6,711 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public Review):

      Summary:<br /> This research used cell-based signaling assay and Gaussian-accelerated molecular dynamics (GaMD) to study peptide-mediated signaling activation of Polycystin-1 (PC1), which is responsible for the majority of autosomal dominant polycystic kidney disease (ADPKD) cases. Synthetic peptides of various lengths derived from the N-terminal portion of the PC1 C-terminal fragment (CTF) were applied to HEK293T cells transfected with stalkless mouse CTF expression construct. It was shown that peptides including the first 7, 9, and 17 residues of the N-terminal portion could activate signaling to the NFAT reporter. To further understand the underlying mechanism, docking and peptide-GaMD simulations of peptides composed of the first 9, 17, and 21 residues from the N-terminal portion of the human PC1 CTF were performed. These simulations revealed the correlation between peptide-CTF binding and PC1 CTF activation characterized by the close contact (salt bridge interaction) between residues R3848 and E4078. Finally, a Potts statistical model was inferred from diverged PC1 homologs to identify strong/conserved interacting pairs within PC1 CTF, some of which are highly relevant to the findings from the peptide GaMD simulations. The peptide binding pockets identified in the GaMD simulations may serve as novel targets for the design of therapeutic approaches for treating ADPKD.

      Strengths:<br /> (1) The experimental and computational parts of this study complement and mostly support each other, thus increasing the overall confidence in the claims made by the authors.

      (2) The use of exogenous peptides and a stalkless CTF in the GaMD is a step forward compared to earlier simulations using the full CTF, CTF mutants, or the stalkless CTF alone. And it led to findings of novel binding pockets.

      (3) Since the PC1 shares characteristics with the Adhesion class of GPCRs, the approaches used in this work may be extended to other similar systems.

      Weaknesses:<br /> (1) The GaMD simulations all include the exogenous peptides, thus lacking a control where no such peptide is present (and only stalkless CTF). An earlier study (PNAS 2022 Vol. 119 No. 19 e2113786119) covered this already but it should be mentioned here that there was no observation of close/activation for the stalkless CTF.

      (2) Although 5 independent trajectories were generated for each peptide, the authors did not provide sufficient details regarding the convergence of the simulation. This leaves some uncertainties in their results. Given that the binding poses changed relative to the starting docked poses for all three peptides, it is possible that some other binding pockets and/or poses were not explored.

      (3) The free energy profiles (Figures 2 to 4) based on the selected coordinates provide important information regarding binding and CTF conformational change. However, it is a coarse-grained representation and complementary analysis such as RDFs, and/or contact maps between the peptide and CTF residues might be helpful to understand the details of their interactions. These details are currently only available in the text.

      (4) The use of a stalkless CTF is necessary for studying the functions of the exogenous peptides. However, the biological relevance of the stalkless CTF to ADPKD was not clearly explained, if any.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors show that upon treatment with Doxorubicin (Doxo), there is an increase in senescence and inflammatory markers in the muscles. They also show these genes get upregulated in C2C12 myoblasts when treated with conditioned media or 15d-PGJ2. 15dPGJ2 induces cell death in the myoblasts, decreases proliferation (measured by cell numbers), and decreases differentiation and fusion. 15d-PGJ2 modified Cys184 of HRas, which is required for its activation as indicated by the FRET analysis with RAF RBD. They also showed that 15d-PGJ2 activates ERK signaling, but not Akt signaling, through the electrophilic center. 15d-PGJ2 inhibits Golgi localization of HRAS (only WT, not C181 or C184 mutant). They also showed that expressing the WT HRas followed by 15d-PGJ2 treatment led to a decrease in the levels of MHC mRNA and protein, and this defect is dependent on C184. This is a well-written manuscript with interesting insights into the mechanism of action of 15d-PGJ2. However, some clarification and experiments will help the paper advance the field significantly.

      Strengths:

      The data clearly shows that 15d-PGJ2 has a negative role in the myoblast cells and that it leads to modification of HRas protein. Moreover, the induction of biosynthetic enzymes in the PGD2 pathway also supports the induction of 15d-PGJ2 in Doxorubicin-treated cells. Both conditioned media experiments and the 15d-PGJ2 experiments show that 15d-PGJ2 could be the active component secreted by the senescent myoblasts.

      Weaknesses:

      The genes that are upregulated in the muscles upon injection with Doxo are also markers for inflammation. Since Doxo is also known to induce systemic inflammation, it is important to delineate these two effects (inflammatory cells vs senescent cells). The expression of beta Gal and other markers of senescence in the tissue sections will help to delineate these.

      In Figure 2, where the defect in the differentiation of myoblasts upon treatment with 15d-PGJ2 is shown, most of the cells die within 48 hours at higher concentrations, making it difficult to perform the experiments. This also shows that 15d-PGJ2 was toxic to these cells. Lower concentrations show a decrease in the differentiation based on the lower number of nuclei in fibers and low expression of MyoD, MyoG, and MHC. However, it is unclear if this is due to increased cell death or defective differentiation. It would be a lot more informative if the cell count, cell division, and cell death could be plotted for these concentrations of the drug during the experiment. Also, in the myoblast experiments, are the effects of treatment with Dox reversible?

      In Figure 3, most of the experiments are done at a high concentration, which induces almost complete cell death within 48 hours. Even at such a high concentration of 15dPGJ2, the increase in ERK phosphorylation is minimal.

      The experiment Figure 4C shows that C181 and C84 mutants of the HRas show higher levels in Golgi compared with WT. However, this could very well be due to the defect in palmitoylation rather than the modification with 15d-PGJ2. Though the authors allude to the possibility that intracellular redistribution of HRas by 15d-PGJ2 requires C181 palmitoylation, the direct influence of C184 modification on C181 palmitoylation is not shown. To have a meaningful conclusion, the authors need to compare the palmitoylation and modification with 15d-PGJ2.

      To test if the inhibition of myoblast differentiation depends on HRas, they overexpressed the HRas and mutants in the C2C12 lines. However, this experiment does not take the endogenous HRAs into consideration, especially when interpreting the C184 mutant. An appropriate experiment to test this would be to knock down or knock out HRas (or make knock-in mutations of C184) and show that the effect of 15d-PGJ2 disappears. Moreover, in this specific experiment, it is difficult to interpret without a control with no HRas construct and another without the 15d-PGJ2 treatment.

      Moreover, the overall study does not delineate the toxic effects of 15d-PGJ2 from its effect on the differentiation.

    1. Reviewer #1 (Public Review):

      This study makes an interesting finding: a polyunsaturated fatty acid, Lin-Glycine, increases the conductance of KCNQ1/KCNE1 channels by stabilizing a state of the selectivity filter that allows K+ conduction. The stabilization of a conducting state appears well supported by single-channel analysis, though some method details are missing. The linkage to PUFA action through the selectivity filter is supported by the disruption of PUFA effects by mutation of residues which change conformation in two KCNQ1 structures from the literature. Claims about differences in Lin-Glycine binding to these two structural conformations seem to lack clear support, thus the claim seems speculative that PUFAs increase Gmax by binding to a crevice in the pore domain. A potentially definitive functional experiment is conducted by single-channel recordings with selectivity filter domain mutation Y315F which ablates the Lin-Glycine effect on Gmax. However, this appears to be an n=1 experiment. Overall, the major claim of the abstract is supported: "... that the selectivity filter in KCNQ1 is normally unstable ... and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state." However, the claim in the abstract that selectivity filter instability "explains the low open probability" seems too general.

    1. Reviewer #1 (Public Review):

      Summary:

      This study provides the detailed molecular mechanism of how OGT, an O-GlcNac transferase, promotes cancer progression. Using loss-of-function OGT models, the authors demonstrated that OGT cleaves HCF-1, an important guardian of genomic stability. The resulting genomic instability in OGT-knockout tumors leads to cytosolic DNA accumulation, the activation of cGAS-mediated type I IFN responses, and increased CD8+ T cell infiltration into the tumors. Moreover, treatment with OGT inhibitor synergized with anti-PDL1 immune-checkpoint blockade.

      Strengths:

      Novel findings of how OGT promotes tumor progression.

      Weaknesses:

      (1) Some of the data is problematic and does not always support the authors' conclusions.<br /> (2) The writing needs significant improvement. In places, it is hard to understand or could mislead the readers.<br /> (3) Figure legends are minimalistic and do not provide sufficient information.<br /> (4) Discussion does not put the findings of this study into a broader context of the field but merely restates them.

    1. Reviewer #1 (Public Review):

      The manuscript by Wu et al. explores the role of the histone reader protein SntB in Aspergillus flavus, claiming it to be a key regulator of development and aflatoxin biosynthesis. While the study incorporates various techniques, including gene deletion, ChIP-seq, and RNA-seq, several concerns and omissions in the paper raise questions about the validity and completeness of the presented findings.

      (1) Omissions of Prior Work:<br /> The authors fail to acknowledge and integrate prior research by Pfannenstiel et al. (2018) on the sntB gene in A. flavus, which covered phenotypic changes, RNA-seq data, and histone modifications. This omission raises concerns about the transparency and completeness of the current study.

      The absence of reference to studies by Karahoda et al. (2022, 2023) revealing SntB's involvement in the KERS complex in A. flavus and A. nidulans is a major oversight. This raises questions about the specificity of SntB's regulatory functions, as it may be part of a larger complex. The authors should clarify why these studies were omitted and how they ensure that SntB alone, and not the entire KERS complex, is responsible for the observed effects.

      (2) Transparency and Accessibility of Data:<br /> The lack of accessibility and visualization tools for ChIP-seq and RNA-seq data poses a challenge for independent verification and in-depth analysis. The authors should address this issue by providing more accessible data or explaining the limitations of data availability. A critical component missing from the paper is a detailed presentation of ChIP-seq data, specifically demonstrating SntB binding patterns on key promoters. This omission weakens the link between SntB and the mentioned regulatory genes. The authors should include these crucial data visualizations to strengthen their claims.

      (3) SntB Binding Sites and Consensus Sequence:<br /> The study mentions several genes upregulated in the sntB mutant without demonstrating SntB binding sites on their promoters. A detailed analysis of SntB binding maps is necessary to establish a direct link between SntB and these regulatory genes.

      (4) Mechanistic Insight into Peroxisome Biogenesis:<br /> If SntB indeed regulates peroxisome biogenesis, the absence of markers for peroxisomes and the localization of peroxisomes in the sntB mutant vs. WT strains is a significant gap. Providing evidence for peroxisome regulation is crucial for understanding the proposed mechanism and validating the study's claims.

      In summary, while the manuscript presents intriguing findings regarding SntB's role in A. flavus, the omissions of prior work, lack of transparency in data accessibility, and insufficient mechanistic insights call for revisions and additional experimental evidence to strengthen the validity and impact of the study. Addressing these concerns will enhance the manuscript's contribution to the field.

      Additionally, the way the English language is used could be improved.

    1. Reviewer #1 (Public Review):

      Summary:

      In their manuscript, Yu et al. describe the chemotactic gradient formation for CCL5 bound to - i.e. released from - glycosaminoglycans. The authors provide evidence for phase separation as the driving mechanism behind chemotactic gradient formation. A conclusion towards a general principle behind the finding cannot be drawn since the work focuses on one chemokine only, which is particularly prone to glycan-induced oligomerisation.

      Strengths:

      The principle of phase separation as a driving force behind and thus as an analytical tool for investigating protein interactions with strongly charged biomolecules was originally introduced for protein-nucleic acid interactions. Yu et al. have applied this in their work for the first time for chemokine-heparan sulfate interactions. This opens a novel way to investigate chemokine-glycosaminoglycan interactions in general.

      Weaknesses:

      As mentioned above, one of the weaknesses of the current work is the exemplification of the phase separation principle by applying it only to CCL5-heparan sulfate interactions. CCL5 is known to form higher oligomers/aggregates in the presence of glycosaminoglycans, much more than other chemokines. It would therefore have been very interesting to see, if similar results in vitro, in situ, and in vivo could have been obtained by other chemokines of the same class (e.g. CCL2) or another class (like CXCL8).

      In addition, the authors have used variously labelled CCL5 (like with the organic dye Cy3 or with EGFP) for various reasons (detection and immobilisation). In the view of this reviewer, it would have been necessary to show that all the labelled chemokines yield identical/similar molecular characteristics as the unlabelled wildtype chemokine (such as heparan sulfate binding and chemotaxis). It is well known that labelling proteins either by chemical tags or by fusion to GFPs can lead to manifestly different molecular and functional characteristics.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors performed two-sample MR combined with sensitivity analyses and colocalization to test the effect of PUFA on cerebral aneurysms. They found that genetically predicted omega-3 and DHA decreased the risk for intracranial aneurysm (IA) and subarachnoid haemorrhage (SAH) but not for unruptured IA (uIA).

      Strengths:

      PUFA on the risk of cerebral aneurysms is of clinical importance; the authors performed multiple sensitivity analyses to ensure MR fulfills its assumptions.

      Weakness:

      In my opinion, the major weakness is the selection of IVs, the same IVs should be used for each exposure, especially when the outcomes (IA, SAH, and uIA) are closely related. The removal of IVs was inconsistent, for example, why was LPA rs10455872 removed for SAH but not for uIA? (significantly more IVs were used for uIA). The authors should provide more details for the justification of the removal of IVs other than only indicating "confounder" in supplementary tables. The authors should also perform additional analyses including all IVs and IVs from other PUFA GWAS.

      In addition, it seems that the SNPs in the FADS locus were driving the MR association, while FADS is a very pleiotropic locus associated with many lipid traits, removing FADS could attenuate the MR effect. The authors should perform a sensitivity analysis to remove this locus.

      Instead of removing multiple "confounder" IVs which I think may bias the MR results due to very closely related lipid traits, the authors should perform multivariable MR to identify independent effects of PUFAs to IA, conditioning on other PUFAs and/or other lipids.

      Colocalization was not well described, the authors should include the colocalization results for each locus in a supplementary table. They also mentioned "a large PP for H4 (PP.H4 above 0.75) strongly supports shared causal variants affecting both gene expression and phenotype". The authors should make sure that the colocalization was performed using the expression data of each gene or using the GWAS summary of each PUFA locus.

    1. Reviewer #1 (Public Review):

      Summary:

      This study provides valuable and comprehensive information about the SARS-CoV-2 seroprevalence during 2021 and 2022 in different regions of Bolivia. Moreover, data on immune responses against the SARS-CoV-2 variants based on neutralization tests denotes the presence of several virus variants circulating in the Bolivian population. Evidence for seroprevalence data provided by the authors is solid, across the study period, while data regarding variant circulation is limited to the early stages of the pandemic.

      Strengths:

      The major strength of this study is that it provided nationwide seroprevalence estimates from infection and/or vaccination based on antibodies against both spike and the nucleocapsid protein in a large representative sample of sera collected at two time-points from all departments of Bolivia, gaining insight into COVID-19 epidemiology. On the other hand, data from virus neutralization assays inferred the circulation during the study period of four SARS-CoV-2 variants in the population. Overall, the study results provide an overview of the level of viral transmission and vaccination and insights into the spread across the country of SARS-CoV-2 variants.

      Weaknesses:

      The assessment of a Lambda variant that circulated in several neighboring countries (Peru, Chile, and Argentina), which had a significant impact on the COVID-19 pandemic in the region, may have strengthened the study to contrast Gamma spread. In addition, even though neutralizing antibodies can certainly reveal previous infections of SARSCOV2 variants in the population, it is of limited value to infer from this information some potential timing estimates of specific variant circulation, considering the heterogeneous effects that past infections, vaccinations, or a combination of both could have on the level of variant-specific neutralizing antibodies and/or their cross-neutralization capacity.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The conclusions of this paper are well supported by data, particularly regarding seroprevalence that reliably reflects the epidemiology of COVID-19 in Bolivia, and seroprevalence trends in other low- and middle-income countries.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      Since this is the first study that has been conducted to assess indicators of immunity against SARS-CoV-2 in the population of Bolivia at a nationwide scale, seroprevalence data provided by geographic regions at two time-points can be useful as a reference for potential retrospective global meta-analysis and further explore and compare the risk factors for infection, variant distribution, and the impact on infection and vaccination, gaining deeper insights into understanding the evolution of the COVID-19 pandemic in Bolivia and in the region.

    1. Reviewer #3 (Public Review)

      Summary:

      The authors are trying to find out whether the levels of omega-6 and omega-3 fatty acids in the blood are linked to the likelihood of dying from anything, of dying from cancer and of dying from cardiovascular disease. They use a large dataset called UKBiobank where fatty acid levels were measured in blood at the start of the study and what happened to the participants over the following years (average of 12.7 years) was followed. They find that both omega-6 AND omega-3 fatty acids were linked with less likelihood of dying from anything, from cancer and from cardiovascular disease. The effects of omega-3s were stronger. They then made a ratio of omega-6 to omega-3 fatty acids and found that as that ratio increased risk of dying also increased. This supports the idea that omega-3s have stronger effects than omega-6s.

      Strengths:

      This is a large study (over 85,000 participants) with a good follow up period (average 12.7 years). Using blood levels of fatty acids is superior to using estimated dietary intakes. The authors take account of many variables that could interfere with the findings (confounding variables) - they do this using statistical methods.

      Weaknesses:

      UKBioBank is not entirely representative of the UK population.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Honzejkova K., et al. resolved the structure of one of the MAP3K proteins. Apoptosis signal-regulating kinase 1 (ASK1) is one of the main crucial stress sensors, which directs cells toward differentiation, and apoptosis. As a result, ASK1 dysregulation has been associated with a multitude of diseases like neurodegenerative, cardiovascular, and cancer. Understanding the structural-functional interplay of ASK1 would help researchers target this member of the MAP3K proteins to develop therapeutic interventions for these disorders.

      Strengths:

      Major strengths:<br /> • Structure of the C-terminal truncated ASK1 protein.

      Weaknesses:<br /> • Lack of ASK1:TRX1 complex structure. The authors used instead SV AUC and HDX-MS techniques to compensate for the inability to get a sufficiently stable ASK1:TRX complex.<br /> • There is not enough information about Cryo-EM data processing like 2D classification averages, local resolution of the EM map, or FSC figures.<br /> • You can't reliably report the presence of a hydrogen bond with a 3.7Å resolution.

    1. Reviewer #1 (Public Review):

      The manuscript by Lu et al aims to study the effects of tubulin post-translational modification in C. elegans touch receptor neurons. Authors use gene editing to engineer various predicted PTM mutations in a-tubulin MEC-12 and b-tubulin MEC-7. Authors generate and analyze an impressive battery of mutants in predicted phosphorylation site and acetylation site of b-tubulin MEC-7, K40 acetylation site in a-tubulin MEC-12, enzymatic site of the a-tubulin acetyltransferase MEC-17, and PTM sites in the MEC-12 and MEC-7 C-tails (glutamylation, detyrosination, delta-tubulin). This represents a lot of work, and will appeal to a readership interested in C. elegans touch receptor neurons. The major concern/criticism of this manuscript is whether the introduced mutation(s) directly affects a specific PTM or whether the mutation affects gene expression, protein expression/stability/localization, etc. As such, this work does convincingly demonstrate, as stated in the title, that "Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration."

      For example, the authors manipulate the C-terminal tail of MEC-12 and MEC-7, to test the idea that polyglutamylation may be an important PTM. These mutants displayed subtle phenotypes. The authors show that branch point GT335 and polyglutamyation polyE recognizing antibodies stain cultured embryonic touch receptor neurons (TRNs), but did not examine staining in C. elegans TRNs in situ. To my knowledge, these antibodies have not been shown to stain the TRNs in any published papers, raising the question of how these "glutamylation" mutations are affecting mec-12 and -7. The rationale for using cultured embryonic TRNs and the relevance of the data and its interpretation are not clear.

      The final paragraph of the discussion is factually incorrect. The C. elegans homologs of the CCP carboxypeptidases are called CCPP-1 and CCPP-6. There are several publications on their functions in C. elegans.

    1. Reviewer #1 (Public Review):

      In their revised manuscript Hijaze et al. adequately addressed the majority of my previous concerns in a satisfactory manner. In particular, they validated their morpholino knock-down experiments by explaining how they determined the optimal concentrations and provided an immunohistological evidence for the reduction in ROCK protein abundance. The authors also added new antibody stainings providing evidence that ROCK and F-actin do not interact directly but likely through other kinases that modulate f-actin, and that the localization of f-actin at the spicule tips remains unaffected by the knock-down. In addition, the authors revised their discussion to not overstate their observations, and by focusing on the potential mechanisms by which ROCK may affect biomineralization (i.e. mechano sensing and exocytosis of vesicles). Here I would like to add, that f-actin mediated exocytosis does not necessarily target mineral baring vesicles but may also promote the exocytosis of matrix proteins that are essential for the normal formation of the spicules and that are an integral component of other biominerals, as well. I strongly encourage the authors to continue on this exciting research, including the development of methods to analyze the molecular mechanisms that control vesicular trafficking in mineralizing systems.

    1. Reviewer #1 (Public Review):

      Summary:

      The OSCA/TMEM63 channels have recently been identified as mechanosensitve channels. In a previous study, the authors found that OSCA subtypes (1, 2, and 3) respond differently to stretch and poke stimuli. For example, OSCA1.2 is activated by both poke and stretch, while OSCA3.1, responds strongly to stretch but poorly to poke stimuli. In this study the authors use cryo-EM, mutagenesis, and electrophysiology to dissect the mechanistic determinants that underlie the channels' ability to respond to poke and stretch stimuli.

      The starting hypothesis of the study is that the mechanical activation of OSCA channels relies on the interactions between the protein and the lipid bilayer and that the differential responses to poke and stretch might stem from variations in the lipid-interacting regions of OSCA proteins. The authors specifically identify the amphipathic helix (AH), the fenestration, and the Beam Like Domain (BLD) as elements that might play a role in mechanosensing.

      The authors use solid methodology to show that poke and stretch responses likely use different mechanisms in OSCA channels and that the poke response can be uncoupled from the stretch response in OSCA1.2 by mutations in the AH and the positively charged residues in the fenestration. However, the study falls short of explaining why OSCA3.1 does not respond efficiently to poke stimuli. This question is particularly important as the AH residues that are important for the poke response in OSCA1.2 are present in OSCA3.1.

