
Finally, drawing upon the aforementioned reanalysis of previous data, the authors underscored that a single administration of ketamine/xylazine anesthesia could induce enduring modifications in RabV labeling patterns for VTA DA neurons, specifically those projecting to the nucleus accumbens and amygdala. Given the potential impact of such alterations on motivational behaviors at a broader level, I fully agree that prudent consideration is warranted when employing ketamine/xylazine for the investigation of motivational behaviors in mice.
Specific Points:
(1) Beyond advancements in bioinformatics, readers may find it insightful to explore whether the PCA/UMPA-based approach yields novel biological insights. For example, the authors are encouraged to discuss more functional implications of PBN and LH in the context of drugs of abuse, as their labeling abundance could elucidate the PC2 axis in Fig. 2M.
2) While I appreciate the experimental data on Cacna1e knockdown, I am unclear about the rationale behind specifically focusing on Cacna1e. The logic behind the statement, "This means that expression of this gene is not inhibitory towards RABV transmission," is also unclear. Loss-of-function experiments only signify the necessity or permissive functions of a gene. In this context, Cacna1e expression levels are required for efficient RabV labeling, but this neither supports nor excludes the possibility that this gene expression instructively suppresses RabV labeling/transmission, which could be assessed through gain-of-function experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The work proposes a model of neural information processing based on a 'synergistic global workspace,' which processes information in three principal steps: a gatekeeping step (information gathering), an information integration step, and finally, a broadcasting step. They provided an interpretation of the reduced human consciousness states in terms of the proposed model of brain information processing, which could be helpful to be implemented in other states of consciousness. The manuscript is well-organized, and the results are important and could be interesting for a broad range of literature, suggesting interesting new ideas for the field to explore.
Comments on revised version:
The authors have addressed all my comments made in the previous revision.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Strengths:<br /> There are many reports on the effect of chemical properties of foods on feeding in fruit flies, but only limited studies reported how physical properties of food affect feeding especially pharyngeal mechanosensory neurons. First, they found that mechanosensory mutants, including nompC, Tmc, and Piezo, showed impaired swallowing, mainly the emptying process. Next, they identified cibarium multidendritic mechanosensory neurons (md-C) are responsible for controlling swallowing by regulating motor neuron (MN) 12 and 11, which control filling and emptying, respectively.
Weaknesses:<br /> While the involvement of md-C and mechanosensory channels in controlling swallowing is convincing, it is not yet clear which stimuli activate md-C. Can it be an expansion of cibarium or food viscosity, or both? In addition, if rhythmic and coordinated contraction of muscles 11 and 12 is essential for swallowing, how can simultaneous activation of MN 11 and 12 by md-C achieve this? Finally, previous reports showed that food viscosity mainly affects the filling rather than the emptying process, which seems different from their finding.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors aim to learn about retinal cell specific metabolic pathways, which could substantially improve the way retinal diseases are understood and treated. They culture ex vivo mouse retinas for 6 days with 2 - 4 days of various drug treatments targeting different metabolic pathways or by removing the RPE/choroid tissue from the neural retina. They then look at photoreceptor survival, stain for various metabolic enzymes/transporters and quantify a broad panel of metabolites. While this is an important question to address, the results are not sufficient to support the conclusions.
Strengths:
The questions the authors are exploring at extremely valuable and I commend the authors and working to learn more about retina metabolism. The different sensitivity of the cones to various drugs is interesting and may suggest key differences between rod and cones. The authors also provide a thoughtful discussion of various metabolic pathways in the context of previous publications.
Weaknesses:
As the authors point out, ex vivo culture models allow for control over multiple aspects of the environment (such as drug delivery) not available in vivo. Ex vivo cultures can provide good hints as to what pathways are available between interacting tissues. However, there are many limitations to ex vivo cultures, including shifting to a very artificial culture media condition that is extremely different than the native environment of the retina. It is well appreciated that cells have flexible metabolism and will adapt to conditions provided. Therefore, observations of metabolic responses obtained under culture conditions need to be interpreted with caution, they indicate what the tissue is doing under those specific conditions (which include cells adapting and dying).
Chen et al use pharmacological interventions are to the impact of various metabolic pathways on photoreceptor survival and "long term" metabolic changes. The dose and timing of these drug treatments are not examined though. It is also hard to know how these drugs penetrate the tissue and it needs to be validated that they intended targets are being accurately hit. These relatively long term treatments should be causing numerous downstream changes to metabolism, cell function and survival, which makes looking at a snap shot of metabolite levels hard to interpret. It would be more valuable to look at multiple time points after drug treatment, especially easy time points (closer to 1 hr). the authors use metabolite ratios to make conclusions about pathway activity. It would be more valuable to directly measure pathway activity by looking a metabolite production rates in the media and/or with metabolic tracers again in time scales closer to minutes and hours instead of days.
While the data is interesting and may give insights into some rod and cone specific metabolic susceptibility, more work is needed to validate these conclusions. Given the limitations of the model the authors have over interpreted their findings and the conclusions are not supported by the results. They need to either dramatically limit the scope of their conclusions or validate these hypotheses with additional models and tools.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Canonically cerebellar neurons are derived from 2 primary germinal zones within the anterior hindbrain (dorsal rhombomere 1). This manuscript identifies an important, previously underappreciated origin for a subset of early cerebellar nuclei neurons - the dorsal mesencephalon. This is an exciting finding. While the conclusions are generally supported, several of the figure panels are of inferior quality and do not readily convey the results the authors assert.
Strengths:
The authors have identified a novel early population of cerebellar neurons with likely novel origin in the midbrain. They have used multiple assays to support their conclusions, including immunohistochemistry and in situ analyses of a number of markers of this population which appear to stream from the midbrain into the dorsal anterior cerebellar anlage.
The inclusion of Otx2-GFP short-term lineage analyses and analysis of Atoh1 -/- animals also provide considerable support for the midbrain origin of these neurons as streams of cells seem to emanate from the midbrain. However, without live imaging, there remains the possibility that these streams of cells are not actually migrating, and rather, gene expression is changing in static cells. Hence the authors have conducted midbrain diI labelling experiments of short-term and long-term cultured embryos showing di-labelled cells in the developing cerebellum. These studies confirm the migration of cells from the midbrain into the early cerebellum.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Disruption of the excitatory/inhibitory (E/I) balance has been reported in Autism Spectrum Disorders (ASD), with which PTEN mutations have been associated. Giunti et al choose to explore the impact of PTEN mutations on the balance between E/I signaling using as a platform the C. elegans neuromuscular system where both cholinergic (E) and GABAergic (I) motor neurons regulate muscle contraction and relaxation. Mutations in daf-18/PTEN specifically affect morphologically and functionally the GABAergic (I) system, while leaving the cholinergic (E) system unaffected. The study further reveals that the observed defects in the GABAergic system in daf-18/PTEN mutants are attributed to reduced activity of DAF-16/FOXO during development.
Moreover, ketogenic diets (KGDs), known for their effectiveness in disorders associated with E/I imbalances such as epilepsy and ASD, are found to induce DAF-16/FOXO during early development. Supplementation with β-hydroxybutyrate in the nematode at early developmental stages proves to be both necessary and sufficient to correct the effects on GABAergic signaling in daf-18/PTEN mutants.
Strengths:
The authors combined pharmacological, behavioral, and optogenetic experiments to show the GABAergic signaling impairment at the C. elegans neuromuscular junction in DAF-18/PTEN and DAF-16/FOXO mutants. Moreover, by studying the neuron morphology, they point towards neurodevelopmental defects in the GABAergic motoneurons involved in locomotion. Using the same set of experiments, they demonstrate that a ketogenic diet can rescue the inhibitory defect in the daf-18/PTEN mutant at an early stage.
Weaknesses:
The morphological experiments hint towards a pre-synaptic defect to explain the GABAergic signaling impairment, but it would have also been interesting to check the post-synaptic part of the inhibitory neuromuscular junctions such as the GABA receptor clusters to assess if the impairment is only presynaptic or both post and presynaptic.
Moreover, all observations done at the L4 stage and /or adult stage don't discriminate between the different GABAergic neurons of the ventral nerve cord, ie the DDs which are born embryonically and undergo remodeling at the late L1 stage, and VDs which are born post-embryonically at the end of the L1 stage. Those additional elements would provide information on the mechanism of action of the FOXO pathway and the ketone bodies.
Conclusion:
Giunti et al provide fundamental insights into the connection between PTEN mutations and neurodevelopmental defects through DAF-16/FOXO and shed light on the mechanisms through which ketogenic diets positively impact neuronal disorders characterized by E/I imbalances.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:<br /> In this work, the authors combine diffusion MRI and high-resolution x-ray synchrotron phase-contrast imaging in monkey and mouse brains to investigate the 3D organization of brain white matter across different scales and species. The work is at the forefront of the anatomical investigation of the human connectome and aligns with several current efforts to bridge the resolution gap between what we can see in vivo at the millimeter scale and the complexity of the human brain at the sub-micron scale. The authors compare the 3D white matter organization across modalities within 2 small regions in one monkey brain (body of the corpus callosum, centrum semiovale) and within one region (splenium of the corpus callosum) in healthy mice and in one murine model of focal demyelination. The study compares measures of tissue anisotropy and fiber orientations across modalities, performs a qualitative comparison of fasciculi trajectories across brain regions and tissue conditions using streamlined tractography based on the structure tensor, and attempts to quantify the shape of fasciculi trajectories by measuring the tortuosity index and the maximum deviation for each reconstructed streamline. Results show measures of anisotropy and fiber orientations largely agree across modalities, especially for larger FOV data. The high-resolution data allows us to explore the fiber trajectories in relation to tissue complexity and pathology. The authors claim the study reveals new common organization principles of white matter fibers across species and scales, for which axonal fasciculi arrange into sheet-like laminar structures.
Strengths:
The aim of the study is of central importance within present efforts to bridge the gap between macroscopic structures observable in vivo in humans using conventional diffusion MRI and the microscopic organization of white matter tissue. Results obtained from this type of study are important to interpret data obtained in vivo, inform the development of novel methodologies, and expand our knowledge of the structural and thus functional organization of brain circuits.
Multi-scale data acquired across modalities within the same sample constitute extremely valuable data that is often hard to acquire and represent a precious resource for validation of both diffusion MRI tractography and microstructure methods.
The inclusion of multi-species data adds value to the study, allowing the exploration of common organization principles across species.
The addition of data from a murine cuprizone model of focal demyelination adds interesting opportunities to study the underlying biological changes that follow demyelination and how these impact tissue anisotropy and fiber trajectories. These data can inform the interpretation and development of diffusion MRI microstructure models.
Weaknesses:
The main claim of a newly discovered laminar organization principle that is consistent across scales and species is not supported strongly enough by the data. The main evidence in support of the claim comes from the larger FOV data obtained from the body of the corpus callosum in the monkey brain. A laminar organization principle is partially shown in the centrum semiovale in the monkey brain and it is not shown in mice data. Additionally, the methods lack details to help the correct interpretation of these findings (e.g., how were these fasciculi defined?; how well do they represent different axonal populations?; what is the effect of blood vessels on the structure tensor reconstruction?; how was laminar separation quantified?) and the discussion does not provide a biological background for this organization. The corpus callosum sample suggests axons within a bundle of fibers are organized in a sheet-like fashion, while data from the centrum semiovale suggest fibers belonging to different fiber bundles are organized in a sheet-like arrangement. While I acknowledge the challenges in acquiring such high-resolution data, additional samples from different regions in the same animals and from different animals would help strengthen this claim.
The main goal of the study is to bridge the organization of white matter across anatomical length scales and species. However, given the substantial difference in FOVs between the two imaging modalities used, and the absence of intermediate-resolution data, it remains difficult to effectively understand how these results can be used to inform conventional diffusion MRI. In this sense, the introduction does not do a good enough job of building a strong motivation for the scientific questions the authors are trying to answer with these experiments and for the specific methodology used.
The cuprizone data represent a unique opportunity to explore the effect of demyelination on white matter tissue. However, this specific part of the study is not well motivated in the introduction and seems to represent a missed opportunity for further exploration of the qualitative and quantitative relationship between diffusion MRI and sub-micron tissue information (although unfortunately not within the same brain sample). This is especially true considering the diffusion MRI protocol for mice would allow extrapolation of advanced measures from different tissue compartments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The submitted manuscript by Michaud and Francavilla et al., is a very interesting study describing early disruptions in the disinhibitory modulation exerted by VIP+ interneurons in CA1, in a triple transgenic model of Alzheimer's disease. They provide a comprehensive analysis at the cellular, synaptic, network, and behavioral level on how these changes correlate and might be related to behavioral impairments during these early stages of the disease.
Main findings:
- 3xTg mice show early Aß accumulation in VIP-positive interneurons.
- 3xTg mice show deficits in a spatially modified version of the novel object recognition test.
- 3xTg mice VIP cells present slower action potentials and diminished firing frequency upon current injection.
- 3xTg mice show diminished spontaneous IPSC frequency with slower kinetics in Oriens / Alveus interneurons.
- 3xTg mice show increased O/A interneuron activity during specific behavioral conditions.
- 3xTg mice show decreased pyramidal cell activity during specific behavioral conditions.
Strengths:
This study is very important for understanding the pathophysiology of Alzheimer´s disease and the crucial role of interneurons in the hippocampus in healthy and pathological conditions.
Weaknesses:
Although results nicely suggest that deficits in VIP physiological properties are related to the differences in network activity, there is no demonstration of causality.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Original Review:
In this study Mao and co-workers deliver a substantial suite of genetic tools in support of the senior author's recent proposal to create a "chemoconnectomic" tool kit for the expression mapping and conditional disruption of specific neurotransmitter systems with fly neurons of interest. Specifically, they describe the creation of two toolsets for recombination-based and CRISPR/Cas9-based conditional knockouts of genes supporting neurotransmitter and neuromodulator function and Flp-Out and Split-LexA toolkit for the examination of gene expression within defined subsets of neurons. The authors report the creation of conditional genetic tools for the disruption/mapping of approximately 200 chemoconnectomic gene products, an examination of the general effectiveness of these tools in the fly brain and apply them to the circadian clock network in an attempt to reveal new information regarding the transmitter/modulator systems involved in daily behavioral timing. The authors provide clear evidence of the effectiveness of the new methods along with a transparent assessment of the variability of the tools. In addition, they present evidence that the neuro peptide CNMa influences the morning peak of daily activity in the fly by regulating the timing of activity increases in anticipation of dawn.
A major strength of the study is the transparent assessment of the effectiveness and variability of the conditional genetic approaches developed by the authors. The authors have largely achieved their aims and the study therefore represents a major delivery on the promise of chemoconnectomics made by the senior author in 2019 (Neuron, Vol. 101, p. 876). Though there are some concerns about the variability of knockout effectiveness, off target effects of the knockout strategies, and (especially) the accuracy of the gene expression approach, the tools created for this study will almost certainly be useful for the field and support a great deal of future work.
Comments on revised version:
The authors have responded to each of my concerns. Most importantly, they have made the discrepancies within the study and between the study and previously published work clearer to the reader. they have also corrected statements that are not consistent with the current state of the field. The issue regarding opposing effects of PDF signaling and CNMa, which was also raised by Reviewer One still stands, notwithstanding the edits made to the text.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors described the litmining ecosystem that can flexibly combine automatic and manual annotation for meta-research.
Strengths:
Software development is crucial for cumulative science and of great value to the community. However, such works are often greatly under-valued in the current publish-or-perish research culture. Thus, I applaud the authors' efforts devoted to this project. All the tools and repositories are public and can be accessed or installed without difficulty. The results reported in the manuscript are also compelling that the ecosystem is relatively mature.
Weaknesses:
First and foremost, the logic flow of the current manuscript is difficult to follow.
The second issue is the results from the litmining ecosystem were not validated and the efficiency of using litmining was not quantified. To validate the results, it would be better to directly compare the results of litmining with recognized ground truth in each of the examples. To prove the efficiency of the current ecosystem, it would be better to use quantitative indices for comparing the litmining and the other two approaches (in terms of time and/or other costs in a typical meta-research).
The third family of issues is about the functionality of the litmining ecosystem. As the authors mentioned, the ecosystem can be used for multiple purposes, however, the description here is not sufficient for researchers to incorporate the litmining ecosystem into their meta-research project. Imagine that a group of researchers are interested in using the litmining ecosystem to facilitate their meta-analyses, how should they incorporate litmining into their workflow? I have this question because, in a complete meta-analysis, researchers are required to (1) search in more than one database to ensure the completeness of their literature search; (2) screen the articles from the searched articles, which requires inspection of the abstract and the pdf; (3) search all possible pdf file of included articles instead of only relying on the open-access pdf files on PMC database. That said, if researchers are interested in using litmining in a meta-analysis that follows reporting standards such as PRISMA, the following functionalities are crucial:<br /> (a) How to incorporate the literature search results from different databases;<br /> (b) After downloading the meta-data of articles from databases, how to identify whose pdf files can be downloaded from PMC and whose pdf files need to be searched from other resources;<br /> (c) Is it possible to also annotate pdf files that were not downloaded by pubget?<br /> (d) How to maintain and update the meta-data and intermediate data for a meta-analysis by using litmining? For example, after searching in a database using a specific command and conducting their meta-analysis, researchers may need to update the search results and include items after a certain period.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors have noted in preliminary work that tetrodotoxin (TTX), which inhibits NaV1.7 and several other TTX-sensitive sodium channels, has differential effects on nociceptors, dramatically reducing their excitability under certain conditions but not under others. Partly because of this coincidental observation, the aim of the present work was to re-examine or characterize the role of NaV1.7 in nociceptor excitability and the effects on drug efficacy. The manuscript demonstrates that a NaV1.7-selective inhibitor produces analgesia only when nociceptor excitability is based on NaV1.7. More generally and comprehensively, the results show that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes (NaV 1.3/1.7 and 1.8). This can cause widespread changes in the role of a particular subtype over time. The degenerate nature of nociceptor excitability shows functional implications that make the assignment of pathological changes to a particular NaV subtype difficult or even impossible.
