10 Matching Annotations
  1. Oct 2025
    1. Introduction: AI is now recently everywhere but we still need humans

  2. May 2025
    1. Anthropic researchers said this was not an isolated incident, and that Claude had a tendency to “bulk-email media and law-enforcement figures to surface evidence of wrongdoing.”

      for - question - progress trap - open source AI models - for blackmail and ransom - Could a bad actor take an open source codebase and twist it to do harm like find out about an rogue AI creator's adversary, enemy or victim and blackmail them? - progress trap - open source AI - criminals - exploit to identify and blackmail victiims

  3. Dec 2024
    1. when you want to use Google, you go into Google search, and you type in English, and it matches the English with the English. What if we could do this in FreeSpeech instead? I have a suspicion that if we did this, we'd find that algorithms like searching, like retrieval, all of these things, are much simpler and also more effective, because they don't process the data structure of speech. Instead they're processing the data structure of thought

      for - indyweb dev - question - alternative to AI Large Language Models? - Is indyweb functionality the same as Freespeech functionality? - from TED Talk - YouTube - A word game to convey any language - Ajit Narayanan - data structure of thought - from TED Talk - YouTube - A word game to convey any language - Ajit Narayanan

  4. Jan 2024
  5. Sep 2023
    1. in 2018 you know it was around four percent of papers were based on Foundation models in 2020 90 were and 00:27:13 that number has continued to shoot up into 2023 and at the same time in the non-human domain it's essentially been zero and actually it went up in 2022 because we've 00:27:25 published the first one and the goal here is hey if we can make these kinds of large-scale models for the rest of nature then we should expect a kind of broad scale 00:27:38 acceleration
      • for: accelerating foundation models in non-human communication, non-human communication - anthropogenic impacts, species extinction - AI communication tools, conservation - AI communication tools

      • comment

        • imagine the empathy we can realize to help slow down climate change and species extinction by communicating and listening to the feedback from other species about what they think of our species impacts on their world!
  6. Apr 2023
  7. Mar 2023
  8. Dec 2022
    1. Houston, we have a Capability Overhang problem: Because language models have a large capability surface, these cases of emergent capabilities are an indicator that we have a ‘capabilities overhang’ – today’s models are far more capable than we think, and our techniques available for exploring the models are very juvenile. We only know about these cases of emergence because people built benchmark datasets and tested models on them. What about all the capabilities we don’t know about because we haven’t thought to test for them? There are rich questions here about the science of evaluating the capabilities (and safety issues) of contemporary models. 
  9. Jun 2021
  10. Jan 2021
    1. Help is coming in the form of specialized AI processors that can execute computations more efficiently and optimization techniques, such as model compression and cross-compilation, that reduce the number of computations needed. But it’s not clear what the shape of the efficiency curve will look like. In many problem domains, exponentially more processing and data are needed to get incrementally more accuracy. This means – as we’ve noted before – that model complexity is growing at an incredible rate, and it’s unlikely processors will be able to keep up. Moore’s Law is not enough. (For example, the compute resources required to train state-of-the-art AI models has grown over 300,000x since 2012, while the transistor count of NVIDIA GPUs has grown only ~4x!) Distributed computing is a compelling solution to this problem, but it primarily addresses speed – not cost.