      Unfortuntately, due to staffing issues, the authors were unable to perform additional experiments that would address some of the critical issues that were brought up during peer review. Nevertheless, the structural and functional data presented is of high quality and the findings on OSCA1.2 will be of interest to anyone working in the fields of mechanosensation, sensory biology, and ion channels.

    1. Reviewer #1 (Public Review):

      Summary:

      In the current manuscript, the authors find distinct roles for the calcium sensors Syt7 and Doc2alpha in the regulation of asynchronous release and calcium-dependent synaptic vesicle docking in hippocampal neurons. The authors data indicate that Doc2 functions in activating a component of asynchronous release beginning with the initial stimulus, while Syt7 does not appear to have a role at this early stage. A role for Syt7 in supporting both synchronous and asynchronous release appears during stimulation trains, where Syt7 is proposed to promote synaptic vesicle docking or capture during stimulation. Doc2 mutants show facilitation initially during a train and display higher levels of synchronous release initially, before reaching a similar plateau to controls later in the train. The authors contribute the increased synchronous release in Doc2 mutants to Syt1 having access to more SVs that can fuse synchronously. In contrast, Syt7 mutants show depression during a train, and continue to decline during stimulation. The authors contribute this to a role for Syt7 in promoting calcium-dependent SV docking and capture that feeds SVs to both synchronous and asynchronous fusion pathways. Importantly, phenotypes of a double Doc2/Syt7 mutant collapse onto the Doc2 phenotype, suggesting the two proteins are not additive in their role in supporting distinct aspects of SV release. Rapid freeze EM after stimulation provides support for a role for Syt7 in SV docking/capture at release sites, as they display less docked SVs after stimulation. In the case of Doc2, EM reveals fewer SVs fusion pits later during a stimulation, consistent with fewer asynchronous fusion events. The authors also provide modeling that supports aspects of their conclusions from the experimental data. I cannot evaluate the modeling data or the specific experimental subtlities of the GluSnFR quantification approach, as these are outside of my reviewer expertise.

      Strengths:

      The use of multiple approaches (optical imaging, physiology, rapid freeze EM, modeling, double mutant analysis) provides compelling support for distinct roles of the two proteins in regulating SV release.

      Weaknesses:

      Some of the phenotypes for both Doc2 and Syt7 mutants have been reported in the authors' prior publications. It is not clear how well the GluSnFR approach is for accurately separating synchronous versus asynchronous release kinetics. The authors also tend to overstate the significance of the two proteins for asynchronous release in general, as a significant fraction of this release component is still intact in the double mutant, indicating these two proteins are only part of the asynchronous release mechanism.

    1. Reviewer #1 (Public Review):

      This fascinating paper by A.L. Schneider et al. describes voyAGEr, a shiny-based interface for easy exploration of the GTEx dataset by non- or novice programmers. Importantly, voyAGEr is open source and available from github, which could greatly accelerate additional development and further uses of this interesting tool.

      The authors developed a pipeline for modeling age-related changes in gene expression in the GTEx data called ShARP-LM, fitting a linear model for age, sex and age&sex interaction terms. This pipeline underlies the later analyses that can be applied within voyAGEr. These analyses are labeled by tissue so that users can easily begin a query based on a tissue or a gene of possible interest.

      voyAGEr implements many kinds of interesting R-based tools such as pathway overrepresentation analysis and gene co-expression module analysis, in a way that akes these approaches accessible to non-bioinformaticist aging researchers.

      As the tidal wave of publicly available large, high-dimensional datasets such as transcriptomes continues to grow exponentially, the usefulness of tools such as voyAGEr will only increase. While test users may be able to imagine features or refinements they wish were already present, due to the open source approach they or anyone else including but not limited to the present authors can implement additional features in the future. I look forward to using this tool and to staying abreast of its future development.

      Overall, this study describes a new tool of interest to the field. The manuscript is clearly written overall, with a few minor suggested corrections, as noted below. The figures and supplementary information are all clear and all add to the manuscript.

    1. Reviewer #2 (Public Review):

      Summary: In the revised manuscript, the authors aim to investigate brain-wide activation patterns following administration of the anesthetics ketamine and isoflurane, and conduct comparative analysis of these patterns to understand shared and distinct mechanisms of these two anesthetics. To this end, they perform Fos immunohistochemistry in perfused brain sections to label active nuclei, use a custom pipeline to register images to the ABA framework and quantify Fos+ nuclei, and perform multiple complementary analyses to compare activation patterns across groups.

      In the latest revision, I am happy to say that the authors have greatly improved their manuscript. The data are now well analyzed and the experiments fully described. They addressed all of my concerns. It is an interesting study.

    1. Dr. Koichi Kawakami (National Institute of Genetics, Japan)ZFIN: ZDB-ALT-100915-1

      DOI: 10.1016/j.cub.2024.02.003

      Resource: (ZFIN Cat# ZDB-ALT-100915-1,RRID:ZFIN_ZDB-ALT-100915-1)

      Curator: @abever99

      SciCrunch record: RRID:ZFIN_ZDB-ALT-100915-1


      What is this?

    1. Reviewer #1 (Public Review):

      Summary:

      In the paper "Disentangling the relationship between cancer mortality and COVID-19", the authors study whether the number of deaths in cancer patients in the USA went up or down during the first year (2020) of the COVID-19 pandemic. They found that the number of deaths with cancer mentioned on the death certificate went up, but only moderately. In fact, the excess with-cancer mortality was smaller than expected if cancer had no influence on the COVID mortality rate and all cancer patients got COVID with the same frequency as in the general population. The authors conclude that the data show no evidence of cancer being a risk factor for COVID and that the cancer patients were likely actively shielding themselves from COVID infections.

      Strengths:

      The paper studies an important topic and uses sound statistical and modeling methodology. It analyzes both, deaths with cancer listed as the primary cause of death, as well as deaths with cancer listed as one of the contributing causes. The authors argue, correctly, that the latter is a more important and reliable indicator to study relationships between cancer and COVID. The authors supplement their US-wide analysis by analysing three states separately.

      Weaknesses:

      The main findings of the paper can be summarized as six numbers. Nationally, in 2022, multiple-cause cancer deaths went up by 2%, Alzheimer's deaths by 31%, and diabetes deaths by 39%. At the same time, assuming no relationship between these diseases and either Covid infection risk or Covid mortality risk, the deaths should have gone up by 7%, 46%, and 28%. The authors focus on cancer deaths and as 2% < 7%, conclude that cancer is not a risk factor for COVID and that cancer patients must have "shielded" themselves against Covid infections.

      However, I did not find any discussion of the other two diseases. For diabetes, the observed excess was 39% instead of "predicted by the null model" 28%. I assume this should be interpreted as diabetes being a risk factor for Covid deaths. I think this should be spelled out, and also compared to existing estimates of increased Covid IFR associated with diabetes.

      And what about Alzheimer's? Why was the observed excess 31% vs the predicted 46%? Is this also a shielding effect? Does the spring wave in NY provide some evidence here? Why/how would Alzheimer's patients be shielded? In any case, this needs to be discussed and currently, it is not.

    1. Reviewer #1 (Public Review):

      Summary:

      This study presents fundamental new insights into vesicular monoamine transport and the binding pose of the clinical drug tetrabenazine (TBZ) to the mammalian VMAT2 transporter. Specifically, this study reports the first structure for the mammalian VMAT (SLC18) family of vesicular monoamine transporters. It provides insights into the mechanism by which this inhibitor traps VMAT2 into a 'dead-end' conformation. The structure also provides some evidence for a novel gating mechanism within VMAT2, which may have wider implications for understanding the mechanism of transport in the wider SLC18 family.

      Strengths:

      The structure is high quality, and the method used to determine the structure via fusing mVenus and the anti-GFP nanobody to the amino and carboxyl termini is novel. The binding and transport data are convincing and provide new insights into the role of conserved side chains within the SLC18 members. The binding position of TBZ is of high value, given its role in treating Huntington's chorea and for being a 'dead-end' inhibitor for VMAT2.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript from Mukherjee et al examines potential connections between telomere length and tumor immune responses. This examination is based on the premise that telomeres and tumor immunity have each been shown to play separate, but important, roles in cancer progression and prognosis as well as prior correlative findings between telomere length and immunity. In keeping with a potential connection between telomere length and tumor immunity, the authors find that long telomere length is associated with reduced expression of the cytokine receptor IL1R1. Long telomere length is also associated with reduced TRF2 occupancy at the putative IL1R1 promoter. These observations lead the authors towards a model in which reduced telomere occupancy of TRF2 - due to telomere shortening - promotes IL1R1 transcription via recruitment of the p300 histone acetyltransferase. This model is based on earlier studies from this group (i.e. Mukherjee et al., 2019) which first proposed that telomere length can influence gene expression by enabling TRF2 binding and gene transactivation at telomere-distal sites. Further mechanistic work suggests that G-quadruplexes are important for TRF2 binding to IL1R1 promoter and that TRF2 acetylation is necessary for p300 recruitment. Complementary studies in human triple-negative breast cancer cells add potential clinical relevance but do not possess a direct connection to the proposed model. Overall, the article presents several interesting observations, but disconnection across central elements of the model and the marginal degree of the data leave open significant uncertainty regarding the conclusions.

      Strengths:<br /> Many of the key results are examined across multiple cell models.

      The authors propose a highly innovative model to explain their results.

      Weaknesses:<br /> Although the authors attempt to replicate most key results across multiple models, the results are often marginal or appear to lack statistical significance. For example, the reduction in IL1R1 protein levels observed in HT1080 cells that possess long telomeres relative to HT1080 short telomere cells appears to be modest (Supplementary Figure 1I). Associated changes in IL1R1 mRNA levels are similarly modest.

      Related to the point above, a lack of strong functional studies leaves an open question as to whether observed changes in IL1R1 expression across telomere short/long cancer cells are biologically meaningful.

      Statistical significance is described sporadically throughout the paper. Most major trends hold, but the statistical significance of the results is often unclear. For example, Figure 1A uses a statistical test to show statistically significant increases in TRF2 occupancy at the IL1R1 promoter in short telomere HT1080 relative to long telomere HT1080. However, similar experiments (i.e. Figure 2B, Figure 4A - D) lack statistical tests.

    1. Reviewer #1 (Public Review):

      This manuscript presents an extremely exciting and very timely analysis of the role that the nucleosome acidic patch plays in SWR1-catalyzed histone exchange. Intriguingly, SWR1 loses activity almost completely if any of the acidic patches are absent. To my knowledge, this makes SWR1 the first remodeler with such a unique and pronounced requirement for the acidic patch. The authors demonstrate that SWR1 affinity is dramatically reduced if at least one of the acidic patches is absent, pointing to a key role of the acidic patch in SWR1 binding to the nucleosome. The authors also pinpoint a specific subunit - Swc5 - that can bind nucleosomes, engage the acidic patch, and obtain a cryo-EM structure of Swc5 bound to a nucleosome. They also identify a conserved arginine-rich motif in this subunit that is critical for nucleosome binding and histone exchange in vitro and for SWR1 function in vivo. The authors provide evidence that suggests a direct interaction between this motif and the acidic patch.

      Strengths:<br /> The manuscript is well-written and the experimental data are of outstanding quality and importance for the field. This manuscript significantly expands our understanding of the fundamentally important and complex process of H2A.Z deposition by SWR1 and would be of great interest to a broad readership.

    1. A useful model for note-taking is that of system 1 and 2 thinking. Try to do as much as possible in system 1. So, most work is done without much work and effort. Chris places his hypothesis.is workflow within system 1.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This work shows, based on basic laboratory investigations of in-vitro-grown bacteria as well as human bone samples, that conventional bacterial culture can substantially underrepresent the quantity of bacteria in infected tissues. This has often been mentioned in the literature, however, relatively limited data has been provided to date. This manuscript compares culture to a digital droplet PCR approach, which consistently showed greater levels of bacteria across the experiments (and for two different strains).

      Strengths:<br /> Consistency of findings across in vitro experiments and clinical biopsies. There are real-world clinical implications for the findings of this study.

      Weaknesses:<br /> No major weaknesses. Only three human samples were analyzed, although the results are compelling.

    1. Reviewer #1 (Public Review):

      Summary:

      This study, titled "Enhancing Bone Regeneration and Osseointegration using rhPTH(1-34) and Dimeric R25CPTH(1-34) in an Osteoporotic Beagle Model," provides valuable insights into the therapeutic effects of two parathyroid hormone (PTH) analogs on bone regeneration and osseointegration. The research is methodologically sound, employing a robust animal model and a comprehensive array of analytical techniques, including micro-CT, histological/histomorphometric analyses, and serum biochemical analysis.

      Strengths:

      The use of a large animal model, which closely mimics postmenopausal osteoporosis in humans, enhances the study's relevance to clinical applications. The study is well-structured, with clear objectives, detailed methods, and a logical flow from introduction to conclusion. The findings are significant, demonstrating the potential of rhPTH(1-34) and dimeric R25CPTH(1-34) in enhancing bone regeneration, particularly in the context of osteoporosis.

      Weaknesses:

      There are no major weaknesses.

    1. Reviewer #1 (Public Review):

      • A summary of what the authors were trying to achieve.

      The authors cultured pre- and Post-vaccine PBMCs with overlapping peptides encoding S protein in the presence of IL-2, IL-7, and IL-15 for 10 days, and extensively analyzed the T cells expanded during the culture; by including scRNAseq, scTCRseq, and examination of reporter cell lines expressing the dominant TCRs. They were able to identify 78 S epitopes with HLA restrictions (by itself represents a major achievement) together with their subset, based on their transcriptional profiling. By comparing T cell clonotypes between pre- and post-vaccination samples, they showed that a majority of pre-existing S-reactive CD4+ T cell clones did not expand by vaccinations. Thus, the authors concluded that highly-responding S-reactive T cells were established by vaccination from rare clonotypes.

      • An account of the major strengths and weaknesses of the methods and results.

      Strengths:

      • Selection of 4 "Ab sustainers" and 4 "Ab decliners" from 43 subjects who received two shots of mRNA vaccinations.<br /> • Identification of S epitopes of T cells together with their transcriptional profiling. This allowed the authors to compare the dominant subsets between sustainers and decliners.

      Weaknesses were properly addressed in the revised manuscript, and I do not have any additional concerns.

    1. Reviewer #1 (Public Review):

      In the present study, the authors carefully evaluated the metabolic effects of intermittent fasting on normal chow and HFD fed mice and reported that intermittent fasting induces beiging of subcutaneous white adipose tissue. By employing complementary mouse models, the authors provided compelling evidence to support a mechanism through ILC3/IL-22/IL22R pathway. They further performed comprehensive single-cell sequencing analyses of intestinal immune cells from lean, obese, obese undergone intermittent fasting mice and revealed altered interactome in intestinal myeloid cells and ILC3s by intermittent fasting via activating AhR. Overall, this is a very interesting and timely study uncovering a novel connection between intestine and adipose tissue in the context of executing metabolic benefits of intermittent fasting.

      (1) The authors showed increased plasma IL-22 and its expression in intestine. Are intestinal ILC3s the main source of plasma IL-22?

      (2) The authors transplanted intestinal ILC3s from NCD mice to DIO mice and showed significant metabolic improvements. However, in Fig. 1, intermittent fasting increased IL-22-positive ILC3s proportion rather than changing the total number. Please clarify whether this transplantation is due to increasing ILC3s number or introducing more IL-22 positive ILC3s (which are decreased in DIO). Are these transplanted ILC3s by default homing to intestine rather than to other tissues?

      (3) The authors adopted cold challenge at 4 degree for 6 hours to assess beiging in subcutaneous WAT and showed difference in core temperature. However, thermogenesis in this acute cold challenge is mainly by brown adipose tissue. Beiging is a chronic and adaptive response. Based on the data in WAT, there is a beiging phenotype, but the core body temperature in acute cold challenge is not an accurate readout. It would be a missed opportunity by not evaluating thermogenic activity in BAT.<br /> More browning genes should be included to strengthen the beiging phenotype of WAT. Moreover, inflammation in WAT can be examined to provide a whole picture of adipose tissue remodeling through this pathway.

      (4) For the SVF beige adipocyte differentiation, 100 ng/mL IL-22 was used. This is highly above the physiological concentration at ~5 pg/mL. Please justify this high concentration used.

      The authors showed increased Ucp1 and Cidea expression by IL-22 treatment in SVFs. Please be aware that these increases are likely due to boosted adipogenesis as told by the morphology. Please examine more adipogenic markers to confirm. Is this higher adipogenesis caused by the high concentration of IL-22?<br /> In line 201, the authors drew the conclusion that IL-22 increased SVF beige differentiation. To fully support this conclusion, the authors should assure adipogenesis at the same baseline and then compare beiging, or examine the effect of IL-22 on normal adipogenesis to compare with beige differentiation.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, Maestri et al. use an integrative framework to study the evolutionary history of coronaviruses. They find that coronaviruses arose recently rather than having undergone ancient codivergences with their mammalian hosts. Furthermore, recent host switching has occurred extensively, but typically between closely related species. Humans have acted as an intermediate host, especially between bats and other mammal species.

      Strengths:<br /> The study draws on a range of data sources to reconstruct the history of virus-host codivergence and host switching. The analyses include various tests of robustness and evaluations through simulation.

      Weaknesses:<br /> The analyses are limited to a single genetic marker (RdRp) from coronaviruses, but using other sections of the genome might lead to different conclusions. The genetic marker also lacks resolution for recent divergences, which precludes the detailed examination of recent host switches. Careful and detailed reconstruction of the timescale would be helpful for clarifying the evolutionary history of coronaviruses alongside their hosts.

    1. Reviewer #1 (Public Review):

      Anobile and colleagues present a manuscript detailing an account of numerosity processing with an appeal to a two-channel model. Specifically, the authors propose that the perception of numerosity relies on (at least) two distinct channels for small and large numerosities, which should be evident in subject reports of perceived numerosity. To do this, the authors had subjects reproduce visual dot arrays of numerosities ranging from 8 to 32 dots, by having subjects repetitively press a response key at a pre-instructed rate (fast or slow) until the number of presses equaled the number of perceived dots. The subjects performed the task remarkably well, yet with a general bias to overestimate the number of presented dots. Further, no difference was observed in the precision of responses across numerosities, providing evidence for a scalar system. No differences between fast and slow tapping were observed. For behavioral analysis, the authors examined correlations between the Weber fractions for all presented numerosities. Here, it was found that the precision at each numerosity was similar to that at neighboring numerosities, but less similar to more distant ones. The authors then went on to conduct PCA and clustering analyses on the weber fractions, finding that the first two components exhibited an interaction with the presented numerosity, such that each were dominant at distinct lower and upper ranges and further well-fit by a log-Gaussian model consistent with the channel explanation proposed at the beginning.

      Overall, the authors provide compelling evidence for a two-channel system supporting numerosity processing that is instantiated in sensorimotor processes. A strength of the presented work is the principled approach the authors took to identify mechanisms, as well as the controls put in place to ensure adequate data for analysis.

      One remaining question regards the secondary timing task that was used as a control. There may be interesting findings here to pursue, and so I encourage the authors or other researchers to examine those findings and explore further studies there as well.

    1. Reviewer #1 (Public Review):

      Lim W et al. investigated the mechanisms underlying doxorubicin resistance in triple negative breast cancer cells (TNBC). They use a new multifluidic cell culture chamber to grow MB-231 TNBC cells in the presence of doxorubicin and identify a cell population of large, resistant MB-231 cells they term L-DOXR cells. These cells maintain resistance when grown as a xenograft model, and patient tissues also display evidence for having cells with large nuclei and extra genomic content. RNA-seq analysis comparing L-DOXR cells to WT MB-231 cells revealed upregulation of NUPR1. Inhibition or knockdown of NUPR1 resulted in increased sensitivity to doxorubicin. NUPR1 expression was determined to be regulated via HDAC11 via promoter acetylation. The data presented could be used as a platform to understand resistance mechanisms to a variety of cancer therapeutics.

    1. Reviewer #1 (Public Review):

      Xie and Colleagues propose here to investigate the mechanism by which exercise inhibits bone metastasis progression. The authors describe that osteocyte, sensing mechanical stimulation generated by exercise, inhibit NSCLC cell proliferation and sustain the dormancy thereof by releasing sEVs with tumor suppressor microRNAs. Furthermore, mechanical loading of the tibia inhibited the bone metastasis progression of NSCLC. Interestingly, exercise preconditioning effectively suppressed bone metastasis progression.

    1. Reviewer #1 (Public Review):

      Summary:<br /> TRIP13/Pch2 is a conserved essential regulator of meiotic recombination from yeast to humans. In this manuscript, the authors generated TRIP13 null mice and Flag-tagged TRIP13 knock-in mice to study its role in meiosis. They demonstrate that TRIP13 regulates MORMA domain proteins and is essential for meiotic completion and fertility. The main impact of this manuscript is its clarification of the in vivo function of TRIP13 during mouse meiosis and previously unrecognized role as a dose-sensitive regulator of meiosis.

      Strengths:<br /> Two previously reported Trip13 mutations in mice are both hypomorphic alleles with distinct phenotypes, precluding a conclusion on its function. This study for the first time generated the TRIP13 null mice, definitively revealed the function of TRIP13 in meiosis. The authors also show novel localization of TRIP13 at SC and its independence from the axial element components. The finding of dose-sensitive regulation of meiosis by TRIP13 has implication in understanding human meiosis and disease phenotypes.

      The results support the main conclusions and advance the understand of meiosis in the germline.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In previous work, the Elias group has shown that leptin-sensing PMv neurons make connections with the neuroendocrine reproductive axis and are involved in reproductive function/s. Sáenz de Miera et al. build on this body of work to investigate the sufficiency of leptin sensing PMv neurons to evoke the release of luteinizing hormone. The team further investigates how glutamate signaling from leptin-sensing neurons can influence pubertal timing in females, along with mature estrous cycles. Genetic ablation of Slc17a6 (Vglut2) from LepRb-expressing cells resulted in a delay of the first estrus cycle post-pubertal transition, along with a significantly lengthened estrous cycle in mature females. However, this deficit did not lengthen the latency to the birth of the first litter in experimental dams. Restoration of leptin signaling in LepRb PMv neurons was previously shown to induce puberty and instate reproductive function in LepRb knock-out female mice (Mahany et al., 2018). Here, Sáenz de Miera et al. use a combined genetic and viral strategy to demonstrate that glutamate signaling in LepRb PMv neurons is required for sexual maturation in LepRb knock-out female mice.

