10,000 Matching Annotations
  1. Jan 2025
    1. Reviewer #3 (Public review):

      Summary:

      The authors have performed endoscopic calcium recordings of individual CeA neuron responses to food and shock, as well as to cues predicting food and shock. They claim that a majority of neurons encode valence, with a substantial minority encoding salience.

      Strengths:

      The use of endoscopic imaging is valuable, as it provides the ability to resolve signals from single cells, while also being able to track these cells across time (though the latter capability was not extensively utilized). Another strength is the use of a sophisticated circular shifting analysis to avoid statistical errors caused by correlations between neighboring image pixels.

      Weaknesses:

      In the first version of this manuscript, my main critique was that the authors didn't fully test whether neurons encode valence. In their rebuttal, the authors justify their use of the terms valence and salience by citing prior works from different labs:

      (1) Li et al., 2019, doi: 10.7554/eLife.41223<br /> (2) Yang et al., 2023, doi: 10.1038/s41586-023-05910-2<br /> (3) Huang et al., 2024, doi: 10.1038/s41586-024-07819<br /> (4) Lin and Nicolelis, 2008, doi: 10.1016/j.neuron.2008.04.031<br /> (5) Stephenson-Jones et al., 2020, doi: 10.1016/j.neuron.2019.12.006<br /> (6) Zhu et al., 2018, doi: 10.1126/science.aat0481<br /> (7) Comoli et al., 2003, doi: 10.1038/nn1113P

      Among these, items #1 and #3 primarily discuss valence, while #2, #4, #6, and #7 discuss salience, and #5 discusses both.

      Upon reviewing these references, the authors' identification of valence encoding patterns is still problematic, and indeed studies cited above show several lines of evidence for valence encoding that are absent here. For example, item #3 ranked behavioral responses to five different odors in drosophila, from most attractive to most repulsive, and saw neuronal responses correlated with the degree of attraction versus repulsion across all five odors. This is robust evidence for valence encoding that is absent here. Items #1 and #5 above are the other two valence-addressing studies cited, and although those only used one rewarding and one aversive stimulus (in rodents), both also added a neutral cue, and most critically, identified substantial subsets of neurons showing a rank-order response, e.g. either aversion > neutral > reward or aversion < neutral < reward. Again, that level of demonstration of valence encoding is not shown in the current study.

      Finally, two of the valence studies above tested responses to omission of reward/punishment, providing yet more evidence of valence encoding that is absent in the current study.

      While there is much to like about the current study, the claims of valence encoding appear hard to justify, and should be toned down.

    1. Reviewer #1 (Public review):

      The authors present an important work where they model some of the complex interactions between immune cells, fibroblasts and cancer cells. The model takes into account the increased ECM production of cancer-associated fibroblasts. These fibres trap the cancer but also protect it from immune system cells. In this way, these fibroblasts' actions both promote and hinder cancer growth. By exploring different scenarios, the authors can model different cancer fates depending on the parameters regulating cancer cells, immune system cells and fibroblasts. In this way, the model explores non-trivial scenarios. An important weakness of this study is that, though it is inspired by NSCLC tumors, it is still far from modelling tumor lesions with morphologies similar to NSCLC tumors and does not explore the formation of ramified tumors. In this way, is a general model and it is challenging how it can be adapted to simulate more realistic tumor morphologies.

      Comments on revisions:

      The authors have improved the manuscript and addressed my concerns.

    2. Reviewer #2 (Public review):

      Summary:

      The authors develop a computational model (and a simplified version thereof) to treat an extremely important issue regarding tumor growth. Specifically, it has been argued that fibroblasts have the ability to support tumor growth by creating physical conditions in the tumor microenvironment that prevent the relevant immune cells from entering into contact with, and ultimately killing, the cancer cells. This inhibition is referred to as immune exclusion. The computational approach follows standard procedures in the formulation of models for mixtures of different material species, adapted to the problem at hand by making a variety of assumptions as to the activity of different types of fibroblasts, namely "normal" versus "cancer-associated". The model itself is relatively complex, but the authors do a convincing job of analyzing possible behaviors and attempting to relate these to experimental observations.

      Strengths:

      As mentioned, the authors do an excellent job of analyzing the behavior of their model both in its full form (which includes spatial variation of the concentrations of the different cellular species) and in its simplified mean field form. The model itself is formulated based on established physical principles, although the extent to which some of these principles apply to active biological systems is perhaps debatable (see Weaknesses). The results of the model do indeed offer some significant insights into the critical factors which determine how fibroblasts might affect tumor growth; these insights could lead to new experimental ways of unraveling these complex sets of issues and enhancing immunotherapy. In this revised version, the authors have properly placed this work within the general context of other research on modeling the tumor-immune ecology.

      Weaknesses:

      Models of the form being studied here rely on a large number of assumptions regarding cellular behavior. One major issue is the degree to which close-to-equilibrium assumptions (such as the dynamics being driven by free energy minimization) can be taken as reliable predictors of the obviously active dynamics of biological cells. The authors have recognized this conceptual issue and have argued that these assumptions provide a reasonable first step for understanding the full complexity of dynamics in the tumor microenvironment.

      The problem of T cell infiltration as well as the patterning of the extracellular matrix (ECM) by fibroblasts necessarily involve understanding cell proliferation, cell motion and cell interactions due e.g. to cell signaling. There is evidence that inherently non-equilibrium interactions between the fibroblasts and the extracellular matrix can lead to patterning of the fiber network and trapping of potentially infiltrating T-cells. it is not clear the extent to which this type of interaction can be captured by the approach being used here, although the authors propose that they can be mimicked by proper terms in their formulation. This to me is the primary concern that I had with this paper.

      The authors have now addressed what used to be a separate weakness concerning the assumption that fibroblasts affect T cell behavior primarily by just making a more dense ECM. Instead, the organization of the ECM (for example, its anisotropy) could be playing a much more essential role than is given credit for here. This possibility is now discussed in some detail and the authors have suggested that the introduction of a nematic order parameter field would be a useful way to treat this effect.

    1. Reviewer #1 (Public review):

      Summary:

      The authors created a transgenic mouse line to read out integrated stress responses with single-cell resolution.

      Strengths:

      ISR plays an important role in the development, maintenance, and degeneration of the nervous system. This mouse line represents a potentially important tool to understand ISR in situ.

      Weaknesses:

      The current manuscript is clearly written. However, more validation experiments should be performed to understand the exact meaning of the fluorescence intensity of GFP and RFP channels. This is important because these results will define how this tool will be used in the future and in the field.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors create transgenic animals with a CMV promoter driving expression of their DIO-SPOTlight construct in which uORF2 and the authentic ORF of Atf4 are replaced by GFP and tdTomato respectively, such that ISR activation is predicted to diminish GFP expression and enhance RFP expression. The major experimental finding of the paper is that cholinergic neurons have the most robust activation of the reporter, consistent with and extending upon their previous work.

      Strengths:

      It is very likely that the reporter does indeed read out on ISR activation at some level. It is mostly likely to be useful for screening and hypothesis testing than for gaining mechanistic insight, because, as the authors note in the present version, ATF4 itself is but one component of ISR activation. Cells might have robust eIF2a phosphorylation but have suppressed translational regulation (for instance by regulating the expression of eIF2B). The mRNA and protein half-lives of the GFP and Tomato are likely quite different from that of the equivalent components in ATF4, which means that the reporter is likely to behave differently from ATF4 itself over time.

      Weaknesses:

      The major element that the current manuscript lacks is a detailed comparison between how the reporter behaves and how it tracks with eIF2a phosphorylation, ATF4, and the initiation of the gene expression program downstream of ATF4. While this would be difficult to do in vivo, it would seem much more feasible to isolate primary cells (neurons, fibroblasts, hepatocytes, etc.) from the animals and thoroughly characterize the kinetics of reporter-versus-ISR activation. In that way, the reader can have a better idea of how to interpret the behavior of the reporter. As it is, the authors' attempt to account for the reporter's behavior in Figure 3F is purely speculative and not backed by experiment or modeling.

    3. Reviewer #3 (Public review):

      Summary:

      The previously described reporter SPOTlight is a fluorescence-based reporter of the integrated stress response, specifically, protein synthesis initiation dynamics. In the current study from the same lab, the authors describe the creation and characterization of a transgenic mouse that expresses SPOTlight.

      Strengths:

      The previously described reporter has now been made into a Cre-dependent transgene in mice. The authors replicate previous findings from their lab that were acquired using viral vector-mediated delivery of their reporter.

      Weaknesses:

      There is not a clear advantage to having the Cre-dependent SPOTlight reporter in a transgenic mouse over using a viral vector to deliver the same Cre-dependent SPOTlight based on the experiments presented. There are potential general advantages and disadvantages to virus vs transgenic mouse but no side-by-side comparisons are performed here.

      It is not clear whether overexpressing the reporter alters basal ISR/UPR function and gene expression. The CAG is a strong promoter and overexpression of fluorescent proteins (or any protein) can potentially stress protein synthesis and processing mechanisms. The use of the animal as a reporter may be misleading if the presence of the reporter is already altering ISR/UPR.

    1. Reviewer #1 (Public review):

      Summary:

      In organisms with an open mitosis, nuclear envelope breakdown at mitotic entry and re-assembly of the nuclear envelope at the end of mitosis are important, highly regulated processes. One key regulator of nuclear envelope re-assembly is the BAF (Barrier-to-Autointegration) protein, which contributes to cross-linking of chromosomes to the nuclear envelope. Crucially, BAF has to be in a dephosphorylated form to carry out this function, and PP2A has been shown to be the phosphatase which dephosphorylates BAF. The Ankle2/LEM4 protein has previously been identified as an important regulator of PP2A in the dephosphorylation of BAF but its precise function is not fully understood, and Li and colleagues set out to investigate the function of Ankle2/LEM4 in both Drosophila flies and Drosophila cell lines.

      Strengths:

      The authors use a combination of biochemical and imaging techniques to understand the biology of Ankle2/LEM4. On the whole the experiments are well conducted and the results look convincing. A particular strength of this manuscript is that the authors are able to study both cellular phenotypes and organismal effects of their mutants by studying both Drosophila D-mel cells and whole flies.<br /> The work presented in this manuscript significantly enhances our understanding of how Ankle2/LEM4 supports BAF dephosphorylation at the end of mitosis. Particularly interesting is finding that Ankle2/LEM4 appears to be a bona fide PP2A regulatory protein in Drosophila, as well as the localisation of Ankle2/LEM4 and how this is influenced by the interaction between Ankle2 and the ER protein Vap33. It would be interesting to see, though, whether these insights are conserved in mammalian cells, e.g. does mammalian Vap33 also interact with LEM4? Is LEM4 also a part of the PP2A holoenzyme complex in mammalian cells?

      Weaknesses:

      This work is certainly impactful but more discussion and comparison of the Drosophila versus mammalian cell system would be helpful. Also, to attract the largest possible readership, the Ankle2 protein should be referred to as Ankle2/LEM4 throughout the paper to make it clear that this is the same molecule.

      A schematic model at the end of the final figure would be very useful to summarise the findings.

      Comments on revisions:

      The authors have carefully revised the manuscripts and have satisfactorily addressed the issues that were raised by the reviewers.

    2. Reviewer #2 (Public review):

      The authors first identify Ankle2 as a regulatory subunit and direct interactor of PP2A, showing they interact both in vitro and in vivo to promote BAF dephosphorylation. The Ankyrin domain of Ankle2 is important for the interaction with PP2A. They then show Ankle2 also interacts with the ER protein Vap33 through FFAT motifs and they particularly co-localize during mitosis. The recruitment of Ankle2 to Vap33 is essential to ER and nuclear envelop membrane in telophase while earlier in mitosis, it relies on the C terminus but not the FFAT motifs for recruitments to the nuclear membrane and spindle envelop in early mitosis. The molecular determinants and receptors are currently not known. The authors check the function of the PP2A recruitment to Ankle2/Vap33 in the context of embryos and show this recruitment pathway is functionally important. While the Ankle2/Vap33 interaction is dispensable in adult flies -looking at wing development, the PP2A/Ankle2 interaction is essential for correct wing and fly development. Overall, this is a very complete paper that reveals the molecular mechanism of PP2A recruitment to Ankle2 and studies both the cellular and the physiological effect of this interaction in the context of fly development.

      The paper is well-written and the narrative is well developed. The figures are of high quality, well-controlled, clearly labelled and easy to understand. They support the claims made by the authors.

      Comments on revisions:

      There are still issues with the statistics. On graphs where multiple conditions are shown, you cannot perform a T-test. You have to use other tests such as ANOVA if the data is normal, and other tests such as KS test if the data is not normally distributed.

    3. Reviewer #3 (Public review):

      The authors were interested in how Ankle2 regulates nuclear envelope reformation after cell division. They show that Ankle2 can bind in a PP2A complex without other known regulatory subunits of PP2A. The authors also identity a novel interaction with ER protein Vap33 that could be important for localization. This manuscript is a useful finding linking Ankle2 function during nuclear envelope reformation to the PP2A complex. The authors present solid data showing that Ankle2 can form a complex with PP2A-29B and Mts and generate a phosphoproteomic resource that is fundamentally important to understand Ankle2 biology. The caveat should be remembered that most experiments, including subcellular localization, are based on overexpression data. Keeping this in mind, the manuscript is a valuable resource.

    1. Reviewer #1 (Public review):

      The hypothesis is based on the idea that inversions capture genetic variants that have antagonistic effects on male sexual success (via some display traits) and survival of females (or both sexes) until reproduction. Furthermore, a sufficiently skewed distribution of male sexual success will tend to generate synergistic epistasis for male fitness even if the individual loci contribute to sexually selected traits in an additive way. This should favor inversions that keep these male-beneficial alleles at different loci together at a cis-LD. A series of simulations are presented and show that the scenario works at least under some conditions. While a polymorphism at a single locus with large antagonistic effects can be maintained for a certain range of parameters, a second such variant with somewhat smaller effects tends to be lost unless closely linked. It becomes much more likely for genomically distant variants that add to the antagonism to spread if they get trapped in an inversion; the model predicts this should drive accumulation of sexually antagonistic variants on the inversion versus standard haplotype, leading to the evolution of haplotypes with very strong cumulative antagonistic pleiotropic effects. This idea has some analogies with one of predominant hypotheses for the evolution of sex chromosomes, and the authors discuss these similarities. The model is quite specific, but the basic idea is intuitive and thus should be robust to the details of model assumption. It makes perfect sense in the context of the geographic pattern of inversion frequencies. One prediction of the models (notably that leads to the evolution of nearly homozygously lethal haplotypes) does not seem to reflect the reality of chromosomal inversions in Drosophila, as the authors carefully discuss, but it is the case of some other "supergenes", notably in ants. So the theoretical part is a strong novel contribution,

      To provide empirical support for this idea, the authors study the dynamics of inversions in population cages over one generation, tracking their frequencies through amplicon sequencing at three time points: (young adults), embryos and very old adult offspring of either sex (>2 months from adult emergence). Out of four inversions included in the experiment, two show patterns consistent with antagonistic effects on male sexual success (competitive paternity) and the survival of offspring, especially females, until an old age, which the authors interpret as consistent with their theory.

      As I have argued in my comments on previous versions, the experiment only addresses one of the elements of the theoretical hypothesis, namely antagonistic effects of inversions on male reproductive success and other fitness components, in particular of females. Furthermore, the design of this experiment is not ideal from the viewpoint of the biological hypothesis it is aiming to test. This is in part because, rather than testing for the effects of inversion on male reproductive success versus the key fitness components of survival to maturity and female reproductive output, it looks at the effects on male reproductive success versus survival to a rather old age of 2 months. The relevance of survival until old age to fitness under natural conditions is unclear, as the authors now acknowledge. Furthermore, up to 15% of males that may have contributed to the next generation did not survive until genotyping, and thus the difference between these males' inversion frequency and that in their offspring may be confounded by this potential survival-based sampling bias. The experiment does not test for two other key elements of the proposed theory: the assumption of frequency-dependence of selection on male sexual success, and the prediction of synergistic epistasis for male fitness among genetic variants in the inversion. To be fair, particularly testing for synergistic epistasis would be exceedingly difficult, and the authors have now included a discussion of the above caveats and limitations, making their conclusions more tentative. This is good but of course does not make these limitations of the experiment go away. These limitations mean that the paper is stronger as a theoretical than as an empirical contribution.

    2. Reviewer #2 (Public review):

      Summary:

      In their manuscript the authors address the question whether the inversion polymorphism in D. melanogaster can be explained by sexually antagonistic selection. They designed a new simulation tool to perform computer simulations, which confirmed their hypothesis. They also show a tradeoff between male reproduction and survival. Furthermore, some inversions display sex-specific survival.

      Strengths:

      It is an interesting idea on how chromosomal inversions may be maintained

      Weaknesses:

      The authors motivate their study by the observation that inversions are maintained in D. melanogaster and because inversions are more frequent closer to the equator, the authors conclude that it is unlikely that the inversion contributes to adaptation in more stressful environments. Rather the inversion seems to be more common in habitats that are closer to the native environment of ancestral Drosophila populations.<br /> While I do agree with the authors that this observation is interesting, I do not think that it rules out a role in local adaptation. After all, the inversion is common in Africa, so it is perfectly conceivable that the non-inverted chromosome may have acquired a mutation contributing to the novel environment.

      Based on their hypothesis, the authors propose an alternative strategy, which could maintain the inversion in a population. They perform some computer simulations, which are in line with the predicted behavior. Finally, the authors perform experiments and interpret the results as empirical evidence for their hypothesis. While the reviewer is not fully convinced about the empirical support, the key problem is that the proposed model does not explain the patterns of clinal variation observed for inversions in D. melanogaster. According to the proposed model, the inversions should have a similar frequency along latitudinal clines. So in essence, the authors develop a complicated theory because they felt that the current models do not explain the patterns of clinal variation, but this model also fails to explain the pattern of clinal variation.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, McAllester and Pool develop a new model to explain the maintenance of balanced inversion polymorphism, based on (sexually) antagonistic alleles and a trade-off between male reproduction and survival (in females or both sexes). Simulations of this model support the plausibility of this mechanism. In addition, the authors use experiments on four naturally occurring inversion polymorphisms in D. melanogaster and find tentative evidence for one aspect of their theoretical model, namely the existence of the above-mentioned trade-off in two out of the four inversions.

      Strengths:

      (1) The study develops and analyzes a new (Drosophila melanogaster-inspired) model for the maintenance of balanced inversion polymorphism, combining elements of (sexually) antagonistically (pleiotropic) alleles, negative frequency-dependent selection and synergistic epistasis. Simulations of the model suggest that the hypothesized mechanism might be plausible.

      (2) The above-mentioned model assumes, as a specific example, a trade-off between male reproductive display and survival; in the second part of their study, the authors perform laboratory experiments on four common D. melanogaster inversions to study whether these polymorphisms may be subject to such a trade-off. The authors observe that two of the four inversions show suggestive evidence that is consistent with a trade-off between male reproduction and survival.

      Open issues:

      (1) A gap in the current modeling is that, while a diploid situation is being studied, the model does not investigate the effects of varying degrees of dominance. It would thus be important and interesting, as the authors mention, to fill this gap in future work,

      (2) It will also be important to further explore and corroborate the potential importance and generality of trade-offs between different fitness components in maintaining inversion polymorphisms in future work.

    1. Reviewer #3 (Public review):

      The manuscript by Goyal et al report substrate-bound and substrate-free structures of a tripartite ATP independent periplasmic (TRAP) transporter from a previously uncharacterized homolog, F. nucleatum. This is one of most mechanistically fascinating transporter families, by means of its QM domain (the domain reported in his manuscript) operating as a monomeric 'elevator', and its P domain functioning as a substrate-binding 'operator' that is required to deliver the substrate to the QM domain; together, this is termed an 'elevator with an operator' mechanism. Remarkably, previous structures had not demonstrated the substrate Neu5Ac bound. In addition, they confirm the previously reported Na+ binding sites, and report a new metal binding site in the transporter, which seems to be mechanistically relevant. Finally, they mutate the substrate binding site and use proteoliposomal uptake assays to show the mechanistic relevance of the proposed substrate binding residues.

      Strengths:

      The structures are of good quality, the presentation of the structural data has improved, the functional data is robust, the text is well-written, and the authors are appropriately careful with their interpretations. Determination of a substrate bound structure is an important achievement and fills an important gap in the 'elevator with an operator' mechanism.

      Weaknesses:

      Although the possibility of the third metal site is compelling, I do not feel it is appropriate to model in a publicly deposited PDB structure without directly confirming experimentally. The authors do not extensively test the binding sites due to technical limitations of producing relevant mutants; however, their model is consistent with genetic assays of previously characterized orthologs, which will be of benefit to the field.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors present an interesting strategy to interfere with the HBV life cycle: the preparation of geranyl and peptides' dimers that could impede the correct assembly of hepatitis B core protein HBc into viable capsids. These dimers are of different nature, depending on the HBc site the authors plan to target. A preliminary study with geranyl dimers (targeting a hydrophobic site of HBc) was first investigated. The second series deals with peptide-PEG linker-peptide dimers, targeting the tips of HBc dimer spikes.

      Strengths:

      This work is very well conducted, combining ITC experiments (for determination of dimers' KD), cellular effects (thanks to the grafting of previously developed dimers with polyarginine-based cell penetrating peptide) HBV infected HEK293 cells and Cryo-EM studies.<br /> The findings of these research teams unambiguously demonstrated the interest of such dimeric structures in impeding the correct HBV life cycle and thus, could bring solutions in the control of its development. Ultimately, a new class of HBV Capside Assembly Modulators could arise from this study.<br /> There is no doubt that this work could bring very interesting information for people working on VHB.

      Comments on revisions:

      Minor corrections have been made in this revised version of this work, according to the remarks of the reviewers.

    2. Reviewer #2 (Public review):

      Summary:

      Vladimir Khayenko et al. discovered two novel binding pockets on HBc with in vitro binding and electron microscopy experiments. While the geranyl dimer targeting a central hydrophobic pocket displayed a micromolar affinity, the P1-dimer binding to the spike tip of HBc has a nanomolar affinity. In the turbidity assay and at the cellular level, an HBc aggregation from peptide crosslinking was demonstrated.

      Strengths:

      The study identifies two previously unexplored binding pockets on HBc capsids and develops novel binders targeting these sites with promising affinities.

      Weaknesses:

      While the in vitro and cellular HBc aggregation effects are demonstrated, the antiviral potential against HBV infection is not directly evaluated in this study.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, "PAbFold: Linear Antibody Epitope Prediction using AlphaFold2", the authors generate a python wrapper for the screening of antibody-peptide interactions using AlphaFold, and test the performance of AlphaFold on 3 antibody-peptide complexes. In line with previous observations regarding the ability of AlphaFold to predict antibody structures and antigen binding, the results are mixed. While the authors are able to use AlphaFold to identify and experimentally validate a previously characterized broad binding epitope with impressive precision, they are unable to consistently identify the proper binding registers for their control [Myc-tag, HA-tag] peptides. Further, it appears that the reproducibility and generality of these results are low, with new versions of AlphaFold negatively impacting the predictive power. However, if this reproducibility issue is solved, and the test set is greatly increased, this manuscript could contribute strongly towards our ability to predict antibody-antigen interactions.

      Strengths:

      Due to the high significance, but difficulty, of the prediction of antibody-antigen interactions, any attempts to break down these predictions into more tractable problems should be applauded. The authors' approach of focusing on linear epitopes (peptides) is clever, reducing some of the complexities inherent to antibody binding. Further, the ability of AlphaFold to narrow down a previously broadly identified experimental epitope is impressive. The subsequent experimental validation of this more precisely identified epitope makes for a nice data point in the assessment of AlphaFold's ability to predict antibody-antigen interactions.

      Weaknesses:

      Without a larger set of test antibody-peptide interactions, it is unclear whether or not AlphaFold can precisely identify the binding register of a given antibody to a given peptide antigen. Even within the small test set of 3 antibody-peptide complexes, performance is variable and depends upon the scFv scaffold used for unclear reasons. Lastly, the apparent poor reproducibility is concerning, and it is not clear why the results should rely so strongly on which multi-sequence alignment (MSA) version is used, when neither the antibody CDR loops nor the peptide are likely to strongly rely on these MSAs for contact prediction.

      Major Point-by-Point Comments:

      (1) The central concern for this manuscript is the apparent lack of reproducibility. The way the authors discuss the issue (lines 523-554) it sounds as though they are unable to reproduce their initial results (which are reported in the main text), even when previous versions of AlphaFold2 are used. If this is the case, it does not seem that AlphaFold can be a reliable tool for predicting antibody-peptide interactions.

      (2) Aside from the fundamental issue of reproducibility, the number of validating tests is insufficient to assess the ability of AlphaFold to predict antibody-peptide interactions. Given the authors' use of AlphaFold to identify antibody binding to a linear epitope within a whole protein (in the mBG17:SARS-Cov-2 nucleocapsid protein interaction), they should expand their test set well beyond Myc- and HA-tags using antibody-antigen interactions from existing large structural databases.

      (3) As discussed in lines 358-361, the authors are unsure if their primary control tests (antibody binding to Myc-tag and HA-tag) are included in the training data. Lines 324-330 suggest that even if the peptides are not included in the AlphaFold training data because they contain fewer than 10 amino acids, the antibody structures may very well be included, with an obvious "void" that would be best filled by a peptide. The authors must confirm that their tests are not included in the AlphaFold training data, or re-run the analysis with these templates removed.

      (4) The ability of AlphaFold to refine the linear epitope of antibody mBG17 is quite impressive and robust to the reproducibility issues the authors have run into. However, Figure 4 seems to suggest that the target epitope adopts an alpha-helical structure. This may be why the score is so high and the prediction is so robust. It would be very useful to see along with the pLDDT by residue plots a structure prediction by residue plot. This would help to see if the high confidence pLDDT is coming more from confidence in the docking of the peptide or confidence in the structure of the peptide.

      (5) Related to the above comment, pLDDT is insufficient as a metric for assessing antibody-antigen interactions. There is a chance (as is nicely shown in Figure S3C) that AlphaFold can be confident and wrong. Here we see two orange-yellow dots (fairly high confidence) that place the peptide COM far from the true binding region. While running the recommended larger validation above, the authors should also include a peptide RMSD or COM distance metric, to show that the peptide identity is confident, and the peptide placement is roughly correct. These predictions are not nearly as valuable if AlphaFold is getting the right answer for the wrong reasons (i.e. high pLDDT but peptide binding to a non-CDR loop region). Eventual users of the software will likely want to make point mutations or perturb the binding regions identified by the structural predictions (as the authors do in Figure 4).

      Comments on revisions:

      I have read the author's responses and the revised manuscript. The authors did not sufficiently address my comments, nor the fundamental issue with the manuscript.

      By the authors' own admission, many of the results presented in the current version of the manuscript cannot be reproduced without relying on locally saved MSAs. In other words, there is almost no evidence presented that this pipeline will predict antibody-antigen interactions using currently publicly available software. This manuscript is reduced to essentially a case study (N=1) in how one might go about making such predictions coupled with pretty good experimental evidence backing up this singular prediction.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors showed the applicability and usefulness of a new AlphaFold2 pipeline called PabFold, which can predict linear antibody epitopes (B-cell epitopes) that can be helpful for the selection of reagents to be applied in competitive ELISA assay.

      Strengths:

      The authors showed the accuracy of the pipeline to identify correctly the binding epitope for three different antibody-antigen systems (Myc, HA, and Sars-Cov2 nucleocapsid protein). The design of scFvs from Fab of the three antibodies to speed up the analysis time is extremely interesting.

      Weaknesses:

      The article justifies correctly the findings and no great weaknesses are present. However, it could be useful for a broader audience to show in detail how pLDDT was calculated for both Simple-Max approach (per residue-pLDDT) and Consensus analysis ( average pLDDT for each peptide), with associated equations.

      Comments on revisions:

      I have read the author's responses to my comments and the revised paper. They addressed the minor comments and concerns. However, I agree with Reviewer #1 that these findings cannot be reproduced without local MSAs and this is a major issue.

    1. Reviewer #1 (Public review):

      Summary:

      Rigor in the design and application of scientific experiments is an ongoing concern in preclinical (animal) research. Because findings from these studies are often used in the design of clinical (human) studies, it is critical that the results of the preclinical studies are valid and replicable. However, several recent peer-reviewed published papers have shown that some of the research results in cardiovascular research literature may not be valid because their use of key design elements is unacceptably low. The current study is designed to expand on and replicate previous preclinical studies in nine leading scientific research journals. Cardiovascular research articles that were used for examination were obtained from a PubMed Search. These articles were carefully examined for four elements that are important in the design of animal experiments: use of both biological sexes, randomization of subjects for experimental groups, blinding of the experimenters, and estimating the proper size of samples for the experimental groups. The findings of the current study indicate that the use of these four design elements in the reported research in preclinical research is unacceptably low. Therefore, the results replicate previous studies and demonstrate once again that there is an ongoing problem in the experimental design of preclinical cardiovascular research.

      Strengths:

      This study selected four important design elements for study. The descriptions in the text and figures of this paper clearly demonstrate that the rate of use of all four design elements in the examined research articles was unacceptably low. The current study is important because it replicates previous studies and continues to call attention once again to serious problems in the design of preclinical studies, and the problem does not seem to lessen over time.

      Weaknesses:

      Weaknesses from the first review were adequately addressed.

    1. Reviewer #1 (Public review):

      Summary:

      Authors of this article have previously shown the involvement of the transcription factor Zinc finger homeobox-3 (ZFHX3) in the function of the circadian clock and the development/differentiation of the central circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. Here, they show that ZFHX3 plays a critical role in the transcriptional regulation of numerous genes in the SCN. Using inducible knockout mice, they further demonstrate that the deletion Of Zfhx3 induces a phase advance of the circadian clock, both at the molecular and behavioral levels.

      Strengths:

      - Inducible deletion of Zfhx3 in adults<br /> - Behavioral analysis<br /> - Properly designed and analyzed ChIP-Seq and RNA-Seq supporting the conclusion of the behavioral analysis

      Weaknesses:

      - Further characterization of the disruption of the activity of the SCN is required.<br /> - The description of the controls needs some clarification.

    2. Reviewer #2 (Public review):

      Summary:

      ZFHX3 is a transcription factor expressed in discrete populations of adult SCN and was shown by the authors previously to control circadian behavioral rhythms using either a dominant missense mutation in Zfhx3 or conditional null Zfhx3 mutation using the Ubc-Cre line (Wilcox et al., 2017). In the current manuscript, the authors assess the function of ZFHX3 by using a multi-omics approach including ChIPSeq in wildtype SCNs and RNAseq of SCN tissues from both wildtype and conditional null mice. RNAseq analysis showed a loss of oscillation in Bmal1 and changes in expression levels of other clock output genes. Moreover, a phase advance gene transcriptional profile using the TimeTeller algorithm suggests the presence of a regulatory network that could underlie the observed pattern of advanced activity onset in locomotor behavior in knockout mice.

      In figure1, the authors identified tthe ZFHX3 bound sites using ChIPseq and compared the loci with other histone marks that occur at promoters, TSS, enhancers and intergenic regions. And the analysis broadly points to a role for ZFHX3 in transcriptional regulation. The vast majority of nearly 40000 peaks overlapped H3K4me3 and K27ac marks, active promoters which also included genes falling under the GO category circadian rhythms. However, no significant differential ZFHX3 bound peaks were detected between ZT3 and ZT15. In these experiments, it is not clear if and how the different ChIP samples (ZFHX3 and histone PTM ChIPs) were normalized/downsampled for analysis. Moreover, it seems that ZFHX3 binding or recruitment has little to do with whether the promoters are active.

      Based on a enrichment of ARNT domains next to K4Me3 and K27ac PTMs, the authors propose a model where the core-clock TFs and ZFHX3 interact. If the authors develop other assays beyond just predictions to test their hypothesis, it would strengthen the argument for role in circadian transcription in the SCN. It would be important in this context to perform a ChIP-seq experiment for ZFHX3 in the knockout animal (described from Figure 2 onwards) to eliminate the possibility of non-specific enrichment of signal from "open chromatin'. Alternatively, a ChIPseq analysis for BMAL1 or CLOCK could also strengthen this argument to identify the sites co-occupied by ZFHX3 and core-clock TFs.

      Next, they compared locomotor activity rhythms in floxed mice with or without tamoxifen treatment. As reported before in Wilcox et al 2017, the loss of ZFHX3 led to a shorter free running period and reduced amplitude and earlier onset of activity. Overall, the behavioral data in Figure 2 and supplementary figure 2 has been reported before and are not novel.

      Next, the authors performed RNAseq at 4hr intervals on wildtype and knockout animals maintained in light/dark cycles to determine the impact of loss of ZFHX3. Overall transcriptomic analysis indicated changes in gene expression in nearly 36% of expressed genes, with nearly half being upregulated while an equal fraction was downregulated. Pathways affected included mostly neureopeptide neurotransmitter pathways. Surprisingly, there was no correlation between the direction in change in expression and TF binding since nearly all the sites were bound by ZFHX3 and the active histone PTMs. The ChIP-seq experiment for ZFHX3 in the UBC-Cre+Tam mice again could help resolve the real targets of ZFHX3 and the transcriptional state in knockout animals.

      To determine the fraction of rhythmic transcripts, Using dryR, the authors categorise the rhythmic transcriptome into modules that include genes that lose rhythmicity in the KO, gain rhythmicity in the KO or remain unaffected or partially affected. The analysis indicates that a large fraction of the rhythmic transcriptome is affected in the KO model. However, among core-clock genes only Bmal1 expression is affected showing a complete loss of rhythm. The authors state a decrease in Clock mRNA expression (line 294) but the panel figure 4A does not show this data. Instead it depicts the loss in Avp expression - {{ misstated in line 321 ( we noted severe loss in 24-h rhythm for crucial SCN neuropeptides such as Avp (Fig. 3a).}}

      However, core-clock genes such as Pers and Crys show minor or no change in expression patterns while Per2 and Per3 show a ~2hr phase advance. While these could only weakly account for the behavioral phase advance, the authors used TimeTeller to assess circadian phase in wildtype and ZFHX3 deficient mice. This approach clearly indicated that while the clock is not disrupted in the knockout animals, the phase advance can be correctly predicted from a network of gene expression patterns.

      Strengths:

      The authors use a multiomic strategy in order to reveal the role of the ZFHX3 transcription factor with a combination of TF and histone PTM ChIPseq, time-resolved RNAseq from wildtype and knockout mice and modeling the transcriptomic data using TimeTeller. The RNAseq experiments are nicely controlled and the analysis of the data indicates a clear impact on gene-expression levels in the knockout mice and the presence of a regulatory network that could underlie the advanced activity onset behavior.

      Weaknesses:

      It is not clear whether ZFHX3 has a direct role in any of the processes and seems to be a general factor that marks H3K4me3 and K27ac marked chromatin. Why it would specifically impact the core-clock TTFL clock gene expression or indeed daily gene expression rhythms is not clear either. Details for treatment of different ChIP samples (ZFHX3 and histone PTM ChIPs) on data normalization for analysis are needed. The loss of complete rhythmicity of Avp and other neuropeptides or indeed other TFs could instead account for the transcriptional deregulation noted in the knockout mice.

    1. Reviewer #1 (Public review):

      Summary:

      Migration of the primordial germ cells (PGCs) in mice is asynchronous, such that leading and lagging populations of migrating PGCs emerge. Prior studies found that interactions between the cells the PGCs encounter along their migration routes regulates their proliferation. In this study, the authors used single cell RNAseq to investigate PGC heterogeneity and to characterize their niches during their migration along the AP axis. Unlike prior scRNAseq studies of mammalian PGCs, the authors conducted a time course covering 3 distinct stages of PGC migration (pre, mid, and post migration) and isolated PGCs from defined somite positions along the AP axis. In doing so, this allowed the authors to uncover differences in gene expression between leading and lagging PGCs and their niches and to investigate how their transcript profiles change over time. Among the pathways with the biggest differences were regulators of actin polymerization and epigenetic programming factors and Nodal response genes. In addition, the authors report changes in somatic niches, specifically greater non-canonical WNT in posterior PGCs compared to anterior PGCs. This relationship between the hindgut epithelium and migrating PGCs was also detected in reanalysis of a previously published dataset of human PGCs. Using whole mount immunofluorescence, the authors confirmed elevated Nodal signaling based on detection of the LEFTY antagonists and targets of Nodal during late stage PGC migration. Taken together, the authors have assembled a temporal and spatial atlas of mouse PGCs and their niches. This resource and the data herein provide support for the model that interactions of migrating mouse PGCs with their niches influences their proliferation, cytoskeletal regulation, epigenetic state and pluripotent state.

      Overall, the findings provide new insights into heterogeneity among leading and lagging PGC populations and their niches along the AP axis, as well as comparisons between mouse and human migrating PGCs. The data are clearly presented, and the text is clear and well-written. This atlas resource will be valuable to reproductive and developmental biologists as a tool for generating hypotheses and for comparisons of PGCs across species.

      Strengths:

      (1) High quality atlas of individual PGCs prior to, during and post migration and their niches at defined positions along the AP axis.<br /> (2) Comparisons to available datasets, including human embryos, provide insight into potentially conserved relationships among PGCs and the identified pathways and gene expression changes.<br /> (3) Detailed picture of PGC heterogeneity.<br /> (4) Valuable resource for the field.<br /> (5) Some validation of Nodal results and further support for models in the literature based on less comprehensive expression analysis.

      Weaknesses:

      (1) No indication of which sex(es) were used for the mouse data and whether or not sex-related differences exist or can excluded at the stages examined. This should be clarified.

    2. Reviewer #2 (Public review):

      Summary:

      This work addresses the question of how 'leading' and 'lagging' PGCs differ, molecularly, during their migration to the mouse genital ridges/gonads during fetal life (E9.5, E10.5, E11.5), and how this is regulated by different somatic environments encountered during the process of migration. E9.5 and E10.5 cells differed in expression of genes involved in canonical WNT signaling and focal adhesions. Differences in cell adhesion, actin cytoskeletal dynamics were identified between leading and lagging cells, at E9.5, before migration into the gonads. At E10.5, when some PGCs have reached the genital ridges, differences in Nodal signaling response genes and reprogramming factors were identified. This last point was verified by whole mount IF for proteins downstream of Nodal signaling, Lefty1/2. At E11.5, there was upregulation of genes associated with chromatin remodeling and oxidative phosphorylation. Some aspects of the findings were also found to be likely true in human development, established via analysis of a dataset previously published by others.

      Strengths:

      The work is strong in that a large number of PGCs were isolated and sequenced, along with associated somatic cells. The authors dealt with problem of very small number of migrating mouse PGCs by pooling cells from embryos (after ascertaining age matching using somite counting). 'Leading' and 'lagging' populations were separated by anterior and posterior embryo halves and the well-established Oct4-deltaPE-eGFP reporter mouse line was used.

      Weaknesses:

      The work seems to have been carefully done, but I do not feel the manuscript is very accessible, and I do not consider it well written. The novel findings are not easy to find. The addition of at least one figure to show the locations of putative signaling etc. would be welcome.

      (1) The initial discussion of CellRank analysis (under 'Transcriptomic shifts over developmental time...' heading) is somewhat confusing - e.g. If CellRank's 'pseudotime analysis' produces a result that seems surprising (some E9.5 cells remain in a terminal state with other E9.5 cells) and 'realtime analysis' produces something that makes more sense, is there any point including the pseudotime analysis (since you have cells from known timepoints)? Perhaps the 'batch effects' possible explanation (in Discussion) should be introduced here. Do we learn anything novel from this CellRank analysis? The 'genetic drivers' identified seem to be genes already known to be key to cell transitions during this period of development.

      (2) In Discussion - with respect to Y-chromosome correlation, it is not clear why this analysis would be done at E10.5, when E11.5 data is available (because some testis-specific effect might be more apparent at the later stage).

      (3) Figure 2A - it seems surprising that there are two clusters of E9.5 anterior cells

      (4) Figure 5F - there does seem to be more LEFTY1/2 staining in the anterior region, but also more germ cells as highlighted by GFP

    3. Reviewer #3 (Public review):

      Summary:

      The migration of primordial germ cells (PGCs) to the developing gonad is a poorly understood, yet essential step in reproductive development. Here, the authors examine whether there are differences in leading and lagging migratory PGCs using single-cell RNA sequencing of mouse embryos. Cleverly, the authors dissected embryonic trunks along the anterior-to-posterior axis prior to scRNAseq in order to distinguish leading and lagging migratory PGCs. After batch corrections, their analyses revealed several known and novel differences in gene expression within and around leading and lagging PGCs, intercellular signaling networks, as well as number of genes upregulated upon gonad colonization. The authors then compared their datasets with publicly available human datasets to identify common biological themes. Altogether, this rigorous study reveals several differences between leading and lagging migratory PGCs, hints at signatures for different fates among the population of migratory PGCs, and provides new potential markers for post-migratory PGCs in both humans and mice. While many of the interesting hypotheses that arise from this work are not extensively tested, these data provide a rich platform for future investigations.

      Strengths:

      -The authors have successfully navigated significant technical challenges to obtain a substantial number of mouse migratory primordial germ cells for robust transcriptomic analysis. Here the authors were able to collect quality data on ~13,000 PGCs and ~7,800 surrounding somatic cells, which is ten times more PGCs than previous studies.

      - The decision to physically separate leading and lagging primordial germ cells was clever and well-validated based on expected anterior-to-posterior transcriptional signatures.

      - Within the PGCs and surrounding tissues, the authors found many gene expression dynamics they would expect to see both along the PGC migratory path as well as across developmental time, increasing confidence in the new differentially expressed genes they found.

      - The comparison of their mouse-based migratory PGC datasets with existing human migratory PGC datasets is appreciated.

      - The quality control, ambient RNA contamination elimination, batch correction, cell identification and analysis of scRNAseq data were thorough and well-done such that the new hypotheses and markers found through this study are dependable.

      - The subsetting of cells in their trajectory analysis is appreciated, further strengthening their cell terminal state predictions.

      Weaknesses:

      - Although it is useful to compare their mouse-based dataset with human datasets, the authors used two different analysis pipelines for each dataset. While this may have been due to the small number of cells in the human dataset as mentioned, it does make it difficult to compare them.

      - There were few validation experiments within this study. For one such experiment, whether there is a difference in pSMAD2/3 along the AP axis is unclear and not quantified as was nicely done for Lefty1/2.

    1. Reviewer #1 (Public review):

      This manuscript introduces a useful curation pipeline of antibody-antigen structures downloaded from the PDB database. The antibody-antigen structures are presented in a new database called AACDB, alongside annotations that were either corrected from those present in the PDB database or added de-novo with a solid methodology. Sequences, structures, and annotations can be very easily downloaded from the AACDB website, speeding up the development of structure-based algorithms and analysis pipelines to characterize antibody-antigen interactions. However, AACDB is missing some key annotations that would greatly enhance its usefulness.

      Here are detailed comments regarding the three strengths above:

      (1) I think potentially the most significant contribution of this database is the manual data curation to fix errors present in the PDB entries, by cross-referencing with the literature. However, as a reviewer, validating the extent and the impact of these corrections is hard, since the authors only provided a few anecdotal examples in their manuscript.

      I have personally verified some of the examples presented by the authors and found that SAbDab appears to fix the mistakes related to the misidentification of antibody chains, but not other annotations.

      (a) "the species of the antibody in 7WRL was incorrectly labeled as "SARS coronavirus B012" in both PDB and SabDab" → I have verified the mistake and fix, and that SAbDab does not fix is, just uses the pdb annotation.<br /> (b) "1NSN, the resolution should be 2.9 , but it was incorrectly labeled as 2.8" → I have verified the mistake and fix, and that saabdab does not fix it, just uses the PDB annotation.<br /> (c) "mislabeling of antibody chains as other proteins (e.g. in 3KS0, the light chain of B2B4 antibody was misnamed as heme domain of flavocytochrome b2)" → SAbDab fixes this as well in this case.<br /> (d) "misidentification of heavy chains as light chains (e.g. both two chains of antibody were labeled as light chain in 5EBW)" → SAbDab fixes this as well in this case.

      I personally believe the authors should make public the corrections made, and describe the procedures - if systematic - to identify and correct the mistakes. For example, what was the exact procedure (e.g. where were sequences found, how were the sequences aligned, etc.) to find mutations? Was the procedure run on every entry?

      (2) I believe the splitting of the pdb files is a valuable contribution as it standardizes the distribution of antibody-antigen complexes. Indeed, there is great heterogeneity in how many copies of the same structure are present in the structure uploaded to the PDB, generating potential artifacts for machine learning applications to pick up on. That being said, I have two thoughts both for the authors and the broader community. First, in the case of multiple antibodies binding to different epitopes on the same antigen, one should not ignore the potentially stabilizing effect that the binding of one antibody has on the complex, thereby enabling the binding of the second antibody. In general, I urge the community to think about what is the most appropriate spatial context to consider when modeling the stability of interactions from crystal structure data. Second, and in a similar vein, some antigens occur naturally as homomultimers - e.g. influenza hemagglutinin is a homotrimer. Therefore, to analyze the stability of a full-antigen-antibody structure, I believe it would be necessary to consider the full homo-trimer, whereas, in the current curation of AACDB with the proposed data splitting, only the monomers are present.

      (3) I think the annotation of interface residues is a useful addition to structural datasets, but their current presentation is lacking on several fronts.

