- Sep 2024
-
metagov.org metagov.org
-
https://metagov.org/projects/koi-pond
Metagov's KOI (Knowledge Organization Infrastructure) is a graph database that supports relationships between knowledge objects, users, and groups within Metagov. via JM
-
- Jul 2024
-
- Mar 2024
-
research.ibm.com research.ibm.com
-
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
PK indicates that folks using footnotes in AI are using rag methods.
-
- Jan 2024
-
arxiv.org arxiv.org
-
Hubinger, et. al. "SLEEPER AGENTS: TRAINING DECEPTIVE LLMS THAT PERSIST THROUGH SAFETY TRAINING". Arxiv: 2401.05566v3. Jan 17, 2024.
Very disturbing and interesting results from team of researchers from Anthropic and elsewhere.
-
-
cdn.openai.com cdn.openai.com
-
GPT-4 System CardOpenAIMarch 23, 2023
-
-
www.technologyreview.com www.technologyreview.com
-
- for: progress trap -AI, carbon footprint - AI, progress trap - AI - bias, progress trap - AI - situatedness
-
- Oct 2023
-
-
Introduction of the RoBERTa improved analysis and training approach to BERT NLP models.
-
-
arxiv.org arxiv.org
-
Wu, Prabhumoye, Yeon Min, Bisk, Salakhutdinov, Azaria, Mitchell and Li. "SPRING: GPT-4 Out-performs RL Algorithms byStudying Papers and Reasoning". Arxiv preprint arXiv:2305.15486v2, May, 2023.
-
-
arxiv.org arxiv.org
-
Zecevic, Willig, Singh Dhami and Kersting. "Causal Parrots: Large Language Models May Talk Causality But Are Not Causal". In Transactions on Machine Learning Research, Aug, 2023.
-
-
www.gatesnotes.com www.gatesnotes.com
-
"The Age of AI has begun : Artificial intelligence is as revolutionary as mobile phones and the Internet." Bill Gates, March 21, 2023. GatesNotes
-
-
www.inc.com www.inc.com
-
Minda Zetlin. "Bill Gates Says We're Witnessing a 'Stunning' New Technology Age. 5 Ways You Must Prepare Now". Inc.com, March 2023.
-
-
arxiv.org arxiv.org
-
Feng, 2022. "Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis"
Shared and found via: Gowthami Somepalli @gowthami@sigmoid.social Mastodon > Gowthami Somepalli @gowthami StructureDiffusion: Improve the compositional generation capabilities of text-to-image #diffusion models by modifying the text guidance by using a constituency tree or a scene graph.
-
-
arxiv.org arxiv.org
-
Training language models to follow instructionswith human feedback
Original Paper for discussion of the Reinforcement Learning with Human Feedback algorithm.
-
-
cdn.openai.com cdn.openai.com
-
GPT-2 Introduction paper
Language Models are Unsupervised Multitask Learners A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, (2019).
-
-
arxiv.org arxiv.org
-
"Attention is All You Need" Foundational paper introducing the Transformer Architecture.
-
-
-
GPT-3 introduction paper
-
-
arxiv.org arxiv.org
-
"Are Pre-trained Convolutions Better than Pre-trained Transformers?"
-
-
arxiv.org arxiv.org
-
LaMDA: Language Models for Dialog Application
"LaMDA: Language Models for Dialog Application" Meta's introduction of LaMDA v1 Large Language Model.
-
-
-
Benyamin GhojoghAli Ghodsi. "Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey"
-
- Jul 2023
-
arxiv.org arxiv.org
-
LLAMA 2 Release Paper
-
-
arxiv.org arxiv.org
-
Daniel Adiwardana Minh-Thang Luong David R. So Jamie Hall, Noah Fiedel Romal Thoppilan Zi Yang Apoorv Kulshreshtha, Gaurav Nemade Yifeng Lu Quoc V. Le "Towards a Human-like Open-Domain Chatbot" Google Research, Brain Team
Defined the SSI metric for chatbots used in LAMDA paper by google.
Tags
Annotators
URL
-
- Apr 2023
-
srush.github.io srush.github.io
-
The Annotated S4 Efficiently Modeling Long Sequences with Structured State Spaces Albert Gu, Karan Goel, and Christopher Ré.
A new approach to transformers
-
-
-
Efficiently Modeling Long Sequences with Structured State SpacesAlbert Gu, Karan Goel, and Christopher R ́eDepartment of Computer Science, Stanford University
-
-
-
Bowman, Samuel R.. "Eight Things to Know about Large Language Models." arXiv, (2023). https://doi.org/https://arxiv.org/abs/2304.00612v1.
