10,000 Matching Annotations
  1. May 2025
    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc that is necessary for development of a continuous testes and seminal vesicle tissue essential for fertility. To do so, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility.

      Strengths:

      This is a rigorous and comprehensive study that identifies the Hamlet dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion.

      Weaknesses:

      None noted.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript the Treisman and colleagues address the question of how protein phosphatase 1 (PP1) regulatory subunits (or PP1-interacting protein (PIPs)) confer specificity on the PP1 catalytic subunit which by itself possesses little substrate specificity. In prior work the authors showed that the PIP Phactrs confers specificity by remodelling a hydrophobic groove immediately adjacent to the PP1 catalytic site through residues within the RVxF- ø ø -R-W string of Phactrs. Specifically, the residues proximal and including the 'W' of the RVxF- ø ø -R-W string remodel the hydrophobic groove. Other residues the of the RVxF- ø ø -R-W string (i.e. the RVxF- ø ø -R) are not involved in this remodelling.

      The authors suggest that the RVxF- ø ø -R-W string is a conserved feature of many PIPs including PNUTS, Neurabin/spinophilin and R15A. However from a sequence and structural perspective only the RVxF- ø ø -R- is conserved. The W is not conserved in most and in the R15A structure (PDB:7NZM) the Trp side chain points away from the hydrophobic channel - this could be a questionable interpretation due to model building into the low resolution cryo-EM map (4 A).

      In this paper the authors convincingly show that Neurabin confers substrate specificity through interactions of its PDZ domain with the PDZ domain-binding motif (PBM) of 4E-BP. They show the PBM motif is required for Neurabin to increase PP1 activity towards 4E-BP and a synthetic peptide modelled on 4E-BP and also a synthetic peptide based on IRSp53 with a PBM added. The PBM of 4E-BP1 confers high affinity binding to the Neurabin PDZ domain. A crystal structure of a PP1-4E-BP1 fusion with Neurabin shows that the PBM of 4E-BP interacts with the PDZ domain of Neurabin. No interactions of 4E-BP and the catalytic site of PP1 are observed. Cell biology work showed that Neurabin-PP1 regulates the TOR signalling pathway by dephosphorylating 4E-BPs.

      Strengths:

      This work demonstrates convincingly using a variety of cell biology, proteomics, biophysics and structural biology that the PP1 interacting protein Neurabin confers specificity on PP1 through an interaction of its PDZ domain with a PDZ-binding motif of 4E-BP1 proteins. Remodelling of the hydrophobic groove of the PP1 catalytic subunit is not involved in Neurabin-dependent substrate specificity, in contrast to how Phactrs confers specificity on PP1. The active site of the Neurabin/PP1 complex does not recognise residues in the vicinity of the phospho-residue, thus allowing for multiple phospho-sites on 4E-BP to be dephosphorylated by Neurabin/PP1. This contrasts with substrate specificity conferred by the Phactrs PIP that confers specificity of Phactrs/PP1 towards its substrates in a sequence-specific context by remodelling the hydrophobic groove immediately adjacent to the catalytic. The structural and biochemical insights are used to explore the role of Neurabin/PP1 in dephosphorylation 4E-BPs in vivo, showing that Neurabin/PP1 regulates the TOR signalling pathway, specifically mTORC1-dependent translational control.

      Weaknesses:

      The only weakness is the suggestion that a conserved RVxF- ø ø -R-W string exists in PIPs. The 'W' is not conserved in sequence and 3-dimensions in most of the PIPs discussed in this manuscript. The lack of conservation of the W would be consistent with the finding based on multiple PP1-PIP structures that apart from Phactrs, no other PIP appears to remodel the PP1 hydrophobic channel.

      Comments on revisions:

      The authors have addressed my comments.

      One aspect of the manuscript and response to reviewers is misleading regarding the statement: 'Like many PIPs, they interact with PP1 using the previously defined "RVxF", "ΦΦ", and "R" motifs (Choy et al, 2014).' This statement, and similar in the authors' response, implies that Choy et al discovered the "RVxF" and "ΦΦ" motifs. The Choy et al, 2014 paper reports the discovery of the "R" motif. The "RVxF" and "ΦΦ" motifs were discovered and reported in earlier papers not cited in the authors' manuscript. Perhaps the authors can correct this.

    1. Reviewer #1 (Public review):

      Summary:

      This article presents an analysis that challenges established abundance-occupancy relationships (AORs) by utilizing the largest known bird observation database. The analysis yields contentious outcomes, raising the question of whether these findings could potentially refute AORs.

      Strengths:

      The study employed an extensive aggregation of datasets to date to scrutinize the abundance-occupancy relationships (AORs).

      Weaknesses:

      The authors should thoroughly address the correlation between checklist data and global range data, ensuring that the foundational assumptions and potential confounding factors are explicitly examined and articulated within the study's context.

      In the revision, the authors have refined their findings to birds and provided additional clarifications and discussion. However, the primary concerns raised by reviewers remain inadequately addressed. My main concern continues to be whether testing AOR at a global scale is meaningful given the numerous confounding factors involved. With the current data and analytical approach, these confounders appear inseparable. The study would be significantly strengthened if the authors identified specific conditions under which AORs are valid.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the physical mechanisms underlying cell intercalation, which then enables collective cell flows in confluent epithelia. The authors show that T1 transitions (the topological transitions responsible for cell intercalation) correspond to the unbinding of groups of hexatic topological defects. Defect unbinding, and hence cell intercalation and collective cell flows, are possible when active stresses in the tissue are extensile. This result helps to rationalize the observation that many epithelial cell layers have been found to exhibit extensile active nematic behavior.

      Strengths:

      The authors obtain their results based on a combination of active hexanematic hydrodynamics and a multiphase field (MPF) model for epithelial layers, whose connection is a strength of the paper. With the hydrodynamic approach, the authors find the active flow fields produced around hexatic topological defects, which can drive defect unbinding. Using the MPF simulations, the authors show that T1 transitions tend to localize close to hexatic topological defects.

      Weaknesses:

      Citations are sometimes not comprehensive. Cases of contractile behavior found in collective cell flows, which would seemingly contradict some of the authors' conclusions, are not discussed.

      I encourage the authors to address the comments and questions below.

      (1) In Equation 1, what do the authors mean by the cluster's size \ell? How is this quantity defined? The calculations in the Methods suggest that \ell indicates the distance between the p-atic defects and the center of the T1 cell cluster, but this is not clearly defined.

      (2) The multiphase field model was developed and reviewed already, before the Loewe et al. 2020 paper that the authors cite. Earlier papers include Camley et al. PNAS 2014, Palmieri et al. Sci. Rep. 2015, Mueller et al. PRL 2019, and Peyret et al. Biophys. J. 2019, as reviewed in Alert and Trepat. Annu. Rev. Condens. Matter Phys. 2020.

      (3) At what time lag is the mean-squared displacement in Figure 3f calculated? How does the choice of a lag time affect these data and the resulting conclusions?

      (4) The authors argue that their results provide an explanation for the extensile behavior of cell layers. However, there are also examples of contractile behavior, such as in Duclos et al., Nat. Phys., 2017 and in Pérez-González et al., Nat. Phys., 2019. In both cases, collective cell flows were observed, which in principle require cell intercalations. How would these observations be rationalized with the theory proposed in this paper? Can these experiments and the theory be reconciled?

    1. Reviewer #1 (Public review):

      This manuscript uses a well-validated behavioural estimation task to investigate the degree to which optimistic belief updating was attenuated during the 2020 global pandemic. Online participants estimated how likely different negative life events were to happen to them in the future and were given statistics about these events. Belief updating (measured as the degree to which estimations changed after viewing the statistics) was less optimistically biased during the pandemic (compared to outside of it). This resulted from reduced updating from "good news" (better than expected information). Computational models were used to try to unpack how statistics were integrated and used to revise beliefs. Two families of models were compared - an RL set of models where "estimation errors" (analogous to prediction errors in classic RL models) predict belief change and a Bayesian set of models where an implied likelihood ratio was calculated (derived from participants estimations of their own risk and estimation of the base rate risk) and used to predict belief change. The authors found evidence that the former set of models accounted for updating better outside of the pandemic, but the latter accounted for updating during the pandemic. In addition, the RL model provides evidence that learning was asymmetrically positively biased outside of the pandemic but symmetric during it (as a result of reduced learning rates from good news estimation errors).

      Strengths

      Understanding whether biases in learning are fixed modes of information processing or flexible and adapt in response to environmental shocks (like a global pandemic or economic recession) is an important area of research relevant to a wide range of fields, including cognitive psychology, behavioural economics, and computational psychiatry. The study uses a well-validated task, and the authors conduct a power analysis to show that the sample sizes are appropriate. Furthermore, the authors test that their results hold in both a between-group analysis (the focus of the main paper) and a within-group analysis (mainly in the supplemental).

      The finding that optimistic biases are reduced in response to acute stress, perceived threat, and depression has been shown before using this task both in the lab (social stress manipulation), in the real world (firefighters on duty), and clinical groups (patients with depression). However, the work does extend these findings here in important ways:

      (1) Examining the effect of a new real-world adverse event (the pandemic).<br /> (2) The reduction in optimistic updating here arises due to reduced updating from positive information (previously, in the case of environmental threat, this reduction mainly arose from increased sensitivity to negative information).<br /> (3) Leveraging new RL-inspired computational approaches, demonstrating that the bias - and its attenuation - can be captured using trial-by-trial computational modelling with separate learning rates for positive and negative estimation errors.

      The authors now take great care to caveat that the findings cannot directly attribute the observed lack of optimistically biased belief updating during lockdown to psychological causes such as heightened anxiety and stress.

      The authors have added model recovery results. Whilst there are some cases within a family (RL or Bayesian) of models where they can be confused (e.g., Bayesian model 10-the winning model during the pandemic-sometimes gets confused with Bayesian model 9), there is no confusion between families of models (RL models don't get confused with Bayesian models and vice versa), which is reassuring.

      Weaknesses

      The authors now conduct model recovery (SI Figure 5) and show how the behaviour of the two best-fitting models (Rational Bayesian model and optimistically biased RL-like model) approximates the actual data observed by showing them alongside each other (Figure 1b). It seems from Figure 1b that the 2 models predict similar behaviour for bad news but diverge for good news, with the optimistically biased RL-like model predicting greater updates than the rational Bayesian model. However, it is difficult to tell from the figure (partly because of the y-axis scale) how much of a divergence this is and how distinctive a pattern relative to the other models. I think the interpretation could be improved further by a clearer sense of the behavioural signatures of each model, enabling them to be reliably teased apart from one another in the model recovery.

    1. Reviewer #1 (Public review):

      This study presents valuable findings on the GABA and BOLD changes induced by continuous theta burst stimulation (cTBS) and on the relationships between ATL GABA level and performance in a semantic task. However, I'm afraid that the current results are incomplete to support some primary claims of the paper, for example, the purported inverted-U-shaped relationship between GABA levels in the ATL and semantic task performance. The influence of practice effects also complicates the interpretation of the results. Additional concerns include potential double dipping in the analysis depicted in Figure 3A and the use of inconsistent behavioral measures (IE and accuracy) across various analyses.

      The authors have made two beneficial revisions in this round: (1) acknowledging the insufficient data points supporting the inverted U-shaped curve; (2) attempting to control for practice effects. However, I believe unresolved issues remain:

      (1) The authors have not addressed my specific concern about Figure 4D - the analysis attempts to fit an inverted U-shaped curve to the data without distinguishing between data points influenced by practice effects and those unaffected, rendering its reliability questionable.

      (2) The authors appear to have misunderstood my question regarding Figure 3A. This issue is unrelated to practice effects. My point was that even if we randomly generated pre- and post-test data points and grouped/analyzed them according to the authors' methodology, we would still likely reproduce the pattern in Figure 3A due to the double dipping problem. Thus, this statistical analysis and its conclusions currently lack methodological validity.

      (3) Regarding the inconsistency in behavioral measures, the authors' explanation fails to remove my concerns. If the authors argue that accuracy is the most appropriate behavioral dependent variable for this study, why did they employ inverse efficiency in some of their analyses? My understanding is that a study should either consistently use the single most suitable measure or report multiple measures while providing adequate discussion of inconsistent results.

    1. Reviewer #1 (Public review):

      Summary:

      The results offer compelling evidence that L5-L5 tLTD depends on presynaptic NMDARs, a concept that has previously been somewhat controversial.

      It documents the novel finding that presynaptic NMDARs facilitate tLTD through their metabotropic signaling mechanism.

      Strengths:

      The experimental design is clever and clean.

      The approach of comparing the results in cell pairs where NMDA is deleted either presynaptically or postsynaptically is technically insightful and yields decisive data.

      The MK801 experiments are also compelling.

      Weaknesses:

      No major weaknesses were noted by this reviewer.

    1. Reviewer #1 (Public review):

      Summary:

      The authors describe a role of sumoylation at K81 in p66Shc which affects endothelial dysfunction. This explores a new mechanism for understanding the role of PTMs in cellular processes.

      Strengths:

      The experiments are well planned and the results are well represented.<br /> Vascular tonality experiments were carried out nicely, given the amount of time and effort one needs to put in to get clean results from these experiments.

      Weaknesses:

      (1) The production of ROS has been measured in a very superficial way.<br /> The term "ROS" confers a plethora of chemical species which exerts different physiological effects on different cells and situations.<br /> Mitochondria through one of the source , but not the only source of ROS production. Only measuring ROS with mitosox do not reflect the cellular condition of ROS in a specific condition. I would suggest authors consider doing IF of oxidative stress specific markers , carbonyl group and also, maybe, Amplex red for determining average oxidative stress and ros production in the cells.<br /> (2) 8-OHG signal seems very confusing in Figure 7E. 8-ohg is supposed to be mainly in the nucleus and to some extent in mitochondria. The signal is very diffused in the images. I would suggest a higher magnification and better resolution images for 8-ohg. Also, the VWF signal is pretty weak whereas it should be strong given the staining is in aorta. Authors should redo the experiments.<br /> (3) PCA analysis is quite not clear. Why is there a convergence among the plots? Authors should explain. Also, I would suggest that the authors do the analysis done in Figure 8B again with R based packages. IPA, though being user-friendly, mostly does not yield meaningful results and the statistics carried out is not accurate. Authors should redo the analysis in R or Python whichever is suitable for them.<br /> (4) The MS analysis part seems pretty vague in methods. Please rewrite.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript assesses the utility of spatial image correlation spectroscopy (ICS) for measuring physiological responses to DNA damage. ICS is a long-established (~1993) method, similar to fluorescence correlation spectroscopy, for deriving information about the fluorophore density that underlies the intensity distributions of images.

      The revisions to the current manuscript have improved the understanding of the strengths and limitations of the spatial ICS method. In particular, since the measurements are obtaining complementary information to traditional focus counting, one does not expect a simple linear relationship between the quantities obtained by ICS and by immunostaining. The explanations are satisfactory to me and, I expect, to the interested reader.

      Additionally, I am satisfied with the code availability now that it is placed on Github.

    1. Reviewer #2 (Public review):

      Summary:

      This study aims to explore the ferroptosis-related immune landscape of TNBC through the integration of single-cell and bulk RNA sequencing data, followed by the development of a risk prediction model for prognosis and drug response. The authors identified key subpopulations of immune cells within the TME, particularly focusing on T cells and macrophages. Using machine learning algorithms, the authors constructed a ferroptosis-related gene risk score that accurately predicts survival and the potential response to specific drugs in TNBC patients.

      Strengths:

      The study identifies distinct subpopulations of T cells and macrophages with differential expression of ferroptosis-related genes. The clustering of these subpopulations and their correlation with patient prognosis is highly insightful, especially the identification of the TREM2+ and FOLR2+ macrophage subtypes, which are linked to either favorable or poor prognoses. The risk model thus holds potential not only for prognosis but also for guiding treatment selection in personalized oncology.

    1. Reviewer #1 (Public review):

      Summary:

      In this revised report, Yamanaka and colleagues investigate a proposed mechanism by which testosterone modulates seminal plasma metabolites in mice. Based on limited evidence in previous versions of the report, the authors softened the claim that oleic acid derived from seminal vesicle epithelium strongly affects linear progressive motility in isolated cauda epididymal sperm in vitro. Though the report still contains somewhat ambiguous references to the strength of the relationship between fatty acids and sperm motility.

      Strengths:

      Often, reported epidydimal sperm from mice have lower percent progressive motility compared with sperm retrieved from the uterus or by comparison with human ejaculated sperm. The findings in this report may improve in vitro conditions to overcome this problem, as well as add important physiological context to the role of reproductive tract glandular secretions in modulating sperm behaviors. The strongest observations are related to the sensitivity of seminal vesicle epithelial cells to testosterone. The revisions include the addition of methodological detail, modified language to reflect the nuance of some of the measurements, as well as re-performed experiments with more appropriate control groups. The findings are likely to be of general interest to the field by providing context for follow-on studies regarding the relationship between fatty acid beta oxidation and sperm motility pattern.

      Weaknesses:

      The connection between media fatty acids and sperm motility pattern remains inconclusive.

    1. Reviewer #1 (Public review):

      This work introduces and describes a useful curation pipeline of antibody-antigen structures downloaded from the PDB database. The antibody-antigen structures are presented in a new database called AACDB - with associated website - alongside annotations that were either corrected from those present in the PDB database, or added de-novo with solid methodology. Sequences, structures and annotations can be very easily downloaded from the AACDB website, speeding up the development of structure-based algorithms and analysis pipelines to characterize antibody-antigen interactions. However, AACDB is missing some important annotations that I believe would greatly enhance its usefulness, such as binding affinity annotations.

      I think the potentially most significant contribution of this database is the manual data curation to fix errors present in the PDB entries, by cross-referencing with the literature. The authors also seem to describe, whenever possible, the procedures they took to correct the annotations.

      I have personally verified some of the examples presented by the authors, and found that SAbDab appears to fix the mistakes related to mis-identification of antibody chains, but not other annotations.

      "(1) the species of the antibody in 7WRL was incorrectly labeled as "SARS coronavirus B012" in both PDB and SabDab" → I have verified the mistake and fix, and that SAbDab does not fix is, just uses the pdb annotation.<br /> "(2) 1NSN, the resolution should be 2.9 , but it was incorrectly labeled as 2.8" → I have verified the mistake and fix, and that saabdab does not fix it, just uses the PDB annotation.<br /> "(3) mislabeling of antibody chains as other proteins (e.g. in 3KS0, the light chain of B2B4 antibody was misnamed as heme domain of flavocytochrome b2)" → SAbDab fixes this as well in this case.<br /> "(4) misidentification of heavy chains as light chains (e.g. both two chains of antibody were labeled as light chain in 5EBW)" → SAbDab fixes this as well in this case.

      I believe the splitting of the pdb files is a valuable contribution as it standardizes the distribution of antibody-antigen complexes. Indeed, there is great heterogeneity in how many copies of the same structure are present in the structure uploaded to the PDB, generating potential artifacts for machine learning applications to pick up on. That being said, I have two thoughts both for the authors and the broader community. First, in the case of multiple antibodies binding to different epitopes on the same antigen, one should not ignore the potentially stabilizing effect that the binding of one antibody has on the complex, thereby enabling the binding of the second antibody. In general, I urge the community to think about what is the most appropriate spatial context to consider when modeling the stability of interactions from crystal structure data. Second, and in a similar vein, some antigens occur naturally as homomultimers - e.g. influenza hemagglutinin is a homotrimer. Therefore, to analyze the stability of a full-antigen-antibody structure, I believe it would be necessary to consider the full homo-trimer, whereas in the current curation of AACDB with the proposed data splitting, only the monomers are present.

      I think the annotation of interface residues is a very useful addition to structural datasets.

      I am, however, not convinced of the utility of *change* in SASA as a useful metric for identifying interacting residues, beyond what is already identified via pairwise distances between the antibody and antigen residues. If we had access to the unbound conformation of most antibodies and antigens, then we could analyze the differences in structural conformations upon binding, which can be in part quantified by change in SASA. However, as only bound structures are usually available, one is usually force to approximate a protein's unbound structure by computationally removing its binding partner - as it seems to me the authors of this work are doing.

      Some obvious limitations of AACDB in its current form include:

      AACDB only contains entries with protein-based antigens of at most 50 amino-acids in length. This excludes non-protein-based antigens, such as carbohydrate- and nucleotide-based, as well as short peptide antigens.<br /> AACDB does not include annotations of binding affinity, which are present in SAbDab and have been proven useful both for characterizing drivers of antibody-antigen interactions (cite https://www.sciencedirect.com/science/article/pii/S0969212624004362?via%3Dihub) and for benchmarking antigen-specific antibody-design algorithms (cite https://www.biorxiv.org/content/10.1101/2023.12.10.570461v1))

    1. Reviewer #1 (Public review):

      In their manuscript, Papadopoli et al explore the role of ETFDH in transformation. They note that ETFDH protein levels are decreased in cancer, and that deletion of ETFDH in cancer cell lines results in increased tumorigenesis, elevated OXPHOS and glycolysis, and a reduction in lipid and amino acid oxidation. The authors attribute these effects to increased amino acid levels stimulating mTORC1 signaling and driving alterations in BCL6 and EIF4EBP1. They conclude that ETFDH1 is epigenetically silenced in a proportion of neoplasms, suggesting a tumor-suppressive function. Overall, the authors logically present clear data and perform appropriate experiments to support their hypotheses. I only have a few minor points related to the semantics of a few of the author's statements.

      Minor Points

      Authors state, "we identified ETF dehydrogenase (ETFDH) as one of the most dispensable metabolic genes in neoplasia." Surely there are thousands of genes that are dispensable for neoplasia. Perhaps the authors can revise this sentence and similar sentiments in the text.

      Authors state, " These findings show that ETFDH loss elevates glutamine utilization in the CAC to support mitochondrial metabolism." While elevated glutamine to CAC flux is consistent with the statement that increased glutamine, the authors have not measured the effect of restoring glutamine utilization to baseline on mitochondrial metabolism. Thus, the causality implied by the authors can only be inferred based on the data presented. Indeed, the increased glutamine consumption may be linked to the increase in ROS, as glutamate efflux via system xCT is a major determinant of glutamine catabolism in vitro.

      Authors state that the mechanism described is an example of "retrograde signaling". However, the mechanism seems to be related to a reduction in BCAA catabolism, suggesting that the observed effects may be a consequence of altered metabolic flux rather than a direct signaling pathway. The data presented do not delineate whether the observed effects stem from disrupted mitochondrial communication or from shifts in nutrient availability and metabolic regulation.

      The authors should discuss which amino acids that are ETFDH substrates might affect mTORC1 activity, or consider whether other ETFDH substrates might also affect mTORC1 in their discussion. Along these lines, the authors might consider discussing why amino acids that are not ETFDH substrates are increased upon ETFDH loss.

    1. Reviewer #1 (Public review):

      To elucidate the mechanisms and evolution of animal biomineralization, Voigt et al. focused on the sponge phylum - the earliest branching extant metazoan lineages exhibiting biomineralized structures - with a particular emphasis on deciphering the molecular underpinnings of spicule formation. This study centered on calcareous sponges, specifically Sycon ciliatum, as characterized in previous work by Voigt et al. In S. ciliatum, two morphologically distinct spicule types are produced by a set of two different types of cells that secrete extracellular matrix proteins, onto which calcium carbonate is subsequently deposited. Comparative transcriptomic analysis between a region with active spicule formation and other body regions identified 829 candidate genes involved in this process. Among these, the authors focused on the calcarine gene family, which is analogous to the Galaxins, the matrix proteins known to participate in coral calcification. The authors performed three-dimensional structure prediction using AlphaFold, examined mRNA expression of Calcarin genes in spicule-forming cell types via in situ hybridization, conducted proteomic analysis of matrix proteins isolated from purified spicules, and carried out chromosome arrangement analysis of the Calcarin genes.

      Based on these analyses, it was revealed that the combination of Calcarin genes expressed during spicule formation differs between the founder cells-responsible for producing diactines and triactines-and the thickener cells that differentiate from them, underscoring the necessity for precise regulation of Calcarin gene expression in proper biomineralization. Furthermore, the observation that 4 Calcarin genes are arranged in tandem arrays on the chromosome suggests that two rounds of gene duplication followed by neofunctionalization have contributed to the intricate formation of S. ciliatum spicules. Additionally, similar subtle spatiotemporal expression patterns and tandem chromosomal arrangements of Galaxins during coral calcification indicate parallel evolution of biomineralization genes between S. ciliatum and aragonitic corals.

      Strengths:

      (1) An integrative research approach, encompassing transcriptomic, genomic, and proteomic analyses as well as detailed FISH.

      (2) High-quality FISH images of Calcarin genes, along with a concise summary clearly illustrating their expression patterns, is appreciated.

      (3) It was suggested that thickener cells originate from founder cells. To the best of my knowledge, this is the first study to demonstrate trans-differentiation of sponge cells based on the cell-type-specific gene expression, as determined by in situ hybridization.

      (4) The comparison between Calcarins of Calcite sponge and Galaxins of aragonitic corals from various perspective-including protein tertiary structure predictions, gene expression profiling during calcification, and chromosomal sequence analysis to reveal significant similarities between them.

      (5) The conclusions of this paper are generally well supported by the data; however, some FISH images require clearer indication or explanation.

      (6) Figure S2 (B, C, D): The fluorescent signals in these images are difficult to discern. If the authors choose to present signals at such low magnification, enhancing the fluorescence signals would improve clarity. Additionally, incorporating Figure S2A as an inset within Figure S2E may be sufficient to convey the necessary information about signal localization.

      (7) Figure S3A: The claim that Cal2-expressing spherical cells are closely associated with the choanoderm at the distal end of the radial tube is difficult to follow. Are these Cal2-expressing spherical cells interspersed among choanoderm cells, or are they positioned along the basal surface of the choanoderm? Clarifying their precise localization and indicating it in the image would strengthen the interpretation.

      (8) To further highlight the similarities between S.ciliatum and aragonitic corals in the molecular mechanisms of calcification, consider including a supplementary figure providing a concise depiction of the coral calcification process. This would offer valuable context for readers.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigated factors required for neural progenitors to exit the cell cycle before the adult stage. They first show that Kr is turned on in pupal stage MBNBs, and depletion of Kr from pupal stage NBs leads to retention of MBNBs into the adult stage. Then they demonstrate that these retained NBs maintain the expression of Imp, and co-depletion of Imp abolishes the extended neurogenesis. Further, they show that co-depletion of kr-h1 significantly reduces the retained MBNBs caused by loss of kr, suggesting antagonistic genetic interactions between these two. In addition, they demonstrate that over-expressing Kr-h1 leads to the striking phenotype of tumor-like neuroblast overgrowth in adult brains.

      Strengths:

      (1) The authors leveraged well-controlled, powerful genetic tools (including temporal control of RNAi knockdown using the Gal80ts system), and provided strong evidence that Kr expression in pupal stage MBNBs is required to repress Imp and promote the end of neurogenesis. Similarly, the experimental result of co-depleting Kr-h1 and Kr, and the striking phenotype upon Kr-h1 mis-expression, support the antagonistic roles played by Kr-h1 and Kr in this process.

      (2) The sample sizes, quantification methods, and p-values are well documented for all experiments. In most parts, the data presented strongly support their conclusions.

      (3) Identification of two transcription factors with opposite roles in controlling cell cycle exit, and their possible interactions with the Imp/Syp axis, is highly significant for the study on how the proliferation of neural progenitors is regulated and limited before the adult stage.

      Weaknesses:

      (1) The nature of the KrIf-1 allele is not clear. It is mentioned that this allele leads to misexpression of Kr in various tissues. However, it is not clear if Kr is mis-expressed or lost in MBNBs in the KrIf-1 mutant. If Kr is mis-expressed in MBNBs in the KrIf-1 mutant, then it would be difficult to explain why both loss of Kr and mis-expression of Kr in MBNBs lead to the same NB retention phenotype. The authors should examine Kr expression in MBNBs in the KrIf-1 mutant.

      (2) Some parts of the regulations and interactions between Kr, Kr-h1, Imp, Syp, and E93 are not well-defined. For example, the data suggest that Kr is turned on in the pupal stage MBNBs, and is required to end neurogenesis through repressing Imp and Kr-h1. To further support this conclusion, the authors can examine if Kr-h1 expression is up-regulated in kr-RNAi. The authors suggested that Kr-h1 may act upstream or in parallel to Imp/Syp, but also suggested that Kr-h1 may repress E93. The expression of Imp, Syp, and E93 can be examined in brains with Kr-h1 mis-expression to determine where Kr-h1 acts. If Imp expression is elevated when Kr-h1 is mis-expressed, then Kr-h1 may act upstream of Imp. If Imp/Syp expression does not change, then Kr-h1 may act on the E93 level.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Garcia et al. describes how the expression of a respiratory chain alternative oxidase (AOX) from the tunicate Ciona intestinalis, capable of transferring electrons directly from reduced coenzyme Q (CoQ) to oxygen, is able to induce an increase in the mass of Drosophila melanogaster larvae and an accelerated development, especially when the larvae are kept at low temperatures. In order to explain this phenomenon, the paper addresses the modifications in the activity and levels of the 'canonical' electron transfer system (ETS), i.e., complexes I-IV and of the ATP synthase. In addition, the abundance of different metabolites as well as the NAD+/NADH ratios are measured, finding significant differences between the larvae.

      Strengths:

      The observations of differences in growth, body mass and food intake in the wt D. melanogaster larvae vs. those expressing the AOX transgene are solid. The evidence that mild uncoupling of the ETS might accelerate development of the fly larvae is convincing.

      Weaknesses:

      Some of the observations, especially those concerning the origin of the metabolic remodelling in AOX-expressing larvae, are left unexplained, and the argumentation is somewhat speculative. What the authors mean by "reconfiguration" of the mitochondrial electron transfer system is not clear. If this implies that there is an actual change in ETS function and/or structural organisation in the presence of AOX, this conclusion is not supported by the experimental data. In addition, the influence of AOX activity in the mitochondrial ETS system is tested in vitro in the presence of saturating concentrations of substrates. The real degree to which AOX activity is actually influencing ETS activity in vivo remains unknown.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have used gene deletion approaches in zebrafish to investigate the function of genes of the hox clusters in pectoral fin "positioning" (but perhaps more accurately pectoral fin "formation").

      Strengths:

      The authors have employed a robust and extensive genetic approach to tackle an important and unresolved question.

      The results are largely presented in a very clear way.

      Weaknesses:

      The Abstract suggests that no genetic evidence exists in model organisms for a role of Hox genes in limb positioning. There are, however, several examples in mouse and other models (both classical genetic and other) providing evidence for a role of Hox genes in limb position, which is elaborated on in the Introduction.

      It would perhaps be more accurate to state that several lines of evidence in a range of model organisms (including the mouse) support a role for Hox genes in limb positioning. The author's work is not weakened by a more inclusive introduction that cites the current literature more comprehensively.

      It would be helpful for the authors to make a clear distinction between "positioning" of the limb/fin and whether a limb/fin "forms" at all, independent of the relative position of this event along the body axis.

      Discussion of why the zebrafish is sensitive to Hoxb loss with reference to the fin, but mouse Hoxb mutants do make a limb?

      Is this down to exclusive expression of Hoxbs in the zebrafish pectoral fin forming region rather than a specific functional role of the protein? This is important as it has implications for the interpretation of results throughout the paper and could explain some apparently conflicting results.

      Why is Hoxba more potent than Hoxbb? Is this because Hoxba has Hox4/5 present, while Hoxbb has only Hoxb5? Hoxba locus has retained many more Hox genes in cluster than hoxbb; therefore, one might expect to see greater redundancy in this locus).

      Deletion of either Hoxa or Hoxd in the background of the Hoxba mutant does have some effect. Is this a reflection of protein function or expression dynamics of Hoxa/Hoxd genes?

      Can we really be confident that there is a "transformation of pectoral fin progenitor cells into cardiac cells"?

      The failure to repress Nkx2.5 in the posterior (pelvic fin) domain is clear, but have these cells actually acquired cardiac identity? They would be expected to express Tbx5a (or b) as cardiac precursors, but this domain does not broaden. There is no apparent expansion of the heart (field)/domain or progenitors beyond the 16 somite stage. The claimed "migration" of heart precursors in the mutant is not clear. The heart/cardiac domain that does form in the mutant is not clearly expanded in the mutant. The domain of cmlc2 looks abnormal in the mutant, but I am not convinced it is "enlarged" as claimed by the authors. The authors have not convincingly shown that "the cells that should form the pectoral fin instead differentiate into cardiac cells."

      The only clear conclusion is the loss of pectoral fin-forming cells rather than these fin-forming cells being "transformed" into a new identity. It would be interesting to know what has happened to the cells of the pectoral fin-forming region in these double mutants.

      It is not clear what the authors mean by a "converse" relationship between forelimb/pectoral fin and heart formation. The embryological relationship between these two populations is distinct in amniotes.

      The authors show convincing data that RA cannot induce Tbx5a in the absence of Hob clusters, but I am not convinced by the interpretation of this result. The results shown would still be consistent with RA acting directly upstream of tbx5a, but merely that RA acts in concert with hox genes to activate tbx5a. In the absence of one or the other, Tbx5a would not be expressed. It is not necessary that RA and hoxbs act exclusively in a linear manner (i.e., RA regulates hoxb that in turn regulates tbx5a).

      The authors have carried out a functional test for the function of hoxb6 and hoxb8 in the hemizygous hoxb mutant background. What is lacking is any expression analysis to demonstrate whether Hoxb6b or Hoxb8b are even expressed in the appropriate pectoral fin territory to be able to contribute to pectoral fin development, either in this assay or in normal pectoral fin development.

      (The term "compensate" used in this section is confusing/misleading.)

      The authors' confounding results described in Figures 6-7 are consistent with the challenges faced in other model organisms in trying to explore the function of genes in the hox cluster and the known redundancy that exists across paralogous groups and across individual clusters.

      Given the experimental challenges in deciphering the actual functions of individual or groups of hox genes, a discussion of the normal expression pattern of individual and groups of hox genes (and how this may change in different mutant backgrounds) could be helpful to make conclusions about likely normal function of these genes and compensation/redundancy in different mutant scenarios.

    1. Reviewer #1 (Public review):

      The manuscript by Ivan et al aimed to identify epitopes on the Abeta peptide for a large set of anti-Abeta antibodies, including clinically relevant antibodies. The experimental work was well done and required a major experimental effort, including peptide mutational scanning, affinity determinations, molecular dynamics simulations, IP-MS, WB, and IHC. Therefore, it is of clear interest to the field. The first part of the work is mainly based on an assay in which peptides (15-18-mers) based on the human Abeta sequence, including some containing known PTMs, are immobilized, thus preventing aggregation. Although some results are in agreement with previous experimental structural data (e.g. for 3D6), and some responses to disease-associated mutations were different when compared to wild-type sequences (e.g. in the case of Aducanumab) - which may have implications for personalized treatment - I have concerns about the lack of consideration of the contribution of conformation (as in small oligomers and large aggregates) in antibody recognition patterns. The second part of the study used full-length Abeta in monomeric or aggregated forms to further investigate the differential epitope interaction between Aducanumab, donanemab, and lecanemab (Figures 5-7). Interestingly, these results confirmed the expected preference of these antibodies for aggregated Abeta, thus reinforcing my concerns about the conclusions drawn from the results obtained using shorter and immobilized forms of Abeta. Overall, I understand that the work is of interest to the field and should be published without the need for additional experimental data. However, I recommend a thorough revision of the structure of the manuscript in order to make it more focused on the results with the highest impact (second part).

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript "Targeted Protein Degradation by KLHDC2 Ligands Identified by High Throughput Screening" by Zhou, H. et al. describes the development of a high-throughput FP-based screen and the identification of a KLHDC2 ligand from a small molecule library. A counter screen and other filtering criteria led to the identification of lead compounds that contained a tetrahydroquinoline scaffold. Commercially available analogs (52 compounds) that shared this scaffold were characterized by a KLHDC2 competitive binding assay. Optimized compounds were obtained that demonstrated improved potency and increased binding affinity by SPR. Docking of a lead candidate (compound 6) suggested it bound at a distal lipophilic site within the SelK binding pocket of KLHDC2. Based on this model, the authors then synthesized PROTACs that linked the KLHDC2 binder to a BRD4-binding molecule, JQ1. These PROTAC candidates possessed different linker configurations, and PROTAC 8 was able to cause BRD4 degradation in cells, with a half-maximal degradation concentration (DC50) of 80 nM. The authors demonstrate the identification and characterization of small-molecule KLHDC2 ligands that can be used to generate PROTACs that result in BRD4 degradation in cells.

      Strengths:

      The study by Zhou, H. et al. expands the E3 ligase toolkit by targeting KLHDC2 to identify ligands for PROTAC development, which has predominantly relied on VHL and CRBN. This was accomplished using a described FP-based high-throughput screening strategy (high Z' values in 1536 well format). Both target-specific and counter-specific assays were performed, along with subsequent stringent follow-up assays designed to address non-specific binding/specificity concerns. Label-free direct binding validations by SPR were used to determine binding affinity/kinetics. A strength of the study is the characterization of the interaction between candidate compounds and KLHDC2 versus related KEAP1.

      Structural insight into the potential mode of binding was inferred by computational docking studies of the newly discovered KLHDC2 ligands. This was performed to identify where the identified scaffolds could be modified by linker incorporation for the design of PROTACs. The computational predictions were evaluated by linking a solvent-exposed site on the KLHDC2 ligand to JQ1. Three linkers were tested, and two compounds were found to result in BRD4 degradation in cells by HiBiT degradation assay and western blot. These findings demonstrate the feasibility of these compounds for the design of PROTAC-based degraders.

      The authors present compelling KLHDC2 binding data for their lead compounds and demonstrate degradation of a target using a PROTAC strategy. Accordingly, the screening approach and compounds identified are likely to be of interest to the field and are likely to be generalizable to other PROTAC targets of interest.

      Weaknesses:

      The specificity of compounds for KLHDC2 was assessed by using a counter screen against KEAP1 and in vitro binding assays. However, off-target effects might occur in a cellular context, which weren't fully explored in the study. Notably, the authors do not demonstrate that the degradation induced by their PROTACs in cells is KLHDC2-dependent. A requirement for KLHDC2-mediated degradation could be evaluated, for example, by using knockout/knockdown of KLHDC2, or other means, to demonstrate specificity. Addressing specificity is deemed important to evaluate the proposed PROTAC mechanism of action in a cellular context that results in the degradation of BRD4. Specificity is important when considering the utility of these new compounds for PROTAC design.

      Additional rationale behind the selection of linkers used to generate candidate PROTACs would be informative and would benefit from additional discussion and/or citation. The reasons for the lack of activity, such as for compound 9, were not fully explored or discussed, such as whether complex assembly is potentially affected by linker choice. Perhaps related to this point, the authors note that a trifluoromethoxy group increased the binding affinity of compound 6. However, the subsequent docking analysis revealed this moiety to be solvent-exposed. The relationship between this site of functionalization, linker selection, and the resulting binding affinity or effect on DC50 was not clear and/or could be developed further.

      Minor issues related to the presentation of the manuscript include sections that would benefit from either additional citation and/or description, such as the KI-696 inhibitor used and the BRD4 HiBiT degradation assay that was used to assess PROTAC potency. Figure captions should be reviewed to ensure that the number of independent experiments is indicated, and what data points and error bars represent, as these are not indicated in several figures. BRD4 levels were quantified in 4E; however, error/reproducibility (n) is not indicated.

    1. Reviewer #1 (Public review):

      The study aims to determine the role of Slit-Robo signaling in the development and patterning of cardiac innervation, a key process in heart development. Despite the well-studied roles of Slit axon guidance molecules in the development of the central nervous system, their roles in the peripheral nervous system are less clear. Thus, the present study addresses an important question. The study uses genetic knockout models to investigate how Slit2, Slit3, Robo1, and Robo2 contribute to cardiac innervation.

      Using constitutive and cell type-specific knockout mouse models, they show that the loss of endothelial-derived Slit2 reduces cardiac innervation. Additionally, Robo1 knockout, but not Robo2 knockout, recapitulated the Slit2 knockout effect on cardiac innervation, leading to the conclusion that Slit2-Robo1 signaling drives sympathetic innervation in the heart. Finally, the authors also show a reduction in isoproterenol-stimulated heart rate but not basal heart rate in the absence of endothelial Slit2.

      The conclusions of this paper are mostly well supported by the data, but some should be modified to account for the study's limitations and discussed in the context of previous literature.

      (1) It is well established that Slit ligands undergo proteolytic cleavage, generating N- and C-terminal fragments with distinct biological functions. Full-length Slit proteins and their fragments differ in cell association, with the N-terminal fragment typically remaining membrane-bound, while the C-terminal fragment is more diffusible. This distinction is crucial when evaluating the role of Slit proteins secreted by different cell types in the heart. However, this study does not examine or discuss the specific contributions of different Slit2 fragments, limiting its mechanistic insight into how Slit2 regulates cardiac innervation.

      (2) The endothelial-specific deletion of Slit2 leads to its loss in endothelial cells across various organs and tissues in the developing embryo. Therefore, the phenotypes observed in the heart may be influenced by defects in other parts of the embryo, such as the CNS or sympathetic ganglia, and this possibility cannot be ruled out.

    1. Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage have not been thoroughly characterized. This study aimed to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminates in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study were successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identified NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination was found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes were shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling was shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway was convincingly demonstrated.

      Weaknesses:

      One weakness was the claim of K63-linked ubiquitination in lysosomal damage-induced NF-kB activation. While it was clear that K63 ubiquitin chains were present on damaged lysosomes, no evidence was shown in the current study to demonstrate the specific requirement of K63 ubiquitin chains in the signaling axis being studied. Clarifying the roles of K63-linked versus other types of ubiquitin chains in lysosomal damage-induced NF-kB activation may improve the mechanistic insights and overall impact of this study.

      Another weakness was that the main conclusions of this study were all dependent on an artificial lysosomal damage agent. It will be beneficial to confirm key findings in other contexts involving lysosomal damage.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

    1. Reviewer #1 (Public review):

      Summary:

      The authors assess the role of map3k1 in adult Planaria through whole body RNAi for various periods of time. The authors' prior work has shown that neoblasts (stem cells that can regenerate the entire body) for various tissues are intermingled in the body. Neoblasts divide to produce progenitors that migrate within a "target zone" to the "differentiated target tissues" where they differentiate into a specific cell type. Here the authors show that map3k1-i animals have ectopic eyes that form along the "normal" migration path of eye progenitors (Fig. 1), ectopic neurons and glands along the AP axis (Fig. 2) and pharynx in ectopic anterior positions (Fig. 3). The rest of the study show that positional information is largely unaffected by loss of map3k1 (Fig. 4,5). However, loss of map3k1 leads to premature differentiated of progenitors along their normal migratory route (Fig. 6). They also show that an ill-defined "long-term" whole body depletion of map3k1 results in mis-specified organs and teratomas.

      Strengths:

      (1) The study has appropriate controls, sample sizes and statistics.<br /> (2) The work appears to be high-quality.<br /> (3) The conclusions are supported by the data.<br /> (4) Planaria is a good system to analyze the function of map3k1, which exists in mammals but not in other invertebrates.

      Weaknesses:

      (1) The paper is largely descriptive with no mechanistic insights.<br /> (2) Given the severe phenotypes of long-term depletion of map3k1, it is important that this exact timepoint is provided in the methods, figures, figure legends and results.<br /> (3) Fig. 1C, the ectopic eyes are difficult to see, please add arrows.<br /> (4) line 217 - why does the n=2/12 animals not match the values in Fig. 3B, which is 11/12 and 12/12. The numbers don't add up. Please correct/explain.<br /> (5) Figure panels do not match what is written in the results section. There is no Fig. 6E. Please correct.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigated the mechanism underlying boundary formation necessary for proper separation of vestibular sensory end organs. In both chick and mouse embryos, it was shown that a population of cells abutting the sensory (marked by high Sox2 expression) /nonsensory cell populations (marked by Lmx1a expression) undergo apical expansion, elongation, alignment and basal constriction to separate the lateral crista (LC) from the utricle. Using Lmx1a mouse mutant, organ cultures, pharmacological and viral-mediated Rock inhibition, it was demonstrated that the Lmx1a transcription factor and Rock-mediated actomyosin contractility is required for boundary formation and LC-utricle separation.

      Strengths:

      Overall, the morphometric analyses were done rigorously and revealed novel boundary cell behaviors. The requirement of Lmx1a and Rock activity in boundary formation was convincingly demonstrated.

      Weaknesses:

      However, the precise roles of Lmx1a and Rock in regulating cell behaviors during boundary formation were not clearly fleshed out. For example, phenotypic analysis of Lmx1a was rather cursory; it is unclear how Lmx1a, expressed in half of the boundary domain, control boundary cell behaviors and prevent cell mixing between Lmx1a+ and Lmx1a- compartments? Well-established mechanisms and molecules for boundary formation were not investigated (e.g. differential adhesion via cadherins, cell repulsion via ephrin-Eph signaling). Moreover, within the boundary domain, it is unclear whether apical multicellular rosettes and basal constrictions are drivers of boundary formation, as boundary can still form when these cell behaviors were inhibited. Involvement of other cell behaviors, such as radial cell intercalation and oriented cell division, also warrant consideration. With these lingering questions, the mechanistic advance of the present study is somewhat incremental.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Taujale et al describe an interdisciplinary approach to mine the human channelome and further discover orthologues across diverse organisms, culminating in delineating co-conserved patterns in an example ion channel: CALHM. Overall, this paper comes in two sections, one where 419 human ion channels and 48,000+ channels from diverse organisms are found through a multidisciplinary data mining approach, and a second where this data is used to find co-conserved sequences, whose functional significance is validated via experiments on CALHM1 and CALHM6. Overall, this is an intriguing data-first approach to better understand even understudied ion channels like CALHM6. However, more needs to be done to pull this story together into a single, coherent narrative.

      Strengths:

      This manuscript takes advantage of modern-day LLM tools to better mine the literature for ion channel sequences in humans and other species with orthologous ion channel sequences. They explore the 'dark channome' of understudied ion channels to better reveal the information evolution has to tell us about our own proteins, and illustrate the information this provides access to in experimental studies in the final section of the paper. Finally, they provide a wealth of information in the supplementary tables (in the form of Excel spreadsheets) for others to explore. Overall, this is a creative approach to a wide-reaching problem that can be applied to other families of proteins.

      Weaknesses:

      Overall, while a considerable amount of work has been done for this manuscript, the presentation, both in terms of writing and figures, leaves much to be desired. One can imagine a story that clearly describes the need for a better-curated sequence database of ion channels, and clearly describes how existing resources fall short, but here this is not very clearly illustrated.

      One question that arises with the part of the manuscript that discusses the identification and classification of ion channels is whether they plan to make these sequences available to the wider public. For the 419 human sequences, making a small database to share this result so that these sequences can be easily searched and downloaded would be desirable. There are a variety of acceptable formats for this: GitHub/figshare/zenodo/university website that allows a wider community to access their hard work. The authors have included enough information in the supplementary tables that this could be done by a motivated reader, but providing such a resource would greatly expand the impact of this paper. The same question can be asked of the 48,000+ ion channels from diverse organisms. For these, one is even worried that these are not properly sequenced genes? What checks have been done to confirm this? Uniport contains a good deal of unreviewed sequences, especially from single-celled organisms. Potentially, this is covered in the sentence in the Methods: "Finally, the results obtained from both the full-length and pore domains were retained as true orthologous relationships to remove extraneous hits." But this process could be discussed in more detail, clearly illustrating that the risk of gene duplicates and fragments in this final set of ion channel orthologues has been avoided. Related to this, does this analysis include or exclude isoforms?

      Another aspect of the identification and classification of ion channel genes that could be improved is the figures for this section. One is relatively used to seeing trees as shown in Figures 3 and 4, which show relationships between genes as distances or evolutionary relationships. The decision to show the families of ion channels in Figure 1 as pie charts within a UMAP embedding is intriguing but somewhat non-intuitive and difficult to understand. Illustrating these results with a standard tree-like visualization of the relationship of these channels to each other would be preferred.