      Strengths:<br /> Most of the experiments performed in this manuscript are well-justified and rigorously tested. The genetic method to simultaneously remove glutamate signaling and restore the leptin receptor in LepRb PMv neurons was well executed and showed that glutamate signaling in LepRb PMv neurons is necessary for leptin-dependent fertility.

      Weaknesses:<br /> Analysis of experimentally induced luteinizing hormone release could be confounded by spontaneous pulses of luteinizing hormone that are independent of LepRb PMv neurons.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors employed a combinatorial CRISPR-Cas9 knockout screen to uncover synthetically lethal kinase genes that could play a role in drug resistance to kinase inhibitors in triple-negative breast cancer. The study successfully reveals FYN as a mediator of resistance to depletion and inhibition of various tyrosine kinases, notably EGFR, IGF-1R, and ABL, in triple-negative breast cancer cells and xenografts. Mechanistically, they demonstrate that KDM4 contributes to the upregulation of FYN and thereby is an important mediator of drug resistance. All together, these findings suggest FYN and KDM4A as potential targets for combination therapy with kinase inhibitors in triple-negative breast cancer. Moreover, the study may also have important implications for other cancer types and other inhibitors, as the authors suggest that FYN could be a general feature of drug-tolerant persister cells.

      Strengths:<br /> (1) The authors used a large combination matrix of druggable tyrosine kinase gene knockouts, enabling studying of co-dependence of kinase genes. This approach mitigates off-target effects typically associated with kinase inhibitors, enhancing the precision of the findings.

      (2) The authors demonstrate the importance of FYN in drug resistance in multiple ways. They demonstrate synergistic interactions using both knockouts and inhibitors, while also revealing its transcriptional upregulation upon treatment, strengthening the conclusion that FYN plays a role in the resistance.

      (3) The study extends its impact by demonstrating the potent in vivo efficacy of certain combination treatments, underscoring the clinical relevance of the identified strategies.

      Weaknesses:<br /> (1) The methods and figure legends are incomplete, posing a barrier to the reproducibility of the study and hindering a comprehensive understanding and accurate interpretation of the results.

      (2) The authors make use of a large quantity of public data (Fig. 2D/E, Fig. 3F/L/M, Fig 4C, Fig 5B/H/I), whereas it would have strengthened the paper to perform these experiments themselves. While some of this data would be hard to generate (e.g. patient data) other data could have been generated by the authors. The disadvantage of the use of public data is that it merely comprises associations, but does not have causal/functional results (e.g. FYN inhibition in the different cancer models with various drugs). Moreover, by cherry-picking the data from public sources, the context of these sources is not clear to the reader, and thus harder to interpret correctly. For example, it is not directly clear whether the upregulation of FYN in these models is a very selective event or whether it is part of a very large epigenetic re-programming, where other genes may be more critical. While some of the used data are from well-known curated databases, others are from individual papers that the reader should assess critically in order to interpret the data. Sometimes the public data was redundant, as the authors did do the experiments themselves (e.g. lung cancer drug-tolerant persisters), in this case, the public data could also be left out.

      More importantly, the original sources are not properly cited. While the GEO accession numbers are shown in a supplementary table, the articles corresponding to this data should be cited in the main text, and preferably also in the figure legend, to clarify that this data is from public sources, which is now not always the case (e.g. line 224-226). If these original papers do already mention the upregulation of FYN, and the findings from the authors are thus not original, these findings should be discussed in the Discussion section instead of shown in the Results.

      (3) The claim in the abstract (and discussion) that the study "highlights FYN as broadly applicable mediator of therapy resistance and persistence", is not sufficiently supported by the results. The current study only shows functional evidence for this for an EGFR, IGF1R, and Abl inhibitor in TNBC cells. Further, it demonstrates (to a limited extent) the role of FYN in gefitinib and osimertinib resistance (also EGFR inhibitors) in lung cancer cells. Thus, the causal evidence provided is only limited to a select subset of tyrosine kinase inhibitors in two cancer types. While the authors show associations between FYN and drug resistance in other cancer types and after other treatments, these associations are not solid evidence for a causal connection as mentioned in this statement. Epigenetic reprogramming causing drug resistance can be accompanied by altered gene expression of many genes, and the upregulation of FYN may be a consequence, but not a cause of the drug resistance. Therefore, the authors should be more cautious in making such statements about the broad applicability of FYN as a mediator of therapy resistance.

      (4) The rationale for picking and validating FYN as the main candidate gene over other genes such as FGFR2, FRK2, and TEK is not clear.<br /> a. While gene pairs containing FGFR2 knockouts seemed to be equally effective as FYN gene pairs in the primary screening, these could not be validated in the validation experiment. It is unclear whether multiple individual or a pool of gRNAs were used for this validation, or whether only 1 gRNA sequence was picked per gene for this validation. If only 1 gRNA per gene was used, this likely would have resulted in variable knockout efficiencies. Moreover, the T7 endonuclease assay may not have been the best method to check knockout efficiency, as it only implies endonuclease activity around a gene (but not to the extent of indels that can cause frameshifts, such as by TIDE analysis, or extent of reduction in protein levels by western blot).<br /> b. Moreover, FRK2 and TEK, also demonstrated many synergistic gene pairs in the primary screen. However, many of these gene pairs were not included in the validation screening. The selection criteria of candidate gene pairs for validation screening is not clear. Still, TEK-ABL2 was also validated as a strong hit in the validation screen. The authors should better explain the choice of FYN over other hits, and/or mention that TEK and FRK2 may also be important targets for combination treatment that can be further elucidated.

      (5) On several occasions, the right controls (individual treatments, performed in parallel) are not included in the figures. The authors should include the responses to each of the single treatments, and/or better explain the normalization that might explain why the controls are not shown.<br /> a. Figure 2G: The effect of PP2 treatment, without combined treatment, is not shown.<br /> b. Figure 2H/3G: The effect of the knockouts on growth alone, compared to sgGFP, is not demonstrated. It is unclear whether the viability of knockouts is normalized to sgGFP, or to each untreated knockout.<br /> c. Figure 2L: The effect of SB203580 as a single treatment is not shown.

      (6) The study examines the effects at a single, relatively late time point after treatment with inhibitors, without confirming the sequential impact on KDM4A and FYN. The proposed sequence of transcriptional upregulation of KDM4A followed by epigenetic modifications leading to FYN upregulation would be more compellingly supported by demonstrating a consecutive, rather than simultaneous, occurrence of these events. Furthermore, the protein level assessment at 48 hours (for RNA levels not clearly described), raises concerns about potential confounding factors. At this late time point, reduced cell viability due to the combination treatment could contribute to observed effects such as altered FYN expression and P38 MAPK phosphorylation, making it challenging to attribute these changes solely to the specific and selective reduction of FYN expression by KDM4A.

      (7) The cut-off for considering interactions "synergistic" is quite low. The manual of the used "SynergyFinder" tool itself recommends values above >10 as synergistic and between -10 and 10 as additive (https://synergyfinder.fimm.fi/synergy/synfin_docs/). Here, values between 5-10 are also considered synergistic. Caution should be taken when discussing those results. Showing the actual dose response (including responses to each single treatment) may be required to enable the reader to critically assess the synergy, along with its standard deviation.

      (8) As the effect size on Western blots is quite limited and sometimes accompanied by differences in loading control, these data should be further supported by quantifications of signal intensities of at least 3 biological replicates (e.g. especially Figure 3A/5A). The figure legends should also state how many independent experiments the blots are representative of.

      (9) While the article provides mechanistic insights into the likely upregulation of FYN by KDM4A, this constitutes only a fragment of the broader mechanism underlying drug resistance associated with FYN. The study falls short in investigating the causes of KDM4A upregulation and fails to explore the downstream effects (except for p38 MAPK phosphorylation, which may not be complete) of FYN upregulation that could potentially drive sustained cell proliferation and survival. These omissions limit the comprehensive understanding of the complete molecular pathway, and the discussion section does not address potential implications or pathways beyond the identified KDM4A-FYN axis. A more thorough exploration of these aspects would enhance the study's contribution to the field.

      (10) FYN has been implied in drug resistance previously, and other mechanisms of its upregulation, as well as downstream consequences, have been described previously. These were not evaluated in this paper, and are also not discussed in the discussion section. Moreover, the authors did not investigate whether any of the many other mechanisms of drug resistance to EGFR, IGF1R, and Abl inhibitors that have been described, could be related to FYN as well. A more comprehensive examination of existing literature and consideration of alternative or parallel mechanisms in the discussion would enhance the paper's contribution to understanding FYN's involvement in drug resistance.

    1. Reviewer #1 (Public Review):

      In this study, Li et al., report that FBXO24 contributes to sperm development by modulating alternative mRNA splicing and MIWI degradation during spermiogenesis. The authors demonstrated that FBXO24 deficiency impairs sperm head formation, midpiece compartmentalization, and axonemal/peri-axonemal organization in mature sperm, which causes sperm motility defects and male infertility. In addition, FBXO24 interacts with various mRNA splicing factors, which causes altered splicing events in Fbxo24-null round spermatids. Interestingly, FBXO24 also modulates MIWI levels via its polyubiquitination in round spermatids. Thus, the authors address that FBXO24 modulates global mRNA levels by regulating piRNA-mediated MIWI function and splicing events in testicular haploid germ cells.

      This study is performed with various experimental approaches to explore and elucidate underlying molecular mechanisms for the FBXO24-mediated sperm defects during germ cell development. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. In addition, the findings in this study are useful for understanding the physiological and developmental significance of FBXO24 in the male germ line, which can provide insight into impaired sperm development and male infertility.

      In the revised manuscript, the authors address most of the concerns raised in the previous review. The following are representative remaining points.

      • Quantification of the defective, vacuolar mitochondria (80%) and missing annulus (30%) was not shown in the figures or described in the results as well as in a few other figures.

    1. Reviewer #1 (Public Review):

      The authors assess the effectiveness of electroporating mRNA into male germ cells to rescue the expression of proteins required for spermatogenesis progression in individuals where these proteins are mutated or depleted. To set up the methodology, they first evaluated the expression of reporter proteins in wild-type mice, which showed expression in germ cells for over two weeks. Then, they attempted to recover fertility in a model of late spermatogenesis arrest that produces immotile sperm. By electroporating the mutated protein, the authors recovered the motility of ~5% of the sperm, although the sperm regenerated was not able to produce offspring using IVF.

      This is a comprehensive evaluation of the mRNA methodology with multiple strengths. First, the authors show that naked synthetic RNA, purchased from a commercial source or generated in the laboratory with simple methods, is enough to express exogenous proteins in testicular germ cells. The authors compared RNA to DNA electroporation and found that germ cells are efficiently electroporated with RNA, but not DNA. The differences between these constructs were evaluated using in vivo imaging to track the reporter signal in individual animals through time. To understand how the reporter proteins affect the results of the experiments, the authors used different reporters: two fluorescent (eGFP and mCherry) and one bioluminescent (Luciferase). Although they observed differences among reporters, in every case expression lasted for at least two weeks.

      The authors used a relevant system to study the therapeutic potential of RNA electroporation. The ARMC2-deficient animals have impaired sperm motility phenotype that affects only the later stages of spermatogenesis. The authors showed that sperm motility was recovered to ~5%, which is remarkable due to the small fraction of germ cells electroporated with RNA with the current protocol. The 3D reconstruction of an electroporated testis using state-of-the-art methods to show the electroporated regions is compelling.

      The main weakness of the manuscript is that although the authors manage to recover motility in a small fraction of the sperm population, it is unclear whether the increased sperm quality is substantial to improve assisted reproduction outcomes. The quality of the sperm was not systematically evaluated in the manuscript, with the endpoints being sperm morphology and sperm mobility.

      Some key results, such as the 3D reconstruction of the testis and the recovery of sperm motility, are qualitative given the low replicate numbers or the small magnitude of the effects. The presentation of the sperm motility data could have been clearer as well. For example, on day 21 after Armc2-mRNA electroporation, only one animal out of the three tested showed increased sperm motility. However, it is unclear from Figure 11A what the percentage of sperm motility for this animal is since the graph shows a value of >5% and the reported aggregate motility is 4.5%. It would have been helpful to show all individual data points in Figure 11A.

      The expression of the reporter genes is unambiguous; however, better figures could have been presented to show cell type specificity. The DAPI staining is diffused, and it is challenging to understand where the basement membranes of the tubules are. For example, in Figures 7B3 and 7E3, the spermatogonia seems to be in the middle of the seminiferous tubule. The imaging was better for Figure 8. Suboptimal staining appears to lead to mislabeling of some germ cell populations. For example, in Supplementary Figure 4A3, the round spermatid label appears to be labeling spermatocytes. Also, in some instances, the authors seem to be confusing, elongating spermatids with spermatozoa, such as in the case of Supplementary Figures 4D3 and D4.

      The characterization of Armc2 expression could have been improved as well. The authors show a convincing expression of ARMC2 in a few spermatids/sperm using a combination of an anti-ARMC2 antibody and tubules derived from ARMC2 KO animals. At the minimum, one would have liked to see at least one whole tubule of a relevant stage.

      Overall, the authors show that electroporating mRNA can improve spermatogenesis as demonstrated by the generation of motile sperm in the ARMC2 KO mouse model.

    1. Reviewer #1 (Public Review):

      Summary:

      Asymptomatic malaria infections are frequent during the dry season and have been associated with lower cytoadherence of P. falciparum parasites and lower expression of variant surface antigens. The mechanisms underlying parasite adaptation during the low transmission season remain poorly understood. The authors previously established that members of the non-coding RNA RUF6 gene family, transcribed by RNA pol III, are required for expression of the main variant surface antigens in P. falciparum, PfEMP1, which drive parasite cytoadherence and pathogenicity. In this study, the authors investigated the contribution of RNA pol III transcription in the regulation of PfEMP1 expression in different clinical states, either symptomatic malaria cases during the wet season or asymptomatic infections during the dry season.

      By reanalyzing RNAseq data from a previous study in Mali, complemented with RT-qPCR on new samples collected in The Gambia, the authors first report the down-regulation of RNA pol III genes (tRNAs, RUF6) in P. falciparum isolates collected from asymptomatic individuals during the dry season, as compared to isolates from symptomatic (wet season) individuals. They also confirm the down-regulation of var (DBLalpha) gene expression in asymptomatic infection as compared to symptomatic malaria. Plasma analysis in the two groups in the Gambian study reveals higher Magnesium levels in the dry season as compared to wet season samples, pointing at a possible role of external factors. The authors tested the effect of MgCl2 supplementation on cultured parasites, as well as three other stimuli (temperature, low glucose, Ile deprivation), and showed that Ile deprivation and MgCl2 both induce down-regulation of RNA pol III transcription but not pol I or pol II (except the active var gene). Using RNAseq, they show that MgCl2 supplementation predominantly inhibits RNA pol III-transcribed genes, including the entire RUF6 family. Conditional depletion of Maf1 leads to the up-regulation of RNA pol III gene transcription, confirming that Maf1 is a RNA pol III inhibitor in P. falciparum, as described in other organisms. Quantitative mass spectrometry shows that Maf1 interacts with RNA pol III complex in the nucleus, and with distinct proteins including two phosphatases in the cytoplasm. Using the Maf1 cKD parasites, the authors document that the down-regulation of RNA pol III by MgCl2 is dependent on Maf1. Finally, they show that MgCl2 results in decreased cytoadherence of infected erythrocytes, associated with reduced PfEMP1 expression.

      Strengths:

      -The work is very well performed and presented.<br /> -The study uncovers a novel regulatory mechanism relying on RNA pol III-dependent regulation of variant surface antigens in response to external signals, which could contribute to parasite adaptation during the low transmission season.<br /> -Potential regulators of Maf1 were identified by mass spectrometry, including phosphatases, paving the way for future mechanistic studies.

      Weaknesses:

      -The signaling pathway upstream of Maf1 remains unknown. In eukaryotes, Maf1 is a negative regulator of RNA pol III and is regulated by external signals via the TORC pathway. Since TORC components are absent in the apicomplexan lineage, one central question that remains open is how Maf1 is regulated in P. falciparum. Magnesium is probably not the sole stimulus involved, as suggested by the observation that Ile deprivation also down-regulates RNA pol III activity.<br /> -The study does not address why MgCl2 levels vary depending on the clinical state. It is unclear whether plasma magnesium is increased during asymptomatic malaria or decreased during symptomatic infection, as the study does not include control groups with non-infected individuals. Along the same line, MgCl2 supplementation in parasite cultures was done at 3mM, which is higher than the highest concentrations observed in clinical samples.<br /> -Although the study provides biochemical evidence of Maf1 accumulation in the parasite nuclear fraction upon magnesium addition, this is not fully supported by the immunofluorescence experiments.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript presents the development of a new microscope method termed "open-top two-photon light sheet microscopy (OT-TP-LSM)". While the key aspects of the new approach (open top LSM and Two-photon microscopy) have been demonstrated separately, this is the first system of integrating the two. The integration provides better imaging depth than a single-photon excitation OT-LSM.

      Strengths:<br /> - Use of liquid prism to minimize the aberration induced by index mismatching is interesting and potentially helpful to other researchers in the field.<br /> - Use of propidium iodide (PI) provided a deeper imaging depth.

      Weaknesses:<br /> -None noted.

    1. Reviewer #1 (Public Review):

      This study examines whether the human brain uses a hexagonal grid-like representation to navigate in a non-spatial space constructed by competence and trustworthiness. To test this, the authors asked human participants to learn the levels of competence and trustworthiness for six faces by associating them with specific lengths of bar graphs that indicate their levels in each trait. After learning, participants were asked to extrapolate the location from the partially observed morphing bar graphs. Using fMRI, the authors identified brain areas where activity is modulated by the angles of morphing trajectories in six-fold symmetry. The strength of this paper lies in the question it attempts to address. Specifically, the question of whether and how the human brain uses grid-like representations not only for spatial navigation but also for navigating abstract concepts, such as social space, and guiding everyday decision-making. This question is of emerging importance.

      I acknowledge the authors' efforts to address the comments received. However, my concerns persist:

      (1) The authors contend that shorter reaction times correlated with increased distances between individuals in social space imply that participants construct and utilize two-dimensional representations. This method is adapted from a previous study by Park et al. Yet, there is a fundamental distinction between the two studies. In the prior work, participants learned relationships between adjacent individuals, receiving feedback on their decisions, akin to learning spatial locations during navigation. This setup leads to two different predictions: If participants rely on memory to infer relationships, recalling more pairs would be necessary for distant individuals than for closer ones. Conversely, if participants can directly gauge distances using a cognitive map, they would estimate distances between far individuals as quickly as for closer ones. Consequently, as the authors suggest, reaction times ought to decrease with increasing decision value, which, in this context, corresponds to distances. However, the current study allowed participants to compare all possible pairs without restricting learning experiences, rendering the application of the same methodology for testing two-dimensional representations inappropriate. In this study, the results could be interpreted as participants not forming and utilizing two-dimensional representations.

      (2) The confounding of visual features with the value of social decision-making complicates the interpretation of this study's results. It remains unclear whether the observed grid-like effects are due to visual features or are genuinely indicative of value-based decision-making, as argued by the authors. Contrary to the authors' argument, this issue was not present in the previous study (Constantinescu et al.). In that study, participants associated specific stimuli with the identities of hidden items, but these stimuli were not linked to decision-making values (i.e., no image was considered superior to another). The current study's paradigm is more akin to that of Bao et al., which the authors mention in the context of RSA analysis. Indeed, Bao et al. controlled the length of the bars specifically to address the problem highlighted here. Regrettably, in the current paradigm, this conflation remains inseparable.

      (3) While the authors have responded to comments in the public review, my concerns noted in the Recommendation section remain unaddressed. As indicated in my recommendations, there are aspects of the authors' methodology and results that I find difficult to comprehend. Resolving these issues is imperative to facilitate an appropriate review in subsequent stages.

      Considering that the issues raised in the previous comments remain unresolved, I have retained my earlier comments below for review.

      The weak points of this paper are that its findings are not sufficiently supporting their arguments, and there are several reasons for this:

      (1) Does the grid-like activity reflect 'navigation over the social space' or 'navigation in sensory feature space'? The grid-like representation in this study could simply reflect the transition between stimuli (the length of bar graphs). Participants in this study associated each face with a specific length of two bars, and the 'navigation' was only guided by the morphing of a bar graph image. Moreover, any social cognition was not required to perform the task where they estimate the grid-like activity. To make social decision-making that was conducted separately, we do not know if participants needed to navigate between faces in a social space. Instead, they can recall bar graphs associated with faces and compute the decision values by comparing the length of bars. Notably, in the trust game in this study, the competence and trustworthiness are not equally important to make a decision (Equation 1). The expected value is more sensitive to one over the other. This also suggests that the space might not reflect social values but the perceptual differences.

      (2) Does the brain have a common representation of faces in a social space? In this study, participants don't need to have a map-like representation of six faces according to their levels of social traits. Instead, they can remember the values of each trait. The evidence of neural representations of the faces in a 2-dimensional social space is lacking. The authors argued the relationship between the reaction times and the distances between faces provides evidence of the formation of internal representations. However, this can be found without the internal representation of the relationships between faces. If the authors seek internal representations of the faces in the brain, it would be important to show that this representation is not simply driven by perceptual differences between bar graphs that participants may recall in association with each face.

      Considering these caveats, it is hard for me to agree if the authors provide evidence to support their claims.

    1. Reviewer #1 (Public Review):

      In this systematic and elegant structure-function analysis study, the authors delve into the intricate involvement of syntaxin 1 in various pivotal stages of synaptic vesicle priming and fusion. The authors use an original and fruitful approach based on the side-by-side comparison of the specific contributions of the two isoforms syntaxin 1 and syntaxin 2, and their respective SNARE domains, in priming, spontaneous and Ca2+-dependent glutamate release. The experimental approach, mastered by the authors, offers an ideal means of unraveling the molecular roles played by syntaxins. Although it is not easy to come up with a model explaining all the observed phenotypes, the authors carefully restrict their conclusions to the role of the C-terminal half of the syntaxin1 C-terminal SNARE domain in the maintenance of the RRP and the clamping of neurotransmitter release. The study is carefully carried out, the conclusions are supported by high quality data and the manuscript is clearly written. In addition, the study clearly set new questions than open new paths for future experimental work.