      I think the manuscript is lacking in justification about the numbers used as cutoffs (1A^2 for change in SASA and 5A for maximum distance for contact) The authors just cite other papers applying these two types of cutoffs, but the underlying physico-chemical reasons are not explicit even in these papers. I think that, if the authors want AACDB to be used globally for benchmarks, they should provide direct sources of explanations of the cutoffs used, or provide multiple cutoffs. Indeed, different cutoffs are often used (e.g. ATOM3D uses 6A instead of 5A to determine contact between a protein and a small molecule https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c45147dee729311ef5b5c3003946c48f-Abstract-round1.html)

      I think the authors should provide a figure with statistics pertaining to the interface atoms. I think showing any distribution differences between interface atoms determined according to either strategy (number of atoms, correlation between change in SASA and distance...) would be fundamental to understanding the two strategies. I think other statistics would constitute an enhancement as well (e.g. proportion of heavy vs. light chain residues).

      Some obvious limitations of AACDB in its current form include:

      AACDB only contains entries with protein-based antigens of at most 50 amino acids in length. This excludes non-protein-based antigens, such as carbohydrate- and nucleotide-based, as well as short peptide antigens.

      AACDB does not include annotations of binding affinity, which are present in SAbDab and have been proven useful both for characterizing drivers of antibody-antigen interactions (cite https://www.sciencedirect.com/science/article/pii/S0969212624004362?via%3Dihub) and for benchmarking antigen-specific antibody-design algorithms (cite https://www.biorxiv.org/content/10.1101/2023.12.10.570461v1)).

      In conclusion, I believe AACDB has the potential to be a more standardized and error-light database for antibody-antigen complex structures. It is, however, hard to evaluate the extent to which errors have been corrected since the authors do not provide a list of the errors or a step-by-step procedure for fixing the errors. Unfortunately, AACDB is currently missing binding affinity annotations, which hinders its usefulness.

    2. Reviewer #2 (Public review):

      Summary:

      Antibodies, thanks to their high binding affinity and specificity to cognate protein targets, are increasingly used as research and therapeutic tools. In this work, Zhou et al. have created, curated, and made publicly available a new database of antibody-antigen complexes to support research in the field of antibody modelling, development, and engineering.

      Strengths:

      The authors have performed a manual curation of antibody-antigen complexes from the Protein Data Bank, rectifying annotation errors; they have added two methods to estimate paratope-epitope interfaces; they have produced a web interface that is capable of both effective visualisation and of summarising the key useful information in one page. The database is also cross-linked to other databases that contain information relevant to antibody developability and therapeutic applications.

      Weaknesses:

      The database does not import all the experimental information from PDB and contains only complexes with large protein targets.

    1. Reviewer #1 (Public review):

      Summary:

      Mackie and colleagues compare chemosensory preferences between C. elegans and P. pacificus, and the cellular and molecular mechanisms underlying them. The nematodes have overlapping and distinct preferences for different salts. Although P. pacificus lacks the lsy-6 miRNA important for establishing asymmetry of the left/right ASE salt-sensing neurons in C. elegans, the authors find that P. pacificus ASE homologs achieve molecular (receptor expression) and functional (calcium response) asymmetry by alternative means. This work contributes an important comparison of how these two nematodes sense salts and highlights that evolution can find different ways to establish asymmetry in small nervous systems to optimize the processing of chemosensory cues in the environment.

      Strengths:

      The authors use clear and established methods to record the response of neurons to chemosensory cues. They were able to show clearly that ASEL/R are functionally asymmetric in P. pacificus, and combined with genetic perturbation establish a role for che-1-dependent gcy-22.3 in in the asymmetric response to NH4Cl.

      Weaknesses:

      The mechanism of lsy-6-independent establishment of ASEL/R asymmetry in P. pacificus remains uncharacterized.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Mackie et al. investigate gustatory behavior and the neural basis of gustation in the predatory nematode Pristionchus pacificus. First, they show that the behavioral preferences of P. pacificus for gustatory cues differ from those reported for C. elegans. Next, they investigate the molecular mechanisms of salt sensing in P. pacificus. They show that although the C. elegans transcription factor gene che-1 is expressed specifically in the ASE neurons, the P. pacificus che-1 gene is expressed in the Ppa-ASE and Ppa-AFD neurons. Moreover, che-1 plays a less critical role in salt chemotaxis in P. pacificus than C. elegans. Chemogenetic silencing of Ppa-ASE and Ppa-AFD neurons results in more severe chemotaxis defects. The authors then use calcium imaging to show that both Ppa-ASE and Ppa-AFD neurons respond to salt stimuli. Calcium imaging experiments also reveal that the left and right Ppa-ASE neurons respond differently to salts, despite the fact that P. pacificus lacks lsy-6, a microRNA that is important for ASE left/right asymmetry in C. elegans. Finally, the authors show that the receptor guanylate cyclase gene Ppa-gcy-23.3 is expressed in the right Ppa-ASE neuron (Ppa-ASER) but not the left Ppa-ASE neuron (Ppa-ASEL) and is required for some of the gustatory responses of Ppa-ASER, further confirming that the Ppa-ASE neurons are asymmetric and suggesting that Ppa-GCY-23.3 is a gustatory receptor. Overall, this work provides insight into the evolution of gustation across nematode species. It illustrates how sensory neuron response properties and molecular mechanisms of cell fate determination can evolve to mediate species-specific behaviors. However, the paper would be greatly strengthened by a direct comparison of calcium responses to gustatory cues in C. elegans and P. pacificus, since the comparison currently relies entirely on published data for C. elegans, where the imaging parameters likely differ. In addition, the conclusions regarding Ppa-AFD neuron function would benefit from additional confirmation of AFD neuron identity. Finally, how prior salt exposure influences gustatory behavior and neural activity in P. pacificus is not discussed.

      Strengths:

      (1) This study provides exciting new insights into how gustatory behaviors and mechanisms differ in nematode species with different lifestyles and ecological niches. The results from salt chemotaxis experiments suggest that P. pacificus shows distinct gustatory preferences from C. elegans. Calcium imaging from Ppa-ASE neurons suggests that the response properties of the ASE neurons differ between the two species. In addition, an analysis of the expression and function of the transcription factor Ppa-che-1 reveals that mechanisms of ASE cell fate determination differ in C. elegans and P. pacificus, although the ASE neurons play a critical role in salt sensing in both species. Thus, the authors identify several differences in gustatory system development and function across nematode species.

      (2) This is the first calcium imaging study of P. pacificus, and it offers some of the first insights into the evolution of gustatory neuron function across nematode species.

      (3) This study addresses the mechanisms that lead to left/right asymmetry in nematodes. It reveals that the ASER and ASEL neurons differ in their response properties, but this asymmetry is achieved by molecular mechanisms that are at least partly distinct from those that operate in C. elegans. Notably, ASEL/R asymmetry in P. pacificus is achieved despite the lack of a P. pacificus lsy-6 homolog.

      Weaknesses:

      (1) The authors observe only weak attraction of C. elegans to NaCl. These results raise the question of whether the weak attraction observed is the result of the prior salt environment experienced by the worms. More generally, this study does not address how prior exposure to gustatory cues shapes gustatory responses in P. pacificus. Is salt sensing in P. pacificus subject to the same type of experience-dependent modulation as salt sensing in C. elegans?

      (2) A key finding of this paper is that the Ppa-CHE-1 transcription factor is expressed in the Ppa-AFD neurons as well as the Ppa-ASE neurons, despite the fact that Ce-CHE-1 is expressed specifically in Ce-ASE. However, additional verification of Ppa-AFD neuron identity is required. Based on the image shown in the manuscript, it is difficult to unequivocally identify the second pair of CHE-1-positive head neurons as the Ppa-AFD neurons. Ppa-AFD neuron identity could be verified by confocal imaging of the CHE-1-positive neurons, co-expression of Ppa-che-1p::GFP with a likely AFD reporter, thermotaxis assays with Ppa-che-1 mutants, and/or calcium imaging from the putative Ppa-AFD neurons.

      (3) Loss of Ppa-che-1 causes a less severe phenotype than loss of Ce-che-1. However, the loss of Ppa-che-1::RFP expression in ASE but not AFD raises the question of whether there might be additional start sites in the Ppa-che-1 gene downstream of the mutation sites. It would be helpful to know whether there are multiple isoforms of Ppa-che-1, and if so, whether the exon with the introduced frameshift is present in all isoforms and results in complete loss of Ppa-CHE-1 protein.

      (4) The authors show that silencing Ppa-ASE has a dramatic effect on salt chemotaxis behavior. However, these data lack control with histamine-treated wild-type animals, with the result that the phenotype of Ppa-ASE-silenced animals could result from exposure to histamine dihydrochloride. This is an especially important control in the context of salt sensing, where histamine dihydrochloride could alter behavioral responses to other salts.

      (5) The calcium imaging data in the paper suggest that the Ppa-ASE and Ce-ASE neurons respond differently to salt solutions. However, to make this point, a direct comparison of calcium responses in C. elegans and P. pacificus using the same calcium indicator is required. By relying on previously published C. elegans data, it is difficult to know how differences in growth conditions or imaging conditions affect ASE responses. In addition, the paper would be strengthened by additional quantitative analysis of the calcium imaging data. For example, the paper states that 25 mM NH4Cl evokes a greater response in ASEL than 250 mM NH4Cl, but a quantitative comparison of the maximum responses to the two stimuli is not shown.

      (6) It would be helpful to examine, or at least discuss, the other P. pacificus paralogs of Ce-gcy-22. Are they expressed in Ppa-ASER? How similar are the different paralogs? Additional discussion of the Ppa-gcy-22 gene expansion in P. pacificus would be especially helpful with respect to understanding the relatively minor phenotype of the Ppa-gcy-22.3 mutants.

      (7) The calcium imaging data from Ppa-ASE is quite variable. It would be helpful to discuss this variability. It would also be helpful to clarify how the ASEL and ASER neurons are being conclusively identified during calcium imaging.

      (8) More information about how the animals were treated prior to calcium imaging would be helpful. In particular, were they exposed to salt solutions prior to imaging? In addition, the animals are in an M9 buffer during imaging - does this affect calcium responses in Ppa-ASE and Ppa-AFD? More information about salt exposure, and how this affects neuron responses, would be very helpful.

      (9) In Figure 6, the authors say that Ppa-gcy-22.3::GFP expression is absent in the Ppa-che-1(ot5012) mutant. However, based on the figure, it looks like there is some expression remaining. Is there a residual expression of Ppa-gcy-22.3::GFP in ASE or possibly ectopic expression in AFD? Does Ppa-che-1 regulate rGC expression in AFD? It would be helpful to address the role of Ppa-che-1 in AFD neuron differentiation.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper Kawasaki et al describe a regulatory role for the PIWI/piRNA pathway in rRNA regulation in Zebrafish. This regulatory role was uncovered through a screen for gonadogenesis defective mutants, which identified a mutation in the meioc gene, a coiled-coil germ granule protein. Loss of this gene leads to redistribution of Piwil1 from germ granules to the nucleolus, resulting in silencing of rRNA transcription.

      Strengths:

      Most of the experimental data provided in this paper is compelling. It is clear that in the absence of meioc, PiwiL1 translocates in to the nucleolus and results in down regulation of rRNA transcription. the genetic compensation of meioc mutant phenotypes (both organismal and molecular) through reduction in PiwiL1 levels are evidence for a direct role for PiwiL1 in mediating the phenotypes of meioc mutant.

      Weaknesses:

      Questions remain on the mechanistic details by which PiwiL1 mediated rRNA down regulation, and whether this is a function of Piwi in an unperturbed/wildtype setting. There is certainly some evidence provided in support of the natural function for piwi in regulating rRNA transcription (figure 5A+5B). However, the de-enrichment of H3K9me3 in the heterozygous (Figure 6F) is very modest and in my opinion not convincingly different relative to the control provided. It is certainly possible that PiwiL1 is regulating levels through cleavage of nascent transcripts. Another aspect I found confounding here is the reduction in rRNA small RNAs in the meioc mutant; I would have assumed that the interaction of PiwiL1 with the rRNA is mediated through small RNAs but the reduction in numbers do not support this model. But perhaps it is simply a redistribution of small RNAs that is occurring. Finally, the ability to reduce PiwiL1 in the nucleolus through polI inhibition with actD and BMH-21 is surprising. What drives the accumulation of PiwiL1 in the nucleolus then if in the meioc mutant there is less transcription anyway?

      Despite the weaknesses outlined, overall I find this paper to be solid and valuable, providing evidence for a consistent link between PIWI systems and ribosomal biogenesis. Their results are likely to be of interest to people in the community, and provide tools for further elucidating the reasons for this link.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors report that Meioc is required to upregulate rRNA transcription and promote differentiation of spermatogonial stem cells in zebrafish. The authors show that upregulated protein synthesis is required to support spermatogonial stem cells' differentiation into multi-celled cysts of spermatogonia. Coiled coil protein Meioc is required for this upregulated protein synthesis and for increasing rRNA transcription, such that the Meioc knockout accumulates 1-2 cell spermatogonia and fails to produce cysts with more than 8 spermatogonia. The Meioc knockout exhibits continued transcriptional repression of rDNA. Meioc interacts with and sequesters Piwil1 to the cytoplasm. Loss of Meioc increases Piwil1 localization to the nucleolus, where Piwil1 interacts with transcriptional silencers that repress rRNA transcription.

      Strengths:

      This is a fundamental study that expands our understanding of how ribosome biogenesis contributes to differentiation and demonstrates that zebrafish Meioc plays a role in this process during spermatogenesis. This work also expands our evolutionary understanding of Meioc and Ythdc2's molecular roles in germline differentiation. In mouse, the Meioc knockout phenocopies the Ythdc2 knockout, and studies thus far have indicated that Meioc and Ythdc2 act together to regulate germline differentiation. Here, in zebrafish, Meioc has acquired a Ythdc2-independent function. This study also identifies a new role for Piwil1 in directing transcriptional silencing of rDNA.

      Weaknesses:<br /> There are limited details on the stem cell-enriched hyperplastic testes used as a tool for mass spec experiments, and additional information is needed to fully evaluate the mass spec results. What mutation do these testes carry? Does this protein interact with Meioc in the wildtype testes? How could this mutation affect the results from the Meioc immunoprecipitation?

    3. Reviewer #3 (Public review):

      Summary:

      The paper describes the molecular pathway to regulate germ cell differentiation in zebrafish through ribosomal RNA biogenesis. Meioc sequesters Piwil1, a Piwi homolog, which suppresses the transcription of the 45S pre-rDNA by the formation of heterochromatin, to the perinuclear bodies. The key results are solid and useful to researchers in the field of germ cell/meiosis as well as RNA biosynthesis and chromatin.

      Strengths:

      The authors nicely provided the molecular evidence on the antagonism of Meioc to Piwil1 in the rRNA synthesis, which supported by the genetic evidence that the inability of the meioc mutant to enter meiosis is suppressed by the piwil1 heterozygosity.

      Weaknesses:

      (1) Although the paper provides very convincing evidence for the authors' claim, the scientific contents are poorly written and incorrectly described. As a result, it is hard to read the text. Checking by scientific experts would be highly recommended. For example, on line 38, "the global translation activity is generally [inhibited]", is incorrect and, rather, a sentence like "the activity is lowered relative to other cells" is more appropriate here. See minor points for more examples.<br /> (2) In some figures, it is hard for readers outside of zebrafish meiosis to evaluate the results without more explanation and drawing.<br /> (3) Figure 1E, F, cycloheximide experiments: Please mention the toxicity of the concentration of the drug in cell proliferation and viability.

    1. Reviewer #1 (Public review):

      Summary:

      By way of background, the Jiang lab has previously shown that loss of the type II BMP receptor Punt (Put) from intestinal progenitors (ISCs and EBs) caused them to differentiate into EBs, with a concomitant loss of ISCs (Tian and Jiang, eLife 2014). The mechanism by which this occurs was activation of Notch in Put-deficient progenitors. How Notch was upregulated in Put-deficient ISCs was not established in this prior work. In the current study, the authors test whether a very low level of Dl was responsible. But co-depletion of Dl and Put led to a similar phenotype as depletion of Put alone. This result suggested that Dl was not the mechanism. They next investigate genetic interactions between BMP signaling and Numb, an inhibitor of Notch signaling. Prior work from Bardin, Schweisguth and other labs has shown that Numb is not required for ISC self-renewal. However the authors wanted to know whether loss of both the BMP signal transducer Mad and Numb would cause ISC loss. This result was observed for RNAi depletion from progenitors and for mad, numb double mutant clones. Of note, ISC loss was observed in 40% of mad, numb double mutant clones, whereas 60% of these clones had an ISC. They then employed a two-color tracing system called RGT to look at the outcome of ISC divisions (asymmetric (ISC/EB) or symmetric (ISC/ISC or EB/EB)). Control clones had 69%, 15% and 16%, respectively, whereas mad, numb double mutant clones had much lower ISC/ISC (11%) and much higher EB/EB (37%). They conclude that loss of Numb in moderate BMP loss of function mutants increased symmetric differentiation which lead caused ISC loss. They also reported that numb15 and numb4 clones had a moderate but significant increase in ISC-lacking clones compared to control clones, supporting the model that Numb plays a role in ISC maintenance. Finally, they investigated the relevance of these observation during regeneration. After bleomycin treatment, there was a significant increase in ISC-lacking clones and a significant decrease in clone size in numb4 and numb15 clones compared to control clones. Because bleomycin treatment has been shown to cause variation in BMP ligand production, the authors interpret the numb clone under bleomycin results as demonstrating an essential role of Numb in ISC maintenance during regeneration.

      Strengths:

      (i) Most data is quantified with statistical analysis<br /> (ii) Experiments have appropriate controls and large numbers of samples<br /> (iii) Results demonstrate an important role of Numb in maintaining ISC number during regeneration and a genetic interaction between Mad and Numb during homeostasis.

      Weaknesses:

      (i) No quantification for Fig. 1<br /> (ii) The premise is a bit unclear. Under homeostasis, strong loss of BMP (Put) leads to loss of ISCs, presumably regardless of Numb level (which was not tested). But moderate loss of BMP (Mad) does not show ISC loss unless Numb is also reduced. I am confused as to why numb does not play a role in Put mutants. Did the authors test whether concomitant loss of Put and Numb leads to even more ISC loss than Put-mutation alone.<br /> (iii) I think that the use of the word "essential" is a bit strong here. Numb plays an important role but in either during homeostasis or regeneration, most numb clones or mad, numb double mutant clones still have ISCs. Therefore, I think that the authors should temper their language about the role of Numb in ISC maintenance.

    2. Reviewer #2 (Public review):

      Summary:

      This work assesses the genetic interaction between the Bmp signaling pathway and the factor Numb, which can inhibit Notch signalling. It follows up on the previous studies of the group (Tian, Elife, 2014; Tian, PNAS, 2014) regarding BMP signaling in controlling stem cell fate decision as well as on the work of another group (Sallé, EMBO, 2017) that investigated the function of Numb on enteroendocrine fate in the midgut. This is an important study providing evidence of a Numb-mediated back up mechanism for stem cell maintenance.

      Strengths:

      (1) Experiments are consistent with these previous publications while also extending our understanding of how Numb functions in the ISC.<br /> (2) Provides an interesting model of a "back up" protection mechanism for ISC maintenance.

      Weaknesses:<br /> (1) Aspects of the experiments could be better controlled or annotated:<br /> (a) As they "randomly chose" the regions analyzed, it would be better to have all from a defined region (R4 or R2, for example) or to at least note the region as there are important regional differences for some aspects of midgut biology.<br /> (b) It is not clear to me why MARCM clones were induced and then flies grown at 18{degree sign}C? It would help to explain why they used this unconventional protocol.

      (2) There are technical limitations with trying to conclude from double-knockdown experiments in the ISC lineage, such as those in Figure 1 where Dl and put are both being knocked down: depending on how fast both proteins are depleted, it may be that only one of them (put, for example) is inactivated and affects the fate decision prior to the other one (Dl) being depleted. Therefore, it is difficult to definitively conclude that the decision is independent of Dl ligand.

      (3) Additional quantification of many phenotypes would be desired.<br /> (a) It would be useful to see esg-GFP cells/total cells and not just field as the density might change (2E for example).<br /> (b) Similarly, for 2F and 2G, it would be nice to see the % of ISC/ total cell and EB/total cell and not only per esgGFP+ cell.<br /> (c) Fig1: There is no quantification - specifically it would be interesting to know how many esg+ are su(H)lacZ positive in Put- Dl- condition compared to WT or Put- alone. What is the n?<br /> (d) Fig2: Pros + cells are not seen in the image? Are they all DllacZ+?<br /> (e) Fig3: it would be nice to have the size clone quantification instead of the distribution between groups of 2 cell 3 cells 4 cell clones.<br /> (f) How many times were experiments performed?

      (4) The authors do not comment on the reduction of clone size in DSS treatment in Figure 6K. How do they interpret this? Does it conflict with their model of Bleo vs DSS?

      (5) There is probably a mistake on sentence line 314 -316 "Indeed, previous studies indicate that endogenous Numb was not undetectable by Numb antibodies that could detect Numb expression in the nervous system".

    3. Reviewer #3 (Public review):

      Summary:

      The authors provide an in-depth analysis of the function of Numb in adult Drosophila midgut. Based on RNAi combinations and double mutant clonal analyses, they propose that Numb has a function in inhibiting Notch pathway to maintain intestinal stem cells, and is a backup mechanism with BMP pathway in maintaining midgut stem cell mediated homeostasis.

      Strengths:

      Overall, this is a carefully constructed series of experiments, and the results and statistical analyses provides believable evidence that Numb has a role, albeit weak compared to other pathways, in sustaining ISC and in promoting regeneration especially after damage by bleomycin, which may damage enterocytes and therefore disrupt BMP pathway more. The results overall support their claim.

      The data are highly coherent, and support a genetic function of Numb, in collaborating with BMP signaling, to maintain the number and proliferative function of ISCs in adult midguts. The authors used appropriate and sophisticated genetic tools of double RNAi, mutant clonal analysis and dual marker stem cell tracing approaches to ensure the results are reproducible and consistent. The statistical analyses provide confidence that the phenotypic changes are reliable albeit weaker than many other mutants previously studied.

      Weaknesses:<br /> In the absence of Numb itself, the midgut has a weak reduction of ISC number (Fig. 3 and 5), as well as weak albeit not statistically significant reduction of ISC clone size/proliferation. I think the authors published similar experiments with BMP pathway mutants. The mad1-2 allele used here as stated below may not be very representative of other BMP pathway mutants. Therefore, it could be beneficial to compare the number of ISC number and clone sizes between other BMP experiments to provide the readers with a clearer picture of how these two pathways individually contribute (stronger/weaker effects) to the ISC number and gut homeostasis.

      The main weakness of this manuscript is the analysis of the BMP pathway components, especially the mad1-2 allele. The mad RNAi and mad1-2 alleles (P insertion) are supposed to be weak alleles and that might be suitable for genetic enhancement assays here together with numb RNAi. However, the mad1-2 allele, and sometimes the mad RNAi, showed weakly increased ISC clone size. This is kind of counter-intuitive that they should have a similar ISC loss and ISC clone size reduction.

      A much stronger phenotype was observed when numb mutants were subject to treatment of tissue damaging agents Bleomycin, which causes damage in different ways than DSS. Bleomycin as previously shown to be causing mainly enterocyte damage, and therefore disrupt BMP signaling from ECs more likely. Therefore, this treatment together with loss of numb led to a highly significant reduction of ISC in clones and reduction of clone size/proliferation. One improvement is that it is not clear whether the authors discussed the nature of the two numb mutant alleles used in this study and the comparison to the strength of the RNAi allele. Because the phenotypes are weak and more variable, the use of specific reagents is important.

      Furthermore, the use of possible activating alleles of either or both pathways to test genetic enhancement or synergistic activation will provide strong support for the claims.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors set out to determine how a DNA demethylation enzyme TET2 regulates beta cell senescence in the context of Type 2 Diabetes and aging. They analyze public RNA-seq data and found upregulation of TET2 coincident with downregulation of MOF and PTEN, genes involved in chromatin regulation and cell cycle. TET2 is upregulated during aging, high-fat diet feeding, high glucose on rat beta cell line INS1E, and in leptin receptor deficient (db/db) mice islets. This was not found for TET1 and TET3. TET2 global KO mice show improved glucose tolerance during aging, but not TET1 or TET3. The authors show improved beta cell identity genes in TET2 KO islets. They they performed DNA methyalation/hydroxymethylation analyses of TET2 KO transformed rat beta cell line INS1E followed by ChIP-seq of Histone H4K16 acetylation to find this mark relies on TET2 expression. Finally they demonstrate in the cell lines that overexpressing TET2 leads to loss of MOF and increased PTEN and p16, linking TET2 to a regulatory mechanism with these factors that may influence senescence.

      Strengths:

      The study uses a number of orthogonal approaches and evidence from cell lines and the genetic TET2 KO as well as primary islets. The concept is interesting and potentially useful to the field. Efforts were made to examine TET1 and TET3 paralogues to rule out their compensation.

      Weaknesses:

      The study has several major weaknesses that mean the data presented did not fully support the main conclusions. These include the following:

      (1) From the beginning of the manuscript the authors first sentence does not seem to indicate which datasets were analysed, the rationale behind why public datasets were used and what the main conclusions are being drawn from the plots shown throughout Fig. 1. This section of the manuscript was very hard to follow, and lacked rationale and explanation as to what these data show.

      (2) All of the metabolic phenotypic data come from global TET2 KO mice, where TET2 is lost from all cells. The authors need to use a beta cell-specific KO of TET2 to ensure that metabolic changes are not due to cross-talk with other tissues (e.g. liver, adipose, even effects on central control of metabolism). No insulin tolerance tests were done to ascertain phenotypes in other metabolic tissues. This was a major weakness of the study. The authors should also provide clear validation of their global TET2 KO mice demonstrating a total lack of protein in islets and metabolic tissues.

      (3) TET2 localization and expression pattern in islets was not clearly demonstrated and the data shown are not convincing from Fig 3 and Fig 4. In Fig 3e the staining for TET2 in green looks ubiquitous in acinar tissue (not nuclear) and not in the islet. In Fig 4d there is an increase in nuclear stain shown during aging, but no INS stain is used to show specificity to beta cells. Thus there is not sufficient data to support the expression pattern and localization of TET2 and specificity of the antibody.

      (4) In Fig. 5: The effect sizes for the beta cell identity gene expression differences by qRT-PCR between WT and TET2 KO islets shown in Fig 5 are extremely modest so as to be questionable whether they are biologically meaningful. The same is true of the senescence markers quantified from isolated islets by qRT-PCR in Fig 5f. The immunostains for Pdx1 are hard to see and signal should be quantified. The SA-Bgal staining is quantified but no representative image is shown. The p16 immunostaining is not clear and should be quantified. Given that a lack of truly specific p16 antibodies in mouse immunostainings have been a major issue for the field, the authors would be advised to demonstrate specificity of the antibody if possible on mouse KO tissue, or to at least validate the predicted increase in p16 staining comparing young versus old pancreas as has been shown in other studies.

      (5) Throughout the manuscript the figures colors are difficult to see and text difficult to read. Text in the p-values above the bars on most Figures is not legible (particularly Figs 4, 5, and 9). The legends simply do not contain sufficient information to interpret the data panels. This is true from Figures 1 through 9. P-value and specific statistical tests are missing from legends as well. For instance, in Fig 6c, what is being shown in LV-Ctrl vs LV-TET2 and why are these sample labels the same for two sets of images with two different outcomes of the staining? How many cells were quantified here?

      (6) There is an over-reliance on cell lines throughout the manuscript. INS1E and BTC6 are not truly representative of mature adult mouse or rat beta cells, and hence the connections between H4K16ac/MOF/PTEN and TET2 must be assessed in primary mouse or rat islets to confirm these phenotypes.

      (7) In the in vitro studies of senescence markers, it is not convincingly shown that the cells are actually senescent. Even though there changes found in expression of p16 and SA-Bgal in the cultures, the authors did not evaluate key senescence phenotypes such as the actual cell cycle arrest, SASP proteins or apoptosis resistance. Are the cells actually senescent or are these markers simply increasing? Hence much of the changes driven by TET2 overexpression in the in vitro cell lines could likely changes in p16 protein but not actually a senescence phenotype. BTC6, INS1E, and MIN6 are cell lines that are transformed, and while they can undergo some senescence-like changes in response to specific stressors like lipotoxicity, DNA damage, or oxidative stress, the authors did not evaluate these, only senescence genes/proteins in otherwise unstressed cells. Thus the claim that TET2 modifies senescence of beta cells remains unsubstantiated from the in vitro studies. It was not clear how any of these studies related to beta cell senescence in T2DM where there is metabolic and/or gluco-lipotoxic stress. Although it is claimed from Fig 9 that TET2 regulates PTEN/MOF axis to regulate beta cell function, no functional data (e.g. GSIS) are shown.

      (8) There were issues and difficulties with the writing in the introduction and discussion in that they did not clearly or adequately describe, discuss or interpret the main conclusions and their significance. The work is not positioned within the current state of the field and it is very difficult to follow the rationales for the study and the advances in knowledge provided.

    2. Reviewer #2 (Public review):

      Summary:<br /> Epigenetic regulation is critical for maintaining cellular function, and its dysregulation contributes to senescence and disease. This manuscript investigates the role of TET2 in β cell aging, proposing that TET2-mediated PTEN DNA methylation promotes H4K16 acetylation (H4K16ac) through MOF, driving β cell senescence. Using TET2 inhibitors, RNA interference, lentiviral overexpression, and knockout mouse models, the authors aim to establish TET2 as a key player in β cell aging and a potential therapeutic target in type 2 diabetes mellitus (T2DM).<br /> However, significant limitations reduce the manuscript's impact. Figures are poorly presented, with illegible fonts and unquantified staining panels, while key analyses, such as β cell specificity and senescence inducers, are missing. The rationale for focusing on H4K16ac and MOF is unclear, and the authors fail to address whether β cell identity gene changes reflect altered gene expression or mass. Additionally, critical controls, such as low-fat diet cohorts, are absent, and the writing lacks clarity and coherence. Together, these weaknesses undermine the validity of the findings.

      Main Comments<br /> Figures 1 and 2:<br /> The fonts in Figures 1 and 2 are barely visible and should be improved for readability. Additionally, do TET2 protein levels change in mouse and human β cells with aging? Is there evidence from regression analyses using single-cell RNA sequencing on human islets that TET2 expression correlates with age-associated gene signatures in β cells? Are these correlations specific to β cells, or do they extend to other islet cell types? It would also be informative to assess whether TET2 levels increase with senescence inducers such as DNA damage agents (e.g., bleomycin, doxorubicin) or reactive oxygen species (e.g., H₂O₂).<br /> Figure 3:<br /> Why do TET2 protein levels appear stronger in acinar cells? Additionally, the predominant cellular localization of TET2 seems to be cytoplasmic. Can the authors clarify or expand on this observation?<br /> Figure 4:<br /> The data on the impact of TET2 insufficiency in vivo is compelling. There are several quality control experiments to validate their model and main hypothesis (That T2t2 expression increases with aging in beta-cells). Here, authors have the right system to validate their initial Tet2 protein dynamics in the mouse, since they have a KO mouse model. Here, it would be useful to co-stain Tet2 with insulin and glucagon, to infer the dynamics of Tet2 in the two most abundant islet cell types.<br /> Figure 5:<br /> The upregulation of β-cell identity genes in the KO mouse model raises an important question: Is this effect due to an actual increase in gene expression or simply a higher proportion of β cells? Quantifying β-cell mass and performing gene expression analyses on FACS-sorted β cells would help address this. Additionally, the staining panels lack quantification. For instance, GLUT2 staining appears cytoplasmic when it should be membranous. The authors focus on cellular senescence, but does apoptosis increase in wild-type mice under a high-fat diet (HFD)? Including animals on a low-fat diet (LFD) for comparison would add valuable context.<br /> Figure 6:<br /> The data suggest an increase in cell numbers in TET2-overexpressing cells. Does this indicate an effect on β-cell proliferation? Quantification would provide clarity.<br /> Figure 8:<br /> The rationale for focusing on H4K16ac is insufficiently discussed. What is the mechanism linking TET2-induced changes to decreased H4K16ac levels? Including a more thorough explanation in the introduction and discussion would enhance the manuscript.<br /> Figure 9:<br /> The introduction lacks any discussion of H4K16ac or MOF. The discussion paragraph (lines 530-540) that elaborates on these points should instead be moved to the introduction to improve the manuscript's flow. Furthermore, the authors should cite their 2022 paper on H4K16ac as part of the rationale for focusing on this histone modification.

      Minor Comments:<br /> The manuscript would benefit from language refinement. Examples include:<br /> Line 183: Replace "the blood included" with a more precise description.<br /> Line 315: "treated with RNA seq" should be rephrased to clarify methodology (e.g., "analyzed via RNA sequencing").<br /> Line 456: Replace "expression of H4K16ac" with "levels of H4K16ac."<br /> Line 496: The phrase "can solve scientific problems from multiple dimensions" sounds vague and overly broad; consider rephrasing to be more specific.

    3. Reviewer #3 (Public review):

      Summary:<br /> This study advances the field of β cell dysfunction by unveiling an epigenetic mechanism of β cell senescence. By connecting TET2-mediated DNA methylation to histone acetylation and cellular aging, it opens promising new avenues for therapeutic intervention. In particular, the authors aimed at identifying the mechanisms of pancreatic β cell senescence by epigenetic regulation. They conclude that increased TET2 expression in β cells is associated with ageing and metabolic dysfunction in type 2 diabetes by inducing β cell senescence. The authors further propose that TET2-mediated PTEN promoter methylation promotes β cell senescence by regulating H4K16ac. Last, the authors suggest that this could represent new molecular mechanism and therapeutic target against β cell senescence during type 2 diabetes.

      Strengths:<br /> The major strengths of the study are the use of both biased and unbiased experimental tools to approach the topic. The authors also provide in vivo and in vitro mechanistic approaches to answer their questions. All of these approaches are valuable and provides robustness to their study. The authors provide solid evidence that TET2 is associated with ageing and that its absence improves glucose metabolism in ageing and β cell senescence. In addition, the mechanistic studies showing that TET2 regulates the PTEN/MOF/H4K16ac signaling pathway in β cell lines is convincing.

      Weaknesses:<br /> Although the use of such a variety of tools is a strength, the outcome of each individual tool is somehow superficial. For instance, the authors focus on very specific targets emanating from their omics studies without a clear or logical justification. In addition, the metabolic studies are inaccurate and the authors do not follow an understandable and rational examination of the ageing versus their obesity cohorts. Last, the mechanistic studies using model cell lines are not validated in the available mouse models.

      In my opinion, the evidence that TET2 regulates β cell senescence during obesity is not very strong. This is because the effect of deletion of TET2 in senescence markers is the same under 24weeks of age or 52 weeks of age (16 weeks HFD). Both ageing and HFD promoted the same extent of reduction of senescent markers and increase in β cell markers in the absence of TET2. There is no comparison between young glucose tolerant mice and old glucose intolerant mice. There is also no direct comparison of aged matched lean or obese mice. It may seem as if the mechanism by which TET2 regulates senescence in β cells is independent of the diabetic status but it is more related to ageing. Given that there is evidence that TET2 expression in β cells coordinates inflammatory responses in autoimmune diabetes, it would have been interested to check whether this is also the case for T2DM. Also, considering that expression of TET2 in Figure 3 does not seem to be in β cells in db/db mice but rather in the exocrine pancreas. In addition, senescent marker p16 in Figure 5 in the presence of TET2, seems to be localized in alpha cells or immune cells but not in β cells.<br /> Regarding the mechanistic studies, the authors convincingly show that TET2 regulates the PTEN/MOF/H4K16ac signaling pathway in β cell lines and that this is important for β cell senescence. However, there is no validation of whether this holds true in aged, or prediabetic, mice. Given the availability of mice and model samples, this should be possible and meaningful. Last, in the genome-wide bisulfite sequencing (Figure 7), it seems that the authors are cherry picking for PTEN and in the RNAseq, the same applies for MOF. Thus, although the mechanism seems valid, the lack of in vivo validation, and a proper rational for the selected targets in the omics studies, renders the mechanistic studies rather correlative.

      In sum, I believe that the study in its current version, unfortunately, does not bear the conceptual advance or the robustness that is required to offer a strong impact on the field. The methods, on the other hand, mainly the omics analyses provided here, could be of potential benefit for the field of epigenetics in β cell biology. However, in the benefit of the current study, the relevance of this data could be more rigorously assessed experimentally. I believe that the study has the potential to provide the required impact, should the authors work on it further to provide more solid functional and mechanistic validation.

    1. Reviewer #1 (Public review):

      Summary

      This very interesting article describes extensive work by the authors connecting topoisomerase 2 to aging across multiple model systems. The authors began by analyzing published transcriptomes for genes previously reported to be connected to increased lifespan in S. cerevisiae, focusing on genes whose downregulation is highly correlated with increased lifespan. One of these candidates was topoisomerase 2, which had previously been shown to be connected to lifespan in yeast.

      The authors here show that reduction in topoisomerase 2 levels can significantly extend lifespan in yeast (by damp), C. elegans (by RNAi), and mice (by CRISPR CasRx).

      Next, the authors demonstrate in both C. elegans and mice that in addition to increased survival times, animals with decreased top2 levels also show increased healthspan, as measured by using rates of body bends and of pharyngeal pumping in C. elegans, and using the Frailty Index (FI) for mice. Further, they report that lowered top2 levels result in less aged tissue phenotypes in multiple tissues in mice as assayed by histology, and positively affect multiple hallmarks of aging in both mouse tissues and human IMR-90 cells.

      The authors go on to perform thorough transcriptomic analysis of reduced top2 animals in both C. elegans and mice. Many interesting GO terms are highly overrepresented among both up- and down-regulated transcripts from these experiments, and the authors conclude that in the case of mice there is significant tissue specific biology based on differing results in the tissues they examined.

      Given the previously known biological roles of top2, the authors looked at changes in the epigenetic landscape of reduced top2 organisms as evidenced by changes in H3K4me3, H3K9me3 and H3K27me3. Overall, the authors conclude from these data that reduction of top2 "differentially down-regulates genes with active promoters/high abundance".

      Overall this well-written manuscript summarizes a great deal of new data that will be of great interest to aging researchers broadly.

      The figures and tables are all very clear and well-designed, and all add greatly to the manuscript overall including the use of color which is in all cases justified.

    2. Reviewer #2 (Public review):

      Summary:

      Previous studies have shown that Topoisomerase 2 (Top2) depletion in yeast can extend the lifespan of the organism, but no known mechanisms have been reported. In the current study, Zhu et al. reported that reduction of Top2 enhances longevity and mitigates aging phenotypes across multiple model organisms, including not yeast, but also C. elegans and mouse. The evidence of reduction of aging phenotypes is particularly strong, which include markers of cellular senescence, nutrient sensing, epigenetic markers, and lysosome biogenesis. They propose that Top2b reduction confers longevity through a conserved mechanism, and may be used a novel therapeutic strategy for countering aging. Overall, their findings should be of broad interest to the fields of Aging and Topoisomerase research. The technical quality of the work is in general solid but can be improved.

      Strengths:

      Top2 is an essential type II topoisomerase that resolves DNA topological stress generated during transcription, replication, chromosome segregation, and other DNA metabolic processes by introducing transient double-strand breaks (DSBs), passing the DNA strands, and re-ligating them. Top2 is a target for anticancer therapies, but its connection to aging and longevity remains largely unexplored. The authors' findings are notable, as Top2 has been deemed indispensable for normal development. Yet, this study suggests that its reduction confers benefits in the context of healthy aging. Their results convincingly show extended lifespan and improvements in physiological and molecular aging phenotypes, supported by behavioral assays and tissue morphology analyses.

      Weaknesses:

      Despite these strengths, the manuscript is weak on the proposed "conserved mechanism". The authors proposed in Discussion that Top2/Top2b knockdown may be similar to the classical insulin/IGF1 and the mTORC pathway, but did not provide any genetic evidence to support this.

      The authors also mentioned in the Discussion that the potential mechanism could be selective down-regulation of transcription of genes of active promoter and high abundance, such as ribosomal genes, which could be relevant to yeast aging. But there is no evidence in worms or mouse that Top2b directly binds and promotes transcription of certain high abundance genes critical for aging.

      I understand that this mechanism issue may be difficult to address, and I do not expect that the authors can fully address this issue. However, as both yeast and worms have been widely-used in aging studies with many tools available, I suggest that the authors can improve their studies by performing the following experiments.

    1. Reviewer #1 (Public review):

      Koren et al. derive and analyse a spiking network model optimised to represent external signals using the minimum number of spikes. Unlike most prior work using a similar setup, the network includes separate populations of excitatory and inhibitory neurons. The authors show that the optimised connectivity has a like-to-like structure, which leads to the experimentally observed phenomenon of feature competition. The authors also examine how various (hyper)parameters-such as adaptation timescale, the excitatory-to-inhibitory cell ratio, regularization strength, and background current-affect the model. These findings add biological realism to a specific implementation of efficient coding. They show that efficient coding explains, or at least is consistent with, multiple experimentally observed properties of excitatory and inhibitory neurons.

      As discussed in the first round of reviews, the model's ability to replicate biological observations such as the 4:1 ratio of excitatory vs. inhibitory neurons hinges on somewhat arbitrary hyperparameter choices. Although this may limit the model's explanatory power, the authors have made significant efforts to explore how these parameters influence their model. It is an empirical question whether the uncovered relationships between, e.g., metabolic cost and the fraction of excitatory neurons are biologically relevant.

      The revised manuscript is also more transparent about the model's limitations, such as the lack of excitatory-excitatory connectivity. Further improvements could come from explicitly acknowledging additional discrepancies with biological data, such as the widely reported weak stimulus tuning of inhibitory neurons in the primary sensory cortex of untrained animals.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors present a biologically plausible, efficient E-I spiking network model and study various aspects of the model and its relation to experimental observations. This includes a derivation of the network into two (E-I) populations, the study of single-neuron perturbations and lateral-inhibition, the study of the effects of adaptation and metabolic cost, and considerations of optimal parameters. From this, they conclude that their work puts forth a plausible implementation of efficient coding that matches several experimental findings, including feature-specific inhibition, tight instantaneous balance, a 4 to 1 ratio of excitatory to inhibitory neurons, and a 3 to 1 ratio of I-I to E-I connectivity strength.

      Strengths:

      While many network implementations of efficient coding have been developed, such normative models are often abstract and lacking sufficient detail to compare directly to experiments. The intention of this work to produce a more plausible and efficient spiking model and compare it with experimental data is important and necessary in order to test these models. In rigorously deriving the model with real physical units, this work maps efficient spiking networks onto other more classical biophysical spiking neuron models. It also attempts to compare the model to recent single-neuron perturbation experiments, as well as some long-standing puzzles about neural circuits, such as the presence of separate excitatory and inhibitory neurons, the ratio of excitatory to inhibitory neurons, and E/I balance. One of the primary goals of this paper, to determine if these are merely biological constraints or come from some normative efficient coding objective, is also important. Lastly, though several of the observations have been reported and studied before, this work arguably studies them in more depth, which could be useful for comparing more directly to experiments.

      Weaknesses:

      This work is the latest among a line of research papers studying the properties of efficient spiking networks. Many of the characteristics and findings here have been discussed before, thereby limiting the new insights that this work can provide. Thus, the conclusions of this work should be considered and understood in the context of those previous works, as the authors state. Furthermore, the number of assumptions and free parameters in the model, though necessary to bring the model closer to biophysical reality, make it more difficult to understand and to draw clear conclusions from. As the authors state, many of the optimality claims depend on these free parameters, such as the dimensionality of the input signal (M=3), the relative weighting of encoding error and metabolic cost, and several others. This raises the possibility that it is not the case that the set of biophysical properties measured in the brain are accounted for by efficient coding, but rather that theories of efficient coding are flexible enough to be consistent with this regime. With this in mind, some of the conclusions made in the text may be overstated and should be considered in this light.

      Conclusions, Impact, and additional context:

      Notions of optimality are important for normative theories, but they are often studied in simple models with as few free parameters as possible. Biophysically detailed and mechanistic models, on the other hand, will often have many free parameters by their very nature, thereby muddying the connection to optimality. This tradeoff is an important concern in neuroscientific models. Previous efficient spiking models have often been criticized for their lack of biophysically-plausible characteristics, such as large synaptic weights, dense connectivity, and instantaneous communication. This work is an important contribution in showing that such networks can be modified to be much closer to biophysical reality without losing their essential properties. Though the model presented does suffer from complexity issues which raise questions about its connections to "optimal" efficient coding, the extensive study of various parameter dependencies offers a good characterization of the model and puts its conclusions in context.

    3. Reviewer #3 (Public review):

      Summary:

      In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work.

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and show the networks can operate in a biologically realistic regime.

      Strengths:

      * The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field<br /> * They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly<br /> * They put sensible constraints on their networks, while still maintaining the good properties these networks should have

      Weaknesses:

      * One of the core goals of the paper is to make a more biophysically realistic network than previous work using similar optimization principles. One of the important things they consider is a split into E and I neurons. While this works fine, and they consider the coding consequences of this, it is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. This would be out of scope for the current paper however.<br /> * The theoretical advances in the paper are not all novel by themselves, as most of them (in particular the split into E and I neurons and the use of biophysical constants) had been achieved in previous models. However, the authors discuss these links thoroughly and do more in-depth follow-up experiments with the resulting model.

      Assessment and context:

      Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporate aspects of energy efficiency. For computational neuroscientists this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers the model provides a clearer link of efficient coding spiking networks to known experimental constraints and provides a few predictions.