Thus, the analgesic efficacy of NaV1.7- or NaV1.8-selective agents depends essentially on which NaV subtype controls excitability at a given time point. These results explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.
Strengths:
The results are clearly and impressively supported by the experiments and data shown. During the revision, the manuscript was consistently improved and the concerns of the first reviews were resolved. All methods are described in detail, and presumably, allow good reproducibility and were suitable to address the scientific question.
The results showing that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and expression of different NaV subtypes are of great importance in the fields of basic and clinical pain research and sodium channel physiology and pharmacology, but also for a broad readership and community. The degenerate nature of nociceptor excitability, which is clearly shown and well supported by data has large functional implications. The results are of great importance because they may explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.
In summary, the authors achieved their overall aim to enlighten the role of the NaV1.7 in nociceptor excitability and the effects on drug efficacy. The data support the conclusions and clinical implications are highlighted as far as is currently justifiable due to the still limited experience in translation. This appears well-considered, not too speculative, and ultimately appropriate.
The main weaknesses of the first version were fixed during the revision:
(i) After revising the manuscript, the initial weakness that the computer model was described superficially has been fixed. Important information was added to the main text and additional information, including the full code and equations and values are deposited on ModelDB or are given in the Supplementary information (Suppl. Table 5 & 6).
(ii) The authors now comment that corresponding studies on protein levels or e.g. neuroinflammatory changes could support the characterization of the time course of membrane expression and cellular changes, but this should be addressed in future studies, as these analyses would also raise new questions, such as about membrane trafficking, post-translational modifications, etc. This is plausible and has now been appropriately addressed in the text.
(iii) During the initial review the authors were asked to discuss the promising role of NaV1.7 in the light of clinical results. In their response, the authors confidently state that they „wish to avoid speculating on which particular clinical results are better explained because our study was not designed for that." They, however, emphasize their take-home message, which is well supported "Instead, our take-home message (which is well supported; see Discussion on lines 309-321) is that NaV1.7-selective drugs may have a variable clinical effect because nociceptors' reliance on NaV1.7 is itself variable - much more than past studies would have readers believe. ... The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is difficult."
Against the background of this argumentation, it must be admitted that the decision not to present as yet unproven speculations is probably appropriate from a scientific point of view and that this ultimately proves the critical assessment of one's own data and the limitations of the study. This is undoubtedly acceptable and - in retrospect - probably the right way to go.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The large-conductance Ca2+ activated K+ channel (BK) has been reported to promote breast cancer progression, but it is not clear how. The present study, carried out in breast cancer cell lines, concludes that BK located in mitochondria reprograms cells towards the Warburg phenotype, one of the metabolic hallmarks of cancer.
Strengths:
The use of a wide array of modern complementary techniques, including metabolic imaging, respirometry, metabolomics and electrophysiology. On the whole experiments are astute and well designed, and appear carefully done. The use of a BK knock out cells to control for the specificity of the pharmacological tools is a major strength. The manuscript is clearly written. There are many interesting original observations that may give birth to new studies.
Weaknesses: The main conclusion regarding the role of a BK channel located in mitochondria appears is not sufficiently supported. Other perfectible aspects are the interpretation of co-localization experiments and the calibration of Ca2+ dyes. These points are discussed in more detail in the following paragraphs:
(1) May the metabolic effects be ascribed to a BK located in mitochondria? Unfortunately not, at least with the available evidence. While it is clear these cells have a BK in mitochondria (characteristic K+ currents detected in mitoplasts) and it is also well substantiated that the metabolic effects in intact cells are explained by an intracellular BK (paxilline effects absent in the BK KO), it does not follow that both observations are linked. Given that ectopic BK-DEC appeared at the surface, a confounding factor is the likely expression of BK in other intracellular locations such as ER, Golgi, endosomes, etc. To their credit authors acknowledge this limitation several times throughout the text ("...presumably mitoBK...") but not in other important places, particularly in title and abstract.
(2) mitoBK subcellular location. Pearson correlations of 0.6 and about zero were obtained between the locations of mitoGREEN on one side, and mRFP or RFP-GPI on the other (Figs. 1G and S1E). These are nice positive and negative controls. For BK-DECRFP however the Pearson correlation was about 0.2. What is the Z resolution of apotome imaging? Assuming an optimum optical section of 600 nm, as obtained a 1.4 NA objective with a confocal, that mitochondria are typically 100 nm in diameter and that BK-DECRFP appears to stain more structures that mitoGREEN, the positive correlation of 0.2 may not reflect colocalization. For instance, it could be that BK-DECRFP in not just in mitochondria but in a close underlying organelle e.g. the ER. Along the same line, why did BK-RFP also give a positive Pearson? Isn´t that unexpected? Considering that BK-DEC was found by patch clamping at the plasma membrane, the subcellular targeting of the channel is suspect. Could it be that the endogenous BK-DEC does actually reside exclusively in mitochondria (a true mitoBK), but overflows to other membranes upon overexpression? Regarding immunodetection of BK in the mitochondrial Percoll preparation (Fig. S5), absence of NKA demonstrates absence of plasma membrane contamination, but does not inform about contamination by other intracellular membranes.
(3) Calibration of fluorescent probes. The conclusion that BK blockers or BK expression affects resting Ca2+ levels should be better supported. Fluorescent sensors and dyes provide signals or ratios that need be calibrated if comparisons between different cell types or experimental conditions are to be made. This is implicitly acknowledged here when monitoring ER Ca2+, with an elaborate protocol to deplete the organelle in order to achieve a reading at zero Ca2+.
(4) Line 203. "...solely by the expression of BKCa-DECRFP in MCF-7 cells". Granted, the effect of BKCa-DECRFP on the basal FRET ratio appears stronger than that of BK-RFP, but it appears that the latter had some effect. Please provide the statistics of the latter against the control group (after calibration, see above).
The revised version of the manuscript has incorporated my suggestions to a very reasonable degree, in several cases with new experiments. The details of these improvements can be found in the correspondence.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The article entitled "Circadian regulation of endoplasmic reticulum calcium response in mouse cultured astrocytes" submitted by Ryu and colleagues describes the circadian control of astrocytic intracellular calcium levels in vitro.
Strengths:
The authors used a variety of technical approaches that are appropriate
Weaknesses:
Statistical analysis is poor and could lead to a misinterpretation of the data
Several conceptual issues have been identified.
Overinterpretation of the data should be avoided. This is a mechanistic paper done completely in vitro, all references to the in vivo situation are speculative and should be avoided.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Shahshahani and colleagues used a combination of statistical modelling and whole-brain fMRI data in an attempt to separate the contributions of cortical and cerebellar regions in different cognitive contexts.
Strengths:
* The manuscript uses a sophisticated integration of statistical methods, cognitive neuroscience, and systems neurobiology.
* The authors use multiple statistical approaches to ensure robustness in their conclusions.
* The consideration of the cerebellum as not a purely 'motor' structure is excellent and important.
Weaknesses:
* Two of the foundation assumptions of the model - that cerebellar BOLD signals reflect granule cells > purkinje neurons and that corticocerebellar connections are relatively invariant - are still open topics of investigation. It might be helpful for the reader if these ideas could be presented in a more nuanced light.
* The assumption that cortical BOLD responses in cognitive tasks should be matched irrespective of cerebellar involvement does not cohere with the idea of 'forcing functions' introduced by Houk and Wise.
-
-
-
Reviewer #2 (Public Review):
Summary:
Larouche et al show that TEs are broadly expressed in thymic cells, especially in mTECs and pDCs. Their data suggest a possible involvement of TEs in thymic gene regulation and IFN-alpha secretion. They also show that at least some TE-derived peptides are presented by MHC-I in the thymus.
Strengths:
The idea of high/broad TE expression in the thymus as a mechanism for preventing TE-mediated autoimmunity is certainly an attractive one, as is their involvement in IFN-alpha secretion therein. The analyses and experiments presented here are therefore a very useful primer for more in-depth experiments, as the authors point out towards the end of the discussion.
Weaknesses:
There are many dangers about analysing RNA-seq data at the subfamily level. Outputs may be greatly confounded by pervasive transcription, DNA contamination, and overlap of TEs with highly expressed genes. Whether TE transcripts are independent units or part of a gene also has important implications for the conclusions drawn. The authors have tried to mitigate against some of these issues, but they have not been completely ruled out.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In their manuscript entitled "DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation", Mullen et al. describe an interesting mechanism of inducing antigen presentation. The manuscript includes a series of experiments that demonstrate that blockade of pyrimidine synthesis with DHODH inhibitors (i.e. brequinar (BQ)) stimulates the expression of genes involved in antigen presentation. The authors provide evidence that BQ mediated induction of MHC is independent of interferon signaling. A subsequent targeted chemical screen yielded evidence that CDK9 is the critical downstream mediator that induces RNA Pol II pause release on antigen presentation genes to increase expression. Finally, the authors demonstrate that BQ elicits strong anti-tumor activity in vivo in syngeneic models, and that combination of BQ with immune checkpoint blockade (ICB) results in significant lifespan extension in the B16-F10 melanoma model. Overall, the manuscript uncovers an interesting and unexpected mechanism that influences antigen presentation and provides an avenue for pharmacological manipulation of MHC genes, which is therapeutically relevant in many cancers. However, a few key experiments are needed to ensure that the proposed mechanism is indeed functional in vivo.
Major Points:
(1) According to the proposed model, BQ mediated induction of antigen presentation is a contributing factor to the efficacy of this therapeutic strategy. If this is true, then depletion of immune cells should reduce the therapeutic efficacy of BQ in vivo. The authors should perform the B16-F10 transplant experiments in either Rag null mice (if available) or with CD8/CD4 depletion. The expectation would be that T cell depletion (or MHC loss with genetic manipulation) should reduce the efficacy of BQ treatment. Absent this critical experiment, it is difficult to confidently conclude that induction of antigen presentation is a fundamental component of the in vivo response to DHODH inhibition.
(2) Does BQ treatment induce antigen presentation in non-malignant cells? APCs? If the induction of antigen presentation is not cancer specific and related to a pyrimidine depletion stress response, then there is a possibility that healthy tissues will also exhibit a similar phenotype, raising concerns about the specificity of a de novo immune response. The authors should examine antigen presentation genes in healthy tissues treated with BQ.
(3) In the title, the authors claim that DHODH enhances the efficacy of ICB. However, the experiment shown in Figure 5D does not demonstrate this. The Kaplan Meier curves reflect more of an additive response versus a synergistic combination. Furthermore, the concurrent treatment of BQ and ICB seems to inhibit the efficacy of ICB due to BQ toxicity in immune cells. When concurrently administered, the survival of the mice is the same as with brequinar alone, suggesting that the efficacy of ICB was diminished. However, if ICB is administered following an initial dose of BQ, there is an added survival benefit of a magnitude that is similar to ICB alone. This result seems to contradict the title. Furthermore, the authors should show the longitudinal growth curves of these tumors.
(4) Related to Point 3, the temporal separation of BQ and ICB raises the question of whether the induction of antigen presentation with BQ is persistent during the course of delayed ICB treatment. One explanation for the results is that BQ treatment reduces tumor burden, and then a subsequent course of ICB also reduces tumor burden but not that the two therapies are functioning in synergy. To address this, the authors should measure the duration of BQ mediated induction of antigen presentation after stopping treatment.
(5) In Figure 1, the authors show that DHODH inhibition induces expression of both MHC-I and MHC-II genes at the RNA level. However, they only validate MHC-I by flow cytometry. A simple experiment to evaluate the effect of BQ treatment on MHC-II surface expression would provide important additional mechanistic insight into the immunomodulatory effects of DHODH inhibition, especially given recent literature reinforcing the importance of MHC-II expression on epithelial cancers, including melanoma (Oliveira et al. Nature 2022).
Minor Points:
(1) The authors show ChIP-seq tracks from Tan et al. for HLA-B. However, given the pervasive effect of Ter treatment across many HLA genes, the authors should either show tracks at additional loci, or provide a heatmap of read density across more loci. This would substantiate the mechanistic claim that RNA Pol II occupancy and activity across antigen presentation genes is the major driver of response to DHODH inhibition as opposed to mRNA stabilization/increased translation.
(2) A compelling way to demonstrate a change in antigen presentation is through mass spectrometry based immunopeptidomics. Performing immunopeptidomic analysis of BQ treated cell lines would provide substantial mechanistic insight into the outcome of BQ treatment. While this approach may be outside the scope of the current work, the authors should speculate on how this treatment may specifically alter the antigenic landscape where future directions would include empirical immunopeptidomics measurements.
(3) While the signaling through CDK9 seems convincing, it still does not provide a mechanistic link between depleted pyrimidines and CDK9 activity. The authors should speculate on the mechanism that signals to CDK9.
(4) Related to minor point 2, the authors should consider a genetic approach to confirm the importance of CDK9. While the pharmacological approach, including multiple mechanistically distinct CDK9 inhibitors provides strong evidence, an additional experiment with genetic depletion of CDK9 (CRISPR KO, shRNA, etc) would provide compelling mechanistic confirmation.
(5) The authors should comment in the discussion on how this strategy may be particularly useful in patients harboring genetic or epigenetic loss of interferon signaling, a known mechanism of ICB resistance. Perhaps DHODH inhibition could rescue MHC expression in cells that are deficient in interferon sensing.
Overall, the paper is clearly written and presented. With the additional experiments described above, especially in vivo, this manuscript would provide a strong contribution to the field of antigen presentation in cancer. The distinct mechanisms by which DHODH inhibition induces antigen presentation will also set the stage for future exploration into alternative methods of antigen induction.
Comments on latest version:
The authors address the majority of the points raised in my previous review. However, no additional in vivo experiments were performed, which seems necessary for the major conclusions of the paper.
I disagree with the authors' assessment of Major Point 3 in my review. I have updated the text of Major Point 3 in my public review to further clarify my position.
My final assessment is that if the authors want to claim that DHODH inhibition potentiates immune checkpoint blockade, as is stated in the title, then further in vivo experimentation is needed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
In this study, Warfvinge and colleagues use CITE-seq to interrogate how CML stem cells change between diagnosis and after one year of TKI therapy. This provides important insight into why some CML patients are "optimal responders" to TKI therapy while others experience treatment failure. CITE-seq in CML patients revealed several important findings. First, substantial cellular heterogeneity was observed at diagnosis, suggesting that this is a hallmark of CML. Further, patients who experienced treatment failure demonstrated increased numbers of primitive cells at diagnosis compared to optimal responders. This finding was validated in a bulk gene expression dataset from 59 CML patients, in which it was shown that the proportion of primitive cells versus lineage-primed cells correlates to treatment outcome. Even more importantly, because CITE-seq quantifies cell surface protein in addition to gene expression data, the authors were able to identify the BCR/ABL+ and BCR/ABL- CML stem cells express distinct cell surface markers (CD26+/CD35- and CD26-/CD35+, respectively). In optimal responders, BCR/ABL- CD26-/CD35+ CML stem cells were predominant, while the opposite was true in patients with treatment failure. Together, these findings represent a critical step forward for the CML field and may allow more informed development of CML therapies, as well as the ability to predict patient outcomes prior to treatment.
Strengths:
This is an important, beautifully written, well-referenced study that represents a fundamental advance in the CML field. The data are clean and compelling, demonstrating convincingly that optimal responders and patients with treatment failure display significant differences in the proportion of primitive cells at diagnosis, and the ratio of BCR-ABL+ versus negative LSCs. The finding that BCR/ABL+ versus negative LSCs display distinct surface markers is also key and will allow for more detailed interrogation of these cell populations at a molecular level.
Weaknesses:
CITE-seq was performed in only 9 CML patient samples and 2 healthy donors. Additional samples would greatly strengthen the very interesting and notable findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The experiments described in the manuscript are well designed and executed. Most of the data presented are of high quality, convincing, and in general support the conclusions made in the manuscript. This manuscript should be of great interest to the field of mammalian gene regulation and the approaches used here can have broader applications in studying genetic and epigenetic regulations of gene expression. The key finding reported here, the importance of 3D chromatin structure in controlling gene expression, although not unexpected, offers a better understanding of the physiological roles of TADs.
Comments on revised version:
I think the authors have substantially addressed reviewers' concerns. I have no further comments to add.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this manuscript Sangaram et al provide a systematic methodology and pipeline for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. They developed a tissue pattern simulator that starts from single-cell RNA-seq data to create silver standards and used spatial aggregation strategies from real in situ-based spatial technologies to obtain gold standards. By using several established metrics combined with different deconvolution challenges they systematically scored and ranked 12 different methods and assessed both functional and usability criteria. Altogether, they present a reusable and extendable platform and reach very similar conclusions to other deconvolution benchmarking paper, including that RCTD, SpatialDWLS and Cell2location typically provide the best results. Major strengths of the simulation engine include the ability to downsample and recapitulate several cell and tissue organization patterns.
