Reviewer #1 (Public review):
Summary:
In this work, Huang et al. revealed the complex regulatory functions and transcription network of 172 unknown transcriptional factors (TFs) in Pseudomonas aeruginosa PAO1. They have built a global TF-DNA binding landscape and elucidated binding preferences and functional roles of these TFs. More specifically, the authors established a hierarchical regulatory network and identified ternary regulatory motifs, and co-association modules. Since P. aeruginosa is a well known pathogen, the authors thus identified key TFs associated with virulence pathways (e.g., quorum sensing [QS], motility, biofilm formation), which could be potential drug targets for future development. The authors also explored the TF conservation and functional evolution through pan-genome and phylogenetic analyses. For the easy searching by other researchers, the authors developed a publicly accessible database (PATF_Net) integrating ChIP-seq and HT-SELEX data.
Strengths:
(1) The authors performed ChIP-seq analysis of 172 TFs (nearly half of the 373 predicted TFs in P. aeruginosa) and identified 81,009 significant binding peaks, representing one of the largest TF-DNA interaction studies in the field. Also, The integration of HT-SELEX, pan-genome, and phylogenetic analyses provided multi-dimensional insights into TF conservation and function.
(2) The authors provided informative analytical Framework for presenting the TFs, where a hierarchical network model based on the "hierarchy index (h)" classified TFs into top, middle, and bottom levels. They identified 13 ternary regulatory motifs and co-association clusters, which deepened our understanding of complex regulatory interactions.
(3) The PATF_Net database provides TF-target network visualization and data-sharing capabilities, offering practical utility for researchers especially for the P. aeruginosa field.
Weaknesses:
(1) There is very limited experimental validation for this study. Although 24 virulence-related master regulators (e.g., PA0815 regulating motility, biofilm, and QS) were identified, functional validation (e.g., gene knockout or phenotypic assays) is lacking, leaving some conclusions reliant on bioinformatic predictions. Another approach for validation is checking the mutations of these TFs from clinical strains of P. aeruginosa, where chronically adapted isolates often gain mutations in virulence regulators.
(2) ChIP-seq in bacteria may suffer from low-abundance TF signals and off-target effects. The functional implications of non-promoter binding peaks (e.g., coding regions) were not discussed.
(3) PATF_Net currently supports basic queries but lacks advanced tools (e.g., dynamic network modeling or cross-species comparisons). User experience and accessibility remain underevaluated. But this could be improved in the future.
Achievement of Aims and Support for Conclusions
(1) The authors successfully mapped global P. aeruginosa TF binding sites, constructed hierarchical networks and co-association modules, and identified virulence-related TFs, fulfilling the primary objectives. The database and pan-genome analysis provide foundational resources for future studies.
(2) The hierarchical model aligns with known virulence mechanisms (e.g., LasR and ExsA at the bottom level directly regulating virulence genes). Co-association findings (e.g., PA2417 and PA2718 co-regulating pqsH) resonate with prior studies, though experimental confirmation of synergy is needed.
Impact on the Field and Utility of Data/Methods
(1) This study fills critical gaps in TF functional annotation in P. aeruginosa, offering new insights into pathogenicity mechanisms (e.g., antibiotic resistance, host adaptation). The hierarchical and co-association frameworks are transferable to other pathogens, advancing comparative studies of bacterial regulatory networks.
(2) PATF_Net enables rapid exploration of TF-target interactions, accelerating candidate regulator discovery.