    1. Reviewer #1 (Public review):

      Summary:

      The Authors investigated the anatomical features of the excitatory synaptic boutons in layer 1 of the human temporal neocortex. They examined the size of the synapse, the macular or the perforated appearance and the size of the synaptic active zone, the number and volume of the mitochondria, the number of the synaptic and the dense core vesicles, also differentiating between the readily releasable, the recycling and the resting pool of synaptic vesicles. The coverage of the synapse by astrocytic processes was also assessed, and all the above parameters were compared to other layers of the human temporal neocortex. The Authors conclude that the subcellular morphology of the layer 1 synapses is suitable for the functions of the neocortical layer, i.e. the synaptic integration within the cortical column. The low glial coverage of the synapses might allow the glutamate spillover from the synapses enhancing synpatic crosstalk within this cortical layer.

      Strengths:

      The strengths of this paper are the abundant and very precious data about the fine structure of the human neocortical layer 1. Quantitative electron microscopy data (especially that derived from the human brain) are very valuable, since this is a highly time- and energy consuming work. The techniques used to obtain the data, as well as the analyses and the statistics performed by the Authors are all solid, strengthen this manuscript, and mainly support the conclusions drawn in the discussion.

      Comments on latest version:

      The corrected version of the article titled „Ultrastructural sublaminar specific diversity of excitatory synaptic boutons in layer 1 of the adult human temporal lobe neocortex" has been improved thanks to the comments and suggestions of the reviewers. The Authors implemented several of my comments and suggestions. However, many of them were not completed. It is understandable that the Authors did not start a whole new series of experiment investigating inhibitory synapses (as it was a misunderstanding affecting 2 reviewers from the three). But the English text is still very hard to understand and has many mistakes, although I suggested to extensively review the use of English. Furthermore, my suggestion about avoiding many abbreviations in the abstract, analyse and discuss more the perforated synapses, the figure presentation (Figure 3) and including data about the astrocytic coverage in the Results section were not implemented. My questions about the number of docked vesicles and p10 vesicles, as well as about the different categories of the vesicle pools have not been answered neither. Many other minor comments and suggestions were answered, corrected and implemented, but I think it could have been improved more if the Authors take into account all of the reviewers' suggestions, not only some of them. I still have several main and minor concerns, with a few new ones as well I did not realized earlier, but still think it is important.

      Main concerns:

      (1) Epileptic patients:<br /> As all patients were epileptic, it is not correct to state in the abstract that non-epileptic tissue was investigated. Even if the seizure onset zone was not in the region investigated, seizures usually invade the temporal lobe in TLE. If you can prove that no spiking activity occured in the sample you investigated and the seizures did not invade that region, then you can write that it is presumably non-epileptic. I would suggest to write „L1 of the human temporal lobe neocortical biopsy tissue". See also Methods lines 608-612. Write only „non-epileptic" or „non-affected" if you verified it with EcoG. If this was the case, please write a few sentences about it in the Methods.

      (2) About the inhibitory/excitatory synapses.<br /> Since our focus was on excitatory synaptic boutons as already stated in the title we have not analyzed inhibitory SBs.<br /> Now, I do understand that only excitatory synapses were investigated. Although it was written in the title, I did not realized, since all over the manuscript the Authors were writing synapses, and were distinguishing between inhibitory and excitatory syanpses in the text and showing numerous excitatory and inhibitory synapses on Figure 2 and discussing inhibitory interneurons in the Discussion as well. Maybe this was the reason why two reviewers out of the three (including myself) thought you investigated both types of synapses but did not differentiated between them. So, please, emphasize in the Abstract (line 40), Introduction (for ex. line 92-97) and the Discussion (line 369) that only excitatory synaptic boutons were investigated.<br /> As this paper investigated only excitatory synaptic boutons, I think it is irrelevant to write such a long section in the Discussion about inhibitory interneurons and their functions in the L1 of the human temporal lobe neocortex. Same applies to the schematic drawing of the possible wiring of L1 (Figure 7). As no inhibitory interneurons were examined, neither the connection of the different excitatory cells, only the morphology of single synaptic boutons without any reference on their origin, I think this figure does not illustrate the work done in this paper. This could be a figure of a review paper about the human L1, but is is inappropriate in this study.

      (3) Perforated synapses<br /> "the findings of the Geinismann group suggesting that perforated synapses are more efficient than non-perforated ones is nowadays very controversially discussed"<br /> I did not ask the Authors to say that perforated synapses are more efficient. However, based on the literature (for ex. Harris et al, 1992; Carlin and Siekievitz, 1982; Nieto-Sampedro et al., 1982) the presence of perforated synapses is indeed a good sign of synapse division/formation - which in turn might be coupled to synaptic plasticity (Geinisman et al, 1993), increased synaptic activity (Vrensen and Cardozo, 1981), LTP (Geinisman et al, 1991, Harris et al, 2003), pathological axonal sprouting (Frotscher et al, 2006), etc. I think it is worth mentioning this at least in the Discussion.

      (4) Question about the vesicle pools<br /> Results, Line 271: Still not understandable, why the RRP was defined as {less than or equal to}10 nm and {less than or equal to}20nm. Why did you use two categories? One would be sufficient (for example {less than or equal to}20nm). Or the vesicles between 10 and 20nm were considered to be part of RRP? In this case there is a typo, it should be {greater than or equal to}10 nm and {less than or equal to}20nm.<br /> The answer of the Authors was to my question raised: We decided that also those very close within 10 and 20 nm away from the PreAZ, which is less than a SV diameter may also contribute to the RRP since it was shown that SVs are quite mobile.<br /> This does not clarify why did you use two categories. Furthermore, I did not receive answer (such as Referee #2) for my question on how could you have 3x as many docked vesicles than vesicles {less than or equal to}10nm. The category {less than or equal to}10nm should also contain the docked vesicles. Or if this is not the case, please, clarify better what were your categories.

      (5) Astrocytic coverage<br /> On Fig. 6 data are presented on the astrocytic coverage derived from L1 and L4. In my previous review I asked to include this in the text of the Results as well, but I still do not see it. It is also lacking from the Results how many samples from which layer were investigated in this analysis. Only percentages are given, and only for L1 (but how many patients, L1a and/or L1b and/or L4 is not provided). In contrast, Figure 6 and Supplementary Table 2 (patient table) contains the information that this analysis has been made in L4 as well. Please, include this information in the text as well (around lines 348-360).<br /> About how to determine glial elements. I cannot agree with the Authors that glial elements can be determined with high certainty based only on the anatomical features of the profiles seen in the EM. „With 25 years of experience in (serial) EM work" I would say, that glial elements can be very similar to spine necks and axonal profiles.<br /> All in all, if similar methods were used to determine the glial coverage in the different layers of the human neocortex, than it can be compared (I guess this is the case). However, I would say in the text that proper determination would need immunostaining and a new analysis. This only gives an estimatation with the possibility of a certain degree of error.

      (6) Large interindividual differences in the synapse density should be discussed in the Discussion.

    2. Reviewer #2 (Public review):

      Summary:

      The study of Rollenhagen et al examines the ultrastructural features of Layer 1 of human temporal cortex. The tissue was derived from drug-resistant epileptic patients undergoing surgery, and was selected as further from the epilepsy focus, and as such considered to be non-epileptic. The analyses has included 4 patients with different age, sex, medication and onset of epilepsy. The MS is a follow-on study with 3 previous publications from the same authors on different layers of the temporal cortex:

      Layer 4 - Yakoubi et al 2019 eLife<br /> Layer 5 - Yakoubi et al 2019 Cerebral Cortex,<br /> Layer 6 - Schmuhl-Giesen et al 2022 Cerebral Cortex

      They find, the L1 synaptic boutons mainly have single active zone a very large pool of synaptic vesicles and are mostly devoid of astrocytic coverage.

      Strengths:

      The MS is well written easy to read. Result section gives a detailed set of figures showing many morphological parameters of synaptic boutons and surrounding glial elements. The authors provide comparative data of all the layers examined by them so far in the Discussion. Given that anatomical data in human brain are still very limited, the current MS has substantial relevance.<br /> The work appears to be generally well done, the EM and EM tomography images are of very good quality. The analyses is clear and precise.

      Weaknesses:

      The authors made all the corrections required, answered most of my concerns, included additional data sets, and clarified statements where needed.

      My remaining points are:

      Synaptic vesicle diameter (that has been established to be ~40nm independent of species) can properly be measured with EM tomography only, as it provides the possibility to find the largest diameter of every given vesicle. Measuring it in 50 nm thick sections result in underestimation (just like here the values are ~25 nm) as the measured diameter will be smaller than the true diameter if the vesicle is not cut in the middle, (which is the least probable scenario). The authors have the EM tomography data set for measuring the vesicle diameter properly.

      It is a bit misleading to call vesicle populations at certain arbitrary distances from the presynaptic active zone as readily releasable pool, recycling pool and resting pool, as these are functional categories, and cannot directly be translated to vesicles at certain distances. Even it is debated whether the morphologically docked vesicles are the ones, that are readily releasable, as further molecular steps, such as proper priming is also a prerequisite for release.<br /> It would help to call these pools as "putative" correlates of the morphological categories.

    3. Reviewer #3 (Public review):

      Summary:

      Rollenhagen at al. offer a detailed description of layer 1 of the human neocortex. They use electron microscopy to assess the morphological parameters of presynaptic terminals, active zones, vesicle density/distribution, mitochondrial morphology and astrocytic coverage. The data is collected from tissue from four patients undergoing epilepsy surgery. As the epileptic focus was localized in all patients to the hippocampus, the tissue examined in this manuscript is considered non-epileptic (access) tissue.

      Strengths:

      The quality of the electron microscopic images is very high, and the data is analyzed carefully. Data from human tissue is always precious and the authors here provide a detailed analysis using adequate approaches, and the data is clearly presented.

      Weaknesses:

      The text connects functional and morphological characteristics in a very direct way. For example, connecting plasticity to any measurement the authors present would be rather difficult without any additional functional experiments. References to various vesicle pools based on the location of the vesicles is also more complex than it is suggested in the manuscript. The text should better reflect the limitations of the conclusions that can be drawn from the authors' data.

    1. Reviewer #1 (Public review):

      Summary:

      Trutti and colleagues used 7T fMRI to identify brain regions involved in subprocesses of updating the content of working memory. Contrary to past theoretical and empirical claims that the striatum serves a gating function when new information is to be entered into working memory, the relevant contrast during a reference-back task did not reveal significant subcortical activation. Instead, the experiment provided support for a role of subcortical (and cortical) regions in other subprocesses.

      Strengths

      The use of high-field imaging optimized for subcortical regions in conjunction with the theory-driven experimental design mapped well to the focus on a hypothetical striatal gating mechanism.

      Consideration of multiple subprocesses and the transparent way of identifying these, summarized in a table, will make it easy for future studies to replicate and extend the present experiment.

      Weaknesses:

      The reference-back paradigm seems to only require holding a single letter in working memory (X or O; Fig 1). It remains unclear how such low demand on working memory influences associated fMRI updating responses. It is also not clear whether reference-switch trials with 'same' response truly taxes working-memory updating (and gate opening), as the working-memory content/representation does not need to be updated in this case. These potential design issues, together with the rather low number of experimental trials, raise concerns about the demonstrated absence of evidence for striatal gate opening. Adding an experiment with higher working-memory demand and additional trials could strengthen the evidence for the authors present claim

      The authors provide a motivation for their multi-step approach to fMRI analyses. Still, the three subsections of fMRI results (3.2.1; 3.2.2; 3.3.3) for 4 subprocesses each (gate opening, gate closing, substitution, updating mode) made the Results section complex and it was not always easy to understand why some but not other approaches revealed significant effects (as the midbrain in gate opening).<br /> It could be helpful to readers to further revise the Results section and/or more clearly convey the analytic strategy.

      The many references to the role of dopamine are interesting, but the discussion of dopaminergic pathways and signals remains speculative and must be confirmed in future studies (e.g., with PET imaging).

      Several relevant studies were not cited (e.g., Dahlin et al., 2008, Science; Bäckman et al., 2011, Science).

    2. Reviewer #2 (Public review):

      Summary:

      The study reported by Trutti et al. uses high-field fMRI to test the hypothesized involvement of subcortical structure, particularly striatum, in WM updating. Specifically, participants were scanned while performing the Reference Back task (e.g., Rac-Lubashevsky and Kessler, 2016), which tests constructs like working memory gate opening and closing and substitution. While striatal activation was involved in substitution, it was not observed in gate opening.

      While there have been prior fMRI studies of the reference back task (Nir-Cohen et al., 2020), the present study overcomes limitations in prior work, particularly with regard to subcortical structures, by applying high-field imaging with more precise definition of ROIs. And, the fMRI methods are careful and rigorous, overall. Thus, the empirical observations here are useful and will be of interest to specialists interested in working memory gating or the reference back task specifically. I do not have additional concerns about this contribution.

    1. Reviewer #1 (Public review):

      This study uses a variety of approaches to explore the role of cerebellum, and in particular Purkinje cells (PCs), in the development of postural control in larval zebrafish. A chemogenetic approach is used to either ablate PCs or disrupt their normal activity and a powerful, high-throughput behavioural tracking system then enables quantitative assessment of swim kinematics. Using this strategy, convincing evidence is presented that PCs are required for normal postural control in the pitch axis. Calcium imaging further shows that PCs encode tilt direction. Evidence is also presented that suggests the role of the cerebellum changes over the course of early development, although this claim is less robust. Finally, the authors build on their prior work showing that both axial muscles and pectoral fins contribute to "climbs" and show convincing evidence that PCs are required for speed-dependent engagement of the fins during this behavior. Overall, establishing a role for cerebellum in postural control is not very surprising. However, a clear motivation of this study was to establish a robust experimental platform to investigate the changing role of cerebellar circuits in the development of postural control in the highly experimentally accessible zebrafish larvae and in this regard the authors have certainly succeeded.

      This revised version of the manuscript incorporates several improvements. In particular, additional analysis and methodological detail is provided regarding the chemogenetic manipulation, there is expanded analysis of the speed-dependency of pectoral fin engagement, and aspects of the decoding analysis are clearer. However, it is still not certain that the emergence of a dive phenotype over development (from 7 to 14 day post fertilisation) really represents changing role for the cerebellum as opposed to changing sensitivity of Purkinje cells to the chemogenetic treatment.

    2. Reviewer #2 (Public review):

      Franziska Auer et al. successfully applied the TRPV1/capsaicin tool to study the contribution of Purkinje cells to postural control. They leveraged the ability of this tool to both activate and ablate neurons within the same construct and tested its effects using their smart, high-throughput behavioral setup for postural control monitoring. With Purkinje cells ablated, balance did not appear to be disrupted; however, postural control was clearly modified along the pitch axis, with larval zebrafish maintaining, on average, a more nose-down posture compared to controls. While this effect is subtle, it is statistically robust and consistent with the group's previous findings using KillerRed-mediated ablation of Purkinje cells, where the observed postural angle change was explained by a disruption in cerebellar-mediated fin-trunk coordination. Here, the authors present a novel insight, demonstrating that this coordination is swim-speed dependent.

      Furthermore, the authors convincingly activated Purkinje cells at 7 dpf, and reported modifications in posture pitch angle comparable to those observed when ablating Purkinje cells. The authors suggest a potential desynchronization of Purkinje cells to explain this observation. Future characterization and application of this activation method to other developmental time points could be of major interest. The authors successfully validated the transfer of the TRPV1/capsaicin method for targeted cell ablation and activation to the study of cerebellar functions and reinforced our current understanding of the role of Purkinje cells in postural control.

      This study also explores the developmental evolution of cerebellar function in postural control by comparing the effects of Purkinje cell ablation at 7 dpf and 14 dpf. Interestingly, only dive bout posture showed differential effects across these time points, with no significant impact at 7 dpf but a significant change in postural pitch angle at 14 dpf. In contrast, the effect of Purkinje cell ablation on the climbing bout postural angle remained comparable at both ages. Including additional developmental time points would further strengthen this critical characterization of cerebellar maturation in the context of postural control.

      To examine whether Purkinje cell activity encodes postural tilt angle, the authors performed calcium imaging on 31 cells from 8 fish using their Tilt In Place Microscope (TIPM). They found that tilt-angle could be decoded from individual neurons with highly tuned responses, as well as from neurons that were not obviously tuned when pooling their data. The authors refer to this effect as pseudo-population coding because recordings were performed non-simultaneously across animals.

      This study successfully integrates cutting-edge genetic tools, high-throughput behavioral assays, and advanced optical microscopy to investigate the role of populations of Purkinje cells in postural control. The authors have not only validated these powerful tools but have also provided novel insights into the cerebellar involvement in postural control, including the swim-speed dependence of fin-trunk coordination.

      This work represents an important step toward a detailed understanding of cerebellar contributions to postural control and highlights the potential of combining genetically targeted perturbation with quantitative behavioral analysis.

      The authors have addressed my previous concerns, and I congratulate them for their excellent work.

    3. Reviewer #3 (Public review):

      Summary:

      This paper uses a new chemogenetic tool to investigate the role of cerebellar Purkinje cells in postural control. Using a high-throughput behavioral assay, they show that activation or ablation of Purkinje cells affects various aspects of postural control in zebrafish larvae during spontaneous swimming, and that the effects are more pronounced at later developmental time points, where the Purkinje cell number is much greater. Using a sophisticated imaging assay, they record Purkinje cell activity in response to tilt of the fish, and show that some Purkinje cells are tuned to tilt direction, and that the direction can even be decoded from untuned neurons.

      Strengths:

      Overall the study is nice, using a variety of genetic tools and behavioral analysis to address a fundamental question about the role of the cerebellum in postural control in fish

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Bose et al. investigated the role of Foxg1 transcription factor in the progenitors at late stages of cerebral cortex development.

      They discover that Foxg1 is a repressor of gliogenesis and has a dual function, first as a repressor of Fgfr3 receptor in progenitors, and second as a suppressor of the Fgf ligands in young neurons.

      They found that the inactivation of Foxg1 in cortical progenitors causes premature astrogliogenesis at the expense of neurogenesis. They identify Fgfr3 as a novel FOXG1 target. They show that suppression of Fgfr3 by FOXG1 in progenitors is required to maintain neurogenesis. On the other hand, they also show that FOXG1 negatively regulates the expression of Fgf gliogenic secreted factors in young neurons suppressing gliogenesis cells extrinsically.

      Strengths:

      The authors used time-consuming in vivo experiments utilizing several mouse strains including Foxg1-MADM in combination with RNA-Seq and ChIP to convincingly show that Foxg1 acts upstream of FGF signalling in the control of gliogenesis onset. The conclusions of this paper are mostly well supported by data.

    2. Reviewer #2 (Public review):

      Summary:

      We have known for some time that neural progenitors in the cerebral cortex switch their output from cortical neurons to glia at late embryonic stages, however little is known about how this switch is regulated at the molecular level. Bose et al present a convincing set of findings, demonstrating that the transcription factor Foxg1 plays a key role in this process, mediated through FGF signalling. Foxg1 cell-autonomously inhibits gliogenesis in progenitor cells (thereby promoting neuronal identity), and lower Foxg1 expression in postnatal neurons leads to increased expression of FGF ligand, promoting glial development from nearby progenitors.

      Strengths:

      The study is very well designed, having a systematic, thorough, and logical approach. The data is convincing. The authors make full use of a range of existing transgenic strains, published 'omics data, and elegant genetic approaches such as MADM. This combination of approaches is particularly rigorous, lending significant weight to the study. The manuscript is well-written, clear, and easy to follow.

      Impact

      This manuscript identifies a previously unknown role for Foxg1 in forebrain development and a mechanism underlying the neurogenic-to-gliogenic switch that occurs at late embryonic stages of cortex development. These findings will stimulate further research to uncover more details of how this important switch is controlled and may provide useful insight into some of the symptoms experienced by children with FOXG1 Syndrome.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      As in previous revisions, there remains concerning ambiguity in the methodology used for microbiota sequence analysis and it would be difficult to replicate the analysis in any meaningful way. In this revision, concerns about the rigor and reproducibility of this component of the manuscript have been increased. Readers should be cautious with interpretation of this data.

      (1) In previous versions of the manuscript it would appear the correct bioproject accession was listed but, the actual link went to an unrelated project. The updated accession link appears to contain raw data; however, the authors state they used an Illumina HiSeq 2500. This would be an unusual choice for V3-V4 as it would not have read lengths long enough to overlap. Inspection of the first sample (SRR19164796) demonstrates that this is absolutely not the raw data, as there is a ~400 nt forward read, and a 0 length reverse read. All quality scores are set to 30. There is no logical way to go from HiSeq 2500 raw data and read lengths to what was uploaded to the SRA and it was certainly not described in the manuscript.

      (2) No multiple testing correction was applied to the microbiome data.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging. To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects. The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weaknesses:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies. If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable. Given the limited number of units per condition-sometimes as few as three for certain conditions - I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      Although ouabain effects on gerbils have been explored in previous studies, since these data already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group.

    2. Reviewer #2 (Public review):

      Summary:

      Using a gerbil model, the authors tested the hypothesis that loss of synapses between sensory hair cells and auditory nerve fibers (which may occur due to noise exposure or aging) affects behavioral discrimination of the rapid temporal fluctuations of sounds. In contrast to previous suggestions in the literature, their results do not support this hypothesis; young animals treated with a compound that reduces the number of synapses did not show impaired discrimination compared to controls. Additionally, their results from older animals showing impaired discrimination suggest that age-related changes aside from synaptopathy are responsible for the age-related decline in discrimination.

      Strengths:

      (1) The rationale and hypothesis are well-motivated and clearly presented.

      (2) The study was well conducted with strong methodology for the most part, and good experimental control. The combination of physiological and behavioral techniques is powerful and informative. Reducing synapse counts fairly directly using ouabain is a cleaner design than using noise exposure or age (as in other studies), since these latter modifiers have additional effects on auditory function.

      (3) The study may have a considerable impact on the field. The findings could have important implications for our understanding of cochlear synaptopathy, one of the most highly researched and potentially impactful developments in hearing science in the past fifteen years.

      Weaknesses:

      (1) My main concern is that the stimuli may not have been appropriate for assessing neural temporal coding behaviorally. Human studies using the same task employed a filter center frequency that was (at least) 11 times the fundamental frequency (Marmel et al., 2015; Moore and Sek, 2009). Moore and Sek wrote: "the default (recommended) value of the centre frequency is 11F0." Here, the center frequency was only 4 or 8 times the fundamental frequency (4F0 or 8F0). Hence, relative to harmonic frequency, the harmonic spacing was considerably greater in the present study. By my calculations, the masking noise used in the present study was also considerably lower in level relative to the harmonic complex than that used in the human studies. These factors may have allowed the animals to perform the task using cues based on the pattern of activity across the neural array (excitation pattern cues), rather than cues related to temporal neural coding. The authors show that mean neural driven rate did not change with frequency shift, but I don't understand the relevance of this. It is the change in response of individual fibers with characteristic frequencies near the lowest audible harmonic that is important here.

      The case against excitation pattern cues needs to be better made in the Discussion. It could be that gerbil frequency selectivity is broad enough for this not to be an issue, but more detail needs to be provided to make this argument. The authors should consider what is the lowest audible harmonic in each case for their stimuli, given the level of each harmonic and the level of the pink noise. Even for the 8F0 center frequency, the lowest audible harmonic may be as low as the 4th (possibly even the 3rd). In human, harmonics are thought to be resolvable by the cochlea up to at least the 8th.

      (2) The synapse reductions in the high ouabain and old groups were relatively small (mean of 19 synapses per hair cell compared to 23 in the young untreated group). In contrast, in some mouse models of the effects of noise exposure or age, a 50% reduction in synapses is observed, and in the human temporal bone study of Wu et al. (2021, https://doi.org/10.1523/JNEUROSCI.3238-20.2021) the age-related reduction in auditory nerve fibres was ~50% or greater for the highest age group across cochlear location. It could be simply that the synapse loss in the present study was too small to produce significant behavioral effects. Hence, although the authors provide evidence that in the gerbil model the age-related behavioral effects are not due to synaptopathy, this may not translate to other species (including human). This should be discussed in the manuscript.

      It would be informative to provide synapse counts separately for the animals who were tested behaviorally, to confirm that the pattern of loss across the group was the same as for the larger sample.

      (3) The study was not pre-registered, and there was no a priori power calculation, so there is less confidence in replicability than could have been the case. Only three old animals were used in the behavioral study, which raises concerns about the reliability of comparisons involving this group.

    3. Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age.

      In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups. However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in Figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

    1. Reviewer #1 (Public review):

      Turi, Teng and the team used state-of-the-art techniques to provide convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory. First, they showed that the glutamatergic DG cells become activated following an infraslow rhythm during NREM sleep. In addition, the infraslow oscillation in the DG is correlated with rhythmic serotonin release during sleep. Finally, they found that specific knockdown of 5-HT receptors in the DG impairs the infraslow rhythm and memory, suggesting that serotonergic signaling is crucial for regulating DG activity during sleep. Given that the functional role of infraslow rhythm still remains to be studied, their findings deepen our understanding on the role of DG cells and serotonergic signaling in regulating infraslow rhythm, sleep microarchitecture and memory.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigated DG neuronal activity at the population and single cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep. The important findings are 1) the antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and 2) the GC Htr1a-mediated GC infraslow oscillation.

      Strengths:

      (1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.<br /> (2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.

      Weaknesses:

      (1) The current data set and analysis are insufficient to interpret the observation correctly.<br /> a. In Fig 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.<br /> b. In Fig 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Fig 1E. If MAs were clustered, please describe this properly.<br /> c. In Fig 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.<br /> d. In Fig 1C, please provide line plots connecting the same session. This request applies to all related figures.<br /> e. In Fig 2C, the significant increase during REM and the same level during NREM are not convincing. In Fig 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Fig 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.<br /> f. Fig 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.<br /> g. In Fig 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.

      (2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Fig. 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.

      (3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Fig. 4), which reduces the reliability of this study.

      Comments on revisions:

      In the first revision, I pointed out the inappropriate analysis of the EEG/EMG/photometry data and gave examples. The authors responded only to the points raised and did not seem to see the need to improve the overall analysis and description. In this second revision, I would like to ask the authors to improve them. The biggest problem is that the detection criteria and the quantification of the specific event are not described at all in Methods and it is extremely difficult to follow the statement. All interpretations are made by the inappropriate data analysis; therefore, I have to say that the statement is not supported by the data.

      Please read my following concerns carefully and improve them.

      (1) The definition of the event is critical to the detection of the event and the subsequent analysis. In particular, the authors explicitly describe the definition of MA (microarousal), the trough and peak of the population level of intracellular Ca concentrations, or the onset of the decline and surge of Ca levels.

      (1-1) The authors categorized wake bouts of <15 seconds with high EMG activity as MA (in Methods). What degree of high EMG is relevant to MA and what is the lower limit of high EMG? In Fig 1E, there are some EMG spikes, but it was unclear which spike/wave (amplitude/duration) was detected as MA-relevant spike and which spike was not detected. In Fig 2E, the 3rd MA coincides with the EMG spike, but other EMG spikes have comparable amplitude to the 3rd MA-relevant EMG spike. Correct counting of MA events is critical in Fig 1F, 2F, 4C.

      (1-2) Please describe the definition of Ca trough in your experiments. In Fig 1G, the averaged trough time is clear (~2.5 s), so I can acknowledge that MA is followed by Ca trough. However, the authors state on page 4 that "30% of the calcium troughs during NREM sleep were followed by an MA epoch". This discrepancy should be corrected.

      (1-3) Relating comment 1-2, I agree that the latency is between MA and Ca through in page 4, as the authors explain in the methods, but, in Fig 1G, t (latency) is labeled at incorrect position. Please correct this.

      (1-4) The authors may want to determine the onset of the decline in population Ca activity and the latency between onset and trough (Fig 1G, latency t). If so, please describe how the onset of the decline is determined. In Fig 1G, 2G, S6, I can find the horizontal dashed line and infer that the intersection of the horizontal line and the Ca curve is considered the onset. However, I have to say that the placement of this horizontal line is super arbitrary. The results (t and Drop) are highly dependent on the position of horizontal line, so the authors need to describe how to set the horizontal line.

      (1-5) In order to follow Fig 1F correctly, the authors need to indicate the detection criteria of "Ca dip (in legend)". Please indicate "each Ca dip" in Fig 1E. As a reader, I would like to agree with the Ca dip detection of this Ca curve based on the criteria. Please also indicate "each Ca dip" in Fig 2E and 2F. In the case of the 2nd and 3rd MAs, do they follow a single Ca dip or does each MA follow each Ca dip? This chart is highly dependent on the detection criteria of Ca dip.

      As I mentioned above, most of the quantifications are not based on the clear detection criteria. The authors need to re-analyze the data and fix the quantification. Please interpret data and discuss the cellular mechanism of ISO based on the re-analyzed quantification.

    3. Reviewer #3 (Public review):

      Summary:

      The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.

      Strengths:

      There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.

      The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro arousals, and sensory sensitivity.

      Weaknesses:

      - The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine, but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:<br /> o The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.", but the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.<br /> o Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.

      - The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Fig. 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).

      - Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.

      - While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (fig. 6), how is cortical EEG affected? is ISO still seen in EEG but attenuated in DG?

      - The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B, C? it is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Fig 1 or G as well as broader sleep architecture are not affected.

      - On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA correlated activity. I would like to see the equivalent of Fig 1,2 G panels with the 5-HT1a manipulation.

    1. Reviewer #2 (Public review):

      Summary:

      This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors in an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors' theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:

      The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing. The authors have taken into account earlier review comments to revise their paper in ways that enhance its clarity.

      Weaknesses:

      One weakness could be that the proposed theory does rely on a fairly large number of assumptions. However, there is at least some biological support for these. Importantly, the authors do lay out and discuss their key assumptions in the Discussion section, so readers can assess their validity and implications for themselves.

      Comments on revisions:

      I have no further suggestions for the authors.

    2. Reviewer #4 (Public review):

      Summary:

      Wilmes and colleagues develop a model for the computation of uncertainty modulated prediction errors based on an experimentally inspired cortical circuit model for predictive processing. Predictive processing is a promising theory of cortical function. An essential aspect of the model is the idea of precision weighting of prediction errors. There is ample experimental evidence for prediction error responses in cortex. However, a central prediction of the theory is that these prediction error responses are regulated by the uncertainty of the input. Testing this idea experimentally has been difficult due to a lack of concrete models. This work provides one such model and makes experimentally testable predictions.

      Strengths:

      The model proposed is novel and well-implemented. It has sufficient biological accuracy to make useful and testable predictions.

      Weaknesses:

      One key idea the model hinges on is that stimulus uncertainty is encoded in the firing rate of parvalbumin positive interneurons. While this assumption is rather speculative, the model also here makes experimentally testable predictions.

      Comments on revisions:

      Congratulations on a very nice paper.

    1. Reviewer #1 (Public review):

      The focus of this manuscript was to investigate the role of Cldn9 in the development of the mammalian cochlea. The main rationale of the study is the fact that cochlear hair cells do not regenerate, so when damaged they are lost forever, causing irreparable hearing loss. The authors have attempted to address this problem by inducing the ectopic production of additional hair cells and test whether they acquire the morphological and functional characteristics of native hair cells. They show that downregulation of Cldn9 using a well-established genetic manipulation of transgenic mice led to the production of extra numerary inner hair cells, which were able to survive for several months. By performing a large battery of experiments, the authors were able to determine that the native and ectopic inner hair cells have comparable morphological and physiological characteristics. There are several conclusions highlighted by the authors in different parts of the manuscript, including the key role of Cldn9 in coordinating embryonic and postnatal development, the differentiation of supporting cells into inner hair cells, and the possible use of Cldn9 to induce inner hair cell differentiation following deafness induced by hair cell loss.

      Comments on revised version:

      The authors have addressed the following points raised during the first submission: statistical analysis and wave 1 analysis. However, very little was done to address the other key aspects of my report, which are essential for the interpretation of the results. As mentioned in my previous report, some aspects of the work are not justified by the current data and will require either a tone-down of the claims or further experiments.

      For example, one puzzling finding that is not addressed in the manuscript is the lack of functional benefit from these additional inner hair cells. In fact, it appears to be detrimental based on the increased ABR thresholds and EP. So, it is not clear to this reviewer the advantage of this approach.

      It is not clear what direct evidence there is, apart from some immunostaining, indicating that the ectopic inner hair cells derive from the supporting cells. This part would benefit from a more careful consideration and maybe an attempt at a more direct experimental approach. Alternatively, the text should be modified accordingly.

      One point that should be made clear throughout the manuscript is that the ectopic inner hair cells are generated in a cochlea that is undergoing normal maturation. Thus, there is no guarantee that modulating the expression levels of Cldn9 in a deaf mouse lacking hair cells would produce the same result as that shown in this study. This point should be at least discussed.

    2. Reviewer #3 (Public review):

      The study by Chen et al reports an interesting and previously unknown phenomenon of generation of supernumerary inner hair cells (IHCs) in response to downregulation of Cldn9 during embryonic or postnatal development. The authors developed an inducible doxycycline (dox)-tet-OFF-Cldn9 transgenic mice to regulate expression levels of Cldn9 and show that downregulation of Cldn9 resulted in additional, although incomplete row of IHCs immediately adjacent to the original IHC row. These induced extra IHCs had similar well-developed hair bundles, able to mechanotransduce and were innervated by auditory neurons, resembling wild-type IHCs. In addition, the authors knock down Cldn9 postnatally using shRNA injections in P1-7 mice with similar induction of extranumerary IHCs next to the original row of IHCs. The conclusions of this paper are mostly well supported by the data. However, some data analyses are limited, and some important controls are not shown.<br /> The data from this study are important and promising for future gene therapy applications. The generation of extra IHCs postnatally using downregulation of Cldn9 by shRNA could potentially be used as a replacement of IHCs lost after noise-induced trauma, ototoxic agents, or other environmental trauma. However, it is not clear if downregulation of CLDN9 in adult mice would lead to extranumerary IHCs. On the other hand, the replacement of lost inner hair cells due to various genetic mutations by inducing supernumerary mutant IHCs with the same abnormalities would not be reasonable.

      The authors show that postnatally generated ectopic IHCs are viable and mechanotransducive, but the hearing function of the mice with ectopic hair cells is not improved. However, the ectopic hair cells seems to be generated from supporting cell trans-differentiation, and the intricate mosaic of the organ of Corti is altered (the extra row of IHCs seems to be positioned immediately adjacent to the original IHC row), which could by itself lead to hearing issues. It is not clear if the newly formed unusual junctions between the ectopic and original IHCs are sufficiently tight to prevent leakage of the endolymph to the basolateral surface of IHCs. Also, it is not clear if the other organ of Corti tight junctions could lose their tightness due to the downregulation of Cldn9, which could over time affect the endocochlear potential and hearing abilities as shown by this study.

      Overall, the manuscript could be of interest to scientists working in the inner ear development and regeneration field, and to the hearing researchers in general and perhaps developmental biologists and cell biologists interested in tight junction proteins and their function.

      Strength

      The methodologies used are solid and convincing. There is a great potential for practical use of these valuable findings and new knowledge on IHC developmental regulation by Cldn9 expression.

      Weakness

      Some of the data in this study would benefit from showing corresponding negative controls and higher-resolution images of CLDN9 localization, which the authors chose not to show in the revised manuscript. Importantly, CLDN9 immunofluorescence staining data look different from previously published observations and show cytoplasmic staining of supporting cells only and did not show the staining of tight junctions between the OHCs and supporting cells as well as between the IHCs and supporting cells as reported previously (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). The organ of Corti schematics showing CLDN9 expression reflects the authors' immunostaining data but is unusual considering that CLDN9 localizes to the tight junctions of the reticular lamina as was shown by immuno-EM in this study and described in previous publications (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). However, the authors did not provide an explanation for these discrepancies in the Discussion of the manuscript.

      Also, more detailed investigations would in some instances clarify the data. For example, it is not clear if the downregulation of Cldn9 affects the other genes known to participate in cell fate determination, and why downregulation of Cldn9 expression resulted in production of extranumerary inner hair cells only and not the other cell types, like OHCs, for example.

    3. Reviewer #4 (Public review):

      The work by Yingying Chen, Jeong Han Lee, and co-authors summarizes the morphological and functional outcomes of Cldn9 loss in the inner ear, particularly in the organ of Corti. While the study does not provide mechanistic insights into how the developmental loss of Cldn9 leads to ectopic hair cell formation, the phenomenon itself is curious. The work primarily focuses on a detailed characterization of the ectopic hair cells, which is well done. Despite the lack of mechanistic insights, the study will be of interest to the inner ear field if several major issues with the manuscript are addressed.

      (1) The title, "Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells," is misleading. First, both manipulations (knockout and knockdown) are genetic, and no pharmacology is involved. Second, both manipulations are carried out during the embryonic and neonatal periods, and there is no evidence of mature hair cell regeneration in this study. The title should be revised to reflect this. A more accurate title could be: "Developmental loss of Cldn9 results in functional ectopic inner hair cells that persist through adulthood."<br /> (2) Contact-mediated lateral inhibition in hair cell fate determination is one of the most well-studied phenomena in the inner ear field, and numerous groups have shown that it is mediated by Notch signaling. This must be added to the introduction.<br /> (3) A large body of literature has demonstrated that Notch inhibition alone is not sufficient to regenerate hair cells in adult mice. Therefore, if the loss of claudins disrupts Notch signaling-the proposed mechanisms in the discussion - it is unlikely to be a viable therapeutic strategy for hair cell regeneration in the adult ear. Furthermore, no hair cell ablation experiments were conducted to demonstrate what could be considered true regeneration. These speculative statements should be removed or revised accordingly.<br /> (4) Cldn9 is a tight junction protein and should localize to the membrane. Yet, the data presented show what appears to be diffuse cytoplasmic staining, which is concerning.

    1. Joint Public Review:

      Summary:

      The authors aimed to identify the neural sources of behavioral variation in fruit flies deciding between odor and air, or between two odors.

      Strengths:

      - The question is of fundamental importance.<br /> - The behavioral studies are automated, and high-throughput.<br /> - The data analyses are sophisticated and appropriate.<br /> - The paper is clear and well-written aside from some initially strong wording.<br /> - The figures beautifully illustrate their results.<br /> - The modeling efforts mechanistically ground observed data correlations.

      Weaknesses:

      -The correlations between behavioral variations and neural activity/synapse morphology are statistically significant but relatively weak.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript details the results of a small pilot study of neoadjuvant radiotherapy followed by combination treatment with hormone therapy and dalpiciclib for early-stage HR+/HER2-negative breast cancer.

      Strengths:

      The strengths of the manuscript include the scientific rationale behind the approach and the inclusion of some simple translational studies.

      Weaknesses:

      The main weakness of the manuscript is that overly strong conclusions are made by the authors based on a very small study of twelve patients. A study this small is not powered to fully characterize the efficacy or safety of a treatment approach, and can, at best, demonstrate feasibility. These data need validation in a larger cohort before they can have any implications for clinical practice, and the treatment approach outlined should not yet be considered a true alternative to standard evidence-based approaches.

      I would urge the authors and readers to exercise caution when comparing results of this 12-patient pilot study to historical studies, many of which were much larger, and had different treatment protocols and baseline patient characteristics. Cross-trial comparisons like this are prone to mislead, even when comparing well powered studies. With such a small sample size, the risk of statistical error is very high, and comparisons like this have little meaning.

    2. Reviewer #2 (Public review):

      The author and his team explored a novel neoadjuvant strategy of radiotherapy followed by CDK4/6 inhibitor and exemestane for HR+/HER2- breast cancer. This strategy interestingly reached an ORR of 91.7% and RCB 0-I of 16.7%, with satisfying tolerance.

      There are several questions for your further consideration.

      Firstly, as this is a single-arm preliminary study, we are curious about the order of radiotherapy and the endocrine therapy. Besides, considering the radiotherapy, we also concern about the recovery of the wound after the surgery and whether related data were collected.

      Secondly, in the methodology, please describe the sample size estimation of this study and follow up details.

      Thirdly, in Table 1, the item HER2 expression, it's better to categorise HER2 into 0, 1+, 2+ and FISH-.

    1. Reviewer #1 (Public review):

      Summary:

      The authors set out to evaluate the regulation of interferon (IFN) gene expression in fish, using mainly zebrafish as a model system. Similar to more widely characterized mammalian systems, fish IFN is induced during viral infection through the action of the transcription factor IRF3 which is activated by phosphorylation by the kinase TBK1. It has been previously shown in many systems that TBK1 is subjected to both positive and negative regulation to control IFN production. In this work, the authors find that the cell cycle kinase CDK2 functions as a TBK1 inhibitor by decreasing its abundance through recruitment of the ubiquitinylation ligase, Dtx4, which has been similarly implicated in the regulation of mammalian TBK1. Experimental data are presented showing that CDK2 interacts with both TBK1 and Dtx4, leading to TBK1 K48 ubiqutinylation on K567 and its subsequent degradation by the proteasome.

      Strengths:

      The strengths of this manuscript are its novel demonstration of the involvement of CDK2 in a process in fish that is controlled by different factors in other vertebrates and its clear and supportive experimental data.

      Weaknesses:

      The weaknesses of the study include the following. 1) It remains unclear how CDK is regulated during viral infection and how it specifically recruits E3 ligase to TBK1. 2) The implications and mechanisms for a relationship between the cell cycle and IFN production will be a fascinating topic for future studies.

    2. Reviewer #1 (Public review):

      Summary:

      The authors set out to evaluate the regulation of interferon (IFN) gene expression in fish, using mainly zebrafish as a model system. Similar to more widely characterized mammalian systems, fish IFN is induced during viral infection through the action of the transcription factor IRF3 which is activated by phosphorylation by the kinase TBK1. It has been previously shown in many systems that TBK1 is subjected to both positive and negative regulation to control IFN production. In this work, the authors find that the cell cycle kinase CDK2 functions as a TBK1 inhibitor by decreasing its abundance through recruitment of the ubiquitinylation ligase, Dtx4, which has been similarly implicated in the regulation of mammalian TBK1. Experimental data are presented showing that CDK2 interacts with both TBK1 and Dtx4, leading to TBK1 K48 ubiqutinylation on K567 and its subsequent degradation by the proteasome.

      Strengths:

      The strengths of this manuscript are its novel demonstration of the involvement of CDK2 in a process in fish that is controlled by different factors in other vertebrates and its clear and supportive experimental data.

      Weaknesses:

      The weaknesses of the study include the following. 1) It remains unclear how CDK is regulated during viral infection and how it specifically recruits E3 ligase to TBK1. 2) The implications and mechanisms for a relationship between the cell cycle and IFN production will be a fascinating topic for future studies.

    1. Reviewer #1 (Public review):

      Summary:

      Lodhiya et al. demonstrate that antibiotics with distinct mechanisms of action, norfloxacin and streptomycin, cause similar metabolic dysfunction in the model organism Mycobacterium smegmatis. This includes enhanced flux through the TCA cycle and respiration as well as a build-up of reactive oxygen species (ROS) and ATP. Genetic and/or pharmacologic depression of ROS or ATP levels protect M. smegmatis from norfloxacin and streptomycin killing. Because ATP depression is protective, but in some cases does not depress ROS, the authors surmise that excessive ATP is the primary mechanism by which norfloxacin and streptomycin kill M. smegmatis. In general, the experiments are carefully executed; alternative hypotheses are discussed and considered; the data are contextualized within the existing literature.

      Strengths:

      The authors tackle a problem that is both biologically interesting and medically impactful, namely, the mechanism of antibiotic-induced cell death.

      Experiments are carefully executed, for example, numerous dose- and time-dependency studies; multiple, orthogonal readouts for ROS; and several methods for pharmacological and genetic depletion of ATP.

      There has been a lot of excitement and controversy in the field, and the authors do a nice job of situating their work in this larger context.

      Inherent limitations to some of their approaches are acknowledged and discussed e.g., normalizing ATP levels to viable counts of bacteria.

      Weaknesses:

      All of the experiments performed here were in the model organism M. smegmatis. As the authors point out, the extent to which these findings apply to other organisms (most notably, slow-growing pathogens like M. tuberculosis) is to be determined.

      At first glance, some of the results in the manuscript seem to conflict with what has been previously reported in the (referenced) literature. In their response to reviewers, the authors addressed these concerns. Ideally they would have addressed them in the main manuscript too.

      Figs. 9 and 10A-B and associated text make the manuscript significantly longer and more descriptive. They are more appropriate to the beginning of a new story rather than the end of the current one.

    2. Reviewer #2 (Public review):

      Summary:

      The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria

      Strengths:

      No significant strengths in the current state as it is written.

      Weaknesses:

      A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculossi which has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.

      Comments on revisions:

      The authors confirm they are using CFU counts, but then Figure 1 has 0 as the first data point on the Y-axis. This should be somewhere between 10e5 or 10e6. CFU would not start at 0, your initial inoculum has to be more than 0 to have something to challenge.

    1. Reviewer #1 (Public review):

      Summary:

      This comprehensive study employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure regulation in a mouse model of TGFβ2 -induced ocular hypertension. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated ocular hypertension in eyes overexpressing TGFβ2. Trpv4-/- mice resisted TGFβ2-driven increases in IOP. These data establish a fundamental role of TGFβ as a modulator of mechanosensing and identifies TRPV4 channel as a common mechanism for TM contractility and pathological ocular hypertension.

      Strengths:

      The manuscript is very well written and details the important function of TRPV4 in TM cell function. These data provide novel therapeutic targets and potential for disease-altering therapeutics.

      Weaknesses:

      The experimental rigor and design of the noctural IOP experiments was weak with low n values and differing methods of IOP measurement (conscious versus anesthetized). The same method of IOP measurement needs to be used for all measurements to make any conclusions on the circadian patterns of IOP in each condition.