More specifically, the authors of this study sought to construct a methodology for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. The authors leveraged publicly available scRNA-seq, seqFISH, and STARMap datasets to create synthetic spatial datasets modeled after that of the Visium platform. It should be noted that the underlying experimental techniques of seqFISH and STARMap (in situ hybridization) do not parallel that of Visium (sequencing), which could potentially bias simulated data. Furthermore, to generate the ground truth datasets cells and their corresponding count matrix are represented by simple centroids. Although this simplifies the analysis it might not necessarily accurately reflect Visium spots where cells could lie on a boundary and affect deconvolution results.
The authors thoroughly and rigorously compare methods while addressing situational discrepancies in model performance, indicative of a strong analysis. The authors make a point to address both inter- and intra- dataset reference handling, which has a significant impact on performance, as the authors note in the text and conclusions. Indeed, supplying optimal reference data is - potentially most - important to achieve the best performance and hence it's important to understand that experimental design or sample matching is at least equally important to selecting the ideal deconvolution tool.
Similarly, the authors conclude that many methods are still outperformed by bulk deconvolution methods (e.g. Music or NNLS), however, it needs to be noted that these 'bulk' methods are also among the most sensitive when using an external (inter) dataset (S10), which likely resembles the more realistic scenario for most labs.
As the authors also discuss it's important to realize that deconvolution approaches are typically part of larger exploratory data analysis (EDA) efforts and require users to change parameters and input data multiple times. Thus, running time, computing needs, and scalability are probably key factors that researchers would like to consider when looking to deconvolve their datasets.
The authors achieve their aim to benchmark different deconvolution methods and the results from their thorough analysis support the conclusions that creating cell type deconvolution algorithms that can handle both cell abundance and rarity throughout a given tissue sample are challenging.
The reproducibility of the methods described will have significant utility for researchers looking to develop cell type deconvolution algorithms, as this platform will allow simultaneous replication of the described analysis and comparison to new methods.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
Preeclampsia is a disorder of pregnancy that affects 4-5% of pregnancies worldwide. Identifying this condition early is clinically relevant as it will help clinicians to make management decisions to prevent adverse outcomes. The placenta holds a key to many pregnancy-related pathologies including preeclampsia and studies have shown many differences in the placenta of women with preeclampsia as compared to controls. However as the placenta cannot be collected directly during pregnancy, the exosomes secreted by it are considered a good alternative to tissue biopsy. In this study, the authors have compared the proteins in different sizes of exosomes from the placenta of women with and without preeclampsia. The idea is to eventually use these as biomarkers for early detection of preeclampsia.
Strengths:
The novelty factor of this study is the use of two different-sized exosomes which has not been achieved earlier.
Weaknesses:
The study measured the proteins at only a single time point after the disease has already occurred. However, the placenta is an ever-changing tissue throughout pregnancy and different proteins can come up at different times in pregnancy. Thus serial measurements are necessary and a single time point measurement. The has not validated the identified biomarkers in plasma or circulating placental exosomes from women with and without preeclampsia. Thus the utility of these findings in real-life situations can not be judged from this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors investigate the mechanisms by which ISG65 and C3 recognize and interact with each other. The major strength is the identification of exo-site by determining the cryoEM structure of the complex, which suggests new intervention strategies. This is a solid body of work that has an important impact in parasitology, immunology, and structural biology.
Comments on revised version:
The authors have addressed all the previous concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination, complemented by hydrogen-deuterium exchange (HDX). One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering (or increased protein dynamics) of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR, in a class III system, through long-range interactions.
The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.
The addition of hydrogen-deuterium exchange mass spectrometry (HDX-MS) complements the results originating from cryo-EM data. Most notably, is the observation of the enhanced exchange (albeit quite subtle) of the GRD domain in the presence of dATP that matches the loss of structural information in this region in the cryo-EM data. The most pronounced and compelling HDX results are seen in the form of dATP-induced protection of peptides immediately adjacent to the b-hairpin at the s-site, where dATP is expected to bind based on cryo-EM. It is clear that the presence of dATP increases the rigidity of this region.
Weaknesses: The discussion of the change in peptide mobility in the N-terminal region is complicated by the presence of bimodal mass spectral features and this may prevent detailed interpretation of the data, especially for select peptide region that shows opposite trends upon nucleotide association. Further, the HDX data in the NxN flap is unchanged upon nucleotide binding (ATP, dATP, or CTP), despite changes observed in the cryo-EM data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors examine how temporal expression of the lin-4 microRNA is transcriptionally regulated.
Comments on revised version:
In the revised manuscript, the authors have suitably addressed my original concerns.
Aims achieved: The aims of the work are now achieved.
Impact: This study shows that a single transcription factor (MYRF-1) is important for the regulation of multiple microRNAs that are expressed early in development to control developmental timing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
Combining several MD simulation techniques (NMR-constrained replica-exchange metadynamics, Markov State Model, and unbiased MD) the authors identified the aC-beta4 loop of PKA kinase as a switch crucially involved in PKA nucleotide/substrate binding cooperatively. They identified a previously unreported excited conformational state of PKA (ES2), this switch controls and characterized ES2 energetics with respect to the ground state. Based on translating the simulations into chemical shits and NMR characterizing of PKA WT and an aC-beta4 mutant, the author made a convincing case in arguing that the simulation-suggested excited state is indeed an excited state observed by NMR, thus giving the excited state conformational details.
Strengths:
This work incorporates extensive simulation works, new NMR data, and in vitro biochemical analysis. It stands out in its comprehensiveness, and I think it made a great case.
Weaknesses:
The manuscript is somewhat difficult to read even for kinase experts, and even harder for the layman. The difficulty partially arises from mixing the technical description of the simulations with the structural interpretation of the results, which is more intuitive, and partially arises from the assumption that readers are familiar with kinase architecture and its key elements (the aC helix, the APE motif, etc).
-
-
-
Reviewer #2 (Public Review):
Summary
The goal of untargeted metabolomics is to identify differences between metabolomes of different biological samples.
Untargeted metabolomics identifies features with specific mass-to-charge-ratio (m/z) and retention time (RT). Matching those to specific metabolites based on the model compounds from databases is laborious and not always possible, which is why methods for comparing samples on the level of unmatched features are crucial.<br /> The main purpose of the GromovMatcher method presented here is to merge and compare untargeted metabolomes from different experiments. These larger datasets could then be used to advance biological analyses, for example, for identification of metabolic disease markers.
The main problem that complicates merging different experiments is that m/z and RT vary slightly for the same feature (metabolite).
The main idea behind the GromovMatcher is built on the assumption that if two features match between two datasets (that feature i from dataset 1 matches feature j from dataset 2, and feature k from dataset 1 matches feature l from dataset 2), then the correlations or distances between the two features within each of the datasets (i and k, and j and l) will be similar. The authors then use the Gromov-Wasserstein method to find the best matches matrix from these data.
The variation in m/z between the same features in different experiments is a user-defined value and it is initially set to 0.01 ppm. There is no clear limit for RT deviations, so the method estimates a non-linear deviation (drift) of RT between two studies. GromovMatcher estimates the drift between two studies, and then discards the matching pairs where the drift would deviate significantly from the estimate. It learns the drift from a weighted spline regression.
The authors validate the performance of their GromovMatcher method using a dataset of cord blood. They use 20 different splits and compare the GromovMatcher (both its GM and GMT iterations, whereby GMT version uses the deviation from estimated RT drift to filter the matching matrix) with two other matching methods: M2S and metabCombiner.
The second validation was done using a (scaled and centered) dataset of metabolics from cancer datasets from the EPIC cohort that were manually matched by an expert. This dataset was also used to show that using automated methods can identify more features that are associated with a particular group of samples than what was found by manual matching. Specifically, the authors identify additional features connected to alcohol consumption.
Strengths:
I see the main strength of this work in its combination of all levels of information (m/z, RT, and higher-order information on correlations between features) and using each of the types of information in a way that is appropriate for the measure. The most innovative aspect is using the Gromov-Wasserstein method to match the features based on distance matrices.
The authors of the paper identify two main shortcomings with previously established methods that attempt to match features from different experiments: a) all other methods require fine-tuning of user-defined parameters, and, more importantly, b) do not consider correlations between features. The main strength of the GromovMatcher is that it incorporates the information on distances between the features (in addition to also using m/z and RT).
Weaknesses:
The main weakness is that there seem not to be enough manually curated datasets that could be used for validation. It will, therefore, be important, for the authors, and the field in general to keep validating and improving their methods if more datasets become available.
The second weakness, as emphasized by the authors in the discussion is that the method as it is set up now can be directly used only to compare two datasets. I am confident that the authors will successfully implement novel algorithms to address this issue in the future.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study explores theoretically the consequences of structural fluctuations of the endoplasmic reticulum (ER) morphology called contractions on molecular transport. Most of the manuscript consists of the construction of an interesting theoretical flow field (physical model) under various hypothetical assumptions. The computational modeling is followed by some simulations
Strengths:
The authors are focusing their attention on testing the hypothesis that a local flow in the tubule could be driven by tubular pinching. We recall that trafficking in the ER is considered to be mostly driven by diffusion at least at a spatial scale that is large enough to account for averaging of any random flow occurring from multiple directions [note that this is not the case for plants].
Weaknesses:
The manuscript extensively details the construction of the theoretical model, occupying a significant portion of the manuscript. While this section contains interesting computations, its relevance and utility could be better emphasized, perhaps warranting a reorganization of the manuscript to foreground this critical aspect.
Overall, the manuscript appears highly technical with limited conclusive insights, particularly lacking predictions confirmed by experimental validation. There is an absence of substantial conclusions regarding molecular trafficking within the ER.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
This manuscript from Lee-Odegard et al reports proteomic profiling of exercise plasma in humans, leading to the discovery of CD300LG as a secreted exercise-inducible plasma protein. Correlational studies show associations of CD300LG with glycemic traits. Lastly, the authors query available public data from CD300LG-KO mice to establish a causal role for CD300LG as a potential link between exercise and glucose metabolism. However, the strengths of this manuscript were balanced by the moderate to major weaknesses. Therefore in my opinion, while this is an interesting study, the conclusions remain preliminary and are not fully supported by the experiments shown so far.
Strengths:
(1) Data from a well-phenotyped human cohort showing exercise-inducible increases in CD300LG.
(2) Associations between CD300LG and glucose and other cardiometabolic traits in humans, that have not previously been reported.
(3) Correlation to CD300LG mRNA levels in adipose provides additional evidence for exercise-inducible increases in CD300LG.
Weaknesses:
(1) CD300LG is by sequence a single-pass transmembrane protein that is exclusively localized to the plasma membrane. How CD300LG can be secreted remains a mystery. More evidence should be provided to understand the molecular nature of circulating CD300LG. Is it full-length? Is there a cleaved fragment? Where is the epitope where the o-link is binding to CD300LG? Does transfection of CD300LG to cells in vitro result in secreted CD300LG?
(2) There is a growing recognition of specificity issues with both the O-link and somalogic platforms. Therefore it is critical that the authors use antibodies, targeted mass spectrometry, or some other methods to validate that CD300LG really is increased instead of just relying on the O-link data.
(3) It is insufficient simply to query the IMPC phenotyping data for CD300LG; the authors should obtain the animals and reproduce or determine the glucose phenotypes in their own hands. In addition, this would allow the investigators to answer key questions like the phenotype of these animals after a GTT, whether glucose production or glucose uptake is affected, whether insulin secretion in response to glucose is normal, effects of high-fat diet, and other standard mouse metabolic phenotyping assays.
(4) I was unable to find the time point at which plasma was collected at the 12-week time point. Was it immediately after the last bout of exercise (an acute response) or after some time after the training protocol (trained state)?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors have developed marker selection and k-means (k=2) based binary clustering algorithm for the first-level supervised clustering of the CyTOF dataset. They built a seamless pipeline that offers the multiple functionalities required for CyTOF data analysis.
Strengths:
The strength of the study is the potential use of the pipeline for the CyTOF community as a wrapper for multiple functions required for the analysis. The concept of the first line of binary clustering with known markers can be practically powerful.
Weaknesses:
The weakness of the study is that there's little conceptual novelty in the algorithms suggested from the study and the benchmarking is done in limited conditions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors start by showing that HCN loss-of-function mutation causes a decrease in spiking in bitter GRNs (bGRN) while leaving sweet GRN (sGRN) response in the same sensillum intact. They show that a perturbation of HCN channels in sweet-sensing neurons causes a similar decrease while increasing the response of sugar neurons. They were also able to rescue the response by exogenous expression. Ectopic expression of HCN in bitter neurons had no effect. Next, they measure the sensillum potential and find that sensillum potential is also affected by HCN channel perturbation. These findings lead them to speculate that HCN in sGRN increases sGRN spiking which in turn affects bGRNs. To test this idea that carried out multiple perturbations aimed at decreasing sGRN activity. They found that decreasing sGRN activity by either using receptor mutant or by expressing Kir (a K+ channel) in sGRN increased bGRN responses. These responses also increase the sensillum potential. Finally, they show that these changes are behaviorally relevant as conditions that increase sGRN activity decrease avoidance of bitter substances.
Strengths:
There is solid evidence that perturbation of sweet GRNs affects bitter GRN in the same sensillum. The measurement of transsynaptic potential and how it changes is also interesting and supports the authors' conclusion.
Weaknesses:<br /> The ionic basis of how perturbation in GRN affects the transepithelial potential which in turn affects the second neuron is not clear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors used a whole genome CRISPR screen to identify targetable synthetic lethalities associated with PPM1D mutations, known poor prognosis and currently undruggable factors in leukemia. The authors identified the cytosolic superoxide dismutase (SOD1, Cu/Zn SOD) as a major protective factor in PPMD1 mutant vs. wt cells, and their study investigates associated mechanisms of this protection. Using both genetic depletion and small molecule inhibitors of SOD1, the authors conclude that SOD1 loss exacerbates mitochondrial dysfunction, ROS levels and DNA damage phenotypes in PPM1D mutant cells, decreasing cell growth in AML cells. The data strongly support that PPMD1 mutant cells have high levels of total peroxides and elevated DNA breaks, and that genetic depletion of SOD1 decreases cell growth in two AML cell lines. However, the authors don't explain how superoxide radical (which is not damaging by itself) induces such damage, the on-target effects of the SOD1 inhibitors at the concentrations is not clear, the increase in total hydroperoxides is not supported by loss of SOD1, the changes in mitochondrial function are small, and there is no assessment of how the mitochondrial SOD2 expression or function, which dismutates mitochondrial superoxide, is altered. Overall these studies do not distinguish between signal vs. damaging aspects of ROS in their models and do not rule out an alternate hypothesis that loss of SOD1 increases superoxide production by cytosolic NADPH activity which would significantly alter ROS-driven regulation of kinase/phosphatase signal modulation, affecting cell growth and proliferation as well as DNA repair. Additionally, with the exception of growth defects demonstrated with sgSOD1, the majority of data are acquired using two chemical inhibitors, LCS1 and ATN-224, without supporting evidence that these inhibitors are acting in an on-target manner.
Overall, the authors address an important problem by seeking targetable vulnerabilities in PPM1D mutant AML cells, it is clear SOD1 deletion induces strong growth defects in the AML cell lines tested, most of the approaches are appropriate for the outcomes being evaluated, and the data are technically solid and well-presented. The major weakness lies in which redox pathways and ROS species are evaluated, how the resulting data are interpreted, and gaps in the follow-up experiments. Due to these omissions, as currently presented, the broader impact of these findings are unclear.
These specific concerns are outlined in detail below and I offer some suggestions regarding how to clarify the mechanisms underlying their initial observation of SOD1 synthetic lethality:
(1) Fig. 1 - SOD1 appears to be clustered with several other genes in the volcano plot (including FANC proteins). Did any other ROS-detoxifying enzymes show similar fitness scores? The effects of the SOD1 sgRNA are striking, however it would be useful to see qPCR or immunoblot data confirming robust depletion.
Does SOD1 co-expression in PPM1-mutant patient AML correspond to poorer disease outcomes? This can be evaluated in publicly available patient datasets and would support the idea of SOD1 synthetic lethality.
It would also be useful to know (given the subsequent results) whether expression of the SOD2, the mitochondrial superoxide dismutase, is altered in response to SOD1 loss.
(2) Fig. 2 - What are the relative SOD1 levels in the mutant PPM1D vs. wt. cell lines? The effects of the chemical inhibitors are stronger in MOLM-13 than the other two lines. These data could also point to whether LCS-1 and ATN-224 cytotoxicity is on-target or off-target at these concentrations, which is a key issue not currently addressed in these studies. This is a particular concern as the OCI-AML2 line shows a stronger growth defect with CRISPR SOD1 KO (in Fig 1) but the smallest effects with these chemical inhibitors.
While endogenous mitochondrial superoxide levels are elevated in PPM1D mutant lines, it is entirely unclear why SOD1 inhibition should affect mitochondrial superoxide as it detoxifies cytosolic superoxide. Also unclear why DCFDA signal (which measures total hydroperoxides) is *increased* under SOD1 inhibition - SOD1 dismutates superoxide radicals into hydrogen peroxide, therefore unless SOD2 is compensating for SOD1 loss, one might expect hydroperoxides to be lower (unless some entirely different oxidase is increasing their levels). None of these outcomes appear to be considered. Finally, it is not explained how lipid peroxidation, which requires production of hydroxyl or similarly high potency radicals, is being caused by increased superoxide or peroxides. One possibility is there is an increase in labile iron, in which case this phenotype would be rescued by the iron chelator desferal, and by the lipophilic antioxidant, ferrostatin.
Do the sgSOD1 cells also show similar increases in MitoSox green, DCFDA and BODIPY signal? These experiments would clarify whether the effects with the inhibitors are directly related directly to SOD1 loss or if they represent off-target effects from the inhibitors and/or compensatory changes in SOD2.