      One aspect of the pie-chart/UMAP visualization that works well is the highlighting of the 'dark' ion channels according to the status as designated by IDG, which highlights a strength of this whole paper. However, throughout the paper, this could be emphasized more as the key advantage of this approach and how this or similar approaches could be used for other families of proteins. Specifically, in the initial statement describing 'light' vs 'dark channels', the importance of this distinction and the historical preference in science to study that which has already been studied can be discussed more, even including references to other studies that take this kind of approach. An example of a relevant reference here is to the Structural Genomics Consortium and its goals to achieve structures of proteins for which functions may not be well-characterized. Furthermore, this initial statement mentioning 'light channels' was initially confusing -- does this mean light-sensing channels? As one reads on this is clearly not the case, but for such an important central focus of this paper, these kinds of misunderstandings do not serve the authors well. Clarifying these motivations throughout the entire paper would strengthen it considerably.

      Additionally, since the authors have generated this UMAP visualization, it would be interesting to understand how the human vs orthologue gene sets compare in this space. Furthermore, Figure 1, for just the human analysis, should say more clearly that this is an analysis of the human gene set and include more of the information in the text: 419 human ion channel sequences, 75 sequences previously unidentified, 4 major groups and 55 families, 62 outliers, etc. Clearer visualizations of these categories and numbers within the UMAP (and newly included tree) visualization would help guide the reader to better understand these results.

      One of the most peculiar aspects of this paper is that it feels like two papers, one about better documenting the ion channel genes across species, and another with well-executed experiments on CALHM channels. One suggestion for how to link these two sections together better is to show that previous methods to analyze conserved residues in CALHM were significantly lacking. What results would that give? Why was this not enough? Were there just not enough identified CALHM orthologues to give strong signals in conservation analysis?

      Some of the analysis pipeline is unclear. Specifically, the RAG analysis seems critical, but it is unclear how this works - is it on top of the GPT framework and recursively inquires about the answer to prompts? Some example prompts would be useful to understand this. Furthermore, the existence of 76 auxiliary non-pore containing 'ion channel' genes in this analysis is a little confusing, as it seems a part of the pipeline is looking for pore-lining residues. Furthermore, how many of these are picked up in the larger orthologues search? Are these harder to perform checks on to ensure that they are indeed ion channel genes? A further discussion of the choice to include these auxiliary sequences would be relevant. This could just be further discussion of the literature that has decided to do this in the past.

      Overall, this manuscript is a valuable contribution to the field, but it requires a few main things to make it truly useful. Namely, how has this approach really improved the ability to identify conserved residues over a less-involved approach? A better description of their methods and results is required in the first section of the paper, as well as some cosmetic improvements.

    1. Reviewer #1 (Public review):

      Summary:

      This useful work extends a prior study from the authors to observe distance changes within the CNBD domains of a full-length CNG channel based on changes in single photon lifetimes due to tmFRET between a metal at an introduced chelator site and a fluorescent non-canonical amino acid at another site. The data are excellent and convincingly support the authors' conclusions. The methodology is of general use for other proteins. The authors also show that coupling of the CNBDs to the rest of the channel stabilizes the CNBDs in their active state, relative to an isolated CNBD construct.

      Strengths:

      The manuscript is very well written and clear.

    1. Reviewer #1 (Public review):

      The authors investigate how the viscoelasticity of the fingertip skin can affect the firing of mechanoreceptive afferents and they find a clear effect of recent physical skin state (memory), which is different between afferents. The manuscript is extremely well-written and well-presented. It uses a large dataset of low threshold mechanoreceptive afferents in the fingertip, where it is particularly noteworthy that the SA-2s have been thoroughly analyzed and play an important role here. They point out in the introduction the importance of the non-linear dynamics of the event when an external stimulus contacts the skin, to the point at which this information is picked up by receptors. Although clearly correlated, these are different processes, and it has been very well-explained throughout. I have some comments and ideas that the authors could think about that could further improve their already very interesting paper. Overall, the authors have more than achieved their aims, where their results very much support the conclusions and provoke many further questions. This impact of the previous dynamics of skin affecting current state can be explored further in so many ways and may help us in understanding skin aging and the effects of anatomical changes of the skin better.

      Comments on revised submission:

      The authors have taken all my considerations into account and provided excellent responses to them. They have modified their paper accordingly, which improves its clarity even more. Very interesting work and I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate that two human preproprotein human mutations in the BMP4 gene cause a defect in proprotein cleavage and BMP4 mature ligand formation, leading to hypomorphic phenotypes in mouse knock-in alleles and in Xenopus embryo assays.

      Strengths:

      They provide compelling biochemical and in vivo analyses supporting their conclusions, showing the reduced processing of the proprotein and concomitant reduced mature BMP4 ligand protein from impressively mouse embryonic lysates. They perform excellent analysis of the embryo and post-natal phenotypes demonstrating the hypomorphic nature of these alleles. Interesting phenotypic differences between the S91C and E93G mutants are shown with excellent hypotheses for the differences. Their results support that BMP4 heterodimers act predominantly throughout embryogenesis whereas BMP4 homodimers play essential roles at later developmental stages.

      Weaknesses:

      In the revision the authors have appropriately addressed the previous minor weaknesses.

    1. Reviewer #1 (Public review):

      This study investigates the role of microtubules (MT) in regulating insulin secretion from pancreatic islet beta cells. This is of great importance considering that controlled secretion of insulin is essential to prevent diabetes. Previously, it has been shown that KIF5B plays an essential role in insulin secretion by transporting insulin granules to the plasma membrane. High glucose activates KIF5B to increase insulin secretion resulting in cellular uptake of glucose. In order to prevent hypoglycemia, insulin secretion needs to be tightly controlled. Notably, it is known that KIF5B plays a role in MT sliding. This is important, as the authors described previously that beta cells establish a peripheral sub-membrane MT array, which is critical for withdrawal of excessive insulin granules from the secretion sites. At high glucose, the sub-membrane MT array is destabilized to allow for robust insulin secretion. Here the authors aim to answer the question how the peripheral array is formed. Based on the previously published data the authors hypothesize that KIF5B organizes the sub-membrane MT array via microtubule sliding.

      General comment:<br /> This manuscript provides data that indicate that KIF5B, like in many other cells, mediates MT sliding in beta cells to establish a non-radial sub-membrane MT array. This study is based mainly on in vitro assays and one cell line. To demonstrate the importance of KIF5B in vivo/under physiological conditions, the MT pattern and directionality in beta cells within whole isolated pancreatic islets from KIF5B KO mice was analyzed in comparison to their WT littermates. While the presented effects appear often rather small, it is important to note that small changes in MT configuration can have strong effects. However, the authors provide no link to insulin secretion and glucose uptake. Finally, it remains unclear whether a KIF5B-dependent mechanism regulating microtubule sliding plays a major role in controlling insulin secretion.

      Specific comments:<br /> (1) It is difficult to appreciate that there is a "peripheral sub-membrane microtubule array" as it is not well defined in the manuscript. This reviewer assumes that this is in the respective field clear. Yet, while it is appreciated that there is an increased amount of MTs close to the cytoplasmic membrane, the densities appear very variable along the membrane. Please provide a clear description in the Introduction what is meant with "peripheral sub-membrane microtubule array".<br /> (2) The authors described a "consistent presence of a significant peripheral array in the C57BL/6J control mice, while the KO counterparts exhibited a partial loss of this peripheral bundle. Specifically, the measured tubulin intensity at the cell periphery was significantly reduced in the KO mice compared to their wild-type counterparts". In vitro "control cells had convoluted non-radial MTs with a prominent sub-membrane array, typical for β cells (Fig. 2A), KIF5B-depleted cells featured extra-dense MTs in the cell center and sparse receding MTs at the periphery (Fig. 2B,C)". Please comment/discuss why in vivo there are no "extra-dense MTs in the cell center".<br /> (3) Authors should include in the Discussion a paragraph discussing the fact that small changes in MT configuration can have strong effects.

    1. Reviewer #1 (Public review):

      Summary:

      This short report shows that the transcription factor gene mirror is specifically expressed in the posterior region of the butterfly wing imaginal disk, and uses CRISPR mosaic knock-outs to show it is necessary to specify the morphological features (scales, veins, and surface) of this area.

      Strengths:

      The data and figures support the conclusions. The article is swiftly written and makes an interesting evolutionary comparison to the function of this gene in Drosophila. Based on the data presented, it can now be established that mirror likely has a similar selector function for posterior-wing identity in a plethora of insects.

      Comments on revisions:

      The revision is satisfactory. I agree with the authors that this article provides interesting insights on the evolution of insect wings. Of note, butterfly and fly wing imaginal disks differ in their mode of development: while fly wing disks grow as epithelial sacs that evaginate during metamorphosis, butterfly wing disks develop as relatively flat epithelial sheets that expand and differentiate progressively. This makes the similar role of mirror all the more interesting.

      The revised text appropriately discuss how selector genes like mirror regionalize the wing during larval and pupal development. This article makes a reasonable use of CRISPR mosaic knock outs and uses contralateral controls to show the nature of the phenotypic transformations.

    1. Reviewer #1 (Public review):

      The study addresses how faces and bodies are integrated in two STS face areas revealed by fMRI in the primate brain. It is building upon recordings and analysis of the responses of large populations of neurons to three sets of images, that vary face and body positions. These sets allowed the author to thoroughly investigate invariance to position on the screen (MC HC), to pose (P1 P2), to rotation (0 45 90 135 180 225 270 315), to inversion, to possible and impossible postures (all vs straight), to presentation of head and body together or in isolation. By analyzing neuronal responses, they find that different neurons showed preferences for body orientation, or head orientation or for the interaction between the two. By using a linear support vector machine classifier, they show that the neuronal population can decode head-body angle presented across orientations, in the anterior aSTS patch (but not middle mSTS patch), except for mirror orientation. On the contrary, mSTS neurons show less invariance for head-body angle and more specialization for head or body orientation.

      Strengths:

      These results expand prior work on the role of Anterior STS fundus face area in face-body integration and its invariance to mirror symmetry, with a rigorous set of stimuli revealing the workings of these neuronal populations in processing individuals as a whole, in an important series of carefully designed conditions.

      It also raises questions for future investigations comparing humans and monkeys expertise with upright and inverted configurations, in light of monkey-specific hanging upside-down behavior. Further, using two types of body postures (sitting, standing), they show a correlation in head-body angle between postures, suggesting that monkey orientation might be more meaningful to these neurons than precise posture.

    1. Reviewer #1 (Public review):

      Summary:

      Kv2 subfamily potassium channels contribute to delayed rectifier currents in virtually all mammalian neurons and are encoded by two distinct types of subunits: Kv2 alpha subunits that have the capacity to form homomeric channels (Kv2.1 and Kv2.2), and KvS or silent subunits (Kv5,6,8.9) that can assemble with Kv2.1 or Kv2.2 to form heteromeric channels with novel biophysical properties. Many neurons express both types of subunits and therefore have the capacity to make both homomeric Kv2 channels and heteromeric Kv2/KvS channels. Determining the contributions of each of these channel types to native potassium currents has been very difficult because the differences in biophysical properties are modest and there are no Kv2/KvS-specific pharmacological tools. The authors set out to design a strategy to separate Kv2 and Kv2/KvS currents in native neurons based on their observation that Kv2/KvS channels have little sensitivity to the Kv2 pore blocker RY785 but are blocked by the Kv2 VSD blocker GxTx. They clearly demonstrate that Kv2/KvS currents can be differentiated from Kv2 currents in native neurons using a two-step strategy to first selectively block Kv2 with RY785, and then block both with GxTx. The manuscript is beautifully written; takes a very complex problem and strategy and breaks it down so both channel experts and the broad neuroscience community can understand it.

      Strengths:

      The compounds the authors use are highly selective and unlikely to have significant confounding cross-reactivity to other channel types. The authors provide strong evidence that all Kv2/KvS channels are resistant to RY785. This is a strength of the strategy - it can likely identify Kv2/KvS channels containing any of the 10 mammalian KvS subunits and thus be used as a general reagent on all types of neurons. The limitation then of course is that it can't differentiate the subtypes, but at this stage, the field really just needs to know how much Kv2/KvS channels contribute to native currents and this strategy provides a sound way to do so.

      Weaknesses:

      The authors are very clear about the limitations of their strategy, the most important of which is that they can't differentiate different subunit combinations of Kv2/KvS heteromers. This study is meant to be a start to understanding the roles of Kv2/KvS channels in vivo. As such, this is a minor weakness, far outweighed by the potential of the strategy to move the field through a roadblock that has existed since its inception.

      The study accomplishes exactly what it set out to do: provide a means to determine the relative contributions of homomeric Kv2 and heteromeric Kv2/KvS channels to native delayed rectifier K+ currents in neurons. It also does a fabulous job laying out the case for why this is important to do.

      Comments on revisions:

      I liked this manuscript the first time and thought it was a great attempt to address a difficult problem, made more difficult by confusing background literature and conventions. The authors have kept all the strong points I liked from the first round and made it even stronger with their thoughtful and substantive responses to reviews. My first review was strongly supportive, and my initial short assessment/public review was written with the assumption that they would be public and the paper would be published essentially in its original form. All those points still apply so I am going to leave the initial reviews as is. The paper is a pleasure to read and a nice contribution to the field.

    1. Reviewer #2 (Public review):

      Summary:

      I found this an interesting manuscript describing a study investigating the role of MC4R signalling on kisspeptin neurons. The initial question is a good one. Infertility associated with MC4 mutations in humans has typically been ascribed to the consequent obesity and impaired metabolic regulation. Whether there is a direct role for MC4 in regulating the HPG axis has not been thoroughly examined. Here, the researchers have put together an elegant combination of targeted loss of function and gain of function in vivo experiments, specifically targeting MC4 expression in kisspeptin neurons. This excellent experimental design should provide compelling evidence for whether melanocortin signalling has a direct role in arcuate kisspeptin neurons to support normal reproductive function. There were definite effects on reproductive function (irregular estrous cycle, reduced magnitude of LH surge induced by exogenous estradiol). However, the magnitude of these responses and the overall effect on fertility were relatively minor. The mice lacking MC4R in kisspeptin neurons remained fertile despite these irregularities. The second part of the manuscript describes a series of electrophysiological studies evaluating the pharmacological effects of melanocortin signalling in kisspeptin cells in ex-vivo brain slides. These studies characterised interesting differential actions of melanocortins in two different populations of kisspeptin neurons. Collectively, I think the study provides novel insights into how direct actions of melanocortin signalling, via the MC4 receptor in kisspeptin neurons, contribute to the metabolic regulation of the reproductive system. Importantly, however, it is clear that other mechanisms are also at play.

      Strengths:

      The loss of function/gain of function experiments provide a conceptually simple but hugely informative experimental design. This is the key strength of the current paper - especially the knock-in study that showed improved reproductive function even in the presence of ongoing obesity. This is a very convincing result that documents that reproductive deficits in MC4R knockout animals (and humans with deleterious variants of the MC4R gene) can be ascribed to impaired signalling in the hypothalamic kisspeptin neurons and not necessarily simply caused as a consequence of obesity. As concluded by the authors: "reproductive impairments observed in MC4R deficient mice, which replicate many of the conditions described in humans, are largely mediated by the direct action of melanocortins via MC4R on Kiss1 neurons and not to their obese phenotype." This is important, as it might change the way such fertility problems are treated.

      Limitation:

      The mechanistic studies evaluating melanocortin signalling in kisppetin neurons were all completed in ovariectomized animals (with and without exogenous hormones). This reductionist approach allowed a focus on the direct actions of estradiol to regulate responses but missed an opportunity to evaluate how cyclical changes in hormones might impact the system. Such cyclical changes are fundamental to how these neurons function in vivo and may dynamically alter the way they respond to hormones and neuropeptides. However, the inclusion of gonad-intact animals would have significantly increased the complexity of experiments and can reasonably be considered outside of the scope of the present study.

    1. Reviewer #1 (Public review):

      Summary:

      The authors track the motion of multiple consortia of Multicellular Magnetotactic Bacteria moving through an artificial network of pores and report a discovery of a simple strategy for such consortia to move fast through the network: an optimum drift speed is attained for consortia that swim a distance comparable to the pore size in the time it takes to align the with an external magnetic field. The authors rationalize their observations using dimensional analysis and numerical simulations. Finally, they argue that the proposed strategy could generalize to other species by demonstrating the positive correlation between the swimming speed and alignment time based on theoretical analysis and parameters derived from literature.

      Strengths:

      The underlying dimensional analysis and model convincingly rationalize the experimental observation of an optimal drift velocity: the optimum balances the competition between the trapping in pores at large magnetic fields and random pore exploration for weak magnetic fields.

      Weaknesses:

      The convex pore geometry studied here creates convex traps for cells, which I expect enhances their trapping. Natural environments may create a much smaller concentration of such traps. In this case, whether a non-monotonic dependence of the drift velocity on the Scattering number would persist is unclear.

      Comments on revisions:

      Thank you very much for addressing my comments. I think the revisions have improved the paper.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript reports the investigation of PriC activity during DNA replication initiation in Escherichia coli. It is reported that PriC is necessary for growth and control of DNA replication initiation under diverse conditions where helicase loading is perturbed at the chromosome origin oriC. A model is proposed where PriC loads helicase onto ssDNA at the open complex formed by DnaA at oriC. Reconstituted helicase loading assays in vitro are consistent with the model.

      Strengths:

      The complementary combination of genetics in vivo and reconstituted assays in vitro provide solid evidence to support the role of PriC at a replication origin.

      The manuscript is well written and has a logical narrative.

      The data provide new insight to how bacteria might load helicase at the replication origin when the wild-type DnaA-dependent loading pathway is perturbed.

      Weakness:

      It has not yet been established whether PriC localises at oriC in vivo under the conditions tested.

    1. Reviewer #1 (Public review):

      Summary:

      This paper focuses on understanding how covalent inhibitors of peroxisome proliferator-activated receptor-gamma (PPARg) show improved inverse agonist activities. This work is important because PPARg plays essential roles in metabolic regulation, insulin sensitization, and adipogenesis. Like other nuclear receptors, PPARg, is a ligand-responsive transcriptional regulator. Its important role, coupled with its ligand-sensitive transcriptional activities, makes it an attractive therapeutic target for diabetes, inflammation, fibrosis, and cancer. Traditional non-covalent ligands like thiazolininediones (TZDs) show clinical benefit in metabolic diseases, but utility is limited by off-target effects and transient receptor engagement. In previous studies, the authors characterized and developed covalent PPARg inhibitors with improved inverse agonist activities. They also showed that these molecules engage unique PPARg ligand binding domain (LBD) conformations whereby the c-terminal helix 12 penetrates into the orthosteric binding pocket to stabilize a repressive state. In the nuclear receptor superclass of proteins, helix 12 is an allosteric switch that governs pharmacologic responses, and this new conformation was highly novel. In this study, the authors did a more thorough analysis of how two covalent inhibitors, SR33065 and SR36708 influence the structural dynamics of PPARg LBD.

      Strengths:

      (1) The authors employed a compelling integrated biochemical and biophysical approach.

      (2) The cobinding studies are unique for the field of nuclear receptor structural biology, and I'm not aware of any similar structural mechanism described for this class of proteins.

      (3) Overall, the results support their conclusions.

      (4) The results open up exciting possibilities for the development of new ligands that exploit the potential bidirectional relationship between the covalent versus non-covalent ligands studied here.

      Weaknesses:

      (1) The major weakness in this work is that it is hard to appreciate what these shifting allosteric ensembles actually look like on the protein structure. Additional graphical representations would really help convey the exciting results of this study.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Harris and Gallistel investigates how the rate of learning and strength of conditioned behavior post learning depend on the various temporal parameters of Pavlovian conditioning. They replicate results from Gibbon and Balsam (1981) in rats to show that the rate of learning is proportional to the ratio between the cycle duration and the cue duration. They further show that the strength of conditioned behavior post learning is proportional to the cue duration, and not the above ratio. The overall findings here are interesting, provide context to many conflicting recent results on this topic, and are supported by reasonably strong evidence. Nevertheless, there are some major weaknesses in the evidence presented for some of the stronger claims in the manuscript.

      Strengths:

      This manuscript has many strengths including a rigorous experimental design, several different approaches to data analysis, careful consideration of prior literature, and a thorough introduction and discussion. The central claim-that animals track the rates of events in their environment, and that the ratio of two rates determine the rate of learning-is supported with solid evidence.

      Weaknesses:

      Despite the above major strengths, some key aspects of the paper need major improvement. These are listed below.

      (1) A key claim made here is that the same relationship (including the same parameter) describes data from pigeons by Gibbon and Balsam (1981) and the rats in this study. I think the evidence for this claim is weak as presented here. First, the exact measure used for identifying trials to criterion makes a big difference in Fig 3. As best as I understand, the authors do not make any claims about which of these approaches is the "best" way. Second, the measure used for identifying trials to criterion in Fig 1 appears different from any of the criteria used in Fig 3. If so, to make the claim that the quantitative relationship is one and the same in both datasets, the authors need to use the same measure of learning rate on both datasets and show that the resultant plots are statistically indistinguishable. Currently, the authors simply plot the dots from the current dataset on the plot in Fig 1 and ask the readers to notice the visual similarity. This is not at all enough to claim that both relationships are the same. In addition to the dependence of the numbers on the exact measure of learning rate used, the plots are in log-log axis. Slight visual changes can mean a big difference in actual numbers. For instance, between Fig 3 B and C, the highest information group moves up only "slightly" on the y-axis but the difference is a factor of 5. The authors need to perform much more rigorous quantification to make the strong claim that the quantitative relationships obtained here and in Gibbon and Balsam 1981 are identical.

      (2) Another interesting claim here is that the rates of responding during ITI and the cue are proportional to the corresponding reward rates with the same proportionality constant. This too requires more quantification and conceptual explanation. For quantification, it would be more convincing to calculate the regression slope for the ITI data and the cue data separately and then show that the corresponding slopes are not statistically distinguishable from each other. Conceptually, I am confused why the data used to the test the ITI proportionality come from the last 5 sessions. Specifically, if the model is that animals produce response rates during the ITI (a period with no possible rewards) based on the overall rate of rewards in the context, wouldn't it be better to test this before the cue learning has occurred? Before cue learning, the animals would presumably only have attributed rewards in the context to the context and thus, produce overall response rates in proportion to the contextual reward rate. After cue learning, the animals could technically know that the rate of rewards during ITI is zero. Why wouldn't it be better to test the plotted relationship for ITI before cue learning has occurred? Further, based on Fig 1, it seems that the overall ITI response rate reduces considerably with cue learning. What is the expected ITI response rate prior to learning based on the authors' conceptual model? Why does this rate differ pre and post cue learning? Finally, if the authors' conceptual framework predicts that ITI response rate after cue learning should be proportional to contextual reward rate, why should the cue response rate be proportional to cue reward rate instead of cue reward rate plus contextual reward rate?

      (3) I think there was a major conceptual disconnect between the gradual nature of learning shown in Figs 7 and 8 and the information theoretic model proposed by the authors. To the extent that I understand the model, the animals should simply learn the association once the evidence crosses a threshold (nDKL > threshold) and then produce behavior in proportion to the expected reward rate. If so, why should there be a gradual component of learning as shown in these figures? In terms of the proportional response rule to rate of rewards, why is it changing as animals go from 10% to 90% of peak response? I think the manuscript would be much strengthened if these results are explained within the authors' conceptual framework. If these results are not anticipated by the authors' conceptual framework, please do explicitly state this in the manuscript.

      (4) I find the idea stated in the Conclusion section that any model considering probability of reinforcement cannot be correct because it doesn't have temporal units to be weak. I think the authors might mean that existing models based on probability do not work and not that no possible model can work. For any point process, the standard mathematical treatment of continuous time is to compute the expected count of events as p*dt where p is the probability of occurrence of the event in that time bin and dt is an infinitesimal time bin. There is obviously a one-to-one mapping between probability of an event in a point process and its rate. Existing models use an arbitrary time bin/trial and thus, I get the authors' argument in the discussion. However, I think their conclusion is overstated.

      (5) The discussion states that the mutual information defined in equation 1 does not change during partial reinforcement. I am confused by this. The mean delay between reinforcements increases in inverse proportion to the probability of reinforcement, but doesn't the mean delay between cue and next reinforcement increase by more than this amount (next reinforcement is greater than or equal to the cue-to-cue interval away from the cue for many trials)? Why is this ratio invariant to partial reinforcement?

      Comments on revisions:

      Update following revision

      (1) This point is discussed in more detail in the attached file, but there are some important details regarding the identification of the learned trial that require more clarification. For instance, isn't the original criterion by Gibbon et al. (1977) the first "sequence of three out of four trials in a row with at least one response"? The authors' provided code for the Wilcoxon signed rank test and nDkl thresholds looks for a permanent exceeding of the threshold. So, I am not yet convinced that the approaches used here and in prior papers are directly comparable. Also, there's still no regression line fitted to their data (Fig 3's black line is from Fig 1, according to the legends). Accordingly, I think the claim in the second paragraph of the Discussion that the old data and their data are explained by a model with "essentially the same parameter value" is not yet convincing without actually reporting the parameters of the regression. Related to this, the regression for their data based on my analysis appears to have a slope closer to -0.6, which does not support strict timescale invariance. I think that this point should be discussed as a caveat in the manuscript.

      (2) The authors report in the response that the basis for the apparent gradual/multiple step-like increases after initial learning remains unclear within their framework. This would be important to point out in the actual manuscript. Further, the responses indicating the fact that there are some phenomena that are not captured by the current model would be important to state in the manuscript itself.

      (3) There are several mismatches between results shown in figures and those produced by the authors' code, or other supplementary files. As one example, rat 3 results in Fig 11 and Supplementary Materials don't match and neither version is reproduced by the authors' code. There are more concerns like this, which are detailed in the attached review file.

    1. Reviewer #1 (Public review):

      Summary:

      Systemic and partial Tcf7l2 repression is effective in protecting cancer mice from cachexia-induced death. Hence, this is a promising treatment strategy for cancer patients suffering from cachexia.

      Strengths:

      The method is well-designed and clearly explained.

      Weaknesses:

      (1) Abbreviations should be mentioned in full terms for the first time.

      (2) Relatively old or even very old references in the Introduction and Discussion.

      (3) The result section contains discussion with references, as well.

      (4) The number of mice in individual groups is relatively small (3 mice in some groups).

    1. Reviewer #1 (Public review):

      This is a very elegant and convincing study. Using systematic screening of actin tail formation in two bacterial strains and employing a panel of CRISPR-CAS ko cell lines, the authors identify a novel dynamin-related GTPase GVIN, which forms an oligomeric coat around an intracellular Burkholderia strain. The bacterial O-antigen LPS layer is required for the formation of the GVIN coat, which disturbs the polar localization of the bacterial actin-polymerizing BimA protein.

      I am not an expert in infection studies, but the experiments appear to be of high quality, the figures are well prepared, and clean and statistically significant results are provided. I have no criticism of the presented approaches.

      The identification of a novel GBP1-independent pathway targeting intracellular bacteria is not only of fundamental importance for the immunity field but also of high interest to researchers in other areas, for example, evolutionary or structural biologists.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes a novel magnetic steering technique to target human adipose derived mesenchymal stem cells (hAMSC) or induce pluripotent stem cells to the TM (iPSC-TM). The authors show delivery of the stem cells lowered IOP, increased ouflow facility, and increased TM cellularity.

      Strengths:

      The technique is novel and shows promise as a novel therapeutic to lower in IOP in glaucoma. hAMSC are able to lower IOP below baseline as well as increase outflow facility above baseline with no tumorigenicity. These data will have a positive impact on the field and will guide further research using hAMSC in glaucoma models.

      Weaknesses:

      The transgenic mouse model of glaucoma the authors used did not show ocular hypertensive phenotypes as previously reported; therefore, the Tg-MYOCY437H model should be used with caution in the future. However, the results presented here clearly show magnetically steered cell therapy as a viable treatment strategy to lower intraocular pressure even from baseline. Future studies are needed to demonstrate the effects in ocular hypertensive eyes.

    1. Örsted hat das derzeit weltweit größte Windenergieprojekt Harnz-ZV unterbrochen. Die Pause stellt die Realisierung des britischen Ziels, Bis 2030 50 Gigawatt Strom durch Auf Schrahr, Windenergie Windenergie zu produzieren in Frage. Der Windpark Hornzzi vor hätte alleine oder soll alleine 2400 Megawatt Strom produzieren. Für die Unterbrechung wurden vor allem kostengründelverantwortlich gemacht. In den USA wurden von der Trump-Administration mehrere Windenergieprojekte aus Tanz gestorpt.

      https://www.connaissancedesenergies.org/afp/eolien-offshore-le-geant-orsted-met-en-pause-lexpansion-du-plus-grand-parc-du-monde-250507?utm_source=newsletter&utm_medium=fil-info-energies&utm_campaign=/newsletter/cde-aujourdhui-7-mai-2025&sstc=u36579nl166 571

    1. Reviewer #1 (Public review):

      The authors attempted to replicate previous work showing that counterconditioning leads to more persistent reduction of threat responses, relative to extinction. They also aimed to examine the neural mechanisms underlying counterconditioning and extinction. They achieved both of these aims, and were able to provide some additional information, such as how counterconditioning impacts memory consolidation. Having a better understanding of which neural networks are engaged during counterconditioning may provide novel pharmacological targets to aid in therapies for traumatic memories. It will be interesting to follow up by examining the impact of varying amounts of time between acquisition and counterconditioning phases, to enhance replicability to real world therapeutic settings.

      Major strengths

      • This paper is very well written and attempts to comprehensively assess multiple aspects counterconditioning and extinction processes. For instance, the addition of memory retrieval tests is not core to the primary hypotheses, but provides additional mechanistic information on how episodic memory is impacted by counterconditioning. This methodical approach is commonly seen in animal literature, but less so in human studies.

      • The Group x Cs-type x Phase repeated measure statistical tests with 'differentials' as outcome variables are quite complex, however the authors have generally done a good job of teasing out significant F test findings with post hoc tests and presenting the data well visually. It is reassuring that there is convergence between self-report data on arousal and valence and the pupil dilation response. Skin conductance is a notoriously challenging modality, so it is not too concerning that this was placed in the supplementary materials. Neural responses also occurred in logical regions with regards to reward learning.

      • Strong methodology with regards to neuroimaging analysis, and physiological measures.

      • The authors are very clear on documenting where there were discrepancies from their pre-registration and providing valid rationales for why.

      Major Weaknesses

      • The statistics showing that counterconditioning prevents differential spontaneous recovery are the weakest p values of the paper (and using one tailed tests, although this is valid due to directions being pre-hypothesised). This may be due to relatively small number of participants and some variability in responses.

    1. Reviewer #1 (Public review):

      Summary:

      Audio et al. present an interesting study examining cerebral blood volume (CBV) across cortical areas and layers in non-human primates (NHPs) using high-resolution MRI. While with contrast agents are frequently employed to improve fMRI sensitivity in NHP research, its application for characterizing baseline CBV distribution is less common. This study quantifies large-vessel distribution as well as regional and laminar CBV variations, comparing them with other metrics.

      Strengths:

      (1) Noninvasive mapping of relative cerebral blood volume is novel for non-human primates.<br /> (2) A key finding was the observation of variations in CBV across regions; primary sensory cortices had high CBV, whereas other higher areas had low CBV.<br /> (3) The measured relative CBV values correlated with previously reported neuronal and receptor densities, potentially providing valuable physiological insights.

      Weaknesses:

      (1) A weakness of this manuscript is that the quantification of CBV with postprocessing approaches to remove susceptibility effects from pial and penetrating vessels is not fully validated, especially on a laminar scale.<br /> (2) High-resolution MRI with a critical sampling frequency estimated from previous studies (Weber 2008, Zheng 1991) was performed to separate penetrating vessels. However, this approach depends on multiple factors, including spatial resolution, contrast agent dosage, and data processing methods. This raises concerns about the generalizability of these findings to other experimental setups or populations.<br /> (3) Baseline R2* is sensitive to baseline R2, vascular volume, iron content, and susceptibility gradients. Additionally, it is sensitive to imaging parameters; higher spatial resolution tends to result in lower R2* values (closer to the R2 value). Although baseline R2* correlates with several physiological parameters, drawing direct physiological inferences from it remains challenging.<br /> (4) CBV-weighted deltaR2*, which depends on both CBV and contrast agent dose, correlates with various metrics (cytoarchitectural parcellation, myelin/receptor density, cortical thickness, CO, cell-type specificity, etc.). While such correlations may be useful for exploratory analyses, all comparisons depend on measurement accuracy. A fundamental question remains whether CBV-weighted ΔR2* can provide reliable and biologically meaningful insights into these metrics, particularly in diseased or abnormal brain states.

    1. Reviewer #1 (Public review):

      Summary:

      This study explores how heterozygosity for specific neurodevelopmental disorder-associated Trio variants affects mouse behavior, brain structure, and synaptic function, revealing distinct impacts on motor, social, and cognitive behaviors linked to clinical phenotypes. Findings demonstrate that Trio variants yield unique changes in synaptic plasticity and glutamate release, highlighting Trio's critical role in presynaptic function and the importance of examining variant heterozygosity in vivo.

      Strengths:

      This study generated multiple mouse lines to model each Trio variant, reflecting point mutations observed in human patients with developmental disorders. The authors employed various approaches to evaluate the resulting behavioral, neuronal morphology, synaptic function, and proteomic phenotypes.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript is about using different analytical approaches to allow ancestry adjustments to GWAS analyses amongst admixed populations. This work is a follow-on from the recently published ITHGC multi-population GWAS (https://doi.org/10.7554/eLife.84394), with the focus on the admixed South African populations. Ancestry adjustment models detected a peak of SNPs in the class II HLA DPB1, distinct from the class II HLA DQA1 loci signficant in the ITHGC analysis.

      Strengths:

      Excellent demonstration of GWAS analytical pipelines in highly admixed populations. Particularly the utility of ancestry adjustment to improve study power to detect novel associations. Further confirmation of the importance of the HLA class II locus in genetic susceptibility to TB.

      Weaknesses:

      Limited novelty compared to the group's previous existing publications and the body of work linking HLA class II alleles with TB susceptibility in South Africa or other African populations. This work includes only ~100 new cases and controls from what has already been published. High resolution HLA typing has detected significant signals in both the DQA1 and DPB1 regions identified by the larger ITHGC and in this GWAS analysis respectively (Chihab L et al. HLA. 2023 Feb; 101(2): 124-137).<br /> Despite the availability of strong methods for imputing HLA from GWAS data (Karnes J et Plos One 2017), the authors did not confirm with HLA typing the importance of their SNP peak in the class II region. This would have supported the importance of this ancestry adjustment versus prior ITHGC analysis.

      The populations consider active TB and healthy controls (from high-burden presumed exposed communities) and do not provide QFT or other data to identify latent TB infection.

      Important methodological points for clarification and for readers to be aware of when reading this paper:

      (1) One of the reasons cited for the lack of African ancestry-specific associations or suggestive peaks in the ITHGC study was the small African sample size. The current association test includes a larger African cohort and yields a near-genome-wide significant threshold in the HLA-DPB1 gene originating from the KhoeSan ancestry. Investigation is needed as to whether the increase in power is due to increased African samples and not necessarily the use of the LAAA model as stated on lines 295 and 296?

      Authors response - The Manhattan plot in Figure 3 includes the results for all four models: the traditional GWAS model (GAO), the admixture mapping model (LAO), the ancestry plus allelic (APA) model and the LAAA model. In this figure, it is evident that only the LAAA model identified the association peak on chromosome 6, which lends support the argument that the increase in power is due to the use of the LAAA model and not solely due to the increase in sample size.<br /> Reviewer comment - This data supports the authors conclusions that increase power is related to the LAAA model application rather than simply increase sample size.

      (2) In line 256, the number of SNPs included in the LAAA analysis was 784,557 autosomal markers; the number of SNPs after quality control of the imputed dataset was 7,510,051 SNPs (line 142). It is not clear how or why ~90% of the SNPs were removed. This needs clarification.

      Authors response:<br /> In our manuscript (line 194), we mention that "...variants with minor allele frequency (MAF) < 1% were removed to improve the stability of the association tests." A large proportion of imputed variants fell below this MAF threshold and were subsequently excluded from this analysis.

      Reviewers additional comment: The authors should specify the number of SNPs in the dataset before imputation and indicate what proportion of the 784,557 remaining SNPs were imputed. Providing this information might help the reader better understand the rationale behind the imputation process.

      (3) The authors have used the significance threshold estimated by the STEAM p-value < 2.5x10-6 in the LAAA analysis. Grinde et al. (2019 implemented their significance threshold estimation approach tailored to admixture mapping (local ancestry (LA) model), where there is a reduction in testing burden. The authors should justify why this threshold would apply to the LAAA model (a joint genotype and ancestry approach).

      Authors response: We describe in the methods (line 189 onwards) that the LAAA model is an extension of the APA model. Since the APA model itself simultaneously performs the null global ancestry only model and the local ancestry model (utilised in admixture mapping), we thus considered the use of a threshold tailored to admixture mapping appropriate for the LAAA model.

      Reviewers additional comment: While the LAAA model is an extension of the APA model, the authors describe the LAAA test as 'models the combination of the minor allele and the ancestry of the minor allele at a specific locus, along with the effect of this interaction,' thus a joint allele and ancestry effects model. Grinde et al. (2019) proposed the significance threshold estimation approach, STEAM, specifically for the LA approach, which tests for ancestry effects alone and benefits from the reduced testing burden. However, it remains unclear why the authors found it appropriate to apply STEAM to the LAAA model, a joint test for both allele and ancestry effects, which does not benefit from the same reduction in testing burden.

      (4) Batch effect screening and correction (line 174) is a quality control check. This section is discussed after global and local ancestry inferences in the methods. Was this QC step conducted after the inferencing? If so, the authors should justify how the removed SNPs due to the batch effect did not affect the global and local ancestry inferences or should order the methods section correctly to avoid confusion.

      Authors response: The batch effect correction method utilised a pseudo-case-control comparison which included global ancestry proportions. Thus, batch effect correction was conducted after ancestry inference. We excluded 36 627 SNPs that were believed to have been affected by the batch effect. We have amended line 186 to include the exact number of SNPs excluded due to batch effect.<br /> The ancestry inference by RFMix utilised the entire merged dataset of 7 510 051 SNPs. Thus, the SNPs removed due to the batch effect make up a very small proportion of the SNPs used to conduct global and local ancestry inferences (less than 0.5%). As a result, we do not believe that the removed SNPs would have significantly affected the global and local ancestry inferences. However, we did conduct global ancestry inference with RFMix on each separate dataset as a sanity check. In the tables below, we show the average global ancestry proportions inferred for each separate dataset, the average global ancestry proportions across all datasets and the average global ancestry proportions inferred using the merged dataset. The SAC and Xhosa cohorts are shown in two separate tables due to the different number of contributing ancestral populations to each cohort. The differences between the combined average global ancestry proportions across the separate cohorts does not differ significantly to the global ancestry proportions inferred using the merged dataset.

      This is an excellent response and should remain accessible to readers for clarifying this issue.

      Comments on revisions:

      Thank you for addressing my other recommendations to authors. These have all been satisfactorily addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This study reveals that TRPV1 signaling plays a key role in tympanic membrane (TM) healing by promoting macrophage recruitment and angiogenesis. Using a mouse TM perforation model, researchers found that blood-derived macrophages accumulated near the wound, driving angiogenesis and repair. TRPV1-expressing nerve fibers triggered neuroinflammatory responses, facilitating macrophage recruitment. Genetic Trpv1 mutation reduced macrophage infiltration, angiogenesis, and delayed healing. These findings suggest that targeting TRPV1 or stimulating sensory nerve fibers could enhance TM repair, improve blood flow, and prevent infections. This offers new therapeutic strategies for TM perforations and otitis media in clinical settings. This is an excellent and high-quality study that provides valuable insights into the mechanisms underlying TM wound healing.

      Strengths:

      The work is particularly important for elucidating the cellular and molecular processes involved in TM repair. However, there are several concerns about the current version.

      Weaknesses:

      Major concerns

      (1) The method of administration will be a critical factor when considering potential therapeutic strategies to promote TM healing. It would be beneficial if the authors could discuss possible delivery methods, such as topical application, transtympanic injection, or systemic administration, and their respective advantages and limitations for targeting TRPV1 signaling. For example, Dr. Kanemaru and his colleagues have proposed the use of Trafermin and Spongel to regenerate the eardrum.

      (2) The authors appear to have used surface imaging techniques to observe the TM. However, the TM consists of three distinct layers: the epithelial layer, the fibrous middle layer, and the inner mucosal layer. The authors should clarify whether the proposed mechanism involving TRPV1-mediated macrophage recruitment and angiogenesis is limited to the epithelial layer or if it extends to the deeper layers of the TM.

      Minor concerns

      In Figure 8, the schematic illustration presents a coronal section of the TM. However, based on the data provided in the manuscript, it is unclear whether the authors directly obtained coronal images in their study. To enhance the clarity and impact of the schematic, it would be helpful to include representative images of coronal sections showing macrophage infiltration, angiogenesis, and nerve fiber distribution in the TM.

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents results from four independent experiments, each of which tests for rhythmicity in auditory perception. The authors report rhythmic fluctuations in discrimination performance at frequencies between 2 and 6 Hz. The exact frequency depends on the ear and experimental paradigm, although some frequencies seem to be more common than others.

      Strengths:

      The first sentence in the abstract describes the state of the art perfectly: "Numerous studies advocate for a rhythmic mode of perception; however, the evidence in the context of auditory perception remains inconsistent". This is precisely why the data from the present study is so valuable. This is probably the study with the highest sample size (total of > 100 in 4 experiments) in the field. The analysis is very thorough and transparent, due to the comparison of several statistical approaches and simulations of their sensitivity. Each of the experiments differs from the others in a clearly defined experimental parameter, and the authors test how this impacts auditory rhythmicity, measured in pitch discrimination performance (accuracy, sensitivity, bias) of a target presented at various delays after noise onset.

      Weaknesses:

      (1) The authors find that the frequency of auditory perception changes between experiments. I think they could exploit differences between experiments better to interpret and understand the obtained results. These differences are very well described in the Introduction, but don't seem to be used for the interpretation of results. For instance, what does it mean if perceptual frequency changes from between- to within-trial pitch discrimination? Why did the authors choose this experimental manipulation? Based on differences between experiments, is there any systematic pattern in the results that allows conclusions about the roles of different frequencies? I think the Discussion would benefit from an extension to cover this aspect.

      (2) The Results give the impression of clear-cut differences in relevant frequencies between experiments (e.g., 2 Hz in Experiment 1, 6 Hz in Exp 2, etc), but they might not be so different. For instance, a 6 Hz effect is also visible in Experiment 1, but it just does not reach conventional significance. The average across the three experiments is therefore very useful, and also seems to suggest that differences between experiments are not very pronounced (otherwise the average would not produce clear peaks in the spectrum). I suggest making this point clearer in the text.

      (3) I struggle to understand the hypothesis that rhythmic sampling differs between ears. In most everyday scenarios, the same sounds arrive at both ears, and the time difference between the two is too small to play a role for the frequencies tested. If both ears operate at different frequencies, the effects of the rhythm on overall perception would then often cancel out. But if this is the case, why would the two ears have different rhythms to begin with? This could be described in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Cao et al. provides a compelling investigation into the role of mutational input in the rapid evolution of pesticide resistance, focusing on the two-spotted spider mite's response to the recent introduction of the acaricide cyetpyrafen. This well-documented introduction of the pesticide - and thus a clearly defined history of selection - offers a powerful framework for studying the temporal dynamics of rapid adaptation. The authors combine resistance phenotyping across multiple populations, extensive resequencing to track the frequency of resistance alleles, and genomic analyses of selection in both contemporary and historical samples. These approaches are further complemented by laboratory-based experimental evolution, which serves as a baseline for understanding the genetic architecture of resistance across mite populations in China. Their analyses identify two key resistance-associated genes, sdhB and sdhD, within which they detect 15 mutations in wild-collected samples. Protein modeling reveals that these mutations cluster around the pesticide's binding site, suggesting a direct functional role in resistance. The authors further examine signatures of selective sweeps and their distribution across populations to infer the mechanisms - such as de novo mutation or gene flow-driving the spread of resistance, a crucial consideration for predicting evolutionary responses to extreme selection pressure. Overall, this is a well-rounded, thoughtfully designed, and well-written manuscript. It shows significant novelty, as it is relatively rare to integrate broad-scale evolutionary inference from natural populations with experimentally informed bioassays, however, some aspects of the methods and discussion have an opportunity to be clarified and strengthened.

      Strengths:

      One of the most compelling aspects of this study is its integration of genomic time-series data in natural populations with controlled experimental evolution. By coupling genome sequencing of resistant field populations with laboratory selection experiments, the authors tease apart the individual effects of resistance alleles along with regions of the genome where selection is expected to occur, and compare that to the observed frequency in the wild populations over space and time. Their temporal data clearly demonstrates the pace at which evolution can occur in response to extreme selection. This type of approach is a powerful roadmap for the rest of the field of rapid adaptation.

      The study effectively links specific genetic changes to resistance phenotypes. The identification of sdhB and sdhD mutations as major drivers of cyetpyrafen resistance is well-supported by allele frequency shifts in both field and experimental populations. The scope of their sampling clearly facilitated the remarkable number of observed mutations within these target genes, and the authors provide a careful discussion of the likelihood of these mutations from de novo or standing variation. Furthermore, the discovered cross-resistance that these mutations confer to other mitochondrial complex II inhibitors highlights the potential for broader resistance management and evolution.

      Weaknesses:

      (1) Experimental Evolution:

      - Additional information about the lab experimental evolution would be useful in the main text. Specifically, the dose of cyetpyrafen used should be clarified, especially with respect to the LD50 values. How does it compare to recommended field doses? This is expected to influence the architecture of resistance evolution. What was the sample size? This will help readers contextualize how the experimental design could influence the role of standing variation.

      - The finding that lab-evolved strains show cross-resistance is interesting, but potentially complicates the story. It would help to know more about the other mitochondrial complex II inhibitors used across China and their impact on adaptive dynamics at these loci, particularly regarding pre-existing resistance alleles. For example, a comparison of usage data from 2013, 2017, and 2019 could help explain whether cyetpyrafen was the main driver of resistance or if previous pesticides played a role. What happened in 2020 that caused such rapid evolution 3 years after launch?

      (2) Evolutionary history of resistance alleles:

      - It would be beneficial to examine the population structure of the sampled populations, especially regarding the role of migration. Though resistance evolution appears to have had minimal impact on genome-wide diversity (as shown in Supplementary Figure 2), could admixture be influencing the results? An explicit multivariate regression framework could help to understand factors influencing diversity across populations, as right now much is left to the readers' visual acuity.

      - It is unclear why lab populations were included in the migration/treemix analysis. We might suggest redoing the analysis without including the laboratory populations to reveal biologically plausible patterns of resistance evolution.

      - Can the authors explore isolation by distance (IBD) in the frequency of resistance alleles?

      - Given the claim regarding the novelty of the number of pesticide resistance mutations, it is important to acknowledge the evolution of resistance to all pesticides (antibiotics, herbicides, etc.). ALS-inhibiting herbicides have driven remarkable repeatability across species based on numerous SNPs within the target gene.

      - Figure 5 A-B. Why not run a multivariate regression with status at each resistance mutation encoded as a separate predictor? It is interesting that focusing on the predominant mutation gives the strongest r2, but it is somewhat unintuitive and masks some interesting variation among populations.