Abstract
The widespread public deployment of large language models (LLMs) in recent months has prompted a wave of new attention and engagement from advocates, policymakers, and scholars from many fields. This attention is a timely response to the many urgent questions that this technology raises, but it can sometimes miss important considerations. This paper surveys the evidence for eight potentially surprising such points: 1. LLMs predictably get more capable with increasing investment, even without targeted innovation. 2. Many important LLM behaviors emerge unpredictably as a byproduct of increasing investment. 3. LLMs often appear to learn and use representations of the outside world. 4. There are no reliable techniques for steering the behavior of LLMs. 5. Experts are not yet able to interpret the inner workings of LLMs. 6. Human performance on a task isn't an upper bound on LLM performance. 7. LLMs need not express the values of their creators nor the values encoded in web text. 8. Brief interactions with LLMs are often misleading.
Found via: Taiwan's Gold Card draws startup founders, tech workers | Semafor
Tags
Annotators
URL
-
-
-
It was only by building an additional AI-powered safety mechanism that OpenAI would be able to rein in that harm, producing a chatbot suitable for everyday use.
This isn't true. The Stochastic Parrots paper outlines other avenues for reining in the harms of language models like GPT's.
-
- Mar 2023
-
arxiv.org arxiv.org
-
Ganguli, Deep, Askell, Amanda, Schiefer, Nicholas, Liao, Thomas I., Lukošiūtė, Kamilė, Chen, Anna, Goldie, Anna et al. "The Capacity for Moral Self-Correction in Large Language Models." arXiv, (2023). https://doi.org/https://arxiv.org/abs/2302.07459v2.
Abstract
We test the hypothesis that language models trained with reinforcement learning from human feedback (RLHF) have the capability to "morally self-correct" -- to avoid producing harmful outputs -- if instructed to do so. We find strong evidence in support of this hypothesis across three different experiments, each of which reveal different facets of moral self-correction. We find that the capability for moral self-correction emerges at 22B model parameters, and typically improves with increasing model size and RLHF training. We believe that at this level of scale, language models obtain two capabilities that they can use for moral self-correction: (1) they can follow instructions and (2) they can learn complex normative concepts of harm like stereotyping, bias, and discrimination. As such, they can follow instructions to avoid certain kinds of morally harmful outputs. We believe our results are cause for cautious optimism regarding the ability to train language models to abide by ethical principles.
-
-
web.archive.org web.archive.org
-
Dass das ägyptische Wort p.t (sprich: pet) "Himmel" bedeutet, lernt jeder Ägyptologiestudent im ersten Semester. Die Belegsammlung im Archiv des Wörterbuches umfaßt ca. 6.000 Belegzettel. In der Ordnung dieses Materials erfährt man nun, dass der ägyptische Himmel Tore und Wege hat, Gewässer und Ufer, Seiten, Stützen und Kapellen. Damit wird greifbar, dass der Ägypter bei dem Wort "Himmel" an etwas vollkommen anderes dachte als der moderne westliche Mensch, an einen mythischen Raum nämlich, in dem Götter und Totengeister weilen. In der lexikographischen Auswertung eines so umfassenden Materials geht es also um weit mehr als darum, die Grundbedeutung eines banalen Wortes zu ermitteln. Hier entfaltet sich ein Ausschnitt des ägyptischen Weltbildes in seinem Reichtum und in seiner Fremdheit; und naturgemäß sind es gerade die häufigen Wörter, die Schlüsselbegriffe der pharaonischen Kultur bezeichnen. Das verbreitete Mißverständnis, das Häufige sei uninteressant, stellt die Dinge also gerade auf den Kopf.
Google translation:
Every Egyptology student learns in their first semester that the Egyptian word pt (pronounced pet) means "heaven". The collection of documents in the dictionary archive comprises around 6,000 document slips. In the order of this material one learns that the Egyptian heaven has gates and ways, waters and banks, sides, pillars and chapels. This makes it tangible that the Egyptians had something completely different in mind when they heard the word "heaven" than modern Westerners do, namely a mythical space in which gods and spirits of the dead dwell.
This is a fantastic example of context creation for a dead language as well as for creating proper historical context.
-
In looking at the uses of and similarities between Wb and TLL, I can't help but think that these two zettelkasten represented the state of the art for Large Language Models and some of the ideas behind ChatGPT
-
-
www.inc.com www.inc.com
-
"There is a robust debate going on in the computing industry about how to create it, and whether it can even be created at all."
Is there? By whom? Why industry only and not government, academia and civil society?
-
-
dl.acm.org dl.acm.org
-
Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜” In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–23. FAccT ’21. New York, NY, USA: Association for Computing Machinery, 2021. https://doi.org/10.1145/3442188.3445922.
Would the argument here for stochastic parrots also potentially apply to or could it be abstracted to Markov monkeys?
-
- Jan 2023
-
inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
-
"Talking About Large Language Models" by Murray Shanahan
-