(3) Fig. 3 - the effects on mitochondrial respiratory parameters, while statistically significant, do not seem biologically striking. Also, these data are shown for OCI-AML2 cells which show the smallest cytotoxic effects with the SOD1 inhibitors among the 3 lines tested. They do however show the most robust growth defect with sgSOD1. This discrepancy could suggest that mitochondrial dysfunction does not underlie the observed growth defect and/or the inhibitor cytotoxicity is not on-target. Ideally mitochondrial profiling should also be carried out on this cell line with inducible SOD1 depletion. Have the authors assessed whether the mitochondrial Bcl family proteins are affected by the inhibitors?
(4) Fig. 4 - Currently the data in this figure do not support the authors claim that PPM1D-mutant cells have impaired antioxidant defense mechanisms, leading to an elevation in ROS levels and reliance on SOD1 for protection. It should be noted that oxidative stress specifically refers to adverse cellular effects of increasing ROS, not baseline levels of various redox parameters. Ideally levels of GSSG/GSH would be a better measure of potential redox stress tolerance than the total antioxidant capacity assay. Finally, oxidative stress can be assessed by challenging the wt and mutant PPM1D cell lines with oxidant stressors such as paraquat which elevates superoxide or drugs like erastin which elevate mitochondrial ROS. The immunoblot shows negligible changes in the antioxidant proteins assayed. Again, this blot should include SOD2 which is the most relevant antioxidant in the context of mitochondrial superoxide.
(5) Fig. 5 - These data support that DNA breaks are elevated in PPM1D mutant vs. wt cells. However, the data with the chemical SOD1 inhibitor again do not convince that the enhanced levels are due to on-target effects on SOD1. Use of the alkaline comet assay is appropriate for these studies and the 8-oxoguanine data do indicate contributions from oxidative DNA base damage. But these are unlikely to result directly from altered superoxide levels, as this species cannot directly oxidize DNA bases or cause DNA strand breaks.
The following points summarize my specific experimental and textual recommendations:
(1) These studies require an assessment of on-target efficacy of the inhibitors at the relevant concentration ranges. Ideally, they should have minimal effects against SOD1 knockout cell lines (acute challenge at a time point before the growth defects become apparent) and show better efficacy in SOD1-overexpressing lines. Key experiments (changes in superoxide, OCR profiling, DNA alkaline comet assay) would be more convincing if they are carried out with SOD1 knockout lines to compare against the inhibitor effects (3-4 days after introducing sgSOD1 when growth defects are not apparent).
(2) Instead of using NAC, which elevates glutathione synthesis but also has several known side-effects, the authors may want to determine whether Tempol, a SOD mimetic can rescue the effects of SOD1 knockout or inhibition. This would directly prove that SOD1 functional loss underlies the observed growth defect and cytotoxicity from genetic SOD1 knockdown or chemical inhibition.
(3) The complete lack of consideration of SOD2 in these studies is a missed opportunity as it reduces mitochondrial superoxide levels but elevates hydrogen peroxide levels. It would be very interesting to see whether SOD1 inhibition leads to compensatory increases in SOD2. SOD2 can be easily measured by immunoblot. Furthermore, measuring total superoxide via hydroethidium in a flow cytometric assay vs. mitochondrial ROS in PPM1D mut vs. wt cells and under SOD1 knockout would enable a determination of which species dominates (cytosolic or mitochondrial). These experiments are required to fill some logical gaps in interpretation of their redox data.
(4) Given the DNA breaks observed in PPM1D mutant cells, it is highly recommended the authors assess whether iron levels are elevated in mut vs. wt cells and whether desferal can rescue observed SOD1 inhibition defects.
(5) The authors may want to assess whether Rac1 or NADPH oxidase activity is altered in the SOD1 KO in wt vs. PPM1D cells. Their results may be the consequence of compromised ROS-driven survival signaling or DNA repair rather than direct ROS-induced damage, which is not caused directly by superoxide (or hydrogen peroxide).
(6) It is recommended the discussion focus more strongly on how the signaling function of superoxide vs. its reactions with other molecular entities to induce genotoxic outcomes could be contributing to the observed phenotypes. The discussion of FANC proteins, which were targets with similar fitness scores but not experimentally investigated at all, is an unwarranted digression.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Boocock and colleagues present an approach whereby eQTL analysis can be carried out by scRNA-Seq alone, in a one-pot-shot experiment, due to genotypes being able to be inferred from SNPs identified in RNA-Seq reads. This approach obviates the need to isolate individual spores, genotype them separately by low-coverage sequencing, and then perform RNA-Seq on each spore separately. This is a substantial advance and opens up the possibility to straightforwardly identify eQTLs over many conditions in a cost-efficient manner. Overall, I found the paper to be well-written and well-motivated, and have no issues with either the methodological/analytical approach (though eQTL analysis is not my expertise), or with the manuscript's conclusions.
I do have several questions/comments.
393 segregant experiment:<br /> For the experiment with the 393 previously genotyped segregants, did the authors examine whether averaging the expression by genotype for single cells gave expression profiles similar to the bulk RNA-Seq data generated from those genotypes? Also, is it possible (and maybe not, due to the asynchronous nature of the cell culture) to use the expression data to aid in genotyping for those cells whose genotypes are ambiguous? I presume it might be if one has a sufficient number of cells for each genotype, though, for the subsequent one-pot experiments, this is a moot point.
Figure 1B:<br /> Is UMAP necessary to observe an ellipse/circle - I wouldn't be surprised if a simple PCA would have sufficed, and given the current discussion about whether UMAP is ever appropriate for interpreting scRNA-Seq (or ancestry) data, it seems the PCA would be a preferable approach. I would expect that the periodic elements are contained in 2 of the first 3 principal components. Also, it would be nice if there were a supplementary figure similar to Figure 4 of Macosko et al (PMID 26000488) to indeed show the cell cycle dependent expression.
Aging, growth rate, and bet-hedging:<br /> The mention of bet-hedging reminded me of Levy et al (PMID 22589700), where they saw that Tsl1 expression changed as cells aged and that this impacted a cell's ability to survive heat stress. This bet-hedging strategy meant that the older, slower-growing cells were more likely to survive, so I wondered a couple of things. It is possible from single-cell data to identify either an aging, or a growth rate signature? A number of papers from David Botstein's group culminated in a paper that showed that they could use a gene expression signature to predict instantaneous growth rate (PMID 19119411) and I wondered if a) this is possible from single-cell data, and b) whether in the slower growing cells, they see markers of aging, whether these two signatures might impact the ability to detect eQTLs, and if they are detected, whether they could in some way be accounted for to improve detection.
AIL vs. F2 segregants:<br /> I'm curious if the authors have given thought to the trade-offs of developing advanced intercross lines for scRNA-Seq eQTL analysis. My impression is that AIL provides better mapping resolution, but at the expense of having to generate the lines. It might be useful to see some discussion on that.
10x vs SPLit-Seq<br /> 10x is a well established, but fairly expensive approach for scRNA-Seq - I wondered how the cost of the 10x approach compares to the previously used approach of genotyping segregants and performing bulk RNA-Seq, and how those costs would change if one used SPLiT-Seq (see PMID 38282330).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, using Staphylococcus aureus as a model organism, Panda et al. aim to understand how organic acids inhibit bacterial growth. Through careful characterization and interdisciplinary collaboration, the authors present valuable evidence that acetic acid specifically inhibits the activity of Ddl enzyme that converts 2 D-alanine amino acids into D-ala-D-ala dipeptide, which is then used to generate the stem pentapeptide of peptidoglycan (PG) precursors in the cytoplasm. Thus, a high concentration of acetic acid weakens the cell wall by limiting PG-crosslinking (which requires a D-ala portion). However, S. aureus maintains a high intracellular D-ala concentration to circumvent acetate-mediated growth inhibition.
Strengths:
The authors utilized a well-established transposon mutant library to screen for mutants that struggle to grow in the presence of acetic acid. This screen allowed authors to identify that a strain lacking intact alr1, which encodes for alanine racemase (converts L-ala to D-ala), is unable to grow well in the presence of acetic acid. This phenotype is rescued by the addition of external D-ala. Next, the authors rule out the contribution of other pathways that could lead to the production of D-ala in the cell. Finally, by analyzing D-ala and D-ala-D-ala concentrations, as well as muropeptide intermediates accumulation in different mutants, the authors pinpoint Ddl as the specific target of acetic acid. In fact, the synthetic overexpression of ddl alone overcomes the toxic effects of acetic acid. Using genetics, biochemistry, and structural biology, the authors show that Ddl activity is specifically inhibited by acetic acid and likely by other biologically relevant organic acids. Interestingly, this mechanism is different from what has been reported for other organisms such as Escherichia coli (where methionine synthesis is affected). It remains to be seen if this mechanism is conserved in other organisms that are more closely related to S. aureus, such as Clostridioides difficile and Enterococcus faecalis.
Weaknesses:
Although the authors have conclusively shown that Ddl is the target of acetic acid, it appears that the acetic acid concentration used in the experiments may not truly reflect the concentration range S. aureus would experience in its environment. Moreover, Ddl is only significantly inhibited at a very high acetate concentration (>400 mM). Thus, additional experiments showing growth phenotypes at lower organic acid concentrations may be beneficial. Another aspect not adequately discussed is the presence of D-ala in the gut environment, which may be protective against acetate toxicity based on the model provided.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Jarysta and colleagues set out to define how similar GNAI/O family members contribute to the shape and orientation of stereocilia bundles on auditory hair cells. Previous work demonstrated that loss of particular GNAI proteins, or inhibition of GNAIs by pertussis toxin, caused several defects in hair bundle morphogenesis, but open questions remained which the authors sought to address. Some of these questions include whether all phenotypes resulting from expression of pertussis toxin stemmed from GNAI inhibition; which GNAI family members are most critical for directing bundle development; whether GNAI proteins are needed for basal body movements that contribute to bundle patterning. These questions are important for understanding how tissue is patterned in response to planar cell polarity cues.
To address questions related to the GNAI family in auditory hair cell development, the authors assembled an impressive and nearly comprehensive collection of mouse models. This approach allowed for each Gnai and Gnao gene to be knocked out individually or in combination with each other. Notably, a new floxed allele was generated for Gnai3 because loss of this gene in combination with Gnai2 deletion was known to be embryonic lethal. Besides these lines, a new knockin mouse was made to conditionally express untagged pertussis toxin following cre induction from a strong promoter. The breadth and complexity involved in generating and collecting these strains makes this study unique, and likely the authoritative last word on which GNAI proteins are needed for which aspect of auditory hair bundle development.
Appropriate methods were employed by the authors to characterize auditory hair bundle morphology in each mouse line. Conclusions were carefully drawn from the data and largely based on excellent quantitative analysis. The main conclusions are that GNAI3 has the largest effect on hair bundle development. GNAI2 can compensate for GNAI3 loss in early development but incompletely in late development. The Gnai2 Gnai3 double mutant recapitulates nearly all the phenotypic effects associated with pertussis toxin expression and also reveals a role for GNAIs in early movement of the basal body. This comprehensive study builds on earlier reports, both uncovering new functions and putting previously putative functions on solid ground.
-
-
arxiv.org arxiv.org
-
Reviewer #3 (Public Review):
Summary: Through a rigorous methodology, the authors demonstrated that within 11 different primates, the shape of the brain followed a universal scaling law with fractal properties. They enhanced the universality of this result by showing the concordance of their results with a previous study investigating 70 mammalian brains, and the discordance of their results with other folded objects that are not brains. They incidentally illustrated potential applications of this fractal property of the brain by observing a scale-dependant effect of aging on the human brain.
Strengths:<br /> - New hierarchical way of expressing cortical shapes at different scales derived from previous report through implementation of a coarse-graining procedure<br /> - Investigation of 11 primate brains and contextualisation with other mammals based on prior literature<br /> - Proposition of tool to analyse cortical morphology requiring no fine tuning and computationally achievable<br /> - Positioning of results in comparison to previous works reinforcing the validity of the observation.<br /> - Illustration of scale-dependance of effects of brain aging in the human.
Weaknesses:<br /> - The notion of cortical shape, while being central to the article, is not really defined, leaving some interpretation to the reader<br /> - The organization of the manuscript is unconventional, leading to mixed contents in different sections (sections mixing introduction and method, methods and results, results and discussion...). As a result, the reader discovers the content of the article along the way, it is not obvious at what stages the methods are introduced, and the results are sometimes presented and argued in the same section, hindering objectivity.<br /> To improve the document, I would suggest a modification and restructuring of the article such that: 1) by the end of the introduction the reader understands clearly what question is addressed and the value it holds for the community, 2) by the end of the methods the reader understands clearly all the tools that will be used to answer that question (not just the new method), 3) by the end of the results the reader holds the objective results obtained by applying these tools on the available data (without subjective interpretations and justifications), and 4) by the end of the discussion the reader understands the interpretation and contextualisation of the study, and clearly grasps the potential of the method depicted for the better understanding of brain folding mechanisms and properties.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
Carabalona and colleagues investigated the role of the membrane-deforming cytoskeletal regulator protein Abba (MTSS1L/MTSS2) in cortical development to better understand the mechanisms of abnormal neural stem cell mitosis. The authors used short hairpin RNA targeting Abba20 with a fluorescent reporter coupled with in-utero electroporation of E14 mice to show changes to neural progenitors. They performed flow cytometry for in-depth cell cycle analysis of Abba-shRNA impact on neural progenitors and determined an accumulation in the S phase. Using culture rat glioma cells and live imaging from cortical organotypic slides from mice in utero electroporated with Abba-shRNA, the authors found Abba played a prominent role in cytokinesis. They then used a yeast-two-hybrid screen to identify three high-confidence interactors: Beta-Trcp2, Nedd9, and Otx2. They used immunoprecipitation experiments from E18 cortical tissue coupled with C6 cells to show Abba's requirement for Nedd9 localization to the cleavage furrow/cytokinetic bridge. The authors performed a shRNA knockdown of Nedd9 by in-utero electroporation of E14 mice and observed similar results as with the Abba-shRNA. They tested a human variant of Abba using in-utero electroporation of cDNA and found disorganized radial glial fibers and misplaced, multipolar neurons, but lacked the impact of cell division seen in the shRNA-Abba model.
Strengths:
A fundamental question in biology about the mechanics of neural stem cell division.
Directly connecting effects in Abba protein to downstream regulation of RhoA via Nedd9.
Incorporation of human mutation in ABBA gene.
Use of novel technologies in neurodevelopment and imaging.
Weaknesses:
Unexplored components of the pathway (such as what neurogenic populations are impacted by Abba mutation) and unleveraged aspects of their data (such as the live imaging) limit the scope of their findings and leave significant questions about the effect of ABBA on radial glia development.
(1) The claim of disorganized radial glial fibers lacks quantifications.<br /> On page 11, the authors claim that knockdown of Abba leads to changes in radial glial morphology observed with vimentin staining. Here they claim misoriented apical processes, detached end feet, and decreased number of RGP cells in the VZ. However, they do not provide quantification of process orientation to better support their first claim. Measurements of radial glia fiber morphology (directionality, length) and angle of division would be metrics that can be applied to data. Some of these analyses could be done in their time-lapse microscopy images, such as to quantify the number of cell divisions during their period of analysis (though that is short-15 hours).
(2) It is unclear where the effect is:
-In RG or neuroblasts? Is it in cell cleavage that results in the accumulation of cells at VZ (as sometimes indicated by their data like in Figure 2A or 4D)? Interrogation of cell death (such as by cleaved caspase 3) would also help. Given their time-lapse, can they identify what is happening to the RG fiber? The authors describe a change in "migration" but do not show evidence for this for either progenitor or neuroblast populations. Given they have nice time-lapse imaging data, could they visualize progenitor versus young neuron migration? Analysis of neuroblasts (such as with doublecortin expression in the tissue) would also help understand any issues in migration (of neurons v stem cells).
-At cleavage furrow? In abscission? There is high-resolution data that highlights the cleavage furrow as the location of interest (Figure 3A), however, there is also data (Figure 3B) to suggest Abba is expressed elsewhere as well and there is an overall soma decrease. More detail of the localization of Abba during the division process would be helpful for example, could cleavage furrow proteins, such as Aurora B, co-localization (and potentially co-IP) help delineate subpopulations of Abba protein? Furthermore, the FRET imaging is a unique way to connect their mutation with function - could they measure/quantify differences at furrow compared to the rest of soma to further corroborate that the Abba-associated RhoA effect was furrow-enriched?
-The data highlights nicely that a furrow doesn't clearly form when ABBA expression and subsequent RhoA activity are decreased (in Figure 3 or 5A). Does this lead to cells that can't divide because of poor abscission, especially since "rounding" still occurs? Or abnormal progenitors (with loss of fiber or inability to support neuroblast migration)? Or abnormal progression of progenitors to neuroblasts?
(3) Limited to a singular time point of mouse cortical development
On page 13, the authors outline the results of their Y2H screen with the identification of three high-confidence interactors. Notably, they used an E10.5-E12.5 mouse brain embryo library rather than one that includes E14, the age of their in-utero electroporation mice. Many of the authors' claims focus on in-utero electroporation of shRNA-Abba of E14 mice that are then evaluated at E16-18. Justification for the focus on this age range should be included to support that their findings can then be applied to all mouse corticogenesis.
(4) Detail of the effect of the human variant of the ABBA mutation in mice is lacking.
Their identification of the R671W mutation is interesting and the IUE model warrants more characterization, as they did with their original KD experiments.