    1. Reviewer 1 Public Review:

      Summary:

      The authors set out to clarify the molecular mechanism of endocytosis (re-uptake) of synaptic vesicle (SV) membrane in the presynaptic terminal following release. They have examined the role of presynaptic actin, and of the actin regulatory proteins diaphanous-related formins ( mDia1/3), and Rho and Rac GTPases in controlling the endocytosis. They successfully show that presynaptic membrane-associated actin is required for normal SV endocytosis in the presynaptic terminal, and that the rate of endocytosis is increased by activation of mDia1/3. They show that RhoA activity and Rac1 activity act in a partially redundant and synergistic fashion together with mDia1/3 to regulate the rate of SV endocytosis. The work adds substantially to our understanding of the molecular mechanisms of SV endocytosis in the presynaptic terminal.

      Strengths:

      The authors use state-of-the-art optical recording of presynaptic endocytosis in primary hippocampal neurons, combined with well-executed genetic and pharmacological perturbations to document effects of alteration of actin polymerization on the rate of SV endocytosis. They show that removal of the short amino-terminal portion of mDia1 that associates with the membrane interrupts the association of mDia1 with membrane actin in the presynaptic terminal. They then use a wide variety of controlled perturbations, including genetic modification of the amount of mDia1/3 by knock-down and knockout, combined with inhibition of activity of RhoA and Rac1 by pharmacological agents, to document the quantitative importance of each agent, and their synergistic relationship in regulation of endocytosis.

      The analysis is augmented by ultrastructural analyses that demonstrate the quantitative changes in numbers of synaptic vesicles and in uncoated membrane invaginations that are predicted by the optical recordings.<br /> The manuscript is well-written and the data are clearly explained. Statistical analysis of the data is strengthened by the very large number of data points analyzed for each experiment.

      Weaknesses:

      There are no major weaknesses.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Visual Perceptual Learning (VPL) results in varying degrees of generalization to tasks or stimuli not seen during training. The question of which stimulus or task features predict whether learning will transfer to a different perceptual task has long been central in the field of perceptual learning, with numerous theories proposed to address it. This paper introduces a novel framework for understanding generalization in VPL, focusing on the form invariants of the training stimulus. Contrary to a previously proposed theory that task difficulty predicts the extent of generalization - suggesting that more challenging tasks yield less transfer to other tasks or stimuli - this paper offers an alternative perspective. It introduces the concept of task invariants and investigates how the structural stability of these invariants affects VPL and its generalization. The study finds that tasks with high-stability invariants are learned more quickly. However, training with low-stability invariants leads to greater generalization to tasks with higher stability, but not the reverse. This indicates that, at least based on the experiments in this paper, an easier training task results in less generalization, challenging previous theories that focus on task difficulty (or precision). Instead, this paper posits that the structural stability of stimulus or task invariants is the key factor in explaining VPL generalization across different tasks

      Strengths:<br /> - The paper effectively demonstrates that the difficulty of a perceptual task does not necessarily correlate with its learning generalization to other tasks, challenging previous theories in the field of Visual Perceptual Learning. Instead, it proposes a significant and novel approach, suggesting that the form invariants of training stimuli are more reliable predictors of learning generalization. The results consistently bolster this theory, underlining the role of invariant stability in forecasting the extent of VPL generalization across different tasks.

      - The experiments conducted in the study are thoughtfully designed and provide robust support for the central claim about the significance of form invariants in VPL generalization.

      Weaknesses:<br /> - The paper assumes a considerable familiarity with the Erlangen program and the definitions of invariants and their structural stability, potentially alienating readers who are not versed in these concepts. This assumption may hinder the understanding of the paper's theoretical rationale and the selection of stimuli for the experiments, particularly for those unfamiliar with the Erlangen program's application in psychophysics. A brief introduction to these key concepts would greatly enhance the paper's accessibility. The justification for the chosen stimuli and the design of the three experiments could be more thoroughly articulated.

      - The paper does not clearly articulate how its proposed theory can be integrated with existing observations in the field of VPL. While it acknowledges previous theories on VPL generalization, the paper falls short in explaining how its framework might apply to classical tasks and stimuli that have been widely used in the VPL literature, such as orientation or motion discrimination with Gabors, vernier acuity, etc. It also does not provide insight into the application of this framework to more naturalistic tasks or stimuli. If the stability of invariants is a key factor in predicting a task's generalization potential, the paper should elucidate how to define the stability of new stimuli or tasks. This issue ties back to the earlier mentioned weakness: namely, the absence of a clear explanation of the Erlangen program and its relevant concepts.

      - The paper does not convincingly establish the necessity of its introduced concept of invariant stability for interpreting the presented data. For instance, consider an alternative explanation: performing in the collinearity task requires orientation invariance. Therefore, it's straightforward that learning the collinearity task doesn't aid in performing the other two tasks (parallelism and orientation), which do require orientation estimation. Interestingly, orientation invariance is more characteristic of higher visual areas, which, consistent with the Reverse Hierarchy Theory, are engaged more rapidly in learning compared to lower visual areas. This simpler explanation, grounded in established concepts of VPL and the tuning properties of neurons across the visual cortex, can account for the observed effects, at least in one scenario. This approach has previously been used/proposed to explain VPL generalization, as seen in (Chowdhury and DeAngelis, Neuron, 2008), (Liu and Pack, Neuron, 2017), and (Bakhtiari et al., JoV, 2020). The question then is: how does the concept of invariant stability provide additional insights beyond this simpler explanation?

      - While the paper discusses the transfer of learning between tasks with varying levels of invariant stability, the mechanism of this transfer within each invariant condition remains unclear. A more detailed analysis would involve keeping the invariant's stability constant while altering a feature of the stimulus in the test condition. For example, in the VPL literature, one of the primary methods for testing generalization is examining transfer to a new stimulus location. The paper does not address the expected outcomes of location transfer in relation to the stability of the invariant. Moreover, in the affine and Euclidean conditions one could maintain consistent orientations for the distractors and targets during training, then switch them in the testing phase to assess transfer within the same level of invariant structural stability.

      - In the section detailing the modeling experiment using deep neural networks (DNN), the takeaway was unclear. While it was interesting to observe that the DNN exhibited a generalization pattern across conditions similar to that seen in the human experiments, the claim made in the abstract and introduction that the model provides a 'mechanistic' explanation for the phenomenon seems overstated. The pattern of weight changes across layers, as depicted in Figure 7, does not conclusively explain the observed variability in generalizations. Furthermore, the substantial weight change observed in the first two layers during the orientation discrimination task is somewhat counterintuitive. Given that neurons in early layers typically have smaller receptive fields and narrower tunings, one would expect this to result in less transfer, not more.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper presents valuable findings that gustation and feeding state influence the preferred environmental temperature preference in flies. Interestingly, the authors showed that by refeeding starved animals with the non-nutritive sugar sucralose, they are able to tune their preference towards a higher temperature in addition to nutrient-dependent warm preference. The authors show that temperature-sensing and sweet-sensing gustatory neurons (SGNs) are involved in the former but not the latter. In addition, their data indicate that peptidergic signals involved in internal state and clock genes are required for taste-dependent warm preference behavior.

      The authors made an analogy of their results to the cephalic phase response (CPR) in mammals where the thought, sight, and taste of food prepare the animal for the consumption of food and nutrients. They further linked this behavior to core regulatory genes and peptides controlling hunger and sleep in flies having homologues in mammals. These valuable behavioral results can be further investigated in flies with the advantage of being able to dissect the neural circuitry underlying CPR and nutrient homeostasis.

      Strengths:<br /> (1) The authors convincingly showed that tasting is sufficient to drive warm temperature preference behavior in starved flies and that it is independent of nutrient-driven warm preference.

      (2) By using the genetic manipulation of key internal sensors and genes controlling internal feeding and sleep states such as DH44 neurons and the per genes for example, the authors linked gustation and temperature preference behavior control to the internal state of the animal.

      Weaknesses:<br /> (1) The title is somewhat misleading, as the term homeostatic temperature control linked to gustation only applies to starved flies.

      (2) The authors used a temperature preference assay and refeeding for 5 minutes, 10 minutes, and 1 hour. Experimentally, it makes a difference if the flies are tested immediately after 10 minutes or at the same time point as flies allowed to feed for 1 hour. Is 10 minutes enough to change the internal state in a nutrition-dependent manner? Some of the authors' data hint at it (e.g. refeeding with fly food for 10 minutes), but it might be relevant to feed for 5/10 minutes and wait for 55/50min to do the assays at comparable time points.

      (3) A figure depicting the temperature preference assay in Figure 1 would help illustrate the experimental approach. It is also not clear why Figure 1E is shown instead of full statistics on the individual panels shown above (the data is the same).

      (4) The authors state that feeding rate and amount were not changed with sucralose and glucose. However, the FLIC assay they employed does not measure consumption, so this statement is not correct, and it is unclear if the intake of sucralose and glucose is indeed comparable. This limits some of the conclusions.

      (5) The authors make a distinction between taste-induced and nutrient-induced warm preference. Yet the statistics in most figures only show the significance between the starved and refed flies, not the fed controls. As the recovery is in many cases incomplete and used as a distinction of nutritive vs non-nutritive signals (see Figure 1E) it will be important to also show these additional statistics to allow conclusions about how complete the recovery is.

      (6) The starvation period used is ranging from 1 to 3 days, as in some cases no effect was seen upon 1 day of starvation (e.g. with clock genes or temperature sensing neurons). While the authors do provide a comparison between 18-21 and 26-29 hours old flies in Figure S1, a comparison for 42-49 and 66-69 hours of starvation is missing. This also limits the conclusion as the "state" of the animal is likely quite different after 1 day vs. 3 days of starvation and, as stated by the authors, many flies die under these conditions.

      (7) In Figure 2, glucose-induced refeeding was not tested in Gr mutants or silenced animals, which would hint at post-ingestive recovery mechanisms related to nutritional intake. This is only shown later (in Figure S3) but I think it would be more fitting to address this point here. The data presented in Figure S3 regarding the taste-evoked vs nutrient-dependent warm preference is quite important while in some parts preliminary. It would nonetheless be justified to put this data in the main figures. However, some of the conclusions here are not fully supported, in part due to different and low n numbers, which due to the inherent variability of the behavior do not allow statistically sound conclusions. The authors claim that sweet GRNs are only involved in taste-induced warm preference, however, glucose is also nutritive but, in several cases, does not rescue warm preference at all upon removal of GRN function (see Figures S3A-C). This indicates that the Gal4 lines and also the involved GRs are potentially expressed in tissues/neurons required for internal nutrient sensing.

      (8) In Figure 4, fly food and glucose refeeding do not fully recover temperature preference after refeeding. With the statistical comparison to the fed control missing, this result is not consistent with the statement made in line 252. I feel this is an important point to distinguish between state-dependent and taste/nutrition-dependent changes.

      (9) The conclusion that clock genes are required for taste-evoked warm preference is limited by the observation that they ingest less sucralose. In addition, the FLIC assay does not allow conclusions about the feeding amount, only the number of food interactions. Therefore, I think these results do not allow clear-cut conclusions about the impact of clock genes in this assay.

      (10) CPR is known to be influenced by taste, thought, smell, and sight of food. As the discussion focused extensively on the CPR link to flies it would be interesting to find out whether the smell and sight of food also influence temperature preference behavior in animals with different feeding states.

      (11) In the discussion in line 410ff the authors claim that "internal state is more likely to be associated with taste-evoked warm preference than nutrient-induced warm preference." This statement is not clear to me, as neuropeptides are involved in mediating internal state signals, both in the brain itself as well as from gut to brain. Thus, neuropeptidergic signals are also involved in nutrient-dependent state changes, the authors might just not have identified the peptides involved here. The global and developmental removal of these signals also limits the conclusions that can be drawn from the experiments, as many of these signals affect different states, circuits, and developmental progression.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Duan et al analyzed brain imaging data in UKBK and found a pattern in brain structure changes by aging. They identified two patterns and found links that can be differentiated by the categorization.

      Strengths:<br /> This discovery harbors a substantial impact on aging and brain structure and function.

      Weaknesses:<br /> Therefore, the study requires more validation efforts. Most importantly, data underlying the stratification of the two groups are not obvious and lack further details. Can they also stratified by different methods? i.e. PCA?

      Are there any external data that can be used for validation?

      Other previous discoveries or claims supporting the results of the study should be explored to support the conclusion.

      Sex was merely used as a covariate. Were there sex differences during brain aging? What was the sex ratio difference in groups 1 and 2?

      Although statistically significant, Figure 3 shows minimal differences. LTL and phenoAge are displayed in adjusted values but what are the actual values that differ between patterns 1 and 2?

      It is not intuitive to link gene expression results shown in Figure 8 and brain structure and functional differences between patterns 1 and 2. Any overlap of genes identified from analyses shown in Figure 6 (GWAS) and 8 (gene expression)?

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors are trying to develop a microscopy system that generates data output exceeding the previous systems based on huge objectives.

      Strengths:<br /> They have accomplished building such a system, with a field of view of 1.5x1.0 cm2 and a resolution of up to 1.2 um. They have also demonstrated their system performance on samples such as organoids, brain sections, and embryos.

      Weaknesses:<br /> To be used as a volumetric imaging technique, the authors only showcase the implementation of multi-focal confocal sectioning. On the other hand, most of the real biological samples were acquired under wide-field illumination, and processed with so-called computational sectioning. Despite the claim that it improves the contrast, sometimes I felt that the images were oversharpened and the quantitative nature of these fluorescence images may be perturbed.

    1. Reviewer #1 (Public Review):

      Summary:

      In their study, Petersen et al. investigated the relationship between parameters of metabolic syndrome (MetS) and cortical thickness using partial least-squares correlation analysis (PLS) and performed subsequently a group comparison (sensitivity analysis). To do this, they utilized data from two large-scale population-based cohorts: the UK BioBank (UKB) and the Hamburg City Health Study (HCHS). They identified a latent variable that explained 77% of the shared variance, driven by several measures related to MetS, with obesity-related measures having the strongest contribution. Their results highlighted that higher cortical thickness in the orbitofrontal, lateral prefrontal, insular, anterior cingulate, and temporal areas is associated with lower MetS severity. Conversely, the opposite pattern was observed in the superior frontal, parietal, and occipital regions. A similar pattern was then observed in the sensitivity analysis when comparing two groups (MetS vs. matched controls) separately.

      Interestingly, after including HbA1c (a blood glycemic marker, which reflects insulin resistance much better than non-fasting glucose) in their revision, the authors identified a second latent variable accounting for 22% of shared variance mostly driven by HbA1c and blood glucose. The authors conclude that the distinct covariance profile of this variable likely indicates a separate pathological mechanistic connection between MetS components and brain morphology.

      They then mapped local cellular and network topological attributes to the observed cortical changes associated with MetS. This was achieved using cell-type-specific gene expressions from the Allen Human Brain Atlas and the group consensus functional and structural connectomes of the Human Connectome Project (HCP), respectively. This contextualization analysis allowed them to identify potential cellular contributions in these structures driven by endothelial cells, microglial cells, and excitatory neurons. It also indicated functional and structural interconnectedness of areas experiencing similar MetS effects.

      Strengths:

      The effects of metabolic syndrome on the brain are still incompletely understood, and such multi-scale analyses are important for the field. Despite the study's sole 'correlation-based' nature, it yields valuable results, including several scales of brain parameters (cortical thickness, cellular, and network-based). The results are robust and benefit from two 'large-scale' datasets, resulting in highly powered statistics

      Weaknesses:

      The weakness of this study lies mostly on the non-causative approach used here. Nevertheless, the authors are aware of the limitations of the study and carefully frame their language accordingly.

    1. Reviewer #1 (Public Review):

      This is a well-designed study that explores the BEF relationships in fragmented landscapes. Although there are massive studies on BEF relationships, most of them were conducted at local scales, few considered the impacts of landscape variables. This study used a large dataset to specifically address this question and found that habitat loss weakened the BEF relationships. Overall, this manuscript is clearly written and has important implications for BEF studies as well as for ecosystem restoration.

      I have read the response letter provided by the authors and think they have done a great job in addressing my concerns.

    1. Reviewer #1 (Public Review):

      This paper is of importance to scientists interested in molecular mechanisms by which actin point mutations affect its function to ultimately lead to disease states. This work thoroughly characterizes the effect of the E334Q mutation in cytoplasmic gamma-actin on two binding partners: cofilin and myosin (non-muscle myosin 2 and myosin 5). Overall, the data showing effects on cofilin function and myosin binding are convincing and the experiments performed expertly using state-of-the art approaches. Additional binding partners of actin that were not examined here may also have altered function when interacting with the mutant actin.

      Comments on revised version:

      The authors seem to have done a pretty thorough job with the rebuttal.

    1. Reviewer #1 (Public Review):

      The authors deploy a combination of their own previously developed computational methods and databases (SIGNOR and CellNOptR) to model the FLT3 signaling landscape in AML and identify synergistic drug combinations that may overcome the resistance AML cells harboring ITD mutations in the TKI domain of FLT3 to FLT3 inhibitors. I did not closely evaluate the details of these computational models since they are outside of my area of expertise and have been previously published. The manuscript has significant issues with data interpretation and clarity, as detailed below, which, in my view, call into question the main conclusions of the paper.

      The authors train the model by including perturbation data where TKI-resistant and TKI-sensitive cells are treated with various inhibitors and the activity (i.e. phosphorylation levels) of the key downstream nodes are evaluated. Specifically, in the Results section (p. 6) they state "TKIs sensitive and resistant cells were subjected to 16 experimental conditions, including TNFa and IGF1 stimulation, the presence or absence of the FLT3 inhibitor, midostaurin, and in combination with six small-molecule inhibitors targeting crucial kinases in our PKN (p38, JNK, PI3K, mTOR, MEK1/2 and GSK3)". I would appreciate more details on which specific inhibitors and concentrations were used for this experiment. More importantly, I was very puzzled by the fact that this training dataset appears to contain, among other conditions, the combination of midostaurin with JNK inhibition, i.e. the very combination of drugs that the authors later present as being predicted by their model to have a synergistic effect. Unless my interpretation of this is incorrect, it appears to be a "self-fulfilling prophecy", i.e. an inappropriate use of the same data in training and verification/test datasets.

      My most significant criticism is that the proof-of-principle experiment evaluating the combination effects of midostaurin and SP600125 in FLT3-ITD-TKD cell line model does not appear to show any synergism, in my view. The authors' interpretation of the data is that the addition of SP600125 to midostaurin rescues midostaurin resistance and results in increased apoptosis and decreased viability of the midostaurin-resistant cells. Indeed, they write on p.9: "Strikingly, the combined treatment of JNK inhibitor (SP600125) and midostaurin (PKC412) significantly increased the percentage of FLT3ITD-TKD cells in apoptosis (Fig. 4D). Consistently, in these experimental conditions, we observed a significant reduction of proliferating FLT3ITD- TKD cells versus cells treated with midostaurin alone (Fig. 4E)." However, looking at Figs 4D and 4E, it appears that the effects of the midostaurin/SP600125 combination are virtually identical to SP600125 alone, and midostaurin provides no additional benefit. No p-values are provided to compare midostaurin+SP600125 to SP600125 alone but there seems to be no appreciable difference between the two by eye. In addition, the evaluation of synergism (versus additive effects) requires the use of specialized mathematical models (see for example Duarte and Vale, 2022). That said, I do not appreciate even an additive effect of midostaurin combined with SP600125 in the data presented.

      In my view, there are significant issues with clarity and detail throughout the manuscript. For example, additional details and improved clarity are needed, in my view, with respect to the design and readouts of the signaling perturbation experiments (Methods, p. 15 and Fig 2B legend). For example, the Fig 2B legend states: "Schematic representation of the experimental design: FLT3 ITD-JMD and FLT3 ITD-JMD cells were cultured in starvation medium (w/o FBS) overnight and treated with selected kinase inhibitors for 90 minutes and IGF1 and TNFa for 10 minutes. Control cells are starved and treated with PKC412 for 90 minutes, while "untreated" cells are treated with IGF1 100ng/ml and TNFa 10ng/ml with PKC412 for 90 minutes.", which does not make sense to me. The "untreated" cells appear to be treated with more agents than the control cells. The logic behind cytokine stimulation is not adequately explained and it is not entirely clear to me whether the cytokines were used alone or in combination. Fig 2B is quite confusing overall, and it is not clear to me what the horizontal axis (i.e. columns of "experimental conditions", as opposed to "treatments") represents. The Method section states "Key cell signaling players were analyzed through the X-Map Luminex technology: we measured the analytes included in the MILLIPLEX assays" but the identities of the evaluated proteins are not given in the Methods. At the same time, the Results section states "TKIs sensitive and resistant cells were subjected to 16 experimental conditions" but these conditions do not appear to be listed (except in Supplementary data; and Fig 2B lists 9 conditions, not 16). In my subjective view, the manuscript would benefit from a clearer explanation and depiction of the experimental details and inhibitors used in the main text of the paper, as opposed to various Supplemental files/figures. The lack of clarity on what exactly were the experimental conditions makes the interpretation of Fig 2 very challenging. In the same vein, in the PCA analysis (Fig 2C) there seems to be no reference to the cytokine stimulation status while the authors claim that PC2 stratifies cells according to IGF1 vs TNFalpha. There are numerous other examples of incomplete or confusing legends and descriptions which, in my view, need to be addressed to make the paper more accessible.

      I am not sure that I see significant value in the patient-specific logic models because they are not supported by empirical evidence. Treating primary cells from AML patients with relevant drug combinations would be a feasible and convincing way to validate the computational models and evaluate their potential benefit in the clinical setting.

    1. Reviewer #1 (Public Review):

      This study reports a long-term, multisite study of tropical herbivory on Piper plants. The results are clear that lack of water leads to lower plant survival and altered herbivory. The results varied substantially among sites. The caveats are that ecosystem processes beyond water availability are not investigated although they are brought into play in the title and in the paper, that herbivory beyond leaf damage was not reported (there might be none, reader needs to be shown the evidence for this), that herbivore diversity is defined by leaf damage (authors need to give evidence that this is a valid inference), that the plots were isolated from herbivores beyond their borders, that the effects of extreme climate events were isolated to Peru, that intraspecific variation in the host plants needs to be explained and interpreted in more detail, the results as reported are extremely complicated, the discussion is overly long and diffuse.