    2. Reviewer #2 (Public review):

      The manuscript by Christopher N. Rudzitis et al. describes the role of TGFβ2 in the transcription and functional expression of mechanosensitive channel isoforms, alongside studies on TM contractility in biomimetic hydrogels and intraocular pressure. Overall, it is a very interesting study, nicely designed, and will contribute to the available literature on TRPV4 sensitivity to mechanical forces.

      I have the following comment for the authors to address.

      Figure 1A-C.<br /> Often there is a difference between the massage and transcript data. I recommend the authors to confirm with qPCR data with another mode of protein measurements.<br /> Does direct TRPV4 activation also induce the expression of these markers? Does inhibition of TRPV4, after TGF-β treatment, prevent the expression of these markers? Is TRPV4 acting downstream of this response?

      Figure 1D. Beta tubulin is not a membrane marker. Having staining of b tubulin in membrane fraction shows contamination from the cytoplasm.<br /> Does the overall expression also increase?

      Figure 4A: it is not very clear. I recommend including a zoom image or better resolution image.

      Figure 5B and 6B.<br /> Why there is a difference between groups in pre-injection panel. As Figure 5A, in pre-injection, there is no difference between LV-TGFβ and LV-control while in 5B there is a significant difference between these groups.<br /> Discussion section.

      Line 279, . "TRPV4 channels in cells treated with TGFβ2 are likely to be constitutively active" ... needs to be discussed further.

      Line 280: "The residual contractility in HC-06-treated cells may reflect TGFβ2-mediated contributions from Piezo1."<br /> Piezo1 has a low threshold for mechanosensitivity. How do the authors discuss the observation that, in the presence of Piezo1, TRPV4 has a more prominent mechanosensory function? Is this tied to TGFβ signalling?

    1. Reviewer #1 (Public review):

      Summary:

      The authors use a sophisticated task design and Bayesian computational modeling to test their hypothesis that information generalization (operationalized as a combination of self-insertion and social contagion) in social situations is disrupted in Borderline Personality Disorder. Their main finding relates to the observation that two different models best fit the two tested groups: While the model assuming both self-insertion and social contagion to be present when estimating others' social value preferences fit the control group best, a model assuming neither of these processes provided the best fit to BPD participants.

      Strengths:

      The strengths of the presented work lie in the sophisticated task design and the thorough investigation of their theory by use of mechanistic computational models to elucidate social decision-making and learning processes in BPD.

      Weaknesses:

      The manuscript's primary weakness relates to the number of comparisons conducted and a lack of clarity in how those comparisons relate to the authors' hypotheses. The authors specify a primary prediction about disruption to information generalization in social decision making & learning processes, and it is clear from the text how their 4 main models are supposed to test this hypothesis. With regards to any further analyses however (such as the correlations between multiple clinical scales and eight different model parameters, but also individual parameter comparisons between groups), this is less clear. I recommend the authors clearly link each test to a hypothesis by specifying, for each analysis, what their specific expectations for conducted comparisons are, so a reader can assess whether the results are/aren't in line with predictions. The number of conducted tests relating to a specific hypothesis also determines whether multiple comparison corrections are warranted or not. If comparisons are exploratory in nature, this should be explicitly stated.

      Furthermore, the authors present some measures for external validation of the models, including comparison between reaction times and belief shifts, and correlations between model predicted accuracy and behavioural accuracy/total scores. However it would be great to see some more formal external validation of how the model parameters relate to participant behaviour, e.g., the correlation between the number of pro-social choices and ß-values, or the correlation between the change in absolute number of pro-social choices and the change in ß. From comparing the behavioural and computational results it looks like they would correlate highly, but it would be nice to see this formally confirmed.

      The statement in the abstract that 'Overall, the findings provide a clear explanation of how self-other generalisation constrains and assists learning, how childhood adversity disrupts this through separation of internalised beliefs' makes an unjustified claim of causality between childhood adversity and separation of self - and other beliefs, although the authors only present correlations. I recommend this should be rephrased to reflect the correlational nature of the results.

      Currently, from the discussion the findings seem relevant in explaining certain aberrant social learning and -decision making processes in BPD. However, I would like to see a more thorough discussion about the practical relevance of their findings in light of their observation of comparable prediction accuracy between the two groups.

      Relatedly, the authors mention that a primary focus of mentalization based therapy for BPD is 'restoring a stable sense of self' and 'differentiating the self from the other'. These goals are very reminiscent of the findings of the current study that individuals with BPD show lower uncertainty over their own and relative reward preferences, and that they are less susceptible to social contagion. Could the observed group differences therefore be a result of therapy rather than adverse early life experiences?

      Regarding partner similarity: It was unclear to me why the authors chose partners that were 50% similar when it would be at least equally interesting to investigate self-insertion and social contagion with those that are more than 50% different to ourselves? Do the authors have any assumptions or even data that shows the results still hold for situations with lower than 50% similarity?

    2. Reviewer #2 (Public review):

      Summary:

      The paper investigates social-decision making, and how this changes after observing the behaviour of other people, in borderline personality disorder. The paper employs a task including three phases, the first where participants make decision on how to allocate rewards to oneself and to a virtual partner, the second where they observe the same task performed by someone else, and a third phase equivalent to phase one, but with a new partner. Using sophisticated computational modelling to analyse choice data, the study reports that borderline participants (versus controls) are more certain about their preferences in phase one, used more neutral priors and are less flexible during phase two, and are less influenced by partners in phase three.

      Strengths:

      The topic is interesting and important, and the findings are potentially intriguing. The computational methods employed is clever and sophisticated, at the cutting edge of research in the field.

      Weaknesses:

      There are two major weaknesses. First, the paper lacks focus and clarity. The introduction is rather vague and, after reading it, I remained confused about the paper's aims. Rather than relying on specific predictions, the analysis is exploratory. This implies that it is hard to keep track, and to understand the significance, of the many findings that are reported. Second, although the computational approach employed is clever and sophisticated, there is important information missing about model comparison which ultimately makes some of the results hard to assess from the perspective of the reader.

    3. Reviewer #3 (Public review):

      In this paper, the authors use a three-phase economic game to examine the tendency to engage in prosocial versus competitive exchanges with three anonymous partners. In particular, they consider individual differences in the tendency to infer about others' tendencies based on one's preferences and to update one's preferences based on observations of others' behavior. The study includes a sample of individuals diagnosed with borderline personality disorder and a matched sample of psychiatrically healthy control participants.

      On the whole, the experimental design is well-suited to the questions and the computational model analyses are thorough, including modern model-fitting procedures. I particularly appreciated the clear exposition regarding model parameterization and the descriptive Table 2 for qualitative model comparison. My broad question about the experiment (in terms of its clinical and cognitive process relevance): Does the task encourage competition or give participants a reason to take advantage of others? I don't think it does, so it would be useful to clarify the normative account for prosociality in the introduction (e.g., some of Robin Dunbar's work).

      The finding that individuals with BPD do not engage in self-other generalization on this task of social intentions is novel and potentially clinically relevant. The authors find that BPD participants' tendency to be prosocial when splitting points with a partner does not transfer into their expectations of how a partner will treat them in a task where they are the passive recipient of points chosen by the partner. In the discussion, the authors reasonably focus on model differences between groups (Bayesian model comparison), yet I thought this finding -- BPD participants not assuming prosocial tendencies in phase 2 while CON participant did -- merited greater attention. Although the BPD group was close to 0 on the \beta prior in Phase 2, their difference from CON is still in the direction of being more mistrustful (or at least not assuming prosociality). This may line up with broader clinical literature on mistrustfulness and attributions of malevolence in the BPD literature (e.g., a 1992 paper by Nigg et al. in Journal of Abnormal Psychology). My broad point is to consider further the Phase 2 findings in terms of the clinical interpretation of the shift in \beta relative to controls.

      On the conceptual level, I had two additional concerns. First, the authors note that they have "proposed a theory with testable predictions" (p. 4 but also elsewhere) but they do not state any clear predictions in the introduction, nor do they consider what sort of patterns will be observed in the BPD group in view of extant clinical and computational literature. Rather, the paper seems to be somewhat exploratory, largely looking at group differences (BPD vs. CON) on all of the shared computational parameters and additional indices such as belief updating and reaction times. Given this, I would suggest that the authors make stronger connections between extant research on intention representation in BPD and their framework (model and paradigm). In particular, the authors do not address related findings from Ereira (2020) and Story (2024) finding that in a false belief task that BPD participants *overgeneralize* from self to other. A critical comparison of this work to the present study, including an examination of the two tasks differ in the processes they measure, is important.

      In addition, perhaps it is fairer to note more explicitly the exploratory nature of this work. Although the analyses are thorough, many of them are not argued for a priori (e.g., rate of belief updating in Figure 2C) and the reader amasses many individual findings that need to by synthesized.

      Second, in the discussion, the authors are too quick to generalize to broad clinical phenomena in BPD that are not directly connected to the task at hand. For example, on p. 22: "Those with a diagnosis of BPD also show reduced permeability in generalising from other to self. While prior research has predominantly focused on how those with BPD use information to form impressions, it has not typically examined whether these impressions affect the self." Here, it's not self-representation per se (typically, identity or one's view of oneself), but instead cooperation and prosocial tendencies in an economic context. It is important to clarify what clinical phenomena may be closely related to the task and which are more distal and perhaps should not be approached here.

      On a more technical level, I had two primary concerns. First, although the authors consider alternative models within a hierarchical Bayesian framework, some challenges arise when one analyzes parameter estimates fit separately to two groups, particularly when the best-fitting model is not shared. In particular, although the authors conduct a model confusion analysis, they do not as far I could tell (and apologies if I missed it) demonstrate that the dynamics of one model are nested within the other. Given that M4 has free parameters governing the expectations on the absolute and relative reward preferences in Phase 2, is it necessarily the case that the shared parameters between M1 and M4 can be interpreted on the same scale? Relatedly, group-specific model fitting has virtues when believes there to be two distinct populations, but there is also a risk of overfitting potentially irrelevant sample characteristics when parameters are fit group by group.

      To resolve these issues, I saw one straightforward solution (though in modeling, my experience is that what seems straightforward on first glance may not be so upon further investigation). M1 assumes that participants' own preferences (posterior central tendency) in Phase 1 directly transfer to priors in Phase 2, but presumably the degree of transfer could vary somewhat without meriting an entirely new model (i.e., the authors currently place this question in terms of model selection, not within-model parameter variation). I would suggest that the authors consider a model parameterization fit to the full dataset (both groups) that contains free parameters capturing the *deviations* in the priors relative to the preceding phase's posterior. That is, the free parameters $\bar{\alpha}_{par}^m$ and $\bar{\beta}_{par}^m$ govern the central tendency of the Phase 2 prior parameter distributions directly, but could be reparametrized as deviations from Phase 1 $\theta^m_{ppt}$ parameters in an additive form. This allows for a single model to be fit all participants that encompasses the dynamics of interest such that between-group parameter comparisons are not biased by the strong assumptions imposed by M1 (that phase 1 preferences and phase 2 observations directly transfer to priors). In the case of controls, we would expect these deviation parameters to be centred on 0 insofar as the current M1 fit them best, whereas for BPD participants should have significant deviations from earlier-phase posteriors (e.g., the shift in \beta toward prior neutrality in phase 2 compared to one's own prosociality in phase 1). I think it's still valid for the authors to argue for stronger model constraints for Bayesian model comparison, as they do now, but inferences regarding parameter estimates should ideally be based on a model that can encompass the full dynamics of the entire sample, with simpler dynamics (like posterior -> prior transfer) being captured by near-zero parameter estimates.

      My second concern pertains to the psychometric individual difference analyses. These were not clearly justified in the introduction, though I agree that they could offer potentially meaningful insight into which scales may be most related to model parameters of interest. So, perhaps these should be earmarked as exploratory and/or more clearly argued for. Crucially, however, these analyses appear to have been conducted on the full sample without considering the group structure. Indeed, many of the scales on which there are sizable group differences are also those that show correlations with psychometric scales. So, in essence, it is unclear whether most of these analyses are simply recapitulating the between-group tests reported earlier in the paper or offer additional insights. I think it's hard to have one's cake and eat it, too, in this regard and would suggest the authors review Preacher et al. 2005, Psychological Methods for additional detail. One solution might be to always include group as a binary covariate in the symptom dimension-parameter analyses, essentially partialing the correlations for group status. I remain skeptical regarding whether there is additional signal in these analyses, but such controls could convince the reader. Nevertheless, without such adjustments, I would caution against any transdiagnostic interpretations such as this one in the Highlights: "Higher reported childhood trauma, paranoia, and poorer trait mentalizing all diminish other-to-self information transfer irrespective of diagnosis." Since many of these analyses relate to scales on which the groups differ, the transdiagnostic relevance remains to be demonstrated.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript reports a very interesting, novel and important research angle to add to the now enormous interest in how pesticides can be toxic to beneficial insects like the honey bee. Many studies have reported on how pesticides in standard use formulations show both lethality as well as sublethal negative effects on behavior and reproduction. The authors propose to use machine learning algorithms to identify new volatile compounds that can be tested for repellency. They use as input chemical structures that are derived from chemicals that have known repellent effects as identified in their initial behavioral assays.

      Strengths:

      The conclusion is that such chemicals specific to repelling bees and not pest insects (using the fruit fly as a model for the latter) can be identified using the ML approach. Have a list of such chemicals that can be rotated among in any field application would be a benefit because of the honey bees' ability to learn its way around any kind of stimulus designed to keep it from nectar and pollen, even when they may be tainted by pesticide.

      Weaknesses:

      The use of machine learning seems well-executed and legitimate. But this is beyond my expertise. So other reviewers can maybe comment more on that.

      The behavioral data report on the use of a two-choice assay for bees in small Petrie plates. Bess can feed from two small wells place of filter paper impregnated with control or the control containing a chemical. The primary behavior, for ex in Fig 2C, is the first choice by one of the five bees in the plate of which well to feed from. For some chemical compound, there seems to be a 50:50 choice, indicating no repellent effects. In other cases the first bee making the choice chose the control, indicating possible repellent effects of the test chemical. Choices in this assay were validated in a free flying assay.

      Concerns with the choice assay:<br /> - 50-70 microliters amounts to what one hungry bee will drink. Did the first bee drink most of it, such that measures of bait consumed reflect a single bee or multiple bees?<br /> - How many bees were repelled to the control side? Was it just the one bee? Were other measures considered? E.g. time to first approach; the number of bees feeding at different time points; the total number of bees observed feeding per unit time.

    2. Reviewer #2 (Public review):

      Summary:

      The search for new repellent odors for honey bees has significant practical implications. The authors developed an iterative pipeline through machine learning to predict honey bee-repellent odors based on molecular structures. By screening a large number of candidate compounds, they identified a series of novel repellents. Behavioral tests were then conducted to validate the effectiveness of these repellents. Both the discovery and the methodological approach hold value for related fields.

      Strengths:

      * The study demonstrates that using molecular structures and a relatively small training dataset, the model could predict repellents with a reasonably high success rate. If the iterative approach works as described, it could benefit a wide range of olfaction-related fields.<br /> * The effectiveness of the predicted repellents was validated through both laboratory and field behavioral tests.

      Weaknesses:

      The small size of the training dataset poses a common challenge for machine learning applications. However, the authors did not clearly explain how their iterative approach addresses this limitation in this study. Quantitative evidence demonstrating improvements achieved in the second round of training would strengthen their claims. For instance, details on whether the success rate of predictions or the identification of higher-affinity components would be helpful. Furthermore, given that only 15 new components were added for the second round of training, it is surprising that such a small dataset could result in significant improvements.

    3. Reviewer #3 (Public review):

      The manuscript of Kowalewski et al. titled "Machine learning of honey bee olfactory behavior identifies repellent odorants in free flying bees in the field" did machine learning to predict potential candidates for honeybee repellents, which may keep foraging bees from pesticides. This is a pilot research with strong significance in the research of olfactory behavior and in pest control. However, some major issues need to be addressed to enhance the manuscript's clarity, strength, and overall coherence.

      (1) Drosophila melanogaster is not considered as a true agricultural pest. The manuscript would be more compelling if using true pests, for example, Drosophila suzukii or others.<br /> (2) For repellency test, the result relies on dosage. An attractant may become a repellent at high concentration. Test a range of concentrations for each chemicals and compare responses between honeybees and pests.<br /> (3) Be more clear about bee behavior data and their scores (as in Page 4 Results "184 training chemicals and later for 203 chemicals" and Page 10 Methods). I suggest that authors add a supplemental table with each chemical and its behavioral score, feature and reference - which ones were used for training, and which ones for testing. Also add your own behavioral test data (second input) to this table.<br /> (4) The AUC in the first validation was 0.88 (Page 4), and in Page 5, "As expected, the computational validation results based on the AUC values, show an improvement." However, there were no other AUC values to show improvement.<br /> (5) Show plots of ROC AUC curves from Round 1 and Round 2.<br /> (6) In the Discussion, the authors mentioned olfactory receptors in honeybees. It would be useful to provide a general review of the current understanding of these receptors and their (potential) functions.<br /> (7) I suggest combining Fig. 1 and Fig. 3A as one pipeline for this work.<br /> (8) Figure 2C, some sample sizes are very small, such as 2-piperidone: 1 first-choice control vs 0 first-choice repellent? Increase sample size and do statistical analysis.<br /> (9) In general, to assist reviewers, include line numbers to the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This work is meant to help create a foundation for future studies of the Central Complex, which is a critical integrative center in the fly brain. The authors present a systematic description of cellular elements, cell type classifications, behavioral evaluations and genetic resources available to the Drosophila neuroscience community.

      Strengths:

      The work contributes new, useful and systematic technical information in compelling fashion to support future studies of the fly brain. It also continues to set a high and transparent standard by which large-scale resources can be defined and shared.

      Weaknesses:

      manuscript p. 1<br /> "The central complex (CX) of the adult Drosophila melanogaster brain consists of approximately 2,800 cells that have been divided into 257 cell types based on morphology and connectivity (Scheer et al., 2020; Hulse et al. 2021; Wolff et al., 2015)."<br /> The 257 accumulated cell types have informational names (e.g., PBG2‐9.s‐FBl2.b‐NO3A.b) in addition to their associations with specific Gal4 lines and specific EM Body IDs. All this is very useful. I have one suggestion to help a reader trying to get a "bird's eye view" of such a large amount of detailed and multi-layered information. Give each of the 257 CX cell types an arbitrary number: 1 to 257. In fact, Supplemental File 2 lists ~277 cell types each with a number in sequence, so perhaps in principle, it is there. This could expedite the search function when a reader is trying to cross-reference CX cell type information from the text, to the Figures and/or to the Supplemental Figures. Also, the use of (arbitrary) cell type numbers could expedite the explanation of which cell types are included in any compilation of information (e.g., which ones were tested for specific NT expression).

      manuscript p 2<br /> "Figure 2 and Figure 2-figure supplements 1-4 show the expression of 52 new split-GAL4 lines with strong GAL4 expression that is largely limited to the cell type of interest. .... We also generated lines of lesser quality for other cell types that in total bring overall coverage to more than three quarters of CX cell types."<br /> This section describes the generation and identification of specific split Gal4 lines, and the presentation is generally excellent. It represents an outstanding compendium of information. My reading of the text suggests ~200 cell types have Gal4 lines that are of immediate use (having high specificity or v close-to-high). Use of an arbitrary number system (mentioned above) could augment that description for the reasons stated. For example, which of the 257 cell types are represented by split Gal4 lines that constitute the ~1/3 representing "high-quality lines "? A second comment relates to this study 's functional analysis of the contributions of CX cell types to sleep physiology. The recent literature contains renewed interest in the specific expression patterns of Gal4 lines that can promote sleep-like behaviors. In particular Gal4 line expression outside the brain (in the VNC and outside the CNS) have been raised as important elements that need be included for interpretation interpretation of sleep regulation. This present study offers useful information about a large number of expression patterns, as well as a basis with which to seek additional information., including mention of VNC expression in many cases However, perhaps I missed it, but I could not find a short description of the over-all strategy used to describe the expression patterns and feel that could be helpful. Were all Gal4 lines studied for expression in the VNC? and in the peripheral NS? It is probably published elsewhere, but even a short reprise would still be useful.

      manuscript p 9<br /> Neurotransmitter expression in CX cell types<br /> "To determine what neurotransmitters are used by the CX cell types, we carried out fluorescent in situ hybridization using EASI-FISH (Eddison and Irkhe, 2022; Close et al., 2024) on brains that also expressed GFP driven from a cell-type-specific split GAL4 line. In this way, we could determine what neurotransmitters were expressed in over 100 different CX cell types based on ...."<br /> Reading this description, I was uncertain whether the >100 cell types mentioned were tested with all the NT markers by EASI-FISH? Also, assigning arbitrary numbers to the cell types (same suggestion as above) could help the reader more readily ascertain which were the ~100 cell types classified in this context.

      manuscript p 10<br /> "Our full results are summarized below, together with our analysis of neuropeptide expression in the same cell types."<br /> I recommend specifying which Figures and Tables contain the "full results" indicated.

      NP expression in CX cell types<br /> Similar to the comments regarding studies of NT expression: were all ~100 cell types tested with each of the 17 selected NPs? Arbitrary numerical identifies could be useful for the reader to determine which cell types/ lines were tested and which were not yet tested

      manuscript p. 11<br /> "The neuropeptide expression patterns we observed fell into two broad categories."<br /> This section presents information that is extensive and extremely useful. It supports consideration of peptidergic cell signaling at a circuits level and in a systematic fashion that will promote future progress in this field. I have two comments. First, regarding the categorization of two NP expression patterns, discernible by differences in cell number: this idea mirrors one present in prior literature. Recently the classification of the transcription factor DIMM summarizes this same two-way categorization (e.g., doi: 10.1371/journal.pone.0001896). That included the fact that a single NP can be utilized by cell of either category.

      Second, regarding this comment:<br /> "In contrast, neuropeptides like those shown in Figure 6 appear to be expressed in dozens to hundreds of cells and appear poised to function by local volume transmission in multiple distinct circuits."<br /> Signaling by NPs in this second category (many small cells) suggests more local diffusion, a smaller geographic expanse compared to "volume" signaling by the sparser larger peptidergic cells. Given this, I suggest re-consideration in using the term "volume" in this instance, perhaps in favor of "local" or "paracrine". This is only a suggestion and in fact rests almost entirely on speculation/ interpretation, as the field lacks a strong empirical basis to say how far NPs diffuse and act. A recent study in the fly brain of peptide co-transmitters (doi: 10.1016/j.cub.2020.04.025) provides an instructive example in which differences between the spatial extents of long-range (peptide 1) versus short-range (peptide 2) NP signaling may be inferred in vivo.

      Spab was mentioned (Figure 6 legend) but discarded as a candidate NP to include based on a personal communication, as was Nplp1. The manuscript did not include reasons to do so, nor include a reference to spab peptide. I suggest including explicit reasons to discard candidate NPs.

      In Fig 9-supplement 1, neurotransmitter biosynthetic enzymes were measured by RNA-seq for given CX cell types to augment the cell type classification. The same methods could be used to support cell type classification regarding putative peptidergic character (in Figure 9 supplement 2) by measuring expression levels of critical, canonical neuropeptide biosynthetic enzymes. These include the proprotein convertase dPC2 (amon); the carboxypeptidase dCPD/E (silver); and the amidating enzymes dPHM; dPal1; dPal2. PHM is most related to DBM (dopamine beta monooxygenase), the rate limiting enzyme for DA production, and greater than 90% of Drosophila neuropeptides are amidated. If the authors are correct in surmising widespread use of NPs by CX cell types (and I expect they are), there could be diagnostic value to report expression levels of this enzyme set across many/most CX cell types.

      Comment #6<br /> Screen of effects on Sleep behavior<br /> This work is large in scope and as suggested likely presents excellent starting points for many follow-up studies. I again suggest assigning stable number identities to the elements described. In this case, not cell types, but split Gal4 lines. This would expedite the cross-referencing of results across the four Supplemental Files 3-6. For example, line SS00273 is entry line #27 in S Files 3 and 4, but line entry #18 in S Files 5 and 6.

      manuscript p 26<br /> Clock to CX<br /> "Not surprisingly, the connectome reveals that many of the intrinsic CX cell types with sleep phenotypes are connected by wired pathways (Figure 12 and Figure 12-figure supplement 1)."<br /> Do intrinsic CX cells with sleep phenotypes also connect by wired pathways to CX cells that do not have sleep phenotypes?

      "The connectome also suggested pathways from the circadian clock to the CX. Links between clock output DN1 neurons to the ExR1 have been described in Lamaze et al. (2018) and Guo et al. (2018), and Liang et al. (2019) described a connection from the clock to ExR2 (PPM3) dopaminergic neurons."<br /> The introduction to this section indicates a focus on connectome-defined synaptic contacts. Whereas the first two studies cited featured both physiological and anatomic evidence to support connectivity from clock cells to CX, the third did not describe any anatomical connections, and that connection may in fact be due to diffuse not synaptic signaling

      I could not easily discern the difference between Figs 12 and 12-S1? These appear to be highly-related circuit models, wherein the second features more elements. Perhaps spell out the basis for the differences between the two models to avoid ambiguity.

      "...the cellular targets of Dh31 released from ER5 are unknown, however previous work (Goda et al., 2017; Mertens et al., 2005) has shown that Dh31 can activate the PDF receptor raising the possibility of autocrine signaling."<br /> Regarding pharmacological evidence for Dh31 activation of Pdfr: strong in vivo evidence was developed in doi: 10.1016/j.neuron.2008.02.018: a strong pdfr mutation greatly reduces response to synthetic dh31 in neurons that normally express Pdfr

      manuscript p 30<br /> "Unexpectedly, we found that all neuropeptide-expressing cell types also expressed a small neurotransmitter."<br /> Did this conclusion apply only to CX cell types? - or was it also true for large peptidergic neurons? Prior evidence suggests the latter may not express small transmitters (doi: 10.1016/j.cub.2009.11.065). The question pertains to the broader biology of peptidergic neurons, and is therefore outside the strict scope of the main focus area - the CX. However, the text did initially consider peptidergic neurons outside the CX, so the information may be pertinent to many readers.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, Wolff et al. describe an impressive collection of newly created split-GAL4 lines targeting specific cell types within the central complex (CX) of Drosophila. The CX is an important area in the brain that has been involved in the regulation of many behaviors including navigation and sleep/wake. The authors advocate that to fully understand how the CX functions, cell-specific driver lines need to be created. In that respect, this manuscript will be of very important value to all neuroscientists trying to elucidate complex behaviors using the fly model. In addition, and providing a further very important finding, the authors went on to assess neurotransmitter/neuropeptides and their receptors expression in different cells of the CX. These findings will also be of great interest to many and will help further studies aimed at understanding the CX circuitries. The authors then investigated how different CX cell types influence sleep and wake. While the description of the new lines and their neurochemical identity is excellent, the behavioral screen seems to be limited.

      Strengths:

      (1) The description of dozens of cell-specific split-GAL4 lines is extremely valuable to the fly community. The strength of the fly system relies on the ability to manipulate specific neurons to investigate their involvement in a specific behavior. Recently, the need to use extremely specific tools has been highlighted by the identification of sleep-promoting neurons located in the VNC of the fly as part of the expression pattern of the most widely used dorsal-Fan Shaped Body (dFB) GAL4 driver. These findings should serve as a warning to every neurobiologist, make sure that your tool is clean. In that respect, the novel lines described in this manuscript are fantastic tools that will help the fly community.<br /> (2) The description of neurotransmitter/neuropeptides expression pattern in the CX is of remarkable importance and will help design experiments aimed at understanding how the CX functions.

      Weaknesses:

      (1) I find the behavioral (sleep) screen of this manuscript to be limited. It appears to me that this part of the paper is not as developed as it could be. The authors have performed neuronal activation using thermogenetic and/or optogenetic approaches. For some cell types, only thermogenetic activation is shown. There is no silencing data and/or assessment of sleep homeostasis or arousal threshold. The authors find that many CX cell types modulate sleep and wake but it's difficult to understand how these findings fit one with the other. It seems that each CX cell type is worthy of its own independent study and paper. I am fully aware that a thorough investigation of every CX neuronal type in sleep and wake regulation is a herculean task. So, altogether I think that this manuscript will pave the way for further studies on the role of CX neurons in sleep regulation.<br /> (2) Linked to point 1, it is possible that the activation protocols used in this study are insufficient for some neuronal types. The authors have used 29{degree sign} for thermogenetic activation (instead of the most widely used 31{degree sign}) and a 2Hz optogenetic activation protocol. The authors should comment on the fact that they may have missed some phenotypes by using these mild activation protocols.<br /> (3) There are multiple spelling errors in the manuscript that need to be addressed.

    3. Reviewer #3 (Public review):

      Summary:

      The authors created and characterized genetic tools that allow for precise manipulation of individual or small subsets of central complex (CX) cell types in the Drosophila brain. They developed split-GAL4 driver lines and integrated this with a detailed survey of neurotransmitter and neuropeptide expression and receptor localization in the central brain. The manuscript also explores the functional relevance of CX cell types by evaluating their roles in sleep regulation and linking circadian clock signals to the CX. This work represents an ambitious and comprehensive effort to provide both molecular and functional insights into the CX, offering tools and data that will serve as a critical resource for researchers.

      Strengths:

      (1) The extensive collection of split-GAL4 lines targeting specific CX cell types fills a critical gap in the genetic toolkit for the Drosophila neuroscience community.<br /> (2) By combining anatomical, molecular, and functional analyses, the authors provide a holistic view of CX cell types that is both informative and immediately useful for researchers across diverse disciplines.<br /> (3) The identification of CX cell types involved in sleep regulation and their connection to circadian clock mechanisms highlights the functional importance of the CX and its integrative role in regulating behavior and physiological states.<br /> (4) The authors' decision to present this work as a single, comprehensive manuscript rather than fragmenting it into smaller publications each focusing on separate central complex components is commendable. This decision prioritizes accessibility and utility for the broader neuroscience community, which will enable researchers to approach CX-related questions with a ready-made toolkit.

      Weaknesses:

      While the manuscript is an outstanding resource, it leaves room for more detailed mechanistic exploration in some areas. Nonetheless, this does not diminish the immediate value of the tools and data provided.

      Appraisal:

      The authors have succeeded in achieving their aims of creating well-characterized genetic tools and providing a detailed survey of neurochemical and functional properties in the CX. The results strongly support their conclusions and open numerous avenues for future research. The work effectively bridges the gap between genetic manipulation, molecular characterization, and functional assessment, enabling a deeper understanding of the CX's diverse roles.

      Impact and Utility

      This manuscript will have a significant and lasting impact on the field, providing tools and data that facilitate new discoveries in the study of the CX, sleep regulation, circadian biology, and beyond. The genetic tools developed here are likely to become a standard resource for Drosophila researchers, and the comprehensive dataset on neurotransmitter and neuropeptide expression will inspire investigations into the interplay between neuromodulation and classical neurotransmission.

      Additional Context

      By delivering an integrated dataset that spans anatomy, molecular properties, and functional relevance, the authors have created a resource that will serve the neuroscience community for years to come.

    1. Reviewer #1 (Public review):

      Summary:

      Recent work has demonstrated that the hummingbird hawkmoth, Macroglossum stellatarum, like many other flying insects, use ventrolateral optic flow cues for flight control. However, unlike other flying insects, the same stimulus presented in the dorsal visual field elicits a directional response. Bigge et al., use behavioral flight experiments to set these two pathways in conflict in order to understand whether these two pathways (ventrolateral and dorsal) work together to direct flight and if so, how. The authors characterize the visual environment (the amount of contrast and translational optic flow) of the hawkmoth and find that different regions of the visual field are matched to relevant visual cues in their natural environment and that the integration of the two pathways reflects a priortiziation for generating behavior that supports hawkmoth safety rather than than the prevalence for a particular visual cue that is more prevalent in the environment.

      Strengths:

      This study creatively utilizes previous findings that the hawkmoth partitions their visual field as a way to examine parallel processing. The behavioral assay is well-established and the authors take the extra steps to characterize the visual ecology of the hawkmoth habitat to draw exciting conclusions about the hierarchy of each pathway as it contributes to flight control.

      Weaknesses:

      The work would be further clarified and strengthened by additional explanation included in the main text, figure legends, and methods that would permit the reader to draw their own conclusions more feasibly. It would be helpful to have all figure panels referenced in the text and referenced in order, as they are currently not. In addition, it seems that sometimes the incorrect figure panel is referenced in the text, Figure S2 is mislabeled with D-E instead of A-C and Table S1 is not referenced in the main text at all. Table S1 is extremely important for understanding the figures in the main text and eliminating acronyms here would support reader comprehension, especially as there is no legend provided for Table S1. For example, a reader that does not specialize in vision may not know that OF stands for optic flow. Further detail in figure legends would also support the reader in drawing their own conclusions. For example, dashed red lines in Figures 3 and 4 A and B are not described and the letters representing statistical significance could be further explained either in the figure legend or materials to help the reader draw their own conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      Bigge and colleagues use a sophisticated free-flight setup to study visuo-motor responses elicited in different parts of the visual field in the hummingbird hawkmoth. Hawkmoths have been previously shown to rely on translational optic flow information for flight control exclusively in the ventral and lateral parts of their visual field. Dorsally presented patterns, elicit a formerly completely unknown response - instead of using dorsal patterns to maintain straight flight paths, hawkmoths fly, more often, in a direction aligned with the main axis of the pattern presented (Bigge et al, 2021). Here, the authors go further and put ventral/lateral and dorsal visual cues into conflict. They found that the different visuomotor pathways act in parallel, and they identified a 'hierarchy': the avoidance of dorsal patterns had the strongest weight and optic flow-based speed regulation the lowest weight.

      Strengths:

      The data are very interesting, unique, and compelling. The manuscript provides a thorough analysis of free-flight behavior in a non-model organism that is extremely interesting for comparative reasons (and on its own). These data are both difficult to obtain and very valuable to the field.

      Weaknesses:

      While the present manuscript clearly goes beyond Bigge et al, 2021, the advance could have perhaps been even stronger with a more fine-grained investigation of the visual responses in the dorsal visual field. Do hawkmoths, for example, show optomotor responses to rotational optic flow in the dorsal visual field?

    3. Reviewer #3 (Public review):

      The central goal of this paper as I understand it is to extract the "integration hierarchy" of stimulus in the dorsal and ventrolateral visual fields. The segregation of these responses is different from what is thought to occur in bees and flies and was established in the authors' prior work. Showing how the stimuli combine and are prioritized goes beyond the authors' prior conclusions that separated the response into two visual regions. The data presented do indeed support the hierarchy reported in Figure 5 and that is a nice summary of the authors' work. The moths respond to combinations of dorsal and lateral cues in a mixed way but also seem to strongly prioritize avoiding dorsal optic flow which the authors interpret as a closed and potentially dangerous ecological context for these animals. The authors use clever combinations of stimuli to put cues into conflict to reveal the response hierarchy.

      My most significant concern is that this hierarchy of stimulus responses might be limited to the specific parameters chosen in this study. Presumably, there are parameters of these stimuli that modulate the response (spatial frequency, different amounts of optic flow, contrast, color, etc). While I agree that the hierarchy in Figure 5 is consistent for the particular stimuli given, this may not extend to other parameter combinations of the same cues. For example, as the contrast of the dorsal stimuli is reduced, the inequality may shift. This does not preclude the authors' conclusions but it does mean that they may not generalize, even within this species. For example, other cue conflict studies have quantified the responses to ranges of the parameters (e.g. frequency) and shown that one cue might be prioritized or up-weighted in one frequency band but not in others. I could imagine ecological signatures of dorsal clutter and translational positioning cues could depend on the dynamic range of the optic flow, or even having spatial-temporal frequency-dependent integration independent of net optic flow.

      The second part of this concern is that there seems to be a missed opportunity to quantify the integration, especially when the optic flow magnitude is already calculated. The discussion even highlights that an advantage of the conflict paradigm is that the weights of the integration hierarchy can be compared. But these weights, which I would interpret as stimulus-responses gains, are not reported. What is the ratio of moth response to optic flow in the different regions? When the moth balances responses in the dorsal and ventrolateral region, is it a simple weighted average of the two? When it prioritizes one over the other is the response gain unchanged? This plays into the first concern because such gain responses could strongly depend on the specific stimulus parameters rather than being constant.

      The authors do explain the choice of specific stimuli in the context of their very nice natural scene analysis in Fig. 1 and there is an excellent discussion of the ecological context for the behaviors. However, I struggled to directly map the results from the natural scenes to the conclusions of the paper. How do they directly inform the methods and conclusions for the laboratory experiments? Most important is the discussion in the middle paragraph of page 12, which suggests a relationship with Figure 1B, but seems provocative but lacking a quantification with respect to the laboratory stimuli.

      The central conclusion of the first section of the results is that there are likely two different pathways mediating the dorsal and the ventrolateral response. This seems reasonable given the data, however, this was also the message that I got from the authors' prior paper (ref 11). There are certainly more comparisons being done here than in that paper and it is perfectly reasonable to reinforce the conclusion from that study but I think what is new about these results needs to be highlighted in this section and differentiated from prior results. Perhaps one way to help would be to be more explicit with the open hypotheses that remain from that prior paper.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the neuroprotective effect of reserpine in a retinitis pigmentosa (P23H-1) model, characterized by a mutation in the rhodopsin gene. Their results reveal that female rats show better preservation of both rod and cone photoreceptors following reserpine treatment compared to males.

      Strengths:

      This study effectively highlights the neuroprotective potential of reserpine and underscores the value of drug repositioning as a strategy for accelerating the development of effective treatments. The findings are significant for their clinical implications, particularly in demonstrating sex-specific differences in therapeutic response.

      Weaknesses:

      The main limitation is the lack of precise identification of the specific pathway through which reserpine prevents photoreceptor death.

    2. Reviewer #2 (Public review):

      Summary:

      In the manuscript entitled "Sex-specific attenuation of photoreceptor degeneration by reserpine in a rhodopsin P23H rat model of autosomal dominant retinitis pigmentosa" by Beom Song et al., the authors explore the transcriptomic differences between male and female wild-type (WT) and P23H retinas, highlighting significant gene expression variations and sex-specific trends. The study emphasizes the importance of considering biological sex in understanding inherited retinal degeneration and the impact of drug treatments on mutant retinas.

      Strengths:

      (1) Relevance to Clinical Challenges: The study addresses a critical limitation in inherited retinal degeneration (IRD) therapies by exploring a gene-agnostic approach. It emphasizes sex-specific responses, which aligns with recent NIH mandates on sex as a biological variable.<br /> (2) Multi-dimensional Methodology: Combining electroretinography (ERG), optical coherence tomography (OCT), histology, and transcriptomics strengthens the study's findings.<br /> (3) Novel Insights: The transcriptomic analysis uncovers sex-specific pathways impacted by reserpine, laying the foundation for personalized approaches to retinal disease therapy.

      Weaknesses:

      Dose Optimization<br /> The study uses a fixed dose (40 µM), but no dose-response analysis is provided. Sex-specific differences in efficacy might be influenced by suboptimal dosing, particularly considering potential differences in metabolism or drug distribution.

      Statistical Analysis

      In my opinion, there is room for improvement. How were the animals injected? Was the contralateral eye used as control? (no information in the manuscript about it!, line 390 just mentions the volume and concentration of injections). If so, why not use parametric paired analysis? Why use a non-parametric test, as it is the Mann-Whitney U? The Mann-Whitney U test is usually employed for discontinuous count data; is that the case here?<br /> Therefore, please specify whether contralateral eyes or independent groups served as controls. If contralateral controls were used, paired parametric tests (e.g., paired t-tests) would be statistically appropriate. Alternatively, if independent cohorts were used, non-parametric Mann-Whitney U tests may suffice but require clear justification.

      Sex-Specific Pathways

      The authors do identify pathways enriched in female vs. male retinas but fail to explicitly connect these to the changes in phenotype analysed by ERG and OCT. The lack of mechanistic validation weakens the argument.

      The study does not explore why female rats respond better to reserpine. Potential factors such as hormonal differences, retinal size, or differential drug uptake are not discussed.<br /> It remains open, whether observed transcriptomic trends (e.g., proteostasis network genes) correlate with sex-specific functional outcomes.

    1. Reviewer #1 (Public review):

      Summary:

      The study addresses the growing threat of multi-drug-resistant (MDR) pathogens, focusing on the efficacy of colistin (COL), a last-resort antibiotic, and its enhanced activity when combined with artesunate (AS) and ethylenediaminetetraacetic acid (EDTA) against colistin-resistant Salmonella strains. The researchers aim to explore whether these combinations can restore the effectiveness of colistin and understand the underlying mechanisms. The study used a combination of microbiological and molecular techniques to evaluate the antibacterial activity and mechanisms of action of COL, AS, and EDTA. Key methods included: (i) Antimicrobial Susceptibility Testing: Determining minimum inhibitory concentrations (MICs) of COL, AS, and EDTA, both alone and in combination, against various Salmonella strains; (ii) Time-Kill Assays: Measuring bacterial growth inhibition over time with different drug combinations; (iii) Fluorescent Probe-Permeability Assays: Assessing cell membrane integrity using fluorescent dyes; (iv) Proton Motive Force Assay: Evaluating the impact on the electrochemical proton gradient (PMF); (v) Reactive Oxygen Species (ROS) Measurement: Quantifying intracellular ROS levels; (vi) Scanning Electron Microscopy (SEM): Observing morphological changes in bacterial cells; and (vii) Omics Analysis: Transcriptome and metabolome profiling to identify differentially expressed genes (DEGs) and significant differential metabolites (SDMs). The combination of COL, AS, and EDTA (AEC) showed significant antibacterial activity against colistin-resistant Salmonella strains, reducing the MICs and enhancing bacterial killing compared to individual treatments. The AEC treatment caused extensive damage to both the outer and inner bacterial membranes, as evidenced by increased fluorescence of membrane-impermeant dyes and SEM images showing deformed cell membranes. AEC treatment selectively collapsed the Δψ component of PMF, indicating disruption of vital cellular processes. The combination therapy increased intracellular ROS levels, contributing to bacterial killing. Transcriptome data revealed changes in genes related to two-component systems, flagellar assembly, and ABC transporters. Metabolome analysis highlighted disruptions in pathways such as arachidonic acid metabolism. The findings suggest that AS and EDTA can potentiate the antibacterial effects of colistin by disrupting bacterial membranes, collapsing PMF, and increasing ROS levels. This combination therapy could serve as a promising approach to combat colistin-resistant Salmonella infections.

      Strengths:

      - The study employs a wide range of techniques to thoroughly investigate the antibacterial mechanisms and efficacy of the drug combinations.<br /> - The results are consistent across multiple assays and supported by both in vitro and in vivo data.<br /> - Combining AS and EDTA with COL represents a novel strategy to tackle antibiotic resistance.

      Weaknesses:

      - The methodology used for interpreting and reporting time-kill assay results.

      Comments on revised version:

      Overall, the authors have adequately addressed the suggestions provided.

    2. Reviewer #2 (Public review):

      The study by Zhai et al describes repurposing of artesunate, to be used in combination with EDTA to resensitize Salmonella spp. to colistin. The observed effect applied both to strains with and without mobile colistin resistance determinants (MCR). It is known since earlier that EDTA in combination with colistin has an inhibitory effect on MCR-enzymes, but at the same time both colistin and EDTA can contribute to nephrotoxicity, something which is also true for artesunate. Thus, the triple combination of three nephrotoxic agents has significant challenges in vivo, which is not particularly discussed in this paper.

      The study is sound from a methodological point of view and has many interesting angles to address mechanistically how the three compounds can synergize.

      Comments on revised version:

      After having read the revised version, I have the following comments:

      (1) The antimicrobials tested in Figure 9 are not really very relevant. I would want to see carbapenems and novel beta-lactam/beta-lactamase inhibitors rather than many old drugs with a debatable role in the treatment of Gram-negative infections. At least the authors should be able to test carbapenem resistance<br /> (2) The genomics analysis of the strains should be fairly quick - both in terms of characterizing the mobile resistome and the sequence types. There are publicly available databases for this purpose

      The rest of my comments have been addressed in the revised version. There are still some remaining valid points from other reviewers that could be debatable whether they should be address. The authors refer to plans of studying these aspects in subsequent studies, but it could be discussed whether some of the data could be expected already in this study.

    1. Reviewer #1 (Public review):

      Summary:

      SARS-CoV-2 infection induces syncytia formation, which promotes viral transmission. In this paper, the authors aimed to understand how host-derived inflammatory cytokines IL-1α/β combat SARS-CoV-2 infection.

      Strengths:

      First, they used a cell-cell fusion assay developed previously to identify IL-1α/β as the cytokines that inhibit syncytia formation. They co-cultured cells expressing the spike protein and cells expressing ACE2 and found that IL-1β treatment decreased syncytia formation and S2 cleavage.

      Second, they investigated the IL-1 signaling pathway in detail, using knockouts or pharmacological perturbation to understand the signaling proteins responsible for blocking cell fusion. They found that IL-1 prevents cell-cell fusion through MyD88/IRAK/TRAF6 but not TAK1/IKK/NF-κB, as only knocking out MyD88/IRAK/TRAF6 eliminates the inhibitory effect on cell-cell fusion in response to IL-1β. This revealed that the inhibition of cell fusion did not require a transcriptional response and was mediated by IL-1R proximal signaling effectors.

      Third, the authors identified RhoA/ROCK activation by IL-1 as the basis for this inhibition of cell fusion. By visualizing a RhoA biosensor and actin, they found a redistribution of RhoA to the cell periphery and cell-cell junctions after IL-1 stimulation. This triggered the formation of actin bundles at cell-cell junctions, preventing fusion and syncytia formation. The authors confirmed this molecular mechanism by using constitutively active RhoA and an inhibitor of ROCK.<br /> Diverse Cell types and in vivo models were used, and consistent results were shown across diverse models. These results were convincing and well-presented.