-Could they show that Abba protein levels are decreased (in either cell lines or electroporated tissue)?
-While time-lapse morphology might not have been performed, more analysis on cell division phenotype (such as plane of division and radial glia morphology) would be helpful.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The manuscript details an investigation aimed at developing a protocol to render centimeter-scale formalin-fixed paraffin-embedded specimens optically transparent and suitable for deep immunolabeling. The authors evaluate various detergents and conditions for epitope retrieval such as acidic or basic buffers combined with high temperatures in entire mouse brains that had been paraffin-embedded for months. They use various protein targets to test active immunolabeling and light-sheet microscopy registration of such preparations to validate their protocol. The final procedure, called MOCAT pipeline, briefly involves 1% Tween 20 in citrate buffer, heated in a pressure cooker at 121 {degree sign}C for 10 minutes. The authors also note that part of the delipidation is achieved by the regular procedure.
Major Strengths<br /> - The simplicity and ease of implementation of the proposed procedure using common laboratory reagents distinguish it favorably from more complex methods.
- Direct comparisons with existing protocols and exploration of alternative conditions enhance the robustness and practicality of the methodology.
Final considerations<br /> The evidence presented supports the effectiveness of the proposed method in rendering thick FFPE samples transparent and facilitating repeated rounds of immunolabeling.
The developed procedure holds promise for advancing tissue and 3D-specific determination of proteins of interest in various settings, including hospitals, basic research, and clinical labs, particularly benefiting neuroscience research.
The methodological findings suggest that MOCAT could have broader applications beyond FFPE samples, differentiating it from other tissue-clearing approaches in that the equipment and chemicals needed are broadly accessible.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, Yang et al. present a modeling framework to understand the pattern of response biases and variance observed in delayed-response orientation estimation tasks. They combine a series of modeling approaches to show that coupled sensory-memory networks are in a better position than single-area models to support experimentally observed delay-dependent response bias and variance in cardinal compared to oblique orientations. These errors can emerge from a population-code approach that implements efficient coding and Bayesian inference principles and is coupled to a memory module that introduces random maintenance errors. A biological implementation of such operation is found when coupling two neural network modules, a sensory module with connectivity inhomogeneities that reflect environment priors, and a memory module with strong homogeneous connectivity that sustains continuous ring attractor function. Comparison with single-network solutions that combine both connectivity inhomogeneities and memory attractors shows that two-area models can more easily reproduce the patterns of errors observed experimentally. This, the authors take as evidence that a sensory-memory network is necessary, but I am not convinced about the evidence in support of this "necessity" condition. A more in-depth understanding of the mechanisms operating in these models would be necessary to make this point clear.
Strengths:
The model provides an integration of two modeling approaches to the computational bases of behavioral biases: one based on Bayesian and efficient coding principles, and one based on attractor dynamics. These two perspectives are not usually integrated consistently in existing studies, which this manuscript beautifully achieves. This is a conceptual advancement, especially because it brings together the perceptual and memory components of common laboratory tasks.
The proposed two-area model provides a biologically plausible implementation of efficient coding and Bayesian inference principles, which interact seamlessly with a memory buffer to produce a complex pattern of delay-dependent response errors. No previous model had achieved this.
Weaknesses:
The correspondence between the various computational models is not fully disclosed. It is not easy to see this correspondence because the network function is illustrated with different representations for different models and the correspondence between components of the various models is not specified. For instance, Figure 1 shows that a specific pattern of noise is required in the low-dimensional attractor model, but in the next model in Figure 2, the memory noise is uniform for all stimuli. How do these two models integrate? What element in the population-code model of Figure 2 plays the role of the inhomogeneous noise of Figure 1? Also, the Bayesian model of Figure 2 is illustrated with population responses for different stimuli and delays, while the attractor models of Figures 3 and 4 are illustrated with neuronal tuning curves but not population activity. In addition, error variance in the Bayesian model appears to be already higher for oblique orientations in the first iteration whereas it is only first shown one second into the delay for the attractor model in Figure 4. It is thus unclear whether variance inhomogeneities appear already at the perceptual stage in the attractor model, as it does in the population-code model. Of course, correspondences do not need to be perfect, but the reader does not know right now how far the correspondence between these models goes.
The manuscript does not identify the mechanistic origin in the model of Figure 4 of the specific noise pattern that is required for appropriate network function (with higher noise variance at oblique orientations). This mechanism appears critical, so it would be important to know what it is and how it can be regulated. In particular, it would be interesting to know if the specific choice of Poisson noise in Equation (3) is important. Tuning curves in Figure 4 indicate that population activity for oblique stimuli will have higher rates than for cardinal stimuli and thus induce a larger variance of injected noise in oblique orientations, based on this Poisson-noise assumption. If this explanation holds, one wonders if network inhomogeneities could be included (for instance in neural excitability) to induce higher firing rates in the cardinal/oblique orientations so as to change noise inhomogeneities independently of the bias and thus control more closely the specific pattern of errors observed, possibly within a single memory network.
The main conclusion of the manuscript, that the observed patterns of errors "require network interaction between two distinct modules" is not convincingly shown. The analyses show that there is a quantitative but not a qualitative difference between the dynamics of the single memory area compared to the sensory-memory two-area network, for specific implementations of these models (Figure 7 - Figure Supplement 1). There is no principled reasoning that demonstrates that the required patterns of response errors cannot be obtained from a different memory model on its own. Also, since the necessity of the two-area configuration is highlighted as the main conclusion of the manuscript, it is inconvenient that the figure that carefully compares these conditions is in the Supplementary Material.
The proposed model has stronger feedback than feedforward connections between the sensory and memory modules. This is not a common assumption when thinking about hierarchical processing in the brain, and it is not discussed in the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors have studied subpopulations of individual neurons recorded in the thalamus and subthalamic nucleus (STN) of awake humans performing a simple cognitive task. They have carefully designed their task structure to eliminate motor components that could confound their analyses in these subcortical structures, given that the data was recorded in patients with Parkinson's Disease (PD) and diagnosed with an Essential Tremor (ET). The recorded data represents a promising addition to the field. The analyses that the authors have applied can serve as a strong starting point for exploring the kinds of complex signals that can emerge within a single neuron's activity. Pereira et. al conclude that their results from single neurons indicate that task-related activity occurs, purportedly separate from previously identified sensory signals. These conclusions are a promising and novel perspective for how the field thinks about the emergence of decisions and sensory perception across the entire brain as a unit.
Despite the strength of the data that was obtained and the relevant nature of the conclusions that were drawn, there are certain limitations that must be taken into consideration:
(1) The authors make several claims that their findings are direct representations of consciousness identifiable in subcortical structures. The current context for consciousness does not sufficiently define how the consciousness is related to the perceptual task.
(2) The current work would benefit greatly from a description and clarification of what all the neurons that have been recorded are doing. The authors' criteria for selecting subpopulations with task-relevant activity are appropriate, but understanding the heterogeneity in a population of single neurons is important for broader considerations that are being studied within the field.
(3) The authors have omitted a proper set of controls for comparison against the active trials, for example, where a response was not necessary. Please explain why this choice was made and what implications are necessary to consider.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Here the authors describe a model for tracking time-varying coupling between neurons from multi-electrode spike recordings. Their approach extends a GLM with static coupling between neurons to include dynamic weights, learned by a long-short-term-memory (LSTM) model. Each connection has a corresponding LSTM embedding and is read out by a multi-layer perceptron to predict the time-varying weight.
Strengths:
This is an interesting approach to an open problem in neural data analysis. I think, in general, the method would be interesting to computational neuroscientists.
Weaknesses:
It is somewhat difficult to interpret what the model is doing. I think it would be worthwhile to add some additional results that make it more clear what types of patterns are being described and how.
Major Issues:
Simulation for dynamic connectivity. It certainly seems doable to simulate a recurrent spiking network whose weights change over time, and I think this would be a worthwhile validation for this DyNetCP model. In particular, I think it would be valuable to understand how much the model overfits, and how accurately it can track known changes in coupling strength. If the only goal is "smoothing" time-varying CCGs, there are much easier statistical methods to do this (c.f. McKenzie et al. Neuron, 2021. Ren, Wei, Ghanbari, Stevenson. J Neurosci, 2022), and simulations could be useful to illustrate what the model adds beyond smoothing.
Stimulus vs noise correlations. For studying correlations between neurons in sensory systems that are strongly driven by stimuli, it's common to use shuffling over trials to distinguish between stimulus correlations and "noise" correlations or putative synaptic connections. This would be a valuable comparison for Figure 5 to show if these are dynamic stimulus correlations or noise correlations. I would also suggest just plotting the CCGs calculated with a moving window to better illustrate how (and if) the dynamic weights differ from the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this paper, Boi et al. thoroughly classified the electrophysiological and morphological characteristics of serotonergic and dopaminergic neurons in the DRN and examined the alterations of these neurons in the 6-OHDA-induced mouse PD model. Using whole-cell patch clamp recording, they found that 5-HT and dopamine (DA) neurons in the DRN are electrophysiologically well-distinguished from each other. In addition, they characterized distinct morphological features of 5-HT and DA neurons in the DRN. Notably, these specific features of 5-HT and DA neurons in the DRN exhibited different changes in the 6-OHDA-induced PD model. Then the authors utilized desipramine (DMI) to separate the effects of nigrostriatal DA depletion and noradrenalin (NA) depletion which are induced by 6-OHDA. Interestingly, protection from NA depletion by DMI pretreatment reversed the changes in 5-HT neurons, while having a minor impact on the changes in DA neurons in the DRN. These data indicate that the role of NA lesion in the altered properties of DRN 5-HT neurons by 6-OHDA is more critical than the one of DA lesion.
Overall, this study provides foundational data on the 5-HT and DA neurons in the DRN and their potential involvement in PD symptoms. Given the defects of the DRN in PD, this paper may offer insights into the cellular mechanisms that may underlie non-motor symptoms associated with PD. Despite the importance of the primary claim proposed by the authors, however, the interpretation of the authors on some DMI experiments is not explained well.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.
(1) The work is very singular in its message and the experimentation. Further, the impact of the inhibition on behavior is very moderate. In this sense, the results do not support the conclusion that the hippocampal projection to retrosplenial cortex is key to working memory in a navigational setting.
(2) There are no experiments examining other types of behavior or working memory. Given that the animals used in the studies could be put through a large number of different tasks, this is surprising. There is no control navigational task. There is no working memory test that is non-spatial. Such results should be presented in order to put the main finding in context.
(3) The actual impact of the inhibition on activity in RSP is not provided. While this may not be strictly necessary, it is relevant that the hippocampal projection to RSP includes, and is perhaps dominated by inhibitory inputs. I wonder why the authors chose to manipulate hippocampal inputs to RSP when the subiculum stands as a much stronger source of afferents to RSP and has been shown to exhibit spatial and directional tuning of activity. The points here are that we cannot be sure what the manipulation is really accomplishing in terms of inhibiting RSP activity (perhaps this explains the moderate impact on behavior) and that the effect of inhibiting hippocampal inputs is not an effective means by which to study how RSP is responsive to inputs that reflect environmental locations.
(4) The impact of inhibition on trials subsequent to the trial during which optical stimulation was actually supplied seems trivial. The authors themselves point to evidence that activation of the hyperpolarizing proton pump is rather long-lasting in its action. Further, each sample-test trial pairing is independent of the prior or subsequent trials. This finding is presented as a major finding of the work, but would normally be relegated to supplemental data as an expected outcome given the dynamics of the pump when activated.
(5) In the middle of the first paragraph of the discussion, the authors make reference to work showing RSP responses to "contextual information in egocentric and allocentric reference frames". The citations here are clearly deficient. How is the Nitzan 2020 paper at all relevant here?
(6) The manuscript is deficient in referencing and discussing data from the Smith laboratory that is similar. The discussion reads mainly like a repeat of the results section.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript by Yang et al. investigated in mice how hypobaric hypoxia can modify the RBC clearance function of the spleen, a concept that is of interest. Via interpretation of their data, the authors proposed a model that hypoxia causes an increase in cellular iron levels, possibly in RPMs, leading to ferroptosis, and downregulates their erythrophagocytic capacity.
Comments on revised version:
The manuscript has now improved with all the new data, supporting the model proposed by the authors. However, it remains not very easy to follow for the conclusions and experimental details. Some of the most important remaining comments are listed below:
(1) Lines 401-406 - The conclusions in this new fragment sound a bit overstated - the authors do not directly measure erytrophagocytosis capacity, only the total RBC parameters in the circulation. The increase is also very mild biologically between sham and splenectomized mice in HH conditions.
(2) scRNA seq data are still presented in a way that is very difficult to understand. The readers could not see from the graphics that macrophages are depleted. The clusters are not labelled - some clusters in the bin 'macrophahes+DC' seem actually to be more represented in Fig. 3E; Fig. 3F does not correspond to Fig. 3D. It would be maybe more informative to present like in Figure D side by side NN versus HH? The authors could consider moving the data from supplements that relate to RPMs to the main figure and making it consistent for the Clusters - eg, the authors show data for Cluster 0 in the supplement, and the same Cluster is not marked as macrophages in the main figure. This is quite difficult to follow.
(3) Figure 3G has likely mislabeled axis for F4/80 and CD11b - such mistakes should be avoided in a second revised version of the manuscript, and this data is now redundant with the data shown as new Figure 5A.
(4) The data from new Figure 4 should be better mentioned in the main body of the manuscript - all panels are mentioned twice in the text, first speaking about the decline of labelled RBCs and second referring to phagocytic capacity, whereas this figure only illustrates the decline of labelled RBCs, not directly phagocytic capacity of RPMs. What is lacking, as opposed to typical RBC life span assay, is the time '0' ('starting point') - this is particularly important as we can observe a big drop in labelled RBCs for eg 7 days between NN and HH group, actually implying increased removal of labelled RBCs within the first days of hypoxia exposure. What should be better labelled in this figure is that the proportion of RBCs are labelled RBCs not all RBCs (Y axis in individual panels). Overall, the new Figure 4 brings new data to the study, but how it is presented and discussed is not at the 'state-of-the-art' level (eg, missing the time '0') and is not very straightforward to the reader.
(5) In Figure 7, the experiments with Tuftsin are not very easy to follow, especially for the major conclusions. In panels A and B, the focus is the drug itself under NN conditions, with RBC removal as a readout. Then, in the next panels, the authors introduce HH, and then look at the F4/80 and iron staining. What was exactly the major point the authors wanted to make here?
(6) The data from Figure 8 are informative but do not address the individual cell types - eg, a drop in HO1 or FT may be due to the depletion of RPMs. An increase of TFR1 could be due to the retention of RBCs, the same as maybe labile iron. The data from PBMC are only very loosely linked to these phenotypes observed in the total spleen, and the reason for the regulation of the same proteins in PBMC might be different. It goes back to the data in Figure 3A-C, where also total splenocytes are investigated for their viability.
(7) Can the authors provide the data for the purity (eg cell surface markers) of their primary splenic macrophage cultures? Only ensuring that these are macrophages or addressing the readouts from Figure 8 in RPMs could link ferroptosis to RPMs under HH conditions.
(8) All the data are not presented as individual data points which is not widely applied in papers.
(9) No gating strategies are nicely illustrated or described.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Previously, it has been shown the essential role of IDA peptide and HAESA receptor families in driving various cell separation processes such as abscission of flowers as a natural developmental process, of leaves as a defense mechanism when plants are under pathogenic attack or at the lateral root emergence and root tip cell sloughing. In this work, Olsson et al. show for the first time the possible role of IDA peptide in triggering plant innate immunity after the cell separation process occurred. Such an event has been previously proposed to take place in order to seal open remaining tissue after cell separation to avoid creating an entry point for opportunistic pathogens. The elegant experiments in this work demonstrate that IDA peptide is triggering the defense-associated marker genes together with immune specific responses including release of ROS and intracellular CA2+. Thus, the work highlights an intriguing direct link between endogenous cell wall remodeling and plant immunity. Moreover, the upregulation of IDA in response to abiotic and especially biotic stimuli are providing a valuable indication for potential involvement of HAE/IDA signalling in other processes than plant development.
Comments on revised version:
We thank the authors for addressing our previous comments. Overall, we are satisfied with the improvements and appreciate the hard work that has gone into this manuscript. We wish you all the best on the further publication pathway.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This manuscript explores the interplay between Legionella Dot/Icm effectors that modulate ubiquitination of the host GTPase Rab10. Rab10 undergoes phosphoribosyl-ubiquitination (PR-Ub) by the SidE family of effectors which is required for its recruitment to the Legionella containing vacuole (LCV). Through a series of elegant experiments using effector gene knockouts, co-transfection studies and careful biochemistry, Kubori et al further demonstrate that:
(1) The SidC family member SdcB contributes to the polyubiquitination (poly-Ub) of Rab10 and its retention at the LCV membrane.
(2) The transglutaminase effector, MavC acts as an inhibitor of SdcB by crosslinking ubiquitin at Gln41 to lysine residues in SdcB.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study focuses on the 5-HT3 serotonin receptor, a pentameric ligand-gated ion channel important in chemical neurotransmission. There are many cryo-EM structures of this receptor with diverse ligands bound, however assignment of functional states to the structures remains incomplete. The team applies voltage-clamp fluorometry to measure, at once, both changes in ion channel activity, and changes in fluorescence. Four cysteine mutants were selected for fluorophore labeling, two near the neurotransmitter site, one in the ECD vestibule, and one at the ECD-TMD junction. Agonists, partial agonists, and antagonists were all found to yield similar changes in fluorescence, a proxy for conformational change, near the neurotransmitter site. The strength of the agonist correlated to a degree with propagation of this fluorescence change beyond the local site of neurotransmitter binding. Antagonists failed to elicit a change in fluorescence in the vestibular of the ECD-TMD junction sites. The VCF results further turned up evidence supporting intermediate (likely pre-active) states.