    1. Reviewer #1 (Public Review):

      In this study, the authors aimed to investigate how cells respond to dynamic combinations of two stresses compared to dynamic inputs of a single stress. They applied the two stresses - carbon stress and hyperosmotic stress - either in or out of phase, adding and removing glucose and sorbitol.

      Both a strength and a weakness is that the cells' hyperosmotic response strongly requires glucose. For in-phase stress, cells are exposed to hyperosmotic shock without glucose, limiting their ability to respond with the well-studied HOG pathway; for anti-phase stress, cells do have glucose when hyperosmotically shocked, but experience a hypo-osmotic shock when both glucose and sorbitol are simultaneously removed. Responding with the HOG pathway and so amassing intracellular glycerol amplifies the impact of this hypo-osmotic shock. Counterintuitively then, it is the presence of glucose rather than the stress of its absence that is deleterious for the cells.

      The bulk of the paper supports these conclusions with clean, compelling time-lapse microscopy, including extensive analysis of gene deletions in the HOG network and measurements of both division and death rates. The methodology the authors develop is powerful and widely applicable.

      The authors' findings demonstrate the tight links that can exist between metabolism and the ability to respond to stress and the novel insights that can be gained using multiple dynamic inputs.

    1. Reviewer #1 (Public Review):

      Recently discovered extrachromosomal DNA (ecDNA) provides an alternative non-chromosomal means for oncogene amplification and a potent substrate for selective evolution of tumors. The current work aims to identify key genes whose expression distinguishes ecDNA+ and ecDNA- tumors and the associated processes to shed light on the biological mechanisms underlying ecDNA genesis and their oncogenic effects. This is clearly an important question and through detailed analysis this work points to specific GO processes associated (up and down) with ecDNA+ tumors, namely, specific DNA damage repair processes and specific oncogenic processes.

      In the initial submission I had commented on lack of clarity of method, potential biases, and in some cases inappropriate interpretation. In the revised version, the authors have addressed all my comments satisfactorily and I think this is an important work furthering our understanding of mechanisms underlying ecDNA+ tumors.

    1. Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalecent model that allows to simultaneously analyze multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes.

      Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. (See also major comment #1 below about the interpretation of these plots.) A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process. At the same time, I would be careful about placing too much emphasis on new findings that emerge solely by switching to SNP+SMP analysis.

      Major comments:<br /> - For all of the simulated demographic inference results, only plots are presented. This allows for qualitative but not quantitative comparisons to be made across different methods. It is not easy to tell which result is actually better. For example, in Supp. Fig. 5, eSMC2 seems slightly better in the ancient past, and times the trough more effectively, while SMCm seems a bit better in the very recent past. For a more rigorous approach, it would be useful to have accompanying tables that measure e.g. mean-squared error (along with confidence intervals) for each of the different scenarios, similar to what is already done in Tables 1 and 2 for estimating $r$.

      - 434: The discussion downplays the really odd result that inputting the true value of the mutation rate, in some cases, produces much worse estimates than when they are learned from data (SFig. 6)! I can't think of any reason why this should happen other than some sort of mathematical error or software bug. I strongly encourage the authors to pin down the cause of this puzzling behaviour. (Comment addressed in revision. Still, I find the explanation added at 449ff to be somewhat puzzling -- shouldn't the results of the regional HMM scan only improve if the true mutation rate is given?)

      - As noted at 580, all of the added power from integrating SMPs/DMRs should come from improved estimation of recent TMRCAs. So, another way to study how much improvement there is would be to look at the true vs. estimated/posterior TMRCAs. Although I agree that demographic inference is ultimately the most relevant task, comparing TMRCA inference would eliminate other sources of differences between the methods (different optimization schemes, algorithmic/numerical quirks, and so forth). This could be a useful addition, and may also give you more insight into why the augmented SMC methods do worse in some cases. (Comment addressed in revision via Supp. Table 7.).

      - A general remark on the derivations in Section 2 of the supplement: I checked these formulas as best I could. But a cleaner, less tedious way of calculating these probabilities would be to express the mutation processes as continuous time Markov chains. Then all that is needed is to specify the rate matrices; computing the emission probabilities needed for the SMC methods reduces to manipulating the results of some matrix exponentials. In fact, because the processes are noninteracting, the rate matrix decomposes into a Kronecker sum of the individual rate matrices for each process, which is very easy to code up. And this structure can be exploited when computing the matrix exponential, if speed is an issue.

      - Most (all?) of the SNP-only SMC methods allow for binning together consecutive observations to cut down on computation time. I did not see binning mentioned anywhere, did you consider it? If the method really processes every site, how long does it take to run?

      - 486: The assumed site and region (de)methylation rates listed here are several OOM different from what your method estimated (Supp. Tables 5-6). Yet, on simulated data your method is usually correct to within an order of magnitude (Supp. Table 4). How are we to interpret this much larger difference between the published estimates and yours? If the published estimates are not reliable, doesn't that call into question your interpretation of the blue line in Fig. 7 at 533? (Comment addressed in revision.)

    1. Reviewer #1 (Public Review):

      Summary: This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

      Strengths: Host blood meal source, temperature, and photoperiod were all examined together.

      Weaknesses: The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      Comments on the revision:

      Overall, I am not quite convinced about the possible shift in host use in the Argentinian populations of Cx. quinquefasciatus. The evidence from the papers that the authors cite is not strong enough to derive this conclusion. Therefore, I think that the introduction and discussion parts where they talk about host shift in Cx. quinquefasciatus should be removed completely as it misleads the readers. I suggest limiting the manuscript to talking only about the effects of blood meal source and seasonality on the reproductive outcomes of Cx. quinquefasciatus.

    1. Reviewer #1 (Public Review):

      In their manuscript, Laporte et al. analyze the process of formation of the quiescent-cell nuclear microtubule (Q-nMT) bundle, a set of parallel MTs that emanate from the nuclear side of the spindle pole bodies (SPBs) upon the entry of Saccharomyces cerevisiae cells in quiescence. Based on their results, the authors propose that Q-nMT bundle formation is a multistep process that comprises three distinct sequential phases. The authors further evaluate the role of different factors during the growth of the Q-nMT bundle upon quiescence entry, as well as during the disassembly of this structure once the cells resume their proliferation.

      The Q-nMT is an interesting cellular structure whose physiological function is still widely unknown. Hence, providing new insights into the dynamics of Q-nMT bundle formation and identifying new factors involved in this process is an interesting topic of relevance in the field. The authors made a substantial effort in order to evaluate Q-nMT bundle establishment and provide a considerable amount of data, mainly obtained from microscopy analyses. Overall, the experiments are mostly well described and properly executed, and the data in the manuscript are clearly presented. Despite the interest of the study, nonetheless, there are several issues that could affect the validity of some conclusions drawn. In this way, regarding the analysis of the dynamics of Q-nMT bundle formation, the described experimental setup raises certain concerns, which mostly derive from the use of the microtubule-depolymerizing agent nocodazole as the only approach to evaluate this process. Also, regarding the factors involved in Q-nMT formation, the differences in microtubule length with the wild type strain, despite being statistically significant, are really subtle for many of the mutants analyzed (e.g., bir1, slk19, etc.). Furthermore, it is also puzzling that an effect on Q-nMT formation is proposed for meiosis-specific factors such as Mam1, which might as well be present during quiescence, but seems to be also detected in proliferating cells. Lastly, the evidence shown are insufficient to provide a direct link between defects in cell viability and aberrant Q-nMT formation.

    1. Reviewer #1 (Public Review):

      The study presented in this manuscript presents very convincing evidence that purifying selection is the main force shaping the landscape of TE polymorphisms in B. distachyon, with only a few putatively adaptive variants detected, even though most conclusions are based on the 10% of polymorphisms contributed by retrotransposons. That first conclusion is not novel, however, as it had already been clearly established in natural A. thaliana strains (Baduel et al. Genome Biol 2021) and in experimental D. simulans lines (Langmüller et al. NAR 2023). In contrast to the conclusions reached in A. thaliana, however, Horvath et al. report here a seemingly deleterious effect of TE insertions even very far away from genes (>5kb), a striking observation for a genome of relatively similar size. However, SNPs within these regions show similar allele frequency deviations, suggesting this effect may be due to mapping quality artefacts in gene poor regions of the genome. An additional caveat of this study is the lack of orthogonal benchmarking of the TE polymorphisms calls by a pipeline known for a high rate of false positives (see detailed Private Recommendations #1). The authors note that their conclusions are still valid using only the highest covered samples (>20x), yet this coverage threshold is relatively low and higher coverage would mostly reduce the rate of false negatives.

      Nonetheless, this set of observations makes an important addition to the knowledge of TE dynamics in the wild and questions our understanding of the main molecular mechanisms through which TEs can impact fitness.

    1. Reviewer #1 (Public Review):

      Many drugs have off-target effects on the gut microbiota but the downstream consequences for drug efficacy and side effect profiles remain unclear. Herein, Wang et al. use a mouse model of liver injury coupled to antibiotic and microbiota transplantation experiments. Their results suggest that metformin-induced shifts in gut microbial community structure and metabolite levels may contribute to drug efficacy. This study provides valuable mechanistic insights that could be dissected further in future studies, including efforts to identify which specific bacterial species, genes, and metabolites play a causal role in drug response. Importantly, although some pilot data from human subjects is shown, the clinical relevance of these findings for liver disease remain to be determined.

      Comments on revised version:

      The authors have now addressed my original concerns.

    1. Reviewer #1 (Public Review):

      The work by Ohigashi and colleagues addresses the developmental and lineage relationship of a newly characterized thymus epithelial cell (TEC) progenitor subset. The authors take advantage of an elegant and powerful set of experimental approaches to demonstrate that CCL21-expressing TECs appear early in thymus organogenesis and that these cells, which are centrally located, go on to give rise to medullary (m)TECs. What makes the findings intriguing is that these CCL21-expressing mTECs are a distinct subset, which do not express RANK or AIRE, and transcriptomic and lineage tracing approaches point to these cells as potential mTEC progenitor-like cells. Of note, using in vitro and in vivo precursor-product cell transfer experiments, the authors show that this subset has a developmental potential to give rise to AIRE+ self-antigen-displaying mTECs, revealing that CCL21-expressing mTECs can give rise to distinct mTEC subsets. This functional duality provides an attractive rationale for the necessary function of mTECs, which is to attract CCR7+ thymocytes that have just undergone positive selection in the thymus cortex to enter the medulla to undergo tolerance-induction against self-antigen-displaying mTECs. Overall, the work is well supported and offers new insights into the diverse functions of the medullary compartment, and how two distinct subsets of mTECs can achieve it.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, Wu et al. investigated the microbiome in the rhizosphere and roots of plant species along an elevational gradient. They found that: (i) plants with higher root nitrogen ("fast" strategy) were more likely to be associated with saprotrophic fungi, plant pathogenic fungi, and AM fungi, but plants with lower root nitrogen ("slow" strategy) were more likely to be associated with ectomycorrhizal fungi; (ii) bacterial functional guilds were associated with root-zone pH but not root traits.

      Strengths:<br /> This study is novel in the sense that it revealed the associations between microbiome and trait dimensions of plants. This has been rarely explored even though we acknowledge the importance of plant-microbe interactions.

      Weaknesses:<br /> The authors tried to include the relative abundances of bacterial and fungal guilds into the root economics framework, which I disagree with because they are just associated with the root economics framework. The title also states that the authors' aim is to link microbial functional guilds to root economics. Therefore, I would suggest that the analyses should be redone to elaborate on the relationships between microbiome and root functional traits.

      Below I provide some critiques and comments that outline my concerns and provide recommendations to hopefully improve the current manuscript.

      -Figures 2 and 3: The authors included soil properties, relative abundances of bacterial or fungal guilds, and root traits in the root economics spectrum. However, soil properties and relative abundances of bacterial or fungal guilds are not root traits, they are just associated with root traits. These bacterial or fungal guilds are the consequence of root traits. Also, the authors did not elaborate on the root trait dimensions of the plants. The only trait dimension they discussed is the "fast-slow" axis. Therefore, I would suggest the authors first analyze the trait dimensions of plants by only using the root traits (PCA), and then explore how the soil properties and relative abundances of bacterial or fungal guilds are associated with the trait dimensions (e.g., envfit in the vegan package).

      -When exploring the associations between microbial functional guilds and root traits, it is unnecessary to analyze the bacterial and fungal functional guilds separately. The bacterial and fungal functional guilds can be included in the same models, and their relative importance and patterns can be compared.

      -For fungi, the authors used FUNGuild to infer functional guilds from taxonomy. qPCR was also performed to validate the results of AMF. This is fantastic. For bacteria, the authors used FAPROTAX to infer functional guilds from taxonomy. However, archaea are also considered in some functions in FAPROTAX. For example, both bacteria (ammonia-oxidizing bacteria) and archaea (ammonia-oxidizing archaea) play critical roles in nitrification. I would assume the authors have removed archaea from the dataset because they stated that the functions of bacteria are inferred from FAPROTAX. Therefore, the importance of nitrification might be underestimated.

      -Key methodological details are missing. First, maps of the sampling site and plots are missing. It would be great if the authors provided maps showing the location of the sampling site and the spatial distribution of the 11 plots. Second, in lines 304-306 the authors claimed that they sampled the most common species in the plots, but they did not provide the coverage or relative abundances of plant species in the plots.

    1. Reviewer #1 (Public Review):

      This study used a multi-day learning paradigm combined with fMRI to reveal neural changes reflecting the learning of new (arbitrary) shape-sound associations. In the scanner, the shapes and sounds are presented separately and together, both before and after learning. When they are presented together, they can be either consistent or inconsistent with the learned associations. The analyses focus on auditory and visual cortices, as well as the object-selective cortex (LOC) and anterior temporal lobe regions (temporal pole (TP) and perirhinal cortex (PRC)). Results revealed several learning-induced changes, particularly in the anterior temporal lobe regions. First, the LOC and PRC showed a reduced bias to shapes vs sounds (presented separately) after learning. Second, the TP responded more strongly to incongruent than congruent shape-sound pairs after learning. Third, the similarity of TP activity patterns to sounds and shapes (presented separately) was increased for non-matching shape-sound comparisons after learning. Fourth, when comparing the pattern similarity of individual features to combined shape-sound stimuli, the PRC showed a reduced bias towards visual features after learning. Finally, comparing patterns to combined shape-sound stimuli before and after learning revealed a reduced (and negative) similarity for incongruent combinations in PRC. These results are all interpreted as evidence for an explicit integrative code of newly learned multimodal objects, in which the whole is different from the sum of the parts.

      The study has many strengths. It addresses a fundamental question that is of broad interest, the learning paradigm is well-designed and controlled, and the stimuli are real 3D stimuli that participants interact with. The manuscript is well written and the figures are very informative, clearly illustrating the analyses performed.

      There are also some weaknesses. The sample size (N=17) is small for detecting the subtle effects of learning. Most of the statistical analyses are not corrected for multiple comparisons (ROIs), and the specificity of the key results to specific regions is also not tested. Furthermore, the evidence for an integrative representation is rather indirect, and alternative interpretations for these results are not considered.

    1. Reviewer #1 (Public Review):

      The hypothesis that the MA myristyl switch is a trigger for M-PMV maturation is derived from previously published findings, and is well supported by the data presented in this manuscript. The results suggest a new function for the myristyl switch, one that could perhaps be relevant for other proteins. Below are some suggestions for improving the MS.

    1. Reviewer #1 (Public Review):

      This study demonstrates that Langerhans ADAM17 is lower in nonlesional skin and type I interferons have effects on ADAM17. ADAM17 releases EGFR ligands that preserve epidermal integrity. LC ROS is lower with high type I interferons, accompanied by reduced epidermal EGFR phosphorylation in nonlesional skin in SLE. The authors did an outstanding job with data from 3 animal models and human lupus skin to demonstrate their findings.

    1. Reviewer #1 (Public Review):

      The work by Porciello and colleagues provides scientific evidence that the acidic content of the stomach covaries with the experienced level of disgust and fear evoked by disgusting videos. The working of the inside of the gut during cognitive or emotional processes have remained elusive due to the invasiveness of the methods to study it. The major strength of the paper is the use of the non-invasive smart pill technology, which senses changes in Ph, pressure and temperature as it travels through the gut, allowing authors to investigate how different emotions induced with validated video clips modulate the state of the gut. The experimental paradigm used to evoke distinct emotions was also successful, as participants reported the expected emotions after each emotion block. While the reported evidence is correlational in nature, I believe these results open up new avenues for studying brain-body interactions during emotions in cognitive neuroscience, and future causal manipulations will shed more insight on this phenomena. Indeed, this is the first study to provide evidence for a link between gastric acidity and emotional experience beyond single patient studies, and it has major implications for the advancement of our understanding of disorders with psycho-somatic influences, such as stress and it's influence of gastritis.

      As for the limitations, little insight is provided on the mechanisms, time scales, and inter-individual variability of the link between gastric Ph and emotional induction. Since this is a novel phenomena, it would be important to further validate and characterize this finding. On this line, one of the most well known influences of disgust on the gut is tachygastria, the acceleration of the gastric rhythm. It would be important to understand how acid secretion by disgusting film is related to tachygastria, but authors only examine the influence of disgusting film on the normogastric frequency range. Additionally, only one channel of the electrogastrogram (EGG) was used to measure the gastric rhythm, and no information is provided on the quality of the recordings. With only one channel of EGG, it is often impossible to identify the gastric rhythm as the position of the stomach varies from person to person, yielding inaccurate estimates of the frequency of the gastric rhythm. Finally, I believe that the results do not show evidence in favor of the discrete nature of emotions theory as they claim in the discussion. Authors chose to use stimuli inducing discrete emotions, and only asked subjective reports of these same discrete emotions, so these results shed no light on whether emotions are represented discretely vs continuously in the brain.

    1. Reviewer #1 (Public Review):

      This manuscript describes the results of closed-loop SWR disruption in rats experiencing a short-term memory task that they previously acquired successfully. The authors aim to show that SWRs are dispensable for STM tasks requiring multiple match-to-sample trial rules, single-trial non-match-to-sample rules, and spatial sequence memory. In all cases, the analysis and intervention were performed at the higher standards, providing a clear proof-of-principle of appropriate detection and the necessary control. I found the experiments well executed and analyzed. Results may help to advance our understanding of the role of awake SWRs in STM. However, since the results consist of a lack of evidence there is a need for some additional positive controls to fully support the main claim of the study.

    1. Ausführlicher Bericht über die neue Studie zum Zustand des Amazonas-Regenwalds. Bis 2050 drohen 10-47% einen Kipppunkt zu erreichen, jenseits dessen sie ihre jetzigen Funktionen für Kohlenstoff- und Wasser Zyklen verloren. Die Studie beschäftigt sich mit 5 Treibern für Wasser-Stress. Um den Regenwald sicher zu erhalten, ist der Verzicht auf jede weitere Entwaldung und das Einhalten der 1,5°-Grenze nötig. https://www.theguardian.com/environment/2024/feb/14/amazon-rainforest-could-reach-tipping-point-by-2050-scientists-warn

    1. Reviewer #1 (Public Review):

      Summary: Zai et al test if songbirds can recover the capacity to sing auditory targets without singing experience or sensory feedback. Past work showed that after the pitch of targeted song syllables are driven outside of birds' preferred target range with external reinforcement, birds revert to baseline (i.e. restore their song to their target). Here the authors tested the extent to which this restoration occurs in muted or deafened birds. If these birds can restore, this would suggest an internal model that allows for sensory-to-motor mapping. If they cannot, this would suggest that learning relies entirely on feedback dependent mechanisms, e.g. reinforcement learning (RL). The authors find that deafened birds exhibit moderate but significant restoration, consistent with the existence of a previously under-appreciated internal model in songbirds.

      Strengths:

      The experimental approach of studying vocal plasticity in deafened or muted birds is innovative, technically difficult and perfectly suited for the question of feedback-independent learning. The finding in Figure 4 that deafened birds exhibit subtle but significant plasticity toward restoration of their pre-deafening target is surprising and important for the songbird and vocal learning fields, in general.

      In this revision, the authors suitably addressed the confusion about some statistical methods related to Fig. 4, where the main finding of vocal plasticity in deafened birds was presented.

      There remain minor issues in the presentation early in the results section and in Fig. 4 that should be straightforward to clarify in revision.

    1. Reviewer #1 (Public Review):

      Summary:<br /> By examining the prevalence of interactions with ancient amino acids of coenzymes in ancient versus recent folds, the authors noticed an increased interaction propensity for ancient interactions. They infer from this that coenzymes might have played an important role in prebiotic proteins.

      Strengths:<br /> (1) The analysis, which is very straightforward, is technically correct. However, the conclusions might not be as strong as presented.

      (2) This paper presents an excellent summary of contemporary thought on what might have constituted prebiotic proteins and their properties.

      (3) The paper is clearly written.

      Weaknesses:<br /> (1) The conclusions might not be as strong as presented. First of all, while ancient amino acids interact less frequently in late with a given coenzyme, maybe this just reflects the fact that proteins that evolved later might be using residues that have a more favorable binding free energy.

      (2) What about other small molecules that existed in the probiotic soup? Do they also prefer such ancient amino acids? If so, this might reflect the interaction propensity of specific amino acids rather than the inferred important role of coenzymes.

      (3) Perhaps the conclusions just reflect the types of active sites that evolved first and nothing more.

    1. Reviewer #1 (Public Review):

      In this study, Hunt et al investigated the role of the ubiquitin-conjugating enzyme UBE2D/effete (eff) in maintaining proteostasis during aging. Utilizing Drosophila as a model, the researchers observed diverse roles of E2 ubiquitin-conjugating enzymes in handling the aggregation-prone protein huntingtin-polyQ in the retina. While some E2s facilitated aggregate assembly, UBE2D/eff and other E2s were crucial for degradation of htt-polyQ. The study also highlights the significance of UBE2D/eff in skeletal muscle, showing that declining levels of eff during aging correlate with proteostasis disruptions. Knockdown of eff in muscle led to accelerated accumulation of poly-ubiquitinated proteins, shortened lifespan, and mirrored proteomic changes observed in aged muscles. The introduction of human UBE2D2, analogous to eff, partially rescued the deficits in lifespan and proteostasis caused by eff-RNAi expression in muscles.