      In summary, the authors have provided compelling evidence regarding how IL-1 signaling induces a prophylactic response to viral infection. While the mechanistic details of how IL-1R and MyD88 induce RhoA/Rock pathway to mediate actin remodeling remain unclear, this manuscript serves as the basis for future studies.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Zheng et al investigated the role of inflammatory cytokines in protecting cells against SARS-CoV-2 infection. They demonstrate that soluble factors in the supernatants of TLR stimulated THP1 cells reduce fusion events between HEK293 cells expressing SARS-CoV-2 S protein and the ACE2 receptor. Using qRT-PCR and ELISA, they demonstrate that IL-1 cytokines are (not surprisingly) upregulated by TLR treatment in THP1 cells. Further, they convincingly demonstrate that recombinant IL-1 cytokines are sufficient to reduce cell-to-cell fusion mediated by the S protein. Using chemical inhibitors and CRISPR knock-out of key IL-1 receptor signaling components in HEK293 cells, they demonstrate that components of the myddosome (MYD88, IRAK1/4, and TRAF6) are required for fusion inhibition, but that downstream canonical signaling (i.e., TAK1 and NFKB activation) is not required. Instead, they provide evidence that IL-1-dependent non-canonical activation of RhoA/Rock is important for this phenotype. Importantly, the authors demonstrate that expression of a constitutively active RhoA alone is sufficient to inhibit fusion and that chemical inhibition of Rock could reverse this inhibition. The authors followed up these in vitro experiments by examining the effects of IL-1 on SARS-COV-2 infection in vivo and they demonstrate that recombinant IL-1 can reduce viral burden and lung pathogenesis in a mouse model of infection. Use of a ROCK inhibitor in IL-1 treated mice restored the ability of SARS-CoV-2 to spread in the lung, suggesting that this inhibitory process functions in vivo.

      Strengths:

      (1) The bioluminescence cell-cell fusion assay provides a robust quantitative method to examine cytokine effects on viral glycoprotein-mediated fusion.

      (2) The study identifies a new mechanism by which IL-1 cytokines can limit virus infection.

      (3) The authors tested IL-1 mediated inhibition of fusion induced by many different coronavirus S proteins and several SARS-CoV-2 strains.

      (4) The authors demonstrate that recombinant IL-1 mediated inhibition of SARS-CoV-2 infection in mice is dependent on the RhoA/Rock pathway.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasmamembrane localization correlates with high-grade DCIS cells in patient tissue samples. Specifically in invasive MCF10DCIS.com cells they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting the fact that there are high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility and invasiveness will have a great impact in the cancer field and potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. Authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, pharmacological and genetic means, and showed a good correlation between different phenomena.

      All of my previous concerns have been addressed. The quality of the manuscript has improved significantly.

    2. Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient's samples). Activation and inhibition of TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report a study aimed at understanding the brain's representations of viewed actions, with a particular aim to distinguish regions that encode observed body movements, from those that encode the effects of actions on objects. They adopt a cross-decoding multivariate fMRI approach, scanning adult observers who viewed full-cue actions, pantomimes of those actions, minimal skeletal depictions of those actions, and abstract animations that captured analogous effects to those actions. Decoding across different pairs of these action conditions allowed the authors to pull out the contributions of different action features in a given region's representation. The main hypothesis, which was largely confirmed, was that the superior parietal lobe (SPL) more strongly encodes movements of the body, whereas the anterior inferior parietal lobe (aIPL) codes for action effects of outcomes. Specifically, region of interest analyses showed dissociations in the successful cross-decoding of action category across full-cue and skeletal or abstract depictions. Their analyses also highlight the importance of the lateral occipito-temporal cortex (LOTC) in coding action effects. They also find some preliminary evidence about the organisation of action kinds in the regions examined, and take some steps to distinguishing the differences and similarities of action-evoked patterns in primary visual cortex and the other examined regions.

      Strengths:

      The paper is well-written, and it addresses a topic of emerging interest where social vision and intuitive physics intersect. The use of cross-decoding to examine actions and their effects across four different stimulus formats is a strength of the study. Likewise the a priori identification of regions of interest (supplemented by additional full-brain analyses) is a strength. Finally, the authors successfully deployed a representational-similarity approach that provides more detailed evidence about the different kinds of action features that seem to be captured in each of the regions that were examined.

      Weaknesses:

      Globally, the findings provide support for the predicted anatomical distinctions, and for the distinction between body-focused representations of actions and more abstract "action effect structures". Viewed more narrowly, the picture is rather complex, and the patterns of (dis)similarity in the activity evoked by different action kinds do not always divide neatly. Probably, examining many more kinds of actions with the multi-format decoding approach developed here will be needed to more effectively disentangle the various contributions of movement, posture, low-level visual properties, and action outcomes/effects.

    1. Reviewer #1 (Public review):

      Summary:

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

      Strengths:

      The three experiments are well designed and the various conditions are well controlled. The rationale of the study is clear, and the manuscript is pleasant to read. The analysis choices are easy to follow, and mostly appropriate.

      Weaknesses:

      On revision, the authors are careful not to overinterpret an analysis where the statistical test is not independent from the data (channel) selection criterion.

    2. Reviewer #2 (Public review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      In the first revisions of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. In a further revision, it is clarified better how the results relate to the various competing hypotheses on how biological motion is processed.

      Weaknesses:

      Still, it is my view that the findings of the study are basic neural correlate results that offer only minimal constraint towards the question of how the brain realizes the integration of multisensory information in the service of biological motion perception, and the data do not address the causal relevance of observed neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion that offer some constraint toward mechanism, and it is possible that the effects are behaviorally relevant, but based on the current task and associated analyses this has not been shown (or could not have been, given the paradigm).

    1. Reviewer #1 (Public review):

      Summary:

      "Neural noise", here operationalized as an imbalance between excitatory and inhibitory neural activity, has been posited as a core cause of developmental dyslexia, a prevalent learning disability that impacts reading accuracy and fluency. This is study is the first to systematically evaluate the neural noise hypothesis of dyslexia. Neural noise was measured using neurophysiological (electroencephalography [EEG]) and neurochemical (magnetic resonance spectroscopy [MRS]) in adolescents and young adults with and without dyslexia. The authors did not find evidence of elevated neural noise in the dyslexia group from EEG or MRS measures, and Bayes factors generally informed against including the grouping factor in the models. Although the comparisons between groups with and without dyslexia did not support the neural noise hypothesis, a mediation model that quantified phonological processing and reading abilities continuously revealed that EEG beta power in the left superior temporal sulcus was positively associated with reading ability via phonological awareness. This finding lends support for analysis of associations between neural excitatory/inhibitory factors and reading ability along a continuum, rather than as with a case/control approach, and indicates the relevance of phonological awareness as an intermediate trait that may provide a more proximal link between neurobiology and reading ability. Further research is needed across developmental stages and over a broader set of brain regions to more comprehensively assess the neural noise hypothesis of dyslexia, and alternative neurobiological mechanisms of this disorder should be explored.

      Strengths:

      The inclusion of multiple methods of assessing neural noise (neurophysiological and neurochemical) is a major advantage of this paper. MRS at 7T confers an advantage of more accurately distinguishing and quantifying glutamate, which is a primary target of this study. In addition, the subject-specific functional localization of the MRS acquisition is an innovative approach. MRS acquisition and processing details are noted in the supplementary materials using according to the experts' consensus recommended checklist (https://doi.org/10.1002/nbm.4484). Commenting on rigor the EEG methods is beyond my expertise as a reviewer.<br /> Participants recruited for this study included those with a clinical diagnosis of dyslexia, which strengthens confidence in the accuracy of the diagnosis. The assessment of reading and language abilities during the study further confirms the persistently poorer performance of the dyslexia group compared to the control group.<br /> The correlational analysis and mediation analysis provide complementary information to the main case-control analyses, and the examination of associations between EEG and MRS measures of neural noise is novel and interesting.<br /> The authors follow good practice for open science, including data and code sharing. They also apply statistical rigor, using Bayes Factors to support conclusions of null evidence rather than relying only on non-significant findings. In the discussion, they acknowledge the limitations and generalizability of the evidence and provide directions for future research on this topic.

      Appraisal:

      The authors present a thorough evaluation of the neural noise hypothesis of developmental dyslexia in a sample of adolescents and young adults using multiple methods of measuring excitatory/inhibitory imbalances as an indicator of neural noise. The authors concluded that there was not support for the neural noise hypothesis of dyslexia in their study based on null significance and Bayes factors. This conclusion is justified, and further research is called for to more broadly evaluate the neural noise hypothesis in developmental dyslexia.

      Impact:

      This study provides an exemplar foundation for the evaluation of the neural noise hypothesis of dyslexia. Other researcher may adopt the model applied in this paper to examine neural noise in various populations with/without dyslexia, or across a continuum of reading abilities, to more thoroughly examine evidence (or lack thereof) for this hypothesis. Notably, the lack of evidence here does not rule out the possibility for a role of neural noise in dyslexia, and the authors point out that presentation with co-occurring conditions, such as ADHD, may contribute to neural noise in dyslexia. Dyslexia remains a multi-faceted and heterogenous neurodevelopmental condition, and many genetic, neurobiological and environmental factors play a role. This study demonstrates one step toward evaluating neurobiological mechanisms that may contribute to reading difficulties.

    2. Reviewer #2 (Public review):

      Summary:

      This study utilized two complimentary techniques (EEG and 7T MRI/MRS) to directly test a theory of dyslexia: the neural noise hypothesis. The authors report finding no evidence to support an excitatory/inhibitory balance, as quantified by beta in EEG and Glutamate/GABA ratio in MRS. This is important work and speaks to one potential mechanism by which increased neural noise may occur in dyslexia.

      Strengths:

      This is a well-conceived study with in depth analyses and publicly available data for independent review. The authors provide transparency with their statistics and display the raw data points along with the averages in figures for review and interpretation. The data suggest that an E/I balance issue may not underlie deficits in dyslexia and is a meaningful and needed test of a possible mechanism for increased neural noise.

      Weaknesses:

      The researchers did not include a visual print task in the EEG task, which limits analysis of reading specific regions such as the visual word form area, which is a commonly hypoactivated region in dyslexia. This region is a common one of interest in dyslexia, yet the researchers measured the I/E balance in only one region of interest, specific to the language network.

    3. Reviewer #3 (Public review):

      Summary:

      This study by Glica and colleagues utilized EEG (i.e., Beta power, Gamma power, and aperiodic activity) and 7T MRS (i.e., MRS IE ratio, IE balance) to reevaluate the neural noise hypothesis in Dyslexia. Supported by Bayesian statistics, their results show convincing evidence of no differences in EI balance between groups, challenging the neural noise hypothesis.

      Strengths:

      Combining EEG and 7T MRS, this study utilized both the indirect (i.e., Beta power, Gamma power, and aperiodic activity) and direct (i.e., MRS IE ratio, IE balance) measures to reevaluate the neural noise hypothesis in Dyslexia.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      The problem I raised has been well resolved. I have no further questions.

    2. Reviewer #2 (Public review):

      In recent years, lots of researchers tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high resolution mass spectrometry. Here is an example for this effort. Yuqian Wang et al. studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using biochemistry method and MS identification technology to confirm it. These results extended our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find this conclusion is a little speculative, and unfortunately it also doesn't totally support the conclusion as the authors provided.

      Major concerns:

      -It is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." It should be modified to delete the "in the prokaryotes" except that the authors get new more evidence in the other prokaryotes for the existence of the AhCobQ.<br /> -I was confused about the arrangement of the supplementary results. Because there are no citations for Figures S9-S19.<br /> -Same to the above, there are no data about Tables S1-S6.<br /> -All the load control is not integrated. Please provide all of the load controls with whole PAGE gel or whole membrane western blot results. Without these whole results, it is not convincing to come the conclusion as the authors mentioned in the context.<br /> -Thoroughly review the materials & methods section. It is unclear to me what exactly the authors describe in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, and purification conditions, etc.<br /> -Include relevant information about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

    1. Reviewer #1 (Public review):

      Summary:

      The authiors show that SVZ derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronin is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.

      Strengths:

      The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results logical.

      Comments on revised version:

      The authors have addressed my points and the paper is much improved. Here are the salient remaining issues that I suggest be addressed.

      The authors have still not shown, using loss of function studies, that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions.

      (1) The co-expression of EGFr with Thbs4 and the literature examination is useful.

      (2) Too bad they cannot explain the lack of effect of the MCAO on type C cells. The comparison with kainate-induced epilepsy in the hippocampus may or may not be relevant.

      (3) Thanks for including the orthogonal confocal views in Fig S6D.

      (4) The statement that "BrdU+/Thbs4+ cells mostly in the dorsal area" and therefore they mostly focused on that region is strange. Figure 8 clearly shows Thbs4 staining all along the striatal SVZ. Do they mean the dorsal segment of the striatal SVZ or the subcallosal SVZ? Fig. 4b and Fig 4f clearly show the "subcallosal" area as the one analysed but other figures show the dorsal striatal region (Fig. 2a). This is important because of the well-known embryological and neurogenic differences between the regions.

      (5) It is good to know that the harsh MCAO's had already been excluded.

      (6) Sorry for the lack of clarity - in addition to Thbs4, I was referring to mouse versus rat Hyaluronan degradation genes (Hyal1, Hyal2 and Hyal3) and hyaluronan synthase genes (HAS1 and HAS2) in order to address the overall species differences in hyaluronan biology thus justifying the "shift" from mouse to rat. You examine these in the (weirdly positioned) Fig. 8h,i. Please add a few sentences on mouse vs rat Thbs4 and Hyaluronan relevant genes.

      (7) Thank you for the better justification of using the naked mole rat HA synthase.

    2. Reviewer #3 (Public review):

      Summary:

      The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.

      Strengths:

      The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.

      In this revised version, the points raised/weaknesses were clarified and discussed in the article.

    1. Reviewer #1 (Public review):

      When you search for something, you need to maintain some representation (a "template") of that target in your mind/brain. Otherwise, how would you know what you were looking for? If your phone is in a shocking pink case, you can guide your attention to pink things based on a target template that includes the attribute 'pink'. That guidance should get you to the phone pretty effectively if it is in view. Most real-world searches are more complicated. If you are looking for the toaster, you will make use of your knowledge of where toasters can be. Thus, if you are asked to find a toaster, you might first activate a template of a kitchen or a kitchen counter. You might worry about pulling up the toaster template only after you are reasonably sure you have restricted your attention to a sensible part of the scene.

      Zhou and Geng are looking for evidence of this early stage of guidance by information about the surrounding scene in a search task. They train Os to associate four faces with four places. Then, with Os in the scanner, they show one face - the target for a subsequent search. After an 8 sec delay, they show a search display where the face is placed on the associated scene 75% of the time. Thus, attending to the associated scene is a good idea. The questions of interest are "When can the experimenters decode which face Os saw from fMRI recording?" "When can the experimenters decode the associated scene?" and "Where in the brain can the experimenters see evidence of this decoding? The answer is that the face but not the scene can be read out during the face's initial presentation. The key finding is that the scene can be read out (imperfectly but above chance) during the subsequent delay when Os are looking at just a fixation point. Apparently, seeing the face conjures up the scene in the mind's eye.

      This is a solid and believable result. The only issue, for me, is whether it is telling us anything specifically about search. Suppose you trained Os on the face-scene pairing but never did anything connected to the search. If you presented the face, would you not see evidence of recall of the associated scene? Maybe you would see the activation of the scene in different areas and you could identify some areas as search specific. I don't think anything like that was discussed here.

      You might also expect this result to be asymmetric. The idea is that the big scene gives the search information about the little face. The face should activate the larger useful scene more than the scene should activate the more incidental face, if the task was reversed. That might be true if the finding is related to a search where the scene context is presumed to be the useful attention guiding stimulus. You might not expect an asymmetry if Os were just learning an association.

      It is clear in this study that the face and the scene have been associated and that this can be seen in the fMRI data. It is also clear that a valid scene background speeds the behavioral response in the search task. The linkage between these two results is not entirely clear but perhaps future research will shed more light.

      It is also possible that I missed the clear evidence of the search-specific nature of the activation by the scene during the delay period. If so, I apologize and suggest that the point be underlined for readers like me.

    2. Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports the invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.<br /> This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I don't think this is necessary for publication, but I think it would be a stronger test of the template hypothesis.<br /> Type in the abstract "curing" vs "during."<br /> It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are the explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

    3. Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA pattern analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

    1. Reviewer #1 (Public review):

      Summary:

      Ren et al developed a novel computational method to investigate cell evolutionary trajectory for scRNA-seq samples. This method, MGPfact, estimates pseudotime and potential branches in the evolutionary path through explicitly modeling the bifurcations in a Gaussian process. They benchmarked this method using synthetic as well as real world samples and showed superior performance for some of the tasks in cell trajectory analysis. They further demonstrated the utilities of MGPfact using single cell RNA-seq samples derived from microglia or T cells and showed that it can accurately identify the differentiation timepoint and uncover biologically relevant gene signatures.

      Strengths:

      Overall I think this is a useful new tool that could deliver novel insights for the large body of scRNA-seq data generated in the public domain. The manuscript is written is a logical way and most parts of the method are well described.

      Comments on revisions:

      In this revision, the authors have sufficiently addressed all of my concerns. I don't have any follow-up comments.

    2. Reviewer #2 (Public review):

      Summary of the manuscript:

      Authors present MGPfactXMBD, a novel model-based manifold-learning framework designed to address the challenges of interpreting complex cellular state spaces from single-cell RNA sequences. To overcome current limitations, MGPfactXMBD factorizes complex development trajectories into independent bifurcation processes of gene sets, enabling trajectory inference based on relevant features. As a result, it is expected that the method provides a deeper understanding of the biological processes underlying cellular trajectories and their potential determinants.

      MGPfactXMBD was tested across 239 datasets, and the method demonstrated similar to slightly superior performance in key quality-control metrics to state-of-the-art methods. When applied to case studies, MGPfactXMBD successfully identified critical pathways and cell types in microglia development, validating experimentally identified regulons and markers. Additionally, it uncovered evolutionary trajectories of tumor-associated CD8+ T cells, revealing new subtypes with gene expression signatures that predict responses to immune checkpoint inhibitors in independent cohorts.

      Overall, MGPfactXMBD represents a relevant tool in manifold-learning for scRNA-seq data, enabling feature selection for specific biological processes and enhancing our understanding of the biological determinants of cell fate.

      Summary of the outcome:

      The novel method addresses core state-of-the-art questions in biology related to trajectory identification. The design and the case studies are of relevance.

      Comments on revisions:

      The authors have addressed all my previous comments to satisfaction.

    1. Reviewer #1 (Public review):

      Summary:

      Kang et al. provide the first experimental insights from holographic stimulation of auditory cortex. Using stimulation of functionally-defined ensembles, they test whether overactivation of a specific subpopulation biases simultaneous and subsequent sensory-evoked network activations.

      Strengths:

      The investigators use a novel technique to investigate the sensory response properties in functionally defined cell assemblies in auditory cortex. These data provide the first evidence of how acutely perturbing specific frequency-tuned neurons impacts the tuning across a broader population.

      Weaknesses:

      I have several main concerns about the interpretation of these data:<br /> (1) The premise of the paper suggests that sensory responses are noisy at the level of neurons, but that population activity is reliable and that different neurons may participate in sensory coding on different trials. However, no analysis related to single trial variance or overall stability of population coding is provided. Specifically, showing that population activity is stable across trials in terms of total activity level or in some latent low dimensional representation would be required to support the concept of "homeostatic balancing".<br /> (2) Rebalancing would predict either that the responses of stimulated neurons would remain A) elevated after stimulation due to a hebbian mechanism or B) suppressed due to high activity levels on previous trials, a homeostatic mechanism. The authors report suppression in targeted neurons after stimulation blocks, but this appears similar to all other non-stimulated neurons. How do the authors interpret the post-stimulation effect in stimulated neurons?<br /> (3) The authors suggest that ACtx is different from visual cortex in that neurons with different tuning properties are intermingled. While that is true at the level of individual neurons, there is global order, as demonstrated by the authors own widefield imaging data and others at the single cell level (e.g. Tischbirek et al. 2019). Generally, distance is dismissed as a variable in the paper, but this is not convincing. Work across multiple sensory systems, including the authors own work, has demonstrated that cortical neuron connectivity is not random but varies as a function of distance (e.g. Watkins et al. 2014). Better justification is needed for the spatial pattern of neurons that were chosen for stimulation. Further, analyses that account for center of mass of stimulation, rather than just the distance from any stimulated neuron would be important to any negative result related to distance.<br /> (4) Data curation and presentation: Broadly, the way the data were curated and plotted makes it difficult to determine how well-supported the authors claims are. In terms of curation, the removal of outliers 3 standard deviations above the mean in the analysis of stimulation effects is questionable. Given the single-cell stimulation data presented in Figure 1, the reader is led to believe that holographic stimulation is quite specific. However, the justification for removing these outliers is that there may be direct stimulation 20-30 um from the target. Without plotting and considering the outliers as well, it is difficult to understand if these outsized responses are due to strong synaptic connections with neighboring neurons or rather just direct off-target stimulation. Relatedly, data presentation is limited to the mean + SEM for almost all main effects and pre-post stimulation effects are only compared indirectly. Whether stimulation effects are driven by just a few neurons that are particularly suppressed or distinct populations which are suppressed or enhanced remains unclear.

    2. Reviewer #2 (Public review):

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTsel-tuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role.

      The conclusions of this paper are very interesting but some aspects of the study including methods for optogenetic stimulation, statistical analysis of the results and interpretation of the underlying mechanisms need to be clarified and extended.

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such an approach is complex and requires precise controls to be convincing. In the manuscript, several methodological aspects are not sufficiently described to allow a proper understanding.<br /> (i) The use of CRmine together with GCaMP8s has been reported as problematic as the 2Ph excitation of GCaMP8s also excites the opsin. Here, the authors use a red-shifted version of CRmine to prevent such cross excitation by the imaging laser. To be convincing, they should explain how they controlled for the absence of rsCRmine activation by the 940nm light. Showing the fluorescence traces immediately after the onset of the imaging session would ensure that neurons are not excited as they are imaged.<br /> (ii) Holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such an effect, one could in principle decouple the imaging and the excitation planes, and check for the absence of out-of-focus unwanted excitation.<br /> (iii) The control shown in Figure 1B is intended to demonstrate the precision of the optogenetic stimulation: when the stimulation spiral is played at a distance larger or equal to 20 µm from a cell, it does not activate it. However, in the rest of the study, the stimulation is applied with a holographic approach, targeting 5 cells simultaneously instead of just one. As the holographic pattern of light could produce out-of-focus hot spots (absent in the single cell control), we don't know what is the extent of the contamination from non-targeted cells in this case. This is important because it would determine an objective criterion to exclude non-targeted but excited cells (last paragraph of the Result section: "For the stimulation condition, we excluded non-target cells that were within 15 µm distance of the target cells...")

      (2) A strength of this study comes from the design of the experimental protocol used to compare the activity in non-target co-tuned cells when the optogenetic stimulation is paired with their preferred tone versus a non-preferred pure tone. The difficulty lies in the co-occurrence of the rebalancing process and the adaptation to repeated auditory stimuli, especially when these auditory stimuli correspond to a cell's preferred pure tones. To distinguish between the two effects, the authors use a comparison with a control condition similar to the optogenetic stimulation conditions, except that the laser power is kept at 0 mW. The observed effect is shown as an extra reduction of activity in the condition with the optogenetic paired with the preferred tone, compared to the control condition. The specificity of this extra reduction when stimulation is synchronized with the preferred tone, but not with a non-preferred tone, is a potentially powerful result, as it points to an underlying mechanism that links the assemblies of cells that share the same preferred pure tones.<br /> The evidence for this specificity is shown in Figure 3A and 3D. However, the universality of this specificity is challenged by the fact that it is observed for 16kHz preferring cells, but not so clearly for 54kHz preferring cells: these 54kHz preferring cells also significantly (p = 0.044) reduce their response to 54kHz in the optogenetic stimulation condition applied to 16kHz preferring target cells compared to the control condition. The proposed explanation for this is the presence of many cells with a broad frequency tuning, meaning that these cells could have been categorized as 54kHz preferring cells, while they also responded significantly to a 16kHz pure tone. To account for this, the authors divide each category of pure tone cells into three subgroups with low, medium and high frequency preferences. Following the previous reasoning, one would expect at least the "high" subgroups to show a strong and significant specificity for an additional reduction only if the optogenetic stimulation is targeted to a group of cells with the same preferred frequency. Figure 3D fails to show this. The extra reduction for the "high" subgroups is significant only when the condition of opto-stimulation synchronized with the preferred frequency is compared to the control condition, but not when it is compared to the condition of opto-stimulation synchronized with the non-preferred frequency.<br /> Therefore, the claim that "these results indicate that the effect of holographic optogenetic stimulation depends not on the specific tuning of cells, but on the co-tuning between stimulated and non-stimulated neurons" (end of paragraph "Optogenetic holographic stimulation decreases activity in non-target co-tuned ensembles") seems somewhat exaggerated. Perhaps increasing the number of sessions in the 54kHz target cell optogenetic stimulation condition (12 FOV) to the number of sessions in the 16kHz target cell optogenetic stimulation condition (18 FOV) could help to reach significance levels consistent with this claim.

      (3) To interpret the results of this study, the authors suggest that mechanisms based on homeostatic signaling could be important to allow the rebalancing of the activity of assemblies of co-tuned neurons. In particular, the authors try to rule out the possibility that inhibition plays a central role. Both mechanisms could produce effects on short timescales, making them potential candidates. The authors quantify the spatial distribution of the balanced non-targeted cells and show that they are not localized in the vicinity of the targeted cells. They conclude that local inhibition is unlikely to be responsible for the observed effect. This argument raises some questions. The method used to quantify spatial distribution calculates the minimum distance of a non-target cell to any target cell. If local inhibition is activated by the closest target cell, one would expect the decrease in activity to be stronger for non-target cells with a small minimum distance and to fade away for larger minimum distances. This is not what the authors observe (Figure 4B), so they reject inhibition as a plausible explanation. However, their quantification doesn't exclude the possibility that non-target cells in the minimum distance range could also be close and connected to the other 4 target cells, thus masking any inhibitory effect mediated by the closest target cell. In addition, the authors should provide a quantitative estimate of the range of local inhibition in layers 2/3 of the mouse auditory cortex to compare with the range of distances examined in this study (< 300 µm). Finally, the possibility that some target cells could be inhibitory cells themselves is considered unlikely by the authors, given the proportions of excitatory and inhibitory neurons in the upper cortical layers. On the other hand, it should be acknowledged that inhibitory cells are more electrically compact, making them easier to be activated optogenetically with low laser power.

    3. Reviewer #3 (Public review):

      Summary:

      The authors optogenetically stimulate 5 neurons all preferring the same pure tone frequency (16 or 54 kHz) in the mouse auditory cortex using a holography-based single cell resolution optogenetics during sound presentation. They demonstrate that the response boosting of target neurons leads to a broad suppression of surrounding neurons, which is significantly more pronounced in neurons that have the same pure tone tuning as the target neurons. This effect is immediate and spans several hundred micrometers. This suggests that the auditory cortical network balances its activity in response to excess spikes, a phenomenon already seen in visual cortex.

      Strengths:

      The study is based on a technologically very solid approach based on single-cell resolution two-photon optogenetics. The authors demonstrate the potency and resolution of this approach. The inhibitory effects observed upon targeted stimulation are clear and the relative specificity to co-tuned neurons is statistically clear although the effect size is moderate.

      Weaknesses:

      The evaluation of the results is brief and some aspects of the observed homeostatic are not quantified. For example, it is unclear whether stimulation produces a net increase or decrease of population activity, or if the homeostatic phenomenon fully balances activity. A comparison of population activity for all imaged neurons with and without stimulation would be instructive. The selectivity for co-tuned neurons is significant but weak. Although it is difficult to evaluate this issue, this result may be trivial, as co-tuned neurons fire more strongly. Therefore, the net activity decrease is expected to be larger, in particular, for the number of non-co-tuned neurons which actually do not fire to the target sound. The net effect for the latter neurons will be zero just because they do not respond. The authors do not make a very strong case for a specific inhibition model in comparison to a broad and non-specific inhibitory effect. Complementary modeling work would be needed to fully establish this point.

    1. Reviewer #1 (Public review):

      Summary:<br /> This work done by Huang et.al. revealed the complex regulatory functions and transcription network of 172 unknown transcription factors of Pseudomonas aeruginosa PAO1. The authors utilized ChIP-seq to profile TFs binding site information across the genome, demonstrating diverse regulatory relationships among them via hierarchical networks with three levels. They further constructed thirteen ternary regulatory motifs in small subs and co-association atlas with 7 core associated clusters. The study also uncovered 24 virulence-related master regulators. The pan-genome analysis uncovered both the conservation and evolution of TFs with P. aeruginosa complex and related species. Furthermore, they established a web-based database combining both existing and novel data from HT-SELEX and ChIP-seq to provide TF binding site information. This study offered valuable insights into studying transcription regulatory networks in P. aeruginosa and other microbes.

      Strengths:<br /> The results are presented with clarity, supported by well-organized figures and tables that not only illustrate the study's findings but also enhance the understanding of complex data patterns.

      Weaknesses:<br /> The results of this manuscript are mainly presented in systematic figures and tables. Some of the results need to be discussed as an illustration how readers can utilize these datasets.

    2. Reviewer #2 (Public review):

      In this work, the authors comprehensively describe the transcriptional regulatory network of Pseudomonas aeruginosa through the analysis of transcription factor binding characteristics. They reveal the hierarchical structure of the network through ChIP-seq, categorizing transcription factors into top-, middle-, and bottom-level, and reveal a diverse set of relationships among the transcription factors. Additionally, the authors conduct a pangenome analysis across the Pseudomonas aeruginosa species complex as well as other species to study the evolution of transcription factors. Moreover, the authors present a database with new and existing data to enable the storage and search of transcription factor binding sites. The findings of this study broaden our knowledge on the transcriptome of P. aeruginosa.

      This study sheds light on the complex interconnections between various cellular functions that contribute to the pathogenicity of P. aeruginosa, along with the associated regulatory mechanisms. Certain findings, such as the regulatory tendencies of DNA-binding domain-types, provides valuable insights on the possible functions of uncharacterized transcription factors and new functions of those that have already been characterized. The techniques used hold great potential for discovery of transcription factor functions in understudied organisms as well.

      The study would benefit from a more clear discussion on the implications of various findings, such as binding preferences, regulatory preferences, and the link between regulatory crosstalk and virulence. Additionally, the pangenome analysis would be furthered through a discussion of the divergence of the transcription factors of P. aeruginosa PAO1across species in relation to the findings on the hierarchical structure of the transcriptional regulatory network.

    1. Reviewer #1 (Public review):

      In this work, Urbanska and colleagues use a machine-learning based crossing of mechanical characterisations of various cells in different states and their transcriptional profiles. Using this approach, they identify a core set of five genes that systematically vary together with the mechanical state of the cells, although not always in the same direction depending on the conditions. They show that the combined transcriptional changes in this gene set is strongly predictive of a change in the cell mechanical properties, in systems that were not used to identify the genes (a validation set). Finally, they experimentally after the expression level of one of these genes, CAV1, that codes for the caveolin 1 protein, and show that, in a variety of cellular systems and contexts, perturbations in the expression level of CAV1 also induce changes in cell mechanics, cells with lower CAV1 expression being generally softer.

      Overall the approach seems accessible, sound and is well described. My personal expertize is not suited to judge its validity, novelty or relevance, so I do not make comments on that. The results it provides seem to have been thoroughly tested by the authors (using different types of mechanical characterisations of the cells) and to be robust in their predictive value. The authors also show convincingly that one of the genes they identified, CAV1, is not only correlated with the mechanical properties of cells, but also that changing its expression level affects cell mechanics. At this stage, the study appears mostly focused on the description and validation of the methodological approach, and it is hard to really understand what the results obtain really mean, the importance of the biological finding - what is this set of 5 genes doing in the context of cell mechanics? Is it really central, or is it just one of the set of knobs on which the cell plays - and it is identified by this method because it is systematically modulated but maybe, for any given context, it is not the dominant player - all these fundamental questions remain unanswered at this stage. On one hand, it means that the study might have identified an important novel module of genes in cell mechanics, but on the other hand, it also reveals that it is not yet easy to interpret the results provided by this type of novel approach.

      Comments on revisions:

      In their point-by-point answer, the authors did a great effort to provide pedagogical answers that clarified most of the points I had raised. They also did more analysis, some of which are included as supplementary data, and added a few sentences to the main text and discussion. As far as I am concerned, I see no particular issue with the revised article. I think it will be interesting both as a new type of approach in mechanobiology, and also as a motivation for more experimentally oriented labs to test the hypothesis proposed in the article and the 'module' they found.

    1. Reviewer #1 (Public review):

      Strengths:

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The methods are detailed and well described and written in such a fashion that they are transparent and repeatable.

      Weaknesses:

      I only have one major issue, which is possibly a product of the structure requirements of the paper/journal. This relates to the Results and Discussion, line 91 onwards. I understand the structure of the paper necessitates delving immediately into the results, but it is quite hard to follow due to a lack of background information. In comparison to the Methods, which are incredibly detailed, the Results in the main section reads as quite superficial. They provide broad overviews of broad findings but I found it very hard to actually get a picture of the main results in its current form. For example, how the different species factor in, etc.

    2. Reviewer #2 (Public review):

      Summary:

      The study tries to assess how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites. They do so by correlating the present distribution of the species with a set of environmental variables. The data on species distributions come from eBird. The main issue lies in the problematic assumption that species correlations between their current distribution and environment were about the same before the rise of the Plateau. There is no ground truthing and the study relies on Movebank data of only 7 species which are not even listed in the study. Similarly, the study does not outline the boundaries of breeding sites NE of the Plateau. Thus it is absolutely unclear potentially which breeding populations it covers.

      Strengths:

      I like the approach for how you combined various environmental datasets for the modelling part.

      Weaknesses:

      The major weakness of the study lies in the assumption that species correlations between their current distribution and environments found today are back-projected to the far past before the rise of the Q-T Plateau. This would mean that species responses to the environmental cues do not evolve which is clearly not true. Thus, your study is a very nice intellectual exercise of too many ifs.

      The second major drawback lies in the way you estimate the migratory routes of particular birds. No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites. Some might overwinter in India, some populations in Africa and you will never know the teleconnections between breeding and wintering sites of particular species. The few available tracking studies (seven!) are too coarse and with limited aspects of migratory connectivity to give answer on the target questions of your study.

      Your set of species is unclear, selection criteria for the 50 species are unknown and variability in their migratory strategies is likely to affect the direction of the effects. In addition, the position of the breeding sites relative to the Q-T plate will affect the azimuths and resulting migratory flyways. So in fact, we have no idea what your estimates mean in Figure 2.

      There is no way one can assess the performance of your statistical exercises, e.g. performances of the models.

    1. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study are the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      Weaknesses of the work include a heavy reliance on overexpression and monitoring the effects in a single cell line, HEK293. In addition, the claim of specificity - only FZD5 and FZD8 participate in this process - is not strongly supported.

    2. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. Interestingly, DVL proteins have previously been shown to be important for RNF43/ZNRF3-dependent ubiquitination of Frizzled receptors but in this study the authors show that DVL proteins are only important for ligand and RNF43/ZNRF3-independent FZD endocytosis. Although it is well established that ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors as part of a negative regulatory loop to dampened B-catenin signaling, the dependency of Wnt stimulation for this process and the specificity of this degradation for different FZD receptors remained poorly characterized.

      In my opinion there are two significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling. Below I have suggestions to strengthen the manuscript.

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.<br /> (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4 it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.<br /> (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.<br /> (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?<br /> (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.<br /> (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.<br /> (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how that Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.

      Strengths:

      The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides unappreciated additional layer of TGFβ signaling activity regulation after ligand-receptor interaction.

      Weaknesses:

      (1) It is unclear how current findings provide a better understanding of Rudhira KO mice, which the authors published some years ago.

      (2) Why do they use HEK cells instead of SVEC cells in Fig 2 and 4 experiments?

      (3) A model shown in Fig 5E needs improvement to grasp their findings easily.

      Comments on revised version:

      The authors have adequately responded to the reviewers' concerns.

    2. Reviewer #2 (Public review):

      Summary:

      It was first reported in 2000 that Smad2/3/4 are sequestered to microtubules in resting cells and TGF-β stimulation releases Smad2/3/4 from microtubules, allowing activation of the Smad signaling pathway. Although the finding was subsequently confirmed in a few papers, the underlying mechanism has not been explored. In the present study, the authors found that Rudhira/breast carcinoma amplified sequence 3 is involved in release Smad2/3 from microtubules in response to TGF-β stimulation. Rudhira is also induced by TGF-β and probably involved in stabilization of microtubules in the delayed phase after TGF-β stimulation. Therefore, Rudhira has two important functions downstream of TGF-β in the early as well as delayed phase.

      Strengths:

      This work aimed to address an unsolved question on one of the earliest events after TGF-β stimulation. Based on loss-of-function experiments, the authors identified Rudhira, as a key player that triggers Smad2/3 release from microtubules after TGF-β stimulation. This is an important first step for understanding the initial phase of Smad signaling activation.

      Weaknesses:

      Currently, the processes how Rudhira causes the release of Smad proteins from microtubules and how Rudhira is mobilized to microtubules in response to TGF-β remain unclear. The authors are expected to address these points experimentally in the future.

      This reviewer is also afraid that some of the biochemical data lack appropriate controls and are not convincing enough.

    1. Reviewer #1 (Public review):

      Summary:

      The authiors show that SVZ derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronin is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.

      Strengths:

      The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and flow of result logical.

      Comments on revised version:

      Thanks for addressing my final points.

    2. Reviewer #2 (Public review):

      Summary:

      In their manuscript, Ardaya et al address the impact of ischemia-induced astrogliogenesis from the adult SVZ and their effect on remodeling of the extracellular matrix (ECM) in the glial scar. The authors show that the levels of Thbs4, a marker previously identified to be expressed in astrocytes and neural stem cells (NSCs) of the SVZ, strongly increase upon ischemia. While proliferation is significantly increase shortly after ischemia, Nestin and DCX (markers for NSCs and neuroblasts, respectively) decrease and Thbs4 levels suggesting that the neurogenic program is halted and astrogenesis is enhanced. By fate-mapping, the authors show that astrocytes derive from SVZ NSCs and migrate towards the lesion. These SVZ-derived astrocytes strongly express Thbs4 and populate the border of the lesion, while local astrocytes do not express Thbs4 and localize to both scar and border. Interestingly, the Thbs4-positive astrocytes appear to represent a second wave of astrocytes accumulating at the scar, following an immediate reaction of first wave reactive gliosis by local astrocytes. Mechanistically, the study presents evidence that the degradation of hyaluronan (HA), a key component of the extracellular matrix (ECM) is downregulated in the SVZ after ischemia, potentially inducing astrogliogenesis, while HA accumulation at the lesion side represents at least one signal to recruit the newly generated astrocytes. In the aim to facilitate tissue regeneration after ischemic injury, the authors propose that the Thbs4-positive astrocytes could be a promising therapeutical target to modulate the glial scar after brain ischemia.

      Strengths:

      This topic is timely and important since the focus of previous studies was almost exclusively on the role of neurogenesis. The generation of adult-born astrocytes has been proven in both neurogenic niches under physiological conditions, but the implicated function in pathology has not been sufficiently addressed yet.

      Weaknesses:

      The study presented by Ardaya et al presents good evidence that a population of astrocytes that express Thbs4 contribute to scar formation after ischemic injury. The authors demonstrate that ischemic injury increases proliferation in the SVZ, decreases neurogenesis and increases astrogenesis. However, whether astrogenesis is a result of terminal differentiation of type B cells or their proliferation remains unclear. Here, a combination of fate mapping and thymidine analogue-tracing would have been conclusively.

    1. Reviewer #1 (Public review):

      Summary:

      Bowler et al. present a thoroughly tested system for modularized behavioral control of navigation-based experiments, particularly suited for pairing with 2-photon imaging but applicable to a variety of techniques. This system, which they name behaviorMate, represents an important methodological contribution to the field of behavioral and systems neuroscience. As the authors note, behavioral control paradigms vary widely across laboratories in terms of hardware and software utilized and often require specialized technical knowledge to make changes to these systems. Having a standardized, easy to implement, and flexible system that can be used by many groups is therefore highly desirable.

      Strengths:

      The present manuscript provides compelling evidence of the functionality and applicability of behaviorMate. The authors report benchmark tests for high-fidelity, real-time update speed between the animal's movement and the behavioral control, on both the treadmill-based and virtual reality (VR) setups. The VR system relies on Unity, a common game development engine, but implements all scene generation and customizability in the authors' behaviorMate and VRMate software, which circumvents the need for users to program task logic in C# in Unity. Further, the authors nicely demonstrate and quantify reliable hippocampal place cell coding in both setups, using synchronized 2-photon imaging. This place cell characterization also provides a concrete comparison between the place cell properties observed in treadmill-based navigation vs. visual VR in a single study, which itself is a valuable contribution to the field.

      Weaknesses: None noted.

      Documentation for installing and operating behaviorMate is available via the authors' lab website and Github, linked in the manuscript.

      The authors have addressed all of my requests for clarification from the previous round of review. This work will be of great interest to systems neuroscientists looking to integrate flexible head-fixed behavioral control with neural data acquisition.

    2. Reviewer #2 (Public review):

      The authors present behaviorMate, an open-source behavior control system including a central GUI and compatible treadmill and display components. Notably, the system utilize the "Intranet of things" scheme and the components communicate through local network, making the system modular, which in turn allows user to configure the setup to suit their experimental needs. Overall, behaviorMate is a useful resource for researchers performing head-fixed VR imaging studies involving 1D navigation tasks, as the commercial alternatives are often expensive and inflexible to modify.

      One major utility of behaviorMate is an open-source alternative to commercial behavior apparatus for head-fixed imaging studies involving 1D navigation tasks. The documentation, BOM, CAD files, circuit design, source and compiled software, along with the manuscript, create an invaluable resource for neuroscience researcher looking to set up a budget-friendly VR and head-fixed imaging rig. Some features of behaviorMate, including the computer vision-based calibration of treadmill, and the decentralized, Android-based display devices, are very innovative approaches and can be quite useful in practical settings.

      behaviorMate can also be used as a set of generic schema and communication protocols that allows the users to incorporate recording and stimulation devices during a head-fixed imaging experiment. Due to the "Intranet of things" approach taken in the design, any hardware that supports UDP communication can in theory be incorporated into the system. In terms of current capability, behaviorMate supports experimental contingencies based on animal position and time and synchronization with external recording devices using a TTL start signal. Further customization involving more complicated experimental contingencies, more accurate recording synchronization (for example with ephys recording devices), incorporation of novel behavior and high-speed neural recording hardware beyond GPIO signaling would require modification of the Java source and custom hardware implementation. Modification to the Java source of behaviorMate can be performed with basic familiarity with object-oriented programming using the Java programming language, and a JavaFX-based plugin system is under development to make such customizations more approachable for users.

      In summary, the manuscript presents a well-developed and useful open-source behavior control system for head-fixed VR imaging experiments with innovative features.

    3. Reviewer #3 (Public review):

      In this work, the authors present an open-source system called behaviourMate for acquiring data related to animal behavior. The temporal alignment of recorded parameters across various devices is highlighted as crucial to avoid delays caused by electronics dependencies. This system not only addresses this issue but also offers an adaptable solution for VR setups. Given the significance of well-designed open-source platforms, this paper holds importance.

      Advantages of behaviorMate:

      The cost-effectiveness of the system provided.<br /> The reliability of PCBs compared to custom-made systems.<br /> Open-source nature for easy setup.<br /> Plug & Play feature requiring no coding experience for optimizing experiment performance (only text based Json files, 'context List' required for editing).

    1. Reviewer #1 (Public review):

      Time periods in which experience regulates early plasticity in sensory circuits are well established, but the mechanisms that control these critical periods are poorly understood. In this manuscript, Leier and Foden and colleagues examine early-life critical periods that regulate the Drosophila antennal lobe, a model sensory circuit for understanding synaptic organization. Using early-life (0-2 days old) exposure to distinct odorants, they show that constant odor exposure markedly reduces the volume, synapse number, and function of the VM7 glomerulus. The authors offer evidence that these changes are mediated by invasion of ensheathing glia into the glomerulus where they phagocytose connections via a mechanism involving the engulfment receptor Draper.

      This manuscript is a striking example of a study where the questions are interesting, the authors spent a considerable amount of time to clearly think out the best experiments to ask their questions in the most straightforward way, and expressed the results in a careful, cogent, and well-written fashion. It was a genuine delight to read this paper. Overall, this is an incredibly important finding, a careful analysis, and an excellent mechanistic advance in understanding sensory critical period biology.

      Comments on latest version:

      In the revision, the authors have clearly thought deeply and added provocative new data. They have addressed my concerns and I laud them on an excellent study.