Strengths:
The experiments appear rigorous, the problem the team tackles is timely and important, the writing and the figures are for the most part very clear. We sorely need approaches orthogonal to structural biology to annotate conformational states and observe conformational transitions in real membranes- this approach, and this study, get right to the heart of what is missing.
Weaknesses:
The weaknesses in the study itself are overall minor, I only suggest improvements geared toward clarity. What we are still missing is application of an approach like this to annotate the conformation of the part of the receptor buried in the membrane; there is an important debate about which structure represents which state, and that is not addressed in the current study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors describe a mechanism, by which fluorescently-labelled Collagen type I is taken up by cells via endocytosis and then incorporated into newly synthesized fibers via an ITGA11 and VPS33B-dependent mechanism. The authors claim the existence of this collagen recycling mechanism and link it to fibrotic diseases such as IPF and chronic wounds.
Strengths:
The manuscript is well-written, and experimentally contains a broad variation of assays to support their conclusions. Also, the authors added data of IPF patient-derived fibroblasts, patient-derived lung samples, and patient-derived samples of chronic wounds that highlight a potential in vivo disease correlation of their findings.
The authors were also analyzing the membrane topology of VPS33B and could unravel a likely 'hairpin' like conformation in the ER membrane.
Weaknesses:
Experimental evidence is missing that supports the non-degradative endocytosis of the labeled collagen.
The authors show and mention in the text that the endocytosis inhibitor Dyngo®4a shows an effect on collagen secretion. It is not clear to me how specific this readout is if the inhibitor affects more than endocytosis. This issue was unfortunately not further discussed. The authors use commercial rat tail collagen, it is unclear to me which state the collagen is in when it's endocytosed. Is it fully assembled as collagen fiber or are those single heterotrimers or homotrimers?
The Cy-labeled collagen is clearly incorporated into new fibers, but I'm not sure whether the collagen is needed to be endocytosed to be incorporated into the fibers or if that is happening in the extracellular space mediated by the cells.
In general for the collagen blots, due to the lack of molecular weight markers, what chain/form of collagen type I are you showing here?
Besides the VPS33B siRNA transfected cells the authors also use CRISPR/Cas9-generated KO. The KO cells do not seem to be a clean system, as there is still a lot of mRNA produced. Were the clones sequenced to verify the KO on a genomic level? For the siRNA transfection, a control blot for efficiency would be great to estimate the effect size. To me it is not clear where the endocytosed collagen and VPS33B eventually meet in the cells and whether they interact. Or is ITGA11 required to mediate this process, in case VPS33B is not reaching the lumen?
The authors show an upregulation of ITGA11 and VPS33B in IPF patients-derived fibroblasts, which can be correlated to an increased level of ColI uptake, however, it is not clear whether this increased uptake in those cells is due to the elevated levels of VPS33B and/or ITGA11.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This manuscript uses FRET, 19F-NMR, and DEER/EPR solution measurements to examine the allosteric effects of a panel of BRAF inhibitors (BRAFi). These include first-generation aC-out BRAFi, and more recent Type I and Type II aC-in inhibitors. Intermolecular FRET measurements quantify Kd for BRAF dimerization and inhibitor binding to the first and second subunits. Distinct patterns are found between aC-in BRAFi, where Type I BRAFi binds equally well to the first and second subunits within dimeric BRAF. In contrast, Type II BRAFi shows stronger affinity for the first subunit and weaker affinity for the second subunit, an effect named "allosteric asymmetry". Allosteric asymmetry has the potential for Type II inhibitors to promote dimerization while favoring occupancy of only one subunit (BBD form), leading to the enrichment of an active dimer.
Measurements of in vitro BRAF kinase activity correlate amazingly well with the calculated amounts of the half-site-inhibited BBD forms with Type II inhibitors. This suggests that the allosteric asymmetry mechanism explains paradoxical activation by this class of inhibitors. DEER/EPR measurements further examine the positioning of helix aC. They show systematic outward movement of aC with Type II inhibitors, relative to the aC-in state with Type I inhibitors, and further show that helix aC adopts multiple states and is therefore dynamic in apo BRAF. This makes a strong case that negative cooperativity between sites in the BRAF dimer can account for paradoxical kinase activation by Type II inhibitors by creating a half-site-occupied homodimer, BBD. In contrast, Type I inhibitors and aC-out inhibitors do not fit this model, and are therefore proposed to be explained by previously proposed models involving negative allostery between subunits in BRAF-CRAF heterodimers, RAS priming, and transactivation.
Strengths:
This study integrates orthogonal spectroscopic and kinetic strategies to characterize BRAF dynamics and determine how it impacts inhibitor allostery. The unique combination of approaches presented in this study represents a road map for future work in the important area of protein kinase dynamics. The work represents a worthy contribution not only to the field of BRAF regulation but to protein kinases in general.
Weaknesses:
Some questions remain regarding the proposed model for Type II inhibitors and its comparison to Type I and aC-out inhibitors that would be useful to clarify. Specifically, it would be helpful to address whether the activation of BRAF by Type II inhibitors, while strongly correlated with BBD model predictions in vitro, also depends on CRAF via BRAF-CRAF in cells and therefore overlaps with the mechanisms of paradoxical activation by Type I and aC-out inhibitors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
A dominant hypothesis concerning the origin of life is that, before the appearance of the first enzymes, RNA replicated non-enzymatically by templating. However, this replication was probably not very efficient, due to the propensity of single strands to bind to each other, thus inhibiting template replication. This phenomenon, known as product inhibition, has been shown to lead to parabolic growth instead of exponential growth. Previous works have shown that this situation limits competition between alternative replicators and therefore promotes RNA population diversity. The present work examines this scenario in an agent-based model of RNA replication, taking into account finite population size, mutations and differences in GC content. The main results are (1) confirmation that parabolic growth promotes diversity, but that when the population size is small enough, sequences least efficient at replicating may nevertheless go extinct; (2) the observation that fitness is not only controlled by the replicability of sequences, but also by their GC content ; (3) the observation that parabolic growth attenuates the impact of mutations and, in particular, that the error threshold to which exponentially growing sequences are subject can be exceeded, enabling sequence identity to be maintained at higher mutation rates.
Strengths:
The analyses are sound and the observations intriguing. Indeed, while it has been noted previously that parabolic growth promotes coexistence, this is the first work to show that it can also mitigate the error threshold catastrophe, which is often presented as a major obstacle to our understanding of the origin of life.
Weaknesses:
A general weakness, which can however be seen as inherent in an agent-based model that aims to be more realistic than earlier, more phenomenological models, is the proliferation of parameters. The choice and values of these parameters are generally justified and, in many cases, several values are tested to assess the robustness of the results, but it can be difficult for the reader to identify the modeling choices that are truly critical from those that are less so.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Maurer et al investigated the contribution of GAD2+ neurons in the preoptic area (POA), projecting to the tuberomammillary nucleus (TMN), to REM sleep regulation. They applied an elegant design to monitor and manipulate activity of this specific group of neurons: a GAD2-Cre mouse, injected with retrograde AAV constructs in the TMN, thereby presumably only targeting GAD2+ cells projecting to the TMN. Using this set-up in combination with technically challenging techniques including EEG with photometry and REM sleep deprivation, the authors found that this cell-type studied becomes active shortly (≈40sec) prior to entering REM sleep and remains active during REM sleep. Moreover, optogenetic inhibition of GAD2+ cells inhibits REM sleep by a third, and also impairs the rebound in REM sleep in the following hour. Thus, the data makes a convincing case for a role of GAD2+ neurons in the POA projecting to the TMN in REM sleep regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The work by Masala and colleagues highlights a striking artifact that can result from a particular viral method for expressing genetically encoded calcium indicators (GECIs) in neurons. In a cross-institutional collaboration, the authors find that viral transduction of GECIs in the hippocampus can result in aberrant slow-traveling calcium (Ca2+) micro-waves. These Ca2+ micro-waves are distinct from previously described ictal activity but nevertheless are likely a pathological consequence of overexpression of virally transduced proteins. Ca2+ micro-waves will most-likely obscure the physiology that most researchers are interested in studying with GECIs, and their presence indicates that the neural circuit is in an unintended pathological state. Interestingly this pathology was not observed using the same viral transduction methods in other brain regions. The authors recommend several approaches that may help other experimenters avoid this confound in their own data such as reducing the titer of viral injections or using recombinase-dependent expression. The intent of this manuscript is to raise awareness of the potential unintended consequences of viral overexpression, particularly for GECIs. A rigorous investigation into the exact causes of Ca2+ micro-waves or the mechanisms supporting them are beyond the authors' intended scope.
Strengths:
The authors clearly demonstrate that Ca2+ micro-waves occur in the CA1 and CA3 regions of the hippocampus following large volume, high titer injections of adeno-associated viruses (AAV1 and AAV9) encoding GECIs. The supplementary videos provide undeniable proof of their existence.
By forming an inter-institutional collaboration, the authors demonstrate that this phenomenon is robust to changes in surgical techniques or imaging conditions.
Weaknesses:
I believe that the weaknesses of the manuscript are appropriately highlighted by the authors themselves in the discussion. The manuscript does not attempt to exhaustively characterize the conditions under which calcium micro-waves occur. Rather, the authors raise awareness of this problem.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Roy et al. investigated the role of non-canonical DNA structures called G-quadruplexes (G4s) in long-range chromatin interactions and gene regulation. Introducing a G4 array into chromatin significantly increased the number of long-range interactions, both within the same chromosome (cis) and between different chromosomes (trans). G4s functioned as enhancer elements, recruiting p300 and boosting gene expression even 5 megabases away. The study proposes a mechanism where G4s directly influence 3D chromatin organization, facilitating communication between regulatory elements and genes.
Strength:
The findings are valuable for understanding the role of G4-DNA in 3D genome organization and gene transcription.
Weaknesses:
The study would benefit from more robust and comprehensive data, which would add depth and clarity.
(1) Lack of G4 Structure Confirmation: The absence of direct evidence for G4 formation within cells undermines the study's foundation. Relying solely on in vitro data and successful gene insertion is insufficient.
(2) Alternative Explanations: The study does not sufficiently address alternative explanations for the observed results. The inserted sequences may not form G4s or other factors like G4-RNA hybrids may be involved.
(3) Limited Data Depth and Clarity: ChIP-qPCR offers limited scope and considerable variation in some data makes conclusions difficult.
(4) Statistical Significance and Interpretation: The study could be more careful in evaluating the statistical significance and magnitude of the effects to avoid overinterpreting the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The manuscript uses a combination of evolutionary approaches and structural/dynamics observations to provide mechanistic insights in the adaptation of the Spike protein during the evolution of SARS-COV-2 variants. The conclusion that CAP sites should be taken in particular account when considering the impact of the emergence of new strains and mutations is warranted.
Strengths:
The results presented in this work are very well outlined with well-written text, pleasant and well-described pictures, didactical and clear description of the methods, e.g. the discussion of how the MD equilibration procedure is applied and evaluated is clear and well argument.<br /> The citation of relevant similar results with different approaches strengthens the reasoning; in particular, comparing the calculated scores with previous experimentally obtained data is one of the strongest points of the manuscript.
Weaknesses:
There are no replicas of the molecular dynamics (MD) simulations, understandable since it's not a MD-focused paper. However, the comparison of multiple replicas could enhance the reliability of the findings.
-
-
-
Reviewer #2 (Public Review):
Summary:
This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.
Strengths:
The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.
Weaknesses:
The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The present study aims to investigate brain white matter predictors of back pain chronicity. To this end, a discovery cohort of 28 patients with subacute back pain (SBP) was studied using white matter diffusion imaging. The cohort was investigated at baseline and one-year follow-up when 16 patients had recovered (SBPr) and 12 had persistent back pain (SBPp). A comparison of baseline scans revealed that SBPr patients had higher fractional anisotropy values in the right superior longitudinal fasciculus SLF) than SBPp patients and that FA values predicted changes in pain severity. Moreover, the FA values of SBPr patients were larger than those of healthy participants, suggesting a role of FA of the SLF in resilience to chronic pain. These findings were replicated in two other independent datasets. The authors conclude that the right SLF might be a robust predictive biomarker of CBP development with the potential for clinical translation.
Developing predictive biomarkers for pain chronicity is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are convincing, and the interpretation is adequate. A particular strength of the study is the discovery-replication approach with replications of the findings in two independent datasets.
The following revisions might help to improve the manuscript further.
- Definition of recovery. In the New Haven and Chicago datasets, SBPr and SBPp patients are distinguished by reductions of >30% in pain intensity. In contrast, in the Mannheim dataset, both groups are distinguished by reductions of >20%. This should be harmonized. Moreover, as there is no established definition of recovery (reference 79 does not provide a clear criterion), it would be interesting to know whether the results hold for different definitions of recovery. Control analyses for different thresholds could strengthen the robustness of the findings.
- Analysis of the Chicago dataset. The manuscript includes results on FA values and their association with pain severity for the New Haven and Mannheim datasets but not for the Chicago dataset. It would be straightforward to show figures like Figures 1 - 4 for the Chicago dataset, as well.
- Data sharing. The discovery-replication approach of the present study distinguishes the present from previous approaches. This approach enhances the belief in the robustness of the findings. This belief would be further enhanced by making the data openly available. It would be extremely valuable for the community if other researchers could reproduce and replicate the findings without restrictions. It is not clear why the fact that the studies are ongoing prevents the unrestricted sharing of the data used in the present study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Galanti et al investigate genetic variation in plant pest resistance using non-target reads from whole-genome sequencing of 207 field lines spontaneously colonized by aphids and mildew. They calculate significant differences in pest DNA load between populations and lines, with heritability and correlation with climate and glucosinolate content. By genome-wide association analyses they identify known defence genes and novel regions potentially associated with pest load variation. Additionally, they suggest that differential methylation at transposons and some genes are involved in responses to pathogen pressure. The authors present in this study the potential of leveraging non-target sequencing reads to estimate plant biotic interactions, in general for GWAS, and provide insights into the defence mechanisms of Thlaspi arvense.
Strengths:
The authors ask an interesting and important question. Overall, I found the manuscript very well-written, with a very concrete and clear question, a well-structured experimental design, and clear differences from previous work. Their important results could potentially have implications and utility for many systems in phenotype-genotype prediction. In particular, I think the use of unmapped reads for GWAS is intriguing.
Weaknesses:
I found that several of the conclusions are incomplete, not well supposed by the data and/or some methods/results require additional details to be able to be judged. I believe these analyses and/or additional clarifications should be considered.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
To investigate the evolutionary relationship between the RNAi pathway and innate immunity, this study uses biochemistry and structural biology to investigate the trimeric complex of Dicer-1, DRH-1 (a RIGI homologue) and RDE-4 , which exists in C. elegans. The three subunits were co-expressed to promote stable purification of the complex. This complex promoted ATP-dependent cleavage of blunt-ended dsRNAs. A detailed kinetic analysis was also carried out to determine the role of each subunit of the trimeric complex in both the specificity and efficiency of cleavage. These studies indicate that RDE-4 is critical for cleavage while DRC-1 is primarily involved in the specificity of the reaction, and DRH-1 promotes ATP hydrolysis. Finally, a moderate density (6-7 angstrom) cryo-EM structure of the trimeric complex is provided.
Strengths:
(1) Newly described methods for studying the C. elegans DICER complex<br /> (2) New structure, albeit only moderate resolution<br /> (3) Kinetic study of the complex in the presence and absence of individual subunits and mutations, provide detailed insight into the contribution of each subunit
Weaknesses:
(1) Limited insight due to limited structural resolution.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors noticed that there was an enhanced ability to detect nuclear pore proteins in trypanosomes using a streptavidin-biotin-based detection approach in comparison to conventional antibody-based detection, and this seemed particularly acute for phase-separated proteins. They explored this in detail for both standard imaging but also expansion microscopy and CLEM, testing resolution, signal strength, and sensitivity. An additional innovative approach exploits the proximity element of biotin labelling to identify where interacting proteins have been as well as where they are.
Strengths:
The data is high quality and convincing and will have obvious application, not just in the trypanosome field but also more broadly where proteins are tricky to detect or inaccessible due to phase separation (or some other steric limitations). It will be of wide utility and value in many cell biological studies and is timely due to the focus of interest on phase separation, CLEM, and expansion microscopy.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Wang, Liu, et al. identified Rnf220 and Wdr5 as novel regulators of Hox gene expression during pons development. Phenotypic characterization of Rnf220 deficient mice with single-cell transcriptomics, qRT-PCR, and axonal tracing methods show that Rnf220 knockdown causes de-repression of Hox gene expression at multiple stages of pons development to regulate the final formation of the pontine nuclei neural circuit. Additionally, they also perform exhaustive expression analysis of multiple genes in the Hox family cluster to identify specific gene groups that are targeted by Rnf220. Furthermore, they also demonstrate that Rnf220 modulates Hox gene expression by directly binding to Wdr5, thus targeting it for ubiquitination and subsequent degradation. To elucidate the molecular mechanism of this interaction, they perform detailed immunoprecipitation assays and identify the precise Wdr5 amino acid residues that are targeted by Rnf220. Intriguingly, they show that inhibition of Wdr5 in Rnf220 deficient mice reverses the de-repression of Hox gene expression suggesting the direct involvement of Rnf220-Wdr5 interaction in modulating Hox gene expression during pons development. These data highlight the role of a new form of Hox gene regulation via the ubiquitination of epigenetic modulator Wdr5.