      (3) Haplotype Reconstruction (Line 271-):

      - We are a bit sceptical of the methods taken to reconstruct these haplotypes. It seems as though the authors did so with Sanger sequencing (this should be mentioned in the text), focusing only on homozygous SNPs. How many such SNPs were used to reconstruct haplotypes, along what length of sequence? For how many individuals were haplotypes reconstructed? Nonetheless, I appreciated that the authors looked into the extent to which the reconstructed haplotypes could be driven by recombination. Can the authors elaborate on the calculations in line 296? Is that the census population size estimate or effective?

      (4) Single Mutations and Their Effect (line 312-):

      - It's not entirely clear how the breeding scheme resulted in near-isogenic lines. Could the authors provide a clearer explanation of the process and its biological implications?

      - If they are indeed isogenic, it's interesting that individual resistance mutations have effects on resistance that vary considerably among lines. Could the authors run a multivariate analysis including all potential resistance SNPs to account for interactions between them? Given the variable effects of the D116G substitution (ranging from 4-25%), could polygenic or epistatic factors be influencing the evolution of resistance?

      - Why are there some populations that segregate for resistance mutations but have no survival to pesticides (i.e., the green points in Figure 5)? Some discussion of this heterogeneity seems required in the absence of validation of the effects of these particular mutations. Could it be dominance playing a role, or do the authors have some other explanation?

      - The authors mention that all resistance mutations co-localized to the Q-site. Is this where the pesticide binds? This seems like an important point to follow their argument for these being resistance-related.

      (5) Statistical Considerations for Allele Frequency Changes (Figure 3):

      - It might be helpful to use a logistic regression model to assess the rate of allele frequency changes and determine the strength of selection acting on these alleles (e.g., Kreiner et al. 2022; Patel et al. 2024). This approach could refine the interpretation of selection dynamics over time.

    1. Reviewer #1 (Public review):

      Summary:

      Felipe and colleagues try to answer an important question in Sarbecovirus Orf9b-mediated interferon signaling suppression, given that this small viral protein adopts two distinct conformations, a dimeric β-sheet-rich fold and a helix-rich monomeric fold when bound by Tom70 protein. Two Orf9b structures determined by X-ray crystallography and Cryo-EM suggest an equilibrium between the two Orf9b conformations, and it is important to understand how this equilibrium relates to its functions. To answer these questions, the authors developed a series of ordinary differential equations (ODE) describing the Orf9b conformation equilibrium between homodimers and monomers binding to Tom70. They used SPR and a fluorescent polarization (FP) peptide displacement assay to identify parameters for the equilibrium and create a theoretical model. They then used the model to characterize the effect of lipid-binding and the effects of Orf9b mutations in homodimer stability, lipid binding, and dimer-monomer equilibrium. They used their model to further analyze dimerization, lipid binding, and Orf9b-Tom70 interactions for truncated Orf9b, Orf9b fusion mutant S53E (blocking Tom70 binding), and Orf9b from a set of Sars-CoV-2 VOCs. They evaluated the ability of different Orf9b variants for binding Tom70 using Co-IP experiments and assessed their activity in suppressing IFN signaling in cells.

      Overall, this work is well designed, the results are of high quality and well-presented; the results support their conclusions.

      Strengths:

      (1) They developed a working biophysical model for analyzing Orf9b monomer-dimer equilibrium and Tom70 binding based on SPR and FP experiments; this is an important tool for future investigation.

      (2) They prepared lipid-free Orf9b homodimer and determined its crystal structure.

      (3) They designed and purified obligate Orf9b monomer, fused-dimer, etc., a very important Orf9b variant for further investigations.

      (4) They identified the lipid bound by Orf9b homodimer using mass spectra data.

      (5) They proposed a working model of Orf9b-Tom70 equilibrium.

      Weaknesses:

      (1) It is difficult to understand why the obligate Orf9b dimer has similar IFN inhibition activity as the WT protein and obligate Orf9b monomer truncations.

      (2) The role of Orf9b homodimer and the role of Orf9b-bound lipid in virus infection, remains unknown.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Meunier et al. investigated the functional role of IL-10 in avian mucosal immunity. While the anti-inflammatory role of IL-10 is well established in mammals, and several confirmatory knockout models are available in mice, IL-10's role in avian mucosal immunity is so far correlative. In this study, the authors generated two different models of IL-10 ablation in Chickens. A whole body knock-out model and an enhancer KO model leading to reduced IL10 expression. The authors first performed in vitro LPS stimulation-based experiments, and then in vivo two different infection models employing C. jejuni and E. tenella, to demonstrate that complete ablation of IL10 leads to enhanced inflammation-related pathology and gene expression, and enhanced pathogen clearance. At a steady-state level, however, IL-10 ablation did not lead to spontaneous colitis.

      Strengths:

      Overall, the study is well executed and establishes an anti-inflammatory role of IL-10 in birds. While the results are expected and not surprising, this appears to be the first report to conclusively demonstrate IL-10's anti-inflammatory role upon its genetic ablation in the avian model. Provided this information is applicable in combating pathogen infection in livestock species in sustainable industries like poultry, the study will be of interest to the field.

      Weaknesses:

      The study is primarily a confirmation of the already established anti-inflammatory role of IL-10.

    1. Reviewer #1 (Public review):

      Summary:

      By applying a laser scanning photostimulation (LSPS) approach to a novel slice preparation, the authors aimed to study the degree of convergence and divergence of cortical inputs to individual striatal projection neurons (SPNs).

      Strengths:

      The experiments were well-designed and conducted, and data analysis was thorough. The manuscript was well written, and related work in the literature was properly discussed. This work has the potential to advance our understanding of how sensory inputs are integrated into the striatal circuits.

      Weaknesses:

      This work focuses on the connection strength of the corticostriatal projections, without considering the involvement of synaptic plasticity in sensory integration.

    1. Joint Public Review:

      Following up on their previous work, the authors investigated whether HIV-1 cell-to-cell transmission activates the CARD8 inflammasome in macrophages, a key question given that inflammasome activation in myeloid cells triggers proinflammatory cytokine release. Co-cultures of HIV-infected T cells with macrophages led to viral spreading, resulting in IL1β release and cell death, with CARD8 playing a crucial role in this inflammasome response, triggered by HIV protease. The authors also found that HIV isolates resistant to protease inhibitors showed differences in CARD8 activation and IL1β production, highlighting the clinical relevance of their findings. Overall, this well-written study provides strong evidence for the role of CARD8 in protease-dependent sensing of viral spread, with implications for understanding chronic inflammation in HIV infections and its potential contribution to systemic immune activation, especially under ART. The authors have addressed initial weaknesses and verified effects in cocultures of primary T cells and macrophages. They now also provide evidence that CARD8 is activated by protease from incoming viral particles. Further studies are needed to clarify how much this mechanism contributes to systemic immune activation in untreated infections and whether this mechanism drives chronic inflammation under ART.

    1. Reviewer #1 (Public review):

      Summary:

      Gruskin and colleagues use twin data from a movie-watching fMRI paradigm to show how genetic control of cortical function intersects with the processing of naturalistic audiovisual stimuli. They use hyperalignment to dissect heritability into the components that can be explained by local differences in cortical-functional topography and those that cannot. They show that heritability is strongest at slower-evolving neural time scales and is more evident in functional connectivity estimates than in response time series.

      Strengths:

      This is a very thorough paper that tackles this question from several different angles. I very much appreciate the use of hyperalignment to factor out topographic differences, and I found the relationship between heritability and neural time scales very interesting. The writing is clear, and the results are compelling.

      Weaknesses:

      The only "weaknesses" I identified were some points where I think the methods, interpretation, or visualization could be clarified.

      (1) On page 16, the authors compare heritability in functional connectivity (FC) and response time series, and find that the heritability effect is larger in FC. In general, I agree with your diagnosis that this is in large part due to the fact that FC captures the covariance structure across parcels, whereas response time series only diverge in terms of univariate time-point-by-time-point differences. Another important factor here is that (within-subject) FC can be driven by intrinsic fluctuations that occur with idiosyncratic timing across subjects and are unrelated to the stimulus (whereas time-locked metrics like ISC and time-series differences cannot, by definition). This makes me wonder how this connectivity result would change if the authors used intersubject functional connectivity (ISFC) analysis to specifically isolate the stimulus-driven components of functional connectivity (Simony et al., 2016). This, to me, would provide a closer comparison to the ISC and response time series results, and could allow the authors to quantify how much of the heritability in FC is intrinsic versus stimulus-driven. I'm not asking that the authors actually perform this analysis, as I don't think it's critical for the message of the manuscript, but it could be an interesting future direction. As the authors discuss on page 17, I also suspect there's something fundamentally shared between response time series and connectivity as they relate to functional topography (Busch et al., 2021) that drives part of the heritability effect.

      (2) The observation that regions with intermediate ISC have the largest differences between MZ, DZ, and UR is very interesting, but it's kind of hard to see in Figure 1B. Is there any other way to plot this that might make the effect more obvious? For example, I could imagine three scatter plots where the x- and y-axes are, e.g., MZ ISC and UR ISC, and each data point is a parcel. In this kind of plot, I would expect to see the middle values lifted visibly off the diagonal/unity line toward MZ. The authors could even color the data points according to networks, like in Figure 3C. (They also might not need to scale the ISC axis all the way to r = 1, which would make the differences more visible.)

      (3) On page 9, if I understand correctly, the authors regress the vector of ISC values across parcels out of the vector of heritability values across parcels, and then plot the residual heritability values. Do they center the heritability values (or include some kind of intercept) in the process? I'm trying to understand why the heritability values go from all positive (Figure 2A) to roughly balanced between positive and negative (Figure 2B). Important question for me: How should we interpret negative values in this plot? Can the authors explain this explicitly in the text? (I also wonder if there's a more intuitive way to control for ISC. For example, instead of regressing out ISC at the parcel/map level, could they go into a single parcel and then regress the subject-level pairwise ISC values out when computing the heritability score?).

      (4) On page 4 (line 155), the authors say "we shuffled dyad labels"- is this equivalent to shuffling rows and columns of the pairwise subject-by-subject matrix combined across groups? I'm trying to make sure their approach here is consistent with recommendations by Chen et al., 2016. Is this the same kind of shuffling used for the kinship matrix mentioned in line 189?

      (5) I found panel A in Figure 4 to be a little bit misleading because their parcel-wise approach to hyperalignment won't actually resolve topographic idiosyncrasies across a large cortical distance like what's depicted in the illustration (at the scale of the parcels they are performing hyperalignment within). Maybe just move the green and purple brain areas a bit closer to each other so they could feasibly be "aligned" within a large parcel. Worth keeping in mind when writing that hyperalignment is also not actually going to yield a one-to-one mapping of functionally homologous voxels across individuals: it's effectively going to model any given voxel time series as a linear combination of time series across other voxels in the parcel.

      (6) I believe the subjects watched all different movies across the two days, however, for a moment I was wondering "are Day 1 and Day 2 repetitions of the same movies?" Given that Day 1 and Day 2 are an organizational feature of several figures, it might be worth making this very explicit in the Methods and reminding the reader in the Results section.

      References:

      Busch, E. L., Slipski, L., Feilong, M., Guntupalli, J. S., di Oleggio Castello, M. V., Huckins, J. F., Nastase, S. A., Gobbini, M. I., Wager, T. D., & Haxby, J. V. (2021). Hybrid hyperalignment: a single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity. NeuroImage, 233, 117975. https://doi.org/10.1016/j.neuroimage.2021.117975

      Chen, G., Shin, Y. W., Taylor, P. A., Glen, D. R., Reynolds, R. C., Israel, R. B., & Cox, R. W. (2016). Untangling the relatedness among correlations, part I: nonparametric approaches to inter-subject correlation analysis at the group level. NeuroImage, 142, 248-259. https://doi.org/10.1016/j.neuroimage.2016.05.023

      Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7, 12141. https://doi.org/10.1038/ncomms12141

    1. science tells us that kids learn better from one from zero from the birth to five years old they're the fastest they're the best at learning model them then just do what they do you can't get better than that

      for - stats - natural language acquisition - 1 to 2 year old is age of fastest and best learning

      comment - ALG philosophy - replicate the experiences that 1 to 2 year olds have

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors report that activation of excitatory DREADDs in the mid-cervical spinal cord can increase inspiratory activity in mice and rats. This is an important first step toward an ultimate goal of using this, or similar, technology to drive breathing in disorders associated with decreased respiratory motor output, such as spinal injury or neurodegenerative disease. Strengths to this study include a comparison of non-specific DREADD expression in the mid-cervical spinal cord versus specific targeting to ChAT-positive neurons, and the measurement of multiple respiratory-related outcomes, including phrenic inspiratory output, diaphragm EMG activity and ventilation. The data show convincingly that DREADDs can be used to drive phrenic inspiratory activity, which in turn increases diaphragm EMG activity and ventilation.

      Comments on revisions: All of my prior comments have been sufficiently addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides an in-depth analysis of syncytiotrophoblast (STB) gene expression at the single-nucleus (SN) and single-cell (SC) levels, using both primary human placental tissues and two trophoblast organoid (TO) models. The authors compare the older TO model, where STB forms internally (STBin), with a newer model where STB forms externally (STBout). Through a series of comparative analyses, the study highlights the necessity of using both SN and SC techniques to fully understand placental biology. The findings demonstrate that the STBout model shows more differentiated STBs with higher expression of canonical markers and hormones compared to STBin. Additionally, the study identifies both conserved and distinct gene expression profiles between the TO models and human placenta, offering valuable insights for researchers using TOs to study STB and CTB differentiation.

      Strengths:

      The study offers a comprehensive SC- and SN-based characterization of trophoblast organoid models, providing a thorough validation of these models against human placental tissues. By comparing the older STBin and newer STBout models, the authors effectively demonstrate the improvements in the latter, particularly in the differentiation and gene expression profiles of STBs. This work serves as a critical resource for researchers, offering a clear delineation of the similarities and differences between TO-derived and primary STBs. The use of multiple advanced techniques, such as high-resolution sequencing and trajectory analysis, further enhances the study's contribution to the field.

      Weaknesses were addressed during the revision.

      The authors effectively addressed my critiques in the rebuttal letter and made corresponding changes in the manuscript. Specifically, they: 1) emphasized the importance of TO orientation in influencing STB nuclear subtype differentiation by adding text to the introduction; 2) clarified the differences in cluster numbers and names between primary tissue and TO data, explaining that each dataset was analyzed independently with separate clustering algorithms and adding clarifying text to the results section; 3) included additional rationale for using SN over SC sequencing, particularly for studying the multinucleated STB; 4) acknowledged that their original evidence was insufficient to definitively determine STBout nuclei differentiation status and removed language suggesting STB-3 as a terminally differentiated subtype, presenting alternative hypotheses in the discussion; and 5) incorporated new figures and clarifications, including RNA-FISH experiments, to validate subtype-specific marker gene expression. Overall, the authors' revisions strengthened the manuscript and aligned well with my critiques.

    1. Reviewer #1 (Public review):

      Summary:

      The study characterises an RNA polymerase (Pol) I mutant (RPA135-F301S) named SuperPol. This mutant was previously shown to increase yeast ribosomal RNA (rRNA) production by Transcription Run-On (TRO). In this work, the authors confirm this mutation increases rRNA transcription using a slight variation of the TRO method, Transcriptional Monitoring Assay (TMA), which also allows the analysis of partially degraded RNA molecules. The authors show a reduction of abortive rRNA transcription in cells expressing the SuperPol mutant and a modest occupancy decrease at the 5' region of the rRNA genes compared to WT Pol I. These results suggest that the SuperPol mutant displays a lower frequency of premature termination. Using in vitro assays, the authors found that the mutation induces an enhanced elongation speed and a lower cleavage activity on mismatched nucleotides at the 3' end of the RNA. Finally, SuperPol mutant was found to be less sensitive to BMH-21, a DNA intercalating agent that blocks Pol I transcription and triggers the degradation of the Pol I subunit, Rpa190. Compared to WT Pol I, short BMH-21 treatment has little effect on SuperPol transcription activity, and consequently, SuperPol mutation decreases cell sensitivity to BMH-21.

      I'd suggest the following points to be taken into consideration:

      Major comments:

      (1) The differences in the transcriptionally engaged WT Pol I and SuperPol profiles (Figure 2) are very modest, without any statistical analyses. What is the correlation between CRAC replicates? Are they separated in PCA analyses? Please, include more quality control information. In my opinion, these results are not very convincing. Similarly, the effect of BMH-21 on WT Pol I activity (Figure 7) is also very subtle and doesn't match the effect observed in a previous study [1]. Could the author comment on the reasons for these differences? These discrepancies raise concerns about the methodology. In addition, according to the laboratory's previous work [2], Pol I ChIP signal at rDNA is not significantly different in cells expressing WT Pol I and SuperPol. How can these two observations be reconciled? I would suggest using an independent methodology to analyse Pol I transcription, for example, GRO-seq or TT-seq.

      (2) While the experiments clearly show SuperPol mutant increases nascent transcription and decreases the production of abortive promoter-proximal transcripts compared to WT Pol I. RPA135-F301S mutation has a minor impact on total rRNA levels, at least those shown in Figure 3B. Are steady-state rRNA levels higher in cells expressing SuperPol mutant? It would be interesting to know if SuperPol mutant produces more functional rRNAs.

      Significance:

      The work further characterises a single amino acid mutation of one of the largest yeast Pol I subunits (RPA135-F301S). While this mutation was previously shown to increase rRNA synthesis, the current work expands the SuperPol mutant characterisation, providing details of how RPA135-F301S modifies the enzymatic properties of yeast Pol I. In addition, their findings suggest that yeast Pol I transcription can be subjected to premature termination in vivo. The molecular basis and potential regulatory functions of this phenomenon could be explored in additional studies.

      Our understanding of rRNA transcription is limited, and the findings of this work may be interesting to the transcription community. Moreover, targeting Pol I activity is an open strategy for cancer treatment. Thus, the resistance of SuperPol mutant to BMH-21 might also be of interest to a broader community, although these findings are yet to be confirmed in human Pol I and with more specific Pol I inhibitors in future.

    1. Joint public review:

      Summary:

      This study investigates the hypoxia rescue mechanisms of neurons by non-neuronal cells in the brain from the perspective of exosomal communication between brain cells. Through multi-omics combined analysis, the authors revealed this phenomenon and logically validated this intercellular rescue mechanism under hypoxic conditions through experiments. The study proposed a novel finding that hemoglobin maintains mitochondrial function, expanding the conventional understanding of hemoglobin. This research is highly innovative, providing new insights for the treatment of hypoxic encephalopathy.

      Overall, the manuscript is well organized and written, however, the authors have only partially answered the reviewers comments.

    1. Reviewer #1 (Public review):

      In this study, the authors introduced an essential role of AARS2 in maintaining cardiac function. They also investigated the underlying mechanism that through regulating alanine and PKM2 translation are regulated by AARS2. Accordingly, a therapeutic strategy for cardiomyopathy and MI was provided.

      Comments on revised version:

      The authors have completely addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Manley and Vaziri investigate whole-brain neural activity underlying behavioural variability in zebrafish larvae. They combine whole brain (single cell level) calcium imaging during the presentation of visual stimuli, triggering either approach or avoidance, and carry out whole brain population analyses to identify whole brain population patterns responsible for behavioural variability. They show that similar visual inputs can trigger large variability in behavioural responses. Though visual neurons are also variable across trials, they demonstrate that this neural variability does not degrade population stimulus decodability. Instead, they find that the neural variability across trials is in orthogonal population dimensions to stimulus encoding and is correlated with motor output (e.g. tail vigor). They then show that behavioural variability across trials is largely captured by a brain-wide population state prior to the trial beginning, which biases choice - especially on ambiguous stimulus trials. This study suggests that parts of stimulus-driven behaviour can be captured by brain-wide population states that bias choice, independently of stimulus encoding.

      Comments on revisions:

      The authors have revised their manuscript and provided novel analyses and figures, as well as additions to the text based on our reviewer comments.

      As stated in my first review, the strength of the paper principally resides in the whole brain cellular level imaging - using a novel fourier light field microscopy (Flfm) method - in a well-known but variable behaviour.

      Many of the authors' answers have provided additional support for their interpretations of results, but the new analysis in Figure 3g - further exploring the orthogonality of e1 and wopt - puts into question the interpretation of a key result: that e1 and wopt are orthogonal in a non-arbitrary way. This needs to be addressed. I have made suggestions below to address this:

      Reviewer 3 had correctly highlighted the issue that in high-dimensional data, there is an increasingly high chance of two vectors being orthogonal. The authors address this by shuffling the stimulus labels. They then state (and provide a new panel g in Fig. 3) that the shuffled distribution is wider than the actual distribution, and state that a wilcoxon rank-sum test shows this is significant. Given the centrality of this claim, I would like the authors to clarify what exactly is being done here, as it is not clear to me how this conclusion can be drawn from this analysis:

      In lines 449:453 the authors state:<br /> 'While it is possible to observe shuffled vectors which are nearly orthogonal to e1, the shuffled distribution spans a significantly greater range of angles than the observed data (p<0.05, Wilcoxon rank- sum test), demonstrating that this orthogonality is not simply a consequence of analyzing multi-dimensional activity patterns. '<br /> I don't understand how the authors arrive at the p-value using a rank-sum test here. (a) What is the n in this test? Is n the number of shuffles? If so, this violates the assumptions of the test (as n must be the number of independent samples and not the arbitrary number of shuffles). (b) If the shuffling was done once for each animal and compared with actual data with a rank-sum test, how likely is that shuffling result to happen in 10000 shuffle comparisons?<br /> I am highlighting this, as it looks from Figure 3g that the shuffled distribution is substantially overlapping with the actual data (i.e., not outside of the 95 percentile of the shuffled distribution), which would suggest that the angle found between e1 and wept could happen by chance.

      I would also suggest the authors instead test whether e1 is consistently aligned with itself when calculated on separate held out data-sets (for example by bootstrapping 50-50 splits of the data). If they can show that there is a close alignment between independently calculated e1's across separate data sets (and do the same for wopt), and then show e1 and wopt are orthogonal, then that supports their statement that e1 and wopt are orthogonal in a meaningful way. Given that e1 captures tail vigor variability (and Wopt appears to not) then I would think this could be the case. But the current answer the authors have given is not supporting their statement.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Jin et. al., describe SMARTTR, an image analysis strategy optimized for analysis of dual-activity ensemble tagging mouse reporter lines. The pipeline performs cell segmentation, then registers the location of these cells into an anatomical atlas, and finally, calculates the degree of co-expression of the reporters in cells across brain regions. The authors demonstrate the utility of the method by labeling two ensemble populations during two related experiences: inescapable shock and subsequent escapable shock as part of learned helplessness.

      Strengths:

      - We appreciated that the authors provided all documentation necessary to use their method, and that the scripts in their publicly available repository are well commented. Submission of the package to CRAN will, as the other reviewer pointed out, ensure that the package and its dependencies can be easily installed using few lines of code in the future. Additionally, we particularly appreciate the recently added documentation website and vignettes, which provide guidance on package installation and use cases.<br /> - The manuscript was well-written and very clear, and the methods were generally highly detailed.<br /> - The authors have addressed our previous concerns, and we appreciate their revised manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides new insights into the role of miR-19b, an oncogenic microRNA, in the developing chicken pallium. Dynamic expression pattern of miR-19b is associated with its role in regulating cell cycle progression in neural progenitor cells. Furthermore, miR-19b is involved in determining neuronal subtypes by regulating Fezf2 expression during pallial development. These findings suggest an important role for miR-19b in the coordinated spatio-temporal regulation of neural progenitor cell dynamics and its evolutionary conservation across vertebrate species.

      Strengths:

      The authors identified conserved roles of miR-19 in the regulation of neural progenitor maintenance between mouse and chick, and the latter is mediated by the repression of E2f8 and NeuroD1. Furthermore, the authors found that miR-19b-dependent cell cycle regulation is tightly associated with specification of Fezf1 or Mef2c-positive neurons, in spatio-temporal manners during chicken pallial development. These findings uncovered molecular mechanisms underlying microRNA-mediated neurogenic controls.

      Weaknesses:

      Although the authors in this study claimed striking similarities of miR-19a/b in neurogenesis between mouse and chick pallium, a previous study by Bian et al. revealed that miR-19a contributes the expansion of radial glial cells by suppressing PTEN expression in the developing mouse neocortex, while miR-19b maintains apical progenitors via inhibiting E2f2 and NeuroD1 in chicken pallium. Thus, it is still unclear whether the orthologous microRNAs regulate common or species-specific target genes.

      The spatiotemporal expression patterns of miR-19b and several genes are not convincing. For example, the authors claim that NeuroD1 is initially expressed uniformly in the subventricular zone (SVZ) but disappears in the DVR region by HH29 and becomes detectable by HH35 (Figure 1). However, the in situ hybridization data revealed that NeuroD1 is highly expressed in the SVZ of the DVR at HH29 (Figure 4F). Thus, perhaps due to the problem of immunohistochemistry, the authors have not been able to detect NeuroD1 expression in Figure 1D, and the interpretation of the data may require significant modification.

      It seems that miR-19b is also expressed in neurons (Figure 1), suggesting the role of miR19-b must be different in progenitors and differentiated neurons. The data on the gain- and loss-of-function analysis of miR-19b on the expression of Mef2c should be carefully considered, as it is possible that these experiments disturb the neuronal functions of miR19b rather than in the progenitors.

      The regions of chicken pallium were not consistent among figures: in Figure 1, they showed caudal parts of the pallium (HH29 and 35), while the data in Figure 4 corresponded to the rostral part of the pallium (Figure 4B).

      The neurons expressing Fezf2 and Mef2 in the chicken pallium are not homologous neuronal subtypes to mammalian deep and superficial cortical neurons. The authors must understand that chicken pallial development proceeds in an outside-in manner. Thus, Mef2c-postive neurons in a superficial part are early-born neurons, while FezF2-positive neurons residing in deep areas are later-born neurons. It should be noted that the expression of a single marker gene does not support cell type homology, and the authors' description "the possibility of primitive pallial lamina formation in common ancestors of birds and mammals" is misleading.

      Overexpression of CDKN1A or Sponge-19b induced ectopic expression of Fezf2 in the ventricular zone (Figure 3C, E). Do these cells maintain progenitor statement or prematurely differentiate to neurons? In addition, the authors must explain that the induction of Fezf2 is also detected in GFP-negative cells.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors aim to understand the neural basis of implicit causal inference, specifically how people infer causes of illness. They use fMRI to explore whether these inferences rely on content-specific semantic networks or broader, domain-general neurocognitive mechanisms. The study explores two key hypotheses: first, that causal inferences about illness rely on semantic networks specific to living things, such as the 'animacy network,' given that illnesses affect only animate beings; and second, that there might be a common brain network supporting causal inferences across various domains, including illness, mental states, and mechanical failures. By examining these hypotheses, the authors aim to determine whether causal inferences are supported by specialized or generalized neural systems.

      The authors observed that inferring illness causes selectively engaged a portion of the precuneus (PC) associated with the semantic representation of animate entities, such as people and animals. They found no cortical areas that responded to causal inferences across different domains, including illness and mechanical failures. Based on these findings, the authors concluded that implicit causal inferences are supported by content-specific semantic networks, rather than a domain-general neural system, indicating that the neural basis of causal inference is closely tied to the semantic representation of the specific content involved.

      Strengths:

      - The inclusion of the four conditions in the design is well thought out, allowing for the examination of the unique contribution of causal inference of illness compared to either a different type of causal inference (mechanical) or non-causal conditions. This design also has the potential to identify regions involved in a shared representation of inference across general domains.

      - The presence of the three localizers for language, logic, and mentalizing, along with the selection of specific regions of interest (ROIs), such as the precuneus and anterior ventral occipitotemporal cortex (antVOTC), is a strong feature that supports a hypothesis-driven approach (although see below for a critical point related to the ROI selection).

      - The univariate analysis pipeline is solid and well developed.

      - The statistical analyses are a particularly strong aspect of the paper.

      Weaknesses:

      After carefully considering the authors' response, I believe that my primary concern has not been fully addressed. My main point remains unresolved:

      The authors attempt to test for the presence of a shared network by performing only the Causal vs. Non-causal analysis. However, this approach is not sufficiently informative because it includes all conditions mixed together and does not clarify whether both the illness-causal and mechanical-causal conditions contribute to the observed results.

      To address this limitation, I originally suggested an additional step: using as ROIs the different regions that emerged in the Causal vs. Non-causal decoding analysis and conducting four separate decoding analyses within these specific clusters:<br /> (1) Illness-Causal vs. Non-causal - Illness First<br /> (2) Illness-Causal vs. Non-causal - Mechanical First<br /> (3) Mechanical-Causal vs. Non-causal - Illness First<br /> (4) Mechanical-Causal vs. Non-causal - Mechanical First

      This approach would allow the authors to determine whether any of these ROIs can decode both the illness-causal and mechanical-causal conditions against at least one non-causal condition. However, the authors did not conduct these analyses, citing an independence issue. I disagree with this reasoning because these analyses would serve to clarify their initial general analysis, in which multiple conditions were mixed together. As the results currently stand, it remains unclear which specific condition is driving the effects.

      My suggestion was to select the ROIs from their general analysis (Causal vs. Non-causal) and then examine in more detail which conditions were driving these results. This is not a case of double-dipping from my perspective, but rather a necessary step to unpack the general findings. Moreover, using ROIs would actually reduce the number of multiple comparisons that need to be controlled for.

      If the authors believe that this approach is methodologically incorrect, then they should instead conduct all possible analyses at the whole-brain level to examine the effects of the specific conditions independently.

    1. Reviewer #1 (Public review):

      Summary:

      The paper addresses the knowledge gap between the representation of goal direction in the central complex and how motor systems stabilize movement toward that goal. The authors focused on two descending neurons, DNa01 and 02, and showed that they play different roles in steering the fly toward a goal. They also explored the connectome data to propose a model to explain how these DNs could mediate response to lateralized sensory inputs. They finally used lateralized optogenetic activation/inactivation experiments to test the roles of these neurons in mediating turnings in freely walking flies.

      Strengths:

      The experiments are well-designed and controlled. The experiment in Figure 4 is elegant, and the authors put a lot of effort into ensuring that ATP puffs do not accidentally activate the DNs. They also have explained complex experiments well. I only have minor comments for the authors.

      Comments on revisions:

      I am happy with the revised manuscript and authors' response to our concerns. The addition of Figure S8, makes it more transparent and the revised text is now more accessible to the non-experts.

    1. Reviewer #3 (Public review):

      Summary:

      The hippocampal CA3 region is generally considered to be the primary site of initiation of sharp wave ripples-highly synchronous population events involved in learning and memory-although the precise mechanism remains elusive. A recent study revealed that CA3 comprises two distinct pyramidal cell populations: thorny cells that receive mossy fiber input from the dentate gyrus, and athorny cells that do not. That study also showed that it is athorny cells in particular which play a key role in sharp wave initiation. In the present work, Sammons, Masserini and colleagues expand on this by examining the connectivity probabilities among and between thorny and athorny cells. Using whole-cell patch clamp recordings, they find an asymmetrical connectivity pattern, with athorny cells receiving the most synaptic connections from both athorny and thorny cells, and thorny cells receiving fewer.

      The authors then use a spiking network model to show how this assymmetrical connectivity is consistent with a preferential role of athorny cells in sharp wave initiation. Essentially, thorny and athorny cells are put into a winner-takes-all scenario in which athorny cells always win initially. Thorny cells can only become active after athorny cells decrease their firing rate due to adaptation, leading to a delay between the activation of athorny and thorny cells. As far as I understand, the initial victory of athorny cells in the winner-takes-all is doubly determined: it is both due to their intrinsic properties (lower rheobase and steeper f-I curve), and due to the bias in connectivity towards them. It appears to me that either of these two mechanisms (i.e., different intrinsic properties and symmetrical self- and cross-connections, or the same intrinsic properties and asymmetrical connectivity) would suffice to explain the sequential activation of the two cell types. From a theoretician's perspective, this overdetermination is not very elegant, but biology often isn't...

      Strengths:

      The authors provide independent validation of some of the findings by Hunt et al. (2018) concerning the distinction between thorny and athorny pyramidal cells in CA3 and advance our understanding of their differential integration in CA3 microcircuits. The properties of excitatory connections among and between thorny and athorny cells described by the authors will be key in understanding CA3 functions including, but not limited to, sharp wave initiation.

      As stated in the paper, the modeling results lend support to the idea that the increased excitatory connectivity towards athorny cells plays an important role in causing them to fire before thorny cells in sharp waves. More generally, the model adds to an expanding pool of models of sharp wave ripples which should prove useful in guiding and interpreting experimental research.

    1. Reviewer #1 (Public review):

      Summary:

      This study utilises fNIRS to investigate the effects of undernutrition on functional connectivity patterns in infants from a rural population in Gambia. fNIRS resting-state data recording spanned ages 5 to 24 months, while growth measures were collected from birth to 24 months. Additionally, executive functioning tasks were administered at 3 or 5 years of age. The results show an increase in left and right frontal-middle and right frontal-posterior connections with age and, contrary to previous findings in high-income countries, a decrease in frontal interhemispheric connectivity. Restricted growth during the first months of life was associated with stronger frontal interhemispheric connectivity and weaker right frontal-posterior connectivity at 24 months of age. Additionally, the study describes some connectivity patterns, including stronger frontal interhemispheric connectivity, which is associated with better cognitive flexibility at preschool age.

      Strengths:

      - The study analyses longitudinal data from a large cohort (n = 204) of infants living in a rural area of Gambia. This already represents a large sample for most infant studies, and it is impressive, considering it was collected outside the lab in a population that is underrepresented in the literature. The research question regarding the effect of early nutritional deficiency on brain development is highly relevant and may highlight the importance of early interventions. The study may also encourage further research on different underrepresented infant populations (i.e., infants not residing in Western high-income countries) or in settings where fMRI is not feasible.

      - The preprocessing and analysis steps are carefully described, which is very welcome in the fNIRS field, where well-defined standards for preprocessing and analysis are still lacking.

      Weaknesses:

      - While the study provides a solid description of the functional connectivity changes in the first two years of life at the group level and investigates how restricted growth influences connectivity patterns at 24 months, it does not explore the links between adverse situations and developmental trajectories for functional connectivity. Considering the longitudinal nature of the dataset, it would have been interesting to apply more sophisticated analytical tools to link undernutrition to specific developmental trajectories in functional connectivity. The authors mention that they lack the statistical power to separate infants into groups according to their growing profiles. However, I wonder if this aspect could not have been better explored using other modelling strategies and dimensional reduction techniques. I can think about methods such as partial least squares correlation, with age included as a numerical variable and measures of undernutrition.

      - Connectivity was asses in 6 big ROIs. While the authors justify this choice to reduce variability due to head size and optode placement, this also implies a significant reduction in spatial resolution. Individual digitalisation and co-registration of the optodes to the head model, followed by image reconstruction, could have provided better spatial resolution. This is not a weakness specific to this study but rather a limitation common to most fNIRS studies, which typically analyse data at the channel level since digitalisation and co-registration can be challenging, especially in complex setups like this. However, the BRIGHT project has demonstrated that it is possible and that differences in placement affect activation patterns, which become more localised when data is co-registered at the subject level (Collins-Jones et al., 2021). Could the co-registration of individual data have increased sensitivity, particularly given that longitudinal effects are being investigated?

      - I believe that a further discussion in the manuscript on the application of global signal regression and its effects could have been beneficial for future research and for readers to better understand the negative correlations described in the results. Since systemic physiological changes affect HbO/HbR concentrations, resulting in an overestimation of functional connectivity, regressing the global signal before connectivity computation is a common strategy in fNIRS and fMRI studies. However, the recommendation for this step remains controversial, likely depending on the case (Murphy & Fox, 2017). I understand that different reasons justify its application in the current study. In addition to systemic physiological changes originating from brain tissue, fNIRS recordings are contaminated by changes occurring in superficial layers (i.e., the scalp and skull). While having short-distance channels could have helped to quantify extracerebral changes, challenges exist in using them in infant populations, especially in a longitudinal study such as the one presented here. The optimal source-detector distance that minimises sensitivity to changes originating from the brain would increase with head size, and very young participants would require significantly shorter source-detector distances (Brigadoi & Cooper, 2015). Thus, having them would have been challenging. Under these circumstances (i.e., lack of short channels and external physiological measures), and considering that the amount the signal is affected by physiological noise (either coming from the brain or superficial tissue) might change through development, the choice of applying global signal regression is justified. Nevertheless, since the method introduces negative correlations in the data by forcing connectivity to average to zero, I believe a further discussion of these points would have enriched the interpretation of the results.

    1. Reviewer #1 (Public review):

      Summary:

      Building on previous in vitro synaptic circuit work (Yamawaki et al., eLife 10, 2021), Piña Novo et al. utilize an in vivo optogenetic-electrophysiological approach to characterize sensory-evoked spiking activity in the mouse's forelimb primary somatosensory (S1) and motor (M1) areas. Using a combination of a novel "phototactile" somatosensory stimuli to the mouse's hand and simultaneous high-density linear array recordings in both S1 and M1, the authors report evoked activity in S1 was biased to middle layers, whereas it was biased to upper layers in M1. They report that M1 responses are delayed and attenuated relative to S1. Further analysis revealed a 20-fold difference in subcortical versus corticocortical propagation speeds. They also find that PV interneurons in S1 are strongly recruited by hand stimulation, and their selective activation can produce a suppression and rebound response similar to "phototactile" stimuli. Silencing S1 through local PV cells was sufficient to reduce M1 response to hand stimulation, suggesting S1 may directly drive M1 responses.

      Strengths:

      The study was technically well done, with convincing results. The data presented are appropriately analyzed. The author's findings build on a growing body of both in vitro and in vivo work examining the synaptic circuits underlying the interactions between S1 and M1. The paper is well-written and illustrated. Overall, the study will be valuable to those interested in forelimb S1-M1 interactions.

      Weaknesses:

      The authors have addressed my concerns

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors discovered MYL3 of marine medaka (Oryzias melastigma) as a novel NNV entry receptor, elucidating its facilitation of RGNNV entry into host cells through macropinocytosis, mediated by the IGF1R-Rac1/Cdc42 pathway.

      Strengths:

      In this manuscript, the authors have performed in vitro and in vivo experiments to prove that MnMYL3 may serve as a receptor for NNV via macropinocytosis pathway. These experiments with different methods include Co-IP, RNAi, pulldown, SPR, flow cytometry, immunofluorescence assays and so on. In general, the results are clearly presented in the manuscript.

      Weaknesses:

      For the writing in the introduction and discussion sections, the author Yao et al mainly focus on the viral pathogens and fish in Aquaculture, the meaning and novelty of results provided in this manuscript are limited, not broad in biology. The authors should improve the likely impact of their work on the viral infection field, maybe also in the evolutionary field with fish model.

      Additionally, detailed comments are as follows:

      (1) Myosin is a big family, why did authors choose MYL3 as a candidate receptor for NNV?

      (2) What's the relationship between MmMYL3 and MmHSP90ab1 and other known NNV receptors? Why dose NNV have so many receptors? Which one is supposed to serve as the key entry receptor?

      (3) In vivo knockout of MYL3 using CRISPR-Cas9 should be conducted to verify whether the absence of MYL3 really inhibits NNV infection. Although it might be difficult to do it in marine medaka as stated by authors, the introduce of zebrafish is highly recommended, since it has already been reported that zebrafish could be served as a vertebrate model to study NNV (doi: 10.3389/fimmu.2022.863096).

      (4) The results shown in Figure 6 are not enough to support the conclusion that "RGNNV triggers macropinocytosis mediated by MmMYL3". Additional electron microscopy of macropinosomes (sizes, morphological characteristics, etc.) will be a more direct evidence.

      (5) MYL3 is "predominantly found in muscle tissues, particularly the heart and skeletal muscles". However, NNV is a virus mainly causes necrosis of nervous tissues (brain and retina). If MYL3 really acts as a receptor for NNV, how does it balance this difference so that nervous tissues, rather than muscle tissues, have the highest viral titers?

      Comments on revisions:

      The authors have addressed most of my concerns in the revised manuscript, but still one question need to further improve to strengthen the study's rationale and conclusions.

      Specificity of MYL3 Selection:<br /> My previous question focused on why MYL3 was prioritized over other myosin family members. While the response broadly implicates myosins in viral entry, it does not justify why MYL3 was specifically chosen. For clarity, the "Introduction sections" should explicitly state the unique features of MYL3 (e.g., domain structure, binding affinity, or prior evidence linking it to NNV) that distinguish it from other myosins.

    1. Reviewer #1 (Public review):

      Summary:

      Diarrheal diseases represent an important public health issue. Among the many pathogens that contribute to this problem, Salmonella enterica serovar Typhimurium is an important one. Due to the rise in antimicrobial resistance and the problems associated with widespread antibiotic use, the discovery and development of new strategies to combat bacterial infections is urgently needed. The microbiome field is constantly providing us with various health-related properties elicited by the commensals that inhabit their mammalian hosts. Harnessing the potential of these commensals for knowledge about host-microbe interactions as well as useful properties with therapeutic implications will likely to remain a fruitful field for decades to come. In this manuscript, Wang et al use various methods, encompassing classic microbiology, genomics, chemical biology, and immunology, to identify a potent probiotic strain that protects nematode and murine hosts from S. enterica infection. Additionally, authors identify gut metabolites that are correlated with protection, and show that a single metabolite can recapitulate the effects of probiotic administration.

      Strengths:

      The utilization of varied methods by the authors, together with the impressive amount of data generated, to support the claims and conclusions made in the manuscript is a major strength of the work. Also, the ability the move beyond simple identification of the active probiotic, also identifying compounds that are at least partially responsible for the protective effects, is commendable.

      Weaknesses:

      No major weaknesses noted.

    1. Reviewer #1 (Public review):

      Shin et al. conduct extensive electrophysiological and behavioral experiments to study the mechanisms of short-term synaptic plasticity at excitatory synapses in layer 2/3 of the rat medial prefrontal cortex. The authors interestingly find that short-term facilitation is driven by progressive overfilling of the readily releasable pool, and that this process is mediated by phospholipase C/diacylglycerol signaling and synaptotagmin-7 (Syt7). Specifically, knockdown of Syt7 not only abolishes the refilling rate of vesicles with high fusion probability, but it also impairs the acquisition of trace fear memory.

      Overall, the authors offer novel insight to the field of synaptic plasticity through well-designed experiments that incorporate a range of techniques.

      Comments on revisions:

      The authors have adequately addressed my earlier comments and questions.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides comprehensive instructions for using the chromatophore tracking software, Chromas, to track and analyse the dynamics of large numbers of cephalopod chromatophores across various spatiotemporal scales. This software addresses a long-standing challenge faced by many researchers who study these soft-bodied creatures, known for their remarkable ability to change colour rapidly. The updated software features a user-friendly interface that can be applied to a wide range of applications, making it an essential tool for biologists focused on animal dynamic signalling. It will also be of interest to professionals in the fields of computer vision and image analysis.

      Strengths:

      This work provides detailed instructions for this toolkit along with examples for potential users to try. The Gitlab inventory hosts the software package, installation documentation, and tutorials, further helping potential users with a less steep learning curve.

      Weaknesses:

      The evidence supporting the authors' claims is solid, particularly demonstrated through the use of cuttlefish and squid. However, it may not be applicable to all coleoid cephalopods yet, such as octopuses, which have an incredibly versatile ability to change their body forms.

    1. Reviewer #1 (Public review):

      This paper presents a set of tools that will pave the way for a comprehensive understanding of the circuits that control wing motion in flies during flight or courtship. These tools are mainly focused on wing motor neurons and interneurons, as well as a few motor neurons of the haltere. This paper and the library of driver lines described within it will serve as a crucial resource in the pursuit of understanding how neural circuits give rise to behavior. Overall, I found the paper well-written, the figures are quite nice, and the data from the functional experiments convincing. I do not have many major concerns, but a few suggestions that I think will make the paper easier to understand.

      I think the introduction could use some reorganization, as right now I found it quite difficult to follow. For example, lines 85-88 seem to fit more naturally at the end of the next paragraph, compared to the current location of those sentences, which feels rather disjointed. I would suggest introducing the organization of the wing motor system (paragraphs 3 and 4) and then discussing the VNC (paragraph 2) before moving on to describe the neurons within the VNC that may control wing motion. Additionally, lines 141-144, which describe the broad subdivisions of the VNC, can be moved up to where the VNC is first introduced.

      One of my major takeaways from the paper is the call to examine the premotor circuits that govern wing motion. For that reason, I was surprised that there was little mention of the role of sensory input to these circuits. As the authors point out in the discussion, the haltere, for example, provides important input to the wing steering system. I recognize that creating driver lines for the sensory neurons that innervate the VNC is well beyond the scope of this project. I would just like some clarification in the text of the role these inputs play in structuring wing motion, especially as some act at rapid timescales that possibly forgo processing by the very circuits detailed here. This brings up a related issue: if the roles of the interneurons that are presynaptic to the wing motor neurons are "largely unexplored," with how much confidence can we say that they are the key for controlling behavior? To be sure, this has been demonstrated quite nicely in the case of courtship, but in flight, I think the evidence supporting this argument is less clear. I suggest the authors rephrase their language here.

    1. Reviewer #1 (Public review):

      Summary:

      The authors validate the contribution of RAP2A to GB progression. RAp2A participates in asymmetric cell division, and the localization of several cell polarity markers, including cno and Numb.

      Strengths:

      The use of human data, Drosophila models, and cell culture or neurospheres is a good scenario to validate the hypothesis using complementary systems.

      Moreover, the mechanisms that determine GB progression, and in particular glioma stem cells biology, are relevant for the knowledge on glioblastoma and opens new possibilities to future clinical strategies.

      Weaknesses:

      While the manuscript presents a well-supported investigation into RAP2A's role in GBM, several methodological aspects require further validation. The major concern is the reliance on a single GB cell line (GB5), which limits the generalizability of the findings. Including multiple GBM lines, particularly primary patient-derived 3D cultures with known stem-like properties, would significantly enhance the study's relevance.

      Additionally, key mechanistic aspects remain underexplored. Further investigation into the conservation of the Rap2l-Cno/aPKC pathway in human cells through rescue experiments or protein interaction assays would be beneficial. Similarly, live imaging or lineage tracing would provide more direct evidence of ACD frequency, complementing the current indirect metrics (odd/even cell clusters, Numb asymmetry).

      Several specific points raised in previous reviews still require attention:

      (1) The specificity of Rap2l RNAi needs further confirmation. Is Rap2l expressed in neuroblasts or intermediate neural progenitors? Can alternative validation methods be employed?

      (2) Quantification of phenotypic penetrance and survival rates in Rap2l mutants would help determine the consistency of ACD defects.

      (3) The observations on neurosphere size and Ki-67 expression require normalization (e.g., Ki-67+ cells per total cell number or per neurosphere size). Additionally, apoptosis should be assessed using Annexin V or TUNEL assays.

      (4) The discrepancy in Figures 6A and 6B requires further discussion.

      (5) Live imaging of ACD events would provide more direct evidence.

      (6) Clarification of terminology and statistical markers (e.g., p-values) in Figure 1A would improve clarity.

      (7) Given the group's expertise, an alternative to mouse xenografts could be a Drosophila genetic model of glioblastoma, which would provide an in vivo validation system aligned with their research approach.

  2. Apr 2025
    1. Reviewer #1 (Public review):

      Summary:

      Cording et al. investigated how deletion of CNTNAP2, a gene associated with autism spectrum disorder, alters corticostriatal engagement and behavior. Specifically, the authors present slice electrophysiology data showing that striatal projection neurons (SPNs) are more readily driven to fire action potentials in response to stimulation of corticostriatal afferents, and this is due to increases in SPN intrinsic excitability rather than changes in excitatory or inhibitory synaptic inputs. Specifically, these changes seem to be due to preferential reduction of Kv1.2 in dSPNs. The authors separately show that CNTNAP2 mice display repetitive behaviors, enhanced motor learning and cognitive inflexibility. Overall, the authors' conclusions are supported by their data, but a few claims could use some more evidence to be convincing.