    2. Reviewer #2 (Public review):

      Sensory experiences during developmental critical periods have long-lasting impacts on neural circuit function and behavior. However, the underlying molecular and cellular mechanisms that drive these enduring changes are not fully understood. In Drosophila, the antennal lobe is composed of synapses between olfactory sensory neurons (OSNs) and projection neurons (PNs), arranged into distinct glomeruli. Many of these glomeruli show structural plasticity in response to early-life odor exposure, reflecting the sensitivity of the olfactory circuitry to early sensory experiences.<br /> In their study, the authors explored the role of glia in the development of the antennal lobe in young adult flies, proposing that glial cells might also play a role in experience-dependent plasticity. They identified a critical period during which both structural and functional plasticity of OSN-PN synapses occur within the ethyl butyrate (EB)-responsive VM7 glomerulus. When flies were exposed to EB within the first two days post-eclosion, significant reductions in glomerular volume, presynaptic terminal numbers, and postsynaptic activity were observed. The study further highlights the importance of the highly conserved engulfment receptor Draper in facilitating this critical period plasticity. The authors demonstrated that, in response to EB exposure during this developmental window, ensheathing glia increase Draper expression, infiltrate the VM7 glomerulus, and actively phagocytose OSN presynaptic terminals. This synapse pruning has lasting effects on circuit function, leading to persistent decreases in both OSN-PN synapse numbers and spontaneous PN activity as analyzed by perforated patch-clamp electrophysiology to record spontaneous activity from PNs postsynaptic to Or42a OSNs .

      In my view, this is an intriguing and potentially valuable set of data.

      Comments on latest version:

      After carefully reviewing the revised manuscript, I am satisfied with the authors' responses to my initial suggestions, particularly regarding the synaptic readouts used in their analyses. The authors have clarified their approach with appropriate changes in wording, which enhance the manuscript's clarity and address my previous concerns. Although I believe it could have been beneficial to incorporate postsynaptic markers to further substantiate the findings, I understand this may not have been feasible within the scope of the current study.

      Overall, I find that the major claims of the manuscript are now sufficiently supported by the presented data. The revisions have improved the manuscript, and I am confident it meets the standards for publication. I therefore recommend the manuscript for publication in its current form.

    1. Reviewer #1 (Public review):

      This work has significant relevance to the field, both practically and naturally. Combatting or preventing toxic cyanobacterial blooms is an active area of environmental research that offers a practical backbone for this manuscript's ideas. Additionally, the formation and behavior of cellular aggregates, in general, is of widespread interest in many fields, including marine and freshwater ecology, healthcare and antibiotic resistance research, biophysics, and microbial evolution. In this field, there are still outstanding questions regarding how microbial aggregates form into communities, including if and how they come together from separate places. Therefore, I believe that researchers from many distinct fields would find interest in the topic of this paper, particularly Figure 5, in which a phase space that is meant to represent the different modes of aggregate formation and destruction is suggested, dependent on properties of the fluid flow and particle concentration.

      Altogether, the authors were mostly successful in their investigation, and I find most of their claims to be justified. In particular, the authors achieve strong results from their experiments regarding aggregate fragmentation. However, readers could benefit from some clarification in a couple of key areas. Additionally, I found that some of the authors' claims were based on weak or nonexistent data. Below, I outline the key claims of the paper and indicate the level to which they were supported by their data.

      - Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.<br /> - The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.<br /> - Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by and large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested.<br /> - The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.

      Other items that could use more clarity:<br /> - The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.<br /> - Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8).

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.

      Strengths:

      -This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.<br /> -A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.

      Weaknesses:

      -Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.<br /> -The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.<br /> -The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

    1. Reviewer #1 (Public review):

      Summary:

      The goal of this project is to test the hypothesis that individual differences in experience with multiple languages relate to differences in brain structure, specifically in the transverse temporal gyrus. The approach used here is to focus specifically on the phonological inventories of these languages, looking at the overall size of the phonological inventory as well as the acoustic and articulatory diversity of the cumulative phonological inventory in people who speak one or more languages. The authors find that the thickness of the transverse temporal gyrus (either the primary TTG, in those with one TTG, or in the second TTG, in people with multiple gyri) was related to language experience, and that accounting for the phonological diversity of those languages improved the model fit. Taken together, the evidence suggests that learning more phonemes (which is more likely if one speaks more than one language) leads to experience-related plasticity brain regions implicated in early auditory processing.

      Strengths:

      This project is rigorous in its approach--not only using a large sample but replicating the primary finding in a smaller, independent sample. Language diversity is difficult to quantify, and likely to be qualitatively and quantitatively distinct across different populations, and the authors use a custom measure of multilingualism (accounting for both number of languages as well as age of acquisition) and three measures of phonological diversity. The team has been careful in discussion of these findings, and while it is possible that pre-existing differences in brain structure could lead to an aptitude difference which could drive one to learn more than one language, the fine-grained relationships with phonological diversity seem less likely to emerge from aptitude rather than experience.

      The authors have satisfied my curiosity regarding other potential confounds in the data, including measurements of lexical distance as well as phonological typology.

    2. Reviewer #2 (Public review):

      This work investigates the possible association between language experience and morphology of the superior temporal cortex, a part of the brain responsible for the processing of auditory stimuli. Previous studies have found associations between language and music proficiency as well as language learning aptitude and cortical morphometric measures in regions in the primary and associated auditory cortex. These studies have most often, however, focused on finding neuroanatomical effects of difference between features in a few (often two) languages or from learning single phonetic/phonological features and have often been limited in terms of N. On this background, the authors use more sophisticated measures of language experience that take into account the age of onset and the differences in phonology between languages the subjects have been exposed as well as a larger number of subjects (N = 146 + 69) to relate language experience to the shape and structure of the superior temporal cortex, measured from T1-weighted MRI data. It shows solid evidence for there being a negative relationship between language experience and the right 2nd transverse temporal gyrus as well as some evidence for the relationship representing phoneme-level cross-linguistic information.

      Strengths

      The use of entropy measures to quantify language experience and include typological distance measures allows for a more general interpretation of the results and is an important step toward respecting and making use of linguistic diversity in neurolinguistic experiments.

      A relatively large group of subjects with a range of linguistic backgrounds.

      The full analysis of the structure of the superior temporal cortex including cortical volume, area, as well as the shape of the transverse gyrus/gyri. There is a growing literature on the meaning of the shape and number of the transverse gyri in relation to language proficiency and the authors explore all measures given the available data.

      The authors chose to use a replication data set to verify their data, which is applaudable. However, see the relevant point under "Weaknesses".

      Weaknesses

      Even if the language experience and typological distance measures are a step in the right direction for correctly associating language exposure with cortical plasticity, it still is a measure that is insensitive to the intensity of the exposure.

      Only the result from the multiple transverse temporal gyri (2nd TTG) is analyzed in the replicated dataset. Only the association in the right hemisphere 2nd TTG is replicated but this is not reflected in the discussion or the conclusions. The positive correlation in the right TTG is thus not attempted to be replicated.

      The replication dataset differed in more ways than the more frequent combination of English and German experience, as mentioned in the discussion. Specifically, the fraction of monolinguals was higher in the replication dataset and the samples came from different scanners. It would be better if the primary and replication datasets were more equally matched.

    3. Reviewer #3 (Public review):

      Summary:

      The study uses structural MRI to identify how the number, degree of experience, and phonemic diversity of language(s) that a speaker knows can influence the thickness of different sub-segments of auditory cortex. In both a primary and replication sample of adult speakers, the authors find key differences in cortical thickness within specific subregions of cortex due to either the age at which languages are acquired (degree of experience) or the diversity of the phoneme inventories carried by that/those language(s) (breadth of experience).

      Strengths:

      The results are first and foremost quite fascinating and I do think they make a compelling case for the different ways in which linguistic experience shapes auditory cortex.

      The study uses a number of different measures to quantify linguistic experience, related to how many languages a person knows (taking into account the age at which each was learned) as well as the diversity of the phoneme inventories contained within those languages. The primary sample is moderately large for a study that focuses on brain-behaviour relationships; a somewhat smaller replication sample is also deployed in order to test the generality of the effects.

      Analytic approaches benefit from the careful use of brain segmentation techniques that nicely capture key landmarks and account for vagaries in the structure of STG that can vary across individuals (e.g., the number of transverse temporal gyri varies from 1-4 across individuals).

      Weaknesses:

      The specificity of these effects is interesting; some effects really do appear to be localized to left hemisphere and specific subregions of auditory cortex e.g., TTG. There is an ancillary analysis that examines regions outside auditory cortex to examine whether these are the only brain regions for which such effects occur. Expanding the search space to a whole-brain analysis, and a more lenient statistical threshold, does reveal only small patches of the brain outside auditory cortex show similar effects. Notably, these could be due to inflated type-1 error, but overall we would need a much larger sample to be certain.

      Discussion of potential genetic differences underlying the findings is interesting. It does represent one alternative account that does not have to do with plasticity/experience, as the authors acknowledge.

      The replication sample is useful and a great idea. It does however feature roughly half the number of participants. As the authors are careful to point out, that statistical power is weaker and given small effects in some cases we should not be surprised that the results only partially replicated in that sample.

    1. Reviewer #1 (Public review):

      Summary:

      The main conclusion of this manuscript, that the mediator kinases supporting the IFN response in Downs syndrome cell lines, represents an important addition to understanding the pathology of this affliction.

      Strengths:

      Mediator kinase stimulates cytokine production. Both RNAseq and metabolomics clearly demonstrate a stimulatory role for CDK8/CDK19 in the IFN response. The nature of this role, direct vs. indirect, is inferred by previous studies demonstrating that inflammatory transcription factors are Cdk8/19 substrates. The cytokine and metabolic changes are clear cut and provide a potential avenue to mitigate these associated pathologies.

      Weaknesses:

      Seahorse analysis is normally calculated with specific units for oxygen consumption, ATP production, etc. It would be of interest to see the actual values of OCR (e.g., pmol/O2 consumption/number of cells) between the D21 and T21 cell lines rather than standardizing the results. Previous studies reported reduced mitochondrial function with DS cell lines and model systems (e.g., see [10.1016/j.bbadis.2022.166388] and aberrant mitochondrial morphology/oxidative stress [10.1016/j.cmet.2012.12.005] [10.1016/j.neuroscience.2022.12.003]. This report observes elevated mitochondrial function in the T21 cells vs. the D21 control. There are several potential reasons for these differences but it is not up to the authors to rectify their results with others. However, it would be of interest to the general reader that they be mentioned in the discussion.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Cozzolino et al. demonstrate that inhibition of the Mediator kinase CDK8 and its paralog CDK19 suppresses hyperactive interferon (IFN) signaling in Down syndrome (DS), which results from trisomy of chromosome 21 (T21). Numerous pathologies associated with DS are considered direct consequences of chronic IFN pathway activation, and thus hyperactive IFN signaling lies at the heart of pathophysiology. The collective interrogation of transcriptomics, metabolomics, and cytokine screens in sibling-matched cell lines (T21 vs D21) allows the authors to conclude that Mediator kinase inhibition could mitigate chronic, hyperactive IFN signaling in T21. To probe the functional outcomes of Mediator kinase inhibition, the authors performed cytokine screens, transcriptomic, and untargeted metabolomics. This collective approach revealed that Mediator kinases establish IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Mediator kinase inhibition suppresses cell responses during hyperactive IFN signaling through inhibition of pro-inflammatory transcription factor activity (anti-inflammatory effect) and alteration of core metabolic pathways, including upregulation of anti-inflammatory lipid mediators, which served as ligands for specific nuclear receptors and downstream phenotypic outcomes (e.g., oxygen consumption). These data provided a mechanistic link between Mediator kinase activity and nuclear receptor function. Finally, the authors also disclosed that Mediator kinase inhibition alters splicing outcomes.

      Overall, this study reveals a mechanism by which Mediator kinases regulate gene expression and establish that its inhibition antagonizes chronic IFN signaling through collective transcriptional, metabolic, and cytokine responses. The data have implications for DS and other chronic inflammatory conditions, as Mediator kinase inhibition could potentially mitigate pathological immune system hyperactivation.

      Comments on revisions:

      In the record of version, the authors have improved readability and also incorporated experiments that provide compelling support to the main discovery of the story. Below I summarize the previous strengths and how they improved noted weaknesses.

      (1) One major strength of this study is the mechanistic evidence linking Mediator kinases to hyperactive IFN signaling through transcriptional changes impacting cell signaling and metabolism.<br /> (2) Another major strength of this study is the use of sibling matched cell lines (T21 vs D21) from various donors (not just one sibling pair), and further cross-referencing with data from large cohorts, suggesting that part of the data and conclusions are generalizable.<br /> (3) Another major strength of this study is the combined experimental approach including transcriptomics, untargeted metabolomics and cytokine screens to define the mechanisms underlying suppression of hyperactive interferon signaling in DS upon Mediator kinase inhibition.<br /> (4) Another major strength of this study is the significance of the work to DS and its potential impact to other chronic inflammatory conditions.<br /> (5) The previously noted weakness regarding the roles of nuclear receptors to activation of an anti-inflammatory program upon Mediator kinase inhibition was not directly experimentally addressed because existing data from other studies (referenced in this version) have linked specific nuclear receptors to lipid biosynthesis and anti-inflammatory cascades. This is considered acceptable.<br /> (6) The presentation of the splicing data analysis is not better integrated in the overall story.<br /> (7) The authors improved the readability of the manuscript by providing specific details throughout.<br /> (8) Figures were improved and simplified when possible to facilitate readability.<br /> (9) The authors now clarified the PRO-Seq (TFEA analysis) explaining that their data is consistent with the general observation that stimulus-responsive genes is controlled by enhancer-bound TFs.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Liu et al. present CROWN-seq, a technique that simultaneously identifies transcription-start nucleotides and quantifies N6,2'-O-dimethyladenosine (m6Am) stoichiometry. This method is derived from ReCappable-seq and GLORI, a chemical deamination approach that differentiates A and N6-methylated A. Using ReCappable-seq and CROWN-seq, the authors found that genes frequently utilize multiple transcription start sites, and isoforms beginning with an Am are almost always N6-methylated. These findings are consistently observed across nine cell lines. Unlike prior reports that associated m6Am with mRNA stability and expression, the authors suggest here that m6Am may increase transcription when combined with specific promoter sequences and initiation mechanisms. Additionally, they report intriguing insights on m6Am in snRNA and snoRNA and its regulation by FTO. Overall, the manuscript presents a strong body of work that will significantly advance m6Am research.

      Strengths:

      The technology development part of the work is exceptionally strong, with thoughtful controls and well-supported conclusions.

      Weaknesses:

      Given the high stoichiometry of m6Am, further association with upstream and downstream sequences (or promoter sequences) does not appear to yield strong signals. As such, transcription initiation regulation by m6Am, suggested by the current work, warrants further investigation.

    2. Reviewer #2 (Public review):

      Summary:

      In the manuscript "Decoding m6Am by simultaneous transcription-start mapping and methylation quantification" Liu and co-workers describe the development and application of CROWN-Seq, a new specialized library preparation and sequencing technique designed to detect the presence of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) with single nucleotide resolution. Such a technique was a key need in the field since prior attempts to get accurate positional or quantitative measurements of m6Am positioning yielded starkly different results and failed to generate a consistent set of targets. As noted in the strengths section below the authors have developed a robust assay that moves the field forward.

      Furthermore, their results show that most mRNAs whose transcription start nucleotide (TSN) is an 'A' are in fact m6Am (85%+ for most cell lines). They also show that snRNAs and snoRNAs have a substantially lower prevalence of m6Am TSNs.

      Strengths:

      Critically, the authors spent substantial time and effort to validate and benchmark the new technique with spike-in standards during development, cross-comparison with prior techniques, and validation of the technique's performance using a genetic PCIF1 knockout. Finally, they assayed nine different cell lines to cross-validate their results. The outcome of their work (a reliable and accurate method to catalog cap-adjacent m6Am) is a particularly notable achievement and is a needed advance for the field.

      Weaknesses:

      No major concerns were identified by this reviewer.

      Mid-level Concerns: All previous concerns were addressed in the revised version

    3. Reviewer #3 (Public review):

      Summary:

      m6Am is an abundant mRNA modification present on the TSN. Unlike the structurally similar and abundant internal mRNA modification m6A, m6Am's function has been controversial. One way to resolve controversies surrounding mRNA modification functions has been to develop new ways to better profile said mRNA modification. Here, Liu et al. developed a new method (based on GLORI-seq for m6A-sequencing), for antibody-independent sequencing of m6Am (CROWN-seq). Using appropriate spike-in controls and knockout cell lines, Liu et al. clearly demonstrated CROWN-seq's precision and quantitative accuracy for profiling transcriptome-wide m6Am. Subsequently, the authors used CROWN-seq to greatly expand the number of known m6Am sites in various cell lines and also determine m6Am stoichiometry to generally be high for most genes. CROWN-seq identified gene promoter motifs that correlate best with high stoichiometry m6Am sites, thereby identifying new determinants of m6Am stoichiometry. CROWN-seq also helped reveal that m6Am does not regulate mRNA stability or translation (as opposed to past reported functions). Rather, m6Am stoichiometry correlates well with transcription levels. Finally, Liu et al. reaffirmed that FTO mainly demethylates m6Am, not of mRNA but of snRNAs and snoRNAs.

      Strengths:

      This is a well-written manuscript that describes and validates a new m6Am-sequencing method: CROWN-seq as the first m6Am-sequencing method that can both quantify m6Am stoichiometry and profile m6Am at single-base resolution. These advantages facilitated Liu et al. to uncover new potential findings related to m6Am regulation and function. I am confident that CROWN-seq will likely be the gold standard for m6Am-sequencing henceforth.

      Weaknesses:

      Though the authors have uncovered a potentially new function for m6Am, they need to be clear that without identifying a mechanism, their data might only be demonstrating a correlation between the presence of m6Am and transcriptional regulation rather than causality.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors use thermal proteome profiling to capture changes in protein stability following a brief (30 min) treatment of cells with various mitochondrial stressors. This approach identified PEBP1 as a potentiator of Integrated Stress Response (ISR) induction by various mitochondrial stressors, although the specific dynamics vary by stressor. PEBP1 deletion attenuates DELE1-HRI-mediated activation of the ISR, independent of its known role in the RAF/MEK/ERK pathway. These effects can be bypassed by HRI overexpression and do not affect DELE1 processing. Interestingly, in cells, PEBP1 physically interacts with eIF2alpha, but not its phosphorylated form (eIF2alpha-P), leading the authors to suggest that PEBP1 functions as a scaffold to promote eIF2alpha phosphorylation by HRI.

      Strengths:

      The authors present a clear and well-structured study, beginning with an original and unbiased approach that effectively addresses a novel question. The investigation of PEBP1 as a specific regulator of the DELE1-HRI signaling axis is particularly compelling, supported by extensive data from both genetic and pharmacological manipulations. Including careful titrations, time-course experiments, and orthogonal approaches strengthens the robustness of their findings and bolsters their central claims.

      Moreover, the authors skillfully integrate publicly available datasets with their original experiments, reinforcing their conclusions' generality and broader relevance. This comprehensive combination of methodologies underscores the reliability and significance of the study's contributions to our understanding of stress signaling.

      Weaknesses:

      While the study presents exciting findings, there are a few areas that could benefit from further exploration. The HRI-DELE1 pathway was only recently discovered, leaving many unanswered questions. The observation that PEBP1 interacts with eIF2alpha, but not with its phosphorylated form, suggests a novel mechanism for regulating the Integrated Stress Response (ISR). However, as they note themselves, the authors do not delve into the biochemical or molecular mechanisms through which PEBP1 promotes HRI signaling. Given the availability of antibodies against phosphorylated HRI, it would have been interesting to explore whether PEBP1 influences HRI phosphorylation. Furthermore, since the authors already have recombinant PEBP1 protein (as shown in Figure 1D), additional in vitro experiments such as in vitro immunoprecipitation, FRET, or surface plasmon resonance (SPR) could have confirmed the interaction with eIF2alpha. Future studies might investigate whether PEBP1 directly interacts with HRI, stimulates its auto-phosphorylation or kinase activity, or serves as a template for oligomerization, potentially supported by structural characterization of the complex and mutational validation.

      Another point of weakness is the unclear significance of the 1.5-2x enhanced interaction with eIF2alpha upon PEBP1 phosphorylation, as there is little evidence to show that this increase has any downstream effects. The ATF4-luciferase reporter experiments, comparing WT and S153D overexpression, may have reached saturation with WT, making it difficult to detect further stimulation by S153D. Additionally, expression levels for WT and mutant forms are not provided, making it challenging to interpret the results. It would also be interesting to explore whether combined mitochondrial stress and PMA treatment further enhance the ISR.

      Lastly, while the authors claim that oligomycin does not significantly alter the melting temperature of recombinant PEBP1 in vitro, the data in Figure S1D suggest a small shift. Without variance measures across replicates or background subtraction, this claim is less convincing. The inclusion of statistical analyses would strengthen the interpretation of these results.

      Impact on the field:

      The study's relevance is underscored by the fact that overactive ISR is linked to a broad range of neurodegenerative diseases and cognitive disorders, a field actively being explored for therapeutic interventions, with several drugs currently in clinical trials. Similarly, mitochondrial dysfunction plays a well-established role in brain health and other diseases. Identifying new targets within these pathways, like PEBP1, could provide alternative therapeutic strategies for treating such conditions. Therefore, gaining a deeper understanding of the mechanisms through which PEBP1 influences ISR regulation is highly pertinent and could have far-reaching implications for the development of future therapies.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, Cheng et al use the TPP/MS-CETSA strategy to discover new components for the mitochondria arm of the Integrated Stress Response. By using short exposures of several drugs that potentially induce mitochondrial stress, they find significant CETSA shifts for the scaffold protein PEBP1 both for antimycinA and oligomycin, making PEBP1 a candidate for mitochondrial-induced ISR signaling. After extensive follow-up work, they provide good support that PEBP1 is likely involved in ISR, and possibly act through an interaction with the key ISR effector node EIF2a.

      Strengths:

      The work adds an important understanding of ISR signaling where PEBP1 might also constitute a druggable node to attenuate cellular stress. Although CETSA has great potential for dissecting cellular pathways, there are few studies where this has been explored, particularly with such an extensive follow-up, also giving the work methodological implications. Together I therefore think this study could have a significant impact.

      Weaknesses:

      The TPP/MS-CETSA experiment is quite briefly described and might have a too relaxed cut-off. The assays confirming interactions between PEBP1 and EIF2a might not be fully conclusive.

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, Chang and Meliala et al. demonstrate that PEBP1 is a modulator of the ISR, specifically through the induction of mitochondrial stress. The authors utilize thermal proteome profiling (TPP) by which they identify PEPB1 as a thermally stabilized protein upon oligomycin treatment, indicating its role in mitochondrial stress. Moreover, RNA-sequencing analysis indicated that PEBP1 may be specifically modulating the mitochondrial stress-induced ISR, as PEBP1 knock-out reduces phosphorylation of eIF2α. They also show that PEBP1 function is independent of ER stress specifically tunicamycin treatment and loss of PEBP1 does affect mitochondrial ISR but in an OMA1, DELE1 independent manner. Thus, the authors hypothesized that PEBP1 interacts directly with eIF2α, functioning as a scaffolding protein. However, direct co-immunoprecipitation failed to demonstrate PEBP1 and eIF2α potential interaction. The authors then used a NanoBiT luminescence complementation assay to show the PEBP1-eIF2a interaction and its disruption by S51 phosphorylation.

      Strengths:

      Taken together, this work is novel, and the data presented suggests PEBP1 has a role as a modulator of the mitochondrial ISR, enhancing the signal to elicit the necessary response.

      Weaknesses:

      The one major issue of this work is the lack of a mechanism showing precisely how PEBP1 amplifies the mitochondrial integrated stress response. The work, as it is described, presents data suggesting PEBP1's role in the ISR but fails to present a more conclusive mechanism.

    1. Reviewer #1 (Public review):

      Summary:

      Arafi et al. present results of studies designed to better understand the effects of mutations in the presenilin-1 (PSEN1) gene on proteolytic processing of the amyloid precursor protein (APP). This is important because APP processing can result in the production of the amyloid β-protein (Aβ), a key pathologic protein in Alzheimer's disease (AD). Aβ exists in various forms that differ in amino acid sequence and assembly state. The predominant forms of Aβ are Aβ40 and Aβ42, which are 40 and 42 amino acids in length, respectively. Shorter and longer forms derive from processive proteolysis of the Aβ region of APP by the heterotetramer β-secretase, within which presenilin 1 possesses the active site of the enzyme. Each form may become toxic if it assembles into non-natively folded, oligomeric, or fibrillar structures. A deep mechanistic understanding of enzyme-substrate interactions is a first step toward the design and successful use of small-molecule therapeutics for AD.

      The key finding of Arafi et al. is that PSEN1 amino acid sequence is a major determinant of enzyme turnover number and the diversity of products. For the biochemist, this may not be surprising, but in the context of understanding and treating AD, it is immense because it shifts the paradigm from targeting the results of γ-secretase action, viz., Aβ oligomers and fibrils, to targeting initial Aβ production at the molecular level. It is the equivalent of taking cancer treatment from simple removal of tumorous tissue to the prevention of tumor formation and growth. Arafi et al. have provided us with a blueprint for the design of small-molecule inhibitors of γ-secretase. The significance of this achievement cannot be overstated.

      Strengths and weaknesses:

      The comprehensiveness and rigor of the study are notable. Rarely have I reviewed a manuscript reporting results of so many orthogonal experiments, all of which support the authors' hypotheses, and of so many excellent controls. In addition, as found in clinical trial reports, the limitations of the study were discussed explicitly. None of these significantly affected the conclusions of the study.

      Some minor concerns were expressed during the review process. The authors have revised the manuscript, and in doing so, dealt appropriately with the concerns and strengthened the manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      The work by Arafi et al. show the effect of Familial Alzheimer's Disease presenilin-1 mutants on endoproteinase and carboxylase activity. They have elegantly demonstrated how some of mutants alter each step of processing. Together with FLIM experiments, this study provides additional evidence to support their 'stalled complex hypotheses'.

      Strengths:

      This is a beautiful biochemical work. The approach is comprehensive.

      Weaknesses:

      However, the novelty of this manuscript is questionable since this group has published similar work with different mutants (Ref 11) .

    1. Reviewer #1 (Public Review):

      In this work, Kanie and colleagues explored the role of NCS1 in capturing the ciliary vesicle. The microscopy was well executed and appropriately quantified. The authors convincingly show that while NCS1 is important for capturing the ciliary vesicle, another unknown distal appendage component is partially redundant in that ciliary vesicle capture and ciliary assembly are not fully dependent on NCS1. Overall, I am convinced by the data, and my only concern is that the discussion of the mouse phenotypes does not do a good job of putting this gene into the greater context of the complexity of mouse mutations.

      Interestingly NCS1 has been previously studied in the context of neurotransmission and the new findings raise questions about whether prior findings are actually due to neuronal cilia defects.

    2. Reviewer #2 (Public Review):

      Kanie et al have recently characterized DAP protein CEP89 as important for the recruitment of the ciliary vesicle. Here, they describe a novel interacting partner for CEP89 that can bind membranes and therefore mediates its role in ciliary vesicle recruitment. An initial LAP tag pull-down and mass spectrometry experiment finds NCS-1 and C3ORF14 as CEP89 interactors. This interaction is mapped in the context of the ciliary vesicle formation. From the data presented, it is clear that, upon knockout, the function of these proteins might be compensated by others, as the phenotype can eventually recover over time.

      In terms of the biological significance of this interaction, it would be good to examine (via co-immunoprecipitation) whether the CEP89/NCS-1/C3ORF14 interaction takes place upon serum starvation. Does the complex change?

      Also, for the subdistal appendage localization of NCS-1 and C3ORF14, would this also change upon serum starvation?

      For the ciliation results and the recruitment of IFT88 in CEP89 knockout cell lines, this contradicts previous work from Tanos et al (PMID: 23348840), as well as Hou et al (PMID: 36669498). A parallel comparison using siRNA, a transient knockout system, or a degron system would help understand this. A similar point goes for Figure 4, where the effect on ciliogenesis is minimal in knockout cells, but acute siRNA has been shown to have a stronger phenotype.

      An elegant phenotype rescue is shown in Figure 5. An interesting question would be, how does this mutant and/or the myristoylation affect the recruitment of C3ORF14?

      For the EF-hand mutants, it would be good to use control mutants, from known Ca2+ binding proteins as a control for the experiment shown.

    3. Reviewer #3 (Public Review):

      This work addresses an important question aimed at understanding how membrane docking to the distal appendages is regulated during ciliogenesis. In this study, Tomoharu and colleagues identified interactions between CEP89 (important for RAB34-positive membrane localization to the mother centriole) and NCS1 and C3ORF14. Both these CEP89 interacting proteins were characterized as distal appendage localized proteins between CEP89 and RAB34 based on super-resolution microscopy. Ciliogenesis investigations using knockout cells indicated that NCS1 and CEP89 have similar impaired ciliation due to disruption in vesicle recruitment/RAB34 to the mother centriole, while C3ORF14 had less effect on ciliogenesis. The authors refer to the ciliogenesis requirement for CEP89/NCS1 as ciliary vesicles, which has been previously referred to as preciliary vesicle or distal appendage vesicles. NCS1 distal appendage localization was dependent on CEP89 and TTBK2, but it is not clear how TTBK2 affects NCS1. The authors subsequently performed double knockouts with NCS1 and other distal appendage proteins and showed stronger effects on mother centriole RAB34 levels, suggesting efficient membrane docking during ciliogenesis requires several distal appendage proteins. This is consistent with NCS1 knockout mice which do not display typical ciliopathy phenotypes. These mice do display obesity, which is associated with cilia dysfunction, and show reduced ciliary protein levels. As noted by the authors, the in vivo results for NCS1 knockouts could be affected by the mouse background which was not evaluated. The authors demonstrate the NCS1 myristoylation motif is required for RAB34 localization to the mother centrioles, providing a mechanistic explanation for how distal appendage proteins could interact with membranes during ciliogenesis. Overall the authors' findings support an important role for NCS1 in regulating ciliogenesis via myristoylation-dependent interaction with RAB34-positive membranes docked at the mother centriole.

    1. Joint Public Review:

      This manuscript tests the notion that bulky membrane glycoproteins suppress viral infection through non-specific interactions. Using a suite of biochemical, biophysical, and computational methods in multiple contexts (ex vivo, in vitro, and in silico), the authors collect evidence supporting the notion that (1) a wide range of surface glycoproteins erect an energy barrier for the virus to form stable adhesive interface needed for fusion and uptake and (2) the total amount of glycan, independent of their molecular identity, additively enhanced the suppression.

      As a functional assay the authors focus on viral infection starting from the assumption that a physical boundary modulated by overexpressing a protein-of-interest could prevent viral entry and subsequent infection. Here they find that glycan content (measured using the PNA lectin) of the overexpressed protein and total molecular weight, that includes amino acid weight and the glycan weight, is negatively correlated with viral infection. They continue to demonstrate that it is in effect the total glycan content, using a variety of lectin labelling, that is responsible for reduced infection in cells. Because the authors do not find a loss in virus binding this allows them to hypothesize that the glycan content presents a barrier for the stable membrane-membrane contact between virus and cell. They subsequently set out to determine the effective radius of the proteins at the membrane and demonstrate that on a supported lipid bilayer the glycosylated proteins do not transition from the mushroom to the brush regime at the densities used. Finally, using Super Resolution microscopy they find that above an effective radius of 5 nm proteins are excluded from the virus-cell interface.

      The experimental design does not present major concerns and the results provide insight on a biophysical mechanism according to which, repulsion forces between branched glycan chains of highly glycosylated proteins exert a kinetic energy barrier that limits the formation of a membrane/viral interface required for infection.

      However several general and specific concerns remain that the author is recommended to address before their claims as above are compelling.

      GENERAL QUESTIONS:

      (1) For many enveloped viruses, the attachment factors - paradoxically - are also surface glycoproteins, often complexed with a distinct fusion protein. The authors note here that the glycoportiens do not inhibit the initial binding, but only limit the stability of the adhesive interface needed for subsequent membrane fusion and viral uptake. How these antagonistic tendencies might play out should be discussed.

      (2) Unlike polymers tethered to solid surface undergoing mushroom-to-brush transition in density-dependent manner, the glycoproteins at the cell surface are of course mobile (presumably in a density-dependent manner). They can thus redistribute in spatial patterns, which serve to minimize the free energy. I suggest the authors explicitly address how these considerations influence the in vitro reconstitution assays seeking to assess the glycosylation-dependent protein packing.

      (3) The discussion of the role of excluded volume in steric repulsion between glycoprotein needs clarification. As presented, it's unclear what the role of "excluded volume" effects is in driving steric repulsion? Do the authors imply depletion forces? Or the volume unavailable due to stochastic configurations of gaussian chains? How does the formalism apply to branched membrane glycoproteins is not immediately obvious.

      (4) The authors showed that glycoprotein expression inversely correlated with viral infection and link viral entry inhibition to steric hindrance caused by the glycoprotein. Alternative explanations would be that the glycoprotein expression (a) reroutes endocytosed viral particles or (b) lowers cellular endocytic rates and via either mechanism reduce viral infection. The authors should provide evidence that these alternatives are not occurring in their system. They could for example experimentally test whether non-specific endocytosis is still operational at similar levels, measured with fluid-phase markers such as 10kDa dextrans.

      (5) The authors approach their system with the goal of generalizing the cell membrane (the cumulative effect of all cell membrane molecules on viral entry), but what about the inverse? How does the nature of the molecule seeking entry affect the interface? For example, a lipid nanoparticle vs a virus with a short virus-cell distance vs a virus with a large virus-cell distance?

      SPECIFIC QUESTIONS:

      (1) The proposed mechanism indicates that glycosylation status does not produce an effect in the "trapping" of virus, but in later stages of the formation of the virus/membrane interface due to the high energetic costs of displacing highly glycosylated molecules at the vicinity of the virus/membrane interface. It is suggested to present a correlation between the levels of glycans in the Calu-3 cell monolayers and the number of viral particles bound to cell surface at different pulse times. Results may be quantified following the same method as shown in Figure 2 for the correlation between glycosylation levels and viral infection (in this case the resulting output could be number of viral particles bound as a function of glycan content).

      (2) The use of the purified glycosylated and non-glycosylated ectodomains of MUC1 and CD-43 to establish a relationship between glycosylation and protein density into lipid bilayers on silica beads is an elegant approach. An assessment of the impact of glycosylation in the structural conformation of both proteins, for instance determining the Flory radius of the glycosylated and non-glycosylated ectodomains by the FRET-FLIM approach used in Figure 4 would serve to further support the hypothesis of the article.

      (3) The MUC1 glycoprotein is reported to have a dramatic effect in reducing viral infection shown in Fig 1F. On the contrary, in a different experiment shown in Fig2D and Fig2H MUC1 has almost no effect in reducing viral infection. It is not clear how these two findings can be compatible.

      (4) Why is there a shift in the use of the glycan marker? How does this affect the conclusions? For the infection correlation relating protein expression with glycan content the PNA-lectin was used together with flow cytometry. For imaging the infection and correlating with glycan content the SSA-lectin is used.

      (5) The authors in several instances comment on the relevance and importance of the total glycan content. Nevertheless, these conclusions are often drawn when using only one glycan-binding lectin. In fact, the anti-correlation with viral infection is distinct for the various lectins (Fig 2D and Fig 2H). Would it make more sense to use a combination of lectins to get a full glycan spectrum?

      (6) Fig 3A shows virus binding to HEK cells upon MUC1 expression. Please provide the surface expression of the MUC1 so that the data can be compared to Fig 1F. Nevertheless, it is not clear why the authors used MUC expression as a parameter to assess virus binding. Alternatively, more conclusive data supporting the hypothesis would be the absence of a correlation between total glycan content and virus binding capacity.

      (7) While the use of the Flory model could provide a simplification for a (disordered) flexible structure such as MUC1, where the number of amino acids equals N in the Flory model, this generalisation will not hold for all the proteins. Because folding will dramatically change the effective polypeptide chain-length and reduce available positioning of the amino acids, something the authors clearly measured (Fig 4G), this generalisation is not correct. In fact, the generalisation does not seem to be required because the authors provide an estimation for the effective Flory radius using their FRET approach

    1. Reviewer #1 (Public review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Comments on revisions:

      I am satisfied with the revisions made by the authors, which helped clarify some points that were confusing in the initial submission.

    2. Reviewer #2 (Public review):

      This revised manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2.

      Many of the conclusions are based on reasonable assumptions about the consequences of various mutations, but direct evidence of changes in Srs2 association with PNCA or other interactors is still missing. There is an assumption that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects, which may not be the case. How SLX4 might interact with Srs2 is unclear to me, again assuming that the SLX4 defect is "surgical" - removing only one of its many interactions.

      One point of concern is the use of t-tests without some sort of correction for multiple comparisons - in several figures. I'm quite sceptical about some of the p < 0.05 calls surviving a Bonferroni correction. Also in 4B, which comparison is **? Also, admittedly by eye, the changes in "active" Rad53 seem much greater than 5x. (also in Fig. 3, normalizing to a non-WT sample seems odd).

      What is the WT doubling time for this strain? From the FACS it seems as if in 2 h the cells have completed more than 1 complete cell cycle. Also in 5D. Seems fast...

      I have one over-arching confusion. Srs2 was shown initially to remove Rad51 from ssDNA and the suppression of some of srs2's defects by deleting rad51 made a nice, compact story, though exactly how srs2's "suppression of rad6" fit in isn't so clear (since Rad6 ties into Rad18 and into PCNA ubiquitylation and into PCNA SUMOylation). Now Srs2 is invoked to remove RPA. It seems to me that any model needs to explain how Srs2 can be doing both. I assume that if RPA and Rad51 are both removed from the same ssDNA, the ssDNA will be "trashed" as suggested by Symington's RPA depletion experiments. So building a model that accounts for selective Srs2 action at only some ssDNA regions might be enhanced by also explaining how Rad51 fits into this scheme.

      As a previous reviewer has pointed out, CPT creates multiple forms of damage. Foiani showed that 4NQO would activate the Mec1/Rad53 checkpoint in G1- arrested cells, presumably because there would be single-strand gaps but no DSBs. Whether this would be a way to look specifically at one type of damage is worth considering; but UV might be a simpler way to look.

      As also noted, the effects on the checkpoint and on viability are quite modest. Because it isn't clear (at least to me) why rfa1 mutants are so sensitive to CPT, it's hard for me to understand how srs2-zm2 has a modest suppressive effect: is it by changing the checkpoint response or facilitating repair or both? Or how srs2-3KR or srs2-dPIM differ from Rfa1-zm2 in this respect. The authors seem to lump all these small suppressions under the rubric of "proper levels of RPA-ssDNA" but there are no assays that directly get at this. This is the biggest limitation.

      Srs2 has also been implicated as a helicase in dissolving "toxic joint molecules" (Elango et al. 2017). Whether this activity is changed by any of the mutants (or by mutations in Rfa1) is unclear. In their paper, Elango writes: "Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules" Given the involvement of SLX4, perhaps the authors should examine the roles of structure-specific nucleases in CPT survival?

      Experiments that might clarify some of these ambiguities are proposed to be done in the future. For now, we have a number of very interesting interactions that may be understood in terms of a model that supposes discriminating among gaps and ssDNA extensions by the presence of PCNA, perhaps modified by SUMO. As noted above, it would be useful to think about the relation to Rad6.

    3. Reviewer #3 (Public review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2-SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths<br /> (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.<br /> (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

      Weaknesses<br /> (1) Additional mutants of interest could have been tested, such as the recently reported Pin mutant, srs2-Y775A (PMID: 38065943), and the Rad51 interaction point mutant, srs2-F891A (PMID: 31142613).<br /> (2) The use of deletion mutants for PCNA and RAD51 interaction is inferior to using specific point mutants, as done for the SUMO interaction and the sites for post-translational modifications.<br /> (3) Figure 4D and Figure 5A report data with standard deviations, which is unusual for n=2. Maybe the individual data points could be plotted with a color for each independent experiment to allow the reader to evaluate the reproducibility of the results.

      Comments on revisions:

      In this revision, the authors adequately addressed my concerns. The only issue I see remaining is the site of Srs2 action. The authors argue in favor of gaps and against R-loops and ssDNA resulting from excessive supercoiling. The authors do not discuss ssDNA resulting from processing of one-sided DSBs, which are expected to result from replication run-off after CPT damage but are not expected to provide the 3'-junction for preferred PCNA loading. Can the authors exclude PCNA at the 5'-junction at a resected DSB?

    1. Reviewer #1 (Public review):

      Summary:

      In the present study, Dr. Ihara demonstrated a key role of oxLDL in enhancing Ang II-induced Gq signaling by promoting the AT1/LOX1 receptor complex formation.

      Strengths:

      This study is very exciting and the work is also very detailed, especially regarding the mechanism of LOX1-AT1 receptor interaction and its impact on oxidative stress, fibrosis and inflammation.

      Weaknesses:

      The direct evidence for the interaction between AT1 and LOX1 receptors in cell membrane localization is relatively weak.

    2. Reviewer #2 (Public review):

      While the findings might be valid, there is enough uncertainty that these results should not be considered anything other than preliminary, warranting a more thorough and rigorous investigation.

      Comments on revisions:

      As the author mentioned that due to the receptor internalisation of AT1 and/or LOX1 induced by AngII or Ox-LDL makes it difficult to detect receptor interaction at the membrane by Co-IP. If so, the GPCR internalisation related pathway should be activated, such as GRKs, arrestin2 could be activated and enhanced during this process, whether they could further provide the evidence for these changes in different groups by Western blot or IF images.

      If the authors don't know why the results across experiments can vary so greatly nor control them, how do we know that their interpretation of the very modest intra-experimental variability they observe is correct? They explain away the difference in biosensor activity response to the likely respective insertion sites that were used. While this can be true, and even might be true, it is important to note that the publication they cite shows that the sensors in the third loop and the C-terminus respond very similarly. In fact, the authors concluded: "Our results also suggest that positioning conformational biosensors into ICL3 and the C-tail effectively reports canonical G protein-mediated signaling downstream of the AT1R." Moreover, it is unclear why the less sensitive biosensor (as least as measured by degree of DBRET) is the one that appears to show enhancement. I suppose one could argue that the activity is maximal using the C-tail and one must use a less responsive reporter to detect the effect, but this is a rationalization for an unexplained result rather than a validated mechanistic explanation. If the other results were more compelling, perhaps this would be less of an issue. Finally, they did not explain why a control, non-specific antibody wasn't used for the studies presented in panel 2d. This would have been an easy study to have done in the interim. It also would have been important to test the effect of the LOX1-ab on the effects of AngII treatment alone.

      In their response to the gene expression studies, the authors attribute the lack of a robust response for some genes to the low dose of oxLDL that was used but give no justification for their choice for this low dose. More importantly, they present the data for a number of hand-picked genes rather than a global assessment of response. Their justification---cost constraints---isn't sufficient to justify this incomplete analysis. Their selective rt-PCR results are a pilot study.

      There is no direct evidence in this study that shows that "partial" EMT is occurring in vivo. The rt-PCR studies presented in Fig 8 are not sufficient. Even if one accepts their incomplete analysis of transcriptomic studies using RT-PCR rather than a complete transcriptomic assessment, the study was done on bulk RNA from the entire kidney. The source material includes all cell types, not just epithelial cells, so there is no way to be sure that EMT is occurring. As noted elsewhere, they found no histologic evidence for injury and had no immunostaining results demonstrating "partial EMT" of damaged renal epithelial cells.

      All of the evidence described is indirect, and the responses, while plausible, are generally excuses for lack of truly unequivocally positive results. The authors acknowledge the potential confounders of lower BP response in the Lox1-KO, unexpected weight loss in response to high fat diet, the lack of meaningful histologic evidence of injury, and they also acknowledge the absence of increased Gq signaling in the kidney, which is central to their model, but defend the entire model based on some minor changes in urinary 8-OHdG and albumin levels and a curated set of transcriptional changes. Their data could support their model---loss of Lox1 seems to reduce the levels somewhat, but the data are preliminary.

      There remain serious reservations about the immunostaining results, with explanations and new data not reassuring. The authors report that they are unable to co-stain for Lox1 and AT1R because both were generated in rabbit, but this reviewer didn't ask for co-staining of the two markers. Rather, it was co-staining showing that Lox1 and ATR1 in fact stain in a specific manner to the same nephron segments. The authors have added a supplementary figure showing co-staining for LOX1/AT1R with megalin, a marker for proximal tubules. However, several aspects of this are problematic:

      i. The pattern in the new Supp Fig 10 does not look like that in Fig 9. In the latter, staining is virtually everywhere, all nephron segments, and predominantly basolateral. In Supp Fig 10, they note that the pattern is primarily in the microvilli of the proximal tubule, where megalin is present. The new studies also seem to be a bit more specific, ie there are some tubules that appear to not stain with the markers.

      ii. It is difficult to be certain that the megalin staining isn't simply "bleed-through" of the signal from the other antibody. The paper doesn't describe the secondary antibody used for megalin to be sure that the emission spectra completely non-overlapping and it isn't clear that the microscope that was used offers necessary precision.

      iii. Their explanation for the pattern of AT1R staining is unconvincing. AT1R immunolocalization is known to be challenging, prompting Schrankl et al to do a definitive study using RNAscope to localize its expression in mice, rats and humans (Am J Physiol Renal Physiol 320: F644-F653, 2021). It argues against the pattern seen in Figure 9 (diffuse tubular expression), though it does suggest it is present in proximal tubules in mice. But perhaps more problematic for their model is that AT1R is not expressed in human tubules (or at least the RNA is undetectable).

      Why isn't there more colocalization apparent for the AT1R and LOX1 if they form a co-receptor complex? They say that the complexes may be very dynamic, yet their movie in Suppl Fig 1 does not really support that. Not only are there few overlapping puncta in the static image, there is very little change over the duration of the movie. We don't see complexes form and then disappear and we see few new complexes form.

