45 Matching Annotations
  1. Nov 2017
  2. www.torrancelearning.com www.torrancelearning.com
    1. xAPI and Next Generation Learning Get the right data about the learning experience and its impact on performance. We’re among the early adopters and leaders in the Experience API (xAPI) and its application in performance & analytics. As winners of the xAPI Hyperdrive, eLearning Guild Demofest and Brandon Hall Awards with our xAPI-based solutions, we’re inspiring others with fresh thinking. As hosts of the xAPI Learning Cohort we’re supporting hundreds of pioneers and experimenters in learning and working with the xAPI.
  3. courses.openulmus.org courses.openulmus.org
    1. Mount St. Mary’s use of predictive analytics to encourage at-risk students to drop out to elevate the retention rate reveals how analytics can be abused without student knowledge and consent

      Wow. Not that we need such an extreme case to shed light on the perverse incentives at stake in Learning Analytics, but this surely made readers react. On the other hand, there’s a lot more to be said about retention policies. People often act as though they were essential to learning. Retention is important to the institution but are we treating drop-outs as escapees? One learner in my class (whose major is criminology) was describing the similarities between schools and prisons. It can be hard to dissipate this notion when leaving an institution is perceived as a big failure of that institution. (Plus, Learning Analytics can really feel like the Panopticon.) Some comments about drop-outs make it sound like they got no learning done. Meanwhile, some entrepreneurs are encouraging students to leave institutions or to not enroll in the first place. Going back to that important question by @sarahfr: why do people go to university?

  4. Oct 2017
    1. By giving student data to the students themselves, and encouraging active reflection on the relationship between behavior and outcomes, colleges and universities can encourage students to take active responsibility for their education in a way that not only affects their chances of academic success, but also cultivates the kind of mindset that will increase their chances of success in life and career after graduation.
    1. A look at the Hype Cycle (see here for Wikipedia’s entry on the topic and for criticism of the hype of Hype Cycles) of the IT research and advisory firm, Gartner, indicates that both big data and adaptive learning have now slid into the ‘trough of disillusionment’, which means that the market has started to mature, becoming more realistic about how useful the technologies can be for organizations.
    1. The learning analytics and education data mining discussed in this handbook hold great promise. At the same time, they raise important concerns about security, privacy, and the broader consequences of big data-driven education. This chapter describes the regulatory framework governing student data, its neglect of learning analytics and educational data mining, and proactive approaches to privacy. It is less about conveying specific rules and more about relevant concerns and solutions. Traditional student privacy law focuses on ensuring that parents or schools approve disclosure of student information. They are designed, however, to apply to paper “education records,” not “student data.” As a result, they no longer provide meaningful oversight. The primary federal student privacy statute does not even impose direct consequences for noncompliance or cover “learner” data collected directly from students. Newer privacy protections are uncoordinated, often prohibiting specific practices to disastrous effect or trying to limit “commercial” use. These also neglect the nuanced ethical issues that exist even when big data serves educational purposes. I propose a proactive approach that goes beyond mere compliance and includes explicitly considering broader consequences and ethics, putting explicit review protocols in place, providing meaningful transparency, and ensuring algorithmic accountability. Export Citation: Plain Text (APA
    1. The Handbook of Learning Analytics is designed to meet the needs of a new and growing field. It aims to balance rigor, quality, open access and breadth of appeal and was devised to be an introduction to the current state of research. The Handbook is a snapshot of the field in 2017 and features a range of prominent authors from the learning analytics and educational data mining research communities. The chapters have been peer reviewed by committed members of these fields and are being published with the endorsement of both the Society for Learning Analytics Research and the International Society for Educational Data Mining. We hope you will find the Handbook of Learning Analytics a useful and informative resource.
  5. Sep 2017
    1. Learning Analytics researchers have long held that the contexts of learning are critical in making meaningful analyses. With the large data footprint that Blackboard has to analyze, our team is able to look at some of these contexts in depth.
  6. Aug 2017
    1. Bottom-up mining of patterns may reveal phenomena that nobody was predicting based on formal theory, and to which we are therefore blinded. It will be an exciting moment when an unexpected pattern in the data, discovered by an algorithm as an apparent anomaly, leads to a theoretical breakthrough.
  7. Jul 2017