The conclusions of this paper are mostly supported by the data provided, but the downstream molecular and tissue-level effects of Wdr5 knockdown/inhibition need to be further characterized to establish its definitive role in pons development.
(1) Figure 1E shows that Rnf220 knockdown alone could not induce an increase in Hox expression without RA, which indicates that Rnf220 might endogenously upregulate Retinoic acid signaling. The authors should test if RA signaling is downstream of Rnf220 by looking at differences in the expression of Retinaldehyde dehydrogenase genes (as a proxy for RA synthesis) upon Rnf220 knockdown.
(2) In Figure 2C-D further explanation is required to describe what criteria were used to segment the tissue into Rostral, middle, and caudal regions. Additionally, it is unclear whether the observed change in axonal projection pattern is caused due to physical deformation and rearrangement of the entire Pons tissue or due to disruption of Hox3-5 expression levels. Labeling of the tissue with DAPI or brightfield image to show the structural differences and similarities between the brain regions of WT and Rnf220 +/- will be helpful.
(3) Line 192-195. These roles of PcG and trxG complexes are inconsistent with their initial descriptions in the text - lines 73-74.
(4) In Figure 4D, the band in the gel seems unclear and erased. Please provide a different one. These data show that neither Rnf220 nor wdr5 directly regulates Hox gene expressions. The effect of double knockdown in the presence of RA suggests that they work together to suppress Hox gene expression via a different downstream target. This point should be addressed in the text and discussion section of the paper. example for the same data which shows a full band with lower intensity.
(5) In Figure 4G the authors could provide some form of quantitation for changes in ubiquitination levels to make it easier for the reader. They should also describe the experimental procedures and conditions used for each of the pull-down and ubiquitination assays in greater detail in the methods section.
(6) Figure 5 shows that neither Rnf220 nor wdr5 directly regulate Hox gene expressions. The effect of double knockdown in the presence of RA suggests that they work together to suppress Hox gene expression via a different downstream target. This point should be addressed in the text and discussion section of the paper.
(7) In Figure 6, while the reversal of changes in Hox gene expression upon concurrent Rnf220; Wdr5 inhibition highlights the importance of Wdr5 in this regulatory process, the mechanistic role of wdr5 and its functional consequences are unclear. To answer these questions, the authors need to: (i) Assay for activated and repressive epigenetic modifications upon double knockdown of Rnf220 and Wdr5 similar to that shown in Figure 4- supplement 1. This will reveal if wdr5 functions according to its intended role as part of the TrxG complex. (ii) The authors need to assay for changes in axon projection patterns in the double knockdown condition to see if Wdr5 inhibition rescues the neural circuit defects in Rnf220 +/- mice.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Bolamperti S. et al. 2023 investigates whether expression of TG-interacting factor (Tgif1) is essential for osteoblastic cellular activity regarding morphology, adherence, migration/recruitment, and repair. Towards this end, germ-line Tgif1 deletion (Tgif1-/-) mice or male mice lacking expression of Tgif1 in mature osteoblastic and osteocytic cells (Dmp1-Cre+; Tgif1fl/fl) and corresponding controls were studied in physiological, bone anabolic, and bone fracture-repair conditions. Both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl exhibited decreased osteoblasts on cancellous bone surfaces and adherent to collagen I-coated plates. Tgif1-/- mice exhibit impaired healing in the tibial midshaft fracture model, as indicated by decreased bone volume (BV/Cal.V), osteoid (OS/BS), and low osteoblasts (number and surface). Likewise, both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl show impaired PTH 1-34, (100 µg/kg, 5x/wk for 3 wks) osteoblast activation in vivo, as detected by increases in quiescent bone surfaces. Mechanistic in vitro studies then utilized primary osteoblasts isolated from Tgif1-/- mice and siRNA Tgif1 knockdown OCY454 cells to further investigate and identify the downstream Tgif1 target driving these osteoblastic impairments. In vitro, Tgif1-/- osteoblastic and Tgif1 knockdown OCY454 cells exhibit decreased migration, abnormal morphology, and decreased focal adhesions/cell. Unexpectantly though, localization assays revealed Tgif1 to primarily concentrate in the nucleus and not to co-localize with focal adhesions (paxillin, talin). Also, expression of major focal adhesion components (paxillin, talin, FAK, Src etc.) or the Cdc42 family was not altered by loss of Tgif1 expression. In contrast, PAK3 expression is markedly upregulated by loss of Tgif1. In silico analysis followed by mechanistic molecular assays involving ChIP, siRNA (Tgif1, PAK3), and transfection (rat PAK3 promoter) techniques show that Tgif1 physically binds to a specific site in the PAK3 promoter region. Further, the knockdown of PAK3 rescues the Tgif1-deficient abnormal morphology in OCY454 cells. This is the first study to identify the novel transcriptional repression of PAK3 by Tgif1 as well as the specific Tgif1 binding site within the PAK3 promoter.
Strengths:
This work has a plethora of strengths. The co-authors achieved their aim in eliciting the role of Tgif1 expression to osteoblastic cellular functions (morphology, spreading/attachment, migration). Further, this work is the first to depict the novel mechanism of Tgif1 transcriptional repression of PAK3 by a through usage of mechanistic molecular assays (In silico analysis, ChIP, siRNA, transfection etc.). The conclusions are well supported and justified by these findings, as the appropriate controls, sample sizes (statistical power), statistics, and assays were fully utilized.
Claims and conclusions justified by data? Yes. absolutely
Weaknesses:
None. All reviewer comments were fully addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
Nakai-Futatsugi et al. present a novel method to analyze the correlation between the degree of pigmentation and the gene expression profile of human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells at the single cell level. This was achieved with the use of ALPS (Automated Live imaging and cell Picking system), an invention developed by the same authors. Briefly, it allows one to choose and photograph a specific cell from a culture dish and proceed to single cell digital RNA-seq. The authors identify clusters of cells that present differential gene expression, but this showed no association with the degree of pigmentation of the cells. Further data analysis allowed the authors to correlate the degree of pigmentation to some degree with the expression of complement and lysosome-related genes.
Strengths:
An important amount of data related to gene expression and heterogeneity of the iPSC-RPE population has been generated in this work.
Weaknesses:
However, the justification of the analysis, and the physiological relevance of the hypothesis and the findings could be strengthened.
Importantly, I fail to grasp from the introduction what is the previous evidence that leads to the hypothesis. Why would color intensity be related to the quality of cell transplantation? In fact, cell transplantation is not evaluated at all in this work. The authors mention "quality metrics for clinical use", but this concept is not further explained. Neither is the concept of "sufficient degree of pigmentation" explained.<br /> On the other hand, the positive correlation of cluster formation with complement and lysosome-related genes is not discussed.
As a consequence it is very difficult to evaluate the impact of these findings on the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors conducted research on the role of SerpinE2 and HtrA1 in neural crest migration using Xenopus embryos. The data presented in this study was of high quality and supported the authors' conclusions. The discovery of the potential molecular connection between SerpinE2 and HtrA1 in neural crest cell migration in vivo is significant, as understanding this pathway could potentially lead to treatments for aggressive cancers and pregnancy-related disorders.
Strengths:
Previous research has shown that SerpinE2 and HtrA1 can have both positive and negative effects on cell migration, but their molecular interplay and role in neural crest migration are not well-established. This study is the first to reveal a potential connection between these two proteins in neural crest cell migration in vivo. The authors found that SerpinE2 promotes neural crest migration by inhibiting HtrA1. Additionally, overexpression of Sdc4 partly alleviates neural crest migration issues caused by SerpinE2 knockdown or HtrA1 overexpression. These findings suggest that the SeprinE2-HtrA1-Sdc4 pathway is crucial for neural crest migration.
Weaknesses:
To further increase the study's credibility, it may be helpful to use techniques like western blotting, qRT-PCR, or in situ hybridization to verify the efficiency of SerpinE2 and HtrA1 knockdown and/or overexpression.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript expands the current bulk sequencing data deconvolution toolkit to include ATAC-seq. The EPIC-ATAC tool successfully predicts accurate proportions of immune cells in bulk tumour samples and EPIC-ATAC seems to perform well in benchmarking analyses. The authors achieve their aim of developing a new bulk ATAC-seq deconvolution tool.
Strengths:
The manuscript describes simple and understandable experiments to demonstrate the accuracy of EPIC-ATAC. They have also been incredibly thorough with their reference dataset collections. The authors have been robust in their benchmarking endeavours and measured EPIC-ATAC against multiple datasets and tools.
Weaknesses:
Currently, the tool has a narrow applicability in that it estimates the percentage of immune cells in a bulk ATAC-seq experiment.
Comments:
(1) Has any benchmarking been done on the runtime of the tool? Although EPIC-ATAC seems to "win" in benchmarking metrics, sometimes the differences are quite small. If EPIC-ATAC takes forever to run, compared to another tool that is a lot quicker, might some people prefer to sacrifice 0.01 in correlation for a quicker running tool?
(2) In Figure 3B the data points look a bit squashed in the bottom-left corner. Could the plot be replotted with the data point spread out? There also seems to be some inter-patient variability. Could the authors comment on that?
(3) Could the authors comment on the possibility of expanding EPIC-ATAC into more than a percentage prediction tool? Perhaps EPIC-ATAC could remove the immune cell signal from the bulk ATAC-seq data to "purify" the uncharacterised cells in silico, or generate pseudo-ATAC-seq tracks of the identified cell types.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In their manuscript entitled "In vitro function, assembly and interaction of primary cell wall cellulose synthase homotrimers" Purushotham et al. purify and functionally and structurally characterize the primary cell wall cellulose synthase isoforms from soybeans. Overall, the manuscript is well-written and contributes several important observations.
Strengths:
The structural and functional characterization of all three primary cell wall CesA isoforms contributes significantly to important problems in plant biochemistry.
The demonstration that the isolated CesA monomers and homotrimers are catalytically active in vitro, interact with each other, and show catalytic cooperativity between the homotrimers.
Weaknesses:
The paper could be further strengthened by addressing the following:
Are the interactions between the homotrimers observed via the pull-down assays stable enough to co-elute on the sizing column or are they transient interactions?
The authors show that the monomeric CesA isoforms can interact with each other using pull-down assays (Figure Supplement 4e). Are these interactions stable or transient? Have the authors tried running the mixed monomers over a sizing column? If you mix all three isoform monomers can you form heterotrimers?
The authors demonstrate via truncation that the N-terminus of the CesA is not involved in the interactions between the isoforms and propose that the CSR hook-like extensions are the primary mediator of trimer-trimer interactions. This argument would be strengthened by equivalent truncation experiments in which the CSR region is removed.
The statement on page 6 that "All CesA isoforms show greatest catalytic activity at neutral pH" seems to contradict the data in Figure 1e and the subsequent statements.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In the manuscript entitled "Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal". Liu et al. observed that glucose and noncaloric monosaccharides can prompt an excessive formation of blood vessels, particularly intersegmental vessels (ISVs). They propose that these branched vessels arise from the ectopic activation of quiescent endothelial cells (ECs) into tip cells. Moreover, through single-cell transcriptome sequencing analysis of embryonic endothelial cells exposed to glucose, they noted an increased proportion of arterial and capillary endothelial cells, proliferative endothelial cells, along with a series of upregulated genes in categories of blood vessel morphogenesis, development, and pro-angiogenesis. The authors provide evidence suggesting that caloric and noncaloric monosaccharides (NMS) induce excessive angiogenesis via the foxo1a-Marcksl1a pathway.
The authors address an important problem about the effects of artificially sweetened beverages such as noncaloric monosaccharides on blood vessels. However, the study lacks adequate experimental data and comprehensive analyses to support the mechanistic conclusions, which require extensive revisions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This study investigates the excitability of neurons in the peri-infarct cortex during recovery from ischemic stroke. The excitability of neurons in the peri-infarct cortex during stroke recovery has produced contradictory findings: some studies suggest hyper-excitability to direct-brain stimulation, while others indicate diminished responsiveness to physical stimuli. However, most studies have used anesthetized animals, which can disrupt cortical activity and functional connectivity. The present study used two-photon Ca2+ imaging after focal photothrombotic stroke to examine neural activity patterns in awake mice. The authors found reduced neuronal spiking in the peri-infarct cortex that was strongly correlated with motor performance deficits. Additionally, the authors found disruptions in neural activation, functional connectivity, and assembly architecture in the immediate peri-infarct region but not in the distal cortex regions.
The findings of this study are very important as they show that there is no measurable change in terms of neuronal activation and reorganization in distal regions of remapped cortical response areas after stroke.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study provides an important overview of infectious etiology for neurodevelopment delay.
Strengths:
Strong RNA evaluation.
Weaknesses:
The study lacks an overview of other infectious agents. The study should address the epigenetic contributors (PMID: 36507115) and the role of supplements in improving outcomes (PMID: 27705610).<br /> Addressing the above - with references included - is recommended.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This is an important and very interesting report on a change in newborns' neural abilities to distinguish auditory signals as a function of the gestational age (GA) of the infant at birth (from 35 weeks GA to 40 weeks GA). The authors tested neural discrimination of sounds that were labeled 'happy' vs 'neutral' by listeners that represent two categories of sound, either human voices or auditory signals that mimic only certain properties of the human vocal signals. The finding is that a change occurs in neural discrimination of the happy and neutral auditory signals for infants born at or after 37 weeks of gestation, and not prior (at 35 or 36 weeks of gestation), and only for discrimination of the human vocal signals; no change occurs in discrimination of the nonhuman signals over the 35- to 40-week gestational ages tested. The neural evidence of discrimination of the vocal happy-neutral distinction and the absence of the discrimination of the control signals is convincing. The authors interpret this as a 'landmark' in infants' ability to detect changes in emotional vocal signals, and remark on the potential value of the test as a marker of the infants' interest in emotional signals, underscoring the fact that children at risk for autism spectrum disorder may not show the discrimination. Although the finding is novel and interesting, additional discussion is essential so that readers understand two potential caveats affecting this interpretation.
Strengths:
The event-related potential (ERP) method and results are clear, well-described, and convincing.
Weaknesses/ Information needed:
First, readers need to see spectrograms that show the 0-4000 Hz in more detail, rather than what is now shown (0-10,000 Hz). The vocal signals in clearer spectrograms will show I believe the initial consonant burst and formant frequencies that are unique to human speech and give rise to the perception of the consonant sounds in the vocal signals like 'dada' and 'tutu' that were tested. The control signals will presumably not show these abrupt acoustic changes at their onset, even though they appear (from the oscillograms) to approximate the amplitude envelope. The primary cue distinguishing the happy and neutral signals in both the vocal and control signals is the pitch of the signals (high vs low), but the burst of energy representing the consonants is only contained in the vocal signals; it has no comparable match in the control signals. It is possible that the presence of a sharp acoustic onset (a unique characteristic of consonants in human speech) is especially alerting to the infants, and that this acoustic cue, in the context of the pitch change, enhances discrimination in the vocal case. One way to test this would be to use only vowel sounds to represent the vocal signals, without consonants. Another critical detail that the authors need to include about the signals is an explanation of how the control signals were generated. The text states that the Fo and amplitude envelope of the vocal signals were mimicked in the control signals, but what was the signal used for the controls? Was a pure tone complex modulated, or was pink noise used to generate the control signals? Or were the original vocal signals simply filtered in some way to create the controls, which would preserve the Fo and amplitude envelope? If merely filtered, the control signals still may be perceived as 'vocal' signals, rather than as nonspeech (the Supplement contains the sounds, and some of the control sounds can be perceived, to my ear, as 'vocal' signals).
Second, there is no information in the manuscript or supplement about the auditory environment of the participants, nor discussion of the fetus' ability to hear in the womb. In the womb, infants are listening to the mothers' bone-conducted speech (which is full of consonant sounds), and we know from published studies that infants can discern differences not only in the prosody of the speech they hear in the womb, but the phonetic characteristics of the mother's speech. The ability at 37 weeks GA or beyond to discriminate the pitch changes in the vocal, but not control signals, could thus be due to additional experience in utero to speech. Another experiential explanation is that the infants born at 37 weeks GA and beyond may be exposed to greater amounts of speech after birth, when compared to those born at 35 and 36 weeks GA, from the attending nurses and from their caregivers, and this speech is also full of consonant sounds. What these infants hear is likely to be 'infant-directed speech,' which is significantly higher in pitch, mirroring the signals tested here. At 37 weeks GA, infants are likely more robust, may sleep less, and are likely more alert. If infants' exposure to speech, either after birth, or their auditory ability to discern differences in speech in utero, is enhanced at 37 weeks GA and beyond, then an 'experience-related' explanation is a viable alternative to a maturational explanation, and should be discussed. Perhaps both are playing a role. As the authors state, many more signals need to be tested to discern how the effect should be interpreted, and other viable interpretations of the current results discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors develop a highly detailed pipeline to analyze hemodynamic signals from in vivo two-photon fluorescence microscopy. This includes motion correction, segmentation of the vascular network, diameter measurements across time, mapping neuronal position relative to the vascular network, and analyzing vascular network properties (interactions between different vascular segments). For the segmentation, the authors use a Convolution Neural Network to identify vessel (or neural) and background pixels and train it using ground truth images based on semi-automated mapping followed by human correction/annotation. Considerable processing was done on the segmented images to improve accuracy, extract vessel center lines, and compute frame-by-frame diameters. The model was tested with artificial diameter increases and Gaussian noise and proved robust to these manipulations.