      The explanation for why the number of replicates is variable is not reassuring. The authors note that it was because of the higher variability of the results, necessitating a higher "N" to achieve significance, but this has the appearance of P-chasing.

    1. Reviewer #1 (Public Review):

      Summary:

      This work uses transgenic reporter lines to isolate entpd5a+ cells representing classical osteoblasts in the head and non-classical (osterix-) notochordal sheath cells. The authors also include entpd5a- cells, col2a1a+ cells to represent the closely associated cartilage cells. In a combination of ATAC and RNA-Seq analysis, the genome-wide transcriptomic and chromatin status of each cell population is characterized, validating their methodology and providing fundamental insights into the nature of each cell type, especially the less well-studied notochordal sheath cells. Using these data, the authors then turn to a thorough and convincing analysis of the regulatory regions that control the expression of the entpd5a gene in each cell population. Determination of transcriptional activities in developing zebrafish, again combined with ATAC data and expression data of putative regulators, results in a compelling and detailed picture of the regulatory mechanisms governing the expression of this crucial gene.

      Strengths:

      The major strength of this paper is the clever combination of RNA-Seq and ATAC analysis, further combined with functional transcriptional analysis of the regulatory elements of one crucial gene. This results in a very compelling story.

      Weaknesses:

      No major weaknesses were identified, except for all the follow-up experiments that one can think of, but that would be outside of the scope of this paper.

    2. Reviewer #2 (Public Review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and to serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts has been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific details of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show the utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing a foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing the biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that were not critical weaknesses but areas for extending the description of methods and integration into the existing data on the role of non-classical osteoblasts and establishment/canalization of this lineage of skeletal cells.

      (1) In reading the text it was unclear how specific the authors' experimental dissection of the head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however, analysis of contaminating cells/lineages in each population would be useful - e.g. using specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific - e.g. not seen in one or other dataset - or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage-specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - are there obvious cis-regulatory changes that correlate with the co-option of this gene in the early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of the differential between different osteoblasts lineages in the paper.

    3. Reviewer #3 (Public Review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts, Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers, they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrating the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    1. Reviewer #1 (Public review):

      Using genetically engineered Mycolicibacterium smegmatis strains, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and wild type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism.

      The link between mycofactocin oxidation and respiration is shown by whole-cell and membrane respiration measurements. I look forward to seeing what the electron acceptor/s are for MftG. Overall, the data and conclusions support the role of MftG in ethanol metabolism as a mycofactocin redox enzyme.

    2. Reviewer #3 (Public review):

      Summary:

      The work by Graca et al. describes a GMC flavoprotein dehydrogenase (MftG) in the ethanol metabolism of mycobacteria and provides evidence that it shuttles electrons from the mycofactocin redox cofactor to the electron transport chain.

      Strengths:

      Overall, this study is compelling, exceptionally well-designed and thoroughly conducted. An impressively diverse set of different experimental approaches is combined to pin down the role of this enzyme and scrutinize the effects of its presence or absence in mycobacteria cells growing on ethanol and other substrates. Other strengths of this work are the clear writing style and stellar data presentation in the figures, which makes it easy also for non-experts to follow the logic of the paper. Overall, this work therefore closes an important gap in our understanding of ethanol oxidation in mycobacteria, with possible implications for the future treatment of bacterial infections.

      Weaknesses:

      I see no major weaknesses in this work, which in my opinion leaves no doubt about the role of MftG.

    3. Reviewer #4 (Public review):

      Summary:

      The manuscript by Graça et al. explores the role of MftG in the ethanol metabolism of mycobacteria. The authors hypothesise that MftG functions as a mycofactocin dehydrogenase, regenerating mycofactocin by shuttling electrons to the respiratory chain of mycobacteria. Although the study primarily uses M. smegmatis as a model microorganism, the findings have more general implications for understanding mycobacterial metabolism. Identifying the specific partner to which MftG transfers its electrons within the respiratory chain of mycobacteria would be an important next step, as pointed out by the authors.

      Strengths

      The authors have used a wide range of tools to support their hypothesis, including co-occurrence analyses, gene knockout and complementation experiments, as well as biochemical assays and transcriptomics studies.<br /> An interesting observation that the mftG deletion mutant grown on ethanol as the sole carbon source exhibited a growth defect resembling a starvation phenotype.<br /> MftG was shown to catalyse the electron transfer from mycofactocinol to components of the respiratory chain, highlighting the flexibility and complexity of mycobacterial redox metabolism.

      The authors have taken on the majority of recommendations by the reviewers and made changes in the manuscript accordingly. I don't have any further suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      Beyond what is stated in the title of this paper, not much needs to be summarized. eIF2A in HeLa cells promotes translation initiation of neither the main ORFs nor short uORFs under any of the conditions tested.

      Strengths:

      Very comprehensive, in fact, given the huge amount of purely negative data, an admirably comprehensive and well-executed analysis of the factor of interest.

      Weaknesses:

      The study is limited to the HeLa cell line, focusing primarily on KO of eIF2A and neglecting the opposite scenario, higher eIF2A expression which could potentially result in an increase in non-canonical initiation events.

    2. Reviewer #2 (Public review):

      Summary

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant.

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.

      Strengths

      The experimental investigation described in this manuscript is thorough, appropriate and convincing.

      Weaknesses

      However, we are not entirely satisfied with the presentation of this work which we think should be improved.

    3. Reviewer #3 (Public review):

      Summary:

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knock-out cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells.

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells.

      Strengths:

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2.

      Weaknesses:

      There is some question about whether their induction of eIF2 phosphorylation using tunicamycin was extensive enough to state forcefully that eIF2A has little or no role in the translatome when eIF2 function is strongly impaired. Also, similar conclusions regarding the minimal role of eIF2A were reached previously for a different human cell line from a study that also enlisted ribosome profiling under conditions of extensive eIF2 phosphorylation; although that study lacked the extensive use of reporters to confirm or refute the identification by ribosome profiling of a small group of mRNAs regulated by eIF2A during stress.

    1. Reviewer #2 (Public review):

      Summary:

      In mice, Notch1 is expressed uniformly throughout the endocardium during the initial stages of heart valve formation. How, then, is Notch activated specifically in the valve forming regions? To answer this question, the authors use a combination of in vivo and ex vivo experiments to demonstrate the critical role of hemodynamic forces on Notch1 activation and provide strong evidence for a novel mechanotransduction pathway involving PKC and mTORC2.

      Strengths:

      (1) Novel insights into the role of PKC and mTOR were obtained using a combination of mutant studies and pharmacological studies.<br /> (2) Novel insights on the role of mechanical forces on caveolin-1 localisation.<br /> (3) Mechanical forces were manipulated using the class III antiarrhythmic drug dofetilide, which transiently blocks heartbeat. Care was taken to minimise the confounding effects of hypoxia.

      Weaknesses:

      The authors suggest that shear stress activates the mTORC2-PKC-Notch signalling pathway by altering the membrane lipid microstructure. Although this is a fascinating hypothesis, more evidence will be needed to prove this. In particular, it is not clear how the general addition of cholesterol in dofetilide-treated hearts would result in a rescue of regionalized membrane distribution within the AVC and in high-shear stress areas.

    2. Reviewer #3 (Public review):

      Summary:

      The overall goal of this manuscript is to understand how Notch signaling is activated in specific regions of the endocardium, including the OFT and AVC, that undergo EMT to form the endocardial cushions. Using dofetilide to transiently block circulation in E9.5 mice, the authors show that Notch receptor cleavage still occurs in the valve-forming regions due to mechanical sheer stress as Notch ligand expression and oxygen levels are unaffected. The authors go on to show that changes in lipid membrane structure activate mTOR signaling, which causes phosphorylation of PKC and Notch receptor cleavage. The data are largely convincing and support their hypothesis. The conclusions are also novel and significantly add to the field of endocardial cushion biology.

      The strengths of the manuscript include the dual pharmacological and genetic approaches to block blood flow in the mouse, the inclusion of many controls including those for hypoxia, the quality of the imaging, and the clarity of the text. In the revision, the authors put forth a good faith effort to address experimentally or textually the concerns of the reviewers. Most weaknesses that were identified in the first submission were addressed and the main claims are convincing. In general, the authors achieved their aims and the results support their conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Bruter and colleagues report effects of inducible deletion of the genes encoding the two paralogous kinases of the Mediator complex in adult mice. The physiological roles of these two kinases, CDK8 and CDK19, are currently rather poorly understood; although conserved in all eukaryotes, and among the most highly conserved kinases in vertebrates, individual knockouts of genes encoding CDK8 homologues in different species have revealed generally rather mild and specific effects, in contrast to Mediator itself. Here, the authors provide evidence that neither CDK8 nor CDK19 are required for adult homeostasis but they are functionally redundant for maintenance of reproductive tissue morphology and fertility in males.

      Strengths:

      The morphological data on the atrophy of the male reproductive system and the arrest of spermatocyte meiosis are solid and are reinforced by single cell transcriptomics data, which is a challenging technique to implement in vivo. The main findings are important and will be of interest to scientists in the fields of transcription and developmental biology.

      Weaknesses:

      There are several major weaknesses.

      The first is that data on general health of mice with single and double knockouts is not shown, nor are there any data on effects in any other tissues. This gives the impression that the only phenotype is in the male reproductive system, which would be misleading if there were phenotypes in other tissues that are not reported. Furthermore, given that the new data show differing expression of CDK8 and CDK19 between cell types in the testis, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in figure 1E, ploidy and cell number in figure 3B and C, plasma testosterone and luteinizing hormone levels in figure 6C and 6D and morphology of testis and prostate tissue for single Cdk8 knockout in supplementary figure 1C (although in this case the images do not appear very comparable between control and CDK8 KO, thus perhaps wider fields should be shown), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. This might have provided insight into the sterility of induced CDK8 knockout.

      The second major weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is portrayed as a likely causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence shown that CDK8 and/or CDK19 are directly responsible for transcription of the genes concerned.

      Finally, the authors propose that the phenotypes are independent of the kinase activity of CDK8 or CDK19 because treatment of mice for a month with an inhibitor does not recapitulate the effects of the knockout, and nor does expression of two steroidogenic genes change in cultured Leydig cells upon treatment with an inhibitor. However, there are no controls for effective target inhibition shown.

      Comments on revisions:

      This manuscript is in some ways improved - mainly by toning down the conclusions - but a few major weaknesses have not been addressed. I do not agree that it is not justified to perform experiments to investigate the sterility of single CDK8 knockout mice since this could be important and given that the new data show that while there is some overlap in expression of the two prologues, there are also significant differences in the testis. At the least, it would have been interesting and easy to do to show the expression of CDK8 and CDK19 in the single cell transcriptomics, since this might help to identify the different populations.

      The only definitive way of concluding a kinase-independent phenotype is to rescue with a kinase dead mutant. While I agree that the inhibitors have been well validated, since they did not have any effects, it is hard to be sure that they actually reached their targets in the tissue concerned. This could have been done by cell thermal shift assay. In the absence of any data on this, the conclusion of a kinase-independent effect is weak.

      Figure 2 legend includes (G) between (B) and (C), and appears to, in fact, refer to Fig 1E, for which the legend is missing the description.

      Finally, Figure S1C appears wrong. Goblet cells are not in the crypt but on the villi (so the graph axis label is wrong), and there are normally between 5 and 15 per villus, so the iDKO figure is normal, but there are a surprisingly high number of goblet cells in the controls. And normally there are 10-15 Paneth cells/crypt, so it looks like these have been underestimated everywhere. I wonder how the counting was done - if it is from images such as those shown here then I am not surprised as the quality is insufficient for quantification. How many crypts and villi were counted? Given the difficulty in counting and the variability per crypt/villus, with quantitative differences like this it is important to do quantifications blind. I personally wouldn't conclude anything from this data and I would recommend to either improve it or not include it. If these data are shown, then data showing efficient double knockout in this tissue should also accompany it, by IF, Western or PCR. Otherwise, given a potentially strong phenotype, repopulation of the intestine by unrecombined crypts might have occurred - this is quite common (see Ganuza et al, EMBO J. 2012).

    2. Reviewer #2 (Public review):

      Summary:

      The authors tried to test the hypothesis that Cdk8 and Cdk19 stabilize the cytoplasmic CcNC protein, the partner protein of Mediator complex including CDK8/19 and Mediator protein via a kinase-independent function by generating induced double knockout of Cdk8/19. However the evidence presented suffer from a lack of focus and rigor and does not support their claims.

      Strengths:

      This is the first comprehensive report on the effect of a double knockout of CDK8 and CDK19 in mice on male fertility, hormones and single cell testicular cellular expression. The inducible knockout mice led to male sterility with severe spermatogenic defects, and the authors attempted to use this animal model to test the kinase-independent function of CDK8/19, previously reported for human. Single cell RNA-seq of knockout testis presented a high resolution of molecular defects of all the major cell types in the testes of the inducible double knockout mice. The authors also have several interesting findings such as reentry into cell cycles by Sertoli cells, loss of Testosterone in induced dko that could be investigated further.

      Weaknesses:

      The claim of reproductive defects in the induced double knockout of CDK8/19 resulted from the loss of CCNC via a kinase-independent mechanism is interesting but was not supported by the data presented. While the construction and analysis of the systemic induced knockout model of Cdk8 in Cdk19KO mice is not trivial, the analysis and data is weakened by systemic effect of Cdk8 loss, making it difficult to separate the systemic effect from the local testis effect.

      The analysis of male sterile phenotype is also inadequate with poor image quality, especially testis HE sections. Male reproductive tract picture is also small and difficult to evaluate. The mice crossing scheme is unusual as you have three mice to cross to produce genotypes, while we could understand that it is possible to produce pups of desired genotypes with different mating schemes, such vague crossing scheme is not desirable and of poor genetics practice. Also using TAM treated wild type as control is ok, but a better control will be TAM treated ERT2-cre; CDK8f/f or TAM treated ERT2 Cre CDK19/19 KO, so as to minimize the impact from well-recognized effect of TAM.

      While the authors proposed that the inducible loss of CDK8 in the CDK19 knockout background is responsible for spermatogenic defects, it was not clear in which cells CDK8/19 genes are interested and which cell types might have a major role in spermatogenesis. The authors also put forward the evidence that reduction/loss of Testosterone might be the main cause of spermatogenic defects, which is consistent with the expression change in genes involved in steroigenesis pathway in Leydig cells of inducible double knockout. But it is not clear how the loss of Testosterone contributed to the loss of CcnC protein.

      The authors should clarify or present the data on where CDK8 and CDK19 as well as CcnC are expressed so as to help the readers to understand which tissues that both CDK might be functioning and cause the loss of CcnC. It should be easier to test the hypothesis of CDK8/19 stabilize CcnC protein using double knock out primary cells, instead of the whole testis.

      Since CDK8KO and CDK19KO both have significantly reduced fertility in comparison with wildtype, it might be important to measure the sperm quantity and motility among CDK8 KO, CDK19KO and induced DKO to evaluate spermatogenesis based on their sperm production.

      Some data for the inducible knockout efficiency of Cdk8 were presented in Supplemental figure 1, but there is no legend for the supplemental figures, it was not clear which band represented deletion band, which tissues were examined? Tail or testis? It seems that two months after the injection of Tam, all the Cdk8 were completely deleted, indicating extremely efficient deletion of Tam induction by two-month post administration. Were the complete deletion of Cdk8 happening even earlier ? an examination of timepoints of induced loss would be useful and instructional as to when is the best time to examine phenotypes.

      The authors found that Sertoli cells re-entered cell cycle in the inducible double knockout but stop short of careful characterization other than increased expression of cell cycle genes.

      Overall this work suffered from a lack of focus and rigor in the analysis and lack of sufficient evidence to support their main conclusions.

      Comments on revisions:

      This reviewer appreciated the authors' effort in improving the quality of this manuscript during their revision. While some concerns remain, the revision is a much improved work and the authors addressed most of my major concerns.<br /> Figure 2E CDK8 and CDK19 immunofluorescent staining images seem to show CDK8 and CDK19 location are completely distinct and in different cells, the authors need to elaborate on this results and discuss what such a distinct location means in line of their double knockout data.

      Minor comments:

      Supplemental figure 1(C) legend typo : (C) Periodic acid-Schiff stained sections of ilea of tamoxifen treated R26/Cre/ERI2 and DKO mice.

      While the effort to identify and generate new antibodies is appreciated, the specificity of the antibodies used should be examined and presented if available.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript focuses on the apparent involvement of a proposed copper-responsive regulator in the chemotactic response of Pseudomonas putida to Cu(II), a chemorepellent. Broadly, this area is of interest because it could provide insight into how soil microbes mitigate metal stress. Additionally, copper has some historical agricultural use as an antimicrobial, thus can accumulate in soil. The manuscript bases its conclusions on an in vitro screen to identify interacting partners of CheA, an essential kinase in the P. putida chemotaxis-signaling pathway. Much of the subsequent analysis focuses on a regulator of the CsoR/RcnR family (PP_2969).

      Weaknesses:

      The data presented in this work does not support the model (Figure 8). In particular, PP_2969 is linked to Ni/Co resistance not Cu resistance. Further, it is not clear how the putative new interactions with CheA would be integrated into diverse responses to various chemoattract/repellents. These two comments are justified below.

      PP_2969

      • The authors present a sequence alignment (Figure S5) that is the sole based for their initial assignment of this ORF as a CsoR protein. There is conservation of the primary coordinating ligands (highlighted with asterisks) known to be involved in Cu(I) binding to CsoR (ref 31). There are some key differences, though, in residues immediately adjacent to the conserved Cys (the preceding Ala, which is Tyr in the other sequences). The effect of these change may be significant in a physiological context.

      • The gene immediately downstream of PP_2969 is homologous to E. coli RcnA, a demonstrated Ni/Co efflux protein, suggesting that P2969 may be Ni or Co responsive. Indeed PP_2970 has previously been reported as Ni/Co responsive (J. Bact 2009 doi:10.1128/JB.00465-09). The host cytosol plays a critical role in determining metal-response, in addition to the protein, which can explain the divergence from the metal response expected from the alignment.

      • The previous JBact study also explains the lack of an effect (Figure 5b) of deleting PP_2969 on copper-efflux gene expression (copA-I, copA-II, and copB-II) as these are regulated by CueR not PP_2969 consistent with the previous report. Deletion of CsoR/RcnR family regulator will result in constitutive expression of the relevant efflux/detoxification gene, at a level generally equivalent to the de-repression observed in the presence of the signal.

      • Further, CsoR proteins are Cu(I) responsive so measuring Cu(II) binding affinity is not physiologically relevant (Figures 5a and S5b). The affinities of demonstrated CsoR proteins are 10-18 M and these values are determined by competition assay. The MTS assay and resulting affinities are not physiologically relevant.

      • The DNA-binding assays are carried out at protein concentrations well above physiological ranges (Figs 5c and d, and S5c, d). The weak binding will in part result from using DNA-sequences upstream of the copA genes and not from from PP_2970.

      CheA interactions

      There is no consideration given to the likely physiological relevance of the new interacting partners for CheA.

      • How much CheA is present in the cell (copies) and how many copies of other proteins are present? How would specific responses involving individual interacting partners be possible with such a heterogenous pool of putative CheA-complexes in a cell. For PP_2969, the affinity reported (Figure 5A) may lay at the upper end of the CsoR concentration range (for example, CueR in Salmonella is present at ~40 nM).

      • The two-hybrid system experiment uses a long growth time (60 h) before analysis. Even low LacZ activity levels will generate a blue colour, depending upon growth medium (see doi: 10.1016/0076-6879(91)04011-c). It is also not clear how Miller units can be accurately or precisely determined from a solid plate assay (the reference cited describes a protocol for liquid culture).

      Comments on revised version:

      The authors have replied in detail to the various comments about the original manuscripts. However, the responses are generally lengthy rationalisations of the original interpretation of the data and do not fundamentally address critical concerns raised about the physiological relevance of the results. The response appears to rest on the assumption that the numerous interacting partners obtained from the initial screen are all true positives and that all subsequent experimental results are interpreted to justify that assumption. In the case of CsoR, the experimental results and interpretation are inconsistent with previously published studies of the metal and DNA-binding properties of CsoR proteins. The following points reiterate comments from the previous review, in the hopes that the authors will, at the very least, consider the likelihood that the "CsoR" protein they have identified is in fact responsive to a different metal. Further, that the authors consider multiple possible interpretations of the data, particularly those that are inconsistent with the model/hypothesis (and take this into account in their experimental design.

      • (Figure 4) Almost all purified proteins will bind Cu(II) most tightly in vitro, followed by Zn(II) and Ni(II). This behaviour is a consequence of the Irving-Williams affinity series (doi.org/10.1038/162746a0 and doi.org/10.1039/JR9530003192, especially Figure 4) and is not considered an indicator of physiological metal preference. Biomolecules will exhibit the same behaviour as small organic ligands towards first row transition ions because of the flexibility of their structures. Thus, the results obtained are unsurprising and, because of the method used, have no physiological relevance.

      • The authors cite other in vivo work as evidence for varied metal-response by regulator proteins. However, experiments in these citations are of limited relevance because some focus on other structural classes of metalloregulator proteins (so not relevant here) while others focus on changes in metal accumulation by overexpression of the regulator protein, with no examination of the metal-specificity of the efflux protein (the key determinant of the physiological response of the regulator protein - why turn on expression of an efflux protein that can't pump out a particular metal? Finally, adding equivalent concentrations of metals to growing cells is not a good comparison as metals are toxic at different concentrations. The regulators will only have evolved to be just good enough, not perfect, with respect to selectivity. Laboratory experimental conditions often explore non-physiological conditions.

      • It is also important to re-emphasise the authors' own statements on lines 90-93 that P. putida has a CueR protein. This is consistent with the phylogenetic distribution of CueR proteins in gram-negative bacteria. The CsoR proteins, in contrast, are found only in gram-positive bacteria. This inconsistency is ignored by the authors.

      • The implications of the Irving-Williams series on metal-specific responses of bacterial metalloregulator proteins are described in the following references: 10.1016/j.cbpa.2021.102095, 10.1074/jbc.R114.588145, and 10.1038/s41589-018-0211-4). The last reference of this set provides an experimental basis for why metalloregulator affinities for Cu (and Zn and Ni) are so tight (and why the values obtained in Figure 4 in this manuscript are not relevant).

      • Similarly, the previous experimental studies of CsoR proteins not cited by the authors (10.1021/ja908372b 10.1021/bi900115w) provide rigourous experimental approaches for measuring metal and DNA-binding affinities and further highlight the weakness of the experimental design in this manuscript.

      • The DNA-binding assays are not physiologically relevant because they do not use DNA from the operator regulated by the candidate protein (why this was not explored in the revision is difficult to understand). The mobility shift observed at these high protein concentrations will result from non-specific binding. It is unsurprising that Cu(II) has an effect on DNA binding as it is added at such high concentrations relative to both protein and DNA so as to compete for DNA-binding with the protein (which binds weakly because there is no specific recognition site). The 10:1 ratio of Cu:CsoR is 10-times higher than needed as this class of proteins will show decreases in DNA-affinity in the presence of the correct metal at 1:1 stoichiometry. As indicated above, the authors need to consider alternative interpretations for their results rather than try to rationalise the results to fit the model.

      The points raised above readily address the authors' own comments in the response as to their surprise at some of the results and their inconsistency with the model.

      Even if the authors were to identify the correct metal to which the protein responds, there are still fundamental issues with experimental design and interpretation that would need to be addressed to indicate any link between the protein and chemotaxis.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript (Baron, Oviedo et al., 2024) builds on a previous study from the Wiseman lab (Perea, Baron et al., 2023) and describes the identification of novel nucleoside mimetics that activate the HRI branch of the ISR and drive mitochondrial elongation. The authors develop an image processing and analysis pipeline to quantify the effects of these compounds on mitochondrial networks and show that these HRI activators mitigate ionomycin driven mitochondrial fragmentation. They then show that these compounds rescue mitochondrial morphology defects in patient-derived MFN2 mutant cell lines.

      Strengths:

      The identification of new ISR modulators opens new avenues for biological discovery surrounding the interplay between mitochondrial form/function and the ISR, a topic that is of broad interest. Conceptually, this work suggests that such compounds might represent new potential therapeutics for certain mitochondrial disorders. Additionally, the development of a quantitative image analysis pipeline is valuable and has the potential to extract subtle effects of various treatments on mitochondrial morphology.

      Weaknesses:

      While the ISR modulators described here correct the morphology of mitochondria in MFN2.D414V mutant cells, the impact of these compounds on the function of mitochondria in the mutant cells remains unaddressed. Sharma et al., 2022 provide data for a deficit in mitochondrial OCR in MFN2.D414V cells which, if rescued by these compounds, would strengthen the argument that pharmacological ISR kinase activation is a strategy for targeting the functional consequences of the dysregulation of mitochondrial form.

    2. Reviewer #2 (Public review):

      Summary.

      Mitochondrial dysfunction is associated with a wide spectrum of genetic and age-related diseases. Healthy mitochondria form a dynamic reticular network and constantly fuse, divide, and move. In contrast, dysfunctional mitochondria have altered dynamic properties resulting in fragmentation of the network and more static mitochondria. It has recently been reported that different types of mitochondrial stress or dysfunction activate kinases that control the integrated stress response, including HRI, PERK and GCN2. Kinase activity results in decreased global translation and increased transcription of stress response genes via ATF4, including genes that encode mitochondrial protein chaperones and proteases (HSP70 and LON). In addition, the ISR kinases regulate other mitochondrial functions including mitochondrial morphology, phospholipid composition, inner membrane organization, and respiratory chain activity. Increased mitochondrial connectivity may be a protective mechanism that could be initiated by pharmacological activation of ISR kinases, as was recently demonstrated for GCN2.

      A small molecule screening platform was used to identify nucleoside mimetic compounds that activate HRI. These compounds promote mitochondrial elongation and protect against acute mitochondrial fragmentation induced by a calcium ionophore. Mitochondrial connectivity is also increased in patient cells with a dominant mutation in MFN2 by treatment with the compounds.

      Strengths:

      (1) The screen leverages a well-characterized reporter of the ISR: translation of ATF4-FLuc is activated in response to ER stress or mitochondrial stress. Nucleoside mimetic compounds were screened for activation of the reporter, which resulted in the identification of nine hits. The two most efficacious in dose response tests were chosen for further analysis (0357 and 3610). The authors clearly state that the compounds have low potency. These compounds were specific to the ISR and did not activate the unfolded protein response or the heat shock response. Kinases activated in the ISR were systematically depleted by CRISPRi revealing that the compounds activate HRI.<br /> (2) The status of the mitochondrial network was assessed with an Imaris analysis pipeline and attributes such as length, sphericity, and ellipsoid principal axis length were quantified. The characteristics of the mitochondrial network in cells treated with the compounds were consistent with increased connectivity. Rigorous controls were included. These changes were attenuated with pharmacological inhibition of the ISR.<br /> (3) Treatment of cells with the calcium ionophore results in rapid mitochondrial fragmentation. This was diminished by pre-treatment with 0357 or 3610 and control treatment with thapsigargin and halofuginone.<br /> (4) Pathogenic mutations in MFN2 result in the neurodegenerative disease Charcot-Marie-Tooth Syndrome Type 2A (CMT2A). Patient cells that express Mfn2-D414V possess fragmented mitochondrial networks and treatment with 0357 or 3610 increased mitochondrial connectivity in these cells.

      Weaknesses:

      The weakness is the limited analysis of cellular changes following treatment with the compounds.<br /> (1) Unclear how 0357 or 3610 alter other aspects of cellular physiology. While this would be satisfying to know, it may be that the authors determined that broad, unbiased experiments such as RNAseq or proteomic analysis are not justified due to the limited translational potential of these specific compounds.<br /> (2) There are many changes in Mfn2-D414V patient cells including reduced respiratory capacity, reduced mtDNA copy number, and fewer mitochondrial-ER contact sites. These experiments are relatively narrow in scope and quantifying more than mitochondrial structure would reveal if the compounds improve mitochondrial function, as is predicted by their model.

      Comments on revisions:

      Many reviewer concerns have been addressed or will be addressed in forthcoming manuscripts.

    3. Reviewer #3 (Public review):

      Summary:

      Mitochondrial injury activates eiF2α kinases-PERK, GCN2, HRI and PKR-which collectively regulate the Integrated Stress Response (ISR) to preserve mitochondrial function and integrity. Previous work has demonstrated that stress-induced and pharmacologic stress-independent ISR activation promotes adaptive mitochondrial elongation via the PERK and GCN2 kinases, respectively. Here, the authors demonstrate that pharmacologic ISR inducers of HRI and GCN2 enhance mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the therapeutic potential of pharmacologic ISR activators. Specifically, the authors first used an innovative ISR translational reporter to screen for nucleoside mimetic compounds that induce ISR signaling, and identified two compounds, 0357 and 3610, that preferentially activate HRI. Using a mitochondrial-targeted GFP MEF cell line, the authors next determined that these compounds (as well as the GCN2 activator, halofuginone) enhance mitochondrial elongation in an ISR-dependent manner. Moreover, pretreatment of MEFs with these ISR kinase activators suppressed pathological mitochondrial fragmentation caused by a calcium ionophore. Finally, pharmacologic HRI and GCN2 activation was found to preserve mitochondrial morphology in human fibroblasts expressing a pathologic variant in MFN2, a defect that leads to mitochondrial fragmentation and is a cause of Charcot Marie Tooth Type 2A disease.

      Strengths:

      This well-written manuscript has several notable strengths, including the demonstration of the potential therapeutic benefit of ISR modulation. New chemical entities with which to further interrogate this stress response pathway are also reported. In addition, the authors used an elegant screen to isolate compounds that selectively activate the ISR and identify which of the four kinases was responsible for activation. Special attention was also paid to a thorough evaluation of the effect of their compounds on other stress response pathways (i.e. the UPR, and heat and oxidative stress responses), thereby minimizing the potential for off-target effects. The implementation of automated image analysis rather than manual scoring to quantify mitochondrial elongation is not only practical but also adds to the scientific rigor, as does the complementary use of both the calcium ionophore and MFN2 models to enhance confidence and the broad therapeutic potential for pharmacology ISR manipulation.

      Weaknesses:

      The only minor concerns are with regard to effects on cell health and the timing of pharmacological administration.

      Comments on revisions:

      In this revised manuscript the authors demonstrate that pharmacological activation of the eiF2α kinases, HRI and GCN2, induce adaptive mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the translational potential of pharmacological ISR modulation.

      In revising their manuscript the authors adequately addressed the concerns. In response to comments about the potential toxicity of their compounds, 0357 and 3610, the authors furnish evidence that neither compound significantly reduced viability of HEK293 cells (Figure S1G). Understandably, the authors focused the present work on the acute effects of their compounds. Several other attributes are noteworthy: First, that injury attributable to chronic ISR activation in cell culture may ultimately be circumvented by altering the in vivo pharmacodynamic and pharmacodynamic properties of the compounds, thereby preserving the translation potential for these (and related) compounds. Second, the authors also reasonably explain that the rapidity of ionomycin-induced injury, necessitating that the inducers are administered prior to treatment. Their assessment of the effects of the compounds on mitochondrial fragmentation in MFN2 mutant fibroblasts-in combination with the preserved viability of HEK293 cells-is sufficient to demonstrate the practical pharmacological potential for these (or related) agents.

    1. Reviewer #1 (Public review):

      Summary:

      This work uses transgenic reporter lines to isolate entpd5a+ cells representing classical osteoblasts in the head and non-classical (osterix-) notochordal sheath cells. The authors also include entpd5a- cells, col2a1a+ cells to represent the closely associated cartilage cells. In a combination of ATAC and RNA-Seq analysis, the genome-wide transcriptomic and chromatin status of each cell population is characterized, validating their methodology and providing fundamental insights into the nature of each cell type, especially the less well-studied notochordal sheath cells. Using these data, the authors then turn to a thorough, and convincing analysis of the regulatory regions that control the expression of the entpd5a gene in each cell population. Determination of transcriptional activities in developing zebrafish, again combined with ATAC data and expression data of putative regulators results in a compelling, and detailed picture of the regulatory mechanisms governing expression of this crucial gene.

      Strengths:

      The major strength of this paper is the clever combination of RNA-Seq and ATAC analysis, further combined with functional transcriptional analysis of the regulatory elements of one crucial gene. This results in a very compelling story.

      Weaknesses:

      No major weakness, except for all the follow-up experiments that one can think of, but that would be outside of the scope of this paper.

      Comments on revisions:

      The description of Supplementary Figure 1 is still confusing: in the results section, it says "We photo converted and directly imaged entpd5a:Kaede positive embryos starting from the 15 somite- stage (s), when we could first detect the fluorophore along the newly-formed notochord progenitor cells (Suppl. Fig. 1E). We repeated photoconversion and imaging at 18, 21 and 24s (Suppl. Fig. 1F-H). ...(Suppl. Fig 1E)"<br /> In the response, the authors say "we could see new Kaede expression under the control of the entpd5a promoter region within 1.5 hours of photoconversion, as shown in Suppl. Figure 1E-H."<br /> In the legend to Suppl. Fig. 1, it says "Using the entpd5a:Kaede photoconversion line we first detect entpd5a expression at the 15 somite-stage (E). Following the same embryo, active expression of the gene continues until prior to 24 hpf (F-H)."<br /> So my questions are: -was there a delay between photoconversion and imaging - was the same delay used for all pictures - was there indeed additional photoconversion for Fig.1 F-H before imaging?<br /> This could be stated in Materials and Methods, and maybe in the legend to Suppl. Fig. 1

      All other issues have been addressed.

    2. Reviewer #2 (Public review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts have been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression delineated in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific detail of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing the foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that proposed areas for extending the description to integrate the data into the existing data on role of non-classical osteobasts and establishment/canalization of this lineage of skeletal cells.

      (1) It was unclear how specific the authors' experimental dissection of head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however an analysis of contaminating cells/lineages in each population would be useful - e.g. maybe use specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific e.g. not seen in one or other dataset, or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - is there obvious cis-regulatory changes that correlate with the co-option of this gene in early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of a differential between different osteoblasts lineages in the paper.

      Comments on revisions: All issues have been addressed.

    3. Reviewer #3 (Public review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrate the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the phosphoryl transfer mechanism of the enzyme adenylate kinase, using SCC-DFTB quantum mechanical/molecular mechanical (QM/MM) simulations, along with kinetic studies exploring the temperature and pH dependence of the enzyme's activity, as well as the effects of various active site mutants. Based on a broad free energy landscape near the transition state, the authors proposed the existence of wide transition states (TS), characterized by the transferring phosphoryl group adopting a meta-phosphate-like geometry with asymmetric bond distances to the nucleophilic and leaving oxygens. In support of this finding, kinetic experiments were conducted with Ca2+ ions at different temperatures and pH, which revealed a reduced entropy of activation and unique pH-dependence of the catalyzed reaction.

      Strengths:

      A combined application of simulation and experiments is a strength.

      Weaknesses:

      The conclusion that the enzyme-catalyzed reaction involves a wide transition state is not sufficiently clarified with some concerns about the determined free energy profiles compared to the experimental estimate. (See Recommendations for the authors.)

      Comments on revisions:

      While the authors have made some improvements in clarifying the manuscript, questions still remain about their conclusion regarding the wide-TS, which appears this may be a misinterpretation of the simulation results. Also, they should clearly point out the large discrepancies between DFTB QM/MM and PBE QM/MM results (shape of free energy files) and also between steered MD and umbrella sampling results (barriers). Another question is the large change in activation entropy (between the reaction with and without divalent cations). This difference may be difficult to attribute sorely to the difference in the reaction geometries near TS.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors report results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The main assertion of the paper is that a wide transition state ensemble is a key concept in enzyme catalysis as a strategy to circumvent entropic barriers. This assertion is based on observation of a "structurally wide" set of energetically equivalent configurations that lie along the reaction coordinate in QM/MM simulations, together with kinetic measurements that suggest a decrease of the entropy of activation.

      Strengths:

      The study combines theoretical calculations and supporting experiments.

      Weaknesses:

      The current paper hypothesizes a "wide" transition state ensemble as a catalytic strategy and key concept in enzyme catalysis. Overall, it is not clear the degree to which this hypothesis is fully supported by the data. The reasons are as follows:

      (1) Enzyme catalysis reflects a rate enhancement with respect to a baseline reaction in solution. In order to assert that something is part of a catalytic strategy of an enzyme, it would be necessary to demonstrate from simulations that the activation entropy for the baseline reaction is indeed greater and the transition state ensemble less "wide". Alternatively stated, when indicating there is a "wide transition state ensemble" for the enzyme system - one needs to indicate that is with respect to the non-enzymatic reaction. However, these simulations were not performed and the comparisons not demonstrated. The authors state "This chemical step would take about 7000 years without the enzyme" making it impossible to measure; nonetheless, the simulations of the nonenzymatic reaction would be fairly straightforward to perform in order to demonstrate this key concept that is central to the paper. Rather, the authors examine the reaction in the absence of a catalytically important Mg ion.

      (2) The observation of a "wide conformational ensemble" is not a quantitative measure of entropy. In order to make a meaningful computational prediction of the entropic contribution to the activation free energy, one would need to perform free energy simulations over a range of temperatures (for the enzymatic and non-enzymatic systems). Such simulations were not performed, and the entropy of activation was thus not quantified by the computational predictions. The authors instead use a wider TS ensemble as a proxy for larger entropy, and miss an opportunity to compare directly to the experimental measurements.

      Comments on revisions:

      Overall, I do not think the authors have been able to quantitatively support their conclusion, and the qualitative support is somewhat weak. This makes the interpretation of the computational results somewhat speculative. Nonetheless, comparison was made for models with and without divalent ions, and the experimental data is valuable.

    1. Reviewer #1 (Public review):

      The work analyzes how centrosomes mature before cell division. A critical aspect is the accumulation of pericentriolar material (PCM) around the centrioles to build competent centrosomes that can organize the mitotic spindle. The present work builds on the idea that the accumulation of PCM is catalyzed either by the centrioles themselves (leading to a constant accumulation rate) or by enzymes activated by the PCM itself (leading to autocatalytic accumulation). These ideas are captured by a previous model derived for PCM accumulation in C. elegans (Zwicker et al, PNAS 2014) and are succinctly summarized by Eq. 1. The main addition of the present work is to allow the activated enzymes to diffuse in the cell, so they can also catalyze the accumulation of PCM in other centrosomes (captured by Eqs. 2-4). The authors show that this helps centrosomes to reach the same size, independent of potential initial mismatches.

      A strength of the paper is the simplicity of the equations, which are reduced to the bare minimum and thus allow a detailed inspection of the physical mechanism, e.g., using linear stability analysis. The possible shortcoming of this approach, namely that all equations assume that the diffusion of molecules is much faster than any of the reactive time scales, is addressed in Appendix 4. The authors show convincingly that their model compensates for initial size differences in centrosomes and leads to more similar final sizes. They carefully discuss parameter values used in their model, and they propose concrete experiments to test the theory. The model could thus stimulate additional experiments and help us understand how cells tightly control their centrosomes, which is crucial for faithful mitosis.

      Comments on revised version:

      The authors addressed my comments satisfactorily.

    2. Reviewer #2 (Public review):

      In this paper, Banerjee & Banerjee argue that a solely autocatalytic assembly model of the centrosome leads to size inequality. The authors instead propose a catalytic growth model with a shared enzyme pool. Using this model, the authors predict that size control is enzyme-mediate and are able to reproduce various experimental results such as centrosome size scaling with cell size and centrosome growth curves in C. elegans.

      The paper contains interesting results and is well-written and easy to follow/understand.

      Comments on revised version:

      The authors made a number of revisions that significantly improved the manuscript, including analyzing the impact of finite diffusion, more thorough stability analysis, and enhanced comparison to experimental results.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      The very well-written manuscript by Lövestam et al. from the Scheres/Goedert groups entitled "Twelve phosphomimetic mutations induce the assembly of recombinant full-length human tau into paired helical filaments" demonstrates the in vitro production of the so-called paired helical filament Alzheimer's disease (AD) polymorph fold of tau amyloids through the introduction of 12 point mutations that attempt to mimic the disease-associated hyper-phosphorylation of tau. The presented work is very important because it enables disease-related scientific work, including seeded amyloid replication in cells, to be performed in vitro using recombinant-expressed tau protein.

      Weaknesses:

      The following points are asked to be addressed by the authors:

      (i) In the discussion it would be helpful to note the findings that in AD the chemical structure tau (including phosphorylation) is what defines the polymorph fold and not the buffer/cellular environment. It would be further interesting to discuss these findings in respect to the relationship between disease and structure. The presented findings suggest that due to a cellular/organismal alteration, such as aging or Abeta aggregation, tau is specifically hyper-phosphorylated which then leads to its aggregation into the paired helical filaments that are associated with AD.

      (ii) The conditions used for each assembly reaction are a bit hard to keep track of and somewhat ambiguous. In order to help the reader, I would suggest making a table to show conditions used for each type of assembly (including the diameter / throw of the orbital shaker) and the results (structural/biological) of those conditions. For example, presumably the authors did not have ThT in the samples used for cryo-EM but the methods section does not specify this. Also, the presence of trace NaCl is proposed as a possible cause for the CTE fold to appear in the 0N4R sample (page 4) but no explanation of why this particular sample would have more NaCl than the others. Furthermore, it appears that NaCl was actually used in the seeded assembly reactions that produced the PHF and not the CTE fold. This would seem to indicate the CTE structure of 0N4R-PAD12 is not actually induced by NaCl (like it was for tau297-391). In order for the reader to better understand the reproducibility of the polymorphs, it would be helpful to indicate in how many different conditions and how many replicates with new protein preparations each polymorph was observed (could be included in the same table)

      (iii) It is not clear how the authors calculate the percentage of each filament type. In Figure 1 it is stated "discarded solved particles (coloured) and discarded filaments in grey" which leaves the reviewer wondering what a "discarded solved particle" is and which filaments were discarded. From the main text one guesses that the latter is probably false positives from automated picking but if so, these should not be referred to as filaments. Also, are the percentages calculated for filaments or segments? In any case, it would be more helpful in such are report to know the best estimate of the ratio of identified filament types without confusing the reader with a measure of the quality of the picking algorithm. Please clarify. Also, a clarification is asked for the significance of the varying degrees of PHF and AD monomer filaments in the various assembly conditions. It could be expected that there is significant variability from sample to sample but it would be interesting to know if there has been any attempt to reproduce the samples to measure this variability. If not, it might be worth mentioning so that the % values are taking with the appropriate sized grain of salt. Finally, the representation of the data in Figure 1 would seem to imply that the 0N3R forms less or no monofilament AD fold because no cross-section is shown for this structure, however it is very similar to (or statistically the same as) the 1:1 mix of 0N3R:0N4R.

      (iv) The interpretation of the NMR data on soluble tau that the mutations on the second site are suppressing in part long range dynamic interaction around the aggregation-initiation site (FIA) is sound. It is in particular interesting to find that the mutations have a similar effect as the truncation at residue 391. An additional experiment using solvent PREs to elaborate on the solvent exposed sequence-resolved electrostatic potential and the intra-molecular long range interactions would likely strengthen the interpretation significantly (Iwahara, for example, Yu et al, in JACS 2024). Figure 6D Figure supplement shows the NMR cross peak intensities between tau 151-391 and PAD12tau151-391. Overall the intensities of the PAD12 tau construct are more intense which could be interpreted with less conformational exchange between long range dynamic interactions. There are however several regions which do not show any intensity anymore when compared with the corresponding wildtype construct such as 259-262, 292-294 which should be discussed/explained.

      (v) Concerning the Cryo-EM data from the different hyper-phosphorylation mimics, it would seem that the authors could at least comment on the proportion of monofilament and paired-filaments even if they could not solve the structures. Nonetheless, based on their previous publications, one would also expect that they could show whether the non-twisted filaments are likely to have the same structure (by comparing the 2D classes to projections of non-twisted models). Also, it is very interesting to note that the twist could be so strongly controlled by the charge distribution on the non-structured regions (and may be also related to the work by Mezzenga on twist rate and buffer conditions). Is the result reported in Figure 2 a one-off case or was it also reproducible?

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing.

      Strengths:

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach.

      Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Weaknesses:

      Despite the success of making full-length AD tau fibrils, still ~30% of the fibrils are either not PHF, or not accounted for. A small fraction of the fibrils are single filaments and another ~20% are not accounted for. The authors mention that ~20% of these fibrils were not picked by the automated algorithm. However, it would be important to get additional clarity about these fibrils. Therefore, it would improve the impact of the paper if the authors could manually analyze passed-over particles to see if they are compatible with PHF or fall into a different class of fibrils. In addition, it would be helpful if the authors could comment on what can be done/tried to get the PHF yield closer to 90-100%

    1. Reviewer #1 (Public review):

      Summary:

      The study combines predictions from MD simulations with sophisticated experimental approaches including native mass spectrometry (nMS), cryo-EM, and thermal protein stability assays to investigate the molecular determinants of cardiolipin (CDL) binding and binding-induced protein stability/function of an engineered model protein (ROCKET), as well as of the native E. coli intramembrane rhomboid protease, GlpG.

      Strengths:

      State-of-the-art approaches and sharply focused experimental investigation lend credence to the conclusions drawn. Stable CDL binding is accommodated by a largely degenerate protein fold that combines interactions from distant basic residues with greater intercalation of the lipid within the protein structure. Surprisingly, there appears to be no direct correlation between binding affinity/occupancy and protein stability.