      The conclusions of this paper are mostly well supported by data, although a more precise mechanistic explanation of phenotypes associated with UBE2D/eff deficiency would have strengthened the study. Additionally, some aspects of image quantification and data analysis need to be clarified and/or extended.

    1. Reviewer #1 (Public Review):

      This study explores the relationship between neurodegeneration's most common spatial patterns and the density of different cell types in the cerebral cortex. The authors present data showing that atrophy patterns in Alzheimer's disease and Frontotemporal dementia (FTD) strongly associated with the abundance of astrocytes and microglia. This work (the original manuscript and the revision) takes a step in the right direction by emphasizing the critical role that cells other than neurons play in the degeneration patterns observable with neuroimaging.

      Comments on revised version:

      I appreciate the revisions the authors made to address my main comments:<br /> - adding whole-brain maps showing cellular abundance and atrophy<br /> - stratifying the FTD group into the three clinically defined categories bvFTD (behavior-variant), nfvPPA (nonfluent/agrammatic-variant primary progressive aphasia), and svPPA (semantic-variant primary progressive aphasia).

      I reiterate my agreement with the authors that this work demonstrates the need to "surpass the current neuro-centric view of brain diseases and the imperative for identifying cell-specific therapeutic targets in neurodegeneration".

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, Ruggiero, Leite and colleagues assess the effects of early life seizures on a large number of anatomical, physiological, behavioral and neurochemical measures. They find that prolonged early life seizures do not lead to obvious cell loss, but lead to astrogliosis, working memory deficits on the radial arm maze, increased startle response, decreased paired pulse inhibition, and increased hippocampal-PFC LTP. There was a U-shaped relationship between LTP and cognitive deficits. There is increased theta power during the awake state in ELS animals but reduced PFC theta-gamma coupling and reduced theta HPC-PFC coherence. Theta coherence seems to be similar in ACT and REM states in ELS animals while in decreases in active relative REM in controls.

      Strengths:

      The main strength of the paper is the number of convergent techniques used to understand how hippocampal PFC neural dynamics and behavior change after early life seizures. The sheer scale, breadth and reach of the experiments are praiseworthy. It is clear that the paper is a major contribution to the field as far as understanding the impact of early life seizures. The LTP findings are robust and provide an important avenue for future study. The experiments are performed carefully and the analysis is appropriate. The paper is well-written and the figures are clear.

      Weaknesses:

      The main weakness of the paper remains the lack of causal manipulations to determine whether prevention or augmentation of any of the findings have any impact on behavior or cognition. Alternatively, if other manipulations would enhance working memory in ELS animals, it would have been interesting to see the effects on any of these parameters measured in the paper. The authors now discuss the lack of causal manipulations in the discussion but have not performed new experiments to address this weakness. Also, I find the sections where correlations and dimensionality reduction techniques are used to compare all possible variables to each other less compelling than the rest of the paper (with the exception of the findings of U shaped relationship of cognition to LTP). In fact, I think these sections take away from the impact of the actual findings. The rationale for the apomorphine experiments are now explained more fully.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript examines an important question, namely how the brain associates events spaced in time. It uses a variety of neural methods including fiber photometry as well as area-specific and pathway-silencing methods with the exquisite dissociation of norepinephrine and dopamine. The data show that neurons in the locus coeruleus (LC) respond to auditory cue onset, offset, and shock. These responses are stronger if the cue is paired with shock in a trace procedure. Optogenetic stimulation similar to the neural response captured by fiber photometry enhances associative learning. LC terminals in the dorsal hippocampus also showed phasic responses during fear conditioning and drove dopamine and norepinephrine responses. Pharmacological methods revealed that dopamine and not norepinephrine are critical for fear learning.

      Strengths:

      The examination of the neural signal to different tone intensities, different shock intensities, repeated tone presentation (habituation), and conditioning, offers an unprecedented account of the neural signal to non-associative and associative processes. This kind of deconstruction of the elements of conditioning offers a strong account of how the brain processes the stimuli used and their interaction during learning.

      Excellent use of data acquired with fiber photometry in the optogenetic interrogation study.

      The use of pharmacology to disentangle dopamine and norepinephrine was excellent.

      Comments on revised version:

      The authors have thoroughly and thoughtfully addressed my prior concerns.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors conducted two tasks at 300 days separation. First, a social perception task, where Ps responded whether a pictured person either deserved or needed help. Second, an altruism task, where Ps are offered monetary allocations for themselves and a partner. Ps decide whether to accept, or a default allocation of 20 dollars each. The partners differed in perceived merit, such that they were highly deserving, undeserving or unknown. This categorisation was decided on the basis of a prisoners dilemma game the partner played beforehand. "Need" was also manipulated, by altering the probability that the partner must have their hand in cold water at the end of the experiment and this partner can use the money to buy themselves out. These two tasks were conducted to assess the perception of need/merit in the first instance, and how this relates to social behaviour in the second. fMRI data were collected alongside behavioural.

      The authors present many analyses of behaviour (including DDM results) and fMRI. E.g., they demonstrate that they could decode across the mentalising network whether someone was making a need or deserving judgement vs control judgements but couldn't decode need vs deserving. And that brain responses during merit inferences (merit - control) systematically covaried with participants' merit sensitivity scores in the rTPJ. They also found relationships between behaviour and rTPJ in the altruism task. And that merit sensitivity in the perception task predicted influence of merit on social behaviour in the altruism task.

      Strengths:

      This manuscript represents a sensible model to predict social perceptions and behaviours, and a tidy study design with interesting findings. The introduction introduced the field especially brilliantly for a general audience.

      Weaknesses:

      These are small samples. This is especially the case for the correlational questions. The limitation is acknowledged, but does mean that we cannot conclude much from absent relationships, where the likelihood of Type II error is high.

      Decoding analyses. The authors decode need vs merit, and need+merit vs control, not the content of these inferences. The logic of these analyses implies that there is a distributed representation of merit that does not relate to its content but is an abstracted version that applies to all merit judgements. However, these analyses are not central to the authors' aims and conclusions, so this is just a minor point.

    1. Reviewer #1 (Public Review):

      Summary:<br /> A long literature in cognitive neuroscience studies how humans and animals adjudicate between conflicting goals. However, despite decades of research on the topic, a clear computational account of control has been difficult to pin down. In this project, Petri, Musslick, & Cohen attempt to formalize and quantify the problem of control in the context of toy neural networks performing conflicting tasks.

      This manuscript builds on the formalism introduced in Petri et al (2021), "Topological limits to the parallel processing capability of network architectures", which describes a set of tasks as a graph in which input nodes (stimuli) are connected to output nodes (responses). Each edge in this graph links an input node to an output node, representing a "task"; i.e. a word reading task connects the input node "word" to the output node "read". Cleverly, patterns of interference and conflict between tasks can be quantified from this graph. In the current manuscript, the authors extend this framework by converting these graphs into neural networks and a) allowing edges to be continuous rather than binary; b) introducing "hidden layers" of units between input and output nodes; and c) introducing a "control" signal that modulates edge weights. The authors then examine how, in such a network, optimal behavior may involve serial versus parallel execution of different sets of tasks.

      Strengths:<br /> There is a longstanding belief in cognitive neuroscience that "control" manages conflicts by scheduling tasks to be executed in parallel versus serially; I applaud the efforts of the authors to give these intuitions a more concrete computational grounding.

      My main scientific concern is that the authors focus on what seems like an arbitrary set of network architectures. The networks considered here are derived by converting task graphs, which represent a multitasking problem, into networks for _performing_ that multitasking problem. Frankly, these networks do not look like any neural network a computer scientist would use to actually solve a problem, nor do they seem biologically realistic. Furthermore, adding hidden layers to these networks only ever seems to make performance worse (Figures 4, 11), introducing unnecessary noise and interference; it would seem more useful to study a network architecture in which hidden layers fulfilled some useful purpose (as they do in the brain and machine learning).

      However, this scientific concern is secondary to the major problem with this paper, which is clarity.

      Major problem: A lack of clarity

      I found this paper extremely difficult to read. To illustrate my difficulty, I will describe a subset of my confusion.

      The authors define the "entropy" of an action in equation 1, but the content of the equation gives what is sometimes referred to as the "surprisal" of the action. Conventionally (as per Wikipedia and any introductory textbook I am familiar with), entropy is the "expected surprisal" of a random variable, not the surprisal of a single action. This creates immediate confusion going into the results. Furthermore, defining "entropy" this way means that "information" is functionally equivalent to accuracy for the purposes of this paper, in which case I do not know what has been gained by this excursion into (non-standard) information-theoretic terminology.

      They next assert that equation 1 is the information _cost_ of an action. No motivation is given for this statement and I do not know what it means. In what sense is a "cost" associated with the negative logarithm of a probability?

      In the next section II.B, the authors introduce a new formalism in which responses are represented by task graph nodes _R_. What is the relationship between an action _a_ and the responses _R_? Later, in section II.C, edges _f_ in the task graph are used as seemingly drop-in replacements for actions _a_.

      I simply have no idea what is going on in equations 31 through 33. Where are the functions _R_ (not to be confused with the response nodes _R_) and _S_ defined? Or how are they approximated? What does the variable _t_ mean and why does it appear and disappear from equations seemingly at random?

      Response times seem to be important, but as far as I can tell, nowhere do the authors actually describe how response times are calculated for the simulated networks.

      Similar issues persist through the rest of the paper: unconventional formalism is regularly introduced using under-explained notation and without a clear relationship to the scientific questions at hand. As a result, the content and significance of the findings are largely inscrutable to me, and I suspect also to the vast majority of readers.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript describes a series of experiments using human intracranial neural recordings designed to evaluate the processing of self-generated speech in the setting of feedback delays. Specifically, the authors aim to address the question about the relationship between speech-induced suppression and feedback sensitivity in the auditory cortex, whose relationship has been conflicting in the literature. They found a correlation between speech suppression and feedback delay sensitivity, suggesting a common process. Additional controls were done for possible forward suppression/adaptation, as well as controlling for other confounds due to amplification, etc.

      Strengths:<br /> The primary strength of the manuscript is the use of human intracranial recording, which is a valuable resource and gives better spatial and temporal resolution than many other approaches. The use of delayed auditory feedback is also novel and has seen less attention than other forms of shifted feedback during vocalization. Analyses are robust, and include demonstrating a scaling of neural activity with the degree of feedback delay, and more robust evidence for error encoding than simply using a single feedback perturbation.

      Weaknesses:<br /> Some of the analyses performed differ from those used in past work, which limits the ability to directly compare the results. Notably, past work has compared feedback effects between production and listening, which was not done here. There were also some unusual effects in the data, such as increased activity with no feedback delay when wearing headphones, that the authors attempted to control for with additional experiments, but remain unclear. Confounds by behavioral results of delayed feedback are also unclear.

      Overall the work is well done and clearly explained. The manuscript addresses an area of some controversy and does so in a rigorous fashion, namely the correlation between speech-induced suppression and feedback sensitivity (or lack thereof). While the data presented overlaps that collected and used for a previous paper, this is expected given the rare commodity these neural recordings represent. Contrasting these results to previous ones using pitch-shifted feedback should spawn additional discussion and research, including verification of the previous finding, looking at how the brain encodes feedback during speech over multiple acoustic dimensions, and how this information can be used in speech motor control.

    1. Reviewer #1 (Public Review):

      Summary:<br /> I really enjoyed this manuscript from Torsekar et al on "Contrasting responses to aridity by different-sized decomposers cause similar decomposition rates across a precipitation gradient". The authors aimed to examine how climate interacts with decomposers of different size categories to influence litter decomposition. They proposed a new hypothesis: "The opposing climatic dependencies of macrofauna and that of microorganisms and mesofauna should lead to similar overall decomposition rates across precipitation gradients".

      This study emphasizes the importance as well as the contribution of different groups of organisms (micro, meso, macro, and whole community) across different seasons (summer with the following characteristics: hot with no precipitation, and winter with the following characteristics: cooler and wetter winter) along a precipitation gradient. The authors made use of 1050 litter baskets with different mesh sizes to capture decomposers contribution. They proposed a new hypothesis that was aiming to understand the "dryland decomposition conundrum". They combined their decomposition experiment with the sampling of decomposers by using pittfall traps across both experiment seasons. This study was carried out in Israel and based on a single litter species that is native to all seven sites. The authors found that microorganism contribution dominated in winter while macrofauna decomposition dominated the overall decomposition in summer. These seasonality differences combined with the differences in different decomposers groups fluctuation along precipitation resulted in similar overall decomposition rates across sites.<br /> I believe this manuscript has a potential to advance our knowledge on litter decomposition.

      Strengths:<br /> Well design study with combination of different approaches (methods) and consideration of seasonality to generalize pattern.<br /> The study expands to current understanding of litter decomposition and interaction between factors affecting the process (here climate and decomposers).

      Weaknesses:<br /> The study was only based on a single litter species.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this article, the authors investigate whether the connectivity of the hippocampus is altered in individuals with aphantasia ¬- people who have reduced mental imagery abilities and where some describe having no imagery, and others describe having vague and dim imagery. The study investigated this question using a fMRI paradigm, where 14 people with aphantasia and 14 controls were tested, and the researchers were particularly interested in the key regions of the hippocampus and the visual-perceptual cortices. Participants were interviewed using the Autobiographical Interview regarding their autobiographical memories (AMs), and internal and external details were scored. In addition, participants were queried on their perceived difficulty in recalling memories, imagining, and spatial navigation, and their confidence regarding autobiographical memories was also measured. Results showed that participants with aphantasia reported significantly fewer internal details (but not external details) compared to controls; that they had lower confidence in their AMs; and that they reported finding remembering and imagining in general more difficult than controls. Results from the fMRI section showed that people with aphantasia displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In contrast, controls showed strong negative functional connectivity between the hippocampus and the visual cortex. Moreover, resting state connectivity between the hippocampus and visual cortex predicted better visualisation skills. The authors conclude that their study provides evidence for the important role of visual imagery in detail-rich vivid AM, and that this function is supported by the connectivity between the hippocampus and visual cortex. This study extends previous findings of reduced episodic memory details in people with aphantasia, and enables us to start theorising about the neural underpinnings of this finding.

      The data provided good support for the conclusion that the authors draw, namely that there is a 'tight link between visual imagery and our ability to retrieve vivid and detail-rich personal past events'. However, as the authors also point out, the exact nature of this relationship is difficult to infer from this study alone, as the slow temporal resolution of fMRI cannot establish the directionality between the hippocampus and the visual-perceptual cortex. This is an exciting future avenue to explore.

      Weaknesses:<br /> A weakness of the study is that some of the questions used are a bit vague, and no objective measure is used, which could have been more informative. For example, the spatial navigation question (reported as 'How difficult is it typically for you to orient you spatially?' - a question which is ungrammatical, but potentially reflects a typo in the manuscript) could have been more nuanced to tap into whether participants relied mostly on cognitive maps (likely supported by the hippocampus) or landmarks. It would also have been interesting to conduct a spatial navigation task, as participants do not necessarily have insight into their spatial navigation abilities (they could have been overconfident or underconfident in their abilities). Secondly, the question 'how difficult is it typically for you to use your imagination?' could also be more nuanced, as imagination is used in a variety of ways, and we only have reason to hypothesise that people with aphantasia might have difficulties in some cases (i.e. sensory imagination involving perceptual details). It is unlikely that people with aphantasia would have more difficulty than controls in using their imagination to imagine counterfactual situations and engage in counterfactual thought (de Brigard et al., 2013, https://doi.org/10.1016%2Fj.neuropsychologia.2013.01.015) due to its non-sensory nature, but the question used does not distinguish between these types of imagination. Again, this is a ripe area for future research. The general phrasing of 'how difficult is [x]' could also potentially bias participants towards more negative answers, something which ought to be controlled for in future research.

      Strengths:<br /> A great strength of this study is that it introduces a fMRI paradigm in addition to the autobiographical interview, paralleling work done on episodic memory in cognitive science (e.g. Addis and Schacter, 2007, https://doi.org/10.1016%2Fj.neuropsychologia.2006.10.016 ), which has examined episodic and semantic memory in relation to imagination (future simulation) in non-aphantasic participants as well as clinical populations. Future work could build on this study, and for example use the recombination paradigm (Addis et al. 2009, 10.1016/j.neuropsychologia.2008.10.026 ), which would shed further light on the ability of people with aphantasia to both remember and imagine events. Future work could also build on the interesting findings regarding spatial navigation, which together with previous findings in aphantasia (e.g. Bainbridge et al., 2021, https://doi.org/10.1016/j.cortex.2020.11.014 ) strongly suggests that spatial abilities in people with aphantasia are unaffected. This can shed further light on the different neural pathways of spatial and object memory in general. In general, this study opens up a multitude of new avenues to explore and is likely to have a great impact on the field of aphantasia research.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript from Park et al examines the molecular, anatomical and functional properties of a subset of wide-field amacrine cell (WAC) types in mouse retina. More than 60 mouse amacrine cell types have been identified by single-cell transcriptomic studies (Yan et al., 2020, PMID: 32457074), but the functions of most of these are unknown and WACs are particularly understudied. The authors use intersectional genetics to target a subset of mouse WACs that co-express Bhlhe22 and the kappa opioid receptor (referred to as B/K WACs). They used electrophysiological and anatomical approaches to determine how WACs contribute to neural computations in the retina.

      Strengths:

      Overall, the paper presents a technically impressive set of experiments that build strong evidence for the presence of at least 3 discrete WAC types in the B/K transgenic line. These cells vary with respect to their morphology, dendritic stratification, response polarity (On vs Off) and resting membrane potentials. All types have long, monostratified dendrites and appear to lack axons. Electrophysiological recordings establish that these WACs are non-spiking, while calcium imaging revealed orientation selectivity in dendritic segments with tuning that correlates strongly with dendritic orientation. The authors go on to use optogenetics to show that WACs provide strong GABA-A receptor mediated inhibitory input to OFF and ON alpha sustained RGCs. This connectivity is further substantiated, at least for the OFF sustained alpha RGCs, by connectomic analyses from serial block face EM volumes. The use of the APEX2 reporter system to label the B/K cells in one of the EM volumes is particularly nice, making identification of the B/K WACs unambiguous. The conclusions are largely well supported by the experimental data. The study provides novel insights into the structure and function of specific WACs that will provide a foundation for further studies investigating the role of these amacrine cells in retinal circuits.

      Weaknesses:

      A limitation of the study is that the B/K WAC types described here could not be aligned to specific transcriptomic identities. The authors show more than 15 GABA expressing ACs express Bhlhe22 in the transcriptomic dataset, but it is unclear which of these also express the kappa opioid receptor (Opkr1).

      The optogenetic evidence suggests that WACs provide GABA-A receptor mediated inhibitory input to both the sustained OFF and ON alpha RGCs. However, at least in the examples shown, there appears to be a dramatic difference in the timecourse of the rising phase of the inhibitory inputs to these two cell types, with the inputs to the ON sustained alpha RGCs appearing slower than those in the OFF sustained and OFF transient alpha RGCs. This apparent temporal difference was accompanied by a relatively lower sensitivity to light stimulation for the ON sustained cells. The slow timecourse seems unexpected for a direct GABA-A mediated synaptic connections between the WACs and ON alpha sustained cells. Moreover, since the connectomic analyses do not examine inputs to ON RGC types, the direct synaptic connection between B/K WACs and On alpha RGC is less well substantiated.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The thalamus is a central subcortical structure that receives anatomical connections from various cortical areas, each displaying a unique pattern. Previous studies have suggested that certain cortical areas may establish more extensive connections within the thalamus, influencing distributed information flow. Despite these suggestions, a quantitative understanding of cortical areas' anatomical connectivity patterns within the thalamus is lacking. In this study, the researchers addressed this gap by employing diffusion magnetic resonance imaging (dMRI) on a large cohort of healthy adults from the Human Connectome Project. Using brain-wide probabilistic tractography, a framework was developed to measure the spatial extent of anatomical connections within the thalamus for each cortical area. Additionally, the researchers integrated resting-state functional MRI, cortical myelin, and human neural gene expression data to investigate potential variations in anatomical connections along the cortical hierarchy. The results unveiled two distinct cortico-thalamic tractography motifs: 1) a sensorimotor cortical motif featuring focused thalamic connections to the posterolateral thalamus, facilitating fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting the anteromedial thalamus, associated with slower, feed-back information flow. These motifs exhibited consistency across human subjects and were corroborated in macaques, underscoring cross-species generalizability. In summary, the study illuminates differences in the spatial extent of anatomical connections within the thalamus for sensorimotor and association cortical areas, potentially contributing to functionally distinct cortico-thalamic information flow.

      Strengths:<br /> * Quantitative Approach: The study employs diffusion magnetic resonance imaging (dMRI) and probabilistic tractography on a substantial sample size of 828 healthy adults, providing a robust quantitative analysis of anatomical connectivity patterns within the thalamus.

      * Multi-Modal Integration: By incorporating resting-state functional MRI, cortical myelin, and human neural gene expression data, the study offers a comprehensive approach to understanding anatomical connections, enriching the interpretation of findings and enhancing the study's overall validity.

      * Cross-Species Generalizability: The identification of consistent cortico-thalamic tractography motifs in both human subjects and macaques demonstrates the robustness and cross-species generalizability of the findings, strengthening the significance and broader applicability of the study.

      * Supplementary Analyses: There are numerous, excellent examples of clear surrogates used to test the major claims of the paper. This is exemplary work.

      Weaknesses:<br /> * Indirect Estimates of White Matter Connections: While dMRI is a valuable tool, it inherently provides indirect and inferred information about neural pathways. The accuracy and specificity of tractography can be influenced by various factors, including fiber crossing, partial volume effects, and algorithmic assumptions. A potential limitation in the accuracy of indirect estimates might affect the precision of spatial extent measurements, introducing uncertainty in the interpretation of cortico-thalamic connectivity patterns. Addressing the methodological limitations associated with indirect estimates and considering complementary approaches could strengthen the overall robustness of the findings.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Wilmes and colleagues present a computational model of a cortical circuit for predictive processing which tackles the issue of how to learn predictions when different levels of uncertainty are present for the predicted sensory stimulus. When a predicted sensory outcome is highly variable, deviations from the average expected stimulus should evoke prediction errors that have less impact on updating the prediction of the mean stimulus. In the presented model, layer 2/3 pyramidal neurons represent either positive or negative prediction errors, SST neurons mediate the subtractive comparison between prediction and sensory input, and PV neurons represent the expected variance of sensory outcomes. PVs therefore can control the learning rate by divisively inhibiting prediction error neurons such that they are activated less, and exert less influence on updating predictions, under conditions of high uncertainty.