      Strengths:

      The use of multiple behavioral techniques, both traditional and cutting-edge machine learning-based analyses, provides a powerful means of assessing repetitive behaviors and behavioral transitions/rigidity. Characterization of both excitatory and inhibitory synaptic responses in slice electrophysiology experiments offers a broad survey of the synaptic alterations that may lead to increased corticostriatal engagement of SPNs.

      Weaknesses:

      As it stands, the reported changes in dorsolateral striatum SPN excitability are only correlative with reported changes in repetitive behaviors, motor learning and cognitive flexibility. The authors do broach this in the text (particularly in "Limitations and future directions").

    1. Reviewer #1 (Public review):

      I was glad to see that the other reviewer and I had similar takeaways on the subjects of historical literature and paedomorphism. While the authors have adequately considered a more historical body of literature, they have not addressed the concerns we had with statements about paedomorphism. I'm inclined to agree with the other reviewer that the discussion on paedomorphism should be cut entirely. My comments below are to seek clarity and make sure you are saying what you intend to say.

      Strengths:

      Table 1 is the beginning of a useful glossary and possible character definitions with character states that can be coded for phylogenetic analyses. This is particularly important because the goal of the paper is to define terms for chondrichthyan skeletal features in order to unify research questions in the field, and add novel data on how these features might be distributed among chondrichthyan clades, starting with ratfish and little skate.

      Opportunities:

      Table 1 should be translated into a format reflecting 0s and 1s etc that can be coded and referred back to the matrix that is in Figure 7 (or a standalone matrix as an appendix). Right now, they do not correspond and thus it is challenging to follow and interpret the mapped characters on the tree. You are presuming reversals when you could just list the state and let the data show you the possibility of character transitions.

      Figure 1 essentially shows two datapoints Holocephali and Elasmobranchi where holocephali have low TMD and Elasmobranchi have high TMD, therefore nothing directional from an ancestral to derived state. Also, because you drop the catshark from later figures/analysis, you are treating the ratfish and the little skate as sister taxa so you cannot determine which is paedomorphic and which is peramorphic. Unfortunately, the position of where the characters were mapped on Figure 7 is not able to help you determine ancestral states and therefore actually test for paedomorphism. Two sister taxa with two different conditions and no outgroup doesn't explain the TMD in Ratfishes is statistically different from that of little skates. But there is no direction. So you need to be able to reconstruct that state.

      Paedomorphosis implies juvenile ancestral organization in actual existing adult stages of modern descendants. You haven't shown that yet. Only that there might be different rates of mineralization in little skates. I suggested that you datamine the literature for other stages if you think you can fill in gaps.

      In the response to reviewers, the authors stated that: "... we had reported that the TMD of centra from little skate did significantly increase between stage 32 and 33. Supporting our argument that ratfish had features of little skate embryos, TMD of adult ratfish centra was significantly lower than TMD of adult skate centra (Fig 1). Also, it was significantly higher than stage 33 skate centra, but it was statistically indistinguishable from that of stage 33 and juvenile stages of skate centra. While we do agree that more samples from these and additional groups would bolster these data, we feel they are sufficiently powered to support our conclusions for this current paper."

      I will respond to that. In Figure 6L, yes, A little skate stage 33 is significantly different than stage 32, though the SD bars for ratfish appear to overlap with the range for little skate 32. Also, ratfish values are not significantly different than state 33 or juvenile ratfish. You can add the adult little skate data from figures 1 to 6L and then state, "centra of adult ratfish have a TDM within the range of juvenile LS33 little skates." As per conversation earlier, it still doesn't account for paedomorphism, however, it does indicate different amounts of mineralization, and could indicate you hypothesize about rates of mineralization. I think you have a different discussion waiting to replace this one.

    1. Joint Public Review:

      Carabalona and colleagues investigated the role of the membrane-deforming cytoskeletal regulator protein Abba (MTSS1L/MTSS2) in cortical development to better understand the mechanisms of abnormal neural stem cell mitosis. The authors used short hairpin RNA targeting Abba20 with a fluorescent reporter coupled with in utero electroporation of E14 mice to show changes to neural progenitors. They performed flow cytometry for in-depth cell cycle analysis of Abba-shRNA impact to neural progenitors and determined an accumulation in S phase. Using culture rat glioma cells and live imaging from cortical organotypic slides from mice in utero electroporated with Abba-shRNA, the authors found Abba played a prominent role in cytokinesis. They then used a yeast-two-hybrid screen to identify three high confidence interactors: Beta-Trcp2, Nedd9, and Otx2. They used immunoprecipitation experiments from E18 cortical tissue coupled with C6 cells to show Abba requirement for Nedd9 localization to the cleavage furrow/cytokinetic bridge. The authors performed an shRNA knockdown of Nedd9 by in utero electroporation of E14 mice and observed similar results as with the Abba-shRNA. They tested a human variant of Abba using in utero electroporation of cDNA and found disorganized radial glial fibers and misplaced, multipolar neurons, but lacked the impact of cell division seen in the shRNA-Abba model.

      [Editors' note: the authors have responded to two sets of reviews, which can be found here, https://doi.org/10.7554/eLife.92748.2, and here, https://doi.org/10.7554/eLife.92748.1]

    1. Reviewer #1 (Public review):

      Summary:

      Qi and colleagues investigated the role of Kallistatin pathway in increasing hippocampal amyloid-β plaques accumulation and tau hyperpholphorylation in Alzheimer's disease, linking the increased Kallistatin level in diabetic patients with a higher risk of Alzheimer's disease development. A Kallistatin overexpressing animal model was utilized, and memory impairment was assessed using Morris water maze and Y-maze. Kallistatin-related pathway protein levels were measured in the hippocampus, and phenotypes were rescued using fenofibrate and rosiglitazone. The current study provides evidence of a novel molecular mechanism linking diabetes and Alzheimer's disease, and suggests the potential use of fenofibrate to alleviate memory impairment. However, several issues need to be addressed before further consideration.

      Strengths:

      The finding of this study is novel. The finding will have great impacts on diabetes and AD research. The studies were well conducted, and results convincing.

      Weaknesses:

      (1) The mechanism by which fenofibrate rescues memory loss in Kallistatin-transgenic mice is unclear. As a PPARα agonist, does fenofibrate target the Kallistatin pathway directly or indirectly? Please provide discussion based on literature supporting either possibility.<br /> (2) The current study exclusively investigated hippocampus. What about other cognitive memory-related regions, such as prefrontal cortex? Including data from these regions or discussing the possibility of their involvement could provide a more comprehensive understanding of the role of Kallistatin in memory impairment.<br /> (3) Fenofibrate rescued phenotypes in Kallistatin-transgenic mice while rosiglitazone, a PPARα agonist, did not. This result contradicts the manuscript's emphasis on a PPARα-associated mechanism. Please address this inconsistency.<br /> (4) Most of the immunohistochemistry images are unclear. Inserts have similar magnification to the original representative images, making judgments difficult. Please provide larger inserts with higher resolution.<br /> (5) The immunohistochemistry images in different figures were taken from different hippocampal subregions with different magnifications. Please maintain consistency, or explain why CA1, CA3 or DG was analyzed in each experiment.<br /> (6) Figure 5B is missing a title. Please add a title to maintain consistency with other graphs.<br /> (7) Please list statistical methods used in the figure legends, such as t-test or One way ANOVA with post-hoc tests.

      Comments on revisions:

      The authors have addressed the issues raised from the review. The manuscript has been revised accordingly.

    1. Reviewer #1 (Public review):

      The authors investigated the role of the C. elegans Flower protein, FLWR-1, in synaptic transmission, vesicle recycling, and neuronal excitability. They confirmed that FLWR-1 localizes to synaptic vesicles and the plasma membrane and facilitates synaptic vesicle recycling at neuromuscular junctions. They observed that hyperstimulation results in endosome accumulation in flwr-1 mutant synapses, suggesting that FLWR-1 facilitates the breakdown of endocytic endosomes. Using tissue-specific rescue experiments, the authors showed that expressing FLWR-1 in GABAergic neurons restored the aldicarb-resistant phenotype of flwr-1 mutants to wild-type levels. By contrast, cholinergic neuron expression did not rescue aldicarb sensitivity at all. They also showed that FLWR-1 removal leads to increased Ca2+ signaling in motor neurons upon photo-stimulation. From these findings, the authors conclude that FLWR-1 helps maintain the balance between excitation and inhibition (E/I) by preferentially regulating GABAergic neuronal excitability in a cell-autonomous manner.

      Overall, the work presents solid data and interesting findings, however the proposed cell-autonomous model of GABAergic FLWR-1 function may be overly simplified in my opinion.

      Most of my previous comments have been addressed; however, two issues remain.

      (1) I appreciate the authors' efforts conducting additional aldicarb sensitivity assays that combine muscle-specific rescue with either cholinergic or GABergic neuron-specific expression of FLWR-1. In the revised manuscript, they conclude, "This did not show any additive effects to the pure neuronal rescues, thus FLWR-1 effects on muscle cell responses to cholinergic agonists must be cell-autonomous." However, I find this interpretation confusing for the reasons outlined below.

      Figure 1 - Figure Supplement 3B shows that muscle-specific FLWR-1 expression in flwr-1 mutants significantly restores aldicarb sensitivity. However, when FLWR-1 is co-expressed in both cholinergic neurons and muscle, the worms behave like flwr-1 mutants and no rescue is observed. Similarly, cholinergic FLWR-1 alone fails to restore aldicarb sensitivity (shown in the previous manuscript). These observations indicate a non-cell-autonomous interaction between cholinergic neurons and muscle, rather than a strictly muscle cell-autonomous mechanism. In other words, FLWR-1 expressed in cholinergic neurons appears to negate or block the rescue effect of muscle-expressed FLWR-1. Therefore, FLWR-1 could play a more complex role in coordinating physiology across different tissues. This complexity may affect interpretations of Ca2+ dynamics and/or functional data, particularly in relation to E/I balance, and thus warrants careful discussion or further investigation.

      [Editor's note: The authors edited the text of the manuscript to acknowledge potential complexities in the interpretations of these results.]

      (2) The revised manuscript includes new GCaMP analyses restricted to synaptic puncta. The authors mention that "we compared Ca2+ signals in synaptic puncta versus axon shafts, and did not find any differences," concluding that "FLWR-1's impact is local, in synaptic boutons." This is puzzling: the similarity of Ca2+ signals in synaptic regions and axon shafts seems to indicate a more global effect on Ca2+ dynamics or may simply reflect limited temporal resolution in distinguishing local from global signals due to rapid Ca2+ diffusion. The authors should clarify how they reached the conclusion that FLWR-1 has a localized impact at synaptic boutons, given that synaptic and axonal signals appear similar. Based on the presented data, the evidence supporting a local effect of FLWR-1 on Ca2+ dynamics appears limited.

      [Editor's note: The authors acknowledged that some wording in the previous version was misleading and inaccurate. In the revised version, the authors have withdrawn the conclusion that FLWR-1 function is local in synaptic boutons.]

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Xiao et al. conducted a comprehensive analysis of retroperitoneal liposarcoma (RPLS) by classifying patients into two distinct molecular subgroups based on whole transcriptome sequencing data from 88 cases. The G1 subgroup demonstrated a metabolic activation signature, whereas the G2 subgroup was characterized by enhanced cell cycle regulation and DNA damage repair pathways. Notably, the G2 subgroup exhibited more aggressive molecular profiles and poorer clinical prognosis compared to the G1 subgroup. Through the application of machine learning algorithms, the authors established a streamlined classification system, identifying LEP and PTTG1 as pivotal molecular biomarkers for differentiating between these two RPLS subgroups. The manuscript presents a well-structured and methodologically sound study, with particular significance attributed to its substantial sample size and the development of a clinically applicable classification framework. This innovative model holds considerable promise for advancing personalized treatment strategies and improving clinical outcomes for RPLS patients.

      Comments on revisions:

      The authors have adequately addressed all my concerns, and I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Dong et al. study the directed cell migration of tracheal stem cells in Drosophila pupae. The migration of these cells which are found in two nearby groups of cells normally happens unidirectionally along the dorsal trunk towards the posterior. Here, the authors study how this directionality is regulated. They show that inter-organ communication between the tracheal stem cells and the nearby fat body plays a role. They provide compelling evidence that Upd2 production in the fat body and JAK/STAT activation in the tracheal stem cells plays a role. Moreover, they show that JAK/STAT signalling might induce the expression of apicobasal and planar cell polarity genes in the tracheal stem cells which appear to be needed to ensure unidirectional migration. Finally, the authors suggest that trafficking and vesicular transport of Upd2 from the fat body towards the tracheal cells might be important.

      Strengths:

      The manuscript is well written. This novel work demonstrates a likely link between Upd2-JAK/STAT signalling in the fat body and tracheal stem cells and the control of unidirectional cell migration of tracheal stem cells. The authors show that hid+rpr or Upd2RNAi expression in a fat body or Dome RNAi, Hop RNAi, or STAT92E RNAi expression in tracheal stem cells results in aberrant migration of some of the tracheal stem cells towards the anterior. Using ChIP-seq as well as analysis of GFP-protein trap lines of planar cell polarity genes in combination with RNAi experiments, the authors show that STAT92E likely regulates the transcription of planar cell polarity genes and some apicobasal cell polarity genes in tracheal stem cells which appear to be needed for unidirectional migration. Moreover, the authors hypothesise and provide some supporting evidence that extracellular vesicle transport of Upd2 might be involved in this Upd2-JAK/STAT signalling in the fat body and tracheal stem cells, which is quite interesting. Overall, the work presented here provides some novel insights into the mechanism that ensures unidirectional migration of tracheal stem cells that prevents bidirectional migration. This might have important implications for other types of directed cell migration in invertebrates or vertebrates including cancer cell migration.

      Weaknesses:

      It remains somewhat unclear how Upd2 transported in extracellular vesicles would bind to the Dome receptor found on the surface of the tracheal cells? How Upd2 would be released from vesicles to bind Dome extracellularly and activate the JAK-STAT pathway?

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Li and colleagues introduce a pioneering investigation into the molecular and epigenetic foundations of neuroendocrine transdifferentiation in prostate cancer. By employing a genetically engineered cellular reprogramming approach, they elucidate the pivotal roles of ASCL1 and NeuroD1 as pioneer transcription factors that suppress AR signaling and orchestrate lineage plasticity toward NEPC. Their integrative multi-omics methodology delineates dynamic transcriptional and chromatin reorganization processes, offering profound insights into mechanisms of therapeutic resistance.

      Strengths:

      (1) The development of a reproducible in vitro reprogramming platform to transition ARPC cells into NEPC represents a significant technical achievement. This model enables high-resolution temporal analysis of NEtD, addressing constraints inherent in traditional PDX systems.

      (2) The authors reveal that ASCL1 and NeuroD1 suppress AR signaling through chromatin structural modifications at somatically amplified AR enhancers, a significant discovery that clarifies the longstanding ambiguity surrounding AR pathway inactivation during lineage plasticity.

      (3) The integration of RNA sequencing, CUT&RUN, and single-cell multiomic profiling delivers a holistic perspective on dynamic epigenetic and transcriptional reprogramming during NEtD. Their observation that AR suppression precedes NE marker activation provides chronological insights into this process.

      (4) By delineating the distinct roles of ASCL1/NeuroD1-driven NE lineage programs versus REST inactivation, the study critiques the excessive dependence on limited immunohistochemical indicators for NEPC classification, directly informing improvements in molecular diagnostics.

      (5) The association of ASCL1/NeuroD1 with MHC class I suppression mediated by PRC2 unveils opportunities for combining agents targeting epigenetic modifiers with immune-based therapies to counteract immune evasion in NEPC.

      Weaknesses:

      While the study is methodologically robust, a modest limitation lies in its primary reliance on established cell lines for mechanistic exploration. Although key observations are corroborated with clinical samples, additional validation in PDX models or organoid systems could enhance translational applicability. Furthermore, while the role of ASCL1/NeuroD1 in AR enhancer silencing is convincingly demonstrated, the upstream regulatory mechanisms governing ASCL1/NeuroD1 induction under therapeutic stress remain unaddressed, a compelling avenue for future research.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting manuscript by Kirk and colleagues describing a highly valuable knock-down system that leverages CRISPRi in order to further elucidate the role of the Kruppel-Like Factor (KLF) transcription factor family in regulating the maturation of postnatal cortical projection neurons. The authors firstly use RNA-Seq and ATAC-Seq data in order to identify the KLF TF family as a potential regulator of cortical neuron maturation in the postnatal brain and subsequently knock down four KLF family members; KLF9, KL13, KLF6 and KLF7, in order to ascertain the functions of specific KLF genes in the developing cortex. The described CRISPRi knock down strategy is highly robust and penetrant as evidenced by a KD efficiency > 95% (assessed by both qPCR and single molecule FISH) and demonstrates that KLF6 and KLF7 play an activating role in driving the expression of target genes relating to axonal growth whereas KLF9 and 13 play a repressive role that inhibits the expression of overlapping gene targets. Together, the authors propose a model where the KLF TF family acts as a regulatory "switch" from activation to repression in the postnatal cortex as a mechanism to control a shift in projection neuron function from axonal growth to circuit refinement. The findings and conclusions of the manuscript offer a valuable contribution to the field of postnatal cortical development and further our understanding of the regulatory mechanisms that govern neuron maturation.

      The conclusions of this manuscript are generally supported by the data, but some aspects of the data collection and analysis require some further clarification. Specifically:

      (1) The authors comprehensively assess the molecular effects of KLF TF knock-down, however, the authors do not deeply address the cellular effects of these knock-downs. The authors conclude that knockdown of KLF6/7 and KLF9/13 cause downregulation and upregulation, respectively, of a common set of genes involved in cytoskeletal or axon regulation such as Tubb2 and Dpysl3. How is the morphology of the cells affected by these knockdowns? For example, does KLF9/13 knockdown cause neurite/axonal outgrowth? The authors should perform some basic experiments to assess changes in cell morphology following KLF TF KD. This is the one key point that needs addressing, in my opinion.

      (2) The authors identify 374 DEGs in P10 Klf6/7 KD neurons and 115 DEGs at P20 (figure 6B). Have the authors looked to see what proportion of these DEGs are upregulated in the KLF9/13 KDs in order to get a more global understanding of the degree of overlap in the genes regulated by the KLF family members? Along similar lines, the authors later indicate that there are 144 shared targets between the KLF activator and repressor pairs (Figure 7C). What percentage does this represent of the total number of DEGs between the KLF pairs. This could further illustrate the degree to which the KLF pairs regulate the same set of genes. If it is already indicated in the manuscript, it should be made a bit more clear to the reader.

      (3) Figures 5B and 6D2 are very interesting as they relate the changes in gene expression over time in neurons from P2 to P30 to the functions of KLF9/13 and KLF6/7, respectively. I would be curious to see how these two forms of analyses overlap with one another. For example, in Figure 6D2, where would the KLF9/13 upregulated genes fall on the plot shown in Figure 6D2? And would those overlapping genes fit a similar correlation?

      (4) Figure 7E shows expression levels of shared KLF TF targets in control or KD conditions. Interestingly, the expression of Tubb2b, shows higher expression in ScrGFP P10 when compared to KLF9/13 P20, suggesting that derepression of KLF9/13 does not fully restore the expression level of Tubb2b seen at P10. This may suggest that other repressive regulators may be involved in the downregulation of Tubb2b from P10 to P20. Can the authors further comment on this, perhaps in the discussion, and speculate if there are other regulatory factors at play that may be controlling some of the shared targets by KLF6/7 and KLF9/13?

    1. Reviewer #1 (Public review):

      It is well established that many potivirids (viruses in the Potiviridae family), particularly potyviruses (viruses in the Potyvirus genus), recruit (selectively) either eIF4E or eIF(iso)4E, while some others can use both of them to ensure a successful infection. CBSD caused by two potyvirids, i.e., ipomoviruses CBSV and UCBSV, severely impedes cassava production in West Africa. In a previous study (PBI, 2019), Gomez and Lin (co-first authors), et al. reported that cassava encodes five eIF4E proteins, including eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, nCBP-1 and nCBP-2, and CBSV VPg interacts with all of them (Co-IP data). Simultaneous CRISPR/Cas9-mediated editing of nCBp-1 and -2 in cassava significantly mitigates CBSD symptoms and incidence. In this study, Lin et al further generated all five eIF4E family single mutants as well as both eIF(iso)4E-1/-2 and nCBP-1/-2 double mutants in a farmer-preferred casava cultivar. They found that both eIF(iso)4E and nCBP double mutants show reduced symptom severity, and the latter is of better performance. Analysis of mutant sequences revealed one important point mutation, L51F of nCBP-,2 that may be essential for the interaction with VPg. The authors suggest that the introduction of the L51F mutation into all five eIF4E family proteins may lead to strong resistance. Overall I believe this is an important study enriching knowledge about eIF4E as a host factor/susceptibility factor of potyvirids and proposing new information for the development of high CBSD resistance in cassava. I suggest the following two major comments for authors to consider for improvement:

      (1) As eIF(iso)4e-1/-2 or nCBP-1/-2 double mutants show resistance, why not try to generate a quadruple mutant? I believe it is technically possible through conventional breeding.

      (2) I agree that L51F mutation may be important. But more evidence is needed to support this idea. For example, the authors may conduct a quantitative Y2H assay on the binding of VPg to each of the eIF4E (L51F) mutants. Such data may add as additional evidence to support your claim.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript the authors test the hypothesis that gonadal steroid signaling influences the transcriptional development of specific neurons in the mPOA during adolescence, and that such adolescent development of the mPOA is necessary for mating behaviors.

      Strengths:

      The authors establish a role GABAergic-Esr1 neurons in mating behaviors of both male and female mice. Differentially expressed genes are compared across adolescent development and between sexes. Single-cell sequencing is used to resolve clusters of cells based on transcript levels, and in situ hybridization is used to visualize anatomical expression patterns. The research presented is thorough and rigorous and contributes new insight into hormone-sensitive transcriptional profiles within genetically defined neuron clusters in the mPOA during adolescence.

      Weaknesses: Two minor comments

      (1) Fig 4 (hormone treatment): In this experiment, testosterone is given to males, yet in Sup Fig 6 it is argued that Esr1 is more influential in driving transcriptional changes compared to AR. Does DHT treatment have the same outcome as testosterone? Or, does estrogen treatment in males have the same outcome as testosterone?

      (2) Fig 3i: There appears to be an age-dependent transcriptional change in male Vgat HR-low cells. Can the authors comment on age-dependent (hormone-independent) transcriptional changes in males versus females.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents a valuable contribution of NO signaling in zebrafish retinal regeneration in larval animals. The data on NO signaling are solid; however, the link to cxcl118b is inadequate. There are significant concerns that the RNA-seq studies largely repeat the work of a previous study done in adult animals, which is a more relevant biological variable for translational insights.

      Strengths:

      New data on NO signaling are valuable to the field, but may be limited to larval "regeneration".

      Weaknesses:

      (1) The authors state that more is known about glial reactivation than cell-cycle re-entry. They are confusing many points here. More gene networks that require cell-cycle re-entry are known. Some of the genes listed for "reactivation" are, in fact, required for cell cycle re-entry/proliferation. And the authors confuse gliosis vs glial reactivation.

      (2) A major weakness of the approach is testing cone ablation and regeneration in early larval animals. For example, cones are ablated starting the day that they are born. MG that are responding are also very young, less than 48 hrs old. It is also unclear whether the immune response of microglia is a mature response. All of these assays would be of higher significance if they were performed in the context of a mature, fully differentiated, adult retina. All analysis in the paper is negatively affected by this biological variable.

      (3) Related to the above point, the clonal analysis of cxcl18b+ MG is complicated by the fact that new MG are still being born in the CMZ (as are new cones for that matter).

      (4) A near identical study was already done by Hoang et al., 2020, in adult zebrafish, a more relevant biological timepoint. Did the authors check this published RNA-seq database for their gene(s) of interest?

      (5) KD of cxcl18b did not affect MG proliferation or any other defined outcome. And yet the authors continually state such phrases as "microglia-mediated inflammation is critical for activating the cxcl18b-defined transitional states that drive MG proliferation." This is false. Cxcl18b does not drive MG proliferation at all.

      (6) A technical concern is that intravitreal injections are not routinely performed in larval fish.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors developed a chemical labeling reagent for P2X7 receptors, called X7-uP. This labeling reagent selectively labels endogenous P2X7 receptors with biotin based on ligand-directed NASA chemistry (Ref. 41). After labeling the endogenous P2X7 receptor with biotin, the receptor can be fluorescently labeled with streptavidin-AlexaFluor647. The authors carefully examined the binding properties and labeling selectivity of X7-uP to P2X7, characterized the labeling site of P2X7 receptors, and demonstrated fluorescence imaging of P2X7 receptors. The data obtained by SDS-PAGE, Western blot, and fluorescence microscopy clearly show that X7-uP labels the P2X7 receptor. Finally, the authors fluorescently labeled the endogenous P2X7 in BV2 cells, which are a murine microglia model, and used dSTORM to reveal a nanoscale P2X7 redistribution mechanism under inflammatory conditions at high resolution.

      Strengths:

      X7-uP selectively labels endogenous P2X7 receptors with biotin. Streptavidin-AlexaFluor647 binds to the biotin labeled to the P2X7 receptor, allowing visualization of endogenous P2X7 receptors.

      Weaknesses:

      Weaknesses & Comments<br /> (1) The P2X7 receptor exists in a trimeric form. If it is not a monomer under the conditions of the pull-down assay in Figure 2C, the quantitative values may not be accurate.<br /> (2) In Figure 3, GFP fluorescence was observed in the cell. Are all types of P2X receptors really expressed on the cell surface ?<br /> (3) The reviewer was not convinced of the advantages of the approach taken in this paper, because the endogenous receptor labeling in this study could also be done using conventional antibody-based labeling methods.<br /> (4) Although P2X7 was successfully labeled in this paper, it is not new as a chemistry. There is a need for more attractive functional evaluation such as live trafficking analysis of endogenous P2X7.<br /> (5) The reviewer has concerns that the use of the large-size streptavidin to label the P2X7 receptor may perturbate the dynamics of the receptor.<br /> (6) It is better to directly label Alexa647 to the P2X7 receptor to avoid functional perturbation of P2X7.<br /> (7) In all imaging experiments, the addition of streptavidin, which acts as a cross-linking agent, may induce P2X7 receptor clustering. This concern would be dispelled if the receptors were labeled with a fluorescent dye instead of biotin and observed.<br /> (8) There are several mentions of microglia in this paper, even though they are not used. This can lead to misunderstanding for the reader. The author conducted functional analysis of the P2X7 receptor in BV-2 cells, which are a model cell line but not microglia themselves. The text should be reviewed again and corrected to remove the misleading parts that could lead to misunderstanding.<br /> e.g. P8. lines 361-364. First, it combines N-cyanomethyl NASA chemistry with the high-affinity AZ10606120 ligand, enabling rapid labeling in microglia (within 10 min)<br /> P8. lines 372-373. Our results not only confirm P2X7 expression in microglia, as previously reported (6, 26-33), but also reveal its nanoscale localization at the cell surface using dSTORM.

    1. Reviewer #1 (Public review):

      Although the use of antimony has been discontinued in India, the observation that Leishmania parasites resistant to antimony are in circulation has been cited as evidence that these resistant parasites are now a distinct strain with properties that ensure their transmission and persistence. It is of interest to determine the properties that favor the retention of their drug resistance phenotype even in the absence of the selective pressure that the drug would otherwise exert. The hypothesis that these authors set out to test is that these parasites have developed a new capacity to acquire and utilize lipids, especially cholesterol, which enables them to grow robustly in infected hosts. The authors present compelling evidence that supports their hypothesis. However, the genetic basis for the parasite's gluttony for lipids remains unresolved.

      An issue raised in the initial review was the insufficient detail in the discussion of experiments in which parasitophorous vacuoles were isolated from infected cells and their molecular content was investigated. In this new version, the authors have provided more details of those experiments, including the relative enrichment of the preparations.

      A puzzling observation for which they provide compelling evidence is the capacity of LD-R parasites to undergo logarithmic growth between 4 and 24 hours in infected cells. Interestingly, after logarithmic growth within the macrophages at those early times, parasite growth slows down inexplicably after 24 hours. One is left to imagine what the consequences of such growth within an infected host will be.

      They made the novel observation that Lamp1 expression increases as early as 4 hours after infection with LD-R and by 12 hours after infection with both LD-S and LD-R. Interestingly, transcription analysis did not provide evidence for increased Lamp1 transcripts, leaving open the possibility that parasite infection may exert control over host cell biology at the translational level. How this might be achieved and what genes would be targets for such controls are open questions.

      The dynamic changes in lipid biosynthesis pathways, in comparison to lipid uptake and the formation of lipid droplets in infected cells, are tracked. The basis for the beneficial effect of aspirin to stifle parasite resistance to antimony is explored.

    1. Reviewer #2 (Public review):

      Summary:

      Idiopathic scoliosis (IS) is a common spinal deformity. Various studies have linked genes to IS, but underlying mechanisms are unclear such that we still lack understanding of the causes of IS. The current manuscript analyzes IS patient populations and identified EPHA4 as a novel associated gene, finding three rare variants in EPHA4 from three patients (one disrupting splicing and two missense variants) as well as a large deletion (encompassing EPHA4) in a Waardenburg syndrome patient with scoliosis. EPHA4 is a member of the Eph receptor family. Drawing on data from zebrafish experiments, the authors argue that EPHA4 loss of function disrupts central pattern generator (CPG) function necessary for motor coordination.

      Strengths:

      The main strength of this manuscript is the human genetic data, which provide convincing evidence linking EPHA4 variants to IS. The loss of function experiments in zebrafish strongly support the conclusion that EPHA4 variants that reduce function lead to IS.

      Weaknesses:

      The conclusion that disruption of CPG function causes spinal curves in the zebrafish model is not fully supported. The authors' final model is that a disrupted CPG leads to asymmetric mechanical loading on the spine and, over time, the development of curves. This is a reasonable idea, but currently not strongly backed up by data in the manuscript. Potentially, the impaired larval movements simply coincide with, but do not cause, juvenile-onset scoliosis. Support for the authors' conclusion would require independent methods of disrupting CPG function and determining if this is accompanied by spine curvature. Nevertheless, the data showing correlations between spine curvature and abnormal neural patterning, neuronal firing, and swimming in eph4a loss-of-function mutant larvae are sound.

      Comments on revisions:

      I think the authors misunderstood my point about genetic nomenclature for the zebrafish alleles. The nomenclature guidelines are described at ZFIN, and ZFIN will ask for appropriate allele designations.

    1. Reviewer #1 (Public review):

      Public Review

      The authors investigated the role of the C. elegans Flower protein, FLWR-1, in synaptic transmission, vesicle recycling, and neuronal excitability. They confirmed that FLWR-1 localizes to synaptic vesicles and the plasma membrane and facilitates synaptic vesicle recycling at neuromuscular junctions. They observed that hyperstimulation results in endosome accumulation in flwr-1 mutant synapses, suggesting that FLWR-1 facilitates the breakdown of endocytic endosomes. Using tissue-specific rescue experiments, the authors showed that expressing FLWR-1 in GABAergic neurons restored the aldicarb-resistant phenotype of flwr-1 mutants to wild-type levels. By contrast, cholinergic neuron expression did not rescue aldicarb sensitivity at all. They also showed that FLWR-1 removal leads to increased Ca2+ signaling in motor neurons upon photo-stimulation. From these findings, the authors conclude that FLWR-1 helps maintain the balance between excitation and inhibition (E/I) by preferentially regulating GABAergic neuronal excitability in a cell-autonomous manner.

      Overall, the work presents solid data and interesting findings, however the proposed cell-autonomous model of GABAergic FLWR-1 function may be overly simplified in my opinion.

      Most of my previous comments have been addressed; however, two issues remain.

      (1) I appreciate the authors' efforts conducting additional aldicarb sensitivity assays that combine muscle-specific rescue with either cholinergic or GABergic neuron-specific expression of FLWR-1. In the revised manuscript, they conclude, "This did not show any additive effects to the pure neuronal rescues, thus FLWR-1 effects on muscle cell responses to cholinergic agonists must be cell-autonomous." However, I find this interpretation confusing for the reasons outlined below.

      Figure 1 - Figure Supplement 3B shows that muscle-specific FLWR-1 expression in flwr-1 mutants significantly restores aldicarb sensitivity. However, when FLWR-1 is co-expressed in both cholinergic neurons and muscle, the worms behave like flwr-1 mutants and no rescue is observed. Similarly, cholinergic FLWR-1 alone fails to restore aldicarb sensitivity (shown in the previous manuscript). These observations indicate a non-cell-autonomous interaction between cholinergic neurons and muscle, rather than a strictly muscle cell-autonomous mechanism. In other words, FLWR-1 expressed in cholinergic neurons appears to negate or block the rescue effect of muscle-expressed FLWR-1. Therefore, FLWR-1 could play a more complex role in coordinating physiology across different tissues. This complexity may affect interpretations of Ca2+ dynamics and/or functional data, particularly in relation to E/I balance, and thus warrants careful discussion or further investigation.

      (2) The revised manuscript includes new GCaMP analyses restricted to synaptic puncta. The authors mention that "we compared Ca2+ signals in synaptic puncta versus axon shafts, and did not find any differences," concluding that "FLWR-1's impact is local, in synaptic boutons." This is puzzling: the similarity of Ca2+ signals in synaptic regions and axon shafts seems to indicate a more global effect on Ca2+ dynamics or may simply reflect limited temporal resolution in distinguishing local from global signals due to rapid Ca2+ diffusion. The authors should clarify how they reached the conclusion that FLWR-1 has a localized impact at synaptic boutons, given that synaptic and axonal signals appear similar. Based on the presented data, the evidence supporting a local effect of FLWR-1 on Ca2+ dynamics appears limited.

    1. Reviewer #1 (Public review):

      Summary:

      In this study from Belato, Knight and co-workers, the authors investigated the Rec domain of a thermophilic Cas9 from Geobacillus stearothermophilus (GeoCas9). The authors investigated three constructs, two individual subdomains of Rec (Rec1 and Rec2) and the full Rec domain. This domain is involved in binding to the guide RNA of Cas9, as well as the RNA-DNA duplex that is formed upon target binding. The authors performed RNA binding and relaxation experiments using NMR for the wild-type domain as well as two-point mutants. They observed differences in RNA binding activities as well as the flexibility of the domain. The authors also performed molecular dynamics and functional experiments on full-length GeoCas9 to determine whether these biophysical differences affect the RNA binding or cleavage activity. Although the authors observed some changes in the thermal stability of the mutant GeoCas9-gRNA complex, they did not observe substantial differences in the guide RNA binding or cleavage activities of the mutant GeoCas9 variants.

      Overall, this manuscript provides a detailed biophysical analysis of the GeoCas9 Rec domain. The NMR assignments for this construct should prove very useful, and can serve as the basis for future similar studies of GeoCas9 Rec domain mutants. While the two mutants tested in the study did not produce significant differences from wild-type GeoCas9, the study rules out the possibility that analogous mutations can be translated between type II-A and II-C Cas9 orthologs. Together, these findings may provide the grounds for future engineering of higher fidelity variants of GeoCas9

    1. Reviewer #1 (Public review):

      Summary.

      The authors goal was to map the neural circuitry underlying cold sensitive contraction in Drosophila. The circuitry underlying most sensory modalities has been characterized but noxious cold sensory circuitry has not been well studied. Importantly, they analyze all downstream partner neurons connected to the Class III sensory neurons. The authors achieve their goal and map out sensory and post-sensory neurons involved in this behavior.

      Strengths.

      The manuscript provides compelling evidence for sensory and post sensory neurons involved in noxious cold sensitive behavior. They use both connectivity data and functional data to identify these neurons. This work is a clear advance in our understanding of noxious cold behavior. The experiments are done with a high degree of experimental rigor.

      Weaknesses.

      I find no major weaknesses in this work. It is a massive amount of data that clearly shows the role of the Class III neurons in cold-induced larval body contraction.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Nakagawa and colleagues report the observation that YAP is differentially localized, and thus differentially transcriptionally active, in spheroid cultures versus monolayer cultures. YAP is known to play a critical role in the survival of drug-tolerant cancer cells, and as such, the higher levels of basally activated YAP in monolayer cultures lead to higher fractions of surviving drug-tolerant cells relative to spheroid culture (or in vivo culture). The findings of this study, revealed through convincing experiments, are elegantly simple and straightforward, yet they add significantly to the literature in this field by revealing that monolayer cultures may actually be a preferential system for studying residual cell biology simply because the abundance of residual cells in this format is much greater than in spheroid or xenograft models. The potential linkage between matrix density and stiffness and YAP activation, while only speculated upon in this manuscript, is intriguing and a rich starting point for future studies.

      Although this work, like any important study, inspires many interesting follow-on questions, I am limiting my questions to only a few minor ones, which may potentially be explored either in the context of the current study or in separate, follow-on studies.

      Strengths:

      The major strengths of the work are described above.

      Weaknesses:

      Rather than considering the following points as weaknesses, I instead prefer to think of them as areas for future study:

      (1) Given the field's intense interest in the biology and therapeutic vulnerabilities of residual disease cells, I suspect that one major practical implication of this work could be that it inspires scientists interested in working in the residual disease space to model it in monolayer culture. However, this relies upon the assumption that drug-tolerant cells isolated in monolayer culture are at least reasonably similar in nature to drug-tolerant cells isolated from spheroid or xenograft systems. Is this true? An intriguing experiment that could help answer this question would be to perform gene expression profiling on a cell line model in the following conditions: monolayer growth, drug tolerant cells isolated from monolayer growth conditions, spheroid growth, drug tolerant cells isolated from spheroid growth conditions, xenograft tumors, and drug tolerant cells isolated from xenograft tumors. What are the genes and programs shared between drug-tolerant cells cultured in the three conditions above? Which genes and programs differ between these conditions? Data from this exercise could help provide additional, useful context with which to understand the benefits and pitfalls of modeling residual tumor cell growth in monolayer culture.

      (2) In relation to the point above, there is an interesting and established connection between mesenchymal gene expression and YAP/TAZ signaling. For example, analyses of gene expression data from human tumors and cell lines demonstrate an extremely strong correlation between these two gene expression programs. Further, residual persister cancer cells have often been characterized as having undergone an EMT-like transition. From the analysis above, is there evidence that residual tumor cells with increased YAP signaling also exhibit increased mesenchymal gene expression?

    1. Reviewer #1 (Public review):

      Summary

      Olfactory sensory neurons (OSNs) in the olfactory epithelium detect myriads of environmental odors that signal essential cues for survival. OSNs are born throughout life and thus represent one of the few neurons that undergo life-long neurogenesis. Until recently, it was assumed that OSN neurogenesis is strictly stochastic with respect to subtype (i.e. the receptor the OSN chooses to express). However, a recent study showed that olfactory deprivation via naris occlusion selectively reduced birthrates of only a fraction of OSN subtypes and indicated that these subtypes appear to have a special capacity to undergo changes in birthrates in accordance with the level of olfactory stimulation. These previous findings raised the interesting question of what type of stimulation influences neurogenesis, since naris occlusion does not only reduce the exposure to potentially thousands of odors, but also to more generalized mechanical stimuli via preventing airflow.

      In this study, the authors set out to identify the stimuli that are required to promote the neurogenesis of specific OSN subtypes. Specifically, they aim to test the hypothesis if discrete odorants selectively stimulate the same OSN subtypes whose birthrates are affected. This would imply a highly specific mechanism in which exposure to certain odors can "amplify" OSN subtypes responsive to those odors suggesting that OE neurogenesis serves, in part, an adaptive function.

      To address this question, the authors focused on a family of OSN subtypes that had previously been identified to respond to musk-related odors and that exhibit higher transcript levels in the olfactory epithelium of mice exposed to males compared to mice isolated from males. First, the authors confirm via a previously established cell birth dating assay in unilateral naris occluded mice that this increase in transcript levels actually reflects a stimulus-dependent birthrate acceleration of this OSN subtype family. In a series of experiments (in unilateral occluded and non-occluded mice) using the same birth dating assay, they show that several subtypes of this OSN family, but not other "control" subtypes exhibit increased birthrates in response to adolescent male exposure, but not to female exposure.

      In the core experiment of the study, they expose unilaterally naris occluded and non-occluded mice to two musk-related odors and two "control" odors (that do not activate musk-responsive OSN subtypes) to test if these odors specifically accelerate the birth rates of OSN types that are responsive to these odors. This experiment reveals that (for the tested odors and OSN subtypes) indeed birthrates are only affected by discrete odorants that stimulate these OSN subtypes (with a complex relationship between birth rate acceleration and odor concentrations) suggesting that OE neurogenesis may serve, in part, as an adaptive function

      Strength:

      The scientific question is valid and opens an interesting direction. The previously established cell birth dating assay in naris occluded and non-occluded mice is well performed and accompanied by several control experiments addressing potential other interpretations of the data.

      In this revised version, the authors added several new experiments addressing the previous concern that only the effect of one specific odor (muscone) on musk-responsive OSN subtypes had been tested to make the general claim that discrete odors specifically accelerate the birth rate of OSN subtypes they stimulate. Now the authors demonstrate that another musk-related odor (ambretone) also induces this effect and that other non-musk odors do not. In addition, they show that two other OSN subtypes that do not respond to musk-related odors are not affected. These experiments further substantiate the above claim.

      Weakness:

      (1) The main research question of this study was to test if discrete odors specifically accelerate the birth rate of OSN subtypes they stimulate, i.e. does muscone only accelerate the birth rate of OSNs that express muscone-responsive ORs, or vice versa is the birthrate of muscone-responsive OSNs only accelerated by odors they respond to?<br /> As mentioned under "strength" the authors added several experiments to further substantiate their claim. While these controls are very important to show that the observed effect is indeed specific for musk-related odors on musk-responsive OSN subtypes, these experiments still only focus on one closely related family of musk-responsive OSN subtypes. To understand if this phenomenon is a more generalized mechanism and plays a role for other OSN subtypes beyond this small family of related receptors, further experiments showing this effect for other OSN subtypes are critical.

      (2) Previous concerns (#2, #4, #5 and #6) about a lack of increase in UNO effect size for olfr1440 under any muscone concentrations, strong fluctuations of newborn neurons on the closed side as well as a seemingly contradicting statement that overstimulation possibly reflects reduced survival have been addressed by adding potential explanations to the text.

      In addition, the previous remark (#3) that certain phrases gave the misleading impression that musk-related odors are indeed excreted into male mouse urine at certain concentrations was addressed not only by re-phrasing, but by performing additional experiments. Although these did not deliver clear results (because of technical difficulties), interesting possibilities are discussed.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Le et al.. aimed to explore whether AAV-mediated overexpression of Oct4 could induce neurogenic competence in adult murine Müller glia, a cell type that, unlike its counterparts in cold-blooded vertebrates, lacks regenerative potential in mammals. The primary goal was to determine whether Oct4 alone, or in combination with Notch signaling inhibition, could drive Müller glia to transdifferentiate into bipolar neurons, offering a potential strategy for retinal regeneration.

      The authors demonstrated that Oct4 overexpression alone resulted in the conversion of 5.1% of Müller glia into Otx2+ bipolar-like neurons by five weeks post-injury, compared to 1.1% at two weeks. To further enhance the efficiency of this conversion, they investigated the synergistic effect of Notch signaling inhibition by genetically disrupting Rbpj, a key Notch effector. Under these conditions, the percentage of Müller glia-derived bipolar cells increased significantly to 24.3%, compared to 4.5% in Rbpj-deficient controls without Oct4 overexpression. Similarly, in Notch1/2 double-knockout Müller glia, Oct4 overexpression increased the proportion of GFP+ bipolar cells from 6.6% to 15.8%.

      To elucidate the molecular mechanisms driving this reprogramming, the authors performed single-cell RNA sequencing (scRNA-seq) and ATAC-seq, revealing that Oct4 overexpression significantly altered gene regulatory networks. They identified Rfx4, Sox2, and Klf4 as potential mediators of Oct4-induced neurogenic competence, suggesting that Oct4 cooperates with endogenously expressed neurogenic factors to reshape Müller glia identity.

      Overall, this study aimed to establish Oct4 overexpression as a novel and efficient strategy to reprogram mammalian Müller glia into retinal neurons, demonstrating both its independent and synergistic effects with Notch pathway inhibition. The findings have important implications for regenerative therapies as they suggest that manipulating pluripotency factors in vivo could unlock the neurogenic potential of Müller glia for treating retinal degenerative diseases.

      Strengths:

      (1) Novelty: The study provides compelling evidence that Oct4 overexpression alone can induce Müller glia-to-bipolar neuron conversion, challenging the conventional view that mammalian Müller glia lacks neurogenic potential.<br /> (2) Technological Advances: The combination of Muller glia-specific labeling and modifying mouse line, AAV-GFAP promoter-mediated gene expression, single-cell RNA-seq, and ATAC-seq provides a comprehensive mechanistic dissection of glial reprogramming.<br /> (3) Synergistic Effects: The finding that Oct4 overexpression enhances neurogenesis in the absence of Notch signaling introduces a new avenue for retinal repair strategies.

      Weaknesses:

      (1) In this study, the authors did not perform a comprehensive functional assessment of the bipolar cells derived from Müller glia to confirm their neuronal identity and functionality.<br /> (2) Demonstrating visual recovery in a bipolar cell-deficiency disease model would significantly enhance the translational impact of this work and further validate its therapeutic potential.

      Comments on revisions:

      The author answered all my questions and corrected the minor comments, so I have no more comments on the manuscript.

    1. Reviewer #2 (Public review):

      This study by Yu and coworkers investigates the potential role of Secretory leukocyte protease inhibitor (SLPI) in Lyme arthritis. They show that, after needle inoculation of the Lyme disease agent, B. burgdorferi, compared to wild type mice, a SLPI-deficient mouse suffers elevated bacterial burden, joint swelling and inflammation, pro-inflammatory cytokines in the joint, and levels of serum neutrophil elastase (NE). They suggest that SLPI levels of Lyme disease patients are diminished relative to healthy controls. Finally, using a powerful screen of secreted mammalian proteins, they find that SLPI interacts directly B. burgdorferi.

      The known role of SLPI in dampening inflammation and inflammatory damage by inhibition of NE makes the enhanced inflammation in the joint of B. burgdorferi-infected mice a predicted result but it has not previously been demonstrated and could spur further study. A limitation that is unaddressed experimentally is potential contribution of the greater bacterial burden to the enhanced inflammation, leaving open the question of whether greater immunologic stimulus or a defect in the regulation of inflammation is responsible for the observed enhanced disease. Answering this question would better justify the statement in the abstract that "These data demonstrate the importance of SLPI in suppressing periarticular joint inflammation in Lyme disease."

      Although the finding of SLPI binding to bacteria is potentially quite interesting the biological relevance of this interaction is not addressed. Readers of only the abstract, which describes the direct interaction of SLPI with bacteria, may mistakenly conclude that the authors demonstrate that recruitment of this immunoregulatory factor to the bacterial surface enhances inflammation of infected tissues. This attractive possibility has not been demonstrated in this study; such assertion would require comparison of bacteria that either bind or do not bind SLPI in a mouse infection model.

      Finally, the investigators take advantage of clinical samples to ask if serum SLPI levels a diminished in Lyme disease patients relative to healthy controls. The assessment of human samples is interesting and generally to be lauded, but here the comparison is limited by: (a) a small sample number, with only 5 healthy control samples (which should not be difficult to obtain); and (b) the inclusion of samples from 4 patients with erythema migrans rather than Lyme arthritis, which was the manifestation tracked in the mouse studies. Moreover, of the 3 Lyme arthritis patients, serum samples from multiple blood draws were included, resulting in 5 data points; similarly, of the 4 erythema migrans patients, 13 separate samples were included. The multiple samplings from some but not all subjects could result in differential "weighting" of samples. Therefore, although the investigators provide a statistical analysis of these data, it is difficult to evaluate the validity of this apparent difference.