Network-level properties include Assortativity - a measure of how similar a vessel's response is to nearby vessels - and Efficiency - the ease of flow through the network (essentially, the combined resistance of a path based on diameter and vessel length between two points).
Strengths:
This is a very powerful tool for cerebral vascular biologists as many of these tasks are labor intensive, prone to subjectivity, and often not performed due to the complexity of collecting and managing volumes of vascular signals. Modelling is not my specialty so I cannot speak too specifically, but the model appears to be well-designed and robust to perturbations. It has many clever features for processing the data.
The authors rightly point out that there is a real lack in the field of knowledge of vascular network activity at single-vessel resolution. Network anatomy has been studied, but hemodynamics are typically studied either with coarse resolution or in only one or a few vessels at a time. This pipeline has the potential to change that.
Weaknesses:
The authors apply their method to in vivo data. However, there are some weaknesses in the design that make it hard to accept many of the conclusions and even to see that the method could yield much useful data with this type of application. Primarily, the acquisition of a large volume of tissue is very slow. In order to obtain a network of vascular activity, large volumes are imaged with high resolution. However, the volumes are scanned once every 42 seconds following stimulation. Most vascular responses to neuronal activation have come and gone in 42 seconds so each vessel segment is only being sampled at a single time point in the vascular response. So all of the data on diameter changes are impossible to compare since some vessels are sampled during the initial phase of the vascular response, some during the decay, and many probably after it has already returned to baseline. The authors attempt to overcome this by alternating the direction of the scan (from surface to deep and vice versa). But this only provides two sample points along the vascular response curve and so the problem still remains.
A second problem is the use of optogenetic stimulation to activate the tissue. First, it has been shown that blue light itself can increase blood flow (Rungta et al 2017). The authors note the concern about temperature increases but that is not the same issue. The discussion mentions that non-transgenic mice were used to control for this with "data not shown". This is very important data given these earlier reports that have found such effects and so should be included. Secondly, there doesn't seem to be any monitoring of neural activity following the photo-stimulation. The authors repeatedly mention "activated" neurons and claim that vessel properties change based on distance from "activated" neurons. But I can't find anything to suggest that they know which neurons were active versus just labeled. Third, the stimulation laser is focused at a single depth plane. Since it is single-photon excitation, there is likely a large volume of activated neurons. But there is no way of knowing the spatial arrangement of neural activity and so again, including this as a factor in the analysis of vascular responses seems unjustified.
The study could also benefit from more clear illustration of the quality of the model's output. It is hard to tell from static images of 3-D volumes how accurate the vessel segmentation is. Perhaps some videos going through the volume with the masks overlaid would provide some clarity. Also, a comparison to commercial vessel segmentation programs would be useful in addition to benchmarking to the ground truth manual data.
Another useful metric for the model's success would be the reproducibility of the vessel responses. Seeing such a large number of vessels showing constrictions raises some flags and so showing that the model pulled out the same response from the same vessels across multiple repetitions would make such data easier to accept.
A number of findings are questionable, at least in part due to these design properties.
There are unrealistically large dilations and constrictions indicated. These are likely due to artifacts of the automated platform. Inspection of these results by eye would help understand what is going on.
In Figure 6, there doesn't seem to be much correlation between vessels with large baseline level changes and vessels with large stimulus-evoked changes. It would be expected that large arteries would have a lot of variability in both conditions and veins much less. There is also not much within-vessel consistency. For instance, the third row shows what looks like a surface vessel constricting to stimulation but a branch coming off of it dilating - this seems biologically unrealistic.
As mentioned, the large proportion of constricting capillaries is not something found in the literature. Do these happen at a certain time point following the stimulation? Did the same vessel segments show dilation at times and constriction at other times? In fact, the overall proportion of dilators and constrictors is not given. Are they spatially clustered? The assortativity result implies that there is some clustering, and the theory of blood stealing by active tissue from inactive tissue is cited. However, this theory would imply a region where virtually all vessels are dilating and another region away from the active tissue with constrictions. Was anything that dramatic seen?
As mentioned, the claims about distance to active neurons are not meaningful if there is no measure of which neurons were active and which weren't. But even still, the claim is overly strong as the average distance to the nearest neuron for dilators was ~17 microns and for constrictors it was ~22 microns - about a half a neuronal soma difference.
The distance to the nearest neuron likely will depend on depth as well - neurons are quite sparse superficially and very dense in layer 4. The capillary network varies much less (see Blinder et al 2016 Nature Neuroscience). So the distance of a neuron to the nearest capillary may not vary much with depth, but the distance from the capillary to the nearest neuron might vary quite a lot.<br /> Why were nearly all vessels > 5um diameter not responding >2SD above baseline? Did they have highly variable baselines or small responses? Usually, bigger vessels respond strongly to local neural activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The research conducted by Yaning Cui and colleagues delves into understanding FLS2-mediated immunity. This is achieved by comparing the spatiotemporal dynamics of a FLS2-S938A mutant and FLS2-WT, especially in relation to their association with the remorin protein. To delineate the differences between the FLS2-S938A mutant and FLS2-WT, they utilized a plethora of advanced fluorescent imaging techniques. By analyzing surface dynamics and interactions involving the receptor signal co-receptor BAK1 and remorin proteins, the authors propose a model of how FLS2 and BAK1 are assembled and positioned within a remorin-specific nano-enviroment during FLS2 ligand-induced immune responses.
Strengths:
These techniques offer direct visualizations of molecular dynamics and interactions, helping us understand their spatial relationships and interactions during innate immune responses.
Advanced cell biology imaging techniques are crucial for obtaining high-resolution insights into the intracellular dynamics of biomolecules. The demonstrated imaging systems are excellent examples to be used in studying plant immunity by integrating other functional assays.
Weaknesses:
It's essential to acknowledge that every fluorescence-based method, just like biochemical assays, comes with its unique limitations. These often pertain to spatial and temporal resolutions, as well as the sensitivity of the cameras employed in each setup. Meticulous interpretation is pivotal to guarantee an accurate depiction and to steer clear of potential misunderstandings when employing specific imaging systems to analyze molecular attributes. Moreover, a discerning interpretation and accurate image analysis can offer invaluable guidance for future studies on plant signaling molecules using these nice cell imaging techniques.
For instance, although single-particle analysis couldn't conclusively link FLS2 and remorin, FLIM-FRET effectively highlighted their ligand-triggered association and the disengagement brought on by mutations. While these methodologies seemed to present differing outcomes, they were described in the manuscript as harmonious. In reality, these differences could highlight distinct protein populations active in immune responses, each accentuated differently by the respective imaging techniques due to their individual spatial and temporal limitations. Addressing these variations is imperative, especially when designing future imaging explorations of immune complexes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors present a framework for exploiting shotgun metagenomics and metabolomics data along with constraint-based analysis (CBA) to study, in their case, the dynamics and interactions between the apple rootstock and rhizosphere's microbial community. This study should be considered as a follow-up of Berihu et al. (2022) where the shotgun data were first introduced. A set of 395 Metagenome-Assembled Genomes (MAGs) was derived from those reads and from the latter, using an automatic Genome-scale Metabolic Model (GSMM) reconstruction tool (CarveMe), 243 GSMMs. Metabolomics data from a set of studies were gathered to describe/represent root exudates. Flux Variability Analysis (FVA), a type of constraint-based analysis, was conducted iteratively. Three distinct in silico media were used (optimal, poor, and realistic, with the latter informed by metabolomics data) to examine the potential impact of root exudates on bacterial growth. Additionally, the study investigated the extent to which compounds secreted by bacteria could support the growth of other community members. Further, an exchange network representing all potential metabolic exchanges within the rhizosphere community was built and motifs on it were classified with healthy and/or symptomized soil.
Strengths:
The study provides a great starting point for how one can bring together shotgun metagenomics and other omics technologies such as metabolomics with metabolic modelling approaches. MAGs and the automatic reconstruction of corresponding GSMMs become more and more a common practice and frameworks for their analysis and interpretation are more than needed. The usage of FVA instead of the Flux Balance Analysis allows the authors to get all the range of potentially produced metabolites. The iterative approach can highlight what species are supported by the plant and which need the first to join the community while correlating microbial metabolic interactions with soil performance through differential abundance can bring up valid hypotheses to examine further. On top of that, avoiding modelling approaches that require community objective functions and optimization of that makes the simulation more realistic.
Weaknesses:
There are two main drawback approaches like the one described here, both related only partially to the authors' work yet with great impact in the presented framework. First, the usage of automatic GSMM reconstruction requires great caution. It is indicative of how the semi-curated AGORA models are still considered reconstructions and expect the user to parameterize those in a model. In this study, CarveMe was used. CarveMe is a well-known tool with several pros [1]. Yet, several challenges need to be considered when using it [2]. For example, the biomass function used might lead to an overestimation of auxotrophies. Also, as its authors admit in their reply paper, CarveMe does gap fill in a way [3]; models are constructed to ensure no gaps and also secure a minimum growth. However, curation of such a high number of GSMMs is probably not an option. Further, even if FVA is way more useful than FBA for the authors' aim, it does not yet ensure that when a species secretes one compound (let's say metabolite A), the same flux vector, i.e. the same metabolic functioning profile, secretes another compound (metabolite B) at the same time, even if the FVA solution suggests that metabolite B could be secreted in general.
Besides those challenges, the suggested framework is promising and such approaches can work as the starting point for the next step in microbial ecology studies in general; from soil to marine and host ecosystems. The authors highlight perfectly this angle stating that this framework is currently conceptual and that it can be only used to formulate new hypotheses. Unbiased constraint-based approaches that focus on metabolite exchanges would benefit such approaches.
[1] Mendoza, Sebastián N., et al. "A systematic assessment of current genome-scale metabolic reconstruction tools." Genome biology 20.1 (2019): 1-20.<br /> [2] Price, Morgan. "Erroneous predictions of auxotrophies by CarveMe." Nature Ecology & Evolution 7.2 (2023): 194-195.<br /> [3] Machado, Daniel, and Kiran R. Patil. "Reply to: Erroneous predictions of auxotrophies by CarveMe." Nature Ecology & Evolution 7.2 (2023): 196-197.<br /> [4] Ylva Katarina Wedmark, Jon Olav Vik, Ove Øyås bioRxiv 2023.09.05.556413; doi: https://doi.org/10.1101/2023.09.05.556413
-
- Mar 2024
-
www.legifrance.gouv.fr www.legifrance.gouv.fr
-
L'enseignant référent qui coordonne les équipes de suivi de la scolarisation est l'interlocuteur des familles pour la mise en place du projet personnalisé de scolarisation.
-
L'Etat garantit le respect de la personnalité de l'enfant et de l'action éducative des familles
-
Les familles sont associées à l'accomplissement de ces missions.
-
La formation scolaire favorise l'épanouissement de l'enfant
-
Tout enfant a droit à une formation scolaire qui, complétant l'action de sa famille, concourt à son éducation
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, Chen et al. reported that the core binding factor beta (Cbfβ), a heterodimeric subunit of the RUNX family transcription factors (TFs), is crucial in maintaining cartilage homeostasis and counteracting traumatic OA pathology. Using mouse models in which Cbfβ is conditionally inactivated in the Col2a1+ and Acan+ cells, the authors claimed that Cbfβ ablation led to articular cartilage (AC) degeneration, which is associated with aberrant cartilage gene expression and chondrocyte signaling, particularly the elevated Wnt/Catenin and the decreased Hippo/YAP and TGFβ signaling. The authors further showed that Cbfβ transcripts are decreased in human OA cartilage, and sustaining Cbfβ expression in mouse knee joints mitigated the severity of surgery-evoked OA.
On the whole, the work reported is interesting and exciting. Genetic and biochemical data support key statements. Both in vivo and in vitro experiments were well designed with proper controls; semiquantitative data were digitalized and processed for statistical significance. Furthermore, new findings were adequately discussed in contrast to the current available knowledge. However, the conceptual novelty of this study is slightly compromised by recent publications showing that Cbfβ reduction is associated with OA (Che et al. 2023; Li et al. 2021). Also, the authors claimed that multiple signaling pathways were affected by Cbfβ ablation in cartilage cells; many of them, however, are indirect effects given the nature of Cbfβ as a TF. The authors also showed that pSMAD2/3 and active βCatenin decreased and increased upon Cbfβ depletion in the mouse AC cartilage. However, how the deficiency of Cbfβ, a widely expressed TF, affected the posttranslational modification of SMAD2/3 and βCatenin is unclear and needs further discussion. Overall, Cbfβ's role in cartilage and OA pathology is an emerging area of study; the authors provided a set of genetic evidences showing that Cbfβ is indispensable for cartilage homeostasis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The manuscript expands on the previous work from the lab where novel interactors of Rac1 GTPase (CYRI-A and B) provide localized inhibition by sequestration of activated Rac1. These novel regulators are fascinating as they complement the functions of the classical negative modulators of GTPases, GAPs and GDIs. The current manuscript focuses on the in vivo role of CYRI-B in pancreatic cancer progression, and distinct CYRI-B functions are shown for early and later stages. The in vivo data following CYRI-B depletion (no change in proliferation, reduced metastatic potential) is substantiated with in vitro analyses of receptor uptake, temporal recruitment of CYRI-B on macropinosomes and reduced chemotaxis.
The authors describe in detail the role of CYRI-B in pancreatic adenocarcinoma, building from their prior studies mapping CYRI-B function in the regulation of polarity, motility and chemotaxis. The experiments are well-designed and performed, and the text was clearly written. However, the results partially support some of their conclusions. The interpretation of the data and the discussion in the context of human pancreatic tumours would help the understanding and impact of the work.
The hypothesis is that depletion of CYRI-B would promote localized Rac1 activation at the membrane. However, the authors show that CYRI-B is found overexpressed in PDAC, consistent with other papers where its high expression correlates with poor outcome of many cancers. The prediction is that Rac1 functions modulated by CYRI-B would be inhibited in those tumours where CYRI-B is overexpressed. Is this the case and has it been formally demonstrated?
Most experiments use the depletion of CYRI-B to probe its function. It would be useful to readers and important to elaborate on how the specific CYRI-B functions shown upon depletion would fit with the in vivo observation of CYRI-B overexpressed in tumours. For example, loss of CYRI-B reduces chemotaxis potential. How this result can be conciliated with the predicted increase in Rac1activation in the absence of CYRI-B? Conversely, a prediction of CYRI-B overexpression in human tumours would imply the inactivation of Rac1 whereas chemotaxis is promoted. The discussion could be improved with the addition of the authors' views and further explanations in this context.
Similarly, it is confusing to extrapolate a proposed increase in LPAR1 internalization by macropinocytosis with CYRI-B overexpression in PDAC. It is predicted that Rac1 would be locally inhibited in this scenario, and thus micropinocytosis would be compromised. It will be good to spell out what the authors envisage happens. For example, uptake could be switched to another receptor uptake process that would not involve CYRI-B sequestration of Rac1. Discussion of the potential alternatives will strengthen the manuscript.
"..LPAR1 is a cargo of CYRI-B dependent macropinocytosis" (page 21). This statement reads as an overinterpretation of the specificity of the process. It may suggest that there is a cargo selectivity by CYRI-B, which has not been formally demonstrated or is well accepted. Macropinocytosis is thought to occur as a bulk engulfment of the membrane and thus any receptor at the cell surface would be internalised non-specifically. The demonstrated reduction in LPAR1 uptake could be proportional to the interference with micropinocytosis rate by CYRI-B depletion for example
Furthermore, the readers would benefit from more clear explanations of the differences and similarities between CYRI-A and CYRI-B. It will be important to clarify the specificity of the proposed functions of each protein. Both localize at the macropinosomes, modulate engulfment and regulate integrin a5b1 trafficking. It will be informative to specify if CYRI-A is also upregulated in human tumours, has a similar outcome as CYRI-B in vivo and also regulates LPAR1 uptake.
Upon depletion of CYRI-B in pancreatic tumour cells in vivo, the presence of similar levels of jaundice is confusing. Less metastasis is detected in the mesentery. Are liver metastasis affected in the absence of CYRI-B?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Schwann cells actively repair and regenerate peripheral nerves following tissue injury. Central to this process is the collective cell migration of 'cords' of Schwann cells, which guide the regenerating axons across an injury site. Previously published research from the Lloyd lab shows that at the injury site, Schwann cell cords are maintained via N-cadherin-based cell-cell adhesions; however, when cultured under low density conditions, Schwann cells display cell repulsion and contact inhibition of locomotion (CIL) phenotypes, suggesting Schwann cell behaviour is plastic. In this study, Hoving, Lloyd and colleagues build upon their previous work to show that Slit2/3/Robo signalling triggers cell repulsion between Schwann cells in an N-cadherin-dependent manner. This in turn induces contact inhibition of locomotion to propel Schwann cells to migrate collectively and with direction. The authors show that N-cadherin has a dual function in Schwann cell migration: to keep migrating Schwann cells together as a group, and concomitantly present Slit2/3 repulsive cues to cells to trigger cell repulsion locally. Their data also show that extracellular N-cadherin is required for cell repulsion, independent of cell-cell adhesion functions. The authors use a combination of in vitro Schwann cell cultures and live cell imaging, with an ex vivo precision cut tissue slice system to show that Slit2/3-dependent CIL underpins proper Schwann cell migration in an injury model.
This is a very well executed and important study, which provides new insights into mechanisms of CIL and places CIL in the context of tissue repair and regeneration in adult tissues. The experiments are well designed, and the main findings and conclusions are based on robust and convincing data.
Tags
Annotators
URL
-