      Strengths:<br /> The presented model is a very nice solution to altering the learning rate in a modality and context-specific way according to expected uncertainty and, importantly, the model makes clear, experimentally testable predictions for interneuron and pyramidal neuron activity. This is therefore an important piece of modelling work for those working on cortical and/or predictive processing and learning. The model is largely well-grounded in what we know of the cortical circuit.

      Weaknesses:<br /> Currently, the model has not been challenged with experimental data, presumably because data from an adequate paradigm is not yet available. I therefore only have minor comments regarding the biological plausibility of the model:

      Beyond the fact that some papers show SSTs mediate subtractive inhibition and PVs mediate divisive inhibition, the selection of interneuron types for the different roles could be argued further, given existing knowledge of their properties. For instance, is a high PV baseline firing rate, or broad sensory tuning that is often interpreted as a 'pooling' of pyramidal inputs, compatible with or predicted by the model?

      On a related note, SSTs are thought to primarily target the apical dendrite, while PVs mediate perisomatic inhibition, so the different roles of the interneurons in the model make sense, particularly for negative PE neurons, where a top-down excitatory predicted mean is first subtractively compared with the sensory input, s, prior to division by the variance. However, sensory input is typically thought of as arising 'bottom-up', via layer 4, so the model may match the circuit anatomy less in the case of positive PE neurons, where the diagram shows 's' arising in a top-down manner. Do the authors have a justification for this choice?

      In cortical circuits, assuming a 2:8 ratio of inhibitory to excitatory neurons, there are at least 10 pyramidal neurons to each SST and PV neuron. Pyramidal neurons are also typically much more selective about the type of sensory stimuli they respond to compared to these interneuron classes (e.g., Kerlin et al., 2012, Neuron). A nice feature of the proposed model is that the same interneurons can provide predictions of the mean and variance of the stimulus in a predictor-dependent manner. However, in a scenario where you have two types of sensory stimulus to predict (e.g., two different whiskers stimulated), with pyramidal neurons selective for prediction errors in one or the other, what does the model predict? Would you need specific SST and PV circuits for each type of predicted stimulus?

    1. Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head-restrained mice running down a virtual linear path. Mice were trained to collect water rewards at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in the ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90 s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis of the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      Weaknesses:

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.

      The LC axonal recordings are well-powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compared to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing a novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data.

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.

    1. Reviewer #1 (Public Review):

      This is a short but important study. Basically, the authors show that α-synuclein overexpression's negative impact on synaptic vesicle recycling is mediated by its interaction with E-domain containing synapsins. This finding is highly relevant for synuclein function as well as for the pathophysiology of synucleinopathies. The data is clear, functional analysis is highly adequate.

    1. Reviewer #1 (Public Review):

      Neurons are not static-their activity patterns change as the result of learning, aging, and disease. Reliable tracking of activity from individual neurons across long time periods would enable studies of these important dynamics. For this reason, the authors' efforts to track electrophysiological activity across days without relying on matching neural receptive fields (which can change due to learning, aging, and disease) is very important.

      By utilizing the tightly-spaced electrodes on Neuropixels probes, they are able to measure the physical distance and the waveform shape 'distance' between sorted units recorded on different days. To tune the matching algorithm and to validate the results, they used the visual receptive fields of neurons in the mouse visual cortex (which tend to change little over time) as ground truth. Their approach performs quite well, with a high proportion of neurons accurately matched across multiple weeks.

      This suggests that the method may be useable in other cases where the receptive fields can't be used as ground truth to validate the tracking. This potential extendibility to tougher applications is where this approach holds the most promise. However, the study only looks at one brain area (visual cortex), in one species (mouse), using one type of spike sorter (Kilosort), and one type of behavioral prep (head-fixed). While the authors suggest methods to generalize their technique to other experimental conditions, no validation of those generalizations was done using data from different experimental conditions. Anyone using this method under different conditions would therefore need to perform such validation themselves.

    1. Reviewer #1 (Public Review):

      Summary: Nuclear depletion and cytoplasmic mislocalization/aggregation of the DNA and RNA binding protein TDP-43 are pathological hallmarks of multiple neurodegenerative diseases. Prior work has demonstrated that depletion of TDP-43 from the nucleus leads to alterations in transcription and splicing. Conversely, cytoplasmic mislocalization/aggregation can contribute to toxicity by impairing mRNA transport and translation as well as miRNA dysregulation. However, to date, models of TDP-43 proteinopathy rely on artificial knockdown- or overexpression-based systems to evaluate either nuclear loss or cytoplasmic gain of function events independently. Few model systems authentically reproduce both nuclear depletion and cytoplasmic miscloalization/aggreagtion events. In this manuscript, the authors generate novel iPSC-based reagents to manipulate the localization of endogenous TDP-43. This is a valuable resource for the field to study pathological consequences of TDP-43 proteinopathy in a more endogenous and authentic setting. However, in the current manuscript, there are a number of weaknesses that should be addressed to further validate the ability of this model to replicate human disease pathology and demonstrate utility for future studies.

      Strengths: The primary strength of this paper is the development of a novel in vitro tool.

      Weaknesses: There are a number of weaknesses detailed below that should be addressed to thoroughly validate these new reagents as more authentic models of TDP-43 proteinopathy and demonstrate their utility for future investigations.

      (1) The authors should include images of their engineered TDP-43-GFP iPSC line to demonstrate TDP-43 localization without the addition of any nanobodies (perhaps immediately prior to addition of nanobodies). Additionally, it is unclear whether simply adding a GFP tag to endogenous TDP-43 impact its normal function (nuclear-cytoplasmic shuttling, regulation of transcription and splicing, mRNA transport etc).

      (2) Can the authors explain why there is a significant discrepancy in time points selected for nanobody transduction and immunostaining or cell lysis throughout Figure 1 and 2? This makes interpretation and overall assessment of the model challenging.

      (3) The authors should further characterize their TDP-43 puncta. TDP-43 immunostaining is typically punctate so it is unclear if the puncta observed are physiologic or pathologic based on the analyses carried out in the current version of this manuscript. Additionally, do these puncta co-localize with stress granule markers or RNA transport granule markers? Are these puncta phosphorylated (which may be more reminiscent of end-stage pathologic observations in humans)?

      (4) The authors should include multiple time points in their evaluation of TDP-43 loss of function events and aggregation. Does loss of function get worse over time? Is there a time course by which RNA misprocessing events emerge or does everything happen all at once? Does aggregation get worse over time? Do these neurons die at any point as a result of TDP-43 proteinopathy?

      (5) Can the authors please comment on whether or not their model is "tunable"? In real human disease, not every neuron displays complete nuclear depletion of TDP-43. Instead there is often a gradient of neurons with differing magnitudes of nuclear TDP-43 loss. Additionally, very few neurons (5-10%) harbor cytoplasmic TDP-43 aggregates at end-stage disease. These are all important considerations when developing a novel authentic and endogenous model of TDP-43 proteinopathy which the current manuscript fails to address.

  2. Feb 2024
    1. Reviewer #1 (Public Review):

      Summary:<br /> Functionally important alternative isoforms are gold nuggets found in a swamp of errors produced by the splicing machinery.

      The architecture of eukaryotic genomes, when compared with prokaryotes, is characterised by a preponderance of introns. These elements, which are still present within transcripts, are rapidly removed during the splicing of messenger RNA (mRNA), thus not contributing to the final protein. The extreme rarity of introns in prokaryotes, and the elimination of these introns from mRNAs before translation into protein, raises questions about the function of introns in genomes. One explanation comes from functional biology: introns are thought to be involved in post-transcriptional regulation and in the production of translational variants. The latter function is possible when the positions of the edges of the spliced intron vary. While some light has been shed on specific examples of the functional role of alternative splicing, to what extent are they representative of all introns in metazoans?

      In this study, the hypothesis of a functional role for alternative splicing, and therefore to a certain extent for introns, is evaluated against another explanation coming from evolutionary biology: isoforms are above all errors of imprecision by the molecular machinery at work during splicing. This hypothesis is based on a principle established by Motoo Mikura, which has become central to population genetics, explaining that the evolutionary trajectory of a mutation with a given effect is intimately linked to the effective population size (Ne) where this mutation emerges. Thus, the probability of fixation of a weakly deleterious mutation increases when Ne decreases, and the probability of fixation of a weakly advantageous mutation increases when Ne increases. The genomes of populations with low Ne are therefore expected to accumulate more weakly deleterious mutations and fewer weakly advantageous mutations than populations with high Ne. In this framework, if splicing errors have only small effects on the fitness of individuals, then natural selection cannot increase the precision of the splicing machinery, allowing tolerance for the production of alternative isoforms.

      In the past, the debate opposed one-off observations of effectively functional isoforms on the one hand, to global genomic quantities describing patterns without the possibility of interpreting them in detail. The authors here propose an elegant quantitative approach in line with the expected continuous variation in the effectiveness of selection, both between species and within genomes. The result describing the inter-specific pattern on a large scale confirms what was already known (there is a negative relationship between effective size and average alternative splicing rate). The essential novelty of this study lies in 1) the quantification, for each intron studied, of the relative abundance of each isoform, and 2) the analysis of a relationship between this abundance and the evolutionary constraints acting on these isoforms.

      What is striking is the light shed on the general very low abundance of alternative isoforms. Depending on the species, 60% to 96% of cases of alternatively spliced introns lead to an isoform whose abundance is less than 5% of the total variants for a given intron.

      In addition to the fact that 60%-96% of the total isoforms are more than 20 times less abundant than their majority form, this large proportion of alternative isoforms exhibit coding-phase shift at rates similar to what would be expected by chance, i.e. for a third of them, which reinforces the idea that there is no particular constraint on these isoforms.

      The remaining 4%-40% of isoforms see their coding-phase shift rate decrease as their relative abundance increases. This result represents a major step forward in our understanding of alternative splicing and makes it possible to establish a quantitative model directly linking the relative abundance of an isoform with a putative functional role concerning only those isoforms produced in abundance. Only the (rare) isoforms which are abundantly produced are thought to be involved in a biological function.

      Within the same genome, the authors show that only highly expressed genes, i.e. those that tend to be more constrained on average, are also the genes with the lowest alternative splicing rates on average.

      The comparison between species in this study reveals that the smaller the effective size of a species, the more its genome produces isoforms that are low in abundance and low in constraint. Conversely, species with a large effective size relatively reduce rare isoforms, and increase stress on abundant isoforms.

      To sum up:<br /> • the higher the effective size of a species, the fewer introns are spliced.<br /> • highly expressed genes are spliced less.<br /> • when splicing occurs, it is mainly to produce low-abundance isoforms.<br /> • low-abundance isoforms are also less constrained.

      Taken together, these results reinforce a quantitative view of the evolution of alternative splicing as being mainly the product of imprecision in the splicing machinery, generating a great deal of molecular noise. Then, out of all this noise, a few functional gold nuggets can sometimes emerge. From the point of view of the reviewer, the evolutionary dynamics of genomes are depressing. The small effective population sizes are responsible for the accumulation of multiple slightly deleterious introns. Admittedly, metazoan genomes try to get rid of these introns during RNA maturation, but this mechanism is itself rendered imprecise by population sizes.

      Strengths:<br /> • The authors simultaneously study the effects of effective population size, isoform abundance, and gene expression levels on the evolutionary constraints acting on isoforms. Within this framework, they clearly show that an isoform becomes functionally important only under certain rare conditions.<br /> • The authors rule out an effect putatively linked to variations in expression between different organs which could have biased comparisons between different species.

      Weaknesses:<br /> • While the longevity of organisms as a measure of effective size seems to work overall, it may not be relevant for discriminating within a clade. For example, within Hymenoptera, we might expect them to have the same overall longevity, but that effective size would be influenced more by the degree of sociality: solitary bees/ants/wasps versus eusocial. I am therefore certain that the relationship shown in Figure 4D is currently not significant because the measure of effective size is not relevant for Hymenoptera. The article would have been even more convincing by contrasting the rates of alternative splicing between solitary versus social hymenopterans.<br /> • When functionalist biologists emphasise the role of the complexity of living things, I'm not sure they're thinking of the comparison between "drosophila" and "homo sapiens", but rather of a broader evolutionary scale. Which gives the impression of an exaggeration of the debate in the introduction.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Fang Huang et al found that RBM7 deficiency promotes metastasis by coordinating MFGE8 splicing switch and NF-kB pathway in breast cancer by utilizing clinical samples as well as cell and tail vein injection models.

      Strengths:<br /> This study uncovers a previously uncharacterized role of MFGE8 splicing alteration in breast cancer metastasis, and provides evidence supporting RBM7 function in splicing regulation. These findings facilitate the mechanistic understanding of how splicing dysregulation contributes to metastasis in cancer, a direction that has increasingly drawn attention recently, and provides a potentially new prognostic and therapeutic target for breast cancer.

      Weaknesses:<br /> This study can be strengthened in several aspects by additional experiments or at least by further discussions. First, how RBM7 regulates NF-kB, and how it coordinates splicing and canonical function as a component of NEXT complex should be clarified. Second, although the roles of MFGE8 splicing isoforms in cell migration and invasion have been demonstrated in transwell and wound healing assays, it would be more convincing to explore their roles in vivo such as the tail vein injection model. Third, the clinical significance would be considerably improved, if the therapeutic value of targeting MFGE8 splicing could be demonstrated.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The study by Valles-Marti et al. was aimed at elucidating mechanisms of high-dose vitamin C (Ascorbate) sensitivity using proteomics of a large panel of cancer cell lines. The study is primarily based on correlating protein expression to vitamin C sensitivity based on IC50 from cell viability studies. As expected, cancer type-specific proteome patterns emerge and the authors conclude that some pan-cancer pathways, such as proliferation correlate with high sensitivity to VitC. In a subset of PDAC cells proteomics and phospho proteomics were also carried out following vitamin C treatment, albeit those studies did not identify significant changes in response to treatment.

      Strengths:<br /> The premise for the work is of interest as high dose vitamin C is in clinical trials and thus studies investigating mechanisms of sensitivity and potential resistance mechanisms to this therapy are of interest to the field. The authors have collected large proteomic datasets on some of the most common cancer cells used and these data may be a useful resource for others when made publicly available. Although this is not necessarily novel, since proteomics data sets for some of the included cell lines are already available.

      Weaknesses:<br /> The title suggests that the proteomics data presented "underscores high-dose vitamin C as a potent anti-cancer agent" However, while the proteomic data are extensive, it is my assessment that without further validation there are no clear pathways identified by the presented proteomics data that conclusively determine vitamin C sensitivity.

      A major question arising from this work is how specific the proteomics data reflect sensitivity to vitamin C over general sensitivity to other cytotoxic agents. It would be of interest to compare the correlation of proteomic data and ascorbate sensitivity to the sensitivity of cell lines to other cytotoxic agents. (e.g. comparison to NCI-60 growth inhibition data). In other words, do the proteomic data that correlate with ascorbate sensitivity simply reflect susceptibility to other cytotoxic agents? The comments that vitamin C toxicity is not dependent on underlying histological or genetic subtypes of cancers ("one size fits all") suggest this.

      The genetic backgrounds of tumor cells have not been taken into consideration in the analysis and how this may influence VitC susceptibility. An example that comes to mind is KEAP1/Nrf2 aberrations in lung cancer.

      The study would be significantly strengthened if some of the proteins identified were further validated in eliciting low or high sensitivity to Vitamin C. Of particular interest are proteins that have functions related to known mechanisms of action of Vitamin C toxicity, such as iron homeostasis. Some of the metabolic-related protein changes are also of interest. For example, HCCS expression is mentioned several times as being associated with lower sensitivity to ascorbate. Providing experimental evidence that this protein is of significance to Vitamin C sensitivity and if this is due to its effects on iron and subsequent generation of ROS in response to VitC would be of significance.

      Similarly, an interesting aspect of the findings is the authors' conclusion that proliferation is associated with Vitamin C sensitivity. The authors propose in their discussion that Vitamin C may be an attractive alternative to treat heavily pretreated and chemoresistant cancers. Thus it would be important to know which of the highly proliferative cell lines tested have a chemoresistance phenotype and are also more susceptible to Vitamin C toxicity. Perhaps partitioning the cells further into chemoresistant and sensitive cell lines to standard chemotherapy and then assessing which protein signatures are associated with Vitamin C sensitivity will allow for better elucidation of sensitivity mechanisms that are more relevant to using Vitamin C as an alternate therapy for chemoresistant tumors.

      Following on from this, there is an interesting mechanistic question as to why more proliferative cells are more sensitive to vitamin C, and whether this is related to changes in metabolism and underlying changes in their steady-state levels of ROS. Further investigating this mechanistically based on the identified proteomic signatures could make the findings more significant.

      Vitamin C can also generate H2O2 extracellularly in the presence of iron. Thus, Vitamin C toxicity could be affected by different abilities of the tumor cells to scavenge extracellular H2O2, such as different expression levels of extracellular antioxidant enzymes. Judging from the methods section, it does not appear that proteomic data include secreted proteins. Can the authors comment on how this may be a potential caveat?

      In light of this, the strong effects of exogenous catalase addition on cell viability suggest that H2O2 may be produced by ascorbate in the media.

      Similarly, can the authors comment on the cell culture conditions used to compare IC50s between cell lines, specifically if different media and FBS batches were used, as these have the potential to vary in metal/iron concentrations that might influence the pro-oxidant generation by high dose ascorbate in media. Specifically, have the authors looked into the iron content and how these different conditions may be contributing to intracellular H2O2 and extracellular H2O2 (AmplexRed) production in response to Vitamin C.

      Other comments relate to methods:

      How was ascorbate prepared? There is no mention of degassing of H2O and ensuring that H2O does not have mental impurities, which can lead to auto-oxidation.

      The OxiSelect probe is based on DCFDA, which is an oxidant-sensitive probe that has been described to be fraught with artifacts. Thus it is advised to mention the caveats associated with the use of this probe (as outlined in PMCID: PMC3911769) and consider backing up these experiments with additional Oxidant probes.

    1. Reviewer #1 (Public Review):

      This manuscript proposes a complex incoherent model involving Ca2+ signaling in inflammasome activation. The experimental approaches used to study the calcium dynamics are highly problematic and the results shown are of very poor quality.

      Major concerns:

      (1) The analysis of lysosomal Ca2+release is being carried out after many hours of treatment. Such evidence is not meaningful to claim that PA activates Ca2+ efflux from lysosome and even if this phenomenon was robust, it is not doubtful that such kinetics are meaningful for the regulation of inflammasome activation. Furthermore, the evidence for lysosomal Ca2+ release is indirect and relies on a convoluted process that doesn't make any conceptual sense to me. In addition to these major shortcomings, the indirect evidence of perilysosomal Ca2+ elevation is also of very poor quality and from the standpoint of my expertise in calcium signaling, the data are incredulous. The use of GCaMP3-ML1, *transiently transfected* into BMDMs is highly problematic. The efficiency of transfection in BMDMs is always extremely low and overexpression of the sensor in a few rare cells can lead to erroneous observations. The overexpression also results in gross mislocalization of such membrane-bound sensors. The accumulation of GCaMP3-ML1 in the ER of these cells would prevent any credible measurements of perilysosomal Ca2+ signals. A meaningful investigation of this process in primary macrophages requires the generation of a mouse line wherein the sensor is expressed at low levels in myeloid cells, and shown to be localized almost exclusively in the lysosomal membrane. The mechanistic framework built around these major conceptual and technical flaws is not especially meaningful and since these are foundational results, I cannot take the main claims of this study seriously.

      A few transfected cells may overexpress the protein through a strong promoter but this is not ideal. For reliable Ca2+ measurements, one needs low expression of the sensor in a substantially high percentage of cells. This can only be demonstrated by showing the time lapse of Ca2+ responses in the macrophages. More generally, I have nearly 2 decades of experience working with primary BMDMs and it is widely known that primary BMDMs are incredibly difficult to transfect - it is the nature of these cells. The claim that they get high efficiency of transfection is frankly too incredulous to take seriously.

      (2) The cytosolic Ca2+ imaging shown in figure 1C doesn't make any sense. It looks like a snapshot of basal Ca2+ many hours after PA treatment - calcium elevations are highly dynamic. Snapshot measurements are not helpful and analyses of Calcium dynamics requires a recording over a certain timespan. Unfortunately, this technical approach has been used throughout the manuscript. Also, BAPTA-AM abrogates IL-1b secretion because IL-1b transcription is Ca2+ dependent - the result shown in figure 1D does not shed light on anything to do with inflammasome activation and it is misleading to suggest that.

      (3) Trpm2-/- macrophages are known to be hyporesponsive to inflammatory stimuli - the reduced secretion of IL-1b by these macrophages is not novel. From a mechanistic perspective, this study does not add much to that observation and the proposed role of TRPM2 as a lysosomal Ca2+ release channel is not substantiated by good quality Ca2+ imaging data (see point 3 above). Furthermore, the study assumes that TRPM2 is a lysosomal ion channel. One paper reported TRPM2 in the lysosomes but this is a controversial claim, with no replication or further development in the last 14 years. This core assumption can be highly misleading to readers unfamiliar with TRPM2 biology and it is necessary to present credible evidence that TRPM2 is functional in the lysosomal membrane of macrophages. Ideally, this line of investigation should rest on robust demonstration of TRPM2 currents in patch-clamp electrophysiology of lysosomes. If this is not technically feasible for the authors, they should at least investigate TRPM2 localization on lysosomal membranes of macrophages.

      In the revised manuscript, authors showed TRPM2 localization but these results are problematic. The authors provide no information on what TRPM2 antibody they used for this study and whether it has been validated by use of knockouts. The staining shows very high amounts of TRPM2 all across the cell - even more than LAMP2. In reality, TRPM2 expression in macrophages is very low. Are the authors overexpressing TRPM2? These data only add to my concerns about this manuscript.