      In summary, this is an interesting study that provides new information regarding infection in a host deficient in SLPI and, using a state-of-the-art screen of the mammalian secretome to show that B. burgdorferi binds SLPI, raising the attractive possibility that this pathogen utilizes a host immune regulator to enhance inflammation. The conclusions that SLPI enhances inflammation directly due to its immunoregulatory activity and that SLPI levels are diminished in human Lyme disease patients, as well as the implication that SLPI binding by the bacterium has pathogenic significance, each require further study.

    1. Reviewer #1 (Public review):

      The paper proposes an interesting perspective on the spatio-temporal relationship between FC in fMRI and electrophysiology. The study found that while similar networks configurations are found in both modalities, there is a tendency for the networks to spatially converge more commonly at synchronous than asynchronous timepoints.

      My confidence in the findings and their interpretation has been improved by the addition of some basic simulations. It helps give confidence in the measure being used to distinguish between scenarios.

      Of course, there may be other scenarios that are problematic that are not covered by the current simulations - this highlights the difficulty of making a claim based on a heuristic measure.

      That said, with the simulations included and if the caveat above is acknowledged, then I think the paper is in good shape.

    1. Reviewer #1 (Public review):

      Summary:

      Huntington's disease (HD) is characterized by the expansion of polyglutamine repeats in huntingtin protein (HTT), leading to the formation of aggresomes composed of mutant huntingtin (mHTT). This study investigates the potential therapeutic strategy of enhancing autophagy to clear mHTT. The authors' evaluation of the autophagic-lysosomal pathway (ALP) in human HD brains shows that, in early stages, there is upregulated lysosomal biogenesis and relatively normal autophagy flux, while late-stage brains exhibit impaired autolysosome clearance, suggesting that early intervention may be beneficial. The authors cross the Q175 HD knock-in model with the TRGL autophagy reporter mouse to investigate ALP dynamics in vivo. In these models, mHTT is detected in autophagic vacuoles and colocalizes with autophagy receptors p62/SQSTM1 and ubiquitin. Although ALP alterations in the Q175 model are milder and later onset compared to human HD, they do show lysosome depletion and impaired autophagic flux. Treatment with an mTOR inhibitor in 6-month-old TRGL/Q175 mice normalized lysosome numbers, alleviated aggresome pathology, and reduced mHTT, p62, and ubiquitin levels. These findings suggest that autophagy modulation during the early stages of disease progression may offer potential therapeutic interventions for HD pathology.

      Strengths:

      Provide supportive animal evidence for mTOR inhibition in enhancing autophagy and reducing toxicity in HD animal models.

      Weaknesses:

      Lacks animal behavior and survival rate data, particularly regarding whether the extent of motor dysfunction in TRGL/Q175 mice is comparable to that in Q175 mice and whether the administration of mTORi INK improves these symptoms.

    1. Reviewer #1 (Public review):

      This report addresses a compelling topic. However, I have significant concerns, which necessitate a reassessment of the report's overall value.

      Anatomical Specificity and Stimulation Site:<br /> While the authors clarify that the ventral MGB (MGv) was the intended stimulation target, the electrode track (Fig. 1A) and viral spread (Fig. 2E) suggest possible involvement of the dorsal MGB (MGd) and broader area. Given that MGv-AI and MGd-AC pathways have distinct-and sometimes opposing-effects on plasticity, the reported LTP values (with unusually small standard deviations) raise concerns about the specificity of the findings. Additional anatomical verification would help resolve this issue.

      Statistical Rigor and Data Variability:<br /> The remarkably low standard deviations in LTP measurements are unexpected based on established variability in thalamocortical plasticity. The authors' response confirms these values are accurate, but further justification, such as methodological controls or replication-would bolster confidence in these results. Additionally, the comparison of in vivo vs. in vitro LTP variability requires more substantive support.

      Viral Targeting and Specificity:<br /> The manuscript does not clearly address whether cortical neurons were inadvertently infected by AAV9. Given the potential for off-target effects, explicit confirmation (e.g., microphotograph of stimulation site) would strengthen the study's conclusions.

      Integration of Prior Literature:<br /> The discussion of existing work is adequate but could be more comprehensive. A deeper engagement with contrasting findings would provide better context for the study's contributions.

      Therapeutic Implications:<br /> The authors' discussion of therapeutic potential is now appropriately cautious and well-reasoned.

      Conclusion:<br /> While the study presents intriguing findings, the concerns outlined above must be addressed to fully establish the validity and impact of the results. I appreciate the authors' efforts thus far and hope they can provide additional data or clarification to resolve these issues. With these revisions, the manuscript could make a valuable contribution to the field.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript provides a novel method for the automated detection of scent marks from urine and feces in rodents. Given the importance of scent communication in these animals and their role as model organisms, this is a welcome tool.

      Strengths:

      The method uses a single video stream to allow for the distinction between urine and feces. It is automated.

      Weaknesses:

      The accuracy is decent but not perfect and may be too low to detect some effects that are biologically real but subtle (e.g. less than 10% differences). For many assays, however, this tools will be useful.

    1. Reviewer #1 (Public review):

      About R squared in the plots:<br /> The authors have used a z-scored R squared in the main ridge regression plots. While this may be interpretable, it seems non-standard and overly complicated. The authors could use a simple Pearson r to be most direct and informative (and in line with similar work, including Goldstein et al. 2022 which they mentioned). This way the sign of the relationships is preserved.

      About the new TRF analysis:<br /> The new TRF analysis is a necessary addition and much appreciated. However, it is missing the results for the acoustic regressors, which should be there analogous to the HM-LSTM ridge analysis. The authors should also specify which software they have utilized to conduct the new TRF analysis. It also seems that the linguistic predictors/regressors have been newly constructed in a way more consistent with previous literature (instead of using the HM-LSTM features); these specifics should also be included in the manuscript (did it come from Montreal Forced Aligner, etc.?). Now that the original HM-LSTM can be compared to a more standard TRF analysis, it is apparent that the results are similar.

      The authors' wording about this suggests that these new regressors have a nonzero sample at each linguistic event's offset, not onset. This should also be clarified. As the authors know, the onset would be more standard, and using the offset has implications for understanding the timing of the TRFs, as a phoneme has a different duration than a word, which has a different duration from a sentence, etc.

      About offsets:<br /> TRFs can still be interpretable using the offset timings though; however, the main original analysis seems to be utilizing the offset times in a different, more confusing way. The authors still seem to be saying that only the peri-offset time of the EEG was analyzed at all, meaning the vast majority of the EEG trial durations do not factor into the main HM-LSTM response results whatsoever. The way the authors describe this does not seem to be present in any other literature, including the papers that they cite. Therefore, much more clarification on this issue is needed. If the authors mean that the regressors are simply time-locked to the EEG by aligning their offsets (rather than their onsets, because they have varying onsets or some such experimental design complexity), then this would be fine. But it does not seem to be what the authors want to say. This may be a miscommunication about the methods, or the authors may have actually only analyzed a small portion of the data. Either way, this should be clarified to be able to be interpretable.

    1. Reviewer #1 (Public review):

      I want to reiterate my comment from the first round of reviews: that I am insufficiently familiar with the intricacies of Maxwell's equations to assess the validity of the assumptions and the equations being used by WETCOW. The work ideally needs assessing by someone more versed in that area, especially given the potential impact of this method if valid.

      Effort has been made in these revisions to improve explanations of the proposed approach (a lot of new text has been added) and to add new simulations.

      However, the authors have still not compared their method on real data with existing standard approaches for reconstructing data from sensor to physical space. Refusing to do so because existing approaches are deemed inappropriate (i.e. they "are solving a different problem") is illogical.

      Similarly, refusing to compare their method with existing standard approaches for spatio-temporally describing brain activity, just because existing approaches are deemed inappropriate, is illogical.

      For example, the authors say that "it's not even clear what one would compare [between the new method and standard approaches]". How about:

      (1) Qualitatively: compare EEG activation maps. I.e. compare what you would report to a researcher about the brain activity found in a standard experimental task dataset (e.g. their gambling task). People simply want to be able to judge, at least qualitatively on the same data, what the most equivalent output would be from the two approaches. Note, both approaches do not need to be done at the same spatial resolution if there are constraints on this for the comparison to be useful.

      and

      (2) Quantitatively: compare the correlation scores between EEG activation maps and fMRI activation maps

      The abstract claims that there is a "direct comparison with standard state-of-the-art EEG analysis in a well-established attention paradigm", but no actual comparison appears to have been completed in the paper.

    1. Reviewer #2 (Public review):

      Summary:

      In this present Mendelian randomization-phenome-wide association study, the authors found BMI to be positively associated with many health-related conditions, such as heart disease, heart failure, and hypertensive heart disease. They also found sex differences in some traits, such as cancer, psychological disorders, and ApoB.

      Strengths:

      The use of the UK-biobank study with detailed phenotype and genotype information.

      Comments on revisions:

      I believe the authors have presented convincing arguments for the novelty and interpretation of their study. I have no additional comments.

    1. Reviewer #1 (Public review):

      Summary:

      The study identifies two types of activation: one that is cue-triggered and non-specific to motion directions, and another that is specific to the exposed motion directions but occurs in a reversed manner. The finding that activity in the medial temporal lobe (MTL) preceded that in the visual cortex suggests that the visual cortex may serve as a platform for the manifestation of replay events, which potentially enhance visual sequence learning.

      Evaluations:

      Identifying the two types of activation after exposure to a sequence of motion directions is very interesting. The experimental design, procedures and analyses are solid. The findings are interesting and novel.

      In the original submission, it was not immediately clear to me why the second type of activation was suggested to occur spontaneously. The procedural differences in the analyses that distinguished between the two types of activation need to be a little better clarified. However, this concern has been satisfactorily addressed in the revision.

    1. Reviewer #1 (Public review):

      Summary:

      The submitted article reports the development of an unsupervised learning method that enables quantification of behaviour and poses of C. elegans from 15 minute long videos and presents a spatial map of both. The entire pipeline is a two part process, with the first part based on contrastive learning that represents spatial poses onto an embedded space, while the second part uses a transformer encoder to enable estimation of masked parts in a spatiotemporal sequence.

      Strengths:

      This analysis approach will prove to be useful for the C. elegans community. The application of the method on various age-related videos on various strains presents a good use-case for the approach. The manuscript is well written and presented.

      Specific comments:

      (1) One of the main motivations as mentioned in the introduction as well as emphasized in the discussion section is that this approach does not require key-point estimation for skeletonization and is also not dependent on the eigenworm approach for pose estimation. However, the eigenworm data has been estimated using the Tierpsy tracker in videos used in this work and stored as metadata. This is subsequently used for interpretation. It is not clear at this point, how else the spatial embedded map may be interpreted without using this kind of pose estimates obtained from other approaches. Please elaborate and comment.

      (2) As per the manuscript, the second part of the pipeline is used to estimate the masked sequences of the spatiotemporal behavioral feature. However, it is not clear what the numbers listed in Fig. 2.3 represent?

      (3) It is not clear how motion speed is linked to individual poses as mentioned in Figs. 4 (b) and (c).

    1. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted the accuracy of coherent motion detection across participants.

      Strengths:

      (1) The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.

      (2) The general EEG analysis pipeline is sensible and well-described.

      (3) The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant level.

      (4) The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.

      (5) It is incredibly striking how the phases of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g., the sideband and beating frequency analyses.

      Weaknesses:

      (1) In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is most likely going to be related to the contrast of the dots, as opposed to representing coherent motion energy, which is the actual target. These may well be linked (e.g., greater attention to the coherent motion task might increase SSVEP amplitude), but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted.

      (2) Comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and probably reflect different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)?

    1. Reviewer #1 (Public review):

      Summary:

      Some years ago, Brookshire proposed a method to identify oscillations in behavioural data that controls for effects of aperiodic trends. Such trends can produce false positive results if not controlled for. Although this method successfully controlled for this issue, it was also relatively insensitive to true effects, and it remained unclear whether it was unable to replicate published evidence for behavioural oscillations because they were false positives or the method could not detect them. In simulated data, Harris & Beale show that their revised version of the method proposed by Brookshire is more sensitive to effects and equally unsusceptible to false positives. When applied to available data, this new version indeed revealed evidence for behavioural oscillations. This paper is therefore an important piece in the puzzle of the ongoing debate on behavioural oscillations.

      Strengths:

      (1) The paper is well written and compact.

      (2) The new method proposed is tested thoroughly, and its application in simulated data shows its properties.

      (3) It is very important that the code is made publicly available.

      (4) The fact that this new version identifies behavioural oscillations in available datasets can resolve the current debate on the existence of such oscillations.

      Weaknesses:

      I see the following weaknesses as minor.

      (1) I wonder whether the frequency-dependent results (e.g., Figures 7 and 8) need to be seen in light of the sampling rate used in the simulations. For example, a lower sampling rate might be sufficient if only low frequencies are of interest in the data and lead to higher sensitivity as the number of trials (per time point) can be increased. Conversely, a higher sampling rate might lead to a higher sensitivity for the detection of effects at higher frequencies.

      (2) The behavioural oscillations from individual participants do not need to have common phases for this analysis to reveal an effect. However, this also means that in a scenario where they do have common phases, this similarity remains "unused" by the analysis (e.g., due to similar phases, the oscillation could be easier to identify on the group level as signals that are not phase locked are averaged out). In such a scenario, it remains unclear whether the analysis proposed is the most sensitive one.

    1. Reviewer #1 (Public review):

      The authors note that very premature infants experience the visual world early and, as a consequence, sustain lasting deficits including compromised motion processing. Here they investigate the effects of early eye opening in ferret, choosing a time point after birth when both retinal waves and light traveling through closed lids drive sensory responses. The laboratory has long experience in quantitative studies of visual response properties across development and this study reflects their expertise.

      The investigators find little or no difference in mean orientation and direction selectivity, or in spatial frequency tuning, as a result of early eye opening but marked differences in temporal frequency tuning. These changes are especially interesting as they relate to deficits seen in prematurely delivered children. Temporal frequency bandwidth for responses evoked from early-opened contralateral eyes were broader than for controls; this is the case for animals in which either one or both eyes were opened prematurely. Further, when only one eye was opened early, responses to low temporal frequencies were relatively stronger.

      The investigators also found changes in firing rate and signs of response to visual stimuli. Premature eye-opening increased spontaneous rates in all test configurations. When only one eye was opened early, firing rates recorded from the ipsilateral cortex were strongly suppressed, with more modest effects in other test cases.

      As the authors' discussion notes, these observations are just a starting point for studies underlying mechanism. The experiments are so difficult to perform and so carefully described that the results will be foundational for future studies of how premature birth influences cortical development.

    1. Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Jeong and Choi examine neural correlates of behavior during a naturalistic foraging task in which rats must dynamically balance resource acquisition (foraging) with the risk of threat. Rats first learn to forage for sucrose reward from a spout, and when a threat is introduced (an attack-like movement from a "LobsterBot"), they adjust their behavior to continue foraging while balancing exposure to the threat, adopting anticipatory withdraw behaviors to avoid encounter with the LobsterBot. Using electrode recordings targeting the medial prefrontal cortex (PFC), they identify heterogenous encoding of task variables across prelimbic and infralimbic cortex neurons, including correlates of distance to the reward/threat zone and correlates of both anticipatory and reactionary avoidance behavior. Based on analysis of population responses, they show that prefrontal cortex switches between different regimes of population activity to process spatial information or behavioral responses to threat in a context-dependent manner. Characterization of the heterogenous coding scheme by which frontal cortex represents information in different goal states is an important contribution to our understanding of brain mechanisms underlying flexible behavior in ecological settings.

      Strengths:

      As many behavioral neuroscience studies employ highly controlled task designs, relatively less is generally known about how the brain organizes navigation and behavioral selection in naturalistic settings, where environment states and goals are more fluid. Here, the authors take advantage of a natural challenge faced by many animals - how to forage for resources in an unpredictable environment - to investigate neural correlates of behavior when goal states are dynamic. Related to his, they also investigate prefrontal cortex (PFC) activity is structured to support different functional "modes" (here, between a navigational mode and a threat-sensitive foraging mode) for flexible behavior. Overall, an important strength and real value of this study is the design of the behavioral experiment, which is trial-structured, permitting strong statistical methods for neural data analysis, yet still rich enough to encourage natural behavior structured by the animal's volitional goals. The experiment is also phased to measure behavioral changes as animals first encounter a threat, and then learn to adapt their foraging strategy to its presence. Characterization of this adaptation process is itself quite interesting and sets a foundation for further study of threat learning and risk management in the foraging context. Finally, the characterization of single-neuron and population dynamics in PFC in this naturalistic setting with fluid goal states is an important contribution to the field. Previous studies have identified neural correlates of spatial and behavioral variables in frontal cortex, but how these representations are structured, or how they are dynamically adjusted when animals shift their goals, has been less clear. The authors synthesize their main conclusions into a conceptual model for how PFC activity can support mode switching, which can be tested in future studies with other task designed and functional manipulations.

      Weaknesses:

      While the task design in this study is intentionally stimulus-rich and places minimal constraint on the animal to preserve naturalistic behavior, this also introduces confounds that limit interpretability of the neural analysis. For example, some variables which are the target of neural correlation analysis, such as spatial/proximity coding and coding of threat and threat-related behaviors, are naturally entwined. To their credit, the authors have included careful analyses and control conditions to disambiguate these variables and significantly improve clarity.

      The authors also claim that the heterogenous coding of spatial and behavioral variables in PFC is structured in a particular way that depends on the animal's goals or context. As the authors themselves discuss, the different "zones" contain distinct behaviors and stimuli, and since some neurons are modulated by these events (e.g., licking sucrose water, withdrawing from the LobsterBot, etc.), differences in population activity may to some extent reflect behavior/event coding. The authors have included a control analysis, removing timepoints corresponding to salient events, to substantiate the claim that PFC neurons switch between different coding "modes." While this significantly strengthens evidence for their conclusion, this analysis still depends on relatively coarse labeling of only very salient events. Future experiment designs, which intentionally separate task contexts (e.g. navigation vs. foraging), could serve to further clarify the structure of coding across contexts and/or goal states.

      Finally, while the study includes many careful, in-depth neural and behavioral analyses to support the notion that modal coding of task variables in PFC may play a role in organizing flexible, dynamic behavior, the study still lacks functional manipulations to establish any form of causality. This limitation is acknowledged in the text, and the report is careful not to over interpret suggestions of causal contribution, instead setting a foundation for future investigations.

    1. Joint Public Review:

      Editors’ note: This is the third version of this article, and it addresses the points made during the peer review of the second version by performing additional analyses and clarifying some of the limitations of the study.

      Comments made during the peer review of the first version, along with author's responses to these comments, are available with previous versions of the article.

      The following summary of the article is taken from comments made by Reviewer #1 about version 2 of the article:

      In this manuscript, the authors use a large dataset of neuroscience publications to elucidate the nature of self-citation within the neuroscience literature. The authors initially present descriptive measures of self-citation across time and author characteristics; they then produce an inclusive model to tease apart the potential role of various article and author features in shaping self-citation behavior. This is a valuable area of study, and the authors approach it with a rich dataset and solid methodology.

    1. Reviewer #1 (Public review):

      Summary:

      This study seeks to investigate the role of the transcription factor Bcl11b/Ctip2 in regulating subcerebral projection neuron (SCPN) axon development through both cell-autonomous and non-cell-autonomous mechanisms. The authors demonstrate that Bcl11b is required within SCPNs for axonal outgrowth and proper entry into the internal capsule, while its expression in medium spiny neurons (MSNs) influences SCPN axon fasciculation and pathfinding in a non-cell-autonomous manner. Notably, through transcriptomic analysis, immunocytochemistry, and in vivo growth cone purification, the study identifies Cdh13 as a downstream mediator of Bcl11b function, localizing along axons and at growth cone surfaces to regulate SCPN axonal outgrowth.

      Strengths:

      To me the most interesting aspect of this study is how common transcriptional programs across neuronal cell types cooperate to facilitate axon pathfinding, this is a very interesting concept.

      Overall, it could be of interest to the brain development field.

      Weaknesses:

      My main concern is that, as presented in the figures, many phenotypes are too subtle to be convincing and would require quantitative analyses to corroborate the claims of the study.

      I also think that the growth cones transcription data needs additional validation to be incorporated into the manuscript. In fact, I am not even sure that it really brings anything to the story.

      I also think that the CRISPR in utero electroporation experiments lack appropriate controls.

    1. Reviewer #1 (Public review):

      Summary:

      Nysten et al. use in vivo 2-photon calcium imaging in behaving mice learning a visual associative memory task to understand how neural dynamics in the postrhinal cortex and medial entorhinal cortex evolve over task learning and through reversal learning. Using a combination of analyses to measure trial-averaged neural responses, regression models, and population decoding methods, the authors argue that both POR and MEC dynamics evolve over learning, with relatively more neurons in MEC becoming responsive. The impact of this study comes from comparing neural dynamics across multiple medial temporal lobe circuits to show how different aspects of task structure are differentially encoded. Below, I have listed several major concerns that need to be addressed to ensure the findings are robust.

      Strengths:

      (1) The study employs a well-controlled behavioral paradigm alongside powerful cellular-resolution two-photon imaging, enabling high-throughput recordings of hundreds of neurons simultaneously in deep brain structures.

      (2) The simplicity of the task allows for a detailed examination of learning dynamics across multiple stages, including early and late learning in the main task, as well as during reversal learning.

      (3) The use of sophisticated analysis methods to compare and contrast learning dynamics in large neuronal populations strengthens the study, though additional steps are needed to ensure their robustness (detailed below).

      (4) Two-photon imaging enables the investigation of functional topography, further supporting previous findings of functional clustering in MEC across different task and behavioral domains.

      Weaknesses:

      (1) GLM Robustness & Behavioral Attribution: The current GLM design may misattribute neural activity by lacking appropriate time lags for velocity and not accounting for distinct neural states (e.g., rest vs. run). Given MEC's known speed-invariant coding, the observed decrease in speed-modulated neurons may be an artifact rather than a true learning effect. Additionally, gradual behavioral stabilization over training could influence neural dynamics in ways not fully accounted for.

      (2) Licking vs. Movement Encoding: The increase in lick-modulated neurons raises questions about whether these neurons encode reward anticipation or motor execution. Without a detailed analysis of error trials and the timing of licking vs. movement adjustments, it remains unclear whether MEC activity reflects predictive coding of reward or simply motor feedback.

      (3) Clustering Interpretation Issues: The functional clustering approach does not control for correlations between behavioral features, making it difficult to determine whether speed modulation plays a role in cluster assignments. The anatomical analysis in Figure 6 relies heavily on clusters that may be predominantly defined by a single regressor, requiring further clarification.

      (4) Data Presentation & Statistical Support: Some key claims, particularly the increase in task-modulated neurons with learning (Figure 3), lack statistical quantification.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript reports that expression of the E. coli operon topAI/yjhQ/yjhP is controlled by the translation status of a small open reading frame, that authors have discovered and named toiL, located in the leader region upstream of the operon. Authors propose the following model for topAI activation: Under normal conditions, toiL is translated but topAI is not expressed because of Rho-dependent transcription termination within the topAI ORF and because its ribosome binding site and start codon are trapped in an mRNA hairpin. Ribosome stalling at various codons of the toiL ORF, prompted in this work by some ribosome-targeting antibiotics, triggers an mRNA conformational switch which allows translation of topAI and, in addition, activation of the operon's transcription because presence of translating ribosomes at the topAI ORF blocks Rho from terminating transcription. The model is appealing and several of the experimental data mainly support it. However, it remains unanswered what is the true trigger of the translation arrest at toiL and what is the physiological role of the induced expression of the topAI/yjhQ/yjhP operon.

    1. Reviewer #1 (Public review):

      The manuscript consists of two separate but interlinked investigations: genomic epidemiology and virulence assessment of Salmonella Dublin. ST10 dominates the epidemiological landscape of S. Dublin, while ST74 was uncommonly isolated. Detailed genomic epidemiology of ST10 unfolded the evolutionary history of this common genotype, highlighting clonal expansions linked to each distinct geography. Notably, North American ST10 was associated with more antimicrobial resistance compared to others. The authors also performed long read sequencing on a subset of isolates (ST10 and ST74), and uncovered a novel recombinant virulence plasmid in ST10 (IncX1/IncFII/IncN). Separately, the authors performed cell invasion and cytotoxicity assays on the two S. Dublin genotypes, showing differential responses between the two STs. ST74 replicates better intracellularly in macrophage compared to ST10, but both STs induced comparable cytotoxicity levels. Comparative genomic analyses between the two genotypes showed certain genetic content unique to each genotype, but no further analyses were conducted to investigate which genetic factors likely associated with the observed differences. The study provides a comprehensive and novel understanding on the evolution and adaptation of two S. Dublin genotypes, which can inform public health measures. The methodology included in both approaches were sound and written in sufficient detail, and data analysis were performed with rigour. Source data were fully presented and accessible to readers.

      Comments on revised version:

      The authors have addressed all the points raised by the reviewer. The manuscript is now much enhanced in clarity and accuracy. The rewritten Discussion is more relevant and brings in comparison with other invasive Salmonella serotypes.

    1. Reviewer #1 (Public review):

      Summary:

      This work uses a novel, ethologically relevant behavioral task to explore decision-making paradigms in C. elegans foraging behavior. By rigorously quantifying multiple features of animal behavior as they navigate in a patch food environment, the authors provide strong evidence that worms exhibit one of three qualitatively distinct behavioral responses upon encountering a patch: (1) "search", in which the encountered patch is below the detection threshold; (2) "sample", in which animals detect a patch encounter and reduce their motor speed, but do not stay to exploit the resource and are therefore considered to have "rejected" it; and (3) "exploit", in which animals "accept" the patch and exploit the resource for tens of minutes. Interestingly, the probability of these outcomes varies with the density of the patch as well as the prior experience of the animal. Together, these experiments provide an interesting new framework for understanding the ability of the C. elegans nervous system to use sensory information and internal state to implement behavioral state decisions.

      Strengths:

      -The work uses a novel, neuroethologically-inspired approach to studying foraging behavior<br /> -The studies are carried out with an exceptional level of quantitative rigor and attention to detail<br /> -Powerful quantitative modeling approaches including GLMs are used to study the behavioral states that worms enter upon encountering food, and the parameters that govern the decision about which state to enter<br /> -The work provides strong evidence that C. elegans can make 'accept-reject' decisions upon encountering a food resource<br /> -Accept-reject decisions depend on the quality of the food resource encountered as well as on internally represented features that provide measurements of multiple dimensions of internal state, including feeding status and time

    1. Reviewer #1 (Public review):

      Summary:

      The use of a multi-omics approach to elucidate the regulatory mechanism underlying parturition and myometrial quiescence adds novelty to the study. The identification of myometrial cis-acting elements and their association with gene expression, particularly the regulation of the PLCL2 gene by PGR opens the door to further investigate the impact of PGR and other regulators.

      Strengths:

      (1) Multi-Omic Approach: The paper employs a comprehensive multi-omic approach, combining ChIP-Seq, RNA-Seq, and CRISPRa-based Perturb-Seq assays, which allow for a thorough investigation of the regulatory mechanisms underlying myometrial gene expression.<br /> (2) Clinical Relevance: Investigating human myometrial specimens provides direct clinical relevance, as understanding the molecular mechanisms governing parturition and myometrial quiescence can have significant implications for the management of pregnancy-related disorders.<br /> (3) Functional work: For functional screening, They have used CRISPRa-based screening of PLCL2 gene regulation using immortalized human cell-line hTERT-HM and T-hESC to add more dimension to the work which strengthens their finding of PGR-dependent regulation of the PLCL2 gene in the human myometrial cells.

      Weaknesses:

      (1) Variability in epigenomic mapping: The significant variations in the number and location of H3K27ac-positive intervals across different samples and studies suggest potential challenges in accurately mapping the myometrial epigenome. This variability may introduce uncertainty and complicate the interpretation of results.<br /> (2) Sample specificity: The study focuses on term pregnant nonlabor myometrial specimens, limiting the generalizability of the findings to other stages of pregnancy or labor.<br /> (3) Limited Understanding of Regulatory Mechanisms: While the study identifies potential regulatory programs within super-enhancers, the exact mechanisms by which these enhancers regulate gene expression and cellular functions in the myometrium remain unclear. Further mechanistic studies are needed to elucidate these processes.<br /> (4) Discordant analysis: Why regular enhancers are being understood in terms of motif enrichment of transcription factors and super-enhancers in terms of pathways enriched for active genes? This needs a clear reason.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates the molecular function of the N-glycan-dependent endoplasmic reticulum protein quality control system (ERQC) in Cryptococcus neoformans and correlates this pathway with key features of C. neoformans virulence, especially those mediated by extracellular vesicle transport. The findings provide valuable insights into the connection between this pathway and the biogenesis of C. neoformans extracellular vesicles.

      Strengths:

      The strength of this study lies primarily in the careful selection of appropriate and current methodologies, which provide a solid foundation for the authors' results and conclusions across all presented data. All experiments are supported by well-designed and established controls in the study of C. neoformans, further strengthening the validity of the results and conclusions drawn from them. The study presents novel data on this important pathway in C. neoformans, establishing its connection with C. neoformans virulence. Interestingly, the findings led the authors to understand the relationship between this pathway and the transport of key fungal virulence factors via extracellular vesicles. This was demonstrated in the study, paving the way for a deeper understanding of extracellular vesicle biogenesis-a field still filled with gaps but one that this study contributes to with solid data, helping to clarify aspects of this process.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript aims to explain the emergence of grid-like spatial firing patterns. Rather than taking the existence of grid cells as a given and asking what does their properties say about their function, the authors reverse the approach: they begin with a proposed computational function that the brain may need to perform-coding of 2D spatial trajectories using sequences of neural activity-and ask what type of neural code would optimally support this function. They show that, under a set of formal assumptions, such a code leads to the emergence of spatial periodicity and a hexagonal grid pattern. The aim is to provide a normative explanation for the existence of grid cells grounded in functional constraints.

      Strengths:

      The manuscript presents a mathematically well-defined framework that is internally consistent. The derivation is structured and leads to a hexagonal lattice as the most efficient solution for representing directional trajectories. The authors provide comparisons to experimental observations and extend the model to explain several findings in the grid cell literature. In the revised version, the discussion of foundational assumptions is expanded, and the manuscript better situates itself in relation to prior theoretical work. Overall, this work adds a very interesting view to the broader conversation about the role and origin of grid cells by offering a theoretical alternative grounded in trajectory coding.

      Weaknesses:

      The model depends on assumptions that, while plausible, should be treated as chosen assumptions. These include the premise that (1) grid function is trajectory coding, (2) that trajectory coding is implemented through sequences of neural activity, and (3) that such sequences are largely independent of spatial position. In the revised manuscript, the authors provide more literature to support these assumptions.

    1. Joint Public Review:

      Summary:

      In this study, Daniel et al. used three cognitive tasks to investigate behavioural signatures of cerebellar degeneration. In the first two tasks, the authors found that if an equation was incorrect, reaction times slowed significantly more for cerebellar patients than for healthy controls. In comparison, the slowing in the reaction times when the task required more operations was comparable to normal controls. In the third task, the authors show increased errors in cerebellar patients when they had to judge whether a letter string corresponded to an artificial grammar.

      Strengths:

      Overall, the work is methodologically sound and the manuscript well written. The data do show some evidence for specific cognitive deficits in cerebellar degeneration patients.

      Weaknesses:

      The current version has some weaknesses in the visual presentation of results. Overall, the study lacks a more precise discussion on how the patterns of deficits relate to the hypothesized cerebellar function.

      The reviewers and the editor agreed that the data are interesting and point to a specific cognitive deficit in cerebellar patients. However, in the discussion, we were somewhat confused about the interpretation of the result:

      If the cerebellum (as proposed in the introduction) is involved in forming expectations in a cognitive task, should they not show problems both in the expected (1+3 =4) and unexpected (1+3=2) conditions? Without having formed the correct expectation, how can you correctly say "yes" in the expected condition? No increase in error rate is observed - just slowing in the unexpected condition. But this increase in error rate was not observed. If the patients make up for the lack of prediction by using some other strategy, why are they only slowing in the unexpected case?

      If the cerebellum is NOT involved in making the prediction, but only involved in detecting the mismatch between predicted and real outcome, why would the patients not show specifically more errors in the unexpected condition?

    1. Reviewer #1 (Public review):

      Summary:

      This study builds upon a major theoretical account of value-based choice, the 'attentional drift diffusion model' (aDDM), and examines whether and how this might be implemented in the human brain using functional magnetic resonance imaging (fMRI). The aDDM states that the process of internal evidence accumulation across time should be weighted by the decision maker's gaze, with more weight being assigned to the currently fixated item. The present study aims to test whether there are (a) regions of the brain where signals related to the currently presented value are affected by the participant's gaze; (b) regions of the brain where previously accumulated information is weighted by gaze.

      To examine this, the authors developed a novel paradigm that allowed them to dissociate currently and previously presented evidence, at a timescale amenable to measuring neural responses with fMRI. They asked participants to choose between bundles or 'lotteries' of food times, which they revealed sequentially and slowly to the participant across time. This allowed modelling of the haemodynamic response to each new observation in the lottery, separately for previously accumulated and currently presented evidence.

      Using this approach, they find that regions of the brain supporting valuation (vmPFC and ventral striatum) have responses reflecting gaze-weighted valuation of the currently presented item, whereas regions previously associated with evidence accumulation (preSMA and IPS) have responses reflecting gaze-weighted modulation of previously accumulated evidence.

      Strengths:

      A major strength of the current paper is the design of the task, nicely allowing the researchers to examine evidence accumulation across time despite using a technique with poor temporal resolution. The dissociation between currently presented and previously accumulated evidence in different brain regions in GLM1 (before gaze-weighting), as presented in Figure 5, is already compelling. The result that regions such as preSMA respond positively to |AV| (absolute difference in accumulated value) is particularly interesting, as it would seem that the 'decision conflict' account of this region's activity might predict the exact opposite result. Additionally, the behaviour has been well modelled at the end of the paper when examining temporal weighting functions across the multiple samples.

      Weaknesses:

      The results relating to gaze-weighting in the fMRI signal could do with some further explication to become more complete. A major concern with GLM2, which looks at the same effects as GLM1 but now with gaze-weighting, is that these gaze-weighted regressors may be (at least partially) correlated with their non-gaze-weighted counterparts (e.g., SVgaze will correlate with SV). But the non-gaze-weighted regressors have been excluded from this model. In other words, the authors are not testing for effects of gaze-weighting of value signals *over and above* the base effects of value in this model. In my mind, this means that the GLM2 results could simply be a replication of the findings from GLM1 at present. GLM3 is potentially a stronger test, as it includes the value signals and the interaction with gaze in the same model. But here, while the link to the currently attended item is quite clear (and a replication of Lim et al, 2011), the link to previously accumulated evidence is a bit contorted, depending upon the interpretation of a behavioural regression to interpret the fMRI evidence. The results from GLM3 are also, by the authors' own admission, marginal in places.

    1. Reviewer #1 (Public review):

      Summary:

      This study builds on previous work demonstrating that several beta connexins (Cx26, Cx30, and Cx32) have a carbamylation motif which renders them sensitive to CO2. In response to CO2, hemichannels composed of these connexins open, enabling diffusion of small molecules (such as ATP) between the cytosol and extracellular environment. Here, the authors have identified that an alpha connexin, Cx43, also contains a carbamylation motif, and they demonstrate that CO2 opens Cx43 hemichannels. Most of the study involves using transfected cells expressing wild-type and mutant Cx43 to define amino acids required for CO2 sensitivity. Hippocampal tissue slices in culture were used to show that CO2-induced synaptic transmission was affected by Cx43 hemichannels, providing a physiological context. The authors point out that the Cx43 gene significantly diverges from the beta connexins that are CO2 sensitive, suggesting that the conserved carbamylation motif was present before the alpha and beta connexin genes diverged.

      Strengths:

      (1) The molecular analysis defining the amino acids that contribute to the CO2 sensitivity of Cx43 is a major strength of the study. The rigor of analysis was strengthened by using three independent assays for hemichannel opening: dye uptake, patch clamp channel measurements, and ATP secretion. The resulting analysis identified key lysines in Cx43 that were required for CO2-mediated hemichannel opening. A double K to E Cx43 mutant produced a construct that produced hemichannels that were constitutively open, which further strengthened the analysis.

      (2) Using hippocampal tissue sections to demonstrate that CO2 can influence field excitatory postsynaptic potentials (fEPSPs) provides a native context for CO2 regulation of Cx43 hemichannels. Cx43 mutations associated with Oculodentodigital Dysplasia (ODDD) inhibited CO2-induced hemichannel opening, although the mechanism by which this occurs was not elucidated.

      Weaknesses:

      (1) Cx43 channels are sensitive to cytosolic pH, which will be affected by CO2. Cytosolic pH was not measured, and how this affects CO2-induced Cx43 hemichannel activity was not addressed.

      (2) Cultured cells are typically grown in incubators containing 5% CO2, which is ~40 mmHg. It is unclear how cells would be viable if Cx43 hemichannels are open at this PCO2.

      (3) Experiments using Gap26 to inhibit Cx43 hemichannels in fEPSP measurements used a scrambled peptide as a control. Analysis should also include Gap peptides specifically targeting Cx26, Cx30, and Cx32 as additional controls.

      (4) The mechanism by which ODDD mutations impair CO2-mediated hemichannel opening was not addressed. Also, the potential roles for inhibiting Cx43 hemichannels in the pathology of ODDD are unclear.

      (5) CO2 has no effect on Cx43-mediated gap junctional communication as opposed to Cx26 gap junctions, which are inhibited by CO2. The molecular basis for this difference was not determined.

      (6) Whether there are other non-beta connexins that have a putative carbamylation motif was not addressed. Additional discussion/analysis of how the evolutionary trajectory for Cx43 maintaining a carbamylation motif is unique for non-beta connexins would strengthen the study.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Lau et al reported that KDM5 inhibition in luminal breast cancer cells results in R-loop-mediated DNA damage, reduced cell fitness and an increase in ISG and AP signatures as well as cell surface Major Histocompatibility Complex (MHC) class I, mediated by RNA:DNA hybrid activation of the CGAS/STING pathway.

      Strengths:

      More importantly, they have shown that KDM5 inhibition does not result in DNA damage or activation of the CGAS/STING pathway in normal breast epithelial cells. This suggests that KDM5 inhibitors may enable a wide therapeutic window in this setting, as compared to STING agonists or Type I Interferons. Their findings provide new insights into the interplay between epigenetic regulation of genomic repeats, R-loop formation, innate immunity, and cell fitness in the context of cancer evolution and therapeutic vulnerability.

      Weaknesses:

      More thorough analyses would be appreciated.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors set out to define how arginine availability regulates lipid metabolism and to explore the implications of this relationship in pancreatic ductal adenocarcinoma (PDAC), a tumor type known to exist in an arginine-poor microenvironment. Using a combination of rigorous genetic and metabolomic approaches, they uncover a previously underappreciated role for arginine in maintaining lipid homeostasis. Importantly, they demonstrate that arginine deprivation sensitizes PDAC cells to ferroptosis through lipidome perturbations, which can be exploited therapeutically via co-treatment with aESA and ferroptosis inducers (FINs). These findings have meaningful implications for the field. They not only shed light on the metabolic vulnerabilities created by nutrient restriction in PDAC, but also suggest a practical avenue for combination therapies that exploit ferroptosis sensitivity. This is particularly relevant in the context of pancreatic cancer, which is notoriously resistant to conventional treatments. The methods employed are broadly applicable to other nutrient-stress contexts and may inspire similar investigations in other solid tumor types.

      Strengths:

      One of the major strengths of the study is the use of complementary and well-controlled approaches-including metabolomic profiling, genetic perturbations, and in vivo models-to support the central hypothesis. The experiments are thoughtfully designed and clearly presented, and the conclusions are, for the most part, well supported by the data. The findings provide mechanistic insight into nutrient-lipid crosstalk and identify a potential therapeutic strategy for targeting arginine-deprived tumors.

      Weaknesses:

      A key weakness of the study lies in the mechanistic connection between arginine levels and SREBP1 activation. While the authors show that arginine restriction leads to reduced SREBP1 expression, the magnitude of this effect appears modest relative to the substantial changes observed in the lipidome. The study would benefit from a deeper analysis of SREBP1 regulation-particularly whether nuclear translocation or activation is affected. This could be addressed by examining the nuclear pool of SREBP1, using either subcellular fractionation or improved immunofluorescence imaging in both cell lines and tissue samples.

      Another area where additional context would strengthen the manuscript is in the transcriptomic profiling of PDAC cells cultured in a tumor interstitial fluid mimic (TIFM). While the study emphasizes lipid-related pathways, highlighting the most significantly upregulated and downregulated pathways in Figure 1B would give readers a broader perspective on how arginine restriction reprograms the PDAC transcriptome. For instance, because polyamines are downstream of arginine and are known to influence lipid metabolism, it would be worth discussing whether these metabolites contribute to the phenotypes observed. Similarly, an evaluation of whether Dgat1/2 expression is altered could help delineate the full scope of lipid metabolic rewiring.

      Finally, it is worth noting that the KPC mouse model used in this study is based on conditional deletion of p53, which leads to faster-growing tumors and a distinct tumor microenvironment compared to models harboring the p53^R172H point mutation. Including a brief discussion of this distinction would help readers contextualize the translational relevance of the findings.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript uses state-of-the-art analysis technology to document the spatio-temporal dynamics of brain activity during the processing of threats. The authors offer convincing evidence that complex spatio-temporal aspects of brain dynamics are essential to describe brain operations during threat processing.

      Strengths:

      Rigorous complex analyses well suited to the data.

      Weaknesses:

      Lack of a simple take-home message about discovery of a new brain operation.

      Comments on revisions:

      The authors have improved the presentation of the work. The overstatements about existing models of brain functions ignoring exogenous components remains largely unaddressed. The clarifications and improvements provided in revision confirm my assessment of the paper.

    1. Reviewer #1 (Public review):

      Summary:

      A cortico-centric view is dominant in the study for the neural mechanisms of consciousness. This investigation represents the growing interest to understand how subcortical regions are involved in conscious perception. To achieve this, the authors engaged an ambitious and rare procedure in humans of directly recording from neurons in the subthalamic nucleus and thalamus. While participants were in surgery for the placement of deep brain stimulation devices for the treatment of essential tremor and Parkinson's disease, they were awakened and completed a perceptual-threshold tactile detection task. The authors identified individual neurons and analyzed single-unit activity corresponding with the task phases and tactile detection/perception. Among the neurons that were perception-responsive, the authors report changes in firing rate beginning ~150 milliseconds from the onset of the tactile stimulation. Curiously, the majority of the perception-responsive neurons had a higher firing rate for missed/not perceived trials. In summary, this investigation is a valuable addition to the growing literature on the role of subcortical regions in conscious perception.

      Strengths:

      The authors achieve the challenging task of recording human single-unit activity while participants performed a tactile perception task. The methods and statistics are clearly explained and rigorous, particularly for managing false positives and non-normal distributions. The results offer new detail at the level of individual neurons in the emerging recognition for the role of subcortical regions in conscious perception. Also, this study highlights the timing of neural activity linked to conscious perception (approximately 150 millisecond).

      Weaknesses:

      Due to constraints of testing with this patient population, a standard report-based detection task was administered. This type of task cannot fully exclude motor preparatory and post-perceptual processing as a factor that contributes to distinguishing between perceived versus not perceived stimuli. The authors show sensitivity to this issue by identifying task-selective neurons and their discussion of the results that refers to the confound of post-perceptual processing. Despite this limitation, the results are valuable for contributing to a growing body of literature on the subcortical neural mechanisms of consciousness.

    1. Reviewer #1 (Public review):

      This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

    1. Reviewer #1 (Public review):

      In this study, Tiang et al. explore the role of ubiquitination of non-structural protein 16 (nsp16) in the SARS-CoV-2 life cycle. nsp16, in conjunction with nsp10, performs the final step of viral mRNA capping through its 2'-O-methylase activity. This modification allows the virus to evade host immune responses and protects its mRNA from degradation. The authors demonstrate that nsp16 undergoes ubiquitination and subsequent degradation by the host E3 ubiquitin ligases UBR5 and MARCHF7 via the ubiquitin-proteasome system (UPS). Specifically, UBR5 and MARCHF7 mediate nsp16 degradation through K48- and K27-linked ubiquitination, respectively. Notably, degradation of nsp16 by either UBR5 or MARCHF7 operates independently, with both mechanisms effectively inhibiting SARS-CoV-2 replication in vitro and in vivo. Furthermore, UBR5 and MARCHF7 exhibit broad-spectrum antiviral activity by targeting nsp16 variants from various SARS-CoV-2 strains. This research advances our understanding of how nsp16 ubiquitination impacts viral replication and highlights potential targets for developing broadly effective antiviral therapies.

      Strengths:

      The proposed study is of significant interest to the virology community because it aims to elucidate the biological role of ubiquitination in coronavirus proteins and its impact on the viral life cycle. Understanding these mechanisms will address broadly applicable questions about coronavirus biology and enhance our overall knowledge of ubiquitination's diverse functions in cell biology. Employing in vivo studies is a strength.

      Weaknesses:

      Minor comments:<br /> Figure 5A- The authors should ensure that the figure is properly labeled to clearly distinguish between the IP (Immunoprecipitation) panel and the input panel.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigated the effect of chronic activation of dopamine neurons using chemogenetics. Using Gq-DREADDs, the authors chronically activated midbrain dopamine neurons and observed that these neurons, particularly their axons, exhibit increased vulnerability and degeneration, resembling the pathological symptoms of Parkinson's disease. Baseline calcium levels in midbrain dopamine neurons were also significantly elevated following the chronic activation. Lastly, to identify cellular and circuit-level changes in response to dopaminergic neuronal degeneration caused by chronic activation, the authors employed spatial genomics (Visium) and revealed comprehensive changes in gene expression in the mouse model subjected to chronic activation. In conclusion, this study presents novel data on the consequences of chronic hyperactivation of midbrain dopamine neurons.

      Strengths:

      This study provides direct evidence that the chronic activation of dopamine neurons is toxic and gives rise to neurodegeneration. In addition, the authors achieved the chronic activation of dopamine neurons using water application of clozapine-N-oxide (CNO), a method not commonly employed by researchers. This approach may offer new insights into pathophysiological alterations of dopamine neurons in Parkinson's disease. The authors also utilized state-of-the-art spatial gene expression analysis, which can provide valuable information for other researchers studying dopamine neurons. They also presented a substantial number of intriguing ideas in their discussion, which are worth further investigation.

      Weaknesses:

      Although not fully supported by data, the authors provided a well-explained rationale and proposed possible mechanisms for dopamine neuron degeneration due to chronic activation in their results and discussion.

      Comments on revised version:

      The authors have adequately addressed most of my comments, and I have no further concerns.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors investigated the effect of chronic activation of dopamine neurons using chemogenetics. Using Gq-DREADDs, the authors chronically activated midbrain dopamine neurons and observed that these neurons, particularly their axons, exhibit increased vulnerability and degeneration, resembling the pathological symptoms of Parkinson's disease. Baseline calcium levels in midbrain dopamine neurons were also significantly elevated following the chronic activation. Lastly, to identify cellular and circuit-level changes in response to dopaminergic neuronal degeneration caused by chronic activation, the authors employed spatial genomics (Visium) and revealed comprehensive changes in gene expression in the mouse model subjected to chronic activation. In conclusion, this study presents novel data on the consequences of chronic hyperactivation of midbrain dopamine neurons.

      Strengths:

      This study provides direct evidence that the chronic activation of dopamine neurons is toxic and gives rise to neurodegeneration. In addition, the authors achieved the chronic activation of dopamine neurons using water application of clozapine-N-oxide (CNO), a method not commonly employed by researchers. This approach may offer new insights into pathophysiological alterations of dopamine neurons in Parkinson's disease. The authors also utilized state-of-the-art spatial gene expression analysis, which can provide valuable information for other researchers studying dopamine neurons. Although the authors did not elucidate the mechanisms underlying dopaminergic neuronal and axonal death, they presented a substantial number of intriguing ideas in their discussion, which are worth further investigation.

