10 Matching Annotations
  1. Feb 2023
  2. Jan 2023
    1. One of the main features of the high level architecture of a transformer is that each layer adds its results into what we call the “residual stream.”Constructing models with a residual stream traces back to early work by the Schmidhuber group, such as highway networks  and LSTMs, which have found significant modern success in the more recent residual network architecture . In transformers, the residual stream vectors are often called the “embedding.” We prefer the residual stream terminology, both because it emphasizes the residual nature (which we believe to be important) and also because we believe the residual stream often dedicates subspaces to tokens other than the present token, breaking the intuitions the embedding terminology suggests. The residual stream is simply the sum of the output of all the previous layers and the original embedding. We generally think of the residual stream as a communication channel, since it doesn't do any processing itself and all layers communicate through it.
    2. A transformer starts with a token embedding, followed by a series of “residual blocks”, and finally a token unembedding. Each residual block consists of an attention layer, followed by an MLP layer. Both the attention and MLP layers each “read” their input from the residual stream (by performing a linear projection), and then “write” their result to the residual stream by adding a linear projection back in. Each attention layer consists of multiple heads, which operate in parallel.
  3. Sep 2022
  4. Apr 2022
  5. Nov 2021
  6. Oct 2021
  7. Sep 2021
    1. One popular theory among machine learning researchers is the manifold hypothesis: MNIST is a low dimensional manifold, sweeping and curving through its high-dimensional embedding space. Another hypothesis, more associated with topological data analysis, is that data like MNIST consists of blobs with tentacle-like protrusions sticking out into the surrounding space.
  8. Aug 2021