      (4) Apigenin and Quercetin are highly non-specific and their effects cannot be attributed to CD38 inhibition alone. Such conclusions need strong loss of function studies using genetic knockouts of CD38 - or at least siRNA knockdown. Importantly, if indeed TRPM2 is being activated downstream of CD38, this should be easily evident in whole cell patch clamp electrophysiology. TRPM2 currents can be resolved using this technique and authors have Trpm2-/- cells for proper controls. Authors attempted these experiments but the results are of very poor quality. If the TRPM2 current is being activated through ADPR generated by CD38 (in response to PA stimulation), then it is very odd that authors need to include 200 uM cADPR to see TRPM2 current (Fig. 3A). Oddly, even these data cast great doubt on the technical quality of the electrophysiology experiments. Even with such high concentrations of cADPr, the TRPM2 current is tiny and Trpm2-/- controls are missing. The current-voltage relationship is not shown, and I feel that the results are merely reporting leak currents seen in measurements with substandard seals. Also 20 uM ACA is not a selective inhibitor of TRPM2 - relying on ACA as the conclusive diagnostic is problematic.

      (5) TRPM2 is expressed in many different cell lines. The broad metabolic differences observed by the authors in the Trpm2-/- mice cannot be attributed to macrophage-mediated inflammation. Such a conclusion requires the study of mice wherein Trpm2 is deleted selectively in macrophages or at least in the cells of the myeloid lineage.

      (6) The ER-Lysosome Ca2+ refilling experiments rely on transient transfection of organelle-targeted sensors into BMDMs. See point #1 to understand why I find this approach to be highly problematic. Furthermore the data procured are also not convincing and lack critical controls (localization of sensors has not been demonstrated and their response to acute mobilization of Ca2+ has not been shown inspire any confidence in these results).

      (7) Authors claim that SCOE is coupled to K+ efflux. But there is no credible evidence that SOCE is activated in PA stimulated macrophages. The data shown in Fig 4 supp 1 do not investigate SOCE in a reliable manner - the conclusion is again based on snapshot measurements and crude non-selective inhibitors. The correct way to evaluate SOCE is to record cytosolic Ca2+ elevations over a period of time in absence and presence of extracellular Ca2+. However, even such recordings can be unreliable since the phenomenon is being investigated hours after PA stimulation. So, the only definitive way to demonstrate that Orai channels are indeed active during this process is through patch clamp electrophysiology of PA stimulated cells.

      Authors failed to respond to these concerns in a credible manner and simply tried to obfuscate the matters with extraneous arguments and wild claims. The revised manuscript was not a significant improvement. I have major concerns with this manuscript and let it be on record that this is very poor-quality science.

    1. Reviewer #2 (Public Review):

      Summary: The study is titled "Leading an urban invasion: risk-sensitive learning is a winning strategy", and consists of three different parts. First, the authors analyse data on initial and reversal learning in Grackles confronted with a foraging task, derived from three populations labeled as "core", "middle" and "edge" in relation to the invasion front. The suggested difference between study populations does not surface, but the authors do find support for a difference between male and female individuals. Secondly, the authors confirm that the proposed mechanism can actually generate patterns such as observed in the Grackle data through agent-based forward simulations. In the third part, the authors present an evolutionary model, in which they show that learning strategies, as observed in male Grackles, do evolve in simplified urban conditions including different levels of environmental stability and environmental stochasticity.

      Strengths: The manuscript's strength is that it combines real learning data collected across different populations of the Great-tailed grackle (Quiscalus mexicanus) with theoretical approaches to better understand the processes with which grackles learn and how such learning processes might be advantageous during range expansion and invasion. Furthermore, the authors also take sex into account revealing that males, the dispersing sex, show better reversal learning through higher reward-payoff sensitivity. I also find it refreshing to see that the authors took the time to preregister their study to improve transparency especially regarding data analysis.

      Weakness: The small sample size of grackles across populations increases uncertainty as to parameter estimates and the conclusions drawn from these estimates.

      After revision, the introduction is appropriate, and in the methods, the authors take great care in explaining the rational behind decisions as to the selection of analysis methods and parameters. I very much appreciate that the authors took such care in revising their paper, the quality of which has now greatly improved.

    1. Reviewer #1 (Public Review):

      Assessment:

      The manuscript titled 'Rab7 dependent regulation of goblet cell protein CLCA1 modulates gastrointestinal 1 homeostasis' by Gaur et al discusses the role of Rab7 in the development of ulcerative colitis by regulating the lysosomal degradation of Clca1, a mucin protease. The manuscript presents interesting data, and provides a potential molecular mechanism for the pathological alterations observed in ulcerative colitis.

      Strengths:

      The manuscript used a multi-pronged approach and compares patient samples, mouse models of DSS and protocols that allow differentiation of goblet cells. They also use a nanogel-based delivery system for siRNAs, which is ideal for knockdown of specific genes in the gut.

      Weaknesses:

      The manuscript should also mention the limitations of the study.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors compared four types of hiPSCs and four types of hESCs at the proteome level to elucidate the differences between hiPSCs and hESCs. Semi-quantitative calculations of protein copy numbers revealed increased protein content in iPSCs. Particularly in iPSCs, proteins related to mitochondrial and cytoplasmic were suggested to reflect the state of the original differentiated cells to some extent. However, the most important result of this study is the calculation of the protein copy numbers per cell, and the validity of this result is problematic. In addition, several experiments need to be improved, such as using cells of different genders (iPSC: female, ESC: male) in mitochondrial metabolism experiments.

      Strengths:<br /> The focus on the number of copies of proteins is exciting and appreciated if the estimated calculation result is correct and biologically reproducible.

      Weaknesses:<br /> The proteome results in this study were likely obtained by simply looking at differences between clones, and the proteome data need to be validated. First, there were only a few clones for comparison, and the gender and number of cells did not match between ESCs and iPSCs. Second, no data show the accuracy of the protein copy number per cell obtained by the proteome data.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study by Zhou, Wang, and colleagues, the authors utilize biventricular electromechanical simulations to illustrate how different degrees of ionic remodeling can contribute to different ECG morphologies that are observed in either acute or chronic post-myocardial infarction (MI) patients. Interestingly, the simulations show that abnormal ECG phenotypes - associated with a higher risk of sudden cardiac death - are predicted to have almost no correspondence with left ventricular ejection fraction, which is conventionally used as a risk factor for arrhythmia.

      Strengths:<br /> The numerical simulations are state-of-the-art, integrating detailed electrophysiology and mechanical contraction predictions, which are often modeled separately. The simulation provides mechanistic interpretation, down to the level of single-cell ionic current remodeling, for different types of ECG morphologies observed in post-MI patients. Collectively, these results demonstrate compelling and significant evidence for the need to incorporate additional risk factors for assessing post-MI patients.

      Weaknesses:<br /> The study is rigorous and well-performed. However, some aspects of the methodology could be clearer, and the authors could also address some aspects of the robustness of the results. Specifically, does variability in ionic currents inherent in different patients, or the location/size of the infarct and surrounding remodeled tissue impact the presentation of these ECG morphologies?

    1. Reviewer #1 (Public Review):

      Herzog and colleagues investigated the interactions between working memory (WM) task condition (updating, maintenance) and BMI (body-mass-index), while considering selected dopaminergic genes (COMT, Taq1A, C957T, DARPP-32). Emerging evidence suggests that there might be a specific negative association with BMI in the updating but not maintenance condition, with potential bearings to reversal reward learning in obesity. The inclusion of multiple dopaminergic genes is a strength in the present study, considering the complexity of the interactions between tonic and phasic dopamine across the brain that may distinctly associate with the component processes of WM. Here, the finding was that BMI was negatively associated with WM performance regardless of the condition (updating, maintenance), but in models including moderation by either Taq1A or DARPP-32 (but not by COMT and C957T) an interaction by task condition was observed. Furthermore, a two-way interaction effect between BMI and genotype was observed exclusively in the updating condition. These findings are in line with the accounts by which striatal dopamine as reflected by Taq1A and DARPP-32 play an important role in working memory updating, while cortical dopamine as reflected by COMT is mainly associated with maintenance. The authors conclude that the genetic moderation reflects a compound negative effect of having high BMI and a risk allele in Taq1A or DARPP-32 to working memory updating specifically.

      These data increment the accumulating evidence that the dopamine system may play an important role in obesity, but some of the claims in the present work are not entirely supported by the data and analysis presented. In particular, theoretical analysis of the extant evidence and formulation of the hypothesis remains elusive in terms of the potential mechanisms of updating/maintaining balance in obesity, and as such the interpretation of the present findings in the light of dopaminergic moderation warrants some caution. The result that Taq1A and DARPP-32 moderated the interaction between WM condition and BMI requires intricate post hoc analysis to understand the bearings to update. The authors found that Taq1A or DARPP-32 genotype moderated the negative association between BMI and WM exclusively in the update condition (significant two-way interaction effect), suggesting that the BMI-WM associations in other conditions were similar across genotypes. Importantly, visual inspection of the relationship between WM and BMI (Fig 4 & 5) suggests more prevalent positive effects of the putatively advantageous Taq1A-A1 and DARPP-32-AA genotypes to the overall negative relationship between WM and BMI in updating, but not in the other conditions. Given that an overall negative relationship was statistically supported across all conditions (model 1), a plausible interpretation would be that the updating condition stands out in terms of a positive moderation by putative advantageous genotypes, rather than compound negative consequences of BMI and genotype in updating. Critically, this interpretation stands in stark contrast with the interpretation put forth by the authors suggesting a specifically negative association between BMI and WM updating.

      In conclusion, in its current form the title of the present work is ambivalent in terms of 1) the use of the term "impaired" in the context of cognitively normal individuals, 2) a BMI group difference specifically in the updating condition, and 3) the dopaminergic mechanisms based on observational data.

    1. Reviewer #1 (Public Review):

      Drawing on insights from preceding studies, the researchers pinpointed mutations within the spag7 gene that correlate with metabolic aberrations in mice. The precise function of spag7 has not been fully described yet, thereby the primary objective of this investigation is to unravel its pivotal role in the development of obesity and metabolic disease in mice. First, they generated a mice model lacking spag7 and observed that KO mice exhibited diminished birth size, which subsequently progressed to manifest obesity and impaired glucose tolerance upon reaching adulthood. This behaviour was primarily attributed to a reduction in energy expenditure. In fact, KO animals demonstrated compromised exercise endurance and muscle functionality, stemming from a deterioration in mitochondrial activity. Intriguingly, none of these effects was observed when using a tamoxifen-induced KO mouse model, implying that Spag7's influence is predominantly confined to the embryonic developmental phase. Explorations within placental tissue unveiled that mice afflicted by Spag7 deficiency experienced placental insufficiency, likely due to aberrant development of the placental junctional zone, a phenomenon that could impede optimal nutrient conveyance to the developing fetus. Overall, the authors assert that Spag7 emerges as a crucial determinant orchestrating accurate embryogenesis and subsequent energy balance in the later stages of life.

      The study boasts several noteworthy strengths. Notably, it employs a combination of animal models and a thorough analysis of metabolic and exercise parameters, underscoring a meticulous approach. Furthermore, the investigation encompasses a comprehensive evaluation of fetal loss across distinct pregnancy stages, alongside a transcriptomic analysis of skeletal muscle, thereby imparting substantial value. Upon addressing the previously mentioned aspects, the study is poised to exert a substantial influence on the field, its significance reverberating significantly. The methodologies and data presented undoubtedly hold the potential to facilitate the community's deeper understanding of the ramifications stemming from disruptions during pregnancy, shedding light on their enduring impact on the metabolic well-being of subsequent generations.

    1. Reviewer #1 (Public Review):

      Summary:

      Plant roots grow following the gravity vector. Changes in the direction of gravity can be sensed in the root tip by specialized cells that hold starch granules. These starch granules act as levels. Movement and settling of the granules at the bottom of these specialized cells initiates an imbalanced distribution of auxin, a key hormone for plant development. Consequently, this leads to a reorientation of root growth towards the newly established gravity vector. This work provides new insights into granules' relocalization, the proteins associated with them, and the molecular processes triggered downstream.

      Comments on revised submission:

      In the previous review round, the reviewers noted that the authors had missed an opportunity to discuss the results presented in two recently published articles closely related to the topic of their manuscript. The authors have now referenced these articles in the current version of the manuscript, but the discussion remains rather brief. It would have been beneficial to summarize, identify, and highlight the similarities among these studies in a more comprehensive manner.

      In Figure 1, it would have been more informative if the authors had provided specific information concerning the key time-points described in the graphs to visually illustrate the dynamics of PIN3 localization, intracellular calcium transients, and auxin reporter DII Venus. Including these images would have perfectly complemented panels E, F, and G.

      The authors expressed concerns about overcrowding the figure. If the aesthetics of the figure were their primary concern, they could have included essential image frames for the data represented in the graphs in a supplementary figure. Alternatively, a detailed description of supplementary movie 3, highlighting the specific frames quantified in the graphs (Figure 1), could have sufficed.

    1. Reviewer #1 (Public Review):

      This work demonstrates a new technique to characterize the interaction between a crawling larva and the substrate on which it is crawling, at much higher temporal speed and spatial resolution than previously possible. While I have some questions about the interpretation of the data, both the demonstration of WARP microscopy to characterize small animal behavior and the discovery of new crawling-associated anatomical features and motor patterns make the paper worthy of attention.

      I thank the authors for providing data underlying the figures. In these uncropped data sets, the deformation of the substrate due to the surface tension of an adhering water layer is visible. I would hope the authors would provide a subset of these images and some of the accompanying information (e.g. that the deformation of the gel due to the water layer cannot be accurately calculated due to too-rapid phase wrapping in the interferogram) as supplements to the text, to aid in interpretation and understanding of the data. It is also worth noting that in the data provided, under the larva, the integral of the stress on the gel is upward, despite the downward force exerted by the protopodia.

      Future work using this exciting technique might address the role of surface tension and the balance of forces and might also produce direct evidence to show that the protopodia serve to "anchor" segments of the larva not in motion. Indeed, the most exciting aspect of this work is the number of new questions it both raises and provides a technological pathway towards resolving.

    1. Reviewer #1 (Public Review):

      Understanding the ecology including the dietary ecology of enantiornithines is challenging by all means. This work explores the possible trophic diversity of the "opposite-bird" enantiornithines by referring to the body mass, jaw mechanical advantage, finite element analysis of the jaw bones, and morphometrics of the claws and skull of both fossil and extant avian species. By incorporation the dietary information of longipterygids and pengornithinds, the authors predicted a wide variety of foods for enantiornithine ancestors. This indicates the evolutionary successes of enantiornitine during Cretaceous is very likely to have been driven by the wide range of recipes. I believe this work represented the most comprehensive analysis of enantiornithines' diet and trophic diversity by far and the first systematic dietary analysis of bohaiornithids, though the analysis themselves are largely based on the indirect evidence including jaw bone morphologies and claw and skull morphometrics. Anyway, I believe the authors did most the paleontologists could do, and I do not know whether the conclusions could be further supported by incorporating some geochemical data, as most of the specimens the authors analyzed were recovered from a small geographic area. The results also indicate that the developmental trajectories of enantiornithines, at least for jaw bones, might also have been diverse to some extent in response to the diverse ecological niches they adapted. My only concern regarding the analysis is to what extent the conclusions are convincing by comparing specimens representing various ontogenetic stages. This concern has been addressed in the revised manuscript. I believe the authors have almost exhausted all available methods, and I congratulate the authors for the detailed study they conducted.

    1. Reviewer #1 (Public Review):

      In this work, the authors set out to ask whether the MYRF family of transcription factors, represented by myrf-1 and myrf-2 in C. elegans, have a role in the temporally controlled expression of the miRNA lin-4. The precisely timed onset of lin-4 expression in the late L1 stage is known to be a critical step in the developmental timing ("heterochronic") pathway, allowing worms to move from the L1 to the L2 stage of development. Despite the importance of this step of the pathway, the mechanisms that control the onset of lin-4 expression are not well understood.

      Overall, the paper provides convincing evidence that MYRF factors have a role in the regulation of lin-4 expression. Using state-of-the-art techniques (knock-in reporters and conditional alleles), the authors show that MYRF factors are essential for lin-4 activation and act cell-autonomously. While there are some minor concerns about the use of unusual gain-of-function alleles, these are mitigated by consistent results using other approaches. The authors also provide evidence that MYRF factors activate lin-4 by directly activating its promoter. While their results are certainly consistent with this possibility, they rely on indirect measurements and are therefore not definitive. Further experiments will be necessary to determine whether this model is accurate.

      Some details about the relative roles of the two C. elegans MYRF factors, myrf-1 and myrf-2, remain unclear. myrf-1 clearly seems to play the more important role lin-4 activation and the regulation of developmentally timed processes. However, there are numerous hints that myrf-2 may act in the opposite direction, either by inhibiting myrf-1 itself or its ability to activate its targets. Further work will be necessary to understand the genetic and mechanistic relationships between these two genes.

      Overall, the findings in this paper are convincing, and the results will be of interest to a wide range of developmental biologists.

    1. Reviewer #2 (Public Review):

      The authors suggest that the African trypanosome endomembrane system has unusual organisation, in that the entire system is a single reticulated structure. It is not clear if this is thought to extend to the lysosome or MVB. There is also a suggestion that this unusual morphology serves as a trans-(post)Golgi network rather than the more canonical arrangement.

      The updated manuscript is significantly improved. I remain at slight odds with the author's push for the lack of generality as important, and the new cell biology that we have been on the verge of for decades. However, that is a scholarly issue and is not grounds for any further revision of the present manuscript.

    1. Reviewer #1 (Public Review):

      Summary

      This fascinating paper by M. Alfatah et al. describes work to uncover novel genes affecting lifespan in the budding yeast S. cerevisiae, eventually identifying and further characterizing a gene, YBR238C, now named AAG1 by the authors.<br /> The authors began by considering published gene sets pulled from the Saccharomyces genome database that described increases or decreases in either chronological lifespan or replicative lifespan in yeast. They also began with gene sets known to be downregulated upon treatment with the lifespan-extending TOR inhibitor rapamycin.

      YBR283C was unique in being largely uncharacterized, downregulated upon rapamycin treatment and linked to both increased replicative lifespan and increased chronological lifespan upon deletion.

      The authors show that YBR283C may act to negatively regulate mitochondrial function, in ways that are both dependent on and independent of the stress-responsive transcription factor Hap4, largely by looking at relative expression levels of relevant mitochondrial genes.

      In a hard to fully interpret but well documented series of experiments the authors not that the two paralogues YBR283C and RMD9 (which have ~66% similarity) (a) have opposite effects when acting alone, and (b) appear to interact in that some phenotypes of ybr283c are dependent on RMD9.

      A particularly interesting finding in light of the current literature and of the authors' strategy in identifying YBR283C is that changes in electron transport chain genes upon rapamycin treatment appear to be effected via YBR283C.<br /> Based on a series of experiments the authors move to conclude the existence of "a feedback loop between TORC1 and mitochondria (the TORC1-Mitochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes."

      Strengths

      Overall, this study describes a great deal of new data from a large number of experiments, that shed light on the potential specific roles of YBR238C and its paralog RMD9 in aging in yeast, and also underscore the potential of an approach looking for "dark matter" such as uncharacterized genes when seining the increasing deluge of published datasets for new hypotheses to test. This work when revised will become a valuable addition to the field.

      Weaknesses

      A paralog of YBR283C, RMD9, also exists in the yeast genome. While the authors indicate that part of their interest in YBR283C lies in its uncharacterized nature, its paralogue, RMD9, is not uncharacterized but is named due to its phenotype of Required for Meiotic nuclear Division, which is not mentioned or discussed anywhere in the manuscript currently.

      In the context of the current work, in addition to the cited Hillen, H.S et al. and Nouet C. et al, the authors might be very interested in the 2007 Genetics paper "Translation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p" (PMID: 17194786), which does not appear to be cited or discussed in the current version of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This important study nicely integrates a breadth of experimental and computational data to address fundamental aspects of RNA methylation by an important for biology and health RNA methyltransferases (MTases). 



      Strengths: The authors offer compelling and strong evidence, based on carefully performed with appropriate and well-established techniques to shed light on aspects of the methyl transfer mechanism of the methyltransferase-like protein 3 (METTL3), which is part of the methyltransferase-like proteins 3 & 14 (METTL3-14) complex. 


      There are no weaknesses that we identified in the revised version.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper provides strong evidence for the roles of JH in an ametabolous insect species. In particular, it demonstrates that:<br /> • JH shifts embryogenesis from a growth mode to a differentiation mode and is responsible for terminal differentiation during embryogenesis. This, and other JH roles, are first suggested as correlations, based on the timing of JH peaks, but then experimentally demonstrated using JH antagonists and rescue thereof with JH mimic. This is a robust approach and the experimental results are very convincing.<br /> • JH redirects ecdysone-induced molting to direct formation of a more mature cuticle<br /> • Kr-h1 is downstream of JH in Thermobia, as it is in other insects, and is a likely mediator of many JH effects<br /> • The results support the proposed model that an ancestral role of JH in promoting and maintaining differentiation was coopted during insect radiations to drive the evolution of metamorphosis. However, alternate evolutionary scenarios should also be considered.

      Strengths:

      Overall, this is a beautiful, in-depth student. The paper is well-written and clear. The background places the work in a broad context and shows its importance in understanding fundamental questions about insect biology. The researchers are leaders in the field, and a strength of this manuscript is their use of a variety of different approaches (enzymatic assays, gene expression, agonists & antagonists, analysis of morphology using different types of microscopy and detection, and more) to attack their research questions. The experimental data is clearly presented and carefully executed with appropriate controls and attention to detail. The 'multi-pronged' approach provides support for the conclusions from different angles, strengthening conclusions. In sum, the data presented are convincing and the conclusions about experimental outcomes are well-justified based on the results obtained.

      Weaknesses:

      This paper provides more detail than is likely needed for readers outside the field but also provides sufficient depth for those in the field. This is both a strength and a weakness. I would suggest the authors shorten some aspects of their text to make it more accessible to a broader audience. In particular, the discussion is very long and accompanied by two model figures. The discussion could be tightened up and much of the text used for a separate review article (perhaps along with Figure 11) that would bring more attention to the proposed evolution of JH roles.