      Weaknesses:

      Many claims raised in this paper are only partially supported by the experimental results. So, additional data are necessary to strengthen the claims. The effects of chronic activation of dopamine neurons are intriguing; however, this paper does not go beyond reporting phenomena. It lacks a comprehensive explanation for the degeneration of dopamine neurons and their axons. While the authors proposed possible mechanisms for the degeneration in their discussion, such as differentially expressed genes, these remain experimentally unexplored.

    1. Reviewer #2 (Public review):

      The aim of the investigation was to find out more about the mechanism(s) by which the structural protein vimentin can facilitate the epithelial-mesenchymal transition in breast cancer cells.

      The authors focused on a key amino acid of vimentin, C238, its role in the interaction between vimentin and actin microfilaments, and the downstream molecular and cellular consequences. They model the binding between vimentin and actin in silico to demonstrate the potential involvement of C238, due to its location in a rod domain known to bind beta-actin. The phenotype of a non-metastatic breast cancer cell line MCF7, which doesn't express vimentin, could be changed to a metastatic phenotype when mutant C238S vimentin, but not wild-type vimentin, was expressed in the cells. Expression of vimentin was confirmed at the level of mRNA, protein and microscopically. Patterns of expression of vimentin and actin reflected the distinct morphology of the two cell lines. Phenotypic changes were assessed through assay of cell adhesion, proliferation, migration and morphology and were consistent with greater metastatic potential in the C238S MCF7 cells. Changes in the transcriptome of MCF7 cells expressing wild-type and C238S vimentins were compared and expression of Xist long ncRNA was found to be the transcript most markedly increased in the metastatic cells expressing C238S vimentin. Moreover changes in expression of many other genes in the C238S cells are consistent with an epithelial mesenchymal transition. Tumourigenic potential of MCF7 cells carrying C238S but not wild-type, vimentin was confirmed by inoculation of cells into nude mice. This assay is a measure of stem-cell quality of the cells and not a measure of metastasis. It does demonstrate phenotypic changes that could be linked to metastasis.

      shRNA was used to down-regulate vimentin or Xist in the MCF7 C238S cells. The description of the data is limited in parts and data sets require careful scrutiny to understand the full picture. Down-regulation of vimentin reversed the morphological changes to some degree, but down-regulation of Xist didn't. Conversely down-regulation of Xist inhibited cell growth, a sign of reversing metastatic potential, but down-regulation of vimentin had no effect on growth. Down-regulation of either did inhibit cell migration, another sign of metastatic reversal. Most of these findings are consistent with previous work based on ectopic expression of wild-type vimentin in MCF7 cells, but the mechanism of inhibition of cell migration by downregulation of Xist remains speculative. More complete knockdown of vimentin or Xist by CRISPR technology may be helpful.

      Overall the study describes an intriguing model of metastasis that is worthy of further investigation, especially at the molecular level to unravel the connection between vimentin and metastasis. The identification of a potential role for Xist in metastasis, beyond its normal role in female cells to inactivate one of the X chromosomes, corroborates the work of others demonstrating increased levels in a variety of tumours in women and even in some tumours in men. It would be of great interest to see where in metastatic cells Xist is expressed and what it binds to.

      Comments on revisions:

      The revised manuscript incorporates changes in presentation of the data modelling interaction between the region of vimentin including C238 and F-actin. There is also inclusion of an extra citation supporting the role for Xist in cancer stem cell differentiation.

    1. Reviewer #1 (Public review):

      Summary:

      Hua et al show how targeting amino acid metabolism can overcome Trastuzumab resistance in HER2+ breast cancer.

      Strengths:

      The authors used metabolomics, transcriptomics and epigenomics approaches in vitro and in preclinical models to demonstrate how trastuzumab resistant cells utilize cysteine metabolism.

      Weaknesses:

      However, there are some key aspects that needs to be addressed.

      Major:

      (1) Patient Samples for Transcriptomic Analysis: It is unclear from the text whether tumor tissues or blood samples were used for the transcriptomic analysis. This distinction is crucial, as these two sample types would yield vastly different inferences. The authors should clarify the source of these samples.

      (2) The study only tested one trastuzumab-resistant and one trastuzumab-sensitive cell lines. It is unclear whether these findings are applicable to other HER2-positive tumor cell lines, such as HCC1954. The authors should validate their results in additional cell lines to strengthen their conclusions.

      (3) Relevance to Metastatic Disease: Trastuzumab resistance often arises in patients during disease recurrence, which is frequently associated with metastasis. However, the mouse experiments described in this paper were conducted only in the primary tumors. This article will have more impact if the authors could demonstrate that the combination of Erastin or cysteine starvation with trastuzumab can also improve outcomes in metastasis models.

      Minor:

      (1) The figures lack information about the specific statistical tests used. Including this information is essential to show the robustness of the results.

      (2) Figure 3K Interpretation: The significance asterisks in Figure 3K do not specify the comparison being made. Are they relative to the DMSO control? This should be clarified.

      Comments on revisions:

      While the authors acknowledge the limitation of using only a single trastuzumab resistant/sensitive pair, simply stating that additional cell lines will be tested in future work is simply inadequate. The biological heterogeneity of HER2-positive breast cancer demands validation in at least one independent resistant model (e.g., HCC1954 or BT 474R) alongside its parental counterpart. Without demonstrating that SLC7A11 upregulation, cysteine dependency, and sensitivity to Erastin plus trastuzumab extend beyond the original cell line pair, the generalizability and translational relevance of the findings remain uncertain. The authors need to perform and report key functional results (cell viability, apoptosis, and SLC7A11 expression) in an additional resistant and sensitive HER2-positive cell line before this manuscript can be considered robust.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides new insight into the non-canonical voltage-gating mechanism of BK channels through prolonged (10 μs) MD simulations of the Slo1 transmembrane domain conformation and K+ conduction in response to high imposed voltages (300, 750 mV). The results support previous conclusions based on functional and structural data and MD simulations that the voltage-sensor domain (VSD) of Slo1 undergoes limited conformational changes compared to Kv channels, and predicts gating charge movement comparable in magnitude to experimental results. The gating charge calculations further indicate that R213 and R210 in S4 are the main contributors owing to their large side chain movements and the presence of a locally focused electric field, consistent with recent experimental and MD simulation results by Carrasquel-Ursulaez et al.,2022. Most interestingly, changes in pore conformation and K+ conduction driven by VSD activation are resolved, providing information regarding changes in VSD/pore interaction through S4/S5/S6 segments proposed to underly electromechanical coupling.

      Strengths:

      Include that the prolonged timescale and high voltage of the simulation allow apparent equilibration in the voltage-sensor domain (VSD) conformational changes and at least partial opening of the pore. The study extends the results of previous MD simulations of VSD activation by providing quantitative estimates of gating charge movement, showing how the electric field distribution across the VSD is altered in resting and activated states, and testing the hypothesis that R213 and R210 are the primary gating charges by steered MD simulations. The ability to estimate gating charge contributions of individual residues in the WT channel is useful as a comparison to experimental studies based on mutagenesis which have yielded conflicting results that could reflect perturbations in structure. Use of dynamic community analysis to identify coupling pathways and information flow for VSD-pore (electromechanical) coupling, as well as analysis of state-dependent S4/S5/S6 interactions that could mediate coupling, provides useful predictions extending beyond what has been experimentally tested.

      Weaknesses:

      Include that a truncated channel (lacking the C-terminal gating ring) was used for simulations, which is known to have reduced single channel conductance and reduced electromechanical coupling compared to the full-length channel. In addition, as VSD activation in BK channels is much faster than opening, the timescale of simulations was likely insufficient to achieve a fully open state, as supported by differences in the degree of pore expansion in replicate simulations, which are also smaller than observed in Ca-bound open structures of the full-length channel. Taken together, these limitations suggest that the analysis regarding coupling pathways and interactions is incomplete. In addition, while the simulations convincingly demonstrate voltage-dependent channel opening as evidenced by pore expansion, and conduction of K+ and water through the pore, single channel conductance is underestimated by at least an order of magnitude, as in previous studies of other K+ channels. These quantitative discrepancies suggest that MD simulations may not yet be sufficiently advanced to provide insight into mechanisms underlying the extraordinarily large conductance of BK channels.

    1. Reviewer #1 (Public review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.<br /> (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.<br /> (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      Ligneul and coauthors have convincingly addressed and included my comments in their revised manuscript.

      I believe the following conceptual concerns, which are inherent to the nature of the study and do not require further adjustments of the manuscript, remain:

      (1) Metabolite compartmentation in one cell type or the other has often been challenged and is currently impossible to validate in vivo. Here, Ligneul and coauthors did not use this assumption a priori and supported their claims also with non-MR literature (eg. for Taurine), but the interpretation of results in that direction should be made with care.

      (2) Longitudinal MR studies of the developing brain make it difficult to extract parameters with an "absolute" meaning. Indirect assumptions used to derive such parameters may change with age and become confounding factors (brain structure, cell distribution, concentrations normalizing metabolites (here macromolecules), relaxation times...). While findings of the manuscript are convincing and supported with literature, the true underlying nature of such changes might be difficult to access.

      (3) Diffusion MRI in addition to diffusion MRS would have been complementary and beneficial to validate some of the signal contributions, but was unfeasible in the time constraints of experiments on young animals.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Torok et al. takes a creative approach to studying circuit perturbations in a sensorimotor region for vocalization control, in a songbird species, the zebra finch. By expressing the light chain of tetanus toxin in neurons in a sensorimotor region HVC, the authors constrain neural firing and study the resulting degradation and then recovery of song, after a protracted (> 70-day) period. Recording data suggest a form of synaptic homeostasis emergent in both HVC and RA as a result of the profound loss of (inhibitory?) tone in HVC. The methods to analyze changes in song are particularly strong here, using dimension reduction and visualization techniques. Single-cell sequencing data showed accompanying changes in microglia abundance, as well as several other markers that were not observed in control viral injections. LFP analyses in birds during the tetanus onset phase showed clear dysregulation of typical voltage deflections and spectral power, each of which showed recovery in parallel with song recovery. Lastly, the authors present data indicating that the anterior forebrain region LMAN is not critical for the song degradation process, pointing instead to the direct relationship between HVC and RA in song plasticity in adults. The methods are generally well established, but my main concerns regard the validation of the viral construct, the lack of direct confirmation of tetanus toxin on inhibitory neurons or E/I balance in HVC, and a missed opportunity to look at song syllable sequence degradation and recovery.

      Strengths:

      The species under investigation is the premier model for the neural basis of vocal learning, and the telencephalic brain regions investigated are well mapped out for their control of vocal learning behavior. The methods for electrophysiology recording and analysis, song analysis, scRNAseq, and in situ hybridization pose no concern as they are well established for this group of co-authors.

      Weaknesses:

      The introduction lays out a case for pursuing long-term E/I imbalances, vis-à-vis transient perturbations that have shown effects on the behavior. However, the rationale is not clearly stated. Why should the reader care that "prolonged E/I imbalances" may occur? Do they occur naturally or in some disease states (as alluded to in the first paragraph)? Without this rationale, the reader is left with an impression that the experiments were done because of a technical capability rather than a conceptual thrust.

      The cited works for the statement the "AAV viral vector expressing TeNT undre the human dlx promoter, which is selective for HVC inhibitory interneurons" (reference 5 Kosche et al., 2016; and reference 10 Vallentin et al 2016) do not substantiate the targeting of this dlx5 promoter for interneurons in zebra finch HVC. Neither of these cited studies used viral vectors, and so this is a misattribution of the dlx5 promoter as targeting HVC inhibitory interneurons. However, the original development of this enhancer by Gord Fishell and others did have solid expression in HVC (Dimidschstein et al., 2016, Nature Neuroscience), and the enhancer was used to successfully target inhibitory neurons in nearby nidopallium NCM (Spool et al., 2022, Curr Biol). Citing these two studies would improve the standing of this viral approach. Nevertheless, the specific construct used here is not the same as the published studies mentioned above (AAV9-dlx-TeNT). The authors therefore need to show expression of the virus using some histological confirmation to cement the idea that they are indeed targeting inhibitory interneurons with this manipulation. The methods statement "a single injection (~100 nL) in the center of HVC was sufficient to label enough cells" is not convincing in the absence of quantified photomicrographs.

      The authors present no physiological confirmation of TeNT on E/I balance directly, and so we don't have a clear picture of how/whether HVC interneurons are physiologically altered by this manipulation. That said, the Npix recordings show that there was a tremendous increase in gamma power following TeNT manipulation, which subsides as the protracted song recovery unfolds. This finding is somewhat counterintuitive, given that gamma oscillations are typically driven by inhibitory neurons in many systems (including songbird pallium) while the TeNT manipulation is purported to cause *reductions* in inhibitory neurotransmitter release within HVC. Some interpretation of these incongruent results would be useful in the Discussion.

      The degradation and recovery of song is based mainly on the measures of duration of syllables and inter-syllable intervals, but HVC is also a key locus for song syllable sequence coding. The supplementary figures show some changes in sequences. It would improve the interpretation of both the degradation and recovery of the song to know whether syllable sequences (iiiABCCDDEF) truly recovered or were morphed in some way (e.g., iiiCDDDBEF). The PCA analyses (that the authors conducted) for these two potential outcomes would likely be very similar, but the actual songs would differ greatly under these two scenarios in terms of syllable sequence. From the representative spectrograms, it appears that the song syllable sequence does indeed recover well in these examples (perhaps less so in Supplementary Figure 3). A simple Markov-chain analysis of the syllable sequences across birds in the study would provide important confirmation of these insights.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors Eapen, et al. investigated the peptide inhibitors of Cdc20. They applied a rational design approach, substituting residues found in the D-box consensus sequences to better align the peptides with the Cdc20-degron interface. In the process, the authors designed and tested a series of more potent binders, including ones that contain unnatural amino acids, and verified binding modes by elucidating the Cdc-20-peptide structures. The authors further showed that these peptides can engage with Cdc20 in the cellular context, and can inhibit APC/CCdc20 ubiquitination activity. Finally, the authors demonstrated that these peptides could be used as portable degron motifs that drive the degradation of a fused fluorescent protein.

      Strengths:

      This manuscript is clear and straightforward to follow. The investigation of different peptide variations was comprehensive and well-executed. This work provided the groundwork for the development of peptide drug modalities to inhibit degradation or applying peptides as portable motifs to achieve targeted degradation. Both of which are impactful. The additional points provided by the authors in response to reviewers further strengthened the manuscript and enhanced its clarity.

      Weaknesses:

      None, the authors have addressed all my comments, and I have no additional suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      The study dissects distinct pools of diacylglycerol (DAG), continuing a line of research on the central concept that there is a major lipid metabolism DAG pool in cells, but also a smaller signaling DAG pool. It tests the hypothesis that the second pool is regulated by Dip2, which influences Pkc1 signaling. The group shows that stressed yeast increase specific DAG species C36:0 and 36:1, and propose this promotes Pkc1 activation via Pck1 binding 36:0. The study also examines how perturbing the lipid metabolism DAG pool via various deletions such as lro1, dga1, and pah1 deletion impacts DAG and stress signaling. Overall this is an interesting study that adds new data to how different DAG pools influence cellular signaling.

      Strengths:

      The study nicely combined lipidomic profiling with stress signaling biochemistry and yeast growth assays.

      Weaknesses:

      One suggestion to improve the study is to examine the spatial organization of Dip2 within cells, and how this impacts its ability to modulate DAG pools. Dip2 has previously been proposed to function at mitochondria-vacuole contacts (Mondal 2022). Examining how Dip2 localization is impacted when different DAG pools are manipulated such as by deletion Pah1 (also suggested to work at yeast contact sites such as the nucleus-vacuole junction), or with Lro1 or Dga1 deletion would broaden the scope of the study.

      Comments on revisions:

      The revision addresses several of the concerns raised previously. Most importantly, it softens several conclusions that more clearly delineates limitations of the study. The study has yet to address how Dip2 and Pkc1 crosstalk, but new text addresses this limitation. There is also more analysis of Dip2 localization in other conditions where cell DAG pools are elevated (ie a LRO1 and DGA1 double KO, as well as PAH1 KO). Loss of these proteins elevates ER DAG, but Dip2 remains mitochondrially associated. This may imply DAG specificity, or that changes to DAG pools globally does not impact Dip2 import into mitochondria.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript addresses the challenge of understanding and capturing the similarity among large numbers of visual images. The authors show that an automated approach using artificial neural networks that focuses upon the embedding of similarity through behaviorally relevant dimensions can predict human similarity data up to a certain level of granularity.

      Strengths:

      The manuscript starts with a very useful introduction that sets the stage with an insightful Figure 1. The methods are state of the art and well thought off, and the data are compelling. The authors demonstrate the added value of their approach in several directions, resulting in a manuscript that is highly relevant for different domains. The authors also explore its limitations (e.g., granularity).

      Weaknesses:

      Although this manuscript and the work it describes are already of high quality, I see several ways in which it could be further improved. Below I rank these suggestions tentatively in order of importance.

      Predictions obtain correlations above 0.80, often close to correlations of 0.90. The performance of DimPred is not trivial, given how much better it performs relative to classic RSA and feature reweighting. Yet, the ceiling is not sufficiently characterized. What is the noise ceiling in the main and additional similarity sets that are used? If the noise ceiling is higher than the prediction correlations, then can the authors try to find the stimulus pairs for which the approach systematically fails to capture similarity? Or is the mismatch very distributed across the full stimulus set?

      Also in the section on p. 8-p.9, it is crucial to provide information on the noise ceiling of the various datasets.

      This consideration of noise ceiling brings me to another consideration. Arguments have been made that a focus on overall prediction accuracy might mask important differences in underlying processes that can be demonstrated in more specific, experimental situations (Bowers et al., 2023). Can the authors exclude the possibility that their automatic approach would fail dramatically in specifically engineered situations? Some examples can be found in the 2024 challenge of the BrainScore platform. How can future users of this approach know whether they are in such a situation or not?

      The authors demonstrated one limitation of the DimPred approach to capture fine-grained similarity among highly similar stimuli. The implications of this finding were not clear to me from the Abstract etc, because it is not sufficiently highlighted in the summaries that in this case DimPred performs even worse, and much worse, than more simple approaches like feature reweighting and even than classic RSA. I would discuss this outcome more in detail. With hindsight, this problem might not be so surprising given that DimPred relies upon the embedding with a few tens dimensions that mostly capture between-category differences. To me, this seems like a more fundamental limitation than a mere problem of granularity or lack of data, as suggested in the abstract.

      The DimPred approach is based on the dimensions of a similarity embedding derived from human behavior. What is important here is (i) that DimPred is based upon an approach that tries to capture latent dimensions; or (ii) that these dimensions are behaviorally relevant? There are a lot of dimension-focused approaches. Generic ones are PCA, MDS, etc. More domain-specific approaches in cogneuro include the following: (i) for two-dimensional shape representations, good results have been obtained with image-computable dimensions of various levels of complexity (Morgenstern et al., 2021, PLOS Comput. Biol.); (ii) another dimension-focused approach has focused upon identifying dimensions that are universal across networks & human representations (Chen & Bonner, 2024, arXiv). Would such generic or more specific approaches work as well as DimPred?

    1. Joint Public Reviews:

      In this study, the authors suggest that DuoHexaBody-CD37, a biparatopic CD37-targeting antibody, can induce direct cytotoxicity in diffuse large B-cell lymphoma (DLBCL) cells through antibody clustering and SHP-1 activation, independent of complement. They further propose that DuoHexaBody-CD37 inhibits cytokine-mediated pro-survival signalling, suggesting a broader role for CD37-directed therapy in disrupting tumour supportive signalling networks.

      A strength of the study is the systematic in vitro characterisation of signalling responses to DuoHexaBody-CD37 across both malignant and normal B-cells. The inclusion of phosphoproteomic profiling and mutant constructs provides mechanistic detail, and the findings may be of interest to researchers working on antibody therapeutics in lymphoma.

      However, the evidence supporting key mechanistic processes - particularly the role of SHP-1 in mediating cytotoxicity and the requirement for Fc receptor crosslinking - is incomplete and would benefit from further functional validation. While CD37 has been explored previously as a therapeutic target, this study does add mechanistic insight into direct cytotoxicity and cytokine modulation. Nevertheless, the exclusive reliance on in vitro systems makes the translational relevance unclear.

      Overall, the study provides valuable insight into CD37-mediated signalling in lymphoma cells, but the evidence remains incomplete to support broader conclusions about therapeutic impact.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyze transcription in single cells before and after 4000 rads of ionizing radiation. They use Seuratv5 for their analyses, which allows them to show that most of the genes cluster along the proximal-distal axis. Due to the high heterogeneity in the transcripts, they use the Herfindahl-Hirschman index (HHI) from Economics, which measures market concentration. Using the HHI, they find that genes involved in several processes (like cell death, response to ROS, DNA damage response (DDR)) are relatively similar across clusters. However, ligands activating the JAK/STAT, Pvr, and JNK pathways and transcription factors Ets21C and dysf are upregulated regionally. The JAK/STAT ligands Upd1,2,3 require p53 for their upregulation after irradiation, but the normal expression of Upd1 in unirradiated discs is p53-independent. This analysis also identified a cluster of cells that expressed tribbles, encoding a factor that downregulates mitosis-promoting String and Twine, that appears to be G2/M arrested and expressed numerous genes involved in apoptosis, DDR, the aforementioned ligands, and TFs. As such, the tribbles-high cluster contains much of the heterogeneity.

      Strengths:

      (1) The authors have used robust methods for rearing Drosophila larvae, irradiating wing discs, and analyzing the data with Seurat v5 and HHI.

      (2) These data will be informative for the field.

      (3) Most of the data is well-presented.

      (4) The literature is appropriately cited.

      Weaknesses:

      (1) The data in Figure 1 are single-image representations. I assume that counting the number of nuclei that are positive for these markers is difficult, but it would be good to get a sense of how representative these images are and how many discs were analyzed for each condition in B-M.

      (2) Some of the figures are unclear.

    1. Reviewer #1 (Public review):

      In the manuscript, Aldridge and colleagues investigate the role of IL-27 in regulating hematopoiesis during T. gondii infection. Using loss-of-function approaches, reporter mice, and the generation of serial chimeric mice, they elegantly demonstrate that IL-27 induction plays a critical role in modulating bone marrow myelopoiesis and monocyte generation to the infection site. The study is well-designed, with clear experimental approaches that effectively address the mechanisms by which IL-27 regulates bone marrow myelopoiesis and prevents HSC exhaustion.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the encoding of forelimb movement parameters using a reach-to-grasp task in mice. The authors use a modified version of the water-reaching paradigm developed by Galinanes and Huber. Two-photon calcium imaging was then performed with GCaMP6f to measure activity across both the contralateral caudal forelimb area (CFA) and the forelimb portion of primary somatosensory cortex (fS1) as mice perform the reaching behavior. Established methods were used to extract the activity of imaged neurons in layer 2/3, including methods for deconvolving the calcium indicator's response function from fluorescence time series. Video-based limb tracking was performed to track the positions of several sites on the forelimb during reaching and extract numerous low-level (joint angle) and high-level (reach direction) parameters. The authors find substantial encoding of parameters for both the proximal and distal parts of the limb across both CFA and fS1, with individual neurons showing heterogeneous parameter encoding. Limb movement can be decoded similarly well from both CFA and fS1, though CFA activity enables decoding of reach direction earlier and for a more extended duration than fS1 activity. Collectively, these results indicate involvement of a broadly distributed sensorimotor region in mouse cortex in determining low-level features of limb movement during reach-to-grasp.

      Strengths:

      The technical approach is of very high quality. In particular, the decoding methods are well designed and rigorous. The use of partial correlations to distinguish correlation between cortical activity and either proximal or distal limb parameters or either low- or high-level movement parameters was very nice. The limb tracking was also of extremely high quality, and critical here to revealing the richness of distal limb movement during task performance.

      The task itself also reflects an important extension of the original work by Galinanes and Huber. The demonstration of a clear, trackable grasp component in a paradigm where mice will perform hundreds of trials per day expands the experimental opportunities for the field. This is an exciting development.

      The findings here are important and the support for them is solid. The work represents an important step forward toward understanding the cortical origins of limb control signals. One can imagine numerous extensions of this work to address basic questions that have not been reachable in other model systems.

      Collectively, these strengths made this manuscript a pleasure to read and review.

      Weaknesses:

      In the last section of the results, the authors purport to examine the representation of "higher-level target-related signals," using the decoding of reach direction. While I think the authors are careful in their phrasing here, I think they should be more explicit about what these signals could be reflecting. The "signals" here that are used to decode direction could relate to anything - low-level signals related to limb or postural muscles, or true high-level commands that dictate only what movement downstream motor centers should execute, rather than the muscle commands that dictate how. One could imagine using a partial correlation-type approach again here to extract a signal uncorrelated with all the measured low-level parameters, but there would still be all the unmeasured ones. Again, I think it is still ok to call these "high-level signals," but I think some explicit discussion of what these signals could reflect is necessary.

      Related to this, I think the manuscript in general does not do an adequate job of explicitly raising the important caveats in interpreting parametric correlations in motor system signals, like those raised by Todorov, 2000. The authors do an expert job of handling the correlations, using PCA to extract uncorrelated components and using the partial correlation approach. However, more clarity about the range of possible signal types the recorded activity could reflect seems necessary.

      The manuscript could also do a better job of clarifying relevant similarities and differences between the rodent and primate systems, especially given the claims about the rodent being a "first-class" system for examining the cellular and circuit basis of motor control, which I certainly agree with. Interspecies similarities and differences could be better addressed both in the Introduction, where results from both rodents and primates are intermixed (second paragraph), and in the Discussion, where more clarity on how results here agree and disagree with those from primates would be helpful. For example, the ratio of corticospinal projections targeting sensory and motor divisions of the spinal cord differs substantially between rodents and primates. As another example, the relatively high physical proximity between the typical neurons in mouse M1 and S1 compared to primates seems likely to yoke their activity together to a greater extent. There is also the relatively large extent of fS1 from which forelimb movements can be elicited through intracortical microstimulation at current levels similar to those for evoking movement from M1. All of these seem relevant in the context of findings that activity in mouse M1 and S1 are similar.

      In addition, there are a number of other issues related to the interpretation of findings here that are not adequately addressed. These are described in the Recommendations for improvement.

    1. Reviewer #1 (Public review):

      Summary

      Lysine acetoacetylation (Kacac) is a recently discovered histone post-translational modification (PTM) connected to ketone body metabolism. This research outlines a chemo-immunological method for detecting Kacac, eliminating the requirement for creating new antibodies. The study demonstrates that acetoacetate acts as the precursor for Kacac, which is catalyzed by the acyltransferases GCN5, p300, and PCAF, and removed by the deacetylase HDAC3. Acetoacetyl-CoA synthetase (AACS) is identified as a central regulator of Kacac levels in cells. A proteomic analysis revealed 139 Kacac sites across 85 human proteins, showing the modification's extensive influence on various cellular functions. Additional bioinformatics and RNA sequencing data suggest a relationship between Kacac and other PTMs, such as lysine β-hydroxybutyrylation (Kbhb), in regulating biological pathways. The findings underscore Kacac's role in histone and non-histone protein regulation, providing a foundation for future research into the roles of ketone bodies in metabolic regulation and disease processes.

      Strengths

      (1) The study developed an innovative method by using a novel chemo-immunological approach to the detection of lysine acetoacetylation. This provides a reliable method for the detection of specific Kacac using commercially available antibodies.

      (2) The research has done a comprehensive proteome analysis to identify unique Kacac sites on 85 human proteins by using proteomic profiling. This detailed landscape of lysine acetoacetylation provides a possible role in cellular processes.

      (3) The functional characterization of enzymes explores the activity of acetoacetyltransferase of key enzymes like GCN5, p300, and PCAF. This provides a deeper understanding of their function in cellular regulation and histone modifications.

      (4) The impact of acetyl-CoA and acetoacetyl-CoA on histone acetylation provides the differential regulation of acylations in mammalian cells, which contributes to the understanding of metabolic-epigenetic crosstalk.

      (5) The study examined acetoacetylation levels and patterns, which involve experiments using treatment with acetohydroxamic acid or lovastatin in combination with lithium acetoacetate, providing insights into the regulation of SCOT and HMGCR activities.

      Weakness

      (1) There is a limitation to functional validation, related to the work on the biological relevance of identified acetoacetylation sites. Hence, the study requires certain functional validation experiments to provide robust conclusions regarding the functional implications of these modifications on cellular processes and protein function. For example, functional implications of the identified acetoacetylation sites on histone proteins would aid the interpretation of the results.

      (2) The authors could have studied acetoacetylation patterns between healthy cells and disease models like cancer cells to investigate potential dysregulation of acetoacetylation in pathological conditions, which could provide insights into their PTM function in disease progression and pathogenesis.

      (3) The time-course experiments could be performed following acetoacetate treatment to understand temporal dynamics, which can capture the acetoacetylation kinetic change, thereby providing a mechanistic understanding of the PTM changes and their regulatory mechanisms.

      (4) Though the discussion section indeed provides critical analysis of the results in the context of existing literature, further providing insights into acetoacetylation's broader implications in histone modification. However, the study could provide a discussion on the impact of the overlap of other post-translational modifications with Kacac sites with their implications on protein functions.

      Impact

      The authors successfully identified novel acetoacetylation sites on proteins, expanding the understanding of this post-translational modification. The authors conducted experiments to validate the functional significance of acetoacetylation by studying its impact on histone modifications and cellular functions.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, authors investigated the role of RUNT-related transcription factor 2 (RUNX2) in oral squamous carcinoma (OSCC) growth and resistance to ferroptosis. They found that RUNX2 suppresses ferroptosis through transcriptional regulation of peroxiredoxin-2. They further explored the upstream positive regulator of RUNX2, HOXA10 and found that HOXA1/RNUX2/PRDX2 axis protects OSCC from ferroptosis.

      Strengths:

      The study is well designed and provides a novel mechanism of HOXA1/RNUX2/PRDX2 control of ferroptosis in OSCC.

      Weaknesses:

      According to the data presented in (Figure 2F, Figure 3F and G, Figure 5D and Figure 6E and F), apoptosis seems to be affected in the same amount as ferroptosis by HOXA1/RNUX2/PRDX2 axis, which raises a question on the authors' specific focus on ferroptosis in this study. Reasonably, authors should adapt the title and the abstract in a way that it recapitulates the whole data, which is HOXA1/RNUX2/PRDX2 axis control of cell death, including ferroptosis and apoptosis in OSCC.

      Comments on revisions:

      The revised manuscript has been well improved, and I'm satisfied with the authors' response to my comments.

    1. Reviewer #1 (Public review):

      Summary:

      Epiney et al. use single-nuclei RNA sequencing (snRNA-seq) to characterize the lineage of Type-2 (T2) neuroblasts (NBs) in the adult Drosophila brain. To isolate cells born from T2 NBs, the authors used a genetic tool that specifically allows the permanent labeling of T2-derived cell types, which are then FAC-sorted for snRNA-seq. This effective labeling approach also allows them to compare the isolated T2 lineage cells with T1-derived cell types by a simple exclusion method. The authors begin by describing a transcriptomic atlas for all T1 and T2-derived neuronal and glia clusters, reporting that the T2-derived lineage comprises 161 neuronal clusters, in contrast to the T1 lineage which comprises 114 of them. The authors then use the expression of VAChT, VGlut, Gad1, Tbh, Ple, SerT, and Tdc2 to show that T2 neuroblasts generate all major neuron classes of fast-acting neurotransmitters. Strikingly, they show that a subset of glia and neuronal clusters have disproportionate enrichment in males or females, suggesting that T2 neuroblasts generate sex-biased cell types. The authors then proceed to characterize neuropeptide expression across T2-derived neuronal clusters and argue that the same neuropeptide can be expressed across different cell types, while similar cell types can express distinct neuropeptides. The functional implication of both observations, however, remains to be tested. Furthermore, the authors describe combinatorial transcription factor (TF) codes that are correlated with neuropeptide expression for T2-derived neurons along with an overall TF code for all T2-derived cell types, both of which will serve as an important starting point for future investigations. Finally, the authors map well-studied neuronal types of the central complex to the clusters of their T2-derived snRNA-seq dataset. They use known marker combinations, bulk RNA-seq data and highly specific split-GAL4 driver lines to annotate their T2-derived atlas, establishing a comprehensive transcriptomic atlas that would guide future studies in this field.

      Strengths:

      This study provides an in-depth transcriptomic characterization of neurons and glia derived from Type-2 neuroblast lineages. The results of this manuscript offer several future directions to investigate the mechanisms of diversifying neuronal identity. The datasets of T1-derived and T2-derived cells will pave the way for studies focused on the functional analysis of combinatorial TF codes specifying cell identity, sex-based differences in neurogenesis and gliogenesis, the relationship between neuropeptide (co)expression and cell identity, and the differential contributions of distinct progenitor populations to the same cell type.

      Weaknesses:

      The study presents several important observations based on the characterization of Type II neuroblast-derived lineages. However, a mechanistic insight is missing for most observations. The idea that there is a sex-specific bias to certain T2-derived neurons and glial clusters is quite interesting, however, the functional significance of this observation is not tested or discussed extensively. Finally, the authors do not show whether the combinatorial TF code is indeed necessary for neuropeptide expression or if this is just a correlation due to cell identity being defined by TFs. Functional knockdown of some candidate TFs for a subset of neuropeptide-expressing cells would have been helpful in this case.

      Comments on revisions:

      The authors have addressed my recommendations.

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a novel tool, SCellBOW, to perform cell clustering and infer survival risks on individual cancer cell clusters from the single cell RNA seq dataset. The key ideas/techniques used in the tool include transfer learning, bag of words (BOW), and phenotype algebra which is similar to word algebra from natural language processing (NLP). Comparisons with existing methods demonstrated that SCellBOW provides superior clustering results and exhibits robust performance across a wide range of datasets. Importantly, a distinguishing feature of SCellBOW compared to other tools is its ability to assign risk scores to specific cancer cell clusters. Using SCellBOW, the authors identified a new group of prostate cancer cells characterized by a highly aggressive and dedifferentiated phenotype.

      Strengths:

      The application of natural language processing (NLP) to single-cell RNA sequencing (scRNA-seq) datasets is both smart and insightful. Encoding gene expression levels as word frequencies is a creative way to apply text analysis techniques to biological data. When combined with transfer learning, this approach enhances our ability to describe the heterogeneity of different cells, offering a novel method for understanding the biological behavior of individual cells and surpassing the capabilities of existing cell clustering methods. Moreover, the ability of the package to predict risk, particularly within cancer datasets, significantly expands the potential applications.

      Weaknesses:

      Given the promising nature of this tool, it would be beneficial for the authors to test the risk-stratification functionality on other types of tumors with high heterogeneity, such as liver and pancreatic cancers, which currently lack clinically relevant and well-recognized stratification methods. Additionally, it would be worthwhile to investigate how the tool could be applied to spatial transcriptomics by analyzing cell embeddings from different layers within these tissues.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the population structure of the invasive weed Lantana camara from 36 localities in India using 19,008 genome-wide SNPs obtained through ddRAD sequencing.

      Strengths:<br /> The manuscript is well-written, the analyses are sound, and the figures are of great quality.

      Weaknesses:

      The narrative almost completely ignores the fact that this plant is popular in horticultural trade and the different color morphs that form genetic populations are most likely the result of artificial selection by humans for certain colors for trade, and not the result of natural selfing. Although it may be possible that the genetic clustering of color morphs is maintained in the wild through selfing, there is no evidence in this study to support that. The high levels of homozygosity are more likely explained as a result of artificial selection in horticulture and relatively recent introductions in India. Therefore, the claim of the title that "the population structure.. is shaped by its mating system" is in part moot, because any population structure is in large part shaped by the mating system of the organism, but further misleading because it is much more likely artificial selection that caused the patterns observed.

    1. Reviewer #1 (Public review):

      The authors present tviblindi, an algorithm to infer cell development trajectories from single-cell molecular data. The paper is well-written and the algorithm is conceptually interesting. However, the validation is incomplete as the comparison against existing trajectory inference methods is weak: although the lack of a proper benchmark was pointed out as the main weakness of the original version of the manuscript, the revised version still only contains qualitative comparisons against state-of-the-art methods.

      Both me and Reviewer 2 pointed out that the lack of a proper benchmark against state-of-the-art methods on a wider variety of datasets (including scRNA-seq data) was a major weakness of the original version of the manuscript. In response to this criticism, the authors now did the following:

      - They ran various competitor methods on the datasets that were used already for the previous version of the manuscript.<br /> - They ran tviblindi and two of the competitors on two public scRNA-seq datasets.<br /> - For all datasets, they qualitatively assessed the trajectories computed by tviblindi and its competitors and argued that tviblindi's trajectories better reflect the biological signal in the data.<br /> - The results of all of these additional analyses are reported in the supplement, which has now become very lengthy (88 pages).

      In my opinion, this is insufficient to establish that tviblindi is comparable or even superior to the state of the art in the field. To show that this is the case, the authors would have to carry out a systematic benchmark study which relies on quantitative evaluation metrics rather than on qualitative intepretations of trajectories. As method developers, we are all susceptive to confirmation bias when comparing our new algorithms to the state of the art. To avoid this pitfall, reporting quantitative performance metrics is required. At the moment, the only quantitative metric reported by the authors is runtime, which is insufficient.

      Moreover, the results of a benchmark study should be reported in the main manuscript, not in the supplement. When presenting a new algorithm in a field as crowded as trajectory inference, a benchmark against the state of the art serves to establish trust in the new algorithm and to provide the readers with a rationale to use it for their research. For this, the results of the benchmark have to be presented prominently and should not be hidden in the supplement.

      A second major criticism raised in Reviewer 2's review of the original version of the manuscript is that tviblindi invites cherry picking due to its inherently interactive design. In response to this, the authors now argue at length that "the data-driven expert interpretation approach of tviblindi" (quote from Section 2.2.2) is a strength rather than a weakness. If we concede for the sake of the argument that tviblindi's "expert interpretation approach" is indeed a strength of the method (although I tend to agree with Reviewer 2 that it is rather a limitation), usability for biologists becomes critical. However, given the current implementation of tviblindi, its usability is far from optimal. The authors do not provide tviblindi as a web interface that is directly usable for domain experts without programming experience and not even as a package that is installable via some widely used package manager such as conda. Instead, they implemented tviblindi as an R package with a Shiny GUI that can either run in a Docker container or requires the installation of several dependencies. I therefore strongly doubt that many biologists will be able or willing to run tviblindi, which substantially limits the value of its "expert interpretation approach". Moreover, tviblindi does not support Apple silicon, which prevented also myself from testing the tool.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Huang et al. revealed the complex regulatory functions and transcription network of 172 unknown transcriptional factors (TFs) in Pseudomonas aeruginosa PAO1. They have built a global TF-DNA binding landscape and elucidated binding preferences and functional roles of these TFs. More specifically, the authors established a hierarchical regulatory network and identified ternary regulatory motifs, and co-association modules. Since P. aeruginosa is a well known pathogen, the authors thus identified key TFs associated with virulence pathways (e.g., quorum sensing [QS], motility, biofilm formation), which could be potential drug targets for future development. The authors also explored the TF conservation and functional evolution through pan-genome and phylogenetic analyses. For the easy searching by other researchers, the authors developed a publicly accessible database (PATF_Net) integrating ChIP-seq and HT-SELEX data.

      Strengths:

      (1) The authors performed ChIP-seq analysis of 172 TFs (nearly half of the 373 predicted TFs in P. aeruginosa) and identified 81,009 significant binding peaks, representing one of the largest TF-DNA interaction studies in the field. Also, The integration of HT-SELEX, pan-genome, and phylogenetic analyses provided multi-dimensional insights into TF conservation and function.

      (2) The authors provided informative analytical Framework for presenting the TFs, where a hierarchical network model based on the "hierarchy index (h)" classified TFs into top, middle, and bottom levels. They identified 13 ternary regulatory motifs and co-association clusters, which deepened our understanding of complex regulatory interactions.

      (3) The PATF_Net database provides TF-target network visualization and data-sharing capabilities, offering practical utility for researchers especially for the P. aeruginosa field.

      Weaknesses:

      (1) There is very limited experimental validation for this study. Although 24 virulence-related master regulators (e.g., PA0815 regulating motility, biofilm, and QS) were identified, functional validation (e.g., gene knockout or phenotypic assays) is lacking, leaving some conclusions reliant on bioinformatic predictions. Another approach for validation is checking the mutations of these TFs from clinical strains of P. aeruginosa, where chronically adapted isolates often gain mutations in virulence regulators.

      (2) ChIP-seq in bacteria may suffer from low-abundance TF signals and off-target effects. The functional implications of non-promoter binding peaks (e.g., coding regions) were not discussed.

      (3) PATF_Net currently supports basic queries but lacks advanced tools (e.g., dynamic network modeling or cross-species comparisons). User experience and accessibility remain underevaluated. But this could be improved in the future.

      Achievement of Aims and Support for Conclusions

      (1) The authors successfully mapped global P. aeruginosa TF binding sites, constructed hierarchical networks and co-association modules, and identified virulence-related TFs, fulfilling the primary objectives. The database and pan-genome analysis provide foundational resources for future studies.

      (2) The hierarchical model aligns with known virulence mechanisms (e.g., LasR and ExsA at the bottom level directly regulating virulence genes). Co-association findings (e.g., PA2417 and PA2718 co-regulating pqsH) resonate with prior studies, though experimental confirmation of synergy is needed.

      Impact on the Field and Utility of Data/Methods

      (1) This study fills critical gaps in TF functional annotation in P. aeruginosa, offering new insights into pathogenicity mechanisms (e.g., antibiotic resistance, host adaptation). The hierarchical and co-association frameworks are transferable to other pathogens, advancing comparative studies of bacterial regulatory networks.

      (2) PATF_Net enables rapid exploration of TF-target interactions, accelerating candidate regulator discovery.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, the authors provide compelling evidence that stimulus-frequency otoacoustic emission (SFOAE) phase-gradient delays predict the sharpness (quality factors) of auditory-nerve-fiber (ANF) frequency tuning curves in budgerigars. In contrast with mammals, neither SFOAE- nor ANF-based measures of cochlear tuning match the frequency dependence of behavioral tuning in this species of parakeet. Although the reason for the discrepant behavioral results (taken from previous studies) remains unexplained, the present data provide significant and important support for the utility of otoacoustic estimates of cochlear tuning, a methodology previously explored only in mammals.

      Strengths:

      * The OAE and ANF data appear solid and believable. (The behavioral data are taken from previous studies and the resulting limitations are discussed.)

      * No other study in birds (and only a single previous study in mammals) has combined behavioral, auditory-nerve, and otoacoustic estimates of cochlear tuning in a single species.

      * SFOAE-based estimates of cochlear tuning were obtained by assuming that the tuning ratio estimated in chicken applies also to the budgerigar. Possible complications arising from an avian apical-basal transition analogous to that found in mammals are discussed.

    1. Reviewer #2 (Public review):

      Summary:

      By combining bioinformatical and experimental approaches, the authors address the question why several vertebrate lineages lack specific genes of the necroptosis pathway, or those that regulate the interplay between apoptosis and necroptosis. The lack of such genes was already known from previous publications, but the current manuscript provides a more in-depth analysis and also uses experiments in human cells to address the question of functionality of the remaining genes and pathways. A particular focus is placed on RIPK3/RIPK1 and their dual roles in inducing NFkB and/or necroptosis.

      Strengths:

      The well documented bioinformatical analyses provide a comprehensive data basis of the presence/absence of RIP-kinases, other RHIM proteins, apoptosis signaling proteins (FADD,CASP8,CASP10) and some other genes involved in these pathway. Several of these genes are known to be missing in certain animal lineages, which raises the question why their canonical binding partners are present in these species. By expressing several such proteins (both wildtype and mutants destroying particular interaction regions) in human cells, the authors succeed in establishing a general role of RIPK3 and RIPK1 in NFkB activation. This function appears to be better conserved and more universal than the necroptotic function of the RHIM proteins. The authors also scrutinize the importance of the kinase function and RHIM integrity for these separate functionalities.

      Weaknesses:

      A weakness of the presented study is the experimental restriction to human HEK293 cells. There are several situations where the functionality of proteins from distant organisms (like lampreys or even mussels) in human cells is not necessarily indicative of their function in native context. In some cases, these problems are addressed by co-expressing potential interaction partners, but not all of these experiments are really informative. However, I agree with the authors that it is not possible to perform all the experiments in native cells, and that comparing all proteins in the same (human) cell type allows for a better comparison.

      The conclusions drawn by the authors are supported by convincing evidence. I have no doubts that this study will be very useful for future studies addressing the evolution of necroptosis and its regulation by NFkB and apoptosis.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have provided a mechanism by which how presence of truncated P53 can inactivate function of full length P53 protein. The authors proposed this happens by sequestration of full length P53 by truncated P53. In the study, the performed experiments are well described.

      Significance:

      The work in significant, since it points out more mechanistic insight how wild type full length P53 could be inactivated in the presence of truncated isoforms, this might offer new opportunity to recover P53 function as treatment strategies against cancer.

      Comments on latest version:

      The authors have made significant effort to address my concerns using the system available to them. I find the justifications provided in the rebuttal letter and the revised figures satisfactory. My initial concerns regarding the overexpression system have been largely addressed. However, the experimental system used by the authors lacks the means to measure the effect on endogenous p53, which remains a limitation.

    1. Reviewer #1 (Public review):

      Summary:

      The concept that trained immunity, as defined, can be beneficial to subsequent immune challenges is important in the broad context of health and disease. The significance of this manuscript is the finding that trained immunity is actually a two-edged sword, herein, detrimental in the context of LPS-induced Acute Lung Injury that is mediated by AMs.

      Strengths:

      Several lines of evidence in different mouse models support this conclusion. The postulation that differences in immune responses in individuals is linked to differences in the mycobiome and consequent B-glucan makeup is provocative.

      Weaknesses:

      However, the findings that the authors state are relevant to sepsis are actually confined to a specific lung injury model and not classically-defined sepsis, the ontogeny of the reprogrammed AMs is uncertain, and links in the proposed signaling pathways need to be strengthened.

      Comments on the latest version:

      The manuscript is improved with further clarifications and additional experimentation. My prior concerns are addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with the use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Specifically, the study aimed to:

      (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning<br /> (2) examine the persistence of these effects one week later, and<br /> (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participants' expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      Weaknesses:

      There are a limited number of trials per test condition (10), which means that the trajectory of responses to the manipulation may not be adequately explored.

      On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60, and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. There is a potential risk of revealing the manipulation to participants during the re-familiarization process, as they were not previously briefed to expect the painful stimulus intensity to vary without the application of sham TENS stimulation.

      The differences between the nocebo and control conditions in pain ratings during conditioning could be explained by the differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about expectation effects here.

      A randomisation error meant that 25 participants received an unbalanced number of 448 trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80).

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that the MSH6 family of mismatch repair proteins contains an unstructured N-terminal domain that contains either a PWWP domain, a Tudor domain or neither and that the interaction of the histone reader domains with the appropriate histone H3 modification enhances mismatch repair, and hence reduces mutation rates in coding regions to some extent. However, the elimination of the MSH6-histone modification probably does not completely eliminate mismatch repair, although the published papers on this point do not seem definitive.

      In this study, the authors perform a details phylogenetic analysis of the presence of the PWWP and Tudor domains in MSH6 proteins across the tree of life. They observe that there are basically three classes of organisms that contain either a PWWP domain, a Tudor domain, or neither. On the basis of their analysis, they suggest that this represents convergent evolution of the independent acquisition of histone reader domains and that key amino acid residues in the reader domains are selected for.

      Strengths:

      The phylogenetic aspects of the work seem well done and the basic evolutionary conclusions of the work are well supported. The basic evolutionary conclusions are interesting and there is little to criticize from my perspective.

      Weaknesses:

      A major concern about this paper is that the authors fail to put their work into the proper context of what is already known about the N-terminus of MSH6. Further, their structural studies, which are really structural illustrations, are misleading, often incorrect, and not always helpful in addition to having been published before.

    1. Reviewer #1 (Public review):

      Summary:

      Is peristimulus alpha (8-14 Hz) frequency and/or phase involved in shaping the length of visual and audiovisual temporal binding windows, as posited by the discrete sampling hypothesis? If so, to what extent and perceptual scenario are they functionally relevant? The authors addressed such questions by collecting EEG data during the completion of the widely-known 2-flash fusion paradigm, administered both in a standard (i.e., visual only, F2) and audiovisual (i.e., 2 flashes and 1 beep, F2B1) fashion. Instantaneous frequency estimation performed over parieto-occipital sensors revealed slower alpha rhythms right after stimulus onset in the F2B1 condition, as compared to the F2, a pattern found to correlate with the difference between modality-specific ISIs (F2B1-F2). Of note, peristimulus alpha frequency differed also between 1 vs 2 flashes reports, although in the visual modality only (i.e., faster alpha oscillations in 2 flash percept vs 1 flash). This pattern of results was reinvigorated in a causal manner via occipital tACS, which was capable of, respectively, narrowing down vs enlarging the temporal binding window of individuals undergoing 13 Hz vs 8 Hz stimulation in the F2 modality alone. To elucidate what the oscillatory signatures of crossmodal integration might be, the authors further focused on the phase of posterior alpha rhythms. Accordingly, the Phase Opposition Sum proved to significantly differ between modalities (F2B1 vs F2) during the prestimulus time window, suggesting that audiovisual signals undergo finer processing based on the ongoing phase of occipital alpha oscillations, rather than the speed at which these rhythms cycle. As a last bit of information, a computational model factoring in the electrophysiological assumptions of both the discrete sampling hypothesis and auditory-induced phase-resetting was devised. Analyses run on such synthetic data were partially able to reproduce the patterns witnessed in the empirical dataset. While faster frequency rates broadly provide a higher probability to detect 2 flashes instead of 1, the occurrence of a concurrent auditory signal in cross-modal trials should cause a transient elongation (i.e. slower frequency rate) of the ongoing alpha cycle due to phase-reset dynamics (as revealed via inter-trial phase clustering), prompting larger ISIs during F2B1 trials. Conversely, the model provides that alpha oscillatory phase might predict how well an observer dissociates sensory information from noise (i.e., perceptual clarity), with the second flash clearly perceived as such as long as it falls within specific phase windows along the alpha cycle.

      Strengths:

      The authors leveraged complementary approaches (EEG, tACS, and computational modelling), the results thereof not only integrate, but depict an overarching mechanistic scenario elegantly framing phase-resetting dynamics into the broader theoretical architecture posited by the discrete sampling hypothesis. Analyses on brain oscillations (either via frequency sliding and phase opposition sum) mostly appear to be methodologically sound, and very-well supported by tACS results. Under this perspective, the modelling approach serves as a convenient tool to reconcile and shed more light on the pieces of evidence gathered on empirical data, returning an appealing account on how cross-modal stimuli interplay with ongoing alpha rhythms and differentially affect multisensory processing in humans.

      Weaknesses:

      Some information relative to the task and the analyses is missing. For instance, it is not entirely clear from the text what the number of flashes actually displayed in explicit short trials is (1 or 2?). We believe it is always two, but it should be explicitly stated.

      Moreover, the sample size might be an issue. As highlighted by a recent meta-analysis on the matter (Samaha & Romei, 2024), an underpowered sample size may very well drive null-findings relative to tACS data in F2B1 trials, in interplay with broad and un-individualized frequency targets.

      Some criticality arises regarding the actual "bistability" of bistable trials, as the statistics relative to the main task (i.e., the actual means and SEMs are missing) broadly point toward a higher proclivity to report 2 instead of 1 flash in both F2B1 and F2 trials. This makes sense to some extent, given that 2 flashes have always been displayed (at least in bistable trials), yet tells about something botched during the pretest titration procedure.

      Coming to the analyses on brain waves, one main concern relates to the phase-reset-induced slow-down of posterior alpha rhythms being of true oscillatory nature, rather than a mere evoked response (i.e., not sustained over time). Another question calling for some further scrutiny regards the overlooked pattern linking the temporal extent of the IAF differences between F2 and F2B1 trials with the ISIs across experimental conditions (explicit short, bistable, and explicit long). That is, the wider the ISI, the longer the temporal extent of the IAF difference between sensory modalities. Although neglected by the authors, such a trend speaks in favour of a rather nuanced scenario stemming from not only auditory-induced phase-reset alpha cycle elongation, but also some non-linear and perhaps super-additive contribution of flash-induced phase-resetting. This consideration introduces some of the issues about the computational simulation, which was modelled around the assumption of phase-resetting being triggered by acoustic stimuli alone. Given how appealing the model already is, I wonder whether the authors might refine the model accordingly and integrate the phase-resetting impact of visual stimuli upon synthetic alpha rhythms. Relatedly, I would also suggest the authors to throw in a few more simulations to explore the parameter space and assay, to which quantitative extent the model still holds (e.g. allowing alpha frequency to randomly change within a range between 8 and 13 Hz, or pivoting the phase delay around 10 or 50 ms). As a last remark, I would avoid, or at least tone down, concluding that the results hereby presented might reconcile and/or explain the null effects in Buergers & Noppeney, 2022; as the relationship between IAFs and audiovisual abilities still holds when examining other cross-modal paradigms such as the Sound-Induced Flash-Illusion (Noguchi, 2022), and the aforementioned patterns might be due to other factors, such as a too small sample size (Samaha & Romei, 2024).

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors aimed to test the ability of bumblebees to use bird-view and ground-view for homing in cluttered landscapes. Using modelling and behavioural experiments, the authors showed that bumblebees rely most on ground-views for homing.

      Strengths:

      The behavioural experiments are well-designed, and the statistical analyses are appropriate for the data presented. 

      Weaknesses:

      Views of animals are from a rather small catchment area.

      Missing a discussion on why image difference functions were sufficient to explain homing in wasps (Murray and Zeil 2017).

      The artificial habitat is not really 'cluttered' since landmarks are quite uniform, making it difficult to infer ecological relevance.

    1. Reviewer #1 (Public review):

      Summary:

      This paper tackles an important question: What drives the predictability of pre-stimulus brain activity? The authors challenge the claim that "pre-onset" encoding effects in naturalistic language data have to reflect the brain predicting the upcoming word. They lay out an alternative explanation: because language has statistical structure and dependencies, the "pre-onset" effect might arise from these dependencies, instead of active prediction. The authors analyze two MEG datasets with naturalistic data.

      Strengths:

      The paper proposes a very reasonable alternative hypothesis for claims in prior work. Two independent datasets are analyzed. The analyses with the most and least predictive words are clever, and nicely complement the more naturalistic analyses.

      Weaknesses:

      I have to admit that I have a hard time understanding one conceptual aspect of the work, and a few technical aspects of the analyses are unclear to me. Conceptually, I am not clear on why stimulus dependencies need to be different from those of prediction. Yes, it is true that actively predicting an upcoming word is different from just letting the regression model pick up on stimulus dependencies, but given that humans are statistical learners, we also just pick up on stimulus dependencies, and is that different from prediction? Isn't that in some way, the definition of prediction (sensitivity to stimulus dependencies, and anticipating the most likely upcoming input(s))?

      This brings me to some of the technical points: If the encoding regression model is learning one set of regression weights, how can those reflect stimulus dependencies (or am I misunderstanding which weights are learned)? Would it help to fit regression models on for instance, every second word or something (that should get rid of stimulus dependencies, but still allow to test whether the model predicts brain activity associated with words)? Or does that miss the point? I am a bit unclear as to what the actual "problem" with the encoding model analyses is, and how the stimulus dependency bias would be evident. It would be very helpful if the authors could spell out, more explicitly, the precise predictions of how the bias would be present in the encoding model.

    1. Reviewer #1 (Public review):

      Summary:

      This fMRI study shows that two regions of the visual cortex (BA18 and BA19) of blind and sighted individuals carry information about the physical similarity of objects denoted by words. This effect was found for written words (Braille in blind, visual in sighted) but not spoken words. The evidence complements earlier studies reporting physical similarity effects in the occipitotemporal cortex of blind and sighted individuals (e.g., Peelen et al., 2014).

      Strengths:

      The study addresses an important question in the fields of neural plasticity and visual cortex organization. The study is generally well-conducted and the findings are clearly presented.

      Weaknesses:

      While the evidence is statistically strong, it is currently incomplete because of missing control analyses (see below). The framing of the results, as arguing against the pluripotent cortex account, is not entirely convincing as it was not clear that the study addressed the key predictions of that account.

      Main comments:

      (1) The study is framed as a test of Bedny's "cognitively pluripotent cortex" proposal (2017) that attributes the increased visual cortex response to linguistic stimuli in blind individuals to high-level cognitive functions. Key evidence for this account came from studies showing increased responses in blind visual cortex to certain grammatical manipulations and to solving mathematical equations. The current study did not include such manipulations. Instead, the current study focused on the representation of objects denoted by single words. Bedny's account did not make a strong argument that the physical similarity of word referents should be differently represented in blind and sighted individuals - if it did, please state this explicitly. Indeed, evidence that (some regions of) the visual cortex represent objects similarly in blind and sighted individuals does not seem incompatible with it.

      (2) Throughout the manuscript (including the abstract) it was not clear what was meant with "visual cortex" or "visual areas"; whether this refers to early visual cortex (V1/BA17) or to visual cortex more generally (e.g., BA17-BA19, occipitotemporal cortex (MT, etc)). This is important for the theoretical arguments and for the interpretation of the results. If visual cortex = BA17, the current results point to potentially important differences between blind and sighted individuals, with the physical similarity of objects only observed in the visual cortex of the blind. If visual cortex is meant to include areas beyond BA17, the blind and sighted show similarities in the current study, although such similarities have been observed before using similar research approaches.

      (3) Related to the point above, the abstract does not accurately describe the results, as it only describes the similarities between blind and sighted but not the differences. The study revealed differences between groups, particularly in BA17 - primary visual cortex. The differences between the groups are also illustrated by the strikingly different searchlight results in the two groups separately (Figure S6). These differences do not reach significance in a whole-brain-corrected contrast, but that likely reflects a lack of power (particularly for a between-group contrast).

      (4) Results were found for written words but not spoken words (Figure S9). This is somewhat surprising considering that the visual cortex was more strongly activated for written words in the sighted, with this activation presumably not adding any information about the physical properties of word referents. Together with the widespread significance of clusters correlating with the physical similarity matrix (Figure 6), this raises the possibility of a confound. It would be good to ensure that this is not the case, e.g., you could create similarity matrices based on word length, word visual similarity (e.g., overlap in letters), and word frequency, and correlate these matrices with the physical similarity matrix to ensure that these correlations are not positive (or if they are, partial it out).

      (5) The study included a task manipulation, with participants either judging physical or conceptual properties. This task manipulation is a central aspect of the design but does not feature anywhere in the results, and is also not discussed or introduced in the text. It would be interesting to know whether the results depend on the property (physical/conceptual) being task-relevant. But more importantly, a potential concern is that the responses in the task (given for each object using a two-response button box) correlate with physical or conceptual similarity and that this explains the fMRI findings. For example, two objects that are elongated would both receive a "yes" button press when participants answer the question "is this elongated"; these objects would also be rated as physically similar. This may apply more to physical than conceptual similarity. To exclude this possibility, the responses need to be analysed and included in the fMRI analyses, either as a regressor in the GLM or as another matrix to be partialed out at the final stage of analysis.

      (4) Many of the blind participants had some residual vision (9/20 had light perception, 2/20 had contour perception); this could possibly have prevented the reorganization of visual cortex.

    1. Reviewer #1 (Public review):

      Summary:

      It is known that the nrp operon is induced by copper deprivation and encodes the synthesis of chalkophores. The authors carried out a genetic analysis that revealed transcriptional differences for WT and Mtb∆nrp when exposed to the copper chelator tetrathiomolybdate (TTM). The authors found that copper chelation results in upregulation of genes in the chalkophore cluster as well as genes involved in the respiratory chain: including, components of the heme-dependent oxidase CytBD and subunits of the bcc:aa3 heme-copper oxidase. Utilizing several knockout variants and inhibitors, the authors showed that copper starvation survival requires chalkophore synthesis and that copper starvation results in dysfunctional bcc:aa3 oxidase. By monitoring oxygen consumption, they go on to show that copper deprivation inhibits respiration through the bcc:aa3 oxidase. Lastly, the authors compare virulence of WT Mtb, Mtb∆nrp and MtbΔnrpΔcydAB strains in mice spleen and lung. The Mtb∆nrp strain showed mild attenuation, but virulence in MtbΔnrpΔcydAB was severely attenuated and complementation with the chalkophore biosynthetic pathway restored Mtb virulence. These results suggest that chalkophore mediated protection of the respiratory chain is critical to Mtb virulence, and that redundant respiratory oxidases within Mtb provide respiratory chain flexibility that may promote host adaptation.

      This new information about Mtb biology may be leveraged for drug discovery, highlighting that the Mtb respiratory pathway is a promising drug target, where one may target the Mtb chalkophore biosynthetic pathway in conjunction with CytBD, to obliterate Mtb.

      Strengths: Overall, the paper is very clear and well written, with thorough and well-thought-out experimentation.

      No weaknesses.

      Comments on revisions:

      The authors have addressed all the reviewers' comments.

    1. Reviewer #1 (Public review):

      In this paper, the authors had 2 aims:

      (1) Measure macaques' aversion to sand and see if its' removal is intentional, as it likely in an unpleasurable sensation that causes tooth damage.

      (2) Show that or see if monkeys engage in suboptimal behavior by cleaning foods beyond the point of diminishing returns, and see if this was related to individual traits such as sex and rank, and behavioral technique.

      They attempted to achieve these aims through a combination of geochemical analysis of sand, field experiments, and comparing predictions to an analytical model.

      The authors' conclusions were that they verified a long-standing assumption that monkeys have an aversion to sand as it contains many potentially damaging fine grained silicates, and that removing it via brushing or washing is intentional.

      They also concluded that monkeys will clean food for longer than is necessary, i.e. beyond the point of diminishing returns, and that this is rank-dependent.

      High and low-ranking monkeys tended not to wash their food, but instead over-brushed it, potentially to minimize handling time and maximize caloric intake, despite the long-term cumulative costs of sand.

      This was interpreted through the *disposable soma hypothesis*, where dominants maximize immediate needs to maintain rank and increase reproductive success at the potential expense of long-term health and survival.

      Strengths:

      The field experiment seemed well designed, and their quantification of the physical and mineral properties of quartz particles (relative to human detection thresholds) seemed good relative to their feret diameter and particle circularity (to a reviewer that is not an expert in sand). The *Rank Determination* and *Measuring Sand* sections were clear.

      In achieving Aim 1, the authors validated a commonly interpreted, but unmeasured function, of macaque and primate behavior-- a key study/finding in primate food processing and cultural transmission research.

      I commend their approach in trying to develop a quantitative model to generate predictions to compare to empirical data for their second aim.<br /> This is something others should strive for.

      I really appreciated the historical context of this paper in the introduction and found it very enjoyable and easy to read.

      I do think that interpreting these results in the context of the *disposable soma hypothesis* and the potential implications in the *paleolithic matters* section about interpreting dental wear in the fossil record are worthwhile.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Muramoto and colleagues have examined a mechanism by which the executioner caspase Drice is activated in a non-lethal context in Drosophila. The authors have comprehensively examined this in the Drosophila olfactory receptor neurons using sophisticated techniques. In particular, they had to engineer a new reporter by which non-lethal caspase activation could be detected. The authors conducted a proximity labeling experiment and identified Fasciclin 3 as a key protein in this context. While removal of Fascilin 3 did not block non-lethal caspase activation (likely because of redundant mechanisms), its overexpression was sufficient to activate non-lethal caspase activation.

      Strengths:

      While non-lethal functions of caspases have been reported in several contexts, far less is known about the mechanisms by which caspases are activated in these non-lethal contexts. So, the topic is very timely. The overall detail of this work is impressive and the results, for the most part, are well controlled and justified.

      Weaknesses:

      The behavioral results shown in Fig. 6 need more explanation and clarification (more details below). As currently shown, the results of Fig. 6 seem uninterpretable. Also, overall presentation of the Figures and description in legends can be improved.

      Comments on revisions:

      The authors have adequately addressed my comments.

    1. Reviewer #2 (Public review):

      Summary:

      In a 1.5m diameter, 0.8m high circular arena bumblebees were accustomed to exit the entrance to their nest on the floor surrounded by an array of identical cylindrical landmarks and to forage in an adjacent compartment which they could reach through an exit tube in the arena wall at a height of 28cm. The movements of one group of bees were restricted to a height of 30cm, the height of the landmark array, while the other group was able to move up to heights of 80cm, thus being able to see the landmark array from above.

      During one series of tests, the flights of bees returning from the foraging compartment were recorded as they tried to reach the nest entrance on the floor of the arena with the landmark array shifted to various positions away from the true nest entrance location. The results of these tests showed that the bees searched for the net entrance in the location that was defined by the landmark array.

      In a second series of tests, access to the landmark array was prevented from the side, but not from top, by a transparent screen surrounding the landmark array. These tests showed that the bees of both groups rarely entered the array from above, but kept trying to enter it from the side.

      The authors express surprise at this result because modelling the navigational information supplied by panoramic snapshots in this arena had indicated that the most robust information to the location of the nest entrance within the landmark array was supplied by views of the array from above, leading to the following strong conclusions:

      line 51: "Snapshot models perform best with bird's eye views";<br /> line 188: "Overall, our model analysis could show that snapshot models are not able to find home with views within a cluttered environment but only with views from above it.";<br /> line 231: "Our study underscores the limitations inherent in snapshot models, revealing their inability to provide precise positional estimates within densely cluttered environments, especially when compared to the navigational abilities of bees using frog's-eye views."

      Strengths:

      The experimental set-up allows to record the flight behaviour of bees in great spatial and temporal detail and in principle also to reconstruct the visual information available to the bees throughout the arena.

      Modelling: The revised manuscript now presents the results of modelling that includes information potentially available to the bees from the arena wall and in particular from the top edge of the arena.

      As I predicted, this increases the width of rotational image difference functions and therefore provides directional guidance over a larger range of misalignments. However, the authors dismiss the modelling results based on such reconstructed views which more realistically describe the information available to the bumblebees, because (line 291ff): 'Further simulations with a rendered arena wall led to worse results because the agent was mainly led to the centre of the arena (Fig. S17, Fig. S18-21)".

      What the modelling in Fig. 17 actually shows is that the agent is led more or less exactly to the 'entry points' to the arena chosen by the real bees (Fig. 4). The authors ignore this and in their rebuttal state that 'We hypothesised that the arena wall and object location created ambiguity'. The problem here is that you don't remove potential 'ambiguity' for real bees by ignoring information they are unlikely to ignore.

      Behavioural analysis: The full potential of the set-up was not used to understand how the bees' navigation behaviour develops over time in this arena and what opportunities the bees have had to learn the location of the nest entrance during repeated learning flights and return flights.

      Without a detailed analysis of the bees' behaviour during 'training', including learning flights and return flights, it is very hard to follow the authors' conclusions. The behaviour that is observed in the tests may be the result of the bees' extended experience shuttling between the nest and the entry to the foraging arena at 28cm height in the arena wall. For instance, it would have been important to see the return flights of bees following the learning flights shown in Fig. 17.

      Basically both groups of bees (constrained to fly below the height of landmarks (F) or throughout the height of the arena (B)) had ample opportunities to learn that the nest entrance lies on the floor of the landmark array. The only reason why B-bees may not have entered the array from above when access from the side was prevented may simply be that bumblebees, because they bumble, find it hard to perform a hovering descent into the array.

      The revised manuscript does not address my concerns. The rebuttal states that a detailed analysis of learning and return flights was 'outside the scope of this particular study', that their experimental design 'does not require the entire history of the bee's trajectory to be tested', that 'the entire flight history...will require...effort...conceptually' and that it would be 'difficult to test a hypothesis'.

      These responses clarify the frustrating problem with this study: The authors are more concerned with testing hypotheses than with trying to understand how bumblebees learn to cope with a situation which constrains their learning choreography and confronts them with the one fundamental problem view-based homing has: repetitive scene elements.

      Homing is an experience-dependent process and to understand what cues the bees used to navigate this set-up requires an analysis of the whole learning process. For instance, it may well be that the B+G+ bees initially did enter the array from above, but subsequently learnt a more efficient route into the array, by simply entering it from the side, followed by 'unguided' searching.

      General: The most serious weakness of the set-up is that it is spatially and visually constrained, in particular lacking a distant visual panorama, which under natural conditions is crucial for the range over which rotational image difference functions provide navigational guidance. In addition, the array of identical landmarks is not representative of natural clutter and, because it is visually repetitive, poses unnatural problems for view-based homing algorithms. This is the reason why the functions degrade so quickly from one position to the next (Fig. 9-12) when more distant scene elements are excluded.

      In conclusion, I do not feel that I have learnt anything useful from this experiment; it does suggest, however, that to fully appreciate and understand the homing abilities of insects, there is no alternative but to investigate these abilities in the natural conditions in which they have evolved. A nice start would be to build camera-based 3D models of natural bumblebee nest entrance environments and analyse whether there are any particularly unusual challenges for the visual localization of the nest entrance.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      The study focuses on PIM1 and 2 in CD8 T cell activation and differentiation. These two serine/threonine kinases belong to a large network of Serine/Threonine kinases that acts following engagement of the TCR and of cytokine receptors and phosphorylates proteins that control transcriptional, translational and metabolic programs that result in effector and memory T cell differentiation. The expression of PIM1 and PIM2 is induced by the T-cell receptor and several cytokine receptors. The present study capitalized on high-resolution quantitative analysis of the proteomes and transcriptomes of Pim1/Pim2-deficient CD8 T cells to decipher how the PIM1/2 kinases control TCR-driven activation and IL-2/IL-15-driven proliferation, and differentiation into effector T cells.

      Quantitative mass spectrometry-based proteomics analysis of naïve OT1 CD8 T cell stimulated with their cognate peptide showed that the PIM1 protein was induced within 3 hours of TCR engagement and its expression was sustained at least up to 24 hours. The kinetics of PIM2 expression was protracted as compared to that of PIM1. Such TCR-dependent expression of PIM1/2 correlated with the analysis of both Pim1 and Pim2 mRNA. In contrast, Pim3 mRNA was only expressed at very low levels and the PIM3 protein not detected by mass spectrometry. Therefore, PIM1 and 2 are the major PIM kinases in recently activated T cells. Pim1/Pim2 double knockout (Pim dKO) mice were generated on a B6 background and found to express lower number of splenocytes. No difference in TCR/CD28-driven proliferation was observed between WT and Pim dKO T cells over 3 days in culture. Quantitative proteomics of >7000 proteins further revealed no substantial quantitative or qualitative differences in protein content or proteome composition. Therefore, other signaling pathways can compensate for the lack of PIM kinases downstream of TCR activation.

      Considering that PIM1 and PIM2 kinase expression is regulated by IL-2 and IL-15, antigen-primed CD8 T cells were expanded in IL-15 to generate memory phenotype CD8 T cells or expanded in IL-2 to generate effector cytotoxic T lymphocytes (CTL). Analysis of the survival, proliferation, proteome, and transcriptome of Pim dKO CD8 T cells kept for 6 days in IL-15 showed that PIM1 and PIM2 are dispensable to drive the IL-15-mediated metabolic or differentiation programs of antigen-primed CD8 T cells. Moreover, Pim1/Pim2-deficiency had no impact on the ability of IL-2 to maintain CD8 T cell viability and proliferation. However, WT CTL downregulated expression of CD62L whereas the Pim dKO CTL sustained higher CD62L expression. Pim dKO CTL were also smaller and less granular than WT CTL. Comparison of the proteome of day 6 IL-2 cultured WT and Pim dKO CTL showed that the latter expressed lower levels of the glucose transporters, SLC2A1 and SLC2A3, of a number of proteins involved in fatty acid and cholesterol biosynthesis, and CTL effector proteins such as granzymes, perforin, IFNg and TNFa. Parallel transcriptomics analysis showed that the reduced expression of perforin and some granzymes correlated with a decrease in their mRNA whereas the decreased protein levels of granzymes B and A, and of the glucose transporters SLC2A1 and SLC2A3 did not correspond with decreased mRNA expression. Therefore, PIM kinases are likely required for IL-2 to maximally control protein synthesis in CD8 CTL. Along that line, the translational repressor PDCD4 was increased in Pim dKO CTL and pan-PIM kinase inhibitors caused a reduction in protein synthesis rates in IL-2 expanded CTL. Finally, the differences between Pim dKO and WT CTL in terms of CD62L expression resulted in that Pim dKO CTL but not WT CTL retained the capacity to home to secondary lymphoid organs. In conclusion, this thorough and solid study showed that the PIM1/2 kinases shape the effector CD8 T cell proteomes rather than transcriptomes and are important mediators of IL2-signalling and CD8 T cell trafficking.

      Weaknesses: None

      Comments on revisions:

      The authors have been able to provide in their rebuttal letter fair answers to most of the queries primarily raised by Reviewer 2 and they have incorporated the corresponding results in the revised text. It makes the paper stronger.

    1. Reviewer #2 (Public review):

      Summary:

      Malaria transmission in the Gambia is highly seasonal, whereby periods of intense transmission at the beginning of the rainy season are interspersed by long periods of low to no transmission. This raises several questions about how this transmission pattern impacts the spatiotemporal distribution of circulating parasite strains, how parasites persist during the dry season, and how asymptomatic infections contribute to maintaining transmission during the low/no transmission season.

      Combining a molecular barcode genotyping using 101 bi-allelic SNPs and SNPs from Whole Genome Sequence (WGS) in a "consensus barcode", the authors aimed at measuring the relatedness between parasites at different spatial (i.e., individual, household, village, and region) and temporal (i.e., high, low, and the corresponding the transitions) levels by assessing the fraction of the genome having a common ancestry (i.e. Identity-by-Descent (IBD)).

      By measuring the Complexity of Infection (COI) and parasite relatedness by IBD the authors show that a large fraction of infections is polygenomic and stable over time, resulting in a high recombinational diversity. Moreover, they show that transmission intensity increases during the transition from the dry to wet seasons. However, they find that there is a higher probability of finding similar genotypes within the same household, but this similarity rapidly disappears over time and is not observed between different villages. If there is no drug selection during the dry season, and if resistance results in a fitness cost, alleles associated with drug resistance may change in frequency. The authors looked at the frequencies of six drug-resistance haplotypes (aat1, crt, dhfr, dhps, kelch13, and mdr1), and found no evidence of changes in allele frequencies associated with seasonality. They also find chronic infections lasting from one month to one and a half years with no dependence on age or gender.

      This work makes use of genomic information and IBD analytic tools to show parasite relatedness from asymptomatic infections at different spatial and temporal scales, thus providing a better understanding of the transmission dynamics of malaria in highly seasonal environments.

      Strength:

      The authors use a combination of high-quality barcodes (425 barcodes representing 101 bi-allelic SNPs) and 199 high-quality genome sequences to infer the fraction of the genome with shared Identity by Descent (IBD) (i.e. a metric of recombination rate) over several time points covering two years. The barcode and whole genome sequence combination allows full use of a large dataset, to confidently infer the relatedness of parasite isolates at various spatiotemporal scales and show the advantage of using genomic information for understanding malaria transmission dynamics.

      The authors aimed to establish how seasonal transmission cycles shape the spatiotemporal parasite population structure using metrics such as parasite genetic diversity, genetic relatedness, and frequency of drug resistance alleles, as well as the contribution of asymptomatic chronic carriers to sustained transmission. The results support their conclusions.

      Using a combination of molecular barcodes and available whole genome sequence datasets opens new opportunities to understand malaria transmission dynamics in different transmission settings. This allows for data analysis at different spatiotemporal granularities, having a practical utility for identifying malaria control targets and acquiring metrics to evaluate malaria control programs. The development of molecular barcodes using similar SNPs by different malaria control programs would be of great utility to compare and understand malaria transmission dynamics in different settings worldwide.

    1. Reviewer #1 (Public review):

      Summary:

      This paper examines changes in relaxation time (T1 and T2) and magnetization transfer parameters that occur in a model system and in vivo when cells or tissue are depolarized using an equimolar extracellular solution with different concentrations of the depolarizing ion K+. The motivation has been revised to state that the results suggest a potential approach to non-invasively detect changes in membrane potential using MRI.

      Strengths:

      The authors argue that the use of various concentrations of KCL in the extracellular fluid depolarize or hyperpolarize the cell pellets used, and that this change in membrane potential is the driving force for the T2 (and T1-supplementary material) changes observed. In particular, they report an increase in T2 with increasing KCL concentration in the extracellular fluid (ECF) of pellets of SH-SY5Y cells. To offset the increasing osmolarity of the ECF due to the increase in KCL, the NaCL molarity of the ECF is proportionally reduced. The authors measure the intracellular voltage using patch clamp recordings, which is a gold standard. With 80 mM of KCL in the ECF, a change in T2 of the cell pellets of ~10 ms is observed with the intracellular potential recorded as about -6 mv. A very large T1 increase of ~90 ms is reported under the same conditions. The PSR (ratio of hydrogen protons on macromolecules to free water) decreases by about 10% at this 80 mM KCL concentration. Similar results are seen in a Jurkat cell line and similar, but far smaller changes are observed in vivo, for a variety of reasons discussed. As a final control, T1 and T2 values are measured in the various equimolar KCL solutions. As expected, no significant changes in T1 and T2 of the ECF were observed for these concentrations.

      Weaknesses:

      While the concepts presented are interesting, and the actual experimental methods seem to be nicely executed, the conclusions are not supported by the data for a number of reasons. This is not to say that the data isn't consistent with the conclusions, but there are other controls not included that would be necessary to draw the conclusion that it is membrane potential that is driving these T1 and T2 changes. The results are consistent with Stroman et al. Magn. Reson. in Med. 59:700-706 (increased T2 with KCL) as well as some other cited work. However all those authors emphasize that cell swelling is the mechanism, not cell membrane potentials.

      It is well established that cells swell/shrink upon depolarization/hyperpolarization. Cell swelling is accompanied by increased light transmittance in vivo, and this should be true in the pellet system as well. In a beautiful series of experiments, Stroman et al. (2008) showed in perfused brain slices that the cells swell upon equimolar KCL depolarization and the light transmittance increases. The time course of these changes is quite slow, of the order of many minutes, both for the T2-weighted MRI signal and for the light transmittance. Stroman et al. also show that hypoosmotic changes produce the exact same timecourse as the KCL depolarization changes (and vice versa for the hyperosmotic changes - which cause cell shrinkage). Their conclusion therefore, was that cell swelling (not membrane potential) was the cause of the T2-weighted changes observed, and that these were relatively slow (on the scale of many minutes).

      What are the implications for the current study? Well, for one, the authors cannot exclude cell swelling as the mechanism for T2 changes, as they have not measured that. It is however well established that cell swelling occurs during depolarization, so this is not in question. Water in the pelletized cells is in slow/intermediate exchange with the ECF, and the solutions for the two compartment relaxation model for this are well established (see Menon and Allen, Magn. Reson. in Med. 20:214-227 (1991). The T2 relaxation times should be multiexponential (see point (3) further below). The current work cannot exclude cell swelling as the mechanism for T2 changes (it is mentioned in the paper, but not dealt with). Water entering cells dilutes the protein structures, changes rotational correlation times of the proteins in the cell and is known to increase T2. The PSR confirms that this is indeed happening, so the data in this work is completely consistent with the Stroman work and completely consistent with cell swelling associated with depolarization. The authors should have performed light scattering studies to demonstrate the degree cell swelling or shrinkage. Measuring intracellular potential is not enough to clarify the mechanism.

      So why does it matter whether the mechanism is cell swelling or membrane potential? The reason is response time. Cell swelling due to depolarization is a slow process, slower than hemodynamic responses that characterize BOLD. And in fact, cell swelling under normal homeostatic conditions in vivo is virtually non-existent. Only sustained depolarization events typically associated with non-naturalistic stimuli or brain dysfunction produce cell swelling. Membrane potential changes associated with neural activity, on the other hand, are very fast. In this manuscript, the authors have convincingly shown a signal change that is virtually the same as what was seem in the Stroman publication, but they have not shown that there is a response that can be detected with anything approaching the timescale of an action potential. So one cannot definitely say that the changes observed are due to membrane potential. One can only say they are consistent with cell swelling, regardless of what causes the cell swelling. The First line of the discussion still claims that T2 relaxation time and pool size ratio (PSR) can detect responses to membrane potential changes modulated by ionic solutions. However, in the absence of cell swelling controls, this cannot be stated.

      For this mechanism to be relevant to measuring neuronal activity directly or explaining techniques such DIANA, one needs to show that the cell swelling changes occur within a millisecond, which has never been reported. If one knows the populations of ECF and pellet, the T2s of the ECF and pellet and the volume change of the cells in the pellet, one can model any expected T2 changes due to neuronal activity. I think one would find that these are minuscule within the context of an action potential, or even bulk action potentials.

      Comments on revisions:

      The manuscript is well written and my previous methodological concerns have been clarified as well. There are no flaws in the experiments, but the interpretation really depends on simultaneous measurements of cell volume and membrane potential, which have yet to be done.

    1. Reviewer #2 (Public review):

      Summary:

      The authors conduct a causal analysis of years of secondary education on brain structure in late life. They use a regression discontinuity anlaysis to measure the impact of a UK law change in 1972 that increased the years of mandatory education by 1 year. Using brain imaging data from the UK Biobank, they find essentially no evidence for 1 additional year of education altering brain structure in adulthood.

      Strengths:

      The authors pre-registered the study and the regression discontinuity was very carefully described and conducted. They completed a large number of diagnostic and alternate analyses to allow for different possible features in the data. (Unlike a positive finding, a negative finding is only bolstered by additional alternative anlayses).

      Weaknesses:

      While the work is of high quality for the precise question asked, ultimately the exposure (1 additional year of education) is a very modest manipulation and the outcome measured long after the intervention. Thus a null finding here is completely consistent educational attainement (EA) in fact having an impact on brain structure, where EA may reflect elements of training after second education (e.g. university, post-graduate qualifications, etc) and not just stopping education at 16 yrs yes/no.

    1. Reviewer #2 (Public review):

      Summary:

      The goal of this work is to define the functions of T-box transcription factors Tbx3 and Tbx5 in the adult mouse ventricular cardiac conduction system (VCS) using a novel conditional mouse allele in which both genes are targeted in cis. A series of studies over the past 2 decades by this group and others have shown that Tbx3 is a transcriptional repressor that patterns the conduction system by repressing genes associated with working myocardium, while Tbx5 is a potent transcriptional activator of "fast" conduction system genes in the VCS. In a previous work, the authors of the present study further demonstrated that Tbx3 and Tbx5 exhibit an epistatic relationship whereby the relief of Tbx3-mediated repression through VCS conditional haploinsufficiency allows better toleration of Tbx5 VCS haploinsufficiency. Conversely, excess Tbx3-mediated repression through overexpression results in disruption of the fast-conduction gene network despite normal levels of Tbx5. Based on these data the authors proposed a model in which repressive functions of Tbx3 drive adoption of conduction system fate, followed by segregation into a fast-conducting VCS and slow-conduction AVN through modulation of the Tbx5/Tbx3 ratio in these respective tissue compartments.

      The question motivating the present work is: If Tbx5/Tbx3 ratio is important for slow versus fast VCS identity, what happens when both genes are completely deleted from the VCS? Is conduction system identity completely lost without both factors and if so, does the VCS network transform into a working myocardium-like state? To address this question, the authors have generated a novel mouse line in which both Tbx5 and Tbx3 are floxed on the same allele, allowing complete conditional deletion of both factors using the VCS-specific MinK-CreERT2 line, convincingly validated in previous work. The goal is to use these double conditional knockout mice to further explore the model of Tbx3/Tbx5 co-dependent gene networks and VCS patterning. First the authors demonstrate that the double conditional knockout allele results in the expected loss of Tbx3 and Tbx5 specifically in the VCS when crossed with Mink-CreERT2 and induced with tamoxifen. The double conditional knockout also results in premature mortality. Detailed electrophysiological phenotyping demonstrated prolonged PR and QRS intervals, inducible ventricular tachycardia, and evidence of abnormal impulse propagation along the septal aspect of the right ventricle. In addition, the mutants exhibit downregulation of VCS genes responsible for both fast conduction AND slow conduction phenotypes with upregulation of 2 working myocardial genes including connexin-43. The authors conclude that loss of both Tbx3 and Tbx5 results in "reversion" or "transformation" of the VCS network to a working myocardial phenotype, which they further claim is a prediction of their model and establishes that Tbx3 and Tbx5 "coordinate" transcriptional control of VCS identity.

      Overall Appraisal:

      As noted above, the present study does not further explore the Tbx5/Tbx3 ratio concept since both genes are completely knocked out in the VCS. Instead, the main claims are that absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function. However, only limited data are presented to support the claim of transcriptional reprogramming since the knockout cells are not directly compared to working myocardial cells at the transcriptional level and only a small number of key genes are assessed (versus genome-wide assessment). In addition, the optical mapping dataset has alternative interpretations that are not excluded or thoroughly discussed.

      In sum, while this study adds an elegantly constructed genetic model to the field, the data presented mostly fit within the existing paradigm of established functions of Tbx3 and Tbx5. The authors present some evidence to support the claim that VCS cells adopt a working myocardial phenotype in the absence of Tbx3 and Tbx5, but some key experiments that could more definitively test this model were not performed, reducing the degree to which the data support the conclusions.

      Strengths:

      (1) Successful generation of a novel Tbx3-Tbx5 double conditional mouse model<br /> (2) Successful VCS-specific deletion of Tbx3 and Tbx5 using a VCS-specific inducible Cre driver line<br /> (3) Well-powered and convincing assessments of mortality and physiological phenotypes<br /> (4) Isolation of genetically modified VCS cells using flow.

      Weaknesses:

      (1) In general, the data is consistent with a long-standing and well-supported model in which Tbx3 represses working myocardial genes and Tbx5 activates expression of VCS genes, which seem like distinct roles in VCS patterning.<br /> (2) More direct quantitative comparison of Tbx5 Adult VCS KO with Tbx5/Tbx3 Adult VCS double KO would be helpful to ascertain whether deletion of Tbx3 on top of Tbx5 deletion changes the underlying phenotype in some discernable way beyond mRNA expression of a few genes. Superficially, the phenotypes look quite similar at the EKG and arrhythmia inducibility level and no optical mapping data from single Tbx5 KO is presented for comparison to the double KO. I understand that single Tbx5 VCS KO mutants have been evaluated in previous publications but I think in order to evaluate the claims presented here, it would be important to do a direct comparison using the same assays and conditions.<br /> (3) The authors claim that double knockout VCS cells transform to working myocardial fate, but there is no comparison of gene expression levels between actual working myocardial cells and the Tbx3/Tbx5 DKO VCS cells so it's hard to know if the data reflect an actual cell state change or a more non-specific phenomenon with global dysregulation of gene expression or perhaps dedifferentiation. I understand that the upregulation of Gja1 and Smpx is intended to address this, but it's only two genes and it seems relevant to understand their degree of expression relative to actual working myocardium. In addition, the gene panel is somewhat limited and does not include other key transcriptional regulators in the VCS such as Irx3 and Nkx2-5. RNA-seq in these populations would provide a clearer comparison among the groups.<br /> (4) From the optical mapping data, it is difficult to distinguish between the presence of (1) a focal proximal right bundle branch block due to dysregulation of gene expression in the VCS but overall preservation of the right bundle and its distal ramifications; from (2) actual loss of the VCS with reversion of VCS cells to a working myocardial fate. Related to this, the authors claim that this experiment allows for direct visualization of His bundle activation, but can the authors confirm or provide evidence that the tissue penetration of their imaging modality allows for imaging of a deep structure like the AV bundle as opposed to the right bundle branch which is more superficial? Does the timing of the separation of the sharp deflection from the subsequent local activation suggest visualization of more distal components of the VCS rather than the AV bundle itself? Additional clarification would be helpful.

      impact:

      The present study contributes a novel and elegantly constructed mouse model to the field. The data presented generally corroborate existing models of transcriptional regulation in the VCS. Acknowledging that the present work is strong start, some additional studies not included in the present manuscript will be needed for this new mouse model to decisively advance the field of VCS transcriptional biology.

    1. Joint Public Review:

      In this manuscript, the authors aim to evaluate the robustness of stable asymmetric polarization patterns by analyzing both a minimal 2-node network and a more biologically realistic 5-node network based on the C. elegans polarization system. They introduce a computational pipeline for systematically exploring reaction-diffusion network dynamics. Their study highlights the limitations of the widely used 2-node antagonistic network, demonstrating its susceptibility to simple modifications that disrupt polarization. However, they show that polarization stability can be restored by combining multiple regulatory mechanisms, and that spatially varying kinetic parameters can fine-tune the interface position. The authors further investigate the 5-node network of C. elegans, identifying key parameters that enhance its robustness against perturbations. Their findings provide novel insights into the mechanisms that ensure stable polarization in biological systems.

      The major strengths of this work lie in its rigorous computational approach and the clarity of its findings. The authors demonstrate that the widely used 2-node antagonistic network is highly sensitive to parameter changes, requiring precise fine-tuning to maintain stable polarization. However, they show that stability can be restored through compensatory modifications, which expand the range of parameter sets supporting polarization. By further exploring spatial parameter variations, the authors reveal how compensatory adjustments can stabilize polarization patterns, offering insights into potential biological mechanisms regulating interface localization.

      Extending their analysis to the C. elegans polarization network, the authors construct a 5-node model grounded in an extensive literature review. Their computational pipeline identifies key parameters that enhance robustness, and their model successfully replicates experimental observations, even in mutant conditions. Notably, among 34 possible network structures, only the naturally evolved 5-node network with mutual inhibition between specific components maintains stable polarization, highlighting its evolutionary optimization. This work significantly advances our understanding of polarization maintenance and provides a valuable framework for future in silico experiments.

      Despite its strengths, the study has some limitations related to simplifying assumptions. The model neglects cortical flows and the role of actomyosin dynamics, which are known to be crucial during the establishment phase of polarization in the C. elegans zygote. While the authors focus on the maintenance phase, the absence of these biomechanical effects may limit the model's applicability to the full polarization process. Additionally, the assumption of infinitely fast cytoplasmic diffusion disregards potential effects of cytoplasmic flows on the stability of molecular distributions. Experimental measurements suggest that cytoplasmic diffusion coefficients are only an order of magnitude higher than membrane diffusion coefficients, meaning that finite diffusion combined with cytoplasmic flows could influence polarization stability. Although the authors acknowledge and discuss these limitations, incorporating these effects in future models could provide a more complete picture of the polarization dynamics in C. elegans embryos.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Egawa and colleagues investigates differences in nodal spacing in an avian auditory brain stem circuit. The results are clearly presented and data are of very high quality. The authors make two main conclusions:

      (1) Node spacing, i.e. internodal length, is intrinsically specified by the oligodendrocytes in the region they are found in, rather than axonal properties (branching or diameter).

      (2) Activity is necessary (we don't know what kind of signaling) for normal numbers of oligodendrocytes and therefore the extent of myelination.

      These are interesting observations, albeit phenomenon. I have only a few criticisms that should be addressed:

      (1) The use of the term 'distribution' when describing the location of nodes is confusing. I think the authors mean rather than the patterns of nodal distribution, the pattern of nodal spacing. They have investigated spacing along the axon. I encourage the authors to substitute node spacing or internodal length for node distribution.

      (2) In Seidl et al. (J Neurosci 2010) it was reported that axon diameter and internodal length (nodal spacing) were different for regions of the circuit. Can the authors help me better understand the difference between the Seidl results and those presented here?

      (3) The authors looked only in very young animals - are the results reported here applicable only to development, or does additional refinement take place with aging?

      (4) The fact that internodal length is specified by the oligodendrocyte suggests that activity may not modify the location of nodes of Ranvier - although again, the authors have only looked during early development. This is quite different than this reviewer's original thoughts - that activity altered internodal length and axon diameter. Thus, the results here argue against node plasticity. The authors may choose to highlight this point or argue for or against it based on results in adult birds?:

      Significance:

      This paper may argue against node plasticity as a mechanism for tuning of neural circuits. Myelin plasticity is a very hot topic right now and node plasticity reflects myelin plasticity. this seems to be a circuit where perhaps plasticity is NOT occurring. That would be interesting to test directly. One limitation is that this is limited to development.

    1. Reviewer #1 (Public review):

      Summary:

      Ma & Yang et al. report a new investigation aimed at elucidating one of the key nutrients S. Typhimurium (STM) utilizes with the nutrient-poor intracellular niche within macrophage, focusing on the amino acid beta-alanine. From these data, the authors report that beta-alanine plays important roles in mediating STM infection and virulence. The authors employ a multidisciplinary approach that includes some mouse studies, and ultimately propose a mechanism by which panD, involved in B-Ala synthesis, mediates regulation of zinc homeostatisis in Salmonella.

      Strengths and weaknesses:

      The results and model are adequately supported by the authors' data. Further work will need to be performed to learn whether the Zn2+ functions as proposed in their mechanism. By performing a small set of confirmatory experiments in S. Typhi, the authors provide some evidence of relevance to human infections.

      Impact:

      This work adds to the body of literature on the metabolic flexibility of Salmonella during infection that enable pathogenesis.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper describes a new approach to detecting directed causal interactions between two genes without directly perturbing either gene. To check whether gene X influences gene Z, a reporter gene (Y) is engineered into the cell in such a way that (1) Y is under the same transcriptional control as X, and (2) Y does not influence Z. Then, under the null hypothesis that X does not affect Z, the authors derive an equation that describes the relationship between the covariance of X and Z and the covariance of Y and Z. Violation of this relationship can then be used to detect causality.

      The authors benchmark their approach experimentally in several synthetic circuits. In 4 positive control circuits, X is a TetR-YFP fusion protein that represses Z, which is an RFP reporter. The proposed approach detected the repression interaction in 2 of the 4 positive control circuits. The authors constructed 16 negative control circuit designs in which X was again TetR-YFP, but where Z was either a constitutively expressed reporter, or simply the cellular growth rate. The proposed method detected a causal effect in two of the 16 negative controls, which the authors argue is perhaps not a false positive, but due to an unexpected causal effect. Overall, the data support the potential value of the proposed approach.

      Strengths:

      The idea of a "no-causality control" in the context of detected directed gene interactions is a valuable conceptual advance that could potentially see play in a variety of settings where perturbation-based causality detection experiments are made difficult by practical considerations.

      By proving their mathematical result in the context of a continuous-time Markov chain, the authors use a more realistic model of the cell than, for instance, a set of deterministic ordinary differential equations.

      The authors have improved the clarity and completeness of their proof compared to a previous version of the manuscript.

      Limitations:

      The authors themselves clearly outline the primary limitations of the study: The experimental benchmark is a proof of principle, and limited to synthetic circuits involving a handful of genes expressed on plasmids in E. coli. As acknowledged in the Discussion, negative controls were chosen based on the absence of known interactions, rather than perturbation experiments. Further work is needed to establish that this technique applies to other organisms and to biological networks involving a wider variety of genes and cellular functions. It seems to me that this paper's objective is not to delineate the technique's practical domain of validity, but rather to motivate this future work, and I think it succeeds in that.

      Might your new "Proposed additional tests" subsection be better housed under Discussion rather than Results?

      I may have missed this, but it doesn't look like you ran simulation benchmarks of your bootstrap-based test for checking whether the normalized covariances are equal. It would be useful to see in simulations how the true and false positive rates of that test vary with the usual suspects like sample size and noise strengths.

      It looks like you estimated the uncertainty for eta_xz and eta_yz separately. Can you get the joint distribution? If you can do that, my intuition is you might be able to improve the power of the test (and maybe detect positive control #3?). For instance, if you can get your bootstraps for eta_xz and eta_yz together, could you just use a paired t-test to check for equality of means?

      The proof is a lot better, and it's great that you nailed down the requirement on the decay of beta, but the proof is still confusing in some places:

      - On pg 29, it says "That is, dividing the right equation in Eq. 5.8 with alpha, we write the ..." but the next equation doesn't obviously have anything to do with Eq. 5.8, and instead (I think) it comes from Eq 5.5. This could be clarified.

      - Later on page 29, you write "We now evoke the requirement that the averages xt and yt are stationary", but then you just repeat Eq. 5.11 and set it to zero. Clearly you needed the limit condition to set Eq. 5.11 to zero, but it's not clear what you're using stationarity for. I mean, if you needed stationarity for 5.11 presumably you would have referenced it at that step.

      It could be helpful for readers if you could spell out the practical implications of the theorem's assumptions (other than the no-causality requirement) by discussing examples of setups where it would or wouldn't hold.

    1. Reviewer #1 (Public review):

      The manuscript by Rios et al. investigates the potential of GSK3 inhibition to reprogram human macrophages, exploring its therapeutic implications in conditions like severe COVID-19. The authors present convincing evidence that GSK3 inhibition shifts macrophage phenotypes from pro-inflammatory to anti-inflammatory states, thus highlighting the GSK3-MAFB axis as a potential therapeutic target. Using both GM-CSF- and M-CSF-dependent monocyte-derived macrophages as model systems, the study provides extensive transcriptional, phenotypic, and functional characterizations of these reprogrammed cells. The authors further extend their findings to human alveolar macrophages derived from patient samples, demonstrating the clinical relevance of GSK3 inhibition in macrophage biology.

      The experimental design is sound, leveraging techniques such as RNA-seq, flow cytometry, and bioenergetic profiling to generate a comprehensive dataset. The study's integration of multiple model systems and human samples strengthens its impact and relevance. The findings not only offer insights into macrophage plasticity but also propose novel therapeutic strategies for macrophage reprogramming in inflammatory diseases.

      Strengths:

      (1) Robust Experimental Design: The use of both in vitro and ex vivo models adds depth to the findings, making the conclusions applicable to both experimental and clinical settings.

      (2) Thorough Data Analysis: The extensive use of RNA-seq and gene set enrichment analysis (GSEA) provides a clear transcriptional signature of the reprogrammed macrophages.

      (3) Relevance to Severe COVID-19: The study's focus on macrophage reprogramming in the context of severe COVID-19 adds clinical significance, especially given the relevance of macrophage-driven inflammation in this disease.

      Weaknesses:

      There are no significant weaknesses in the study.

    1. Reviewer #1 (Public review):

      Summary:

      The topic of tumor-immune co-evolution is an important, understudied topic with, as the authors noted, a general dearth of good models in this space. The authors have made important progress on the topic by introducing a stochastic branching process model of antigenicity/immunogenicity and measuring the proportion of simulated tumors that go extinct. The model is extensively explored, and the authors provide some nice theoretical results in addition to simulated results.

      Major comments

      The text in lines 183-191 is intuitively and nicely explained. However, I am not sure all of it follows from the figure panels in Figure 2. For example, the authors refer to a mutation that has a large immunogenicity, but it's not shown how many mutations, or the relative size of the mutations in Figure 2. The same comment holds true for the claim that spikes also arise for mutations with low antigenicity.

    1. Reviewer #1 (Public review):

      Processing in the primary visual cortex (V1) of mice is not only based on sensory inputs but also strongly modulated by locomotion. In this study, Meier et al. ask whether neurons that are modulated by locomotion form clusters in V1. Their work is based on previous studies from their lab establishing a modularity in the organization of primary visual cortex based on M2-muscarinic-acetylcholine-receptor-positive patches and interpatches (Ji et al. 2015, D'Souza et al. 2019). In these studies, they have highlighted the clustering of specific visual pathways and inhibition. In the current study, they extend this modularity to motor inputs, confirming a clustering of locomotion modulated neurons but also show that these clusters overlap with the M2-negative interpatches of layer 1. Finally, they establish a blueprint for visual processing streams in V1, segregating projections to and from lateral visual areas (LM, AL, and RL) from projections to and from the lateral areas, including the visual area PM, the retrosplenial cortex (RSP), and the secondary motor area (MOs).

      Conceptually, this study provides an important finding in the organization of locomotion-related signaling in primary visual cortex, which clearly has substantial implications for sensory processing in visual cortex. While the anatomical data are solid, the link to physiology is incomplete. In conclusion, there are numerous issues that leave the main findings in some doubt, so the authors have some work to do before I find this story convincing.

      Major issues:

      (1) The major results in this study rely on proper quantification of neuronal responses during resting and running. Recently, it has been reported that hemodynamic occlusion can strongly influence measurements of fluorescent changes using two-photon imaging (Yogesh et al. 2025, doi.org/10.1101/2024.10.29.620650). Since it is unclear whether there is an inherent bias in vasculature and hemodynamic occlusion in M2 patches and interpatches, a quantification of the effect of hemodynamic occlusion would be necessary. This control would ideally be done using mice with GFP expression to test if there is still a clustering of locomotion-modulated neurons that overlaps with M2-negative interpatches. Alternatively, the authors should at the very least quantify the vascularization in M2 patches and interpatches.

      (2) To assess the effects, the authors use a correlation analysis for many of their findings (e.g., Figures 2b,c, 4j,k, ...). This, however, is inappropriate to assess the significance of the results. I suggest redoing all statistics with hierarchical bootstrap sampling (Saravanan et al. 2020, PMID: 33644783) or similar.

      (3) The authors use two different measures to assess whether and to what extent a neuron is locomotion sensitive, the LMI and "locomotion-responsive". While the LMI is defined based on recording in the light and dark (Figure 2), the "locomotion-responsiveness" is defined only in the dark (Figure 3a,c,d). The link between the two measures should be clarified.

      a) Additionally, Figure 2b shows higher average LMI for interpatches, but the locomotion-responsive fraction is similar in interpatches and patches (relative number of pairs in Figure 3c and Figure 3d). How do the authors explain this discrepancy?

      b) How is the LMI calculated - based on the average or the maximum response over stimuli? One particular stimulus? If the LMI is defined for each stimulus separately, what is plotted in Figure 2b?

      (4) In the last panels of Figures 4-7, the authors analyze the alignment of cell bodies with the M2 patches. While in superficial layers it might be straightforward to align the cell body locations with the M2 patches and interpatches in layer 1, this alignment does not appear to be trivial for deeper layers. The authors should provide additional material to convince the reader of the proper alignment.

      (5) Related to point 4 above - Given the importance of a proper alignment of M2 patches with the in vivo imaging, the in vivo - ex vivo alignment should be more convincing than Figure 1 C-E. Measuring M2 patches in vivo (as the authors have tried to do) would have provided more solid evidence. Have the authors tried to remove the dura for their in vivo imaging to increase signal-to-noise? In any case, more examples of proper alignment are necessary.

      (6) The authors state that locomotion selectively affects M2-/M2- pairs based on Figure 3c. However, to make this claim, there should be a significant difference between the correlation of stimulus-driven noise of M2-/M2- locomotion-responsive pairs and M2-/M2- locomotion-unresponsive pairs, AND no significant difference in the same analysis for M2+/M2+ pairs (i.e., testing the differences between the bars in Figure 3c and Figure 3d).

    1. Reviewer #1 (Public review):

      Summary:

      The authors use a sophisticated task design and Bayesian computational modeling to test their hypothesis that information generalization (operationalized as a combination of self-insertion and social contagion) in social situations is disrupted in Borderline Personality Disorder. Their main finding relates to the observation that two different models best fit the two tested groups: While the model assuming both self-insertion and social contagion to be present when estimating others' social value preferences fit the control group best, a model assuming neither of these processes provided the best fit to BPD participants.

      Strengths:

      The revisions have substantially strengthened the paper and the manuscript is much clearer and easier to follow now. The strengths of the presented work lie in the sophisticated task design and the thorough investigation of their theory by use of mechanistic computational models to elucidate social decision-making and learning processes in BPD.

      Weaknesses:

      Some critical concerns remain after the first revision, particularly regarding the use of causal language and the clarity of the hypotheses and results, specified in the points below.

      (1) The authors frequently refer to their predictions and theory as being causal, both in the manuscript and in their response to reviewers. However, causal inference requires careful experimental design, not just statistical prediction. For example, the claim that "algorithmic differences between those with BPD and matched healthy controls" are "causal" in my opinion is not warranted by the data, as the study does not employ experimental manipulations or interventions which might predictably affect parameter values. Even if model parameters can be seen as valid proxies to latent mechanisms, this does not automatically mean that such mechanisms cause the clinical distinction between BPD and CON, they could plausibly also refer to the effects of therapy or medication. I recommend that such causal language, also implicit to expressions like "parameter influences on explicit intentional attributions", is toned down throughout the manuscript.

      (2) Although the authors have now much clearer outlined the stuy's aims, there still is a lack of clarity with respect to the authors' specific hypotheses. I understand that their primary predictions about disruptions to self-other generalisation processes underlying BPD are embedded in the four main models that are tested, but it is still unclear what specific hypotheses the authors had about group differences with respect to the tested models. I recommend the authors specify this in the introduction rather than refering to prior work where the same hypotheses may have been mentioned.

      (3) Caveats should also be added about the exploratory nature of the many parameter group comparisons. If there are any predictions about group differences that can be made based on prior literature, the authors should make such links clear.

      (4) I'm not sure I understand why the authors, after adding multiple comparison correction, now list two kinds of p-values. To me, this is misleading and precludes the point of multiple comparison corrections, I therefore recommend they report the FDR-adjusted p-values only. Likewise, if a corrected p-value is greater than 0.05 this should not be interpreted as a result.

      (5) Can the authors please elaborate why the algorithm proposed to be employed by BPD is more 'entropic', especially given both their self-priors and posteriors about partners' preferences tended to be more precise than the ones used by CON? As far as I understand, there's nothing in the data to suggest BPD predictions should be more uncertain. In fact, this leads me to wonder, similarly to what another reviewer has already suggested, whether BPD participants generate self-referential priors over others in the same way CON participants do, they are just less favourable (i.e., in relation to oneself, but always less prosocial) - I think there is currently no model that would incorporate this possibility? It should at least be possible to explore this by checking if there is any statistical relationship between the estimated θ_ppt^m and 〖p(θ〗_par |D^0).

      "To note, social contagion under M3 was highly correlated with contagion under M1 (see Fig S11). This provides some preliminary evidence that trauma impacts beliefs about individualism directly, whereas trauma and persecutory beliefs impact beliefs about prosociality through impaired trait mentalising" - I don't understand what the authors mean by this, can they please elaborate and add some explanation to the main text?

    1. Reviewer #2 (Public review):

      Summary:

      Demonstrate the breadth of IgA response as determined by isolating individual antigen-specific B cells and generating mAbs in mice following intranasal immunization of mice with SARS-CoV2 Spike protein. The findings show that some IgA mAb can neutralize the virus, but many do not. Notable immunization with Wuhan S protein generates a weak response to the omicron variant.

      Strengths:

      Detailed analysis characterizing individual B cells with the generation of mAbs demonstrates the response's breadth and diversity of IgA responses and the ability to generate systemic immune responses.

      Comments on Revision:

      I have re-reviewed the paper and responses to my and other reviewers' comments. I feel the authors have adequately addressed my and other reviewer's comments.

    1. Reviewer #1 (Public review):

      Summary:

      Goal: Find downstream targets of cmk-1 phosphorylation, identify one that also seems to act in thermosensory habituation, test for genetic interactions between cmk-1 and this gene and assess where these genes are acting in the thermosensory circuit during thermosensory habituation.

      Methods: Two in vitro analyses of cmk-1 phosphorylation of C. elegans proteins. Thermosensory habituation of cmk-1 and tax-6 mutants and double mutants was assessed by measuring rate of heat evoked reversals (reversal probability) of C. elegans before and after 20s ISI repeated heat pulses over 60 minutes.

      Conclusions: cmk-1 and tax-6 act in separate habituation processes primarily in AFD, that interact complexly, but both serve to habituate the thermosensory reversal response. They found that cmk-1 primarily acts in AFD and tax-6 primarily acts in RIM (and FLP for naïve responses). They also identified hundreds of potential cmk-1 phosphorylation substrates in vitro.

      Strengths:

      The effects size in the genetic data is quite strong and a large number of genetic interaction experiments between cmk-1 and tax-1 demonstrate a complex interaction.

      A major concern concerning this manuscript was the assumption that the process they are observing is habituation. The two previously cited papers using this (or a very similar) protocol, Lia and Glauser 2020 and Jordan and Glauser 2023, both use the word 'adaptation' to describe the observed behavioral decrement. Jordan and Glauser 2023 does occasionally use the words 'habituation' or 'habituation-like' 10 times, however it uses 'adaptation' over 100 times. It is critical to distinguish habituation from sensory adaptation (or fatigue) in this thermal reversal protocol. These processes are often confused/conflated, however they are very different; sensory adaptation is a process that decreases how much the nervous system is activated by a repeated stimulus, therefore it can even occur outside of the nervous system. Habituation is a learning process where the nervous system responds less to a repeated stimulus, despite (at least part of the nervous system) the nervous system still being similarly activated by the stimulus. Habituation is considered an attentional process, while adaptation is due to fatigue of sensory transduction machinery. Control experiments such as tests for dishabituation (where application of a different stimulus causes recovery of the decremented response) or rate of spontaneous recovery (more rapid recovery after short inter-stimulus intervals) are required to determine if habituation or sensory adaptation are occurring. These experiments will allow the results to be interpreted with clarity; without them, it isn't actually clear what biological process is actually being studied. The authors have accepted this distinction and now correctly call the process adaptation.

      While there was originally some discrepancy between the two in vitro phosphorylation experiments and the in silico predictions, the revision has cleared up the issues.<br /> Figure 3 -S1: This model has been adjusted to more closely fit the data.

      The authors have expanded the discussion about the significance of the sites of cmk-1 and tax-6 function in the neural circuit.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript described a structure-guided approach to graft important antigenic loops of the neuraminidase to a homotypic but heterologous NA. This approach allows the generation of well-expressed and thermostable recombinant proteins with antigenic epitopes of choice to some extent. The loop-grafted NA was designated hybrid.

      Strengths:

      The hybrid NA appeared to be more structurally stable than the loop-donor protein while acquiring its antigenicity. This approach is of value when developing a subunit NA vaccine which is difficult to express. So that antigenic loops could be potentially grafted to a stable NA scaffold to transfer strain-specific antigenicity.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Kremer et al. characterizes the tissue-specific responses to changes in TFAM levels and mtDNA copy number in prematurely aging mice (polg mutator model). The authors find that overexpression of TFAM can have beneficial or detrimental effects depending on the tissue type. For instance, increased TFAM levels increase mtDNA copy number in the spleen and improve spleen homeostasis but do not elevate mtDNA copy number in the liver and impair mtDNA expression. Similarly, the consequences of reduced TFAM expression are tissue-specific. Reduced TFAM levels improve brown adipocyte tissue function while other tissues are unaffected. The authors conclude that these tissue-specific responses to altered TFAM levels demonstrate that there are tissue-specific endogenous compensatory mechanisms in response to the continuous mutagenesis produced in the prematurely aging mice model, including upregulation of TFAM expression, elevated mtDNA copy number, and altered mtDNA gene expression. Thus, the impact of genetically manipulating global TFAM expression is limited and there must be other determinants of mtDNA copy number under pathological conditions beyond TFAM.

      Strengths:

      Overall, this is an interesting study. It does a good job of demonstrating that given the multi-functional role of TFAM, the outcome of manipulating its activity is complex.

      Weaknesses:

      No major weaknesses noted. The authors have adopted all our suggestions to improve the clarity of the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper Kawasaki et al describe a regulatory role for the PIWI/piRNA pathway in rRNA regulation in Zebrafish. This regulatory role was uncovered through a screen for gonadogenesis defective mutants, which identified a mutation in the meioc gene, a coiled-coil germ granule protein. Loss of this gene leads to redistribution of Piwil1 from germ granules to the nucleolus, resulting in silencing of rRNA transcription.

      Strengths:

      Most of the experimental data provided in this paper is compelling. It is clear that in the absence of meioc, PiwiL1 translocates in to the nucleolus and results in down regulation of rRNA transcription. the genetic compensation of meioc mutant phenotypes (both organismal and molecular) through reduction in PiwiL1 levels are evidence for a direct role for PiwiL1 in mediating the phenotypes of meioc mutant.

      Weaknesses:

      Questions remain on the mechanistic details by which PiwiL1 mediated rRNA down regulation, and whether this is a function of Piwi in an unperturbed/wildtype setting. There is certainly some evidence provided in support of the a natural function for piwi in regulating rRNA transcription (figure 5A+5B). However, the de-enrichment of H3K9me3 in the heterozygous (Figure 6F) is very modest and in my opinion not convincingly different relative to the control provided. It is certainly possible that PiwiL1 is regulating levels through cleavage of nascent transcripts. Another aspect I found confounding here is the reduction in rRNA small RNAs in the meioc mutant; I would have assumed that the interaction of PiwiL1 with the rRNA is mediated through small RNAs but the reduction in numbers do not support this model. But perhaps it is simply a redistribution of small RNAs that is occurring. Finally, the ability to reduce PiwiL1 in the nucleolus through polI inhibition with actD and BMH-21 is surprising. What drives the accumulation of PiwiL1 in the nucleolus then if in the meioc mutant there is less transcription anyway?

      Despite the weaknesses outlined, overall I find this paper to be solid and valuable, providing evidence for a consistent link between PIWI systems and ribosomal biogenesis. Their results are likely to be of interest to people in the community, and provide tools for further elucidating the reasons for this link.

    1. Reviewer #1 (Public Review):

      The study starts with the notion that in an AD-like disease model, ILC2s in the Rag1 knock-out were expanded and contained relatively more IL-5+ and IL-13+ ILC2s. This was confirmed in the Rag2 knock-out mouse model.

      By using a chimeric mouse model in which wild-type knock-out splenocytes were injected into irradiated Rag1 knock-out mice, it was shown that even though the adaptive lymphocyte compartment was restored, there were increased AD-like symptoms and increased ILC2 expansion and activity. Moreover, in the reverse chimeric model, i.e. injecting a mix of wild-type and Rag1 knock-out splenocytes into irradiated wild-type animals, it was shown that the Rag1 knock-out ILC2s expanded more and were more active. Therefore, the authors could conclude that the RAG1 mediated effects were ILC2 cell-intrinsic.

      Subsequent fate-mapping experiments using the Rag1Cre;reporter mouse model showed that there were indeed RAGnaïve and RAGexp ILC2 populations within naïve mice. Lastly, the authors performed multi-omic profiling, using single-cell RNA sequencing and ATAC-sequencing, in which a specific gene expression profile was associated with ILC2. These included well-known genes but the authors notably also found expression of Ccl1 and Ccr8 within the ILC2. The authors confirmed their earlier observations that in the RAGexp ILC2 population, the Th2 regulome was more suppressed, i.e. more closed, compared to the RAGnaïve population, indicative of the suppressive function of RAG on ILC2 activity. I do agree with the authors' notion that the main weakness was that this study lacks the mechanism by which RAG regulates these changes in ILC2s.

      The manuscript is very well written and easy to follow, and the compelling conclusions are well supported by the data. The experiments are meticulously designed and presented. I wish to commend the authors for the study's quality.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to classify hepatocellular carcinoma (HCC) patients into distinct subtypes using a comprehensive multi-omics approach. They employed an innovative consensus clustering method that integrates multiple omics data types, including mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations. The study further sought to validate these subtypes by developing prognostic models using machine learning algorithms and extending the findings through single-cell RNA sequencing (scRNA-seq) to explore the cellular mechanisms driving subtype-specific prognostic differences.

      Strengths:

      (1) Comprehensive Data Integration: The study's integration of various omics data provides a well-rounded view of the molecular characteristics underlying HCC. This multi-omics approach is a significant strength, as it allows for a more accurate and detailed classification of cancer subtypes.

      (2) Innovative Methodology: The use of a consensus clustering approach that combines results from 10 different clustering algorithms is a notable methodological advancement. This approach reduces the bias that can result from relying on a single clustering method, enhancing the robustness of the findings.

      (3) Machine Learning-Based Prognostic Modeling: The authors rigorously apply a wide array of machine learning algorithms to develop and validate prognostic models, testing 101 different algorithm combinations. This comprehensive approach underscores the study's commitment to identifying the most predictive models, which is a considerable strength.

      (4) Validation Across Multiple Cohorts: The external validation of findings in independent cohorts is a critical strength, as it increases the generalizability and reliability of the results. This step is essential for demonstrating the clinical relevance of the proposed subtypes and prognostic models.

      Weaknesses:

      (1) Inconsistent Storyline:<br /> Despite the extensive data mining and rigorous methodologies, the manuscript suffers from a lack of a coherent and consistent narrative. The transition between different sections, particularly from multi-omics data integration to single-cell validation, feels disjointed. A clearer articulation of how each analysis ties into the overall research question would improve the manuscript.

      (2) Questionable Relevance of Immune Cell Activity Analysis:<br /> The evaluation of immune cell activities within the cancer cell model raises concerns about its meaningfulness. The methods used to assess immune function in the tumor microenvironment may not be fully appropriate, potentially limiting the insights gained from this part of the study.

      (3) Incomplete Single-Cell RNA-Seq Validation:<br /> The validation of the findings using single-cell RNA-seq data appears insufficient to fully support the study's claims. While the authors make an effort to extend their findings to the single-cell level, the analysis lacks depth. A more comprehensive validation is necessary to substantiate the robustness of the identified subtypes.

      (4) Figures and Visualizations:<br /> Several figures in the manuscript are missing necessary information, which affects the clarity of the results. For instance, the pathways in Figure 3A could be clustered to enhance interpretability, the blue bar in Figure 4A is unexplained, and Figure 4B is not discussed in the text. Additionally, the figure legend in Figure 7C lacks detail, and many figure descriptions merely repeat the captions without providing deeper insights.

      (5) Appraisal of the Study's Aims and Results<br /> The authors have set out to achieve an ambitious goal of classifying HCC patients into distinct prognostic subtypes and validating these findings through both bulk and single-cell analyses. While the methodologies employed are innovative and the data integration comprehensive, the study falls short in fully achieving its aims due to inconsistencies in the narrative and incomplete validation. The results partially support the conclusions, but the lack of coherence and depth in certain areas limits the overall<br /> impact of the study.

      (6) Impact on the Field<br /> If the identified weaknesses are addressed, this study has the potential to significantly impact the field of HCC research. The multi-omics approach combined with machine learning is a powerful framework that could set a new standard for cancer subtype classification. However, the current state of the manuscript leaves some uncertainty regarding the practical applicability of the findings, particularly in clinical settings.

      (7) Additional Context<br /> For readers and researchers, this study offers a valuable look into the potential of integrating multi-omics data with machine learning to improve cancer classification and prognostication. However, readers should be aware of the noted weaknesses, particularly the need for more consistent narrative development and comprehensive validation of the methods. Addressing these issues could greatly enhance the study's utility and relevance to the community.

      Comments on revisions:

      The authors have addressed the reviewers' concerns effectively.

    1. Reviewer #1 (Public review):

      Summary:

      The authors propose a new method to quantitatively assess morphogenetic processes during organismal development. They apply their method to ascidian morphogenesis and thus find that gastrulation is a two-step process.

      The method applies to morphogenetic changes of surfaces. It consists of the following steps: first, surface deformations are quantified based on microscopy images without requiring cellular segmentation and tracking. This is achieved by mapping, at each time point, a polygonal mesh initially defined on a sphere to the surface of the embryo. The mapped vertices of this polygonal mesh then serve as (Lagrangian) markers for the embryonic surface. From these, one can infer the deformation of the surface, which can be expressed in terms of the strain tensor at each point of the surface. Changes in the strain tensor give the strain rate, which captures the morphogenetic processes. Second, at each time point, the strain rate field is decomposed in terms of spherical harmonics. Finally, the evolution of the weights of the various spherical harmonics in the decomposition is analysed via a wavelet analysis. The authors apply their workflow to ascidian development between 4 and 8.7 hpf. From their analysis they find clear indications for gastrulation and neurulation and identify two sub-phases of gastrulation, namely, endoderm invagination and 'blastophore closure'.

      Strengths:

      The combination of various tools allows the authors to obtain a quantitative description of the developing embryo without the necessity of identifying fiducial markers. Visual inspection shows that their method works well. Furthermore, this quantification then allows for an unbiased identification of different morphogenetic phases.

      Weaknesses:

      At times, the explanation of the method is hard to follow, unless the reader is already familiar with concepts like level-set methods or wavelet transforms. Furthermore, the software for performing the determination of Lagrangian markers or the subsequent spectral analysis does not seem to be available to the readers.

    1. Reviewer #2 (Public review):

      The revised manuscript by Genzoni et al. reports the striking discovery of a regulatory role for trophic eggs. Prior to this study, trophic eggs were widely assumed to play a nutritional role in the colony, but this study shows that trophic eggs can suppress queen development, and therefore, can play a role in regulating caste determination in specific social contexts. In this revised version of the manuscript, the authors have addressed many of the concerns raised in the first version regarding the lack of sufficient information and context in the Introduction and Discussion. I have several (mostly minor) comments I would like the authors to address:

      Comments:

      (1) The authors' experimental design is based on the comparison of a larva-only (control) versus larva+3 trophic eggs (treatment). The authors convincingly show that the larva plus 3 trophic eggs treatment has an inhibitory effect versus larva-only control. However, the authors should have also done a treatment composed of larva + 3 viable eggs to determine if the inhibitory effect observed on queens is specific to trophic eggs or whether it is an inhibitory effect of all eggs. This has had important mechanistic consequences, because if the inhibitory effect is specific to trophic eggs, it means there are specific inhibitory factors deposited in trophic eggs during oogenesis and the differences observed between trophic versus viable eggs are meaningful beyond just nutritional differences. If the inhibitory effect is a property of all eggs, then the inhibitory factor is dumped into all eggs and the differences observed between trophic and viable eggs are related to something else. In all cases, this reviewer is not necessarily asking that they perform this additional treatment, but the authors have to be clear in the text that they cannot claim that the inhibitory effect is specific to trophic eggs alone without doing this experiment.

      (2) The other untested assumption the authors are making is that queen-laid trophic eggs would behave the same as worker-laid trophic eggs. This is apparent in the Discussion (line 422). They should instead highlight the interesting question of whether worker-laid trophic eggs would be similar in composition and have the same effect on caste as queen-laid eggs.

      (3) To this reviewer, they are missing a crucial explanation in the discussion. As far as this reviewer knows, young queens produce a higher proportion of trophic eggs than older queens, meaning that trophic egg production decreases with age of the queen. This raises the possibility that trophic eggs may, in part, function to prevent the production of more virgin queens in young and immature colonies with small colony sizes. This would allow colonies to invest in producing more workers at a time when rapidly expanding the colony is crucial in young colonies' life. Production of trophic eggs, therefore, may have a dual function: one for nutrition and larval survival, and one in suppressing queen development in immature young colonies. It can be said then that trophic eggs can regulate / influence caste determination in specific social / life history contexts of the colony, rather than only proposing that trophic eggs are a constant attempt by the queen to manipulate her offspring. I prefer the superorganism explanation, but readers should at least hear explanations at the individual and superorganism scales as a way of explaining the authors' discovery that trophic eggs suppress further queen development.

      (4) Why did the authors change the wording from caste "determination" to caste "differentiation." Determination is more appropriate because the trophic eggs do not affect morphogenesis of queens or workers, but rather the developmental switch between queens and workers.

      (5) Khila and Abouheif (2008) is listed in the References but not cited in the text.

      (6) On Line 70-81: "...may play a role in the regulation of body size" - I think the authors are trying to be broad in their language here since one study showed trophic eggs increased worker size but didn't induce queens, but this statement implies that the hypothesis is that trophic eggs act via body size to affect caste. Since the authors don't measure body size changes, only binary caste outcome, this is not the best way to set up the question. Could instead just conclude that previous work shows an effect on both caste and body size.

      (7) Paragraph beginning line 432: this paragraph seems out of place, not well connected to previous parts of discussion. It introduces the term "egg cannibalism" without defining it - not clear if this is meant as a synonym for eating of trophic eggs, or broader (i.e., eating viable eggs also). Could either remove the paragraph, or better set up the context that egg-eating behaviour is common in ants, could have evolved for worker policing reasons and/or for nutritional exchange, trophic eggs (and potentially co-option of trophic eggs for caste determination functions) presumably evolved in this context of existing egg-eating behaviour.

      (8) Line 41: Should read 'play an important part.

      (9) Line 51: The food that was given is listed, but there is no information about the quantity of food given.

      (10) Line 74: The paragraph states that queens were isolated for 16 hours per day. However, it lacks a clear reason for this specific duration. Why 16 hours? Could this isolation period have impacted egg quality or larval development?

      (11) Line 76: The eggs were collected every 8 hours and then held for 10 days until hatching. This is a very long time for eggs to be held outside of the normal colony environment. This could have a large impact on the viability of the eggs, and the resulting larvae.

      (12) Line 78: twice "that" in "suggested that that the larger castes"

      (13) Lines 96-97: the following sentence is unclear: "The question mark indicates that it is unclear whether about the evidence for the production trophic eggs by queens and workers"

      (14) Line 209: By simply stating "binomial GLMM," the authors are leaving out a crucial piece of information. Readers cannot fully understand how the model was fitted or how the coefficients should be interpreted without knowing the link function. Therefore, the critique is that for complete and replicable science, the link function must be reported.

    1. Reviewer #1 (Public review):

      Summary:

      The authors' stated aim is to introduce so-called Minkowski tensors to characterize and quantify the shape of cells in tissues. The authors introduce Minkowski tensors and then define the p-atic order q<sub>p</sub>, where p is an integer, as a cell shape measure. They also introduce a previously defined measure of p-atic order in the form of the parameter γ<sub>p</sub>. The authors compute q<sub>p</sub>p for data obtained by simulating an active vertex model and a multiphase field model, where they focus on p=2 and p=6 - nematic and hexatic order - as the two values of highest biological relevance. Based on their analysis, the authors claim that q<sub>2</sub> and q<sub>6</sub> are independent, that there is no crossover for the coarse-grained quantities, that the comparison of q<sub>p</sub> for different values of p is not meaningful, and determine the dependence of the mean value of q<sub>2</sub> and q<sub>6</sub>q<sub>6</sub> on cell activity and deformability. They then apply their method to data from MDCK monolayers and argue that the γ<sub>p</sub> "fail to capture the nuances of irregular cell shapes".

      Strength:

      The work presents a set of parameters that are useful for analyzing cell shape.

      Weaknesses:

      The main weakness of the manuscript is that the points that the authors make are not sufficiently elaborated or supported by the data. Although they start out with Minkowski tensors, they eventually only consider the parameters q<sub>p</sub>, which can be defined without any recourse to Minkowski tensors. Also, I dare to doubt that the average reader will benefit from the introduction to Minkowski tensors as it remains abstract and does not really go beyond repeating definitions. Eventually, for me, the work boils down to the statement that when you want to characterize (2d) cell shape, then it is better to take the whole cell contour instead of only the positions of the vertices of a polygon that approximates the full cell shape. By the way, for polygons, the q<sub>p</sub> and γ<sub>p</sub> should convey the same information as the vertex positions contain the whole geometric information.

      Some statements made about the values of q<sub>p</sub> are not supported by the data. For example, an independence of values of q<sub>2</sub> and q<sub>6</sub> cannot be inferred from Figure 7. Actually, Figure 8 points to some dependence between these values as the peaks of the pdfs move in the opposite direction as deformability and activity are changed. Figure 1 suggests that in general, larger cells have lower values of q<sub>p</sub> for all p. Some more serious quantification should be obtained here.

      The presented experimental data on MDCK cells is anecdotal.

    1. Reviewer #1 (Public review):

      Summary:

      In recent years, it has become increasingly evident how beautifully intricate IAC are at the nanoscale. Studies like the one presented here that shed light on the precise inner organisation of IAC are thus quite important and relevant in order to obtain a better in-depth understanding of IAC functioning and the contribution of different integrin subtypes to cell adhesive and mechanotransductive processes.

      Interestingly, the authors found a distinct localisation of α5β1 and αVβ3 integrin nanoclusters within focal adhesion of human fibroblasts, with α5β1 integrin nanoclusters being at the periphery of IAC and αVβ3 integrin nanoclusters randomly distributed. Furthermore, a surprisingly high percentage of inactive integrins within IAC and relatively low spatial integrin colocalisation with adaptor proteins has been shown.

      Strengths:

      This is a very thoroughly performed STORM-based assessment of the nanodistribution of α5β1 and αVβ3 nanoclusters within IAC (and outside). The image quality is outstanding, and the authors have meticulously executed the experiments and the image analyses.

      Weaknesses:

      The only weakness is maybe that the manuscript remains descriptive. However, the high quality of the "description" of the nano-organisation of IAC by this scrupulous study is really important to better understand the inner workings of IAC. It provides a very solid foundation to look deeper into the (patho)physiological implications of this organisation, see recommendations (which are rather suggestions in this case).

    1. Reviewer #1 (Public review):

      Summary:

      Early and accurate diagnosis is critical to treating N. fowleri infections, which often lead to death within 2 weeks of exposure. Current methods-sampling cerebrospinal fluid are invasive, slow, and sometimes unreliable. Therefore, there is a need for a new diagnostic method. Russell et al. address this need by identifying small RNAs secreted by Naegleria fowleri (Figure 1) that are detectable by RT-qPCR in multiple biological fluids including blood and urine. SmallRNA-1 and smallRNA-2 were detectable in plasma samples of mice experimentally infected with 6 different N. fowleri strains, and were not detected in uninfected mouse or human samples (Figure 4). Further, smallRNA-1 is detectable in the urine of experimentally infected mice as early as 24 hours post-infection (Figure 5). The study culminates with testing human samples (obtained from the CDC) from patients with confirmed N. fowleri infections; smallRNA-1 was detectable in cerebrospinal fluid in 6 out of 6 samples (Figure 6B), and in whole blood from 2 out of 2 samples (Figure 6C). These results suggest that smallRNA-1 could be a valuable diagnostic marker for N. fowleri infection, detectable in cerebrospinal fluid, blood, or potentially urine.

      Strengths:

      This study investigates an important problem, and comes to a potential solution with a new diagnostic test for N. fowleri infection that is fast, less invasive than current methods, and seems robust to multiple N. fowleri strains. The work in mice is convincing that smallRNA1 is detectable in blood and urine early in infection. Analysis of patient blood samples suggest that whole blood (but not plasma) could be tested for smallRNA-1 to diagnose N. fowleri infections.

      Weaknesses:

      (1) There are not many N. fowleri cases, so the authors were limited in the human samples available for testing. It is difficult to know how robust this biomarker is in whole blood (only 2 samples were tested, both had detectable smallRNA-1), serum (1 out of 1 sample tested negative), or human urine (presumably there is no material available for testing). This limitation is openly discussed in the last paragraph of the discussion section.

      (2) There seems to be some noise in the data for uninfected samples (Figures 4B-C, 5B, and 6C), especially for those with serum (2E). While this is often orders of magnitude lower than the positive results, it does raise questions about false positives, especially early in infection when diagnosis would be the most useful. A few additional uninfected human samples may be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      The study investigates how neuropeptidergic signaling affects sleep regulation in Drosophila larvae. The authors first conduct a screen of CRISPR knock-out lines of genes encoding enzymes or receptors for neuropeptides and monoamines. As a result of this screen, the authors follow up on one hit, the hugin receptor, PK2-R1. They use genetic approaches, including mutants and targeted manipulations of PK2-R1 activity in insulin-producing cells (IPCs) to increase total sleep amounts in 2nd instar larvae. Similarly, dilp3 and dilp5 null mutants and genetic silencing of IPCs show increases in sleep. The authors also show that hugin mutants and thermogenetic/optogenetic activation of hugin-expressing neurons caused reductions in sleep. Furthermore, they show through imaging-based approaches that hugin-expressing neurons activate IPCs. A key finding is that wash-on of hugin peptides, Hug-γ and PK-2, in ex vivo brain preparations activates larval IPCs, as assayed by CRTC::GFP imaging. The authors then examine how the PK2-R1, hugin, and IPC manipulations affect adult sleep. Finally, the authors examine how Ca2+ responses through CRTC::GFP imaging in adult IPCs are influenced by the wash-on of hugin peptides. The conclusions of this paper are somewhat well supported by data, but some aspects of the experimental approach and sleep analysis need to be clarified and extended.

      Strengths:

      (1) This paper builds on previously published studies that examine Drosophila larval sleep regulation. Through the power of Drosophila genetics, this study yields additional insights into what role neuropeptides play in the regulation of Drosophila larval sleep.

      (2) This study utilizes several diverse approaches to examine larval and adult sleep regulation, neural activity, and circuit connections. The impressive array of distinct analyses provides new understanding into how Drosophila sleep-wake circuitry in regulated across the lifespan.

      (3) The imaging approaches used to examine IPC activation upon hugin manipulation (either thermogenetic activation or wash-on of peptides) demonstrate a powerful approach for examining how changes in neuropeptidergic signaling affect downstream neurons. These experiments involve precise manipulations as the authors use both in vivo and ex vivo conditions to observe an effect on IPC activity.

      Weaknesses:

      Although the paper does have some strengths in principle, these strengths are not fully supported by the experimental approaches used by the authors. In particular:

      (1) The authors show total sleep amount over an 18-hour period for all the measures of 2nd instar larval sleep throughout the paper. However, published studies have shown that sleep changes over the course of 2nd instar development, so more precise time windows are necessary for the analyses in this study.

      (2) Previously published reports of sleep metrics in both Drosophila larvae and adults include the average number of sleep episodes (bout number) and the average length of sleep episodes (bout length). Neither of these metrics is included in the paper for either the larval sleep or adult sleep data. Not including these metrics makes it difficult for readers to compare the findings in this study to previously published papers in the established Drosophila sleep literature.

      (3) Because Drosophila adult & larval sleep is based on locomotion, the authors need to show the activity values for the experiments supporting their key conclusions. They do show travel distances in Figure 2 - Figure Supplement 1, however, it is not clear how these distances were calculated or how the distances relate to the overall activity of individual larvae during sleep experiments. It is also concerning that inactivation of the PK2-R1-expressing neurons causes a reduction in locomotion speed. This could partially explain the increase in sleep that they observe.

      (4) The authors rely on homozygous mutant larvae and adult flies to support many of their conclusions. They also rely on Gal4 lines with fairly broad expression in the Drosophila brain to support their conclusions. Adding more precise tissue-specific manipulations, including thermogenetic activation and inhibition of smaller populations of neurons in the study would be needed to increase confidence in the presented results. Similarly, demonstrating that larval development and feeding are not affected by the broad manipulations would strengthen the conclusions.

      (5) Many of the experiments presented in this study would benefit from genetic and temperature controls. These controls would increase confidence in the presented results.

      (6) The authors claim that their findings in larvae uncover the circuit basis for larval sleep regulation. However, there is very little comparison to published studies demonstrating that neuropeptides like Dh44 regulate larval sleep. Because hugin-expressing neurons have been shown to be downstream of Dh44 neurons, the authors need to include this as part of their discussion. The authors also do not explain why other neuropeptides in the initial screen are not pursued in the study. Given the effect that these manipulations have on larval sleep in their initial screen, it seems likely that other neuropeptidergic circuits regulate larval sleep.

    1. Reviewer #1 (Public review):

      Summary:

      Using highly specific antibody reagents for biological research is of prime importance. In the past few years, novel approaches have been proposed to gain easier access to such reagents. This manuscript describes an important step forward toward the rapid and widespread isolation of antibody reagents. Via the refinement and improvement of previous approaches, the Perrimon lab describes a novel phage-displayed synthetic library for nanobody isolation. They used the library to isolate nanobodies targeting Drosophila secreted proteins. They used these nanobodies in immunostainings and immunoblottings, as well as in tissue immunostainings and live cell assays (by tethering the antigens on the cell surface).

      Since the library is made freely available, it will contribute to gaining access to better research reagents for non-profit use, an important step towards the democratisation of science.

      Strengths:

      (1) New design for a phage-displayed library of high content.

      (2) Isolation of valuble novel tools.

      (3) Detailed description of the methods such that they can be used by many other labs.

      Weaknesses:

      My comments largely concentrate on the representation of the data in the different Figures.

    1. Reviewer #1 (Public review):

      Summary:

      The authors wanted to better understand how the various septin-associated kinases contribute to septin organization and function in budding yeast. This question has been recently addressed by similar kinds of studies but there are still some open questions, particularly as regards to what extent the kinases may interact with and/or modify components of the contractile ring that drives cytokinesis.

      Strengths:

      This study uses sensitive imaging with good temporal and spatial resolution to monitor the localization of various proteins in living cells. Particularly informative is the use of a GFP/GFP-binding-protein "tethering" approach to ask if the requirement for one protein can be bypassed by physically tethering another protein to a third protein. Results from a yeast two-hybrid assay for measuring protein-protein interactions in vivo are buttressed by direct in vitro binding assays using purified proteins, which is important given the likelihood of "bridging" interactions between yeast proteins in the two-hybrid approach. The authors' conclusions are quite well supported by the data.

      Weaknesses:

      A control for non-specific binding is missing from the in vitro binding assay. The figures suffer sometimes from the very small text in the labels, which obscures understanding. Ultimately, while the study provides some interesting and novel insights, we still don't understand which phosphorylation events on which proteins are important for the events occurring at the molecular level, so the advance in knowledge is somewhat incremental.

    1. Reviewer #1 (Public review):

      Summary:

      Using single-unit recording in 4 regions of non-human primate brains, the authors tested whether these regions encode computational variables related to model-based and model-free reinforcement learning strategies. While some of the variables seem to be encoded by all regions, there is clear evidence for stronger encoding of model-based information in the anterior cingulate cortex and caudate.

      Strengths:

      The analyses are thorough, the writing is clear, and the work is well-motivated by prior theory and empirical studies.

      Weaknesses:

      My comments here are quite minor.

      The correlation between transition and reward coefficients is interesting, but I'm a little worried that this might be an artifact. I suspect that reward probability is higher after common transitions, due to the fact that animals are choosing actions they think will lead to higher reward. This suggests that the coefficients might be inevitably correlated by virtue of the task design and the fact that all regions are sensitive to reward. Can the authors rule out this possibility (e.g., by simulation)?

      The explore/exploit section seems somewhat randomly tacked on. Is this really relevant? If yes, then I think it needs to be integrated more coherently.

    1. Reviewer #1 (Public review):

      In the manuscript entitled "Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogen Cryptococcus neoformans" by Jiang et al., the authors employ a combination of molecular genetics and biochemical approaches, along with phenotypic evaluations and animal models, to identify the conserved subunit of the Paf1 complex (Paf1C), Rtf1, and functionally characterize its critical roles in mediating H2B monoubiquitination (H2Bub1) and the consequent regulation of gene expression, fungal development, and virulence traits in C. deneoformans or C. neoformans. Specially, the authors found that the histone modification domain (HMD) of Rtf1 is sufficient to promote H2B monoubiquitination (H2Bub1) and the expression of genes related to fungal mating and filamentation, and restores the fungal morphogenesis and pathogenicity defects caused by RTF1 deletion. These findings highlight the critical contribution of Rtf1's HMD to epigenetic regulation and cryptococcal virulence. This work will be of interest to fungal biologists and medical mycologists, particularly those studying fungal epigenetic regulation and fungal morphogenesis.

      Comments on revisions:

      The revised manuscript addresses all my previous concerns satisfactorily.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show for the first time that deleting GLS from rod photoreceptors results in the rapid death of these cells. The death of photoreceptor cells could result from loss of synaptic activity because of a decrease in glutamate, as has been shown in neurons, changes in redox balance, or nutrient deprivation.

      Strengths:

      The strength of this manuscript is that the author shows a similar phenotype in the mice when Gls was knocked out early in rod development or the adult rod. They showed that rapid cell death is through apoptosis, and there is an increase in the expression of genes responsive to oxidative stress.

      Comments on revisions:

      The authors addressed all of my concerns in their responses to reviewers.

    1. Reviewer #2 (Public review):

      Summary:

      The study investigates the potential influence of the response criterion on neural decoding accuracy in consciousness and unconsciousness, utilizing either simulated data or reanalyzing experimental data with post-hoc sorting data.

      Strengths:

      When comparing the neural decoding performance of Target versus NonTarget with or without post-hoc sorting based on subject reports, it is evident that response criterion can influence the results. This was observed in simulated data as well as in two experiments that manipulated the subject response criterion to be either more liberal or more conservative. One experiment involved a two-level response (seen vs unseen), while the other included a more detailed four-level response (ranging from 0 for no experience to 3 for a clear experience). The findings consistently indicated that adopting a more conservative response criterion could enhance neural decoding performance, whether in conscious or unconscious states, depending on the sensitivity or overall response threshold.

      The uneven distribution of trails for Target (75%) and NonTarget (25%) was identified as a potential weakness in the initial review of this study. Nevertheless, we support the authors' assertion that their analysis methodology validates comparing liberal and conservative approaches. Future investigations could further explore differences between liberal and conservative on different ratios of Target vs NonTarget, particularly when the proportion of Target matches or falls below that of NonTarget.

    1. Reviewer #1 (Public review):

      Guo, Hue et al., is focused on understanding the epigenetic activity and functional dependencies for two different fusions found in spindle cell rhabdomyosarcoma, VGLL2::NCOA2 and TEAD1::NCOA2. They use a variety of models and methods; specifically, ectopic expression of the fusions in human 293T cells to perform RNAseq (both fusions), CUT&RUN (VGLL2::NCOA2) and BioID mass spec (both fusions). These data identify that the VGLL2::NCOA2 fusion has peaks that are enriched for TEAD motifs. Further, CPB/p300 CUT&RUN support an enrichment of binding sites and three TEAD targets in VGLL2::NCOA2 and TEAD1::NCOA2 expressing cells. They also functionally evaluate genetic and chemical dependencies (TEAD inhibition), and found this was only effective for the VGLL2::NCOA2 fusion, and not for TEAD1::NCOA2. Using complementary biochemical approaches, they suggest (with other supporting data) the fusions regulate TEAD transcriptional outputs via a YAP/TAZ independent mechanism. Further, they expand into a C2C12 myoblast model and show that TEAD1::NCOA2 is transforming in colony formation assays and in mouse allograft. These strategies for TEAD1-NCOA2 are consistent with previous published strategies using VGLL2::NCOA2. Importantly, they show that a CBP/p300 (a binding partner found in their BioID mass spec) small molecule inhibitor suppresses tumor formation using this mouse allograft model, and that the tumors are less proliferative, and have a reduction in transcriptional of three TEAD target genes. They complement in vivo data with biochemical approaches, and suggest this interface with p300 (for VGLL2::NCOA2) is through the NCOA2 fusion partner, as Co-IP in HEK293T with a mutant fusion that does not contain NCOA2 loses the association with endogenous p300. The data is interesting and suggests new biology for these fusion-oncogenes. However, the choice of 293T may limit the broad applicability of the findings. Strikingly, in 293T there was more transcriptional overlap with the VGLL2-NCOA2 fusion with the YAP5SA mutant than with TEAD1-NCOA2. Further, there is an additional opportunity to directly compare transcriptional profiles in 293T to the human disease and in the mouse allograft system to directly compare and discuss VGLL2-NCOA2 and TEAD1-NCOA2 histological differences or how A485 treatment may change the histology. Overall, the breadth of methods used in this study, and comparison of the two fusion-oncogene's biology is of interest to the fusion-oncogene, pediatric sarcoma, and epigenetic therapeutic targeting fields.