      Weaknesses:

      (i) While aromatic residues (in particular Trp) appear to be clearly involved in the CDL interaction, there is no investigation of their roles and contributions relative to the positively charged residues (R and K) investigated here. How do aromatics contribute to CDL binding and protein stability, and are they differential in nature (W vs Y vs F)? (ii) In the case of GlpG, a WR pair (W136-R137) present at the lipid-water on the periplasmic face (adjacent to helices 2/3) may function akin to the W12-R13 of ROCKET in specifically binding CDL. Investigation of this site might prove to be interesting if it indeed does. (iii) Examples of other native proteins that utilize combinatorial aromatic and electrostatic interactions to bind CDL would provide a broader perspective of the general applicability of these findings to the reader (for e.g. the adenine nucleotide translocase (ANT/AAC) of the mitochondria as well as the mechanoenzymatic GTPase Drp1 appear to bind CDL using the common "WRG' motif.)

      Overall, using both model and native protein systems, this study convincingly underscores the molecular and structural requirements for CDL binding and binding-induced membrane protein stability. This work provides much-needed insight into the poorly understood nature of protein-CDL interactions.

    2. Reviewer #2 (Public review):

      Summary:

      The work in this paper discusses the use of CG-MD simulations and nMS to describe cardiolipin binding sites in a synthetically designed that can be extrapolated to a naturally occurring membrane protein. While the authors acknowledge their work illuminates the challenges in engineering lipid binding they are able to describe some features that highlight residues within GlpG that may be involved in lipid regulation of protease activity, although further study of this site is required to confirm it's role in protein activity.

      Comments<br /> Discrepancy between total CDL binding in CG simulations (Fig 1d) and nMS (Fig 2b,c) should be further discussed. Limitations in nMS methodology selecting for tightest bound lipids?<br /> Mutation of helical residues to alanine not only results in loss of lipid binding residues but may also impact overall helix flexibility, is this observed by the authors in CG-MD simulations? Change in helix overall RMSD throughout simulation? The figures shown in Fig.1H show what appear to be quite significant differences in APO protein arrangement between ROCKET and ROCKET AAXWA.<br /> CG-MD force experiments could be corroborated experimentally with magnetic tweezer unfolding assays as has been performed for the unfolding of artificial protein TMHC2. Alternatively this work could benefit to referencing Wang et al 2019 "On the Interpretation of Force-Induced Unfolding Studies of Membrane Proteins Using Fast Simulations" to support MD vs experimental values.<br /> Did the authors investigate if ROCKET or ROCKETAAXWA copurifies with endogenous lipids? Membrane proteins with stabilising CDL often copurify in detergent and can be detected by MS without the addition of CDL to the detergent solution. Differences in retention of endogenous lipid may also indicate differences in stability between the proteins and is worth investigation.<br /> Do the AAXWA and ROCKET have significantly similar intensities from nMS? The AAXWA appears to show slight lower intensities than the ROCKET.<br /> Can the authors extend their comments on why densities are observed only around site 2 in the cryo-em structures when site 1 is the apparent preferential site for ROCKET.<br /> The authors state that nMS is consistent with CDL binding preferentially to Site 1 in ROCKET and preferentially to Site 2 in the ROCKET AAXWA variant, yet it unclear from the text exactly how these experiments demonstrate this.<br /> As carried out for ROCKET AAXWA the total CDL binding to A61P and R66A would add to supporting information of characterisation of lipid stabilising mutations.<br /> Did the authors investigate a double mutation to Site 2 (e.g. R66A + M16A)?<br /> Was the stability of R66A ever compared to the WT or only to AAXWA?<br /> How many CDL sites in the database used are structurally verified?<br /> The work on GlpG could benefit from mutagenesis or discussion of mutagenesis to this site. The Y160F mutation has already been shown to have little impact on stability or activity (Baker and Urban Nat Chem Biol. 2012).

    3. Reviewer #3 (Public review):

      Summary:

      The relationships of proteins and lipids: it's complicated. This paper illustrates how cardiolipins can stabilize membrane protein subunits - and not surprisingly, positively charged residues play an important role here. But more and stronger binding of such structural lipids does not necessarily translate to stabilization of oligomeric states, since many proteins have alternative binding sites for lipids which may be intra- rather than intermolecular. Mutations which abolish primary binding sites can cause redistribution to (weaker) secondary sites which nevertheless stabilize interactions between subunits. This may be at first sight counterintuitive but actually matches expectations from structural data and MD modelling. An analogous cardiolipin binding site between subunits is found in E.coli tetrameric GlpG, with cardiolipin (thermally) stabilizing the protein against aggregation.

      Strengths:

      The use of the artificial scaffold allows testing of hypothesis about the different roles of cardiolipin binding. It reveals effects which are at first sight counterintuitive and are explained by the existence of a weaker, secondary binding site which unlike the primary one allows easy lipid-mediated interaction between two subunits of the protein. Introducing different mutations either changes the balance between primary and secondary binding sites or introduced a kink in a helix - thus affecting subunit interactions which are experimentally verified by native mass spectrometry.

      Weaknesses:

      The artificial scaffold is not necessarily reflecting the conformational dynamics and local flexibility of real, functional membrane proteins. The example of GlpG, while also showing interesting cardiolipin dependency, illustrates the case of a binding site across helices further but does not add much to the main story. It should be evident that structural lipids can be stabilizing in more than one way depending on how they bind, leading to different and possibly opposite functional outcomes.

    1. Reviewer #1 (Public review):

      The authors set out to analyse the roles of the teichoic acids of Streptococcus pneumoniae in supporting the maintenance of the periplasmic region. Previous work has proposed the periplasm to be present in Gram positive bacteria and here advanced electron microscopy approach was used. This also showed a likely role for both wall and lipo-teichoic acids in maintaining the periplasm. Next, the authors use a metabolic labelling approach to analyse the teichoic acids. This is a clear strength as this method cannot be used for most other well studied organisms. The labelling was coupled with super-resolution microscopy to be able to map the teichoic acids at the subcellular level and a series of gel separation experiments to unravel the nature of the teichoic acids and the contribution of genes previously proposed to be required for their display. The manuscript could be an important addition to the field but there are a number of technical issues which somewhat undermine the conclusions drawn at the moment. These are shown below and should be addressed. More minor points are covered in the private Recommendations for Authors.

      Weaknesses to be addressed:

      (1) l. 144 Was there really only one sample that gave this resolution? Biological repeats of all experiments are required.

      (2) Fig. 4A. Is the pellet recovered at "low" speeds not just some of the membrane that would sediment at this speed with or without LTA? Can a control be done using an integral membrane protein and Western Blot? Using the tacL mutant would show the behaviour of membranes alone.

      (3) Fig. 4A. Using enzymatic digestion of the cell wall and then sedimentation will allow cell wall associated proteins (and other material) to become bound to the membranes and potentially effect sedimentation properties. This is what is in fact suggested by the authors (l. 1000, Fig. S6). In order to determine if the sedimentation properties observed are due to an artefact of the lysis conditions a physical breakage of the cells, using a French Press, should be carried out and then membranes purified by differential centrifugation. This is a standard, and well-established method (low-speed to remove debris and high-speed to sediment membranes) that has been used for S. pneumoniae over many years but would seem counter to the results in the current manuscript (for instance Hakenbeck, R. and Kohiyama, M. (1982), Purification of Penicillin-Binding Protein 3 from Streptococcus pneumoniae. European Journal of Biochemistry, 127: 231-236).

      (4) l. 303-305. The authors suggest that the observed LTA-like bands disappear in a pulse chase experiment (Fig. 6B). What is the difference between this and Fig. 5B, where the bands do not disappear? Fig. 5C is the WT and was only pulse labelled for 5 min and so would one not expect the LTA-like bands to disappear as in 6B?

      (5) Fig. 6B, l. 243-269 and l. 398-410. If, as stated, most of the LTA-like bands are actually precursor then how can the quantification of LTA stand as stated in the text? The "Titration of Cellular TA" section should be re-evaluated or removed? If you compare Fig. 6C WT extract incubated at RT and 110oC it seems like a large decrease in amount of material at the higher temperature. Thus, the WT has a lot of precursors in the membrane? This needs to be quantified.

      (6) L. 339-351, Fig. 6A. A single lane on a gel is not very convincing as to the role of LytR. Here, and throughout the manuscript, wherever statements concerning levels of material are made, quantification needs to be done over appropriate numbers of repeats and with densitometry data shown in SI.

      (7) 14. l. 385-391. Contrary to the statement in the text, the zwitterionic TA will have associated counterions that result in net neutrality. It will just have both -ve and +ve counterions in equal amounts (dependent on their valency), which doesn't matter if it is doing the job of balancing osmolarity (rather than charge).

    2. Reviewer #2 (Public review):

      The Gram-positive cell wall contains for a large part of TAs, and is essential for most bacteria. However, TA biosynthesis and regulation is highly understudied because of the difficulties in working with these molecules. This study closes some of our important knowledge gaps related to this and provides new and improved methods to study TAs. It also shows an interesting role for TAs in maintaining a 'periplasmic space' in Gram positives. Overall, this is an important piece of work. It would have been more satisfying if the possible causal link between TAs and periplasmic space would have been more deeply investigated with complemented mutants and CEMOVIS. For the moment, there is clearly something happening but it is not clear if this only happens in TA mutants or also in strains with capsules/without capsules and in PG mutants, or in lafB (essential for production of another glycolipid) mutants. Finally, some very strong statements are made suggesting several papers in the literature are incorrect, without actually providing any substantiation/evidence supporting these claims. This work pioneers some new methods that will definitively move the field forward.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim at measuring the apoptotic fraction of motorneurons in developing zebrafish spinal cord to assess the extent of neuronal apoptosis during the development of of a vertebrate embryo in an in vivo context

      Strengths:

      The transgenic fish line tg(mnx1:sensor C3) appears to be a good reagent for motorneuron apoptosis studies, while further validation of its motorneuron specificity should be performed

      Weaknesses:

      The results do not support the conclusions. The main "selling point" as summarized in the title is that the apoptotic rate of zebrafish motorneurons during development is strikingly low (~2% ) as compared to the much higher estimate (~50%) by previous studies in other systems. The results used to support the conclusion are that only a small percentage (under 2%) of apoptotic cells were found over a large population at a variety of stages 24-120hpf. This is fundamentally flawed logic, as a short-time window measure of percentage cannot represent the percentage on the long-term. For example, at any year under 1% of human population die, but over 100 years >99% of the starting group will have died. To find the real percentage of motorneurons that died, the motorneurons born at different times must be tracked over long term, or the new motorneuron birth rate must be estimated.

      Similar argument can be applied to the macrophage results.

      The conclusion regarding timing of axon and cell body caspase activation and apoptosis timing also has clear issues. The ~minutes measurement are too long as compared to the transport/diffusion timescale between the cell body and the axon, caspase activity could have been activated in the cell body and either caspase or the cleaved sensor move to the axon in several seconds. The authors' results are not high frequency enough to resolve these dynamics

      Many statements suggest oversight of literature, for example, in abstract "however, there is still no real-time observation showing this dying process in live animals.".

      Many statements should use more scholarly terms and descriptions from the spinal cord or motorneuron, neuromuscular development fields, such as line 87 "their axons converged into one bundle to extend into individual somite, which serves as a functional unit for the development and contraction of muscle cells"

      The transgenic line is perhaps the most meaningful contribution to the field as the work stands. However, mnx1 promoter is well known for its non-specific activation - while the images do suggest the authors' line is good, motorneuron markers should be used to validate the line. This is especially important for assessing this population later as mnx1 may be turned off in mature neurons. The author's response regarding mnx1 specificity does not mitigate the original concern.

      Overall, this work does not substantiate its biological conclusions and therefore do not advance the field. The transgenic line has the potential for addressing the questions raised but requires different sets of experiments. The line and the data as reported are useful on their own by providing a short-term rate of apoptosis of the motorneuron population.

    2. Reviewer #2 (Public review):

      Summary:

      Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study death of zebrafish spinal motor neurons.

      Strengths:

      Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish and can reveal which part of the neuron undergoes caspase activation first, achieving two of their aims.

      Weaknesses:

      The third aim, to provide novel insights into the spatiotemporal properties and occurrence rates of motor neuron death requires additional context and investigation, especially to understand the significance of the differences they report between zebrafish motor neuron programmed cell death and what has been previously described in chicks and rodents. For example, mnx1 expresses not only in motor neurons, but also in interneurons. However, the way the authors counted living and dead cells does not take this into consideration, potentially underestimating the percentage of motor neurons that died. Previous studies of chicks and rodents showed widespread differences in the timing of motor neuron programmed cell death and the number of cells that died depending on the spinal cord region examined. The authors have not described which spinal cord segments they examined or whether they examined motor neurons in limb-bearing segments which have been best studied in other species. Previous literature investigated the death of an identified zebrafish motor neuron and provided experimental evidence that it is independent of limitations in muscle innervation area, suggesting it is not coupled to muscle-derived neurotrophic factors. Thus, the authors need to acknowledge that even previous to their study, there was literature suggesting that programmed cell death of at least one motor neuron in zebrafish does not easily fit into the "neurotrophic hypothesis" as it is generally formulated. Finally, the authors need to be mindful that showing that something does not happen in an observational study cannot reveal the capabilities of the cells involved without an experimental test.

    1. Reviewer #1 (Public review):

      Summary:

      This study demonstrates the significant role of secretory leukocyte protease inhibitor (SLPI) in regulating B. burgdorferi-induced periarticular inflammation in mice. They found that SLPI-deficient mice showed significantly higher B. burgdorferi infection burden in ankle joints compared to wild-type controls. This increased infection was accompanied by infiltration of neutrophils and macrophages in periarticular tissues, suggesting SLPI's role in immune regulation. The authors strengthened their findings by demonstrating a direct interaction between SLPI and B. burgdorferi through BASEHIT library screening and FACS analysis. Further investigation of SLPI as a target could lead to valuable clinical applications.

      The conclusions of this paper are mostly well supported by data, but two aspects need attention:

      (1) Cytokine Analysis:<br /> The serum cytokine/chemokine profile analysis appears without TNF-alpha data. Given TNF-alpha's established role in inflammatory responses, comparing its levels between wild-type and infected B. burgdorferi conditions would provide valuable insight into the inflammatory mechanism.<br /> (2) Sample Size Concerns:<br /> While the authors note limitations in obtaining Lyme disease patient samples, the control group is notably smaller than the patient group. This imbalance should either be addressed by including additional healthy controls or explicitly justified in the methodology section.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Yu and coworkers investigates the potential role of Secretory leukocyte protease inhibitor (SLPI) in Lyme arthritis. They show that, after needle inoculation of the Lyme disease (LD) agent, B. burgdorferi, compared to wild type mice, a SLPI-deficient mouse suffers elevated bacterial burden, joint swelling and inflammation, pro-inflammatory cytokines in the joint, and levels of serum neutrophil elastase (NE). They suggest that SLPI levels of Lyme disease patients are diminished relative to healthy controls. Finally, they find that SLPI may interact directly the B. burgdorferi.

      Strengths:

      Many of these observations are interesting and the use of SLPI-deficient mice is useful (and has not previously been done).

      Weaknesses:

      (a) The known role of SLPI in dampening inflammation and inflammatory damage by inhibition of NE makes the enhanced inflammation in the joint of B. burgdorferi-infected mice a predicted result; (b) The potential contribution of the greater bacterial burden to the enhanced inflammation is not addressed; (c) The relationship of SLPI binding by B. burgdorferi to the enhanced disease of SLPI-deficient mice is not clear; and (d) Several methodological aspects of the study are unclear.

    3. Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of secretory leukocyte protease inhibitors (SLPI) in developing Lyme disease in mice infected with Borrelia burgdorferi. Using a combination of histological, gene expression, and flow cytometry analyses, they demonstrated significantly higher bacterial burden and elevated neutrophil and macrophage infiltration in SLPI-deficient mouse ankle joints. Furthermore, they also showed direct interaction of SLPI with B. burgdorferi, which likely depletes the local environment of SLPI and causes excessive protease activity. These results overall suggest ankle tissue inflammation in B. burgdorferi-infected mice is driven by unchecked protease activity.

      Strengths:

      Utilizing a comprehensive suite of techniques, this is the first study showing the importance of anti-protease-protease balance in the development of periarticular joint inflammation in Lyme disease.

      Weaknesses:

      Due to the limited sample availability, the authors investigated the serum level of SLPI in both in Lyme arthritis patients and patients with earlier disease manifestations.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to elucidate the recruitment order and assembly of the Cdv proteins during Sulfolobus acidocaldarius archaeal cell division using a bottom-up reconstitution approach. They employed liposome-binding assays, EM, and fluorescence microscopy with in vitro reconstitution in dumbbell-shaped liposomes to explore how CdvA, CdvB, and the homologues of ESCRT-III proteins (CdvB, CdvB1, and CdvB2) interact to form membrane remodeling complexes.<br /> The study sought to reconstitute the Cdv machinery by first analyzing their assembly as two sub-complexes: CdvA:CdvB and CdvB1:CdvB2ΔC. The authors report that CdvA binds lipid membranes only in the presence of CdvB and localizes preferentially to membrane necks. Similarly, the findings on CdvB1:CdvB2ΔC indicate that truncation of CdvB2 facilitates filament formation and enhances curvature sensitivity in interaction with CdvB1. Finally, while the authors reconstitute a quaternary CdvA:CdvB:CdvB1:CdvB2 complex and demonstrate its enrichment at membrane necks, the mechanistic details of how these complexes drive membrane remodeling by subcomplexes removal by the proteasome and/or CdvC remain speculative.<br /> Although the work highlights intriguing similarities with eukaryotic ESCRT-III systems and explores unique archaeal adaptations, the conclusions drawn would benefit from stronger experimental validation and a more comprehensive mechanistic framework.

      Strengths:

      The study of machinery assembly and its involvement in membrane remodeling, particularly using bottom-up reconstituted in vitro systems, presents significant challenges. This is particularly true for systems like the ESCRT-III complex, which localizes uniquely at the lumen of membrane necks prior to scission. The use of dumbbell-shaped liposomes in this study provides a promising experimental model to investigate ESCRT-III and ESCRT-III-like protein activity at membrane necks.<br /> The authors present intriguing evidence regarding the sequential recruitment of ESCRT-III proteins in crenarchaea-a close relative of eukaryotes. This finding suggests that the hierarchical recruitment characteristic of eukaryotic systems may predate eukaryogenesis, which is a significant and exciting contribution. However, the broader implications of these findings for membrane remodeling mechanisms remain speculative, and the study would benefit from stronger experimental validation and expanded contextualization within the field.

      Weaknesses:

      This manuscript presents several methodological inconsistencies and lacks key controls to validate its claims. Additionally, there is insufficient information about the number of experimental repetitions, statistical analyses, and a broader discussion of the major findings in the context of open questions in the field.

    2. Reviewer #2 (Public review):

      Summary:

      The Crenarchaeal Cdv division system represents a reduced form of the universal and ubiquitous ESCRT membrane reverse-topology scission machinery, and therefore a prime candidate for synthetic and reconstitution studies. The work here represents a solid extension of previous work in the field, clarifying the order of recruitment of Cdv proteins to curved membranes.

      Strengths:

      The use of a recently developed approach to produce dumbbell-shaped liposomes (De Franceschi et al. 2022), which allowed the authors to assess recruitment of various Cdv assemblies to curved membranes or membrane necks; reconstitution of a quaternary Cdv complex at a membrane neck.

      Weaknesses:

      The manuscript is a bit light on quantitative detail, across the various figures, and several key controls are missing (CdvA, B alone to better interpret the co-polymerisation phenotypes and establish the true order of recruitment, for example) - addressing this would make the paper much stronger. The authors could also include in the discussion a short paragraph on implications for our understanding of ESCRT function in other contexts and/or in archaeal evolution, as well as a brief exploration of the possible reasons for the discrepancy between the foci observed in their liposome assays and the large rings observed in cells - to better serve the interests of a broad audience.

    3. Reviewer #3 (Public review):

      Summary:

      In this report, De Franceschi et al. purify components of the Cdv machinery in archaeon M. sedula and probe their interactions with membrane and with one-another in vitro using two main assays - liposome flotation and fluorescent imaging of encapsulated proteins. This has the potential to add to the field by showing how the order of protein recruitment seen in cells is related to the differential capacity of individual proteins to bind membranes when alone or when combined.

      Strengths:

      Using the floatation assay, they demonstrate that CdvA and CdvB bind liposomes when combined. While CdvB1 also binds liposomes under these conditions, in the floatation assay, CdvB2 lacking its C-terminus is not efficiently recruited to membranes unless CdvAB or CdvB1 are present. The authors then employ a clever liposome assay that generates chained spherical liposomes connected by thin membrane necks, which allows them to accurately control the buffer composition inside and outside of the liposome. With this, they show that all four proteins accumulate in necks of dumbbell-shaped liposomes that mimic the shape of constricting necks in cell division. Taken altogether, these data lead them to propose that Cdv proteins are sequentially recruited to the membrane as has also been suggested by in vivo studies of ESCRT-III dependent cell division in crenarchaea.

      Weaknesses:

      These experiments provide a good starting point for the in vitro study the interaction of Cdv system components with the membrane and their consecutive recruitment. However, several experimental controls are missing that complicate their ability to draw strong conclusions. Moreover, some results are inconsistent across the two main assays which make the findings difficult to interpret.

      (1) Missing controls.

      Various protein mixtures are assessed for their membrane-binding properties in different ways. However, it is difficult to interpret the effect of any specific protein combination, when the same experiment is not presented in a way that includes separate tests for all individual components. In this sense, the paper lacks important controls.

      For example, Fig 1C is missing the CdvB-only control. The authors remark that CdvB did not polymerise (data not shown) but do not comment on whether it binds membrane in their assays. In the introduction, Samson et al., 2011 is cited as a reference to show that CdvB does not bind membrane. However, here the authors are working with protein from a different organism in a different buffer, using a different membrane composition and a different assay. Given that so many variables are changing, it would be good to present how M. sedula CdvB behaves under these conditions.

      Similarly, there is no data showing how CdvB alone or CdvA alone behave in the dumbbell liposome assay. Without these controls, it's impossible to say whether CdvA recruits CdvB or the other way around.

      The manuscript would be much stronger if such data could be added.

      (2) Some of the discrepancies in the data generated using different assays are not discussed.

      The authors show that CdvB2∆C binds membrane and localizes to membrane necks in the dumbbell liposome assay, but no membrane binding is detected in the flotation assay. The discrepancy between these results further highlights the need for CdvB-only and CdvA-only controls.

      (3) Validation of the liposome assay.

      The experimental setup to create dumbbell-shaped liposomes seems great and is a clever novel approach pioneered by the team. Not only can the authors manipulate liposome shape, they also state that this allows them to accurately control the species present on the inside and outside of the liposome. Interpreting the results of the liposome assay, however, depends on the geometry being correct. To make this clearer, it would seem important to include controls to prove that all the protein imaged at membrane necks lie on the inside of liposomes. In the images in SFig3 there appears to be protein outside of the liposome. It would also be helpful to present data to show test whether the necks are open, as suggested in the paper, by using FRAP or some other related technique.

      (4) Quantification of results from the liposome assay.

      The paper would be strengthened by the inclusion of more quantitative data relating to the liposome assay. Firstly, only a single field of view is shown for each condition. Because of this, the reader cannot know whether this is a representative image, or an outlier? Can the authors do some quantification of the data to demonstrate this? The line scan profiles in the supplemental figures would be an example of this, but again in these Figures only a single image is analyzed.

      We would recommend that the authors present quantitative data to show the extent of co-localization at the necks in each case. They also need a metric to report instances in which protein is not seen at the neck, e.g. CdvB2 but not CdvB1 in Fig2I, which rules out a simple curvature preference for CdvB2 as stated in line 182.

      Secondly, the authors state that they see CdvB2∆C recruited to the membrane by CdvB1 (lines 184-187, Fig 2I). However, this simple conclusion is not borne out in the data. Inspecting the CdvB2∆C panels of Fig 2I, Fig3C, and Fig3D, CdvB2∆C signal can be seen at positions which don't colocalize with other proteins. The authors also observe CdvB2∆C localizing to membrane necks by itself (Fig 2E). Therefore, while CdvB1 and CdvB2∆C colocalize in the flotation assay, there is no strong evidence for CdvB2∆C recruitment by CdvB1 in dumbbells. This is further underscored by the observation that in the presented data, all Cdv proteins always appear to localize at dumbbell necks, irrespective of what other components are present inside the liposome. Although one nice control is presented (ZipA), this suggests that more work is required to be sure that the proteins are behaving properly in this assay. For example, if membrane binding surfaces of Cdv proteins are mutated, does this lead to the accumulation of proteins in the bulk of the liposome as expected?

      (5) Rings.

      The authors should comment on why they never observe large Cdv rings in their experiments. In crenarchaeal cell division, CdvA and CdvB have been observed to form large rings in the middle of the 1 micron cell, before constriction. Only in the later stages of division are the ESCRTs localized to the constricting neck, at a time when CdvA is no longer present in the ring. Therefore, if the in vitro assay used by the authors really recapitulated the biology, one would expect to see large CdvAB rings in Figs 1EF. This is ignored in the model. In the proposed model of ring assembly (line 252), CdvAB ring formation is mentioned, but authors do not discuss the fact that they do not observe CdvAB rings - only foci at membrane necks. The discussion section would benefit from the authors commenting on this.

      (6) Stoichiometry

      It is not clear why 100% of the visible CdvA and 100% of the the visible CdvB are shifted to the lipid fraction in 1C. Perhaps this is a matter of quantification. Can the authors comment on the stoichiometry here?

      (7) Significance of quantification of MBP-tagged filaments.

      Authors use tagging and removal of MBP as a convenient, controllable system to trigger polymerisation of various Cdv proteins. However, it is unclear what is the value and significance of reporting the width and length of the short linear filaments that are formed by the MBP-tagged proteins. Presumably they are artefactual assemblies generated by the presence of the tag? Similar Figure 2C doesn't seem a useful addition to the paper.

    1. Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in: (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency; (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      In this reviewer's view, the term "differentiation" is used inappropriately in this manuscript. The data showing aberrant expression of pluripotency markers during embryoid body formation are supported by several lines of evidence and are convincing. However, the authors call the phenotype of Nfkbia-KO cells a "differentiation impairment" while the data on differentiation markers are not shown (beyond the fact that H3K4me1, marking poised enhancers, is reduced in genes underlying GO processes associated with differentiation and organ development). Data on differentiation marker expression from the transcriptomic and embryoid body immunofluorescent experiments, for example, should be at hand without the need to conduct many more experiments and would help to support the conclusions of the study or make them more specific. The lack of probing the differentiation versus pluripotency genes may be a missed opportunity in gaining in-depth understanding of the phenotype associated with loss of the chromatin-associated function of IκBa.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:<br /> - The study's main limitation is the lack of crucial controls using bona fide naïve cells across key experiments, including DNA methylation analysis, gene expression profiling in embryoid bodies, and histone mark deposition. This omission makes it difficult to evaluate whether the observed changes in IκBα-KO cells truly reflect naïve pluripotency characteristics.<br /> - Several conclusions in the manuscript require a more measured interpretation. The authors should revise their statements regarding the strength of the pluripotency exit block, the extent of hypomethylation, and the global nature of chromatin changes.<br /> - From a methodological perspective, the manuscript would benefit from additional orthogonal approaches to strengthen the knockout findings, which may be influenced by clonal expansion of ES cells.

      Overall, this study makes an important contribution to the field. However, the concerns raised regarding controls, data interpretation, and methodology should be addressed to strengthen the manuscript and support the authors' conclusions.

    1. Reviewer #1 (Public review):

      Summary:<br /> As reported above, this paper by Xu et al reports on a new method to combine the analysis of coevolutionary patterns with dynamic profiles to identify functionally important residues and reveal correlations between binding sites.

      Strengths:<br /> In general, coevolutionary analysis and MD analysis are carried out separately and while there have been attempts to compare the information provided by the two, no unified framework exists. Here, the authors convincingly demonstrate that integrating signals from Dynamics and coevolution gives information that substantially overcomes the one provided by either method in isolation. While other methods are useful, they do not capture how dynamics is fundamental to define function and thus sculpts coevolution, via the 3D structure of the protein. At the same time, the authors demonstrate how coevolution in turn also influences internal dynamics. The Networks they rebuild unveil information at an even higher level: the model starts pairwise but through network representation the authors arrive to community analysis, reporting on interaction patterns that are larger than simple couples.

      Weaknesses:<br /> The authors should<br /> -Make an effort in suggesting/commenting the limits of applicability of their method;<br /> -Expand discussion on how DyNoPy compares to other methods;<br /> -Dynamic is not essential in all systems (structural proteins): The authors may want to comment on possible strategies they would use for other systems where their framework may not be suitable/applicable.

    2. Reviewer #2 (Public review):

      Summary:<br /> Authors introduced a computational framework, DyNoPy, that integrates residue coevolution analysis with molecular dynamics (MD) simulations to identify functionally important residues in proteins. DyNoPy identifies key residues and residue-residue coupling to generate an interaction graph and attempts to validate using two clinically relevant β-lactamases (SHV-1 and PDC-3).

      Strengths:<br /> DyNoPy could not only show clinically relevance of mutations but also predict new potential evolutionary mutations. Authors have provided biologically relevant insights into protein dynamics which can have potential applications in drug discovery and understanding molecular evolution.

      Weaknesses:<br /> Although DyNoPy could show the relevance of key residues in active and non-active site residues, no experiments have been performed to validate their predictions. In addition, they should compare their method with conventional techniques and show how their method could be different.

      An explanation of "communities" divided in the work and how these communities are relevant to the article should be provided. In addition, choice of collective variables and their relevance in residue coupling movement is also not very well explained. Dynamics cross correlation map can also be a good method for understanding the residue movements and can explain the residue-residue coupling, it is not explained how DyNoPy is different from the conventional methods or can perform better.

      In the sentence "DyNoPy identified eight significant communities of strongly coupled residues within SHV-1 (Supporting Fig. S4A)" I could not find a clear description of eight significant communities.

      Again the description of communities is not clear to me in the following sentence "Detailed description of the other three communities is provided in the supporting information (Fig. S6)."

      In the sentence "N170 acts as an intermediary between N136 and E166". Kindly cite the reference figure to show N179 as intermediate residue.

      Please be careful with the numbers. In the sentence "These residues not only interact with each other directly but are also indirectly coupled via 21 other residues." I could count 22 other residues and not 21.

      In the sentence "Unlike other substitution sites that are adjacent to the active site, R205 is situated more than 16 Å away from catalytic serine S70". Please add this label somewhere in the figure.

      Please cite a reference in the sentence "This indicates that mutations on G238 would result in an alteration on protein catalytic function, as well as an increased flexibility of the protein, which strongly aligns with previous finding."

    3. Reviewer #3 (Public review):

      Summary:<br /> In this paper, Xu, Dantu and coworkers report a protocol for analyzing coevolutionary and dynamical information to identify a subset of communities that capture functionally relevant sites in beta-lactamases.

      Strengths:<br /> The combination of coevolutionary information and metrics from MD simulations is interesting for capturing functionally relevant sites, which can have implications in the fields of drug discovery but also in protein design.

      Weaknesses:<br /> The combination of coevolutionary information and metrics from MD simulations is not new as other protocols have been proposed along the years (the current version of the paper neglects some of them, see below), and there are a few parameters of the protocol that, in my opinion, should be better analyzed and discussed.

      (1) As mentioned, the introduction of the paper lacks some important publications in the field of using graph theory to represent important interaction networks extracted from MD simulations (DOI: 10.1002/pro.4911), and also combining MD data with MSA to identify functionally relevant sites for enzyme design (doi: 10.1021/acscatal.4c04587, 10.1093/protein/gzae005).<br /> (2) The matrix used to apply graph theory (J_ij) is built from summing the scaled coevolution and degree of correlation values. The alpha and beta weights are defined, and the authors mention that alpha is set to 0.5, thus beta as well to fulfil with the alpha + beta = 1. Why a value of 0.5 has been selected? How this affects the overall results and conclusions extracted? The finding that many catalytically relevant residues are identified in the communities is not surprising given that such sites usually present a high conservation score.<br /> (3) Another important point that needs further explanation is the selection of the relevant descriptor of protein dynamics. In this study two different strategies have been used (one more global the other more local), but more details should be provided regarding their choice. What is the best strategy according to the authors? Why not using the same strategy for both related systems? The obtained results using one methodology or the other will have a large impact on the dynamical score. Another related point is: what is the impact of the MD simulation length, how the MSA is generated and number of sequences used for MSA construction?

    1. Reviewer #1 (Public review):

      The manuscript entitled "Blocking SHP2 1 benefits FGFR2 inhibitor and overcomes its resistance in 2 FGFR2-amplified gastric cancer" by Zhang, et al., reports that FGFR2 was amplification in 6.2% (10/161) of gastric cancer samples and that dual blocking SHP2 and FGFR2 enhanced the effects of FGFR2 inhibitor (FGFR2i) in FGFR2-amplified GC both in vitro and in vivo via suppressing RAS/ERK and PI3K/AKT pathways. Furthermore, the authors also showed that SHP2 blockade suppressed PD-1 expression and promoted IFN-γ secretion of CD8+ 46 T cells, enhancing the cytotoxic functions of T cells. Thus, the authors concluded that dual blocking SHP2 and FGFR2 is a compelling strategy for treatment of FGFR2-amplified gastric cancer. Although the finding is interesting, the finding that FGFR2 is amplified in gastric cancer and that FGFR inhibitors have some effect on treating gastric cancer is not novel. The data quality is not high, and the effects of double inhibitions are not significant. It appears that the conclusions are largely overstatement, the supporting data is weak and not compelling.

      The data in Figure 1 is not novel, similar data has been reported elsewhere.

      It is unclear why the two panels in Fig 2a and 2b can not be integrated into one panel, which will make it easier to compare the activities.

      The synergetic effects of azd4547 and shp099 are not significant in Fig 2e and 2f, as well as in Fig. 3g and fig. 4f

      Data in Fig. 5 is weak and can be removed. It is unclear why FGFR inhibitor has some activities toward t cells since t cells do not express FGFR.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the application of a combined targeted therapeutic approach to gastric cancer treatment. The RTK, FGFR2 and the phosphatase, SHP2 are targeted with existing drugs; AZD457 and SHP099 respectively. Having shown increased mRNA levels of FGFR2 and SHP2 in a patient population and highlighted the issue of resistance to single therapies the combination of inhibitors is shown to reduce cancer-related signalling in two gastric cell lines. The efficacy of the dual therapy is further demonstrated in a single patient case study and mouse xenograft models. Finally, the rationale for SHP2 inhibition is shown to be linked to immune response.

      Strengths:

      The data is generally well presented and the study invokes a novel patient data set which could have wider value. The study provides additional evidence to support the combined therapeutic approach of RTK and phosphatase inhibition.

      Weaknesses:

      Combined therapy approaches targeting RTKs and SHP2 have been widely reported. Indeed, SHP099 in combination with FGFR inhibitors has been shown to overcome adaptive resistance in FGFR-driven cancers. Furthermore, the inhibition of SHP2 has been documented to have important implications in both targeting proliferative signalling as well as immune response. Thus, it is difficult to see novelty or a significant scientific advance in this manuscript. Although the data is generally well presented, there is inconsistency in the interpretation of the experimental outcomes from ex vivo, patient and mouse systems investigated. In addition, the study provides only minor or circumstantial understanding of the dual mechanism.

      Using data from a 161 patient cohort FGFR2 was identified as displaying amplification of FGFR2 in ~6% with concomitant elevation of mRNA of patients which correlated with PTPN11 (SHP2) mRNA expression. The broader context of this data is of value and could add a different patient demographic to other data on gastric cancer. However, there is no detail on patient stratification or prior therapeutic intervention.

      In SNU16 and KATOIII cells the combined therapy is shown to be effective and appears to be correlated with increased apoptotic effects (i.e. not immune response).

      Fig 2E suggests that the combined therapy in SNU16 cells is a little better than FGFR2-directed AZD457 inhibitor alone, particularly at the higher dose.

      The individual patient case study described via Fig 3 suggests efficacy of the combined therapy (at very high dosage), however, the cell biopsies only show reduced phosphorylation of ERK, but not AKT. This is at odds with the ex vivo cell-based assays. Thus, it is not clear how relevant this study is.

      The mouse xenograft study shows a convincing reduction in tumor mass/volume and clear reduction in pAKT, whilst pERK remains largely unaffected by the combined therapeutic approach. This is in conflict with the previous data which seems to show the opposite effect. In all, the impact of the dual therapy is unclear with respect to the two pathways mediated by ERK and AKT.

      Finally, the authors demonstrate the impact of SHP2 on PD-1 expression and propose that the SHP099/AZD4547 combination therapy significantly induces the production of IFN-γ in CD8+ T cells. This part of the study is unconvincing and would benefit from the investigation of the tumor micro-environment to assess T cell infiltration.

    3. Reviewer #3 (Public review):

      Summary:

      Fibroblast growth factor receptor 2 (FGFR2) is a receptor tyrosine kinase that can be amplified in gastric cancer and serves as a potential therapeutic target for this patient population. However, targeting FGFR2 has shown limited efficacy. Thus, this study seeks to identify additional molecules that can be effectively targeted in FGFR2 amplified gastric cancer, with a focus on Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). The authors first demonstrate that 6% of gastric cancer patients in a cohort of human patient samples exhibit FGFR2 amplification. Furthermore, they demonstrate that FGFR2 mRNA expression is positively correlated with PTPN11 gene expression (which is the gene that encodes the SHP2 protein). Using human gastric cancer cell lines with amplified FGFR2, the authors then test the effects of combining the FGFR inhibitor AZD4547 with the SHP2 inhibitor SHP099 on tumor cell death and signaling molecules. They demonstrate that combining the two inhibitors is more effective at tumor cell killing and reducing activation of downstream signaling pathways than either inhibitor alone. In further studies, the authors obtained gastric cancer cells with FGFR2 amplification from a patient that was treated with FGFR2 inhibitor. While this patient initially showed a partial response, the patient ultimately progressed, demonstrating resistance to FGFR2 inhibition. Following isolation of tumor cells from the patient's ascites, the authors demonstrate that these cells are sensitive to the combination treatment of AZD4547 and SHP099. Further studies were performed using a xenograft model using athymic nude mice in which the combination of SHP099 and AZD4547 were found to reduce tumor growth more significantly than either treatment alone. Finally, the authors demonstrate using an in vitro culture model that this combination treatment enhances T cell mediated cytotoxicity. The authors conclude that targeting FGFR2 and SHP2 represents a potential combination strategy in gastric patients with FGFR2 amplification.

      Strengths:

      The authors demonstrate that FGFR2 amplification positively correlates with PTPN11 in human gastric cancer samples, providing rationale for combination therapies. Furthermore, convincing data are provided demonstrating that targeting both FGFR and SHP2 is more effective than targeting either pathway alone using in vitro and in vivo models. The use of cells derived from a gastric cancer patient that progressed following treatment with an FGFR inhibitor is also a strength. The findings from this study support the conclusion that SHP2 inhibitors enhance the efficacy of FGFR-targeted therapies in cancer patients. This study also suggests that targeting SHP2 may also be an effective strategy for targeting cancers that are resistant to FGFR-targeted therapies.

      Weaknesses:

      The main caveat with these studies is the lack of an immune competent model with which to test the finding that this combination therapy enhances T cell cytotoxicity in vivo. Discussing this limitation within the context of these findings and future directions for this work, particularly since the combination therapy appears to work quite well without the presence of T cells in the environment, would be beneficial.

    1. Reviewer #1 (Public review):

      Summary:

      Here the authors attempted to test whether the function of Mettl5 in sleep regulation was conserved in drosophila, and if so, by which molecular mechanisms. To do so they performed sleep analysis, as well as RNA-seq and ribo-seq in order to identify the downstream targets. They found that the loss of one copy of Mettl5 affects sleep and that its catalytic activity is important for this function. Transcriptional and proteomic analyses show that multiple pathways were altered, including the clock signaling pathway and the proteasome. Based on these changes the authors propose that Mettl5 modulate sleep through regulation of the clock genes, both at the level of their production and degradation.

      Strengths:

      The phenotypical consequence of the loss of one copy of Mettl5 on sleep function is clear and well-documented.

      Weaknesses:

      The imaging and molecular parts are less convincing.<br /> - The colocalization of Mettl5 with glial and neuronal cells is not very clear<br /> - The section on gene ontology analysis is long and confusing<br /> - Among all the pathways affected the focus on proteosome sounds like cherry picking. And there is no experiment demonstrating its impact in the Mettl5 phenotype<br /> - The ribo seq shows some changes at the level of translation efficiency but there is no connection with the Mettl5 phenotypes. In other words, how the increased usage of some codons impact clock signalling. Are the genes enriched for these codons?<br /> - A few papers already demonstrated the role of Mettl5 in translation, even at the structural level (Rong et al, Cell reports 2020) and this was not commented by the authors. In Peng et al, 2022 the authors show that the m6A bridges the 18S rRNA with RPL24. Is this conserved in Drosophila?<br /> - The text will require strong editing and the authors should check and review extensively for improvements to the use of English.

      Conclusion

      Despite the effort to identify the underlying molecular defects following the loss of Mettl5 the authors felt short in doing so. Some of the results are over-interpreted and more experiments will be needed to understand how Mettl5 controls the translation of its targets. References to previous works was poorly commented.

    2. Reviewer #2 (Public review):

      Summary:

      The authors define the m6A methyltransferase Mettl5 as a novel sleep-regulatory gene that contributes to specific aspects of Drosophila sleep behaviors (i.e., sleep drive and arousal at early night; sleep homeostasis) and propose the possible implication of Mettl5-dependent clocks in this process. The model was primarily based on the assessment of sleep changes upon genetic/transgenic manipulations of Mettl5 expression (including CRISPR-deletion allele); differentially expressed genes between wild-type vs. Mettl5 mutant; and interaction effects of Mettl5 and clock genes on sleep. These findings exemplify how a subclass of m6A modifications (i.e., Mettl5-dependent m6A) and possible epi-transcriptomic control of gene expression could impact animal behaviors.

      Strengths:

      Comprehensive DEG analyses between control and Mettl5 mutant flies reveal the landscape of Mettl5-dependent gene regulation at both transcriptome and translatome levels. The molecular/genetic features underlying Mettl5-dependent gene expression may provide important clues to molecular substrates for circadian clocks, sleep, and other physiology relevant to Mettl5 function in Drosophila.

      Weaknesses:

      While these findings indicate the potential implication of Mettl5-dependent gene regulation in circadian clocks and sleep, several key data require substantial improvement and rigor of experimental design and data interpretation for fair conclusions. Weaknesses of this study and possible complications in the original observations include but are not limited to:

      (1) Genetic backgrounds in Mettl5 mutants: the heterozygosity of Mettl5 deletion causes sleep suppression at early night and long-period rhythms in circadian behaviors. The transgenic rescue using Gal4/UAS may support the specificity of the Mettl5 effects on sleep. However, it does not necessarily exclude the possibility that the Mettl5 deletion stocks somehow acquired long-period mutation allelic to other clock genes. Additional genetic/transgenic models of Mettl5 (e.g., homozygous or trans-heterozygous mutants of independent Mettl5 alleles; Mettl5 RNAi etc.) can address the background issue and determine 1) whether sleep suppression tightly correlates with long-period rhythms in Mettl5 mutants; and 2) whether Mettl5 effects are actually mapped to circadian pacemaker neurons (e.g., PDF- or tim-positive neurons) to affect circadian behaviors, clock gene expression, and synaptic plasticity in a cell-autonomous manner and thereby regulate sleep. Unfortunately, most experiments in the current study rely on a single genetic model (i.e., Mettl5 heterozygous mutant).

      (2) Gene expression and synaptic plasticity: gene expression profiles and the synaptic plasticity should be assessed by multiple time-point analyses since 1) they display high-amplitude oscillations over the 24-h window and 2) any phase-delaying mutation (e.g., Mettl5 deletion) could significantly affect their circadian changes. The current study performed a single time-point assessment of circadian clock/synaptic gene expression, misleading the conclusion for Mettl5 effects. Considering long-period rhythms in Mettl5 mutant clocks, transcriptome/translatome profiles in Mettl5 cannot distinguish between direct vs. indirect targets of Mettl5 (i.e., gene regulation by the loss of Mettl5-dependent m6A vs. by the delayed circadian phase in Mettl5 mutants). 

      (3) The text description for gene expression profiling and Mettl5-dependent gene regulation was very detailed, yet there is a huge gap between gene expression profiling and sleep/behavioral analyses. The model in Figure 5 should be better addressed and validated.

    3. Reviewer #3 (Public review):

      Xiaoyu Wu and colleagues examined the potential role in sleep of a Drosophila ribosomal RNA methyltransferase, mettl5. Based on sleep defects reported in CRISPR generated mutants, the authors performed both RNA-seq and Ribo-seq analyses of head tissue from mutants and compared to control animals collected at the same time point. While these data were subjected to a thorough analysis, it was difficult to understand the relative direction of differential expression between the two genotypes. In any case, a major conclusion was that the mutant showed altered expression of circadian clock genes, and that the altered expression of the period gene in particular accounted for the sleep defect reported in the mettl5 mutant. As noted above, a strength of this work is its relevance to a human developmental disorder as well as the transcriptomic and ribosomal profiling of the mutant. However, there are numerous weaknesses in the manuscript, most of which stem from misinterpretation of the findings, some methodological approaches, and also a lack of method detail provided. The authors seemed to have missed a major phenotype associated with the mettl5 mutant, which is that it caused a significant increase in period length, which was apparent even in a light: dark cycle. Thus the effect of the mutant on clock gene expression more likely contributed to this phenotype than any associated with changes